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ABSTRACT 

 

Improved estimates of regional-scale land-atmosphere CO2 exchange 
using geostatistical atmospheric inverse models 

by 

Sharon Muzli Gourdji 

 

Chair:  Anna M. Michalak 

In order to devise strategies to reduce atmospheric CO2 concentrations and 

predict their future trajectories for climate change mitigation and prediction, it is 

important to accurately quantify and understand the drivers of regional-scale (~500 x 

500 km2) land-atmosphere carbon exchange from biospheric processes and fossil fuel 

emissions.  While CO2 fluxes at this scale cannot be directly measured, inverse models 

can potentially provide estimates with reasonable uncertainties by tracing back 

variability in atmospheric CO2 measurements to the most likely distribution of surface 

CO2 exchange.  This dissertation applies a geostatistical approach to inversions, which 

relies on an estimated spatiotemporal covariance structure to infer fluxes directly at fine 

scales in both space and time.  In addition, process-based datasets can be incorporated 

into the inversion in a manner analogous to multi-linear regression, improving flux 
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estimates and providing inference regarding significant flux drivers.  In the first 

dissertation component, environmental datasets are incorporated into a global 

inversion, with results showing that Leaf Area Index and the Fraction of 

Photosynthetically Active Radiation explain a significant portion of biospheric flux 

variability, while Gross Domestic Product and Population Density are associated with the 

fossil fuel emission signal.  However, at the continental scale, flux estimates were found 

to be constrained primarily by the atmospheric measurements, with the grid-scale 

environmental datasets having minimal impact.  The second component investigates the 

optimal use of continuous, continental CO2 measurements influenced by the biospheric 

diurnal cycle, heterogeneous land-cover, and point-source fossil fuel emissions.  In a 

series of synthetic data inversions over North America during the growing season, 

explicitly estimating the diurnal variability of fluxes was found to be critical for inferring 

unbiased fluxes at the aggregated monthly, ecoregion-scale.  In the third component, a 

North American regional inversion is implemented using real data available from the 

continuous monitoring network in 2004.  The biospheric portion of estimated total CO2 

flux is compared to a collection of bottom-up, process-based model output.  Results 

show some convergence in the spatial patterns, seasonal cycle and net annual CO2 flux 

between the inversion and bottom-up models, although inversion results at robust 

scales also help to provide insight into the forward model spread.   
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CHAPTER 1 

Introduction 

 

1.1  Why study the carbon cycle? 

Atmospheric concentrations of carbon dioxide (CO2) are currently growing at the 

rate of about 2 ppm per year due to fossil fuel combustion and land-use change 

(Canadell et al., 2007).  In fact, the exponential increase since 1750 in atmospheric CO2, 

a greenhouse gas, has contributed the strongest positive radiative forcing (among other 

anthropogenic factors) to global climate change since the start of the industrial era 

(Forster et al., 2007).  This accumulation of CO2 in the atmosphere is unprecedented in 

the last 650,000 years on Earth as shown in the ice core record (Siegenthaler et al., 

2005), but it has also been partly counteracted by natural sinks in the terrestrial 

biosphere and oceans.  An understanding of the processes driving these sinks and their 

future magnitude is relatively unknown, although this knowledge is essential for 

designing policies to stabilize atmospheric CO2 concentrations.   

Carbon exchange between the earth surface and the atmosphere can be divided 

roughly into three main components:  land biosphere fluxes, ocean fluxes, and 

emissions from fossil fuel combustion, as shown in Figure 1.1 reproduced from the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (Denman 

et al., 2007).  First, the terrestrial biosphere continuously exchanges CO2 with the 

atmosphere through photosynthesis and respiration.  Photosynthesis by plants fixes CO2 

from the atmosphere, and uses water and sunlight to convert this CO2 into stored 

biomass.  Respiration by plants (autotrophic respiration) or other organisms that directly 

consume biomass (heterotrophic respiration) subsequently return fixed CO2 back to the 

atmosphere.  These two biospheric processes on land are together termed Net 
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Ecosystem Exchange (NEE).  While the magnitude of the photosynthesis and respiration 

fluxes are large compared to their residual on an annual basis (i.e. NEE), ecosystems can 

be net sources or sinks of carbon on multi-year timescales due to disturbances such as 

storms, fires or insect outbreaks that change the relative proportion of living vs. dead 

biomass, anthropogenic perturbations such as the CO2 and nitrogen fertilization effects, 

or changing temperature and precipitation patterns from climate change itself (Denman 

et al., 2007).  Fires, of both natural and anthropogenic origin, also release carbon back 

to the atmosphere directly through combustion.  A related component of the carbon 

cycle is land-use change, particularly the clearing of forests for agricultural land-uses, 

which leads to reduced uptake capacity as well as large sources from decomposing 

biomass.   

 

 

 
Figure 1.1:  The magnitude of major carbon pools and fluxes on Earth in the industrial 

era.  The black numbers represent “natural” pools and fluxes, whereas the red numbers 
represent changes induced by anthropogenic activities since 1750 (Source: IPCC AR4, 

Denman et al., 2007). 
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The oceans form the second main component of the carbon cycle, which 

exchange CO2 with the atmosphere through air-sea gas transfer.  Some of the dissolved 

CO2 in the surface waters is taken up and used for photosynthesis by phytoplankton, 

which can die and sink, or in turn be consumed by other marine organisms.  Dissolved 

and particulate carbon can then be exported to deeper waters through ocean 

circulation patterns, i.e. the solubility pump, and the sinking of dead organisms, i.e. the 

biological pump.  The oceans can also be net sources of CO2 to the atmosphere, with 

warmer waters leading to stronger out-gassing (Sarmiento & Gruber, 2006).    

Finally, the last component, and the one of highest policy relevance, is CO2 

emissions due to fossil fuel combustion from oil, coal and natural gas.  While fossil fuel 

emissions represent a small magnitude of flux in the context of the much larger 

individual gross fluxes between the atmosphere and the oceans and land biosphere, 

their net annual source to the atmosphere is large in comparison to the residual 

biospheric fluxes (Figure 1.1).  Also, given the large magnitudes of the individual flux 

components of the terrestrial biosphere and oceans, small changes in their functioning, 

e.g. due to feedback effects from a changing climate, can lead to large changes in 

atmospheric CO2 (Friedlingstein and Prentice, 2010).  Therefore, in order to design 

policies to mitigate climate change, it is essential to have a better understanding of the 

carbon cycle in its entirety.   

For the purposes of supporting climate change mitigation policies and improving 

mechanistic models for future prediction of the carbon cycle, it is important to be able 

to quantify current carbon exchange at the earth surface at relatively large regional 

scales, e.g. at the scale of political entities like states or provinces.  Unfortunately, CO2 

fluxes cannot currently be directly measured at any scale larger than the approximately 

1km2 footprint of an eddy-covariance flux tower (described in more detail in Section 

1.2).  Therefore, CO2 fluxes at larger spatial scales can only be provided by models.  Such 

models, which can be divided into top-down and bottom-up approaches, currently have 

a large spread in their estimates (see e.g., Figures 1.2 and 1.3), and reconciling these 
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model estimates provides the primary means of accurately quantifying regional-scale 

CO2 exchange given the lack of any direct validation data. 

1.2  Bottom-up understanding of CO2 fluxes 

The term “bottom-up” refers to a process-based understanding of CO2 surface 

exchange, as gained from experimental studies at plot-level or laboratory scales.  

Bottom-up models of CO2 flux may also include extrapolated relationships based on 

inventory data from forest growth measurements (e.g. Potter et al., 2008) and 

agricultural crop yield statistics (West et al., 2010), or even fossil fuel emissions from 

fuel sales and air pollution measurements (e.g. Gurney et al., 2009).  In general, the 

spatial and temporal distribution of fossil fuel emissions is considered to be better-

known than the biospheric component of the land carbon cycle (Marland et al., 2009), 

although in order to separately identify the biospheric and anthropogenic signals in the 

total CO2 flux to the atmosphere, it is critical to have a better understanding of the 

terrestrial biosphere.  Process-based bottom-up models also exist for the oceans, but 

consistent with the main focus of this dissertation, the following discussion will mostly 

focus on the terrestrial biosphere.   

The only direct estimates of land-atmosphere CO2 exchange, at scales larger than 

a laboratory, are from eddy-covariance flux towers.  These flux estimates are derived 

from the covariance between continuously measured atmospheric CO2 concentrations 

and vertical wind velocity (Baldocchi et al., 1988, 2003) within the footprint of the 

tower, and they provide rich datasets for testing hypotheses concerning the drivers of 

net biospheric carbon exchange at the land surface (Baldocchi, 2008).  A growing 

network of these sites around the world (i.e. FLUXNET, Baldocchi et al., 2001; Friend et 

al., 2007) has also helped to increase understanding of the drivers of NEE in different 

climatic zones and ecosystems.  However, due to heterogeneity in land cover and 

climatic gradients that vary on large spatial scales, it has proven difficult to extrapolate 

eddy-covariance CO2 flux estimates to larger regions, although attempts have been 

made (e.g. Xiao et al., 2008; Jung et al., 2009).  Also, these towers tend to be sited in 
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areas relatively remote from human influence, thereby inducing inherent biases in 

scaling their estimates to areas with managed ecosystems and large sources from fossil 

fuel emissions.   

Bottom-up biospheric models estimate CO2 fluxes associated with NEE by scaling 

up process-based understanding gained from experimental studies at smaller scales.  

Scaling up process-based understanding of NEE is as difficult as scaling up direct eddy-

covariance estimates of CO2 flux, due to heterogeneity in land cover and emergent 

processes at larger scales (Loureau et al., 2003; West et al., 2009).  In fact, estimates of 

NEE can differ strongly between biospheric models due to varying assumptions about 

vegetation structure and input datasets (Cramer et al., 1999; Kicklighter et al., 1999), 

processes included in the model formulation, and overall level of complexity.  For 

example, the Simple Biosphere Model or SiB (Sellers et al., 1996a,b)) mechanistically 

characterizes the energy and water cycles in addition to the carbon cycle, whereas more 

simple models such as the Vegetation Photosynthesis & Respiration Model (VPRM) rely 

on empirical relationships derived from flux tower data and remote-sensing products to 

simulate NEE (Mahadevan et al., 2008).   

Another important distinction between biospheric models is whether they use 

values from remote sensing datasets to calibrate their estimates (diagnostic models), or 

they calculate variables like Leaf Area Index internally (prognostic models) (Huntzinger 

et al., in prep).  While prognostic models are not as reliant on actual measurement data 

at the regional scale as are diagnostic models, they instead provide predictive ability 

which can be used for future scenario analysis, critical for evaluating interactions 

between the carbon cycle and a changing climate.  For example, a class of biospheric 

models termed Dynamic Vegetation Models (e.g. Cramer et al., 2001; Krinner et al., 

2005) attempt to simulate changes in plant functional types as environmental 

conditions change.  Unfortunately, while these models can reproduce past carbon 

budgets reasonably well within levels of current understanding, they still diverge 

strongly in terms of their predicted response to future climate change (Sitch et al., 

2008). 
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Figure 1.2:  Example of the range of bottom-up estimates of CO2 flux over North America 
during from the growing season from June to August, 2002 (Source: D.N. Huntzinger, 

personal communication). 

 

Figure 1.3:  Example of the spread in the estimated long-term (2000-2005) seasonal 
cycle of NEE from 20 atmospheric inversions over North America.  (Source: D.N. 

Huntzinger, personal communication). 
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1.3  Top-down approaches to studying the carbon cycle 

In contrast to bottom-up approaches, “top-down” approaches for studying the 

carbon cycle attempt to scale down the signal associated with the net effect of all CO2 

exchange processes as seen in the atmosphere.  Atmospheric CO2 measurement time 

series from remote sites, like Mauna Loa, Hawaii, are helpful for understanding the 

seasonal and inter-annual variability of global-scale net CO2 accumulation in the 

atmosphere (e.g. Keeling et al., 1995; Jones & Cox, 2005; Buermann et al., 2007).  

However, multiple measurement sites must be used in conjunction with an atmospheric 

transport model to deduce carbon sources and sinks at sub-global, i.e. continental or 

finer regional scales.  Atmospheric inverse models, which are described in more depth 

throughout this dissertation, are used to accomplish this task.   

Inverse modeling techniques, or top-down approaches, trace back variations in 

measured atmospheric CO2 concentrations to the most likely configuration of surface 

sources and sinks with the aid of an atmospheric transport model (Enting, 2002).  CO2 is 

a long-lived, relatively inert gas, so that inverse problems for CO2 sources and sinks do 

not need to consider atmospheric chemistry.  However, the signal of surface flux 

variability becomes diluted over time due to atmospheric mixing, such that most 

information about the spatial distribution of sources and sinks is contained within the 

measurements only up to about six months after emission (Bruhwiler et al., 2005).  

Atmospheric mixing also tends to make CO2 inverse problems ill-conditioned, in that 

there is a range of surface flux estimates that can reproduce the available measurement 

data (Enting, 2002).  Finally, given the limited network of in-situ surface measurements 

typically used in CO2 inversions (Tans & Conway, 2005), the problem may also be under-

determined if the number of estimated fluxes is greater than the number of available 

observations.   

In an ill-conditioned and/ or under-determined problem, mass balance 

constraints imply that estimates recovered in regions under-constrained by the 

measurements are likely to be unrealistic and compensating for limited information in 



8 
 

better-constrained regions.  Therefore, some sort of regularization technique is needed 

to stabilize the solution (Fan et al., 1999).  Bayesian inversion methods provide a form of 

regularization in which explicit prior flux estimates are included in the objective function 

(Enting, 2002).  Therefore, solving a Bayesian inversion involves a compromise between 

estimating fluxes that can reproduce the atmospheric measurements when transported 

forward into concentration space, while also staying close to the prior flux estimates, 

particularly in under-constrained regions.  This approach allows the inverse model to 

assimilate all relevant knowledge about carbon cycle science at the desired flux 

resolution.   

The Bayesian objective function for an atmospheric inversion is typically 

formulated as: 

𝐿𝐬 = 1
2

(𝐳 − 𝐇𝐬)𝑇𝐑−1(𝐳 − 𝐇𝐬) + 1
2
�𝐬 − 𝐬𝐩�

𝑇
𝐐−1�𝐬 − 𝐬𝐩�   (1) 

 

where 𝐳 is a vector representing the atmospheric CO2 measurements, 𝐇 is the sensitivity 

matrix relating measured concentrations to surface fluxes (𝐬) in space and time, as 

derived from an atmospheric transport model, and 𝒔𝒑 is a vector of prior flux estimates 

which are updated using the atmospheric data constraint.  Two covariance matrices (𝐑 

and 𝐐) provide information to the inversion as to how well it should be able to 

reproduce the concentration data given measurement, transport model and other sorts 

of errors in the model setup (𝐑), and how much to trust the prior flux estimates (𝐐).  

Overall, by minimizing the objective function, an inversion balances these two 

competing goals of minimizing the mismatch between measured (𝐳) and “modeled” 

concentrations (i.e. 𝐇𝐬, or the inferred fluxes transported forward to the measurement 

space), while also remaining faithful to the prior flux estimates (𝐬𝐩).   

Atmospheric CO2 inversions have until now principally been limited by the lack of 

data coverage in both space and time.  The first major time series of atmospheric CO2 

concentration measurements was due to the efforts of Charles David Keeling, who first 

began collecting data at Mauna Loa, Hawaii in the 1950’s, and began to document the 
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rise in atmospheric CO2 over time from fossil fuel combustion (Harris, 2010).  Since then, 

the NOAA-ESRL Global Monitoring Network (Tans and Conway, 2005) has grown to a 

global network of more than 100 sites in 2010 (shown in 

http://www.esrl.noaa.gov/gmd/dv/site/site_table2.html) that can be used to help 

constrain continental-scale CO2 flux estimates in atmospheric inversion studies.  

However, most sites in this network provide only weekly flask samples, and the network 

still lacks spatial coverage in the tropics and southern hemisphere.  Also, the flask 

sampling sites are primarily in remote or high-altitude locations, limiting their ability to 

inform sub-continental scale flux estimates.   

In order to infer fluxes using an atmospheric inversion at sub-continental scales, 

the scale of political entities, it becomes necessary to use observation sites in the 

inversion located directly within high CO2 flux variability areas (Law et al., 2003).  For 

this purpose, there is a growing network of sites collecting continuous measurements in 

sub-continental, low-altitude locations.  Some of these sites are also part of the NOAA-

ESRL network, although again they are located primarily in North America and Europe 

(Bakwin et al., 1998; http://ce-atmosphere.lsce.ipsl.fr/database/index_database.html).   

While the use of continuous, continental measurement data in inversions is 

promising for constraining flux estimates at finer spatial scales, the use of these data is 

particularly problematic during the growing season when incoming shortwave radiation 

drives both atmospheric dynamics and CO2 flux processes.  If not properly accounted for 

within the inversion framework, these co-varying processes can lead to biased flux 

estimates due to the diurnal rectifier effect (Denning et al., 1996).  A related point is 

that in order to appropriately take advantage of continuous, continental data in an 

inversion, improvements in transport models are necessary to properly account for 

complex, small-scale dynamics in the near-field of the measurement locations (e.g. Lin 

et al., 2003).  Meso-scale transport models remain an active area of research (e.g. Geels 

et al., 2007; Sarrat et al., 2007), not specifically discussed in this dissertation, that must 

advance in parallel to improvements in inverse model setup in order to appropriately 

take advantage of continuous, continental data-streams.  Finally, the sheer volume of 

http://www.esrl.noaa.gov/gmd/dv/site/site_table2.html�
http://ce-atmosphere.lsce.ipsl.fr/database/index_database.html�
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the continuous measurement data and computational demands associated with meso-

scale transport models that resolve transport dynamics on finer spatial scales has 

necessitated regional inversions that estimate fluxes only for a specific spatial domain, 

e.g. a continent.   

While the availability of atmospheric CO2 measurements and the reliability of the 

atmospheric transport model are the two components that critically underpin the 

quality of an atmospheric inversion, other setup choices can also affect the ability of the 

inversion to infer high quality flux estimates.  These choices include the spatial and 

temporal resolution of inferred fluxes, the choice of prior flux estimates, the 

parameterization of covariance matrices, and the specification of boundary conditions 

for regional inversions with a limited domain.   These setup choices are discussed in 

more detail throughout this dissertation. 

 

1.4  Why the geostatistical approach to atmospheric inversions? 

Ultimately, bottom-up and top-down methods for CO2 flux estimation each have 

their advantages, and in many ways these are complementary approaches.  Bottom-up 

models may be more accurate at finer scales than inversions, and they also provide the 

ability to help understand the processes driving the carbon cycle through sensitivity 

analyses of driving data and model formulation (e.g. Jain et al., 2005; Bondeau et al., 

2007; Baker et al., 2008).  In addition, these models provide the only means of 

predicting future carbon fluxes and expected carbon cycle-climate change feedback 

effects (Friedlingstein et al., 2006; Sitch et al., 2008).  In contrast, the top-down 

approaches represent the carbon cycle from the point of view of the atmosphere, and at 

large scales, they may point to missing processes or errors in model formulation in 

mechanistic models (e.g. Gurney et al., 2003; Peylin et al., 2005).  Particularly for 

monitoring fossil fuel emissions, top-down approaches have the potential to help 

validate fossil fuel emission inventories or identify missing sources in these datasets 

(e.g. Levin & Karstens, 2007; Djuricin et al., 2010; Pisso et al., 2010).  With future global 

CO2 data-streams from satellites, atmospheric inversions may also provide a means of 
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policing and enforcing CO2 emission reduction commitments around the globe (NRC, 

2010). 

  While bottom-up and top-down models have mostly complementary strengths 

and purposes, an ability to reconcile their CO2 flux estimates at intermediate regional 

scales (e.g. individual states, provinces, or countries) would lead to increased confidence 

in results from both sets of models (Canadell et al., 2010).  Currently, there exists a large 

spread in bottom-up model estimates of CO2 flux, even for past years (e.g. Figure 1.2).  

However, there also exists a spread in inverse model estimates at both continental and 

sub-continental scales due to differing model setups and input data (e.g. Figure 1.3).  

With improvements in inverse modeling capabilities, the subject of this dissertation, 

there is a hope that the atmospheric constraint can be used to help validate forward 

models, or at least distinguish between inconsistent sets of bottom-up flux estimates.  

Better estimates of NEE from forward models can then help to more appropriately 

isolate the anthropogenic signal in the total CO2 flux seen from the atmosphere to help 

enforce future policy commitments. 

This dissertation makes a contribution towards helping to reconcile bottom-up 

and top-down understanding of regional-scale CO2 fluxes by focusing primarily on the 

atmospheric constraint, and helping to disentangle the relative contribution of CO2 

measurements and bottom-up models used as explicit priors in previous synthesis 

Bayesian inversion studies (e.g. Rayner et al., 1999, 2008; Gurney et al., 2003; 

Rödenbeck et al., 2003; Baker et al., 2006).  It does this by applying a geostatistical 

inverse modeling approach, which avoids the use of prior flux estimates (Michalak et al., 

2004) by taking advantage of spatiotemporal autocorrelation in the estimated fluxes, 

thereby reducing the degrees of freedom in the solution.  Also, this autocorrelation 

allows the inversion to solve for fluxes at relatively finer scales, thereby reducing scale-

dependent errors in the solution (e.g. Kaminski et al., 2001; Tolk et al., 2008).  

Furthermore, the covariance parameters in the inversion are estimated with the 

Restricted Maximum Likelihood (Kitanidis, 1995; Michalak et al., 2004) method directly 
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using the atmospheric measurements, additionally reducing the reliance on bottom-up 

models or process-based assumptions for parameterizing the inversion.   

While a geostatistical inversion can be run with a simple mean flux defined as 

the “prior”, allowing for a completely independent comparison with bottom-up model 

output, process-based datasets can also be incorporated into the inversion to help 

downscale and extrapolate the atmospheric data constraint to under-sampled areas.  

These datasets can furthermore provide inferences regarding significant CO2 flux drivers 

and their relationship to total CO2 flux from the point of view of the atmosphere. 

Overall, by relying more strongly on the atmospheric data constraint relative to 

other synthesis Bayesian inversion studies, the geostatistical approach helps to shed 

light on the impact of various setup choices that have a strong impact on flux estimates 

from an inversion, thereby helping to reduce the spread in results from other inversion 

approaches.  Also, when not incorporating any process-based datasets, geostatistical 

inversions provide a completely independent comparison to bottom-up model output, 

making the results particularly useful for bottom-up/ top-down inter-comparison 

studies of CO2 flux.   

 

1.5  Objectives of this dissertation 

This dissertation furthers the development of the geostatistical atmospheric 

inversion framework in a manner designed to help illuminate the impact of inversion 

setup choices on final flux estimates, and also close the gap between bottom-up and 

top-down understanding of CO2 flux at regional scales.  It does this by relying on the 

atmospheric data constraint as strongly as possible to parameterize the inversion, and 

carefully assessing potential sources of bias in the inversion setup that may have gone 

unnoticed in previous synthesis Bayesian inversion studies due to their reliance on 

explicit prior flux estimates from bottom-up models and other process-based 

assumptions.   

By improving the quality of regional-scale flux estimates from an inversion and 

increasing their relative independence from process-based assumptions, the inversion 



13 
 

framework presented here is useful for providing insight into the spread of results from 

mechanistic forward models.  As mentioned previously, the bottom-up forward models 

help to increase our understanding of the global carbon cycle through scenario analysis, 

while also providing predictive ability for carbon – climate feedback effects.  However, 

their development has been hampered by the lack of direct validation data for regional-

scale CO2 exchange.  By providing a framework for generating a robust set of estimates 

from an inversion primarily reliant on the atmospheric data constraint, this dissertation 

addresses this need for validation, potentially helping to overcome this limitation.    

Finally, the geostatistical inversion provides the ability to help test and validate 

various process-based model assumptions and formulations by incorporating 

environmental datasets directly into the inversion with a regression-like approach.  

While these datasets can also help to improve flux estimates, particularly in areas 

under-constrained by the atmospheric measurements, they may be most useful for 

assessing the quality of bottom-up datasets or for testing process-based hypotheses 

concerning CO2 flux drivers.     

In the first major component of the dissertation (presented in Chapter 4, 

previously published as Gourdji et al. (2008)), the geostatistical inversion approach is 

applied at the global scale using atmospheric measurements from the NOAA-ESRL 

Cooperative Air Sampling Network to demonstrate the performance of the method with 

real data, relative to existing synthesis Bayesian inversions estimating global CO2 fluxes 

for the same time period.  Auxiliary environmental variables from remote-sensing and 

socioeconomic datasets are also incorporated into the inversion in a statistically 

rigorous manner to provide flux inference regarding significant global flux drivers, and 

assess the impact of including process-based information into the model on flux 

estimates at various spatial scales.   

The second component of this dissertation (presented in Chapter 5, previously 

published as Gourdji et al. (2010)), drills down to the continental scale, using a regional 

inversion specifically for the North American continent.  This component develops a 

regional inversion framework for optimally taking advantage of highly variable 
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continuous, continental measurement data.  This task is accomplished through the use 

of pseudo-data inversions for June 2004, where the “true” solution is known and can be 

compared to inferred flux estimates within their recovered uncertainties.  Two topics 

are specifically addressed:  first, the use of the RML approach with atmospheric 

measurements is investigated for inferring appropriate covariance parameters for the 

inversion.  Second, the impact of the flux temporal resolution is assessed, particularly 

whether or not to resolve diurnal variability in the estimated fluxes. 

The third and final component of this dissertation (presented in Chapter 6), 

applies the setup developed in the second component with real measurements to infer 

CO2 sources and sinks for 2004 over the North American continent.  Additional 

challenges associated with using real measurement data, which could not be addressed 

in a synthetic data study, are addressed here, specifically data filtering to avoid 

systematic transport model errors, and the appropriate set of regional boundary 

conditions to use and their impact on final flux estimates.  Without including any 

process-based datasets in the inversion, results are compared within recovered 

uncertainties to a collection of biospheric model flux estimates submitted to the North 

American Carbon Program regional interim synthesis (Huntzinger et al., in prep) for 

inter-comparison studies.  Despite the limited measurement network for this year (9 

continuous tower locations unevenly located across the continent and available flask 

and aircraft measurements), this inter-comparison helps to shed light on both the large 

spread of biospheric model results available for this year, as well as the strengths and 

weaknesses in the presented inversion setup and input data.   

Chapter 2 provides a literature review of previous studies relevant to the 

presented work, while Chapter 3 describes the methods used.  Chapters 4 to 6 contain 

descriptions of the individual components of the dissertation, while Chapter 7 concludes 

the dissertation and suggests promising avenues for future work. 

In summary, this dissertation provides a contribution to the atmospheric 

inversion field by demonstrating the impact of various assumptions and setup choices 

on the final flux estimates, important for informing the robust use of atmospheric CO2 
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concentration measurements in future operational carbon monitoring systems.  Also, by 

increasing the reliance on the atmospheric data constraint to infer covariance 

parameters and final flux estimates, the presented inversions provide a more 

independent comparison to bottom-up forward models, thereby helping to close the 

gap between bottom-up and top-down understanding of CO2 flux at regional scales. 
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CHAPTER 2 
 

Literature Review 
 

 
This chapter summarizes the state of the science in regards to the three main 

components of this dissertation: global atmospheric inversions using CO2 measurements 

from the NOAA-ESRL Global Monitoring Network, regional atmospheric inversions using 

continuous data, and bottom-up/ top-down inter-comparisons of the North American 

carbon cycle.  The literature review associated with the first component primarily covers 

methodological studies with some discussion of scientific results, while the discussion of 

the second component is entirely methodological.  The discussion of the literature 

associated with the third component focuses on scientific conclusions that have 

emerged thus far primarily through bottom-up studies of CO2 flux over the North 

American continent.   

 

2.1  Global CO2 inversion studies using flask measurements from the 
NOAA-ESRL Cooperative Air Sampling Network 
 

Weekly flask samples of CO2 concentration are collected at more than 100 sites 

world-wide in the NOAA-ESRL Cooperative Air Sampling Network (Figure 2.1; Tans & 

Conway, 2005), where these measurement locations have specifically been chosen to 

ensure sampling of well-mixed “baseline” air that is not influenced by local flux 

variability (Ramonet & Monfray, 1996).  Many of these sites sample air from the Marine 

Boundary Layer (MBL) on islands or coastlines, while other sites are at high-elevation or 

in relatively remote locations.  The flask sampling network has expanded from about 20 

sites in 1980 to more than 100 locations world-wide today.
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Figure 2.1:  Map of measurement locations in the NOAA-ESRL Cooperative Air Sampling 

Network.  Flask sampling sites are shown in filled red circles.  (Source:  
http://www.esrl.noaa.gov/gmd/ccgg/). 

 

 

Early atmospheric CO2 inverse models used mass balance constraints and an 

observed gradient in atmospheric CO2 concentrations between the northern and 

southern hemispheres to conclude that the “missing sink” in the global carbon budget 

was located in the Northern Hemisphere terrestrial biosphere (Tans et al., 1990; Ciais et 

al., 1995).  Since then, a series of studies have used monthly atmospheric CO2 

observations derived from the global flask sampling network to estimate continental-

scale fluxes in synthesis Bayesian inversions (e.g. Gurney et al., 2003, 2004; Law et al., 

2003a; Baker et al., 2006; Rödenbeck et al., 2003), although global latitudinal bands still 

remain better-constrained than individual continents (Gurney et al., 2008).   

Synthesis Bayesian CO2 inversions typically specify biospheric model output, 

fossil fuel and fire emission inventories, and extrapolated ocean ship-track data as their 

prior flux estimates, and then estimate corrections at the scale of large regions to these 
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explicit priors (e.g. Bousquet et al., 2000; Gurney et al., 2002; Rödenbeck et al., 2003).  

Other studies using flask samples from the NOAA-ESRL Monitoring Network have taken 

the approach of using CO2 measurements and the inversion framework to update 

parameters within a mechanistic forward model as part of a data assimilation system 

(Rayner et al., 2005; Scholze et al., 2007).  While such studies maintain the predictive 

ability of the forward models and their partitioning of net CO2 flux into various 

components (i.e. GPP, Ra+h, fires, etc.), most of the subsequent discussion will focus on 

synthesis Bayesian inversions that estimate CO2 flux directly.  

The spread in flux estimates from global synthesis Bayesian inversion studies 

associated with different data choices, transport models, covariance matrix structure 

and parameterization, prior flux estimates and flux estimation resolution have led to 

numerous methodological studies aiming to pinpoint optimal inversion setups, or more 

generally the impact of each of these input and setup choices on inversion results.  

Specifically, the TransCom3 series of inversion studies compared the performance of 17 

different atmospheric transport models in constraining fluxes for 22 large regions 

around the globe, and concluded that transport model errors contribute a significant 

amount of uncertainty to the final flux estimates (Gurney et al., 2003, 2004; Law et al., 

2003a; Baker et al., 2006).  These coordinated studies also investigated the sensitivity of 

final flux estimates to the choice of priors, observing networks and other aspects of 

inversion setup.  Relevant results will be referenced in the discussion below.   

Limitations in the quality of atmospheric transport models are considered to be 

one of the largest sources of uncertainty in flux estimates from global inversions, with 

most of the differences observed in a posteriori fluxes from different transport models 

due to varying rates of inter-hemispheric and vertical mixing (Gurney et al., 2003).  In 

fact, systematic errors in the vertical mixing from global transport models may have led 

to an overestimation of the sources in the tropics, and the sinks in the northern 

hemisphere (Stephens et al., 2007) from the TransCom3 and other global inversion 

studies (e.g. Gurney et al., 2002; Baker et al., 2006; Rödenbeck et al., 2003).  Other 

studies have found that numerical problems in well-known transport models, apart from 
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errors in process-based formulation, can lead to very different scientific conclusions 

from global inversions, although these problems can be reduced somewhat by using 

finer spatial resolutions in the driving meteorology (Prather et al., 2008).   

Given that atmospheric CO2 inversions tend to be under-constrained, most 

studies using global flask samples have tried to take advantage of as much available data 

as possible.  However, limitations of the transport model to appropriately simulate the 

dynamics around specific sites, coupled with sites coming in and out of the network 

over time, make it difficult to use all possible data in the inversion without inadvertently 

biasing flux estimates.  For example, Patra et al. (2006) showed the impact on a global 

inversion of using ocean-only sites vs. the additional inclusion of land sites, where the 

transport is presumably more difficult to model.  Not only did the spread in results using 

different transport models become wider after including the land-based sites, the flux 

over Europe changed from a neutral flux to a sink of 0.5 PgC/yr.  Similarly, the 

introduction of a land-based low-altitude observation location in Canada to the 

TransCom3 global inversions reduced the source over Boreal North America from 0.25 

PgC/yr to a neutral flux (Yuen et al., 2005).  It is unclear if the large sensitivities found in 

these experiments to the inclusion of land-based sites represented a real signal in the 

measurements, or the impact of transport model errors associated with the simulation 

of atmospheric dynamics around these sites.  Rödenbeck et al. (2003) similarly found 

that the choice of sites to include in the inversion can lead to geographical biases in the 

regions where particular measurement locations are included or excluded.  

Another research area for data selection in global inversions concerns whether 

or not to use a smoothed data product (i.e. GlobalView, Masarie and Tans (1995), 

available from http://www.esrl.noaa.gov/gmd/ccgg/globalview/index.html) which can 

help to gap-fill small breaks in the record or filter out local flux variability that is difficult 

to model on the coarser grid of the transport model.  While some inversion studies have 

directly used data from the GlobalView product in the inversion (e.g. Baker et al., 2006; 

Deng et al., 2007), other studies have used un-smoothed data in order to avoid losing 

signal in the actual measurements (e.g. Rodenbeck et al., 2003; Mueller et al., 2008; 
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Gourdji et al., 2008), although this may lead to representation errors due to the limited 

ability of the transport models to correctly model near-field variability in the data (Ciais 

et al., 2010).  In order to take advantage of un-smoothed measurements in a global 

inversion, but eliminate measurements subject to systematic transport or 

representation errors, Maki et al. (2010) recently proposed a new filtering algorithm 

based on iterative runs of the inversion to remove data-points inconsistent with the flux 

signal seen by the network as a whole.  Other studies have focused on the impact of 

sites coming into and out of the network over time, with Rödenbeck et al. (2003) 

concluding that it is best to only include measurement stations with complete data 

records over the course of the inversion when analyzing temporal trends in flux.   

In addition to transport model errors associated with a given set of data choices, 

other errors can be introduced into the inversion by the choice of spatial and temporal 

resolution of the estimated fluxes or corrections to the prior (Engelen et al., 2002).  

These errors, termed aggregation errors, occur when the atmospheric measurements 

are sensitive to variability in the flux distribution at finer scales than the allowable 

corrections.  Kaminski et al. (2001) specifically explored the impact of spatial 

aggregation errors on global inversions by quantifying errors in a synthetic data setup 

associated with resolving the globe using 18 vs. 54 regions.  The results using only 18 

regions had substantially higher errors than that using 54, with these errors being as 

large in magnitude as the fluxes themselves.  Overall, Kaminski et al. (2001) 

recommended that global inversions should resolve fluxes at as fine a spatial scale as 

computationally feasible (with the limit being the resolution of the transport model).  

Peylin et al. (2002) focused on temporal aggregation errors, and showed that giving the 

inversion freedom to adjust monthly fluxes is preferable to estimating an annual 

correction to a seasonal cycle fixed from the prior.  To help reduce the impact of 

aggregation errors, more recent global inversion studies have estimated fluxes at finer 

spatial and temporal scales by relying on an assumed correlation between grid-scale 

fluxes to help regularize the solution (e.g. Rödenbeck et al., 2003; Michalak et al., 2004; 

Mueller et al., 2008, Gourdji et al., 2008; Chevallier et al., 2010).     
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The choice of covariance parameters to use in an inversion has also been 

explored in the global inversion literature.  Most studies have relied on analyses of the 

variability in CO2 concentration measurements or modeled fluxes (e.g. Engelen et al., 

2002; Gurney et al., 2004; Chevallier et al., 2006) in order to choose model-data 

mismatch and flux covariance parameters a priori.  However, mis-specified covariance 

parameters can lead to biased a posteriori flux estimates and/ or under-estimated 

uncertainties resulting from the inverse model (Engelen et al., 2002; Chevallier et al., 

2006; Gerbig et al., 2006).  As an alternative to selecting covariance parameters based 

on analyses of the data or priors, a Maximum Likelihood approach was proposed by 

Michalak et al. (2005) as an objective way to estimate covariance parameters using the 

atmospheric data constraint within a Synthesis Bayesian inversion framework.   

Despite the concern with the quality of inversion setup and input data, some 

robust scientific conclusions have emerged from global inversion studies using in situ 

flask measurements.   These include the impact of El Niño/ La Niña and volcanic 

eruptions like Mount Pinatubo in 1991 on the inter-annual variability of global CO2 

exchange that can be clearly seen from the global flask sampling network.  For example, 

net land sinks were seen to increase following the Mt. Pinatubo eruption in 1991 in both 

the tropics and northern hemisphere extra-tropics (Gurney et al., 2008), although 

mechanistic explanations for this sink still vary (Farquhar & Roderick, 2003; Angert et al., 

2004).  Most of the inter-annual variability in global CO2 fluxes was also found to be 

driven by the land biosphere in the tropics and southern latitudes due to El Niño/ La 

Niña effects (Rödenbeck et al., 2003; Baker et al., 2006).   

Studies aiming to pinpoint more accurately the spatial location of net sources 

and sinks around the globe from inversion studies have been less conclusive.  One 

interesting result from the TransCom3 studies (Gurney et al., 2002), which was 

consistent with other global inversion studies as well (e.g. Peylin et al., 2002; Rödenbeck 

et al., 2003), was that the ocean sink in the Southern Ocean appeared to be weaker than 

oceanographic measurements would suggest (Takahashi et al., 2002).  In fact, later work 

by Takahashi et al. (2009) using extrapolated ocean ship-track measurements of pCO2 
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revised earlier estimates to be more in agreement with inversion results.  However, the 

distribution of the Northern Hemisphere terrestrial land sink still varies somewhat 

among different inversions, with some studies locating this sink mainly in North America 

(e.g. Fan et al., 1998) and others in Eurasia (Bousquet et al., 1999).   Butler et al. (2010) 

recently showed significant redistributions of the Northern Hemisphere terrestrial sink 

across Asia, Europe and North America using different measurement networks in a 

global inversion, while another recent bottom-up/ top-down synthesis study comparing 

four global inversions with land-based carbon accounting data (Ciais et al., 2010) argues 

that the largest proportion of this sink is in Russia. 

Most of the global inversion studies discussed above used the Synthesis Bayesian 

approach to estimate fluxes, where spatial patterns and fine-scale temporal variability 

were fixed from the explicit prior flux estimates.  This is known to cause significant 

aggregation errors in the flux solution (e.g. Kaminski et al., 2001; Peylin et al., 2002).  

Therefore, the need for approaches that can incorporate process-based information into 

the inversion in a manner consistent with the atmospheric data constraint, while 

simultaneously reducing the impact of aggregation errors by estimating fluxes at fine 

spatial and temporal scales, is the primary motivation for the first major component of 

this dissertation (Chapter 4). 

 

2.2  Regional CO2 inversion studies using continuous, continental 
measurement data  
 

The well-mixed air sampled by the weekly flasks from the NOAA-ESRL global 

monitoring network limits their ability to constrain sub-continental scale terrestrial 

sources and sinks (Gloor et al., 2000).    However, an expanding tower network in North 

America and Europe calibrated to international standards (Bakwin et al., 1998; 

http://ce-atmosphere.lsce.ipsl.fr/database/index_database.html), many of these also 

NOAA-ESRL sites, continuously samples atmospheric CO2 concentrations in continental, 

low-altitude areas with high local flux variability.  The CO2 mixing ratio measurements 

from these towers at certain times of the day contain information about regional-scale 

http://ce-atmosphere.lsce.ipsl.fr/database/index_database.html�
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fluxes (~1000 km x 1000 km) (Gloor et al., 2001; Bakwin et al., 2004) if used in 

conjunction with an atmospheric transport model that can adequately simulate 

atmospheric dynamics in the near-field of the measurement sites (Geels et al., 2007).  

Also, in contrast to the weekly measurements used in global inversions, inversions using 

continuous data may be capable of inferring fluxes at even finer spatial scales if the 

transport models can appropriately take advantage of the information contained in the 

fine temporal variability of measured concentrations (Law et al., 2002).  

The use of continuous CO2 concentration measurements from continental, low-

altitude measurement locations in an inversion can be potentially problematic, given 

the strong diurnal cycle of flux in heavily-vegetated areas, the covariance between 

fluxes and the height of the atmospheric boundary layer and the inability to correctly 

model this height in atmospheric transport models (i.e. the “diurnal rectifier effect” 

(Denning et al., 1996)).  Other sorts of errors associated with modeled transport in the 

near vicinity of the tower, particularly point-source fossil fuel emissions that are difficult 

to resolve at the scale of the driving winds, may also complicate the use of this data in 

inversions.  In fact, the use of continuous, continental measurements in an inversion 

puts strong demands on the quality of the transport model in order to infer realistic 

surface flux estimates.  Towards this end, a new class of meso-scale meteorological 

models has helped to better describe fine-scale continental atmospheric dynamics 

within a limited domain (e.g. Sarrat et al., 2007).  Lagrangian transport models, coupled 

with the meso-scale meteorological models, can then interpolate to a point-based 

measurement (e.g. Uliasz and Pielke, 1991; Lin et al., 2003), thereby avoiding larger 

representation errors associated with the use of coarse-scale global Eulerian models 

(e.g. TM3, Heimann and Körner, 2003).    

It should be noted that the use of coupled Lagrangian and meso-scale 

meteorological models can help to improve transport accuracy in the near-field of 

continental measurements, but at the cost of computational expense.  Resolving fluxes 

at finer spatial and temporal scales to avoid aggregation errors also necessitates a 

means to reduce computational costs.  Therefore, regional inversions that estimate 
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fluxes for only a limited domain have emerged as a means to take advantage of high-

quality transport models while estimating fluxes at fine scales.  Unfortunately, regional 

inversions require the specification of CO2 concentration boundary conditions at the 

edge of the domain, which can introduce additional uncertainties into the inversion 

calculations (Gerbig et al., 2006).  In fact, errors in boundary conditions used in regional 

real-data inversions have been shown to introduce a significant bias into flux estimates, 

particularly at the annual timescale (Peylin et al., 2005; Göckede et al., 2010b).  More 

recent studies have attempted to develop a framework for nesting a Lagrangian 

transport model for a specific regional domain within a larger global inversion using a 

coarser Eulerian model (e.g. Rödenbeck et al., 2009; Trusilova et al., 2010).  This setup 

allows one to estimate fluxes and model transport at finer scales within the region of 

interest, while simultaneously eliminating the need for boundary conditions.    

Apart from concerns with the transport model and boundary conditions, an 

appropriate inversion setup is also important for optimally taking advantage of 

continuous, continental CO2 measurements in an inversion (e.g. Carouge et al., 2010b).  

Synthetic data (a.k.a. “pseudo-data”) experiments are particularly useful for diagnosing 

inversion quality because they include a set of specified baseline fluxes with which 

results can be compared, making it easier to diagnose potential biases in inferred fluxes 

under a number of different scenarios (Law et al., 2002).  Also, synthetic data studies 

can help to isolate the impact of inversion setup choices, as opposed to other sources of 

bias in inversions, e.g. due to errors in the boundary conditions, transport model, or 

prior flux estimates.  For example, the effect of atmospheric transport model errors can 

be controlled by using the same transport model to create the synthetic measurements 

as is used to estimate fluxes in the inversion, and covariance parameters can also be 

derived from the “true” underlying flux distribution (Gourdji et al., 2010, or Chapter 5 of 

this dissertation).   

In a series of pseudo-data inversions, Law et al. (2002, 2003b, 2004) investigated 

the optimal inversion setup for taking advantage of continuous measurements collected 

on or near the Australian continent.  The first of these studies (Law et al., 2002) used 4-
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hourly synthetic measurements from marine boundary layer locations.  Spatial 

aggregation errors were shown to be particularly important when using continuous data 

in this study, consistent with the results from Schuh et al. (2009).  In a follow-up study, 

Law et al. (2003b) performed similar synthetic data inversions, but varied the averaging 

intervals of the concentration data from 4-hourly to monthly.  The study concluded that 

data averaging at the synoptic scale (2-5 days) helped to reduce the impact of transport 

model errors, but that in general, bias in the recovered fluxes grew with coarser-scale 

concentration averaging intervals.  While these first two studies used monthly average 

fluxes to generate the synthetic concentration data, Law et al. (2004)  tackled the more 

realistic assumption of a diurnally and synoptically-varying underlying flux field.  Not 

surprisingly, this study found that it was necessary to explicitly resolve the diurnal cycle 

in the estimated fluxes in order to avoid biases due to the diurnal rectifier effect 

(Denning et al., 1996).   

Carouge et al. (2010a, b), investigated a regional inversion using a 10-tower 

continuous network over the European continent in a pseudo-data environment.  This 

study found a more reliable constraint on fluxes in the western portion of the continent 

where measurement locations are most dense.  She also found that results from the 

inversion were most robust when post-aggregated to 1000 km x 1000 km and 10-day 

averaging intervals, while results at finer scales were highly sensitive to inversion setup.  

Pseudo-data experiments can also help to assess the constraint on fluxes that is 

achievable using an idealized setup.  For example, Gerbig et al. (2006) showed in a 

pseudo-data scenario that inversions that take advantage of continuous, continental 

CO2 measurements, high-resolution transport modeling, and diagnostic biospheric 

models based on remote-sensing inputs for prior flux estimates, can reduce 

uncertainties on recovered fluxes at the continental scale by 2-3 orders of magnitude 

compared to coarse-scale global inversions.  However, it is still unclear if this uncertainty 

reduction is achievable in a real data environment.   

For example, in a real-data environment, limitations of the transport model 

necessitate the use of measurements from only certain times of the day.  Geels et al. 
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(2007), in an inter-comparison study of regional atmospheric transport models over 

Europe, concluded that only afternoon values at low-altitude sites can be represented 

sufficiently well by the current suite of transport models, and that only these values 

should be used for constraining sources and sinks in regional inversions.  In fact, the use 

of only afternoon data has become the norm in most regional inversion studies (e.g. 

Peters et al., 2007; Schuh et al., 2010; Butler et al., 2010).  While the well-mixed air 

during this time ensures that these measurements are the most regionally 

representative (Haszpra, 1999; Bakwin et al., 2004), the use of afternoon measurements 

alone may limit the ability of the inversion to infer fluxes at relatively fine spatial scales 

(Mueller et al., in prep.).   

In the first real-data regional inversion over Europe, Peylin et al. (2005) 

estimated daily average fluxes for November 1998 using daily-averaged concentration 

data from 6 continuous measurement locations.  By estimating daily-averaged fluxes, 

this study avoided dealing with their underlying diurnal variability.  However, given that 

November in the Northern hemisphere has a reduced diurnal cycle compared to months 

in the height of the growing season, this study assumed that biases due to temporal 

aggregation errors could be adequately accounted for in the model-data mismatch 

covariance matrix.  While noting the strong influence of a priori spatial covariance 

assumptions on flux estimates, this study also concluded that the influence of far-field 

fluxes grew throughout the inversion, and that an accurate set of boundary conditions 

was critical for correctly estimating regional fluxes.   

Matross et al. (2006) used concentration measurements from a tall tower in 

Argyle, Maine in a real-data regional inversion to estimate scaling factors on 

photosynthesis and respiration fluxes for different vegetation types in the New England 

and Québec region.  This study concluded that the atmospheric data from a single tower 

were not able to distinguish well between different vegetation types within the domain 

and that therefore aircraft data and/or towers with overlapping footprints were 

necessary to better constrain regional carbon budgets in future inversions.    
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A number of inversion studies now estimate sub-continental scale fluxes over 

the entire North American continent using real continuous measurement data.  The 

CarbonTracker data assimilation system (Peters et al., 2007), designed and maintained 

by the National Oceanic & Atmospheric Administration (NOAA), estimates fluxes using 

afternoon-average continuous data from measurement towers within North America, 

while simultaneously running a global inversion to provide boundary conditions for the 

inflow of air into the North American continent.  The Peters et al. (2007) study 

estimated weekly net fluxes from 2000 to 2005 for 25 eco-regions in North America 

using a synthesis Bayesian approach embedded within an ensemble Kalman filter data 

assimilation framework.  Similarly, Butler et al. (2010) used a Synthesis Bayesian global 

inversion including data from continuous measurement sites in North America to 

estimate monthly fluxes for 10 sub-continental regions within the continent.  Both 

CarbonTracker and the Butler et al. (2010) study fixed grid-scale spatial patterns from 

the bottom-up prior fluxes, and then adjusted these patterns at coarser scales.  Schuh et 

al. (2010) used a regional inversion setup to estimate fluxes over North America using 

weekly, grid-scale (1°x1°) bias corrections to individual photosynthesis and respiration 

flux components from the prior.   

Given the need to understand the strengths and limitations of using continuous 

CO2 concentration data in inversions and their interactions with inversion setup, most 

studies taking advantage of this data to the current time have been methodological in 

nature, as discussed above.  Scientific conclusions have mostly been tentative given the 

strong sensitivity to inversion setup seen in these previous studies.  However, firm 

methodological conclusions include that when using continental, continuous 

measurement data in inversions, there is a need to resolve fluxes at fine scales to avoid 

representation and aggregation errors, and that accurate transport models are 

important for simulating dynamics in the near-field of the measurement locations.  The 

second component of this dissertation (Chapter 5) makes a contribution to this 

literature by extending the work from the first component (Chapter 4), using the 

geostatistical inverse modeling framework, to investigate scale-dependent errors 
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associated with using continental, continuous measurement data collected over North 

America.  The third component of this dissertation (Chapter 6) uses the lessons learned 

from the first two components regarding inversion setup to resolve fluxes at the finest 

scale that is computationally feasible, using the best available transport model, to 

recover flux estimates over North America.   

 

2.3  North American carbon cycle science  
 

The principal purposes of running regional CO2 inverse models are 1) to evaluate, 

to the extent possible, biospheric models and fossil fuel inventories and provide a 

means to distinguish between the assumptions and scaling parameters contained within 

these process-based models, and 2) to provide estimates of carbon balance at various 

spatial scales and partitioned into relevant processes for informing carbon management 

policies.  In order to properly interpret flux estimates from an atmospheric inversion and 

help achieve both of these objectives, it is necessary to understand the state of the 

science in regards to the carbon cycle in the domain and scale of interest.  The third 

component of this dissertation estimates fluxes over North America using measurement 

data for 2004, and therefore the following review will focus specifically on North 

American carbon cycle science, as inferred principally from inventory and bottom-up 

modeling studies. 

Overall, North America is a large source of carbon to the atmosphere, with 1.75 

GtC in 2004 from fossil fuel emissions alone (Gurney et al., 2009; Oda and Maksyutov, 

2010).  However, many studies show that the North American land surface is also a net 

biospheric sink, helping to counteract roughly 30% of fossil fuel emissions on an annual 

average basis, as shown in an inventory-based approach from the State of the Carbon 

Cycle Report focusing on North America (SOCCR; CCSP, 2007).  Ecosystems on the 

continent were estimated to absorb about 0.67 GtC/yr in 2003 in this study, of which 

0.16 GtC/yr was exported outside the region by rivers and international trade.  Since the 

great majority of this exported carbon is returned to the atmosphere within a year, the 

overall sink for this year was estimated at 0.51 GtC/yr (CCSP, 2007).   
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The North American biospheric sink, which can vary from year to year, has been 

variously attributed to fire suppression and woody encroachment in arid rangelands, 

reduced logging, increased agricultural productivity, no-till agriculture, the re-growth of 

formerly agricultural land in the eastern United States, excess nitrogen deposition from 

air pollution, CO2 fertilization, and climatic changes, i.e. wetter conditions and longer 

growing seasons (Pacala et al., 2001; Nemani et al., 2002; CCSP, 2007).  While roughly 

half of the overall sink in North America can be attributed to re-growth of formerly 

agricultural land, the uncertainties on the magnitude of the sink due to the other causal 

factors are still about 100% (CCSP, 2007).  Mexico remains a carbon source to the 

atmosphere from ongoing deforestation (Masera et al., 1997; Velasquez et al., 2010). 

Although the biospheric sink in the North American continent during the 1980’s 

and 1990’s was remarkably stable (Pacala et al., 2001), this sink is expected to slow 

down as re-growing forests reach maturity (CCSP, 2007).  However, much uncertainty 

still remains regarding the future of the North American biospheric carbon cycle.  

Current research focuses on the impact of inter-annual climatic variability (e.g. Desai et 

al., 2010) and long-term mean changes on the net sink.  For example, the 2002 drought 

on the continent in which 45% of the United States was classified as “Extreme” or 

“Exceptional” in the U.S. Drought Monitor (http://drought.unl.edu/dm) reduced carbon 

uptake to approximately 0.3 GtC/yr, only half of the long-term mean (Peters et al., 

2007).  Longer growing seasons due to climate change enhance net uptake in the spring 

and fall, but higher temperatures can also increase rates of evapotranspiration leading 

to water stress, thereby limiting productivity in ecosystems not currently considered to 

be water-limited (e.g. Xiao & Moody, 2004; Welp et al., 2007).  The interacting effects of 

CO2 fertilization and increasing nitrogen deposition in temperate forests, which are 

typically considered to be nitrogen-limited, are also still unclear (Finzi et al., 2006; 

Pregitzer et al., 2008). 

In general, the agricultural portion of the North American carbon cycle is even 

less well-understood at large scales than that of forests and other ecosystems in their 

natural, pre-industrial state, although recent modeling and inventory-based studies 



30 
 

have helped to address this gap (e.g. Lokupitiya et al., 2009; Corbin et al., 2010; West et 

al., 2010).  The Mid-Continent Intensive Campaign (MCI, 

http://www.nacarbon.org/nacp/mci.html) of the North American Carbon Program also 

has the aim to investigate carbon cycling over the Midwestern agricultural regions in the 

United States.  While preliminary work failed to find convergence between crop 

inventory, bottom-up models and inversion approaches, more recent work is beginning 

to show an increased convergence between different estimates (A. Schuh, personal 

communication).  Overall, research in the MCI region should provide insight into the net 

flux associated with different crop types, planting schedules and potentially increased 

planting for biofuel production (Searchinger et al., 2008).  

Changes in human settlement patterns and land management practices will all 

impact the North American biospheric carbon cycle in the coming century.  For example, 

a projected net increase of about 6 million hectares in pine plantations in the southern 

U.S. will lead to increased carbon uptake, although increasing urban sprawl and land 

conversion from forest and agriculture to human settlements will counteract this trend 

(Pataki et al., 2006; Alig and Butler, 2004).  Also, proper incentives for carbon 

sequestration could increase the use of no-till agriculture and enhanced forestry 

practices, although more research is needed to determine the efficacy of various 

approaches (Baker et al., 2007).   

The most promising means of restoring the North American land surface to a 

neutral carbon balance for climate change mitigation is to reduce fossil fuel emissions 

across the continent, most likely from a combination of factors including a switch to 

alternative energies, increased energy efficiency of buildings, cars and industries, and 

higher-density residential development (Pacala and Socolow, 2004).  In terms of 

scientific understanding, fossil fuel emissions in North America are considered to be 

better-known than the biospheric portion of the total CO2 flux (Marland et al., 2009); 

however, active research also exists to refine the space-time distribution of bottom-up 

fossil fuel inventories over the continent, principally for use in atmospheric CO2 

inversion studies.  Initial fossil fuel inventories were mostly at the annual time-scale and 
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were based on assumptions of how country-level fuel consumption varies with 

population (e.g. Andres et al., 1996).  Later work showed that there is a strong seasonal 

cycle in fossil fuel emissions, particularly in continental climates with heating and 

cooling seasons (Gurney et al., 2005), which can have a strong impact on inversions that 

pre-subtract the influence of fossil fuel emissions from the atmospheric measurement 

data a priori.  Traffic patterns and residential behavior can also create a diurnal cycle of 

emissions.  The Vulcan dataset has been recently developed to address these concerns 

by estimating fossil fuel emissions over the continental United States at an hourly, 10 

km resolution by relying on data from fuel sales, power plant locations and air quality 

reporting to the Environmental Protection Agency over the last few decades (Gurney et 

al., 2009).  Monthly fossil fuel emission inventories have also been created for the globe 

(e.g. Oda and Maksyutov, 2010), which can help to fill in seasonal variability in emission 

estimates over North America in areas excluded by the Vulcan inventory. 

In addition to using inventories and bottom-up models, the North American 

carbon balance has also been estimated using the atmospheric data constraint.  For 

example, the inferred continental carbon budget from CarbonTracker was an average 

biospheric sink of 0.65 PgC/yr from 2000 to 2005, in close agreement with the above-

mentioned inventory-based SOCCR estimate of 0.67 GtC/yr in 2003 (before export from 

the continent due to rivers and international trade; CCSP, 2007).  Similarly, Crevoisier et 

al. (2010) used a novel approach for carbon budgeting based on the inflow and outflow 

of air from the free troposphere using measurements of the vertical gradient of 

atmospheric CO2 across the continent, and found a biospheric sink of 0.5 PgC/yr from 

2004 to 2006.  Crevoisier et al. (2010) also determined from this analysis that the 

greatest uptake occurs in the agricultural Midwest and the Southeast.  While 

CarbonTracker also places net uptake in the agricultural areas, the Southeast is 

relatively under-sampled in the in-situ CO2 monitoring network, and therefore the 

CarbonTracker results are not consistent with Crevoisier et al. (2010) in this region.   

A few studies to date have performed top-down/ bottom-up inter-comparisons 

on the North American continent to elucidate process-based assumptions in the 
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bottom-up models.  These studies have mainly focused on the boreal areas (e.g. 

Dargaville et al., 2002; McGuire et al., 2010) where there is a strong interest in 

predicting the response of boreal ecosystems to projected future climate change.   

Relying on top-down estimates from the TransCom3 studies (e.g. Gurney et al., 2004), 

Dargaville et al. (2002) showed that the atmospheric constraint implied a stronger peak 

uptake shifted a month later as compared to four different biospheric models 

estimating flux in Boreal North America.  McGuire et al. (2010) drew similar conclusions 

for a study in the Arctic basin.  The inversion results also showed stronger inter-annual 

variability in these studies than the biospheric models, implying missing or incorrect 

process formulations, perhaps associated with soil freeze-thaw dynamics.   

The third component of this dissertation (Chapter 6) makes a contribution to the 

bottom-up/ top-down inter-comparison literature over North America by extending the 

analysis to all biomes and land cover types across the continent, comparing inversion 

results to a collection of 16 different biospheric models with a wide spread in their 

estimates of NEE.  This inter-comparison relies on results from the regional geostatistical 

inversion over North America implemented using an optimal setup and lessons learned 

from the first two components of this dissertation, thereby providing improved 

inversion quality at finer spatial scales than previously used global inversion results.  

Also, because the geostatistical inversion eliminates the requirement for explicit prior 

flux estimates from biospheric models, flux estimates are relatively independent of the 

forward models, providing a unique opportunity to shed light on their spread at various 

spatiotemporal scales.   
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CHAPTER 3 

Methods 

 

This chapter contains a survey of the methods implemented in this dissertation.  

Please note that generalized versions of the Matlab code that was used to implement 

each of the presented techniques can be downloaded from 

http://puorg.engin.umich.edu. 

 

 3.1  Geostatistical inverse modeling 

Given atmospheric mixing that dilutes the influence of surface sources and sinks 

of CO2, atmospheric inversions must introduce additional information into the model to 

help constrain flux estimates, other than the direct CO2 concentration measurements 

and transport model sensitivities relating measurements to surface fluxes (Enting, 

2002).  Inversions are therefore typically formulated as a Bayesian problem where the 

atmospheric measurements are used to update prior estimates of the surface flux 

distribution, where these prior estimates are primarily derived from bottom-up model 

output (e.g. Gurney et al., 2003).  This dissertation uses a modified Bayesian approach to 

CO2 flux estimation termed geostatistical inverse modeling that does not require prior 

estimates of the magnitude and spatial distribution of surface CO2 fluxes (Michalak et 

al., 2004).  Instead, an assumed spatial and/ or temporal correlation is introduced 

between flux estimates to help constrain the solution.  Process-based datasets related 

to CO2 flux may additionally be incorporated into the inversion to provide inference and 

further constrain flux estimates, if desired.   

In the geostatistical approach, the flux distribution is modeled as the sum of a 

deterministic but unknown component, 𝐗𝛃, referred to as the linear trend of the 

http://puorg.engin.umich.edu/�
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surface flux distribution, and a zero-mean stochastic component with a spatial 

and/or temporal autocorrelation described by the covariance matrix 𝐐.  The linear trend 

(𝐗𝛃) implemented here replaces the explicit prior flux estimates used in a Synthesis 

Bayesian inversion, with this trend defining the portion of the flux signal that can be 

explained by a set of covariates included in the matrix 𝐗.  The 𝛃 values, or drift 

coefficients, corresponding to these covariates are then estimated using the 

atmospheric data.  This spatiotemporal trend can be as simple as a constant mean flux, 

but can also include spatially and temporally-varying auxiliary variables with a process-

based relationship to CO2 flux.  The overall best estimates obtained through this 

approach minimize deviations from the lienar trend, as well as residuals between actual 

atmospheric CO2 measurements and concentrations derived from the estimated fluxes.  

In the discussion that follows, 𝑚 represents the number of estimated fluxes, 𝑛 is the 

number of atmospheric concentration measurements, and 𝑝 is the number of covariates 

included within the trend. 

The objective function 𝐿𝐬,𝛃 for a geostatistical inversion is defined as: 

 

 𝐿𝐬,𝛃 = 1
2

(𝐳 − 𝐇𝐬)𝑇𝐑−1(𝐳 − 𝐇𝐬) + 1
2

(𝐬 − 𝐗𝛃)𝑇𝐐−1(𝐬 − 𝐗𝛃) (3.1) 

 

where the vector 𝐳 (n×1) represents the atmospheric CO2 measurements (ppm), and 𝐬 

(m×1) is the vector of fluxes (μmol/(m2s)).  𝐇 (n×m) describes the sensitivity of CO2 

measurements to surface fluxes, as quantified from an atmospheric transport model, 

with units of ppm/(μmol/(m2s)), and 𝐇𝐬 therefore represents a vector of modeled CO2 

observations.  𝐗 is a known (m×p) matrix containing the flux covariates in the model of 

the trend, β are (p×1) unknown drift coefficients, and 𝐗𝛃 is the resulting trend of CO2 

flux.  The two covariance matrices in the objective function, 𝐑 (n×n) and 𝐐 (m×m), 

balance the relative weight of the atmospheric data and the trend in estimating fluxes.  

𝐑 is the model-data mismatch covariance matrix, describing the expected magnitude of 

discrepancies between observed (𝐳) and modeled (𝐇𝐬) CO2 concentrations (due to 

measurement, transport model, representation, and aggregation errors).  𝐐 (m×m) is 
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the a priori flux covariance matrix, characterizing how flux deviations from the model of 

the trend (i.e. 𝐬 − 𝐗𝛃) are correlated in time and space.   

 The 𝐗 matrix (𝑚 × 𝑝) defines the covariates included within the trend.  Each of 

the 𝑝 covariates is defined at the time and location of each of the 𝑚 estimated fluxes.  𝛃 

is a vector (𝑝 × 1) of coefficients, estimated as part of the inversion, that correspond to 

the variables in 𝐗 and represent the linear relationships between each variable and CO2 

flux, as seen through the atmospheric data.  A flux covariate can be as simple as a 

column of ones and zeros where the associated 𝛃 would represent a mean flux over the 

flux locations and time periods included as ones in 𝐗.  Alternatively, the flux covariates 

could be any spatially and/ or temporally-varying dataset with a process-based 

correlation to CO2 flux, e.g. a vegetative index like Leaf Area Index or a climatological 

variable such as precipitation.  The overall trend 𝐗𝛃 is conceptually similar to a 

multivariate linear regression where the components in 𝐗 are predictor variables that 

explain some portion of the flux variability, and 𝛃 are the coefficients on these variables.  

However, unlike multiple linear regression, the relationships are estimated in an inverse 

modeling framework (using concentration measurements to infer the coefficients on the 

covariates), and the approach assumes spatially and temporally-correlated deviations 

from the trend (as specified in 𝐐).  In order to be consistent with terminology commonly 

used in statistics, the 𝛃 values in this dissertation are referred to as drift coefficients. 

By minimizing the objective function defined in equation (3.1) with respect to 𝐬 

and 𝛃, the inversion simultaneously minimizes differences between the estimated fluxes 

(𝐬) and the model of the trend (𝐗𝛃), and the residuals between actual atmospheric CO2 

measurements (𝐳) and concentrations derived from the estimated fluxes (𝐇𝐬).  The 𝐑 

and 𝐐 covariance matrices control the balance between achieving these two objectives.  

For example, low variances in the model-data mismatch covariance matrix (𝐑) drive the 

inversion to reproduce the measurement data at the expense of keeping flux estimates 

close to the model of the trend.  Also, in areas with more sensitivity to the available 

measurements, as described by 𝐇 which is generated from the transport model, the 

inversion relies more heavily on reproducing observations, whereas in areas lacking 
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measurements, the inversion reverts more strongly to the model of the trend (𝐗𝛃) and 

the spatiotemporal correlation of flux residuals (𝐐). 

Minimizing equation (3.1) with respect to fluxes, 𝐬, and drift coefficients, 𝛃, 

yields the following system of linear equations: 

 

 �𝚿 𝐇𝐗
(𝐇𝐗)𝑇 𝟎 � �𝚲

𝑇

𝐌
� = �𝐇𝐐

𝐗𝑇
� (3.2) 

 

where 

 𝚿 = 𝐇𝐐𝐇𝐓 + 𝐑   (3.3) 

 The weights 𝚲 (𝑚 × 𝑛) and Lagrange multipliers 𝐌 (𝑝 × 𝑚) are estimated by solving 

this system of linear equations, and are then used to define the estimated fluxes (𝐬�) and 

their posterior covariance (𝐕𝐬�) as: 

 

 𝐬� = 𝚲𝐳 (3.4) 

 𝐕𝐬� = −𝐗𝐌 + 𝐐 − 𝐐𝐇𝑇𝚲𝑇 (3.5) 

 

where this full covariance matrix (𝐕𝐬�) represents a composite of uncertainty associated 

with the estimation of unknown drift coefficients (𝛃) in the model of the trend, the 

spatiotemporal variability of fluxes as represented in 𝐐, and the overall constraint on 

fluxes as determined by the concentration footprints, the model of the trend and the 

prior covariance matrices. 

Estimates of the drift coefficients, 𝛃�, and their uncertainty covariance (𝐕β�) are 

calculated as: 

 

 𝛃� = (𝐗𝑇𝐐−𝟏𝐗)−1𝐗𝑇𝐐−1𝚲𝐳 (3.6) 

 𝐕β� = (𝐗𝑇𝐇𝑇(𝐇𝐐𝐇𝑇 + 𝐑)−1𝐇𝐗)−1 (3.7) 
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where the diagonal elements of 𝐕β� represent the uncertainties of the drift coefficients, 

and the off-diagonal terms in 𝐕β� represent their error covariance. 

The estimated fluxes (𝐬�) can also be expressed in a form more similar to that 

used in synthesis Bayesian inversions, as the sum of a deterministic component (𝐗𝛃�), i.e. 

the estimated model of the trend of the flux distribution, and a stochastic component 

that is a function of the a priori correlation structure in 𝐐: 

 

 𝐬� = 𝐗𝛃� + 𝐐𝐇𝑇(𝐇𝐐𝐇𝑇 + 𝐑)−1�𝐳 − 𝐇𝐗𝛃�� (3.8) 

 

3.2  Covariance parameter optimization using Restricted Maximum 
Likelihood 

As discussed previously, the a priori spatiotemporal covariance structure in 𝐐 

helps to regularize a geostatistical inversion.  To be precise, the covariance matrix 𝐐 

represents the spatial (and/or temporal) correlation structure of flux residuals from the 

trend, and therefore this correlation depends on the degree to which the model of the 

trend 𝐗𝛃 can represent the flux variability inferred using available observations.  In a 

simple case where 𝐗 is a column of ones representing a single mean flux in space and 

time, 𝐐 would describe the correlation of the fluxes themselves.  At the opposite 

extreme where the model of the trend could reproduce all the inferred variability in 

fluxes, the flux residuals would be zero and 𝐐 would become a diagonal matrix.  In 

practice, however, flux residuals are always non-zero and correlated due to imperfect 

prior information and process-based datasets available to represent flux in the trend, as 

well as weaknesses in the inversion framework itself (e.g. transport model error).   

For all geostatistical inversions in this dissertation, the 𝐐 matrix is modeled using 

an exponentially decaying spatial correlation between flux residuals from the trend: 

 

 𝑄𝑖𝑗�ℎ𝑖𝑗|𝜎2, 𝑙� = 𝜎2exp �− ℎ𝑖𝑗
𝑙
� (3.9) 
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where ℎ𝑖𝑗 is the separation distance between two estimation locations.  The practical 

correlation length is approximately 3𝑙, beyond which 𝜎2 represents the expected 

variance of independent flux residuals.  The choice of an exponential decay was based 

on the work of Michalak et al. (2004), and on variogram analyses of bottom-up flux 

estimates.   

In Chapter 5, temporal correlation is additionally considered between flux 

residuals and this becomes: 

 

 𝑸(ℎ𝑥,ℎ𝑡|𝜎2, 𝑙, 𝜏) = 𝜎2𝑒𝑥𝑝 �− ℎ𝑥
𝑙
� exp �− ℎ𝑡

𝜏
�  (3.10) 

 

where hx and ht are the separation distances between grid cells in space and the lag in 

time, respectively, τ is the temporal correlation range parameter, and 𝜎2 and l are as 

described above.   

The model-data mismatch variances in the 𝐑 matrix, include measurement, 

transport, aggregation and representation errors for each observation.  Measurement 

errors are most typically calibration errors (e.g. Francey & Steele, 2003), while transport 

errors can be random or systematic, a more problematic and perhaps more realistic 

form of error, e.g. associated with misrepresentations of the height of the PBL.  

Aggregation and representation errors are closely related concepts that can both impact 

the ability of an inversion to infer realistic fluxes.  Aggregation errors occur when fluxes 

are estimated at coarse spatial and temporal resolutions, when in fact the 

measurements are sensitive to finer-scale variability in fluxes that is inconsistent with 

the patterns assumed at coarser scales (Kaminski et al., 2001).  Representation errors 

refer specifically to the mismatch between a point-based measurement of CO2 and the 

coarser resolution of the transport model and driving meteorology for the gridcell 

containing the measurement (e.g. Tolk et al., 2008).  Although some sensitivity tests 

were performed to investigate the impact of correlated model-data mismatch errors, 

results were inconclusive as to the benefit of accounting for this correlation.  Therefore, 
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all of the presented inversions in this dissertation were performed with a diagonal 𝐑 

matrix. 

While most inversion studies choose covariance parameters based on “expert 

knowledge” using assumptions about how model-data mismatch scales with temporal 

variability in the data and known transport model errors (e.g. Baker et al., 2006; Butler 

et al., 2010), and also by examining the variability of biospheric model output for the a 

priori flux covariance structure (e.g. Rödenbeck et al., 2003), this dissertation takes a 

more statistical and quantitative approach for estimating covariance parameters.  The 

parameters of the 𝐐 and 𝐑 matrices are optimized using the Restricted Maximum 

Likelihood (RML) method (Kitanidis, 1995; Michalak et al., 2004; Mueller et al., 2008), a 

quantitative approach that helps to reduce biases in the flux estimates associated with 

errors in the covariance matrices.   

To estimate flux covariance parameters in 𝐐, RML can be implemented using a 

set of bottom-up flux estimates from biospheric models, fossil fuel and fire emission 

inventories and oceanic datasets.  Alternatively, RML can be implemented in an inverse 

setup using the atmospheric measurements, allowing for simultaneous estimation of 

parameters in both 𝐐 and 𝐑.  In this dissertation, RML was implemented with bottom-

up datasets for the global study (Chapter 4), and with atmospheric data for the North 

American inversions (Chapters 5 and 6), as discussed further in the individual chapters 

associated with this work.  Equations for both setups are shown below. 

To estimate optimized covariance parameters, the RML approach minimizes the 

negative log-likelihood of the available observations with respect to the covariance 

parameters (θ).  When using a set of bottom-up flux estimates (𝐬) to estimate the flux 

covariance parameters in 𝐐 (i.e. 𝛉 = �σ𝐐2 , 𝑙, 𝜏�), the corresponding equation is (Kitanidis, 

1995):  

 

Lθ𝐐 = 1
2

ln|𝐐| + 1
2

ln|𝐗T𝐐−1𝐗| +  1
2

[𝐬T(𝐐−1 − 𝐐−1𝐗(𝐗T𝐐−1𝐗)−1𝐗T𝐐−1)𝐬]      (3.11) 

 

Alternatively, using the atmospheric measurements (𝐳) to estimate covariance 
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parameters rather than the bottom-up model output (𝐬), θ contains both 𝐐 and 𝐑 

parameters (i.e. �σ𝐐2 , 𝑙, 𝜏� and one or more 𝜎𝑹2 values associated with various subsets of 

the measurement data), and this equation becomes: 

 

Lθ = 1
2

ln|𝚿| + 1
2

ln|(𝐇𝐗)T𝚿−1𝐇𝐗| +

1
2

 [𝐳T(𝚿−1 −𝚿−1𝐇𝐗((𝐇𝐗)T𝚿−1𝐇𝐗)−1(𝐇𝐗)T𝚿−1)𝐳]         (3.12) 

 

where 𝚿 replaces 𝐐, and 𝐇𝐗 replaces 𝐗 in equation 3.11.  The RML objective function is 

minimized using a Trust-Region Reflective Newton algorithm, available through Matlab’s 

optimization toolbox (MathWorks, 2010). 

By using the atmospheric measurements to estimate covariance parameters, 

one does not have to rely on modeled flux estimates to infer the covariance structure of 

the “true” distribution.  However, atmospheric mixing and limitations of the transport 

model may also make it difficult to infer reasonable covariance parameters using this 

approach.  Parameters in 𝐑 can only be estimated by RML using the atmospheric 

measurements. 

   

3.3  Statistical variable selection techniques 

Two different types of statistical model selection techniques were implemented 

in this dissertation to choose flux covariates for the linear trend (𝐗).  For the global 

inversion study (Chapter 4), the Variance-Ratio Test (Kitanidis, 1997) was implemented 

with modifications for an inversion setup.  As discussed below, this is a hypothesis-

based testing approach which allows for comparison between nested models only.  To 

circumvent this limitation, the Bayesian Information Criterion (Schwarz, 1978), a 

criterion-based approach which can compare all possible models, was implemented 

using a geostatistical inversion setup for the 2004 real data inversion (Chapter 6). 

The Variance-Ratio Test (Kitanidis, 1997) is a hypothesis-based variable selection 

method that was originally developed to justify the inclusion of a more complex trend in 
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geostatistical interpolation, i.e. kriging.  A modified method, compatible with an inverse 

modeling setup, is presented and implemented here.  These modifications were made in 

an analogous manner to the RML equations using the atmospheric data, i.e. substituting 

𝐇𝐐𝐇T + 𝐑 for 𝐐, and 𝐇𝐗 for 𝐗 in the original Kitanidis (1997) equations.   

In a geostatistical inversion, improving the model of the trend's ability to 

represent CO2 flux variability can increase the accuracy of the recovered flux 

distribution, and reduce the associated a posteriori uncertainty.  However, adding 

auxiliary variables with only a spurious correlation to flux can bias the model, and yield 

unreasonable estimates in poorly constrained areas.  The Variance-Ratio Test is 

designed to balance the risks of including too few versus too many variables, by 

quantifying the significance of the improvement in model fit resulting from the addition 

of one or more variables to the model of the trend. 

In this approach, the Weighted Sum of Squares (𝑊𝑆𝑆) of the orthonormal 

residuals is defined for an initial (𝐗0, 𝑚 × 𝑝) and an augmented (𝐗1, 𝑚 × (𝑝 + 𝑞)) 

model of the trend (where 𝐗0 is a subset of 𝐗1) as: 

 

 𝑊𝑆𝑆 = 𝐳𝑇(𝚿−1 −𝚿−1𝐇𝐗(𝐗𝑇𝐇𝑇𝚿−1𝐇𝐗)−1𝐗𝑇𝐇𝑇𝚿−1)𝐳 (3.13) 

 

𝑊𝑆𝑆 is a measure of fit that assesses how well the two trends, 𝐗0 and 𝐗1, 

explain the variability in fluxes as seen through the atmospheric concentration 

measurements, 𝐳, and as weighted by the appropriate covariance matrices (𝐑 and 𝐐).  

The 𝑊𝑆𝑆 equation, as presented above, accounts for the spatial correlation of the 

residuals in order to create a test analagous to model selection for multivariate linear 

regression.  The 𝑊𝑆𝑆 equation (3.13) was also modified for an inversion setup from that 

presented in Kitanidis (1997) by substituting 𝐇𝐗 for 𝐗 and 𝚿 for 𝐐.   

A trend with more auxiliary variables will always be able to represent a greater 

amount of the inferred variability relative to a model with fewer variables.  For example, 

𝑊𝑆𝑆1 is always less than or equal to 𝑊𝑆𝑆0, given that 𝐗1 includes all the variables in 𝐗0, 

as well as one or more additional variables.  However, adding too many variables runs 
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the risk of “overfitting” and thereby introducing spurious noise or unphysical 

relationships into the model.  Therefore, in order to quantify the significance of the 

improvement in model fit, we calculate the normalized relative difference (𝑣) between 

𝑊𝑆𝑆0 and 𝑊𝑆𝑆1 as: 

 

 𝑣 = (𝑊𝑆𝑆𝑜−𝑊𝑆𝑆1)/𝑞
𝑊𝑆𝑆1/(𝑛−𝑝−𝑞)

 (3.14) 

 

The significance level of this statistic is quantified using an F distribution with 𝑞 

and 𝑛 − 𝑝 − 𝑞 degrees of freedom (where 𝑛 represents the number of available 

measurements, 𝑝 the number of components in 𝐗0, and 𝑞 the number of additional 

components in 𝐗1 relative to 𝐗0).  Only variables with a significant improvement in 

model fit are included into the augmented model.  The Variance-Ratio Test can then be 

repeated using the augmented model as 𝐗0 until there are no significant variables left 

to include in the trend. 

In contrast to hypothesis-based tests like the Variance-Ratio Test, criterion-

based tests compare all possible models, and therefore allow for comparison of non-

nested models (Ward, 2008).  For this dissertation, the Bayes Information Criterion 

(Schwarz, 1978) was chosen to select auxiliary variables for the 2004 real data inversion 

(Chapter 6).  This method is generally preferred to other criterion-based approaches, 

e.g. the Akaike Information Criterion (Akaike, 1974), when the goal is inference rather 

than prediction, and the BIC tends to select fewer variables than the AIC.   

The original BIC equations from Schwarz (1978) were modified for a 

geostatistical setup with correlated residuals (Mueller et al., 2010), as well as an inverse 

formulation using the atmospheric measurements.  After these modifications, the 

criterion that must be minimized for the BIC approach can be expressed as: 

 

𝐵𝐼𝐶 = ln|𝚿| + [𝐳T(𝚿−1 −𝚿−1𝐇𝐗(𝐗T𝐇T𝚿−1𝐇𝐗)−1𝐗T𝐇𝐓𝚿−1)𝐳] + 𝑝 ln(𝑛)  (3.15) 
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where n is the number of observations, and p represents the number of covariates 

within a given model (𝑿). 

Given that comparing all possible models (2p) quickly becomes computationally 

expensive and perhaps infeasible for large supersets of variables, the BIC was 

implemented with a Branch-and-Bound algorithm (Land and Doig, 1960) to help make 

the problem computationally tractable.  This algorithm avoids unnecessary matrix 

multiplications by eliminating model “branches” as it runs that cannot possibly contain 

the “best” model (Yadav et al., in prep).   The Branch-and-Bound algorithm relies on the 

fact that the Residual Sum of Squares within equation 3.15 is a monotonic function that 

can only decrease as variables are excluded from the model.  

 

3.4  Geostatistical inversion algorithm 

Running a complete geostatistical inversion first requires assembly of all input 

data in the proper format.  Measurement data must be collected, processed and 

stacked into a linear vector (𝐳).  Sensitivity matrices (𝐇) must be generated from the 

atmospheric transport model, and potential auxiliary variables for the model of the 

trend (𝐗) must be collected, (potentially) normalized, and trimmed to the specific scale 

and domain of interest.  The structure of the covariance matrices must also be chosen a 

priori, e.g. whether to include both spatial and temporal flux covariance in 𝐐, or just 

spatial covariance, and whether to use an exponential decay or some other model.  

Also, one must decide how many separate model-data mismatch variance parameters 

to optimize based on an initial understanding of which measurement locations and/or 

times share similar data characteristics.   

Once all input components have been assembled, running a geostatistical 

inversion requires three main steps (Figure 3.1), with the first two steps possibly 

requiring repetition until results stabilize.  First, using an initial guess of the covariance 

parameters, the statistical variable selection methods (i.e. Variance-Ratio Test or BIC) 

must be run to choose covariates for the model of the trend (𝐗) that can optimally 

explain the signal in the atmospheric data.  Second, the RML algorithm is run to 
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optimize covariance parameters associated with the selected covariates in 𝐗.  The 

variable selection step then needs to be repeated with the optimized covariance 

parameters to ensure that the selected variables do not change.  If the variables do 

change, then the RML and variable selection steps must be repeated once again.   

Finally, the inversion is run using the CO2 observations (𝐳), sensitivity matrices 

(𝐇), selected covariates in 𝐗, and covariance matrices (𝐑 and 𝐐) with optimized 

parameters, in order to estimate grid-scale fluxes (𝐬�) and their a posteriori covariance 

(𝐕𝐬�), as well as the drift coefficients (𝛃�) associated with the trend and their associated 

covariance (𝐕𝛃�).  Flux estimates and uncertainties can then be post-aggregated to any 

coarser spatial and temporal scale of interest. 

 

 
Figure 3.1: Schematic of geostatistical inversion components and algorithm.  White boxes 

indicate inversion inputs, light gray boxes indicate inversion steps, and dark gray boxes represent 
inversion outputs. Grey circles indicate the sequence of steps in the algorithm. 
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 CHAPTER 4 
 

Using auxiliary environmental variables to help constrain 
grid-scale CO2 flux estimates within a global geostatistical 

inversion 
 

 

4.1 Introduction 

Atmospheric inverse modeling, a technique for estimating CO2 sources and sinks 

at the earth surface, uses atmospheric concentration measurements and an 

atmospheric transport model to estimate surface flux distributions.  Given the 

currently limited network of atmospheric measurement locations, however, inverse 

problems aimed at CO2 flux estimation are ill-posed and frequently under-determined.  

To circumvent these problems, most previous inverse modeling studies have used a 

synthesis Bayesian inversion approach, where a priori assumptions about both the 

magnitude and spatial patterns of fluxes are included in the inversion.  This prior 

information is typically derived from biospheric model output, extrapolated ocean 

ship-track data, and fossil fuel inventories, and is then updated using atmospheric CO2 

observations (e.g., Kaminski et al., 1999; Rödenbeck et al., 2003; Gurney et al., 2004; 

Baker et al., 2006).   

Geostatistical inverse modeling differs from these previous approaches by 

eliminating the need for explicit prior flux estimates, thereby allowing for more strongly 

atmospheric-data-driven estimates of global flux distributions (Michalak et al., 2004; 

Mueller et al., 2008).  The geostatistical approach uses a modified Bayesian setup to 

estimate the flux distribution as the sum of a deterministic but unknown overall trend, 
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and a stochastic spatially and/or temporally autocorrelated flux residual.  The trend in 

a geostatistical framework can be as simple as a global average land or ocean flux 

(Michalak et al., 2004), but can also include linear combinations of global auxiliary 

environmental datasets related to CO2 flux.  The covariates included in the model of 

the trend help to define the spatial and temporal structure of the flux distribution, but 

the exact relationship between these covariates and flux is estimated using the 

atmospheric CO2 data themselves.  In this way, available auxiliary data can help to 

constrain the inverse problem, but their impact on the flux distribution is not specified a 

priori.  The stochastic component of a geostatistical estimate represents features of 

the flux distribution that are inferred from the CO2 observations, but that cannot be 

explained using the covariates included in the model of the trend. 

In a companion paper, Mueller et al. (2008) demonstrated the ability of the 

geostatistical approach to recover monthly grid-scale (3.75° x 5°) CO2 fluxes using 

atmospheric concentration data from a subset of the NOAA-ESRL cooperative air 

sampling network (Tans and Conway, 2005).  In that application, the trend was defined 

as monthly-varying land and ocean global average fluxes.  Mueller et al. (2008) showed 

that the information content of available atmospheric measurements was sufficient to 

constrain fluxes at aggregated continental scales, particularly on land.  Grid-scale 

estimates, however, had limited sub-continental spatial variability and high a posteriori 

uncertainties. 

The primary objective of the current paper is to investigate the additional 

constraint provided by auxiliary environmental datasets on flux distributions estimated 

within a geostatistical inverse modeling framework.  These datasets may include 

variables such as Leaf Area Index and Gross Domestic Product, which correlate well with 

the spatio-temporal pattern of biospheric and anthropogenic CO2 exchange.  Given 

their global coverage and correlation with CO2 flux, these variables are also able to 

provide information about flux in regions under-constrained by the atmospheric 

measurements.  A subset of auxiliary variables is selected based on their ability to 

explain flux variability evident from the available atmospheric data.  The effect of 
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including auxiliary variables on a posteriori estimates and their associated uncertainties 

is investigated at two spatial (grid and continental) and two temporal (monthly and 

annual) scales.  The goal is to provide a framework that allows the inversion to recover 

more realistic CO2 flux variability with lower a posteriori uncertainties, relative to a 

setup relying exclusively on the limited atmospheric CO2 measurement network. 

The second objective is to investigate the relationship between the selected 

auxiliary datasets and flux, as identified using the atmospheric CO2 observations, the 

uncertainty associated with this inferred model, and the impact of this uncertainty on 

the overall a posteriori uncertainty associated with the flux distribution.  The 

relationships between each of the variables and the estimated fluxes are not 

pre-specified in the geostatistical inversion, but rather quantified using the atmospheric 

observations.  If the environmental datasets are relatively objective quantities with 

global coverage, the inclusion of auxiliary variables in the inverse model can incorporate 

process-based information into the final flux estimates while minimizing assumptions 

about the relationship between the auxiliary datasets and CO2 flux.  Finally, given that 

the relationship between each variable and flux is estimated as part of the geostatistical 

inversion, these relationships can potentially be used to improve process-based 

understanding of flux drivers. 

In this work, monthly CO2 fluxes and their uncertainties are estimated for 1997 

to 2001 at a 3.75° x 5° resolution for the globe.  The model of the trend of the flux 

distribution incorporates auxiliary environmental variables, as discussed above, as well 

as monthly-varying terrestrial latitudinal flux gradients and global average ocean fluxes.  

The monthly latitudinal gradients, the direction and magnitude of which are estimated 

as part of the inversion, account for seasonal and latitudinal patterns in terrestrial fluxes 

that are not fully explained by the auxiliary variables.  Results are compared to 

estimates presented in Mueller et al. (2008) using solely the atmospheric data 

constraint. 

Note that the presented application estimates the total CO2 flux, including the 

biospheric, anthropogenic and oceanic components.  This is in contrast to previous 
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inversion studies which considered fossil fuel emissions well-known and estimated only 

the biospheric and oceanic portions of the flux distribution (e.g. Rödenbeck et al., 2003; 

Baker et al., 2006).  By pre-subtracting a static dataset of fossil fuel emissions from the 

observational data, previous inversion studies aliased any spatial and temporal 

uncertainty in the fossil fuel flux distribution onto the biospheric fluxes or nearby ocean 

regions.  Given that fossil fuel emissions, at least in the Northern Hemisphere, are 

known to vary seasonally, pre-subtracting assumed fossil fuel emissions can confound 

the interpretation of a posteriori fluxes (Gurney et al., 2005).   

This chapter is organized as follows:  Section 4.2 presents an overview of the 

inputs into the geostatistical inversion, with an emphasis on the auxiliary environmental 

data which are incorporated into the estimation.  Section 4.3 presents the results of 

the analysis, including the selected auxiliary variables and their impact on flux estimates.  

Section 4.4 summarizes the main conclusions of the study. 

 

4.2  Methods 

The surface flux estimates presented in this paper are obtained using a 

geostatistical inverse modeling approach, minimizing the objective function in equation 

3.1.  A full description of this method is provided in Chapter 3 as well as in Michalak et 

al. (2004) and Mueller et al. (2008).  This section presents a description of extensions 

to the method developed and implemented through the current work.  A diagram of 

the overall algorithm can be found in Chapter 3, Figure 3.1. 

 

4.2.1  Observational data (𝒛) and transport model (𝑯) 

Monthly-averaged atmospheric CO2 flask measurements (𝐳) from 44 

unevenly-distributed global measurement locations within the NOAA-ESRL cooperative 

air sampling network (Tans and Conway, 2005) are used to constrain the global flux 

distribution, together with a transport matrix, 𝐇, describing the sensitivity of measured 

concentrations to estimated fluxes.  These components of the inversion are identical 

to those presented in the companion paper (Mueller et al., 2008).  The observational 
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subset in 𝐳 is similar to that used in Rödenbeck et al. (2003), and the number of 

measurements in any given month ranges from 35 to 42 between 1997 and 2001.  The 

𝐇 matrix was derived from an adjoint implementation of the atmospheric transport 

model TM3 (Heimann and Körner, 2003), which has a spatial resolution of 3.75° latitude 

by 5° longitude with 19 vertical levels, and is driven by inter-annually varying winds from 

the NCEP Reanalysis (Kalnay et al., 1996). 

 

4.2.2  Model of the trend (𝑿𝜷) 

4.2.2.1  Structure of the model of the trend 

The simple model of the trend implemented by Mueller et al. (2008) includes 

estimated average fluxes for each calendar month over land and ocean, and thereby 

captures both seasonal variability and differences in the expected flux magnitude over 

land and oceans.  The model of the trend presented in the current study replaces 

these monthly average land fluxes with a subset of spatially and temporally-varying 

auxiliary environmental variables, selected using the procedure presented in Section 

4.2.3.3.  In addition, a monthly-varying terrestrial latitudinal gradient, expressed as 

sin(2 × 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒), is included to represent the expected opposing sources and sinks in 

the Northern and Southern hemispheres.  The strength and direction of this gradient is 

allowed to vary seasonally, in order to reflect the seasonality in the two hemispheres.  

A monthly-varying spatially-constant mean is assumed for ocean fluxes, identical to the 

setup used in Mueller et al. (2008). 

Overall, the structure of the trend in this study is represented by an (𝑚 ×

(24 + 𝑘)) matrix 𝐗, where the first 24 columns contain the monthly terrestrial 

latitudinal flux gradients and ocean constants, and the subsequent 𝑘 columns contain 

the auxiliary variables for each month and location: 

 

 𝐗 = [𝐀1 . . . 𝐀12 𝐛1 ⋯ 𝐛𝑘] (4.1) 

 

where 𝐛𝑖 includes values of the 𝑖th auxiliary variable for each of the 𝑚 estimated 
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fluxes.  The matrices 𝐀𝑗 (𝑚 × 2) contain non-zero entries only for fluxes within a 

single calendar month 𝑗.  For a given month, the relevant portion of this matrix, 

defined as the 3456 × 2 matrix 𝐚𝑗, contains values of sin(2 × 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) for land 

gridcells in the first column, and ones for ocean gridcells in the second column: 

 

 𝐚𝑗 = �sin(𝟐 ∗ 𝐥𝐚𝐭𝐢𝐭𝐮𝐝𝐞) 𝟎
𝟎 𝟏

� (4.2) 

 

4.2.2.2  Auxiliary environmental variables 

The goal of incorporating auxiliary variables associated with carbon cycle 

processes into the model of the trend is to better represent the expected spatial and 

temporal variability of a posteriori grid-scale flux estimates, while only including 

variables that provide significant information as seen through the atmospheric 

monitoring network.  A preliminary set of auxiliary variables with global coverage for 

the study period was selected based on the variables' known associations with 

biospheric or fossil fuel fluxes.  Few oceanic variables with complete spatial and 

temporal coverage are available for 1997 to 2001.  In addition, although the study 

initially considered variables such as Sea Surface Temperature, these were eliminated 

given preliminary results showing that the atmospheric data were not able to infer 

physically-reasonable relationships to flux in the oceans.  As more oceanic datasets 

with gridded, global coverage become available, especially from the MODIS (Moderate 

Resolution Imaging Spectroradiometer) instrument on the Terra and Aqua satellites, 

future studies could make use of this information to better explain oceanic flux 

variability. 

The auxiliary variables considered in this study are presented in the first column 

of Table 4.1, and described below.  All variables were regridded from their native 

resolutions to the 3.75° x 5° resolution of this study using area-weighted averaging. 

Downwelling Shortwave Radiation - The photosynthetically active portion (PAR) 

of downwelling shortwave radiation drives photosynthesis.  Because the amount of 

PAR is approximately proportional to the total amount of shortwave radiation, this 
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dataset was not separated into the PAR and near infrared portions.  Downwelling 

shortwave radiation data over land were obtained for 1997-2001 from the National 

Centers for Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996). 

Surface Air Temperature -- Surface air temperature is positively correlated with 

the amount of solar radiation reaching primary producers, and hence photosynthesis, as 

well as with the rates of all metabolic reactions including respiration.  Surface air 

temperature data were obtained from the NCEP/ NCAR Reanalysis Monthly Means 

(Kalnay et al., 1996). 

Precipitation -- Precipitation affects water availability, and therefore enables 

both plant growth and decay.  Droughts can limit both CO2 uptake and soil respiration, 

although the impact on the net flux may differ with the length and severity of drought 

(e.g. Baker et al., 2008).  Prolonged droughts also promote forest fires.  A 

precipitation dataset was obtained from the Monitoring Product of the Global Historical 

Climatology Centre in Germany (Adler et al., 2003). 

Palmer Drought Severity Index -- The PDSI tracks atmospheric moisture at the 

surface of the earth relative to local mean conditions, and is calculated using both 

precipitation and surface air temperature.  The Palmer Drought Severity Index (PDSI) 

was formulated by Palmer (1965) as a hydrological accounting system for the central 

United States, and was subsequently extended globally by Dai et al. (2004). 

Vegetation indices: LAI, NDVI, fPAR -- The Normalized Difference Vegetation 

Index (NDVI) is the dimensionless normalized difference between solar and infrared 

surface reflectances.  Because leaves absorb solar but reflect infrared radiation, NDVI 

is a measure of green leafy biomass.  Leaf Area Index (LAI) is the total surface area of 

leaves per unit ground area (𝑚2/𝑚2). The absorbed fraction of photosynthetically 

active radiation (fPAR) is the fraction of incident solar radiation absorbed by plants 

during photosynthesis.  NDVI was sourced from the GIMMS dataset, version g (Tucker 

et al., 2005) based on radiances from the Advanced Very High Resolution Radiometer 

(AVHRR).  fPAR was estimated from the NDVI data using the average of the simple 

ratio and NDVI methods (Los et al., 2001; Schaefer et al., 2002; Schaefer et al., 2005), 
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and LAI was estimated from fPAR by inverting Beer's law assuming leaf radiative 

characteristics from Sellers et al. (1996b). 

Land Cover -- Different land cover types are associated with varying levels of Net 

Primary Productivity (NPP).  The DISCover Global Land Cover dataset, obtained from 

the Global International Geosphere-Biosphere Program (Loveland et al., 2001), contains 

18 categories of land cover derived from satellite imagery recorded from April 1992 

through March 1993.  This dataset was further binned into six categories: Forest, 

Shrub, Grassland, Agriculture, Barren (including Urban) and Inland Water, and a percent 

cover for each of these six land cover categories was calculated at the 3.75° x 5° 

resolution.  Only % Agricultural Land, % Forest Cover, % Shrub Cover, % Grassland and 

a combined % Forest/ Shrub Cover category were selected for further assessment.  

These derived land cover variables form a static dataset used for the full study period. 

Population Density -- Fossil fuel emissions generally trend well with human 

population density, although densely-populated but poorer countries (e.g. Bangladesh, 

which is 9th in the world in population, but 69th in emissions (Marland et al., 2006; 

Central Intelligence Agency, 2007)) weaken this relationship.  The population density 

dataset used in this study was created by Environment Canada with support from the 

United Nations Environment Programme (Li, 1996). 

GDP Density -- A global gridded Gross Domestic Product (GDP) dataset, 

representing the total economic output of the population living in a given area, was 

sourced from the International Satellite Land Surface Climatology Project Initiative II 

Data Collection (Yetman et al., 2004).  The population and GDP datasets are static 

snapshots of the year 1990, and both are normalized by gridcell area to create a density 

indicator (people/𝑚2or $USD/𝑚2). 

 

4.2.2.3  Variable selection using the Variance-Ratio test 

For this application, a trend with 12 monthly latitudinal land gradients and 12 

monthly ocean constants is set as the initial model 𝐗0 for the Variance-Ratio Test, as 

described in Section 4.2.3.1 and Chapter 3.  The Variance-Ratio Test is then run for 
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each of the 14 candidate auxiliary variables (Table 4.1), adding each individually into 𝐗1 

(i.e. 𝑞 = 1).  A single variable that significantly improves the trend is selected for 

inclusion, and this augmented trend becomes the new 𝐗0.  The test is then performed 

again using each of the other 13 remaining variables.  Multiple rounds of the test are 

performed until no significant variables remain at the 𝛼 = 0.05 significance level.  

Only a single variable is added in each round, even if more than one variable represents 

a significant improvement to the model.  The choice among significant variables is 

based on its relative level of significance, as well as the importance of its known 

association with key flux drivers (i.e. photosynthesis, respiration, fossil fuel emissions, 

etc.).   

 

4.2.3  Covariance matrices (𝑸 and 𝑹) 

Covariance parameters for land and ocean fluxes in the flux covariance matrix 

(𝐐) are optimized separately, and no correlation is assumed between them, as 

described in Mueller et al. (2008).  The model-data mismatch variances in the 𝐑 

matrix, which include measurement, transport, and representation errors for each 

observation, are assumed to be proportional to the square of the residual standard 

deviation (RSD) of flask observations from a smoothed curve (GLOBALVIEW- CO2, 2008), 

as used in the TransCom series of studies (e.g. Baker et al., 2006). 

The parameters of the 𝐐 and 𝐑 matrices are optimized using the Restricted 

Maximum Likelihood (RML) method (Kitanidis, 1995; Michalak et al., 2004; Mueller et 

al., 2008), as described in Chapter 3.  The covariance parameters for the 𝐐 matrix are 

optimized using process-based and inventory flux estimates from the 

Carnegie-Ames-Stanford Approach (CASA) model (Randerson et al., 1997) for monthly 

net ecosystem production (NEP), Takahashi et al. (2002) for monthly net oceanic carbon 

exchange, and Brenkert (1998) for yearly-averaged fossil fuel and cement production 

emissions.  The scaling parameter, 𝑐, applied to the squared RSD's in the 𝐑 matrix, is 

optimized using the atmospheric concentration measurements.  Covariance 

parameters are optimized using the model of the trend (𝐗) derived from the variable 
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selection process described in Section 4.2.3.3.   

 

4.3  Results and Discussion 

This section presents CO2 fluxes estimated using geostatistical inverse modeling, 

informed both by atmospheric CO2 measurements and selected auxiliary environmental 

data.  Results are also compared to those obtained by Mueller et al. (2008) using only 

the atmospheric data constraint. 

 

4.3.1  Variance Ratio Test and selection of auxiliary variables 

The Variance Ratio Test is applied as described in Section 4.2.3.3 to select a 

subset of auxiliary variables that capture a portion of the flux variability, as inferred 

using the atmospheric CO2 observations.  As previously mentioned, the approach is 

complemented with scientific understanding regarding the variables and their 

relationship to flux processes to select among variables that are significant in each 

round of the test.  Fully automatic model-building procedures are not recommended 

as a means for identifying the best interpretable model, because such procedures can 

potentially select models that represent only spurious relationships and can fail when 

applied to comparable datasets (Judd and McLelland, 1989).  Note that the Variance 

Ratio Test determines the significance of the linear relationship between surface flux 

and auxiliary variables as identified through the relatively sparse atmospheric 

measurement network.  Therefore, selected variables may be more representative of 

relationships in well-constrained regions.   

GDP Density is selected in the first round of auxiliary variable selection (Table 

4.1) because it significantly improves the trend, and is believed to best isolate the fossil 

fuel emission signal, which is the largest single net source of CO2 on annual timescales.  

Leaf Area Index is selected in the second round for its association with NPP, and because 

it is the most significant among the three vegetation indices.  For all subsequent 

rounds, the most significant variable is selected for inclusion in the augmented model of 

the trend.  These variables are fPAR, % Shrub Cover, and Population Density, in the 
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third, fourth, and fifth rounds, respectively.  No additional variables are significant 

beyond the fifth round.  Results from the Variance-Ratio Test also confirm that the 

monthly latitudinal gradients are a significant improvement upon the monthly land 

constants implemented in Mueller et al. (2008), a result which holds regardless of 

whether or not auxiliary variables are also included in the analysis. 

 

Table 4.1:  Auxiliary variables and their observed significance levels for each round of 
the Variance Ratio Test.  Variables included in the model of the trend are in bold and 
their significance levels in the final round before inclusion are highlighted.  

Variable Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 

GDP Density <10-16 
     Population Density <10-16 3x10-8 3x10-10 2x10-8 3x10-5 

 LAI 0.37 3x10-3 
    fPAR 7x10-6 0.39 <10-16 

   NDVI 4x10-4 0.80 <10-16 0.31 0.04 0.41 

Shortwave Radiation 0.03 0.29 5x10-5 0.64 0.01 0.12 

Surface Air Temperature 10-4 0.02 4x10-6 2x10-3 3x10-3 0.06 

Precipitation 6x10-9 7x10-4 1x10-11 3x10-3 0.02 0.25 

PDSI 0.84 0.72 0.55 0.44 0.51 0.77 

% Agricultural Land <10-16 10-7 6x10-14 3x10-4 0.06 0.81 

% Forest Cover 10-8 3x10-5 <10-16 0.03 0.97 0.51 

% Forest/ Shrub Cover 0.87 0.59 0.04 3x10-7 0.97 0.51 

% Grassland 0.12 0.30 0.81 0.01 0.22 0.38 

% Shrub Cover 3x10-9 2x10-7 6x10-6 2x10-11     
 

 

Overall, the selected variables are associated with different drivers of terrestrial 

CO2 flux, including photosynthesis, respiration, land cover type and fossil fuel emissions.  

Additional auxiliary variables and/ or functional forms could be applied in the future, in 

order to capture additional processes (e.g. biomass burning, deforestation and oceanic 

productivity/ gas exchange) and identify more complex or regional relationships 
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between auxiliary variables and CO2 flux variability.  However, given that the 

geostatistical inversion estimates both the model of the trend and flux deviations from 

this trend, any processes that are not represented by the auxiliary variables can still be 

represented in the final best estimates of flux, as part of the stochastic component of 

the best estimate. 

 

4.3.2  Optimized covariance parameters 

The optimized parameters for the covariance matrices (𝐐 and 𝐑) are presented 

in Table 4.2 for the model of the trend presented in the last section, as well as the setup 

implemented in Mueller et al. (2008).  Both land 𝐐 parameters (𝜎𝑄2 and 𝑙𝑄) show a 

significant decrease of approximately 30% from the simple to the complex trend.  The 

optimized scaling parameter (𝑐) for 𝐑 decreases by 8%, a smaller but also significant 

change.  Given the absence of any oceanic variables in the complex trend, the ocean 

𝐐 parameters remain unchanged between the two trends. 

 

Table 4.2:  Optimized model-data mismatch (𝑹) and spatial covariance (𝑸) parameters 
with +/- 1 standard deviation for simple (Mueller et al., 2008) and complex models of the 
trend.   

 𝑸𝒍𝒂𝒏𝒅  𝑸𝒐𝒄𝒆𝒂𝒏  𝑹 

Trend 
σ2, 

(µmolCO2/(m2s))2 
l, km  

σ2, 

(µmolCO2/(m2s))2 
l, km  c 

Simple 0.40 +/- 0.03 
2700 +/- 

200 
 

0.0030 +/- 

0.0003 

5700 +/- 

500 

 
0.63 +/- 

0.04 

Complex 0.28 +/- 0.01** 
1800 +/- 

100** 
  

0.58 +/- 

0.04* 

*One standard deviation reduction from simple to complex trend 
**Two standard deviation reduction from simple to complex trend 
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The reduction in the model-data mismatch parameter (𝑐) and the land 𝐐 

variance parameter (𝜎𝑄2) provide additional confirmation that the complex trend 

represents a better representation of the spatial variability of CO2 flux relative to the 

simple trend.  The reduction in the estimated model-data mismatch demonstrates that 

fluxes estimated using the complex trend are better able to reproduce the atmospheric 

concentration measurements relative to those derived using the simple trend.  The 

decrease in 𝜎𝑄2 indicates that, as more of the flux variability is explained by an 

improved trend, the flux residuals decrease in magnitude.  In other words, the complex 

trend explains a larger fraction of the inferred variability of CO2 fluxes.  Shorter 

correlation lengths in the residuals also indicate that more of the large scale spatial 

variability is being captured by the complex model of the trend, leading to residuals that 

are correlated on smaller scales.  As will be discussed in Section 4.3.5, the changes in 

the 𝐐 and 𝐑 parameters also lead to a decrease in grid-scale a posteriori 

uncertainties for the best estimates of flux. 

 

4.3.3  Estimated drift coefficients (𝜷�) and contributions to CO2 flux (𝑿𝜷�) 

The estimated drift coefficients (𝛃�) corresponding to the auxiliary variables, their 

coefficients of variation (𝛔𝛽�/𝛃�), and the correlation coefficients (𝜌) among them are 

presented in Table 4.3.  A positive sign on the drift coefficients indicates a positive 

correlation with CO2 flux (i.e. a source or reduction in sink), while a negative sign 

indicates a negative correlation (i.e. a sink or reduction in source).  A coefficient of 

variation less than 0.5 implies a significant contribution to the trend at the 2𝜎𝛽�  level, 

and all drift coefficients on the auxiliary variables are therefore significant at the 95% 

level.   

 The recovered signs on the drift coefficients for the five auxiliary variables show 

that the inversion is able to infer reasonable relationships between these parameters 

and CO2 flux.  GDP and Population Densities are associated with sources, as expected 

given their correlation with fossil fuel emissions, while the opposite signs on LAI and 

fPAR imply that these variables collectively represent the opposing photosynthesis and 
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respiration signals.  These results lend support to the validity of the Variance Ratio Test 

for selecting auxiliary variables, as well as provide indirect evidence that the improved 

model of the trend is able to correctly represent flux variability in the final flux 

estimates, particularly in under-constrained regions. 

 

Table 4.3: Estimated drift coefficients (𝜷�), coefficients of variation (𝝈𝜷�/𝜷�), annual 
average global contribution to flux (X𝜷�) and correlation coefficients (ρ) between 
auxiliary variables in the model of the trend.  Also shown is the range of monthly values 
for the individual 𝜷� and 𝝈𝜷�/𝜷� for the land latitudinal gradients and ocean averages, 
as well as their annual average global contribution to flux.  The annual average 
contribution to flux of the complete trend represents a sum of the contributions by each 
of the previous components.   

    
𝛒 

  𝛃�a 𝛔𝛃�/𝛃� 𝐗𝛃� 
(GtC/yr) GDP Pop LAI fPAR Shrub 

GDP Density (000's 
$/(m2yr)) 180 0.35 1.6 1.00 --- --- --- --- 

Population Density 
(people/m2) 1700 0.26 3.2 -0.42 1.00 --- --- --- 

LAI (m2/m2) -0.49 0.08 -42.1 0.02 0.01 1.00 --- --- 
fPAR (unitless) 1.9 0.08 46.8 -0.12 -0.12 -0.94 1.00 --- 
% Shrub Cover (%) -0.0038 0.18 -3.5 0.14 0.23 0.06 -0.21 1.00 
Land Latitudinal 

Gradients -0.5 to 0.3 0.2 to 1.1 0.6 
     

Ocean Constants -0.08 to 0.01 0.2 to 6.7 -2.8 
     

Complete Trend 
  

3.8 
     

aThe drift coefficients (𝜷�) have units of μmolCO2/(m2s) divided by the units of the individual auxiliary 
variables.  Due to differences in units on the auxiliary variables, the magnitudes of the drift coefficients 
are not directly comparable.  

 

The annually-averaged global contribution to flux (𝐗𝑖𝛃�𝑖) in GtC/yr is also 

displayed in Table 4.3 for each of the auxiliary variables, which makes it possible to 

assess the magnitudes of the recovered drift coefficients in consistent units.  GDP and 

Population Densities together contribute 4.8 GtC/yr globally, which is approximately 

70% of the estimated 6.7 GtC/yr global source from fossil fuels and cement production 
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over this period (Baker et al., 2006; Energy Information Administration, 2002; Marland 

et al., 2006).   

LAI and fPAR have the largest annually-averaged contributions to flux among the 

different components of the trend.  These datasets have similar spatial patterns, and 

this collinearity implies that the interpretation of their combined contribution to flux is 

more reliable than their individual relationships to flux, as demonstrated by the strong 

anticorrelation between their estimated drift coefficients (𝜌 = −0.94).  The combined 

contribution of LAI and fPAR within the trend shows net sources and sinks on a seasonal 

basis that are consistent with the expected biospheric signal.  This contribution also 

plays a large role in defining the spatial variability of the overall terrestrial flux estimates 

(as shown in Figure 4.1).  The combined annually-averaged global contribution to flux 

of LAI, fPAR and % Shrub is 1.2 GtC/yr, implying that these variables together represent 

a large portion of the biospheric signal, which has a strong seasonality but a relatively 

small annually-averaged net flux. 

The positive drift coefficient associated with fPAR (representing sources or 

reductions in sinks) and the negative drift coefficient associated with LAI (representing 

the opposite) appear to contradict process-based understanding of the relationship 

between these variables and biospheric CO2 fluxes.  Photosynthesis is frequently 

estimated from fPAR, given assumed rates of autotrophic respiration (Tucker and 

Sellers, 1986; Potter et al., 1993), while LAI, as a measure of biomass, is more commonly 

associated with autotrophic and heterotrophic respiration (e.g. Reichstein et al., 2003).  

However, at the spatial and temporal resolution of this study, LAI appears to capture the 

strong seasonality expected for photosynthesis, while the weaker seasonal cycle of fPAR 

captures variability expected for total ecosystem respiration (Figure 4.2).  
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Figure 4.1 (a) Contribution to flux estimates by LAI and fPAR within the model of the 

trend (𝑿𝜷�) for May 2000, (b) contribution by LAI and fPAR for July 2000, (c) best 
estimates of flux (ŝ) for May 2000, and (d) best estimates of flux (ŝ) for July 2000. 

 

 

 
Figure 4.2: Average monthly LAI and fPAR (from 1997 to 2001) for the combined 

Northern Hemisphere land regions of Boreal Asia, Europe, and Boreal North America (as 
defined in Figure 4.7). 
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Figure 4.3: Contribution to flux by the 12 monthly latitudinal land gradients within the 

model of the trend (𝑿𝜷�). 

 

Figure 4.3 shows the contribution to the trend (𝐗𝑖𝛃�𝑖) by the monthly terrestrial 

latitudinal gradients, which show strong seasonality.  For example, the latitudinal 

gradient in June shows a sink in the Northern Hemisphere mid-latitudes with a 

corresponding source in the Southern Hemisphere, while the gradient shows the 

opposite flux pattern in January.  This result demonstrates that the atmospheric data 

are able to correctly identify seasonal variability between the hemispheres that is 

unexplained by the other auxiliary variables within the trend.  Eight of the twelve 

multipliers show a source in the Northern Hemisphere, likely as a result of the 

year-round fossil fuel CO2 sources from industrialized areas in North America, Europe 

and Asia that are not captured by the contributions of GDP Density and Population 

Density within the model of the trend.   

The complete model of the trend including the latitudinal gradients, ocean 

constants and auxiliary variables, represents a 3.8 GtC/yr annually-averaged source to 

the atmosphere from 1997 to 2001.  The overall annually-averaged global flux 

estimate from the inversion is a source of 4.0 GtC/yr, which indicates that the complex 



62 
 

model of the trend captures approximately 95% of the global atmospheric increase on 

an annually-averaged basis, and is therefore explaining a substantial portion of total flux 

at this aggregated scale.  As shown in equation 3.8, the residual component of the flux 

estimates are explained by the stochastic component, such that the additional source 

apparent in the atmospheric measurements but not captured by the trend is still 

incorporated into the final flux estimates.   

 

 

 

Figure 4.4: Contribution of various components within the model of the trend (𝐗𝛃�) 
toward the best estimates of flux (ŝ) in July 2000: (a) GDP density, (b) population density, 

(c) LAI, (d) fPAR, (e) % Shrub Cover, (f) latitudinal gradient and ocean constant, (g) 
stochastic component of best estimates, and (h) full best estimates (ŝ). 
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4.3.4  Spatial distribution of the deterministic and stochastic components of a 
posteriori flux estimates (𝒔�) 

Figure 4.4 illustrates the spatial distribution of each component of the model of 

the trend (𝐗𝛃�), the spatially correlated flux residuals (𝐐𝐇𝑇𝚿−1�𝐳 − 𝐇𝐗𝛃��), and the 

best estimates of flux (𝐬�) for July 2000.  The shrublands in arid regions like Australia 

and the boreal regions of North America and Asia show small negative contributions to 

the overall flux, while LAI and fPAR show large, but opposite, contributions to flux in 

vegetated areas, as previously discussed in Section 4.3.3.  Both GDP and Population 

Densities show positive contributions to flux, although their spatial patterns differ.  

The terrestrial latitudinal flux gradient reflects climatic variability unexplained by the 

other auxiliary variables, and shows the largest negative contribution to flux in the 

Northern Hemisphere mid-latitudes for this month.  It should be noted that % Shrub 

Cover, GDP Density and Population Density are static datasets and therefore, the July 

2000 contributions of these variables shown in Figure 4.4 represent only long-term 

average contributions to flux. 

While the magnitude of the stochastic component is generally reduced as the 

ability of the trend to explain flux variability becomes stronger (as evidenced by the 

reduction in the 𝜎𝑄2 land parameter shown in Table 4.2), the stochastic component 

associated with the flux estimates in July 2000 is still responsible for positive 

contributions over South America and most of North America, and slight negative 

contributions in northeast Asia, Australia and parts of Africa.  In fact, the stochastic 

component adds a positive contribution to flux in tropical Central and South America for 

approximately eight months of each year of the inversion.  This shows that although 

the complex model of the trend cannot capture a systematic flux signal in this region, 

possibly due to the lack of auxiliary variables associated with biomass burning and/or 

deforestation, the stochastic component identifies a net additional source in these 

regions.   

In the Mueller et al. (2008) study, 𝐗𝛃� is simply an average flux over land and an 

average flux over oceans for each calendar month.  Therefore, the spatial variability of 
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the best estimates at the grid-scale is entirely determined by the spatially-correlated 

stochastic component.  In contrast, for the complex trend with auxiliary variables, each 

component within the trend adds an additional layer of spatial variability to the a 

posteriori flux estimates, weighted by that component's estimated relationship to flux 

(𝛃�).  Therefore, the complex trend inversion is able to more realistically represent 

grid-scale variability without relying on the use of explicit prior flux estimates used in 

synthesis Bayesian inversions. 

 

4.3.5  A posteriori grid-scale uncertainty reduction from simple to complex 
trend 

The greater ability of the complex trend to capture flux variability relative to the 

simple trend, represented by a reduction in the optimized land variance parameter in 

the 𝐐 matrix and the scaling parameter in the 𝐑 matrix, leads to an overall decrease 

in a posteriori uncertainty on the flux estimates (see equation 3.5).  Figure 4.5 shows 

the average percent change in uncertainty at the gridscale between the simple and the 

complex trend inversion for the year 2000.  The uncertainty on land is reduced by up 

to 14%, with higher decreases in areas such as Africa, South America and Southeast 

Asia.  This is due to the fact that these areas, under-constrained by the atmospheric 

measurements, are now informed by a better deterministic model of the trend.  For 

the oceans, the uncertainty is reduced by approximately 2% for most regions.   

Whereas the reduction in the variances in 𝐐 and 𝐑 lead to a decrease in the a 

posteriori uncertainties, including additional variables in the model of the trend also 

leads to additional uncertainties resulting from the estimation of the corresponding drift 

coefficients (𝛃�).  The uncertainty associated with estimating 𝛃� contributes to the a 

posteriori uncertainties through the term −𝐗𝐌 in equation 3.5 (this term is always 

positive).  Therefore, some regions actually show a slight increase in the a posteriori 

uncertainty when moving from the simple to the complex trend.  For example, the 

high values of GDP and Population Densities in the Northeastern United States, 

Germany, China, Japan and Bangladesh, lead to increases in estimated uncertainty of up 
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to 11%. 

The general reduction in a posteriori grid-scale uncertainty (𝜎𝑠̂) from the simple 

to the complex trend shown in Figure 4.5 leads to a small increase in the number of 

significant terrestrial sources and sinks estimated at the grid scale (17% of gridcells for 

the simple trend vs. 25% for the complex trend at the 1𝜎𝑠̂ level, or 2% vs. 6% at the 2𝜎𝑠̂ 

level).  Overall, however, grid-scale uncertainties are high relative to flux magnitudes in 

both inversions due to the limited network of atmospheric measurements, as expected.  

Note that the reduction in uncertainty from the simple to the complex trend described 

here is not analogous to the reduction in uncertainty described in synthesis Bayesian 

inversion studies (e.g. Rödenbeck et al., 2003; Baker et al., 2006).  In synthesis 

Bayesian inversions, the a priori uncertainty is described by the matrix 𝐐, whereas the a 

priori uncertainty in geostatistical inversions is effectively infinite given that there are no 

a priori assumptions about the drift coefficients 𝛃.  Instead, the reduction in 

uncertainty reported here represents the relative constraints on fluxes achieved by two 

different inversion setups, namely those described by the simple and complex trends. 

 

 
Figure 4.5: Percent change in a posteriori uncertainty (𝜎𝒔�) from the simple to the 
complex trend inversion, annually averaged for year 2000. Triangles represent 

measurement locations. 
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4.3.6  Continental-scale seasonal cycle for year 2000 

Figure 4.7 presents monthly flux estimates and 1𝜎𝑠̂ confidence intervals for the 

year 2000 resulting from the simple and complex trend inversions, aggregated to the 22 

TransCom regions (e.g. Gurney et al., 2003) shown in Figure 4.6.  In some regions, such 

as Boreal North America, Temperate North America and Northern Africa, results from 

the application of the two trends are nearly identical.  In other regions, the auxiliary 

variables and terrestrial latitudinal gradient in the complex trend have an impact on the 

flux estimates.  For example, the complex trend inversion shows a larger summertime 

sink in Boreal Asia and Europe and a slightly higher year-round flux in Tropical Asia, with 

this latter result most likely due to the positive contribution to flux associated with 

densely-populated areas in Bangladesh and southern China.  The better constraint on 

terrestrial fluxes provided by the improved trend also slightly alters fluxes in nearby 

ocean regions. 

 

 
Figure 4.6: Locations of 11 land and 11 ocean TransCom regions (e.g., Gurney et al., 

2003). 
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However, apart from these small differences, the magnitude and seasonality of 

aggregated fluxes inferred using the two trends agree well for both land and ocean 

regions.  This result shows that there exists a relatively strong atmospheric constraint 

on the seasonal cycle of geostatistical flux estimates at the scale of the 22 TransCom 

regions.  This is important, given that flux patterns at the grid scale vary significantly 

between the two inversions, and supports the hypothesis that the flux estimates at the 

aggregated scale are representative of the information content of the atmospheric data. 

 

 

 
Figure 4.7: Monthly best estimates (ŝ) aggregated to 22 TransCom regions with 1𝜎𝒔� 

confidence intervals for year 2000 for simple (Mueller et al., 2008) and complex trend 
inversions. 
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4.3.7  Annually-averaged continental-scale sources and sinks 

Figure 4.8 presents annually-averaged fluxes for 1997 to 2001 from the simple 

and complex trend inversions, aggregated to the 22 TransCom regions.  Uncertainty 

associated with the annually-averaged fluxes is 7% to 19% lower for land regions and 2% 

to 7% lower for ocean regions in the complex trend inversion relative to the simple 

trend inversion, demonstrating that the improved trend helps to better constrain flux 

estimates at aggregated spatial and temporal scales, as well as at the grid-scale (as 

discussed in Section 4.3.5).   

For the complex trend, most land regions show significant (1𝜎𝑠̂) net sources, 

whereas Boreal North America and Boreal Asia are flux-neutral, and Australia is a 

significant sink.  The predominance of continental-scale terrestrial sources reflects the 

impact of fossil fuel emissions on the annually-averaged CO2 fluxes.  An analysis of the 

biospheric annually-averaged flux, derived by subtracting fossil fuel inventory data 

(Brenkert, 1998) from the annual total values shown in Figure 4.8, shows that 

Temperate North America, Europe, Temperate Asia and Australia all act as significant 

biospheric sinks (1𝜎𝑠̂) in the complex trend inversion. 

For all ocean regions, fluxes from both inversions show a significant (1𝜎𝑠̂) sink, 

and the results from the two inversions are not significantly different from one another.  

However, as discussed in Mueller et al. (2008), the relatively constant oceanic flux 

estimates across regions reflect the limited information content of the atmospheric 

measurements, with oceanic flux estimates in many regions remaining close to the 

global averages reflected in the model of the trend.  Despite the lack of oceanic 

auxiliary variables, a better constraint on terrestrial fluxes within the complex trend 

reduces the strength of the overall ocean sink (from -3.0 GtC/yr to -2.7 GtC/yr), bringing 

these estimates into closer agreement with independent results from extrapolated 

ocean ship-track data (Takahashi et al., 2002) and inverse modeling studies that make 

direct use of these bottom-up estimates (Rödenbeck et al., 2003; Baker et al., 2006). 
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Figure 4.8: Annually averaged flux for simple and complex trend inversions for TransCom 
(a) land and (b) ocean regions for 1997 to 2001. Land fluxes include both biospheric and 

fossil fuel components. Error bars represent 1𝜎𝑠̂ and 2𝜎𝑠̂ confidence intervals. 

 

A few under-constrained land regions, such as Tropical Asia, Tropical America 

and Australia, show significant (1𝜎𝑠̂) changes in estimated average flux between the two 

inversions.  The significant increase in Tropical Asia and decrease in Tropical America 

demonstrate that the addition of auxiliary information with global coverage helps to 
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constrain regions remote from measurement locations (see map in Figure 4.6).  In fact, 

the estimates obtained using the complex trend are closer to bottom-up estimates for 

these regions.  For example, CASA estimates of net ecosystem exchange (NEE) 

(Randerson et al., 1997) with regional corrections for deforestation and re-growth, as 

applied in Baker et al. (2006), and fossil fuel emission estimates from Brenkert (1998) 

yield a 1.4 GtC/yr source for Tropical Asia and a 0.7 GtC/yr source for Tropical America, 

which are similar to the independent estimates obtained using the complex trend 

inversion.  The significant decrease in the net flux from Australia, however, is not 

consistent with estimates from previous inverse modeling studies (Rödenbeck et al., 

2003; Baker et al., 2006) and bottom-up models, which show a near-neutral biospheric 

flux.  The stronger estimated sink in Australia is likely caused by the negative drift 

coefficient on % Shrub Cover in the complex model of the trend, along with the large 

areas of open shrublands in this region.  Given that this drift coefficient represents a 

globally averaged estimated relationship between % Shrub Cover and CO2 flux, 

estimates in Australia may be unduly influenced by the relationship between shrublands 

and flux in the better-constrained boreal regions. 

The main conclusion to be drawn from the comparison between the 

annually-averaged, continental-scale fluxes for the two trends is that, as with the 

seasonal cycle of continental-scale fluxes, there is a relatively strong atmospheric 

constraint on fluxes at this scale.  This is seen through the consistent results obtained 

using the simple and complex trend inversions.  However, at this 

temporally-aggregated scale, auxiliary variables can significantly impact the 

annually-averaged flux estimates for certain under-constrained regions, in a manner 

consistent with process-based understanding of CO2 flux.  This improvement, however, 

is contingent on the validity of assuming a global relationship between auxiliary 

variables and CO2 flux.  Overall, as evidenced by lower a posteriori uncertainties, the 

complex trend inversion is better able to constrain annually-averaged continental-scale 

fluxes, relative to the simple trend inversion. 
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4.4  Conclusions 

This paper presents a method for incorporating auxiliary information provided by 

spatially-distributed datasets associated with CO2 flux processes into a geostatistical 

inverse modeling approach.  This approach is then used to estimate monthly-averaged, 

global, grid-scale CO2 fluxes using concentration measurements from a subset of the 

NOAA-ESRL Cooperative Air Sampling Network.  The auxiliary datasets with spatially 

and temporally heterogeneous global coverage help to constrain flux estimates, 

especially in regions far from measurement locations, and also help to recover fine-scale 

flux variability that cannot be inferred through the concentration data alone, due to 

atmospheric transport and mixing.  The resulting flux estimates are more realistic, and 

have lower uncertainty, than those presented in the Mueller et al. (2008) geostatistical 

inversion study, which relies only on the information content of the atmospheric data.  

This conclusion is supported by the physically reasonable relationships (𝛃�) between the 

auxiliary variables and flux recovered by the inversion, as well as the reduction in 

grid-scale a posteriori uncertainty achieved by the complex model of the trend.  The 

uncertainties on the drift coefficients in the model of the trend are also estimated by 

the inversion and then incorporated into the final a posteriori uncertainties on the flux 

estimates.  This approach differs from synthesis Bayesian inversions, where prior flux 

magnitudes and uncertainties are pre-specified, and are used directly in estimating a 

posteriori uncertainties.  Therefore, the a posteriori uncertainties on the flux estimates 

are more strongly data-driven than those estimated in previous inversion studies.  One 

aspect that will be the subject of ongoing work is the impact of the assumption of a 

constant global relationship between the auxiliary variables and flux within the model of 

the trend, which is more strongly affected by fluxes in well-constrained regions. 

The Variance Ratio Test is used to determine the combination of the candidate 

auxiliary variables that is best able to explain the flux variability evident in the 

atmospheric measurement data.  From an initial superset of 14 auxiliary variables, five 

variables were found to significantly improve the model of the trend.  These variables 

are associated with either biospheric activity or fossil fuel emissions.  An analysis of the 
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estimated drift coefficients on the auxiliary variables shows that LAI and fPAR capture a 

substantial portion of the combined signal of photosynthesis and respiration.  The 

negative drift coefficient for LAI and the positive one for fPAR are opposite to current 

understanding of the mechanistic relationship between these variables and CO2 flux.  

An analysis of these datasets shows that the weaker seasonality in the fPAR dataset 

relative to LAI allows this variable to more strongly explain the signal associated with 

total ecosystem respiration at the scales examined in this study.  The drift coefficients 

for the other selected variables indicate that % Shrub Cover explains residual biospheric 

sinks (or decreases in sources), while GDP and Population Densities explain 

approximately 70% of the expected global fossil fuel emission signal. 

As reflected in the optimized covariance parameters associated with the flux 

residuals and the model-data mismatch, the model of the trend implemented in this 

study is able to explain significantly more of the flux variability evident from the 

atmospheric data relative to a simple model of the trend containing monthly flux 

averages over land and ocean, as implemented in Mueller et al. (2008).  The reduction 

in the covariance parameters leads to reduced a posteriori uncertainties on the flux 

estimates of up to 14% for the annually-averaged grid-scale fluxes, and up to 19% at the 

annually-averaged continental scale.  This uncertainty reduction is strongest in 

under-constrained regions in Africa, South America and Southeast Asia. 

A comparison of the seasonal cycle of flux estimates at aggregated continental 

scales shows no significant differences between the simple trend inversion of Mueller et 

al. (2008) and the complex trend inversion implemented in this study, pointing to a 

relatively strong atmospheric constraint at this spatial scale.  At the annually-averaged 

continental scale, the auxiliary variables in the complex trend significantly change flux in 

a few terrestrial regions under-constrained by the measurement network, in a manner 

consistent with bottom-up understanding of flux in these regions.  However, the 

stronger inferred sink in Australia shows that a global average linear relationship 

between auxiliary variables and flux may not be representative for some regions or 

variables.  Apart from these few terrestrial regions, the agreement among both the 
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monthly and annually-averaged fluxes at the continental scale points to a strong 

atmospheric constraint on flux estimates at spatially-aggregated scales.   

Finally, the geostatistical inverse modeling approach presented here provides a 

method for validating scale-dependent understanding of the relationship between 

various datasets associated with CO2 flux processes and actual CO2 flux variability, as 

seen through the existing atmospheric monitoring network.  In future work, the use of 

biospheric model output, non-linear, and regional relationships in the model of the 

trend could help to differentiate among competing hypotheses about processes 

controlling flux variability, and thereby contribute to process-based understanding of 

CO2 flux drivers.  This approach will also continue to improve flux estimates, while 

minimizing a priori assumptions inherent to inversion studies.  As such, the 

geostatistical approach provides a unique opportunity for reconciling top-down and 

bottom-up estimates of CO2 flux variability at various spatiotemporal scales. 
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CHAPTER 5 

Regional-scale geostatistical inverse modeling of North American 
CO2 fluxes:  a synthetic data study 

 

5.1  Introduction 

CO2 fluxes cannot be directly measured at regional scales, and have instead been 

inferred from atmospheric concentration patterns using inverse modeling techniques.  

While earlier global inversion studies had used atmospheric CO2 concentration 

measurements sampled in the free troposphere at remote or high-altitude locations to 

infer continental-scale CO2 fluxes (e.g. Gurney et al., 2002; Baker et al., 2006), the recent 

convergence of several factors has made it feasible to estimate sub-continental scale 

CO2 fluxes in a regional inverse modeling framework (e.g. Peylin et al., 2005; Lauvaux et 

al., 2008).  First, continuous ground-based measurements of atmospheric CO2 taken at 

several North American and Eurasian sites (e.g. Bakwin et al., 1998; Haszpra, 1999) 

provide data with high temporal (and, increasingly, high spatial) resolution to constrain 

carbon fluxes at finer scales.  These continuous measurement locations also tend to be 

sited in continental, low-altitude areas with strong biospheric activity, providing more 

information about flux variability at sub-continental scales relative to the measurements 

used in global inversions.  Finally, recent advances in regional atmospheric transport 

modeling and the use of analyzed wind fields with high spatial resolution make it 

feasible to appropriately take advantage of continuous data from continental locations 

in regional inversions.   

The use of continuous, continental data in grid-scale CO2 inversions is relatively 

new, and, therefore, many questions remain as to the optimal approach for taking 

advantage of these large and highly variable data streams.  Synthetic data (a.k.a. 
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“pseudo-data”) experiments are useful in the design of inversions, because they include 

a set of specified baseline fluxes with which results can be compared, making it easier to 

diagnose potential biases in inferred fluxes under a number of different scenarios.  The 

interpretation of flux estimates in a synthetic data inversion is also simplified relative to 

a real data inversion in two important ways.  First, synthetic measurements are only 

influenced by fluxes occurring within the domain of study, and therefore there is no 

need to specify boundary conditions.  Errors in boundary conditions used in regional 

real-data inversions can bias flux estimates, particularly for short periods (e.g. Peylin et 

al., 2005; Göckede et al., 2010b).  Second, the effect of atmospheric transport model 

errors can be controlled by using the same transport model to create the synthetic 

measurements as is used to estimate fluxes in the inversion.   

In addition to the simplifications associated with performing a synthetic data 

inversion, the geostatistical inversion approach (Michalak et al., 2004) furthermore 

makes it possible to eliminate the impact of the choice of a priori flux estimates on 

inversions.  Geostatistical inversions are Bayesian, but do not prescribe a prior estimate 

of the flux distribution from biospheric models and/or inventories.  Also, covariance 

parameters can potentially be optimized using the atmospheric measurements 

themselves, further eliminating reliance on bottom-up model output.  Therefore, this 

approach provides a unique opportunity to assess the information content of the 

available atmospheric measurement data (Mueller et al., 2008), specifically the impact 

of using continuous, continental measurements in a regional inversion.   

Spatial and temporal aggregation errors (Kaminski et al., 2001) are a particular 

concern when using data collected in high variability areas to estimate fluxes in these 

same regions, e.g. regional scales within the North American continent.  Spatial 

aggregation errors occur when fixed flux patterns are imposed for large regions (e.g. 

Law et al., 2002; Peters et al., 2007) because the inversion cannot adjust the flux 

patterns within the specified region, even though atmospheric observations are 

sensitive to sub-regional variability.  Aggregation errors can also be temporal as well as 

spatial, and temporal aggregation errors occur when estimating a single flux, or flux 
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adjustment, over a time interval with significant intra-period variability, e.g. diurnal and 

synoptic-scale variations.  Geostatistical inversions, as well as some other recent 

inversions, help to address these concerns by estimating fluxes directly on a grid at fine 

spatial resolutions, thereby minimizing spatial aggregation errors (e.g.; Gourdji et al. 

2008; Schuh et al., 2009).  Also, fluxes can be estimated directly at short timescales, a 

topic explored in the current work.   

This study uses a series of synthetic data inversion experiments to evaluate a 

regional geostatistical grid-scale (1° × 1°) inversion for June 2004 over North America, 

using the nine CO2 observing towers operational in the United States and Canada at that 

time.  The primary objectives of this study are threefold.  First, we investigate the use of 

available atmospheric measurements to infer reasonable covariance parameters (both 

flux covariance and model-data mismatch), as well as the impact of these inferred 

parameters on the estimated fluxes.  Secondly, we perform inversions estimating fluxes 

at three different temporal resolutions ranging from 3-hourly to 4-day averages, in 

order to evaluate the impact of temporal aggregation errors on inversion results.  The 

third objective of this study is to assess the information content of the limited 

atmospheric network for 2004, by comparing inversion results to the “true” fluxes at 

both the grid and aggregated eco-region scales.  The effect of random transport model 

error is additionally explored throughout this study by adding random noise with 

realistic magnitude to the synthetic measurements, and then observing their impact on 

the inversion results.      

 

5.2  Inversion Setup  

This section describes the setup of each component of the geostatistical 

inversion objective function (equation 3.1) implemented for the analyses performed in 

this study.  Using the components described below, equations  3.2 to 3.7 are used to 

estimate a posteriori flux estimates (𝐬�) and uncertainties (V𝐬�), in addition to the drift 

coefficients (𝛃�) and uncertainties (V𝛃�) associated with the trend (𝐗).  Please review 

Chapter 3 for a more complete summary of the geostatistical inversion method.   
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Figure 5.1:   Location of nine measurement towers used in the study, as well as the 
domains for the three levels of high-resolution nesting with the WRF winds.  The 

background grid represents the flux estimation resolution of 1° × 1°. 

 

5.2.1 Flux estimation resolution (s) 

For all inversions, fluxes are estimated at a 1°×1° grid-scale spatial resolution, 

with the domain including all land cells within the range of 10°-70°N and 50°-170°W, 

yielding 2641 estimation regions (Figure 5.1).  Fluxes are estimated from June 1 to July 

2, 2004 in universal time (UTC) using three different temporal resolutions: 3-hourly 

(henceforth referred to as F3hr), a 4-day average diurnal cycle with 3-hourly time 

increments (F4d-diurnal), and a flat 4-day average without any diurnal variability (F4d).  

These three temporal resolutions make it possible to investigate the benefit of directly 

estimating the diurnal cycle of fluxes, and, conversely, the risk of temporal aggregation 
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error associated with estimating fluxes averaged over multiple days.  Despite the 

potential benefits associated with estimating finer-scale fluxes, the number of estimated 

fluxes and associated computational costs grow as the temporal resolution becomes 

finer, as shown in Table 5.1.  Additional details associated with the setup for each 

temporal flux resolution are described in Sections 5.2.3 to 5.2.7.     

 

Table 5.1: Inversion characteristics for the three flux temporal resolutions. 

Case Flux Resolution 

# of 
Estimated 

Fluxes 
Structure of trend 

(𝑿) 
Structure of flux 
covariance (𝑸) 

F4d 4-day average (2641 × 8) = 
21,128 

One 
spatiotemporal 

mean 

Full spatiotemporal 
flux covariance 

F4d-diurnal 

4-day average 
diurnal cycle 

(with 3-hourly 
bins) 

(2641 × 64) = 
169,024 

Eight spatial 
means by 3-hourly 

bins 

Full spatiotemporal 
flux covariance across 
4-day periods, but not 
within  diurnal cycle 

F3hr 3-hourly (2641 × 256) 
= 676,096 

Eight spatial 
means by 3-hourly 

bins 

Full spatiotemporal 
flux covariance across 
days, but not within 

diurnal cycle 

 

 

5.2.2  Atmospheric transport (𝑯) 

Atmospheric transport models are necessary for CO2 inversions in order to 

quantify the sensitivity of measured concentrations to surface fluxes, or the 

concentration footprints that populate the atmospheric transport matrix 𝐇.  The 

Stochastic Time-Inverted Lagrangian Transport Model (STILT) model (Lin et al., 2003) is 

used for the current study.  STILT, which has already been applied in several pilot studies 

aimed at constraining CO2 sources and sinks in the United States (Gerbig et al., 2003, 

2006; Lin et al., 2004; Matross et al., 2006), represents air arriving at observation 

locations as an ensemble of particles that are transported backward in time.  The 
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particle velocities in STILT are in turn derived from meteorological fields generated by 

gridded numerical weather prediction models, in this case from the Weather Research & 

Forecasting (WRF) model (Skamarock et al., 2005), version 2.2.  For this study, WRF v2.2 

was configured to use three levels of high resolution nesting: a 2-km resolution grid 

around the three tallest measurement towers (LEF, AMT and WKT, see Table 5.2 and 

Figure 5.1), embedded in a 10-km resolution grid over the northern Midwest, Gulf 

Region, and New England extending to approximately 105°W, and then an outermost 

40-km resolution grid covering the rest of the overall domain of the inversions.   

At each measurement location, 10-day back-trajectories of 500 particles were 

generated using STILT every hour from June 1 to July 8, 2004.  Concentration footprints, 

or sensitivities, are then calculated at 3-hourly intervals back in time, by integrating 

these particle trajectories over the North American 1°×1° grid as described in Lin et al. 

(2003).  Finally, these high-resolution 𝐇 matrices are aggregated to the temporal 

resolution of the concentration data, described in Section 5.2.4, and the three flux 

temporal resolutions.   

 

 

Figure 5.2: Average sensitivity of measurements in June 2004 at nine towers to all prior 
fluxes. 
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A map of the average sensitivity of measurements to fluxes for June 2004, 

derived from the concentration footprints, is shown in Figure 5.2.  As seen here, many 

parts of North America are not well-constrained by the 9-tower measurement network 

in 2004.  These areas include northwest Canada and Alaska, the southwestern and 

southeastern United States, and parts of Central America.  In contrast, the eastern 

temperate forests and Midwestern agricultural areas have a stronger atmospheric data 

constraint.   

 

5.2.3 Synthetic concentration time series (𝒛) 

One goal of this study is to assess the projected accuracy of North American 

estimates of CO2 flux using a contemporary observation network.  Therefore, synthetic 

data were generated at the highest sampling elevation of the nine towers that were 

collecting continuous high-precision calibrated CO2 measurements in North America in 

June of 2004 (Figure 5.1, Table 5.2).  A full set of synthetic measurements without data 

gaps from June 1 to July 8 were generated by multiplying 3-hourly CO2 surface flux 

estimates (𝐬) from a biospheric model by the atmospheric transport matrices (𝐇).   

 

Table 5.2:  Measurement locations used in the inversions. 

Tower Location Coordinates Height Maintained by Type 

LEF Park Falls, Wisconsin 45.93N, 90.27W 396 m NOAA/GMD Tall 

WKT Moody, Texas 31.32N, 97.33W 457 m NOAA/GMD Tall 

BRW Barrow, Alaska 71.32N, 156.60W 10 m NOAA/GMD MBL 

SBL Sable Island, Nova Scotia 43.93N, 60.02W 25 m Met Service Canada MBL 

AMT Argyle, Maine 45.03N, 68.68W 107 m NOAA/GMD Short 

ARM Norman, Oklahoma 36.62N, 97.50W 60 m U.S. Dept. of Energy Short 

CDL Candle Lake, Saskatchewan 53.99N, 105.12W 30 m Met Service Canada Short 

FRD Fraserdale, Ontario 49.84N, 81.52W 40 m Met Service Canada Short 

HFM Petersham, Massachusetts 42.54N, 72.17W 30 m Harvard University Short 
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The biospheric fluxes used in this study are taken from the Carnegie Ames 

Stanford Approach terrestrial carbon cycle model, as configured for the Global Fire 

Emissions Database v2 project (henceforth referred to as CASA-GFEDv2; Randerson et 

al., 1997; Van der Werf et al., 2006).  CASA-GFEDv2 was chosen because it is a well-

accepted model that has been used for specifying prior flux estimates in several 

synthesis Bayesian inversion studies (e.g. Baker et al., 2006, Peters et al., 2007), 

although the choice of biospheric model is flexible here, given that the aim of a 

synthetic data inversion is to assess the accuracy of the setup relative to a given set of 

prescribed fluxes.  The monthly-average CASA-GFEDv2 Net Ecosystem Exchange (NEE) 

values were temporally downscaled to a 3-hourly resolution in order to test the ability 

of the inversion setup to accurately recover diurnally-varying fluxes.  This was 

accomplished using the method of Olsen & Randerson (2004), which is based on net 

shortwave radiation and near-surface temperature data from the NASA Global Land 

Data Assimilation System (GLDAS; Rodell et al., 2004).  These downscaled 3-hourly 

CASA-GFEDv2 fluxes, shown in Figure 5.3 at the aggregated monthly scale, represent the 

“truth” to which inversion results are compared.   

 

 

Figure 5.3:  “True” CASA-GFEDv2 fluxes, aggregated to the monthly scale. 
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The vector of modeled observations (i.e. 𝐇𝐬), obtained by multiplying the “true” 

3-hourly fluxes by the concentration footprints, is first generated at the hourly 

resolution corresponding to the STILT particle releases for the nine tower locations.  

Then, the synthetic observation vectors are averaged to a 3-hourly timescale.  Sensitivity 

tests were additionally performed for inversions using daily and 8-day average 

concentration vectors.  These tests revealed that using higher temporal resolution 

observations yielded superior flux estimates, consistent with Law et al. (2002), who 

found that using 4-hourly measurements relative to more coarsely-averaged 

observations helped to reduce biases over the Australasian subcontinent when fluxes 

were estimated at a sufficiently fine spatial resolution.  As a result, only cases 

considering 3-hourly averaged observations are presented here.   

Finally, for inversions that simulate the effect of transport model error, three 

sets of inversions using different realizations of uncorrelated errors added to the 

synthetic measurements were conducted.  The variance of these errors remains the 

same across realizations, and corresponds to the expected magnitude of model-data 

mismatch seen in real measurements for each tower, as discussed in Section 5.3.1. 

 

5.2.4 Use of night-time measurements    

Due to stable conditions, night-time measurements taken from shorter towers 

within the nocturnal boundary layer provide little information about fluxes over large 

aggregated spatial and temporal scales (Haszpra, 1999).  In addition, meteorological 

fields used in transport models have difficulty reliably simulating the height of the night-

time planetary boundary layer (PBL), or the sharp gradient across it, which can lead to 

biased flux estimates from inversions using night-time measurements from within the 

PBL (Geels et al., 2007).  For example, Gerbig et al. (2008) found biases of up to 50% in 

night-time PBL height in a study using high-resolution winds from the European Centre 

for Medium-Range Weather Forecasts (i.e. ECMWF, available from 

http://data.ecmwf.int/data/); comparison of the high resolution WRF wind fields (T. 
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Nehrkorn, personal communication) used in this study with wind profiler PBL-height 

measurements yielded a similar conclusion.   

Given their local footprints, the use of night-time near-surface measurement 

data in regional inversions could lead to higher aggregation errors near the towers, 

relative to those caused by afternoon measurements sampling well-mixed air.  In 

addition, biases in night-time PBL height would affect future real-data inversions.  For 

these reasons, only afternoon measurements are included here for the five “Short” 

towers (see Table 5.2) that are consistently within the nocturnal boundary layer.  For 

these towers, which are all in the Eastern or Central Standard Time zones, “afternoon” 

was considered to be 1800-2400 UTC.  In contrast, all 24 hours of atmospheric data 

were included in the inversions for the four tall (≥ 400m) or marine boundary layer 

towers (“Tall” or “MBL” in Table 5.2).  At these towers, observations sample relatively 

well-mixed air throughout the diurnal cycle, and therefore night-time measurements are 

assumed to be better-represented by the WRF/ STILT model relative to the Short 

towers.  This was qualitatively confirmed by comparing 24 hours of actual observations 

at the tallest sampling levels of these towers to those from transported CASA-GFEDv2 

fluxes.  

Two sensitivity tests were performed to evaluate the choice of including night-

time data for Tall and MBL towers and excluding them for Short towers.  First, night-

time data were included for the Short towers, such that 24 hours of measurements 

were used for all sampling locations.  Second, night-time data were excluded for the 

Tall/MBL towers, such that only afternoon measurements were used for all nine towers.  

(For the MBL towers, afternoon values were shifted to reflect local time zones.)  Overall, 

such experiments help to assess biases associated with the use of night-time 

measurements, relative to the potential additional constraint on fluxes they can 

provide.     
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5.2.5 Model of the trend (𝐗𝛃)  

A very simple model of the trend is applied in the current study for all inversions, 

analogous to those used in Michalak et al. (2004) and Mueller et al. (2008), where no 

additional auxiliary environmental variables are included in the model of the trend.  As 

discussed in Chapter 3, the flux estimates (𝒔�) are a composite of the inferred trend (𝐗𝛃�) 

and a spatiotemporally-correlated stochastic component, such that any variability in the 

atmospheric signal not captured by the trend can be still be recovered through the 

stochastic component of the best estimate.  For the F4d inversions, 𝐗 is represented as 

a vector of ones, where the corresponding drift coefficient (𝛃�) represents the mean 

value in space and time of fluxes across all grid-cells.  For the two temporal resolutions 

resolving the diurnal cycle (F4d-diurnal and F3hr), the 𝐗 matrix is instead structured to 

allow for eight spatial means defined for each 3-hourly bin of the diurnal cycle.  

Longitudinal gradients that could capture the changing day/ night boundary across the 

continent for different UTC time intervals were also considered for these inversions, but 

ultimately discarded because they did not help to improve flux estimates.   

 

5.2.6 Covariance matrices (𝑸 and 𝑹)  

Model-data mismatch errors are assumed uncorrelated in space and time, 

yielding a diagonal matrix 𝐑, as is typical in most inversion studies.  A different variance 

was used for each measurement tower, given results from initial tests showing 

significantly reduced biases in inferred fluxes as compared to an inversion using only 

two separate variances for Tall/MBL and Short towers.   

In contrast to the diagonal structure of 𝐑, the covariance matrix 𝐐 contains off-

diagonal entries describing the spatial and/or temporal correlation of the flux deviations 

from the model of the trend 𝐗𝛃.  Because of the simple models of the trend used in this 

study (Section 5.2.6), the deviations represent residuals from a constant mean, and 

therefore 𝐐 describes the covariance of the fluxes themselves.     

The estimated fluxes for this study are sorted first in space, and then in time.  

Therefore, if only spatial covariance were considered, 𝐐 would be a block diagonal 
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matrix, with each block describing the correlation between grid-scale fluxes for each 

time period of the inversion.  When temporal covariance is additionally considered, the 

off-diagonal blocks in 𝐐 contain diagonal entries describing the correlation among grid-

cells with themselves over time.  Finally, if cross spatial-temporal covariance is included, 

the off-diagonal blocks in 𝐐 become full, and they describe the spatial covariance 

between fluxes across different time periods.   

In the current study, preliminary tests showed that including full spatiotemporal 

covariance between grid-scale fluxes helped to recover accurate uncertainty bounds for 

recovered fluxes, especially at spatially and temporally aggregated scales.  Therefore, 

cross spatial-temporal covariance was included in 𝐐 for all flux temporal resolutions.  

However, for the two flux resolutions resolving the diurnal cycle, spatial-temporal 

covariance is only assumed for the same 3-hourly interval across days or periods, but 

not within the diurnal cycle.  For example, grid-scale fluxes from 0-300 UTC are 

correlated with fluxes from 0-300 UTC in neighboring days or periods, but never with 

fluxes from 300-600 UTC.   

The correlation structure in 𝐐 is modeled using a covariance function that varies 

in space and time as a function of separation distance.  Here, as in Michalak et al. 

(2004), we use an isotropic exponential decay model: 

 

  𝑸�ℎ𝑥 ,ℎ𝑡�𝜎𝑸2, 𝑙, 𝜏� = 𝜎𝑸2𝑒𝑥𝑝 �−
ℎ𝑥
𝑙
� exp �− ℎ𝑡

𝜏
�   (5.1) 

 

where hx and ht are the separation distances between grid cells in space and time, 

respectively,  l is the spatial correlation range parameter, τ is the temporal correlation 

range parameter, and 𝜎𝐐2 is the asymptotic variance of fluxes at large separation 

distances.  The correlation length for an exponential model is approximately 3l or 3τ.   

Multiple variance parameters 𝜎𝐐2 were initially considered for different times of 

the day for those inversions resolving the diurnal cycle (i.e. F4d-diurnal and F3hr).  For 

example, the underlying “true” CASA-GFED fluxes are significantly more variable during 

the day-time compared to the night.  However, the use of multiple variance parameters 
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resulted in only small changes to the inferred fluxes, and in some areas biased the 

results.  Therefore, for simplicity, only one flux variance parameter was used for all 

inversions, regardless of flux temporal resolution. 

Covariance parameters were estimated using the Restricted Maximum 

Likelihood (RML) approach, described in more detail in Chapter 3 (Section 3.2).  More 

specifics on the implementation of RML in this study are also included below in Section 

5.3.1. 

 

5.3  Covariance parameter optimization 

This section describes the approach taken to estimate covariance parameters in 

this study, as well as an analysis of the inferred parameters. 

 

5.3.1 Setup for testing RML optimization with atmospheric data 

To infer unbiased fluxes with accurate uncertainty estimates, it is important to 

correctly specify the flux covariance parameters (Gerbig et al., 2006), as well as the 

model-data mismatch variances.  The RML approach provides a way to statistically 

optimize these parameters using the atmospheric data in an inverse setup (henceforth 

referred to as RML-Inv, see equation 3.12).  If the recovered covariance parameters can 

be shown to yield accurate flux estimates, then this approach eliminates the need to use 

proxy methods for estimating covariance parameters.  While the RML approach for 

covariance parameter optimization was previously demonstrated in Michalak et al. 

(2004) to perform well with synthetic data experiments for the global scale, it is 

investigated here for regional inversions using continuous data.   

To test performance, parameters inferred using RML-Inv for each flux temporal 

resolution are compared to reference values, derived using the underlying true fluxes, 

as described below.  In addition, the impact of using RML-Inv parameters on estimated 

fluxes is investigated in Section 5.4.   

In order to derive the reference values, the covariance parameters for 𝐐 are 

estimated by implementing RML directly on the “true” underlying CASA-GFEDv2 fluxes 
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(𝒔, see equation 3.11).  This approach will henceforth be referred to as RML-Krig, where 

“Krig” refers to the kriging setup of RML.  Because RML-Krig does not use the 

atmospheric measurements, the RML-Krig parameters are not affected by the 

simulation of transport error.   

In order to derive “true” model-data mismatch variances in 𝐑, an approach other 

than RML-Krig must be applied using the true fluxes transported forward to the 

measurement locations.  In the current study, fluxes are estimated at the native spatial 

resolution of the true fluxes (i.e. 1°x1°).  Therefore, there is technically no spatial 

aggregation error, and without adding random noise to the measurements to simulate 

transport error, the model-data mismatch variances in 𝐑 are exclusively determined by 

temporal aggregation error.  These errors can be directly calculated as the variance of 

the difference between two synthetic data vectors: the observations used in the 

inversion (generated using 3-hourly fluxes), and a second set of observations generated 

using fluxes pre-averaged to coarser timescales (i.e. the 4-day or 4-day diurnal cycle) 

and then multiplied by aggregated transport matrices (𝐇).  Temporal aggregation error 

is technically zero in this study when estimating 3-hourly fluxes, although a floor of 0.01 

ppm2 is set for the model-data mismatch variance in all inversions using this flux 

resolution.   

For inversions that consider transport model errors, the variance of the noise 

added to the measurements is added to the temporal aggregation error variance to 

arrive at the “true” total model-data mismatch variance.  The variances of the added 

noise were determined per tower in the following manner.  RML-Inv was first used to 

estimate 𝐐 and 𝐑 parameters with actual atmospheric measurements for June 2004.  

Then, the difference between these model-data mismatch variances and the RML-Inv 

inferred temporal aggregation errors (with synthetic data) were taken as a measure of 

the magnitude of residual model-data mismatch for each tower, most of which is likely 

attributable to transport model error.  This procedure was repeated for each of the 

examined flux resolutions, and then these inferred differences by tower were used as 

the variance of the random noise added to the synthetic measurements for the 
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transport error analyses. 

 

5.3.2 Comparison of reference covariance parameters by flux temporal 
resolution 

The RML-Krig 𝐐 parameters and the “true” 𝐑 covariance parameters are shown 

in Tables 5.3 and 5.4 for each of the examined flux resolutions.  Because these 

parameters were inferred using the true underlying fluxes, they are henceforth referred 

to as reference values, for later comparison with the RML-Inv parameters inferred with 

the synthetic measurements.  However, first we compare the reference parameters 

themselves across flux temporal resolutions. 

 

Table 5.3:  Inferred parameters using RML-Krig and RML-Inv for the a priori flux 
covariance matrix (𝐐).  RML-Inv parameters were estimated using observations with and 
without simulated transport error.  The cell shading indicates the factor by which RML-
Inv parameters differ from the RML-Krig, a.k.a. reference, values: 

(no fill)    
≤ 2× 2× to 3× 3× to 4× 4× 

 
Q F4d F4d-diurnal F3hr 

  RML-
Krig 

RML-Inv 
RML-
Krig 

RML-Inv 
RML-
Krig 

RML-Inv 

  
Perfect 
trans. 

Trans. 
error 

Perfect 
trans. 

Trans. 
error 

Perfect 
trans. 

Trans. 
error 

σ2
Q 

(μmol/(m2s))2 1.0 97.1 25.8 11.1 35.5 27.3 13.4 24.3 20.7 
l (km) 610 0 57 809 389 363 601 661 528 
τ (days) 6.8 2.6 6.9 80.7 9.2 9.6 8.6 2.7 3.5 
 

 
The RML-Krig 𝐐 parameters show that the spatial correlation ranges (l) are not 

substantially different across temporal resolutions, but that the overall variance (𝜎𝐐2) of 

the fluxes decreases as the estimated temporal resolution becomes coarser.  This is 

expected, as more of the short-term variability in the spatial flux distribution is averaged 

out.  The temporal correlation range (τ) is much longer for the 4-day diurnal cycle 

relative to the other timescales, although this is most likely an unreliable value given 
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that the calculated correlation length is much longer than the one-month time period of 

analysis. 

The “true” model-data mismatch variances in 𝐑 for inversions without transport 

error represent temporal aggregation errors, and they become higher, as expected, as 

the flux temporal resolution becomes coarser.  This is the essence of aggregation error, 

where averaging out the “true” temporal variability in the fluxes and then transporting 

them forward to the sampling locations cannot properly reproduce the measured 

concentrations.  For a given temporal resolution, these aggregation errors also tend to 

be higher for towers in highly active biospheric regions (e.g. LEF, AMT and HFM), where 

temporal variability in nearby fluxes has a strong influence on measured concentrations.  

The “true” model-data mismatch with simulated transport error is increased by the 

magnitude of the random noise added to the measurements, which varies from a 

standard deviation of about 0.5 ppm for CDL to about 5 ppm for AMT.   

 

5.3.3 Results of RML-Inv Optimization  

Estimated RML-Inv parameters for 𝐐 and 𝐑 are also shown in Tables 5.3 and 5.4.  

The RML-Inv values for inversions with transport error represent the average 

parameters inferred using three realizations of random noise. Although RML-Inv 

parameters are compared here with the RML-Krig values (for 𝐐) and “true” model-data 

mismatch variances (for 𝐑) to assess the relative ability of the atmospheric data to 

recover covariance parameters, the ultimate concern is the impact of these parameters 

on the inversions, results of which are presented in Section 5.4.  
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Table 5.4:  “True” and RML-Inv inferred variances by tower for the model-data mismatch matrix (𝑹).  Both “True” and RML-Inv results 
are shown as calculated using observations with and without simulated transport error.  The cell shading is the same as in Table 5.3, 
indicating the factor by which RML-Inv parameters differ from the “true”, or reference, values. 

R F4d F4d-diurnal F3hr 

(ppm2) Perfect transport Transport error Perfect transport Transport error Perfect transport Transport error 

  "True" RML-Inv "True" RML-Inv "True" RML-Inv "True" RML-Inv "True" RML-Inv "True" RML-Inv 

LEF 10.7 2.7 13.8 7.9 2.2 0.1 4.7 2.7 0 0 1.8 1.9 

WKT 5 2.3 18 15.7 0.7 0.1 10.5 7.9 0 0 10.1 8.8 

SBL 6.2 0.1 10.6 5.6 2.7 0.1 7.3 5 0 0 4.6 4.3 

BRW 0.2 0 1.3 1.1 0.1 0 1.2 1.1 0 0 1.1 1.2 

ARM 3.5 0.1 14.9 13.1 1.2 0.4 12.4 10.3 0 0 11.1 11.2 

HFM 15.6 5.2 34.4 25.7 8.8 6.8 24.4 17.7 0 2.2 23.5 23.2 

AMT 9.5 3.9 23.4 17.6 4.8 1.3 21.5 14.9 0 0.3 11.6 13.4 

FRD 3.4 0 11.7 7.4 2.4 0 11.1 7.1 0 0 8.8 8.6 

CDL 2.9 0 3.6 1 1.2 0 1.4 0 0 0 0 0 
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The flux variance parameter (𝜎𝐐2) is higher than the reference value for all 

temporal resolutions.  This is most likely due to the fact that the majority of towers are 

sited in biospherically active regions, which have above-average flux variability as 

compared to the continent as a whole.  Surprisingly, the addition of simulated random 

transport error helps to bring the flux variance closer to the reference value, but this 

may be due to the transport errors obscuring some of the “true” flux variability that 

would otherwise be seen through the measurement data. 

Overall, estimating covariance parameters with the atmospheric data and the 

coarse flux resolution (F4d) appears to yield consistently unreliable parameter 

estimates, whereas the RML-Inv approach with the other two temporal resolutions 

yields results that are more consistent with the reference values.  The impact of these 

inferred parameter estimates on inversion results is explored in the next section.   

 

5.4  Inversion Experiments 

This section describes the setup and results of inversions used to test the impact 

of covariance parameter optimization methods, flux temporal resolutions, and other 

inversion assumptions and data choices.   

 

5.4.1 Inversion setups and diagnostics  

After the covariance parameter optimization analysis, a series of inversions was 

run to test the impact on inferred fluxes and uncertainties of a) varying the temporal 

flux resolution (shown in Table 5.1), (b) using inferred RML-Inv vs. the reference 

covariance parameters, and c) including simulated random transport error.  All 

combinations of a), b) and c) yielded 24 inversions, i.e. 2 sets of covariance parameters 

for each of 3 flux temporal resolutions, once with perfect transport and then with three 

different realizations of random transport error.  In addition, sensitivity test inversions 

with perfect transport were run to test the impact of excluding cross spatial-temporal 

covariance in 𝐐, and the inclusion or exclusion of night-time data.     

The a posteriori flux estimates from all inversions, as well as the true CASA-
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GFEDv2 fluxes, were averaged to a monthly timescale in order to compare results at an 

aggregated scale relevant for carbon-cycle science.  The inferred grid-scale fluxes are 

compared using two quantitative metrics.  First, the root mean square error (RMSE) (e.g. 

Law et al. (2002)) between the true and estimated fluxes was calculated at the native 

1°×1° spatial resolution for all land grid-cells across the continent (Figure 5.4).  Second, 

the accuracy of the estimated a posteriori uncertainties (from equation 3.5) was 

evaluated by calculating the percent of 1°×1° true fluxes that fall within two standard 

deviations of the estimated fluxes (Table 5.5).  Ideally, 95% of fluxes should fall within 

this interval.  Values significantly below 95% indicate an underestimation of the true a 

posteriori uncertainties.   The results of this second metric are compared for inversions 

with and without cross spatial-temporal covariance in 𝐐, in order to examine the impact 

of accounting for temporal covariance on the recovered flux uncertainties. 

Inversion results are also compared qualitatively by examining the spatial 

patterns of inferred fluxes to those of the true fluxes (Figures 5.5, 5.6, and 5.7).  Finally, 

monthly fluxes and uncertainties are aggregated to seven ecoregions (Figure 5.8) as well 

as to the North American continent (Figure 5.9).  These ecoregions are loosely defined 

based on the work of Olson (2001), and represent large, mostly contiguous, regions with 

similar climate, land cover and land use.  An area-weighted RMSE at the ecoregion scale 

was also calculated.   

 

5.4.2 Results of grid-scale diagnostics 

Figure 5.4 shows the grid-scale RMSE’s for the six perfect transport inversions 

(using two sets of covariance parameters and grouped by the three examined flux 

resolutions).  With the reference covariance parameters, there is little difference in 

continental grid-scale RMSE among the three flux resolutions, although the 3-hourly 

resolution shows a slight advantage.  Using the RML-Inv parameters, inversion 

performance degrades for coarser estimation timescales, consistent with the fact that 

the recovered RML-Inv covariance parameters became farther from the reference 

values as fluxes were temporally aggregated (Section 5.3.3).  If the inversion were to 
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infer the exact mean monthly flux across the continent with no spatiotemporal 

variability, the RMSE would be 0.72 μmol/(m2s).  Therefore, all inversions, except for the 

F4d case with RML-Inv parameters, perform better than this baseline value.   

 

 

Figure 5.4:  Root Mean Square Error (RMSE) between estimated and “true” grid-scale 
fluxes, aggregated to monthly averages, for inversions with two sets of covariance 

parameters and three flux temporal resolutions.  Bars show the RMSE for inversions 
without transport error, and the white dots show the RMSE for inversions conducted 
with three different realizations of simulated transport error.  The baseline RMSE, as 
described in Section 4.2, represents the value associated with inferring a perfect flat 

mean monthly flux across the continent. 

 

The RMSE corresponding to the three realizations of simulated transport error 

for each inversion setup are also shown in Figure 5.4.  The grid-scale fluxes (results not 

shown) from these inversions show that transport error has the effect of damping down 

the variability in the inferred flux signal.  For the two timescales with temporal 

aggregation error (i.e. F4d and F4d-diurnal), this has a positive impact on the RMSE, with 

the difference being more pronounced with the RML-Inv parameters due to the 
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improvement in quality of the covariance optimization for these cases.  In contrast, for 

the F3hr case, simulated transport error has a minimal impact on the grid-scale RMSE.  

While these results are promising in that random transport errors are unlikely to bias 

inferred grid-scale fluxes, it is not clear whether this result would hold true with more 

realistic systematic, non-random transport errors.   

The fraction of true fluxes lying within two standard deviations (equation 3.5) of 

the estimated fluxes is presented at the monthly timescale for the inversions with no 

transport error in Table 5.5, for both covariance parameter optimization methods, and 

with and without temporal covariance included in 𝐐.  The inclusion of temporal 

covariance is found to be important for obtaining accurate a posteriori uncertainties 

when using the reference covariance parameters for all flux resolutions.  The same 

result holds using the RML-Inv parameters with the 3-hourly flux resolution, although 

for the F4d-diurnal and F4d cases, accurate grid-scale uncertainties can be obtained 

with spatial-only covariance due to the overestimation of the flux variance parameter in 

𝐐.  Results with simulated transport error are not shown in Table 5.5, although the same 

conclusions hold.  Overall, these results highlight that accounting for both spatial and 

temporal flux covariance yields accurate a posteriori uncertainty bounds at the grid-

scale much more reliably than accounting for only spatial correlations.   

 

Table 5.5:  Percent of true fluxes falling within two standard deviations of the a 
posteriori grid-scale monthly flux estimates.  Results are shown without added transport 
errors for the three flux temporal resolutions, two sets of covariance parameters, and 
with and without assumed temporal flux covariance in 𝑸.   

  
Reference parameters RML-Inv parameters 

  
Spatial 

covariance only 
Spatiotemporal 

covariance 
Spatial 

covariance only 
Spatiotemporal 

covariance 
F4d 66% 88% 100% 100% 
F4d-diurnal 80% 96% 98% 99% 
F3hr 49% 93% 63% 95% 
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5.4.3 Inferred grid-scale spatial patterns  

Grid-scale maps of monthly-averaged flux estimates are shown in Figures 5.5, 5.6 

and 5.7 for inversions performed with the three flux resolutions and two sets of 

covariance parameters, without any simulated random transport error.  For comparison, 

the true monthly-averaged fluxes are shown in Figure 5.3.  Overall, the inversions detect 

large-scale patterns of sources and sinks consistent with the true underlying fluxes, with 

significant sinks recovered from the eastern United States to northwest Canada and 

Alaska.  As expected, the inferred fluxes show significantly less overall variability relative 

to the true fluxes, due to the sparse atmospheric network and the absence of auxiliary 

environmental variables within the trend (e.g. Gourdji et al. 2008).       

The F4d inversions (Figure 5.5) perform least well in capturing the true grid-scale 

spatial patterns.  Fluxes estimated using the reference covariance parameters remain 

close to their mean value for the continent with little spatial variability.  In addition, high 

normalized errors exist near the WKT, ARM and SBL measurement towers, most likely 

due to temporal aggregation errors near the sampling locations.  High errors are also 

seen in northwest Canada, where the strong sinks in this region fall outside of the areas 

well-constrained by the atmospheric measurements (Figure 5.2).  With the RML-Inv 

parameters, the opposite problem occurs such that there is unrealistic spatial variability 

in the recovered fluxes associated with the artificially high flux variance parameter in 𝐐.  

These results are consistent with those presented in Section 5.3.3, confirming that 

estimating fluxes directly at highly aggregated temporal scales is not an optimal setup 

for regional inversions. 



96 
 

 

 

Figure 5.5:  Monthly grid-scale fluxes estimated from the inversion using the 4-day average (F4d) temporal resolution.  The first row 
presents results obtained using the reference covariance parameters, and the second row shows results obtained using RML-Inv 

parameters.  The sub-figures show a posteriori fluxes aggregated to monthly averages (a, d), errors relative to the true fluxes (Figure 
5.3) normalized by their a posteriori standard deviations (b, e), and grid-scale significant sources and sinks at 1σŝ and 2σŝ (c, f). 
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Figure 5.6:  The same as Figure 5.5, except using the 4-day average diurnal cycle (F4d-diurnal) temporal flux resolution. 
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Figure 5.7:  The same as Figure 5.5, except using the 3-hourly (F3hr) temporal flux resolution.    
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The F4d-diurnal inversions (Figure 5.6) show more realistic spatial variability in 

the fluxes.  Sources are now properly recovered in Central America, while normalized 

errors are reduced in all areas.  Also, fluxes recovered using both sets of covariance 

parameters yield consistent results with reasonable grid-scale spatial patterns.  This 

indicates that, although the covariance parameters for the F4d-diurnal case inferred 

using the atmospheric data (RML-Inv) differed from the reference covariance 

parameters in some cases (Tables 5.3 and 5.4), the RML-Inv parameters can still be used 

to recover fluxes of comparable quality to those obtained using idealized covariance 

parameters.  The a posteriori uncertainties are more affected by the use of the RML-Inv 

parameters than the fluxes, as reflected in the lower normalized errors and fewer 

significant sources and sinks relative to the inversion using the reference parameters.  

The F3hr inversions (Figure 5.7) also yield realistic spatial variability, especially 

when using the reference parameters.  With the RML-Inv parameters, the spatial 

variability is slightly reduced, although as with the F4d-diurnal case, inferred fluxes are 

similar using the two sets of parameters.  Also, given the more realistic recovered 

uncertainties with this resolution as compared to the other cases (Table 5.5), the largest 

number of significant sources and sinks are recovered at the grid-scale with the RML-Inv 

parameters for this case. 

Overall, this comparison of the grid-scale flux maps demonstrates that an 

inversion that resolves the diurnal cycle of the fluxes (i.e. F4d-diurnal and F3hr) can 

recover reasonably accurate grid-scale spatial patterns across the continent using only a 

9-tower measurement network and no auxiliary process-based information.  Also, as 

previously shown in Figure 5.4, the quality of inferred fluxes is preserved even when 

covariance parameters are estimated from the available atmospheric data, and not 

assumed known a priori.  Inversions that estimate fluxes at coarser timescales (i.e. F4d) 

that average out the diurnal cycle do not perform nearly as well, consistent with the 

covariance parameter conclusions presented in Section 5.3.3. 
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5.4.4 Results at aggregated ecoregion scale 

Figure 5.9 presents estimated fluxes and their uncertainties, from the inversions 

using covariance parameters inferred with the atmospheric observations (RML-Inv), 

aggregated a posteriori to the monthly average, ecoregion  (Figure 5.8) and continental 

scales.  The RML-Inv parameters were used, because this is most consistent with what 

would be possible in future real-data inversions.  Also, results using the reference 

covariance parameters are very similar at this aggregated scale to those presented in 

Figure 5.9.   

 

 

Figure 5.8: Seven ecoregions (modified from Olson (2001)) used for analyzing inversion 
results at spatially aggregated scales.  Stars represent nine measurement locations. 
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Figure 5.9: Estimated fluxes from inversions with no transport error using RML-Inv 
covariance parameters, aggregated to monthly average ecoregion (Figure 5.8) and 

continental scales.  Associated error bars represent 95% uncertainty bounds.  Estimated 
fluxes from inversions using three different realizations of transport error are also shown 
for each temporal resolution.  Uncertainty bounds are not shown for these inversions for 

simplicity, but were similar in magnitude to their equivalents with no transport error. 

 

At the ecoregion scale, the inversions resolving the diurnal cycle (F4d-diurnal and 

F3hr) are seen to yield more accurate fluxes, which is also confirmed by the RMSE’s at 

this aggregated scale (0.03, 0.04 and 0.16 µmol/(m2s) for the F3hr, F4d-diurnal, and F4d 

cases, respectively).  The relative performance of inversions using these three temporal 

resolutions is particularly evident in the better-constrained ecoregions, such as the 

Temperate Broad & Mixed-leaf Forest and Boreal Forest, where temporal aggregation 

error has the most impact on fluxes due to their a) proximity to the towers and b) strong 

flux variability.  In addition, the F3hr and F4d-diurnal inversions also infer more realistic 

ecoregion fluxes in the far-field, e.g. in the Tropics and the Desert & Xeric Shrubland.  In 
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contrast, the F4d case yields aggregated fluxes that remain close to the mean 

continental flux across all ecoregions.  This last result is interesting in that high grid-scale 

spatial variability for this case (seen in Figure 5.6) using the RML-Inv parameters did not 

translate into large differences in spatially aggregated ecoregion-scale fluxes.  

For the F3hr and F4d-diurnal cases, the 95% uncertainty bounds capture the true 

flux for all or most ecoregions.  Also, an analysis of inversions for these cases that were 

performed with and without accounting for a priori flux temporal covariance (results not 

shown) confirms that accounting for this correlation a priori is necessary for recovering 

accurate uncertainty bounds at the monthly ecoregion scale.  In contrast, the quality of 

inferred fluxes and uncertainties is lower for the F4d case regardless of spatial-temporal 

covariance assumptions, with only three of seven aggregated fluxes falling within two 

standard deviations of the true ecoregion flux in Figure 5.9.  Overall, these results show 

that realistic a posteriori uncertainties can be recovered by the inversion at aggregated 

ecoregion scales, in addition to grid-scales (Table 5.5), as long as the diurnal cycle is 

estimated in the inferred fluxes, and both spatial and temporal correlation are 

considered in the a priori flux covariance matrix.  

As expected, the addition of transport error degrades the quality of inferred 

ecoregion scale fluxes for all temporal resolutions, with the inferred values being closer 

to the mean continental flux as seen in Figure 5.9.  The impact is greater for inversions 

that resolve the diurnal cycle (F3hr and F4d-diurnal), perhaps because these cases were 

originally better able to resolve ecoregion-scale variability in a setup without transport 

model error.  In addition, for under-constrained areas (e.g. Tropics and Desert & Xeric 

Shrubland), random noise may obscure the diffuse signal from these areas more than in 

the near-field of the tower locations.  Despite the fact that random transport errors are 

shown here to degrade inversion quality, uncertainty bounds for the cases resolving the 

diurnal cycle are still realistic for most eco-regions (results not shown).  Again, it cannot 

be concluded from this analysis how systematic non-random transport errors would 

affect the inversion. 
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At the North American continental scale, inferred fluxes from all temporal 

resolutions, with and without transport error, are reasonably close to the true net flux 

(a difference of ≤ 0.25 µmol/(m2s)).  Consistent with previous results, the F4d case 

performs the least well, with the continental sink being significantly different from the 

true value.  However, for all cases, as demonstrated by the narrower uncertainty 

bounds at the continental scale, results confirm that fluxes can be inferred more 

precisely at the continental scale than at smaller spatial scales. 

Overall, the ecoregion-scale results confirm the importance of inferring the 

diurnal cycle directly in the estimated fluxes.  This is particularly true in the near-field of 

the tower locations due to temporal aggregation errors, but it also appears to help 

constrain fluxes in the far-field as well.   Random transport errors degrade the 

ecoregion-scale flux signal towards the continental mean, although their impact may 

potentially decrease as more areas become better-constrained by a growing 

measurement network.       

 

5.4.5 Sensitivity tests with night-time data 

In order to investigate the potential value of including night-time data for both 

Short and Tall/MBL towers, additional sensitivity tests were performed using the F4d-

diurnal case.  This resolution was chosen because of its comparable quality to the F3hr 

case with lower computational cost, which makes it most promising for annual or multi-

year inversions.  Inversions using reference covariance parameters and no transport 

error were used for these tests in order to isolate the impact of temporal aggregation 

errors associated with night-time measurements.   

Results show that the continental grid-scale RMSE changes only marginally when 

night-time data are eliminated for the Tall/MBL towers (0.62 vs. 0.63 μmol/(m2s)).  

However, including night-time data for both Short and Tall/MBL towers substantially 

increased the RMSE to 0.71 μmol/(m2s), most likely due to the temporal aggregation 

errors associated with the smaller footprints for night-time measurements at the Short 

towers.  An analysis of results at the aggregated ecoregion scale showed that the setup 
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used for most inversions in the current study, using night-time data only for the 

Tall/MBL towers, minimizes ecoregion scale RMSE’s.  This setup eliminates the temporal 

aggregation errors associated with including night-time data at the Short towers, while 

also allowing for a stronger constraint on far-field fluxes through night-time data from 

the Tall/ MBL towers.  Again, in a real-data environment, the value of using night-time 

measurements from the Tall/MBL towers may be reduced for nights when the towers 

are within the PBL, and the PBL height is consistently over or under-estimated in the 

transport model.   

 

5.5  Summary and conclusions 

This study evaluated the constraint on CO2 fluxes provided by atmospheric data 

from nine continuous measurement locations across the North American continent, 

within the context of a regional geostatistical inversion without any additional auxiliary 

variables.  Estimating fluxes at a temporal resolution that can adjust the diurnal 

variability (F4d-diurnal and F3hr cases) was found to be crucial both for recovering 

covariance parameters directly from the atmospheric data, and for inferring ecoregion-

scale fluxes that were statistically consistent with the “true” fluxes.  Accounting a priori 

for both spatial and temporal covariance in the flux distribution was also found to be 

necessary for recovering accurate a posteriori uncertainty bounds on the estimated 

fluxes.   
The poor performance of inversions that did not estimate the diurnal cycle (i.e. 

F4d) were due to the high temporal aggregation errors associated with not being able to 

adjust the strong diurnal and synoptic variability of the “true” fluxes, particularly near 

the measurement locations.  For time periods outside of the growing season, the impact 

of temporal aggregation error may be lower, because fluxes are expected to be less 

variable, although the ability to infer accurate fluxes during the growing season is 

necessary for inferring accurate annual or multi-year carbon budgets.   Also, while 

temporal aggregation errors may be of particular concern for geostatistical inversions 

because they do not assume the shape of the diurnal cycle a priori, any errors in the 
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diurnal cycle in prior flux estimates in synthesis Bayesian inversions would also yield 

temporal aggregation errors.  This is likely to be of at least some concern, given the 

differences in the diurnal cycles predicted by different biospheric models.   

In terms of the two flux resolutions resolving the diurnal cycle (i.e. F3hr and F4d-

diurnal), both cases yielded flux estimates of comparable quality, despite the fact that 

covariance parameters estimated with the atmospheric data were more reasonable for 

the F3hr relative to the F4d-diurnal case.  In fact, at the ecoregion scale for both of 

these flux resolutions (with no transport model error), the two standard deviation 

uncertainty bounds captured the true flux for all or almost all eco-regions.  This is an 

encouraging result, showing that atmospheric data from only nine measurement towers 

sparsely located across the continent can be used to constrain ecoregion-scale fluxes in 

an idealized inversion setup without any additional auxiliary information from remote-

sensing datasets or biospheric models, as long as the diurnal cycle is resolved in the 

fluxes.  Between the two cases, the F4d-diurnal case has the additional advantage of 

estimating four times fewer fluxes than the F3hr case, yielding substantial 

computational savings that will become important for longer-term inversions.  

Therefore, given the comparable quality of inversion results for these two cases, 

performing regional inversions in a way that resolves a multi-day average diurnal cycle 

appears to be the most promising avenue for future inversions using real atmospheric 

data.   

In this study, simulated random transport error was shown to decrease the 

quality of flux estimates in under-constrained areas at the ecoregion scale.  It is 

important to note that non-random transport errors due to phasing or systematic 

biases, that may be more typical of the real inaccuracies in existing atmospheric 

transport models, may have more of an impact on flux estimation in the near-field 

where small errors in the transport matrices (𝐇) could translate into larger differences 

in inferred fluxes.  The impact of transport errors on regional inversions has been 

investigated more thoroughly in other studies, e.g. Law et al. (2003), and should also be 

explored further in future studies focusing on North America.      
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Finally, it is important to note that real-data inversions are subject to additional 

complications in flux interpretation relative to synthetic data studies, due to potential 

biases introduced by the boundary conditions, non-random transport errors, and 

aggregation errors from flux variability at scales finer than the estimation grid-scale.  

Overall though, synthetic data experiments provide a baseline for the best achievable 

performance of real-data inversions, and help to highlight the impact of setup choices 

that could be obscured by the additional complexity associated with using real data.         

In summary, synthetic data experiments were shown in this work to help 

illuminate the constraint on fluxes achieved by various regional inversion setup choices.  

The results suggest that even a fairly sparse network of continuous CO2 measurements, 

used with no auxiliary information or prior estimates of flux variability in time or space, 

can be used to infer accurate monthly ecoregion scale CO2 surface fluxes over North 

America, as long as the diurnal cycle is resolved in the estimated fluxes and both spatial 

and temporal flux covariances are accounted for a priori.  Statistically significant sinks 

can also be recovered at the grid-scale, although uncertainties remain high at this fine 

spatial scale.  The incorporation of additional atmospheric data and auxiliary variables in 

future real data geostatistical inversions can only help to further improve the recovery 

of continental CO2 fluxes at fine spatial resolutions. 
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CHAPTER 6 
 

Results from a regional grid-scale North American atmospheric 
CO2 inversion for 2004 with a comparison to independent 

bottom-up flux estimates 
 

 

6.1  Introduction 

Carbon cycle scientists have been increasingly called upon to provide regional 

carbon budgets for helping to monitor and manage the anthropogenic component of 

the total CO2 land-atmosphere exchange, and also to predict the future of the carbon 

cycle given a changing climate and human land-use choices.  Atmospheric CO2 inverse 

models can make a contribution toward these goals by taking advantage of the 

information in measured atmospheric CO2 concentrations to infer the spatial 

distribution and rate of surface CO2 flux occurring at relatively large spatial scales within 

a robust statistical framework.   

Global inverse models using flask samples from approximately 80 locations 

worldwide in the NOAA-ESRL Cooperative Air Sampling Network, coupled with a global 

atmospheric transport model, can be used to infer continental-scale fluxes (e.g. Gurney 

et al., 2003; Baker et al., 2006; Rodenbeck et al., 2003; Mueller et al., 2008; Gourdji et 

al., 2008, or Chapter 4).  However, the sampling of well-mixed air from marine boundary 

layer and high elevation locations in this measurement network limits the ability of such 

inversions to infer fluxes at finer spatial scales, particularly in regions with strong and 

highly variable CO2 fluxes.  The ability to use measured atmospheric CO2 variability to 

resolve finer sub-continental-scale fluxes is critical for carbon budgeting at the scale of 
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political entities, e.g. states and provinces, as well as for helping to improve mechanistic 

model formulation to aid in future CO2 flux prediction.  In fact, the ability to provide 

consistent flux estimates for past years from atmospheric inversions and mechanistic 

models at a common scale remains a key challenge in carbon cycle science (Ciais et al., 

2010).   

Mechanistic, or bottom-up forward models scale up process-based 

understanding of photosynthesis and respiration from plot-level (e.g. Norby et al., 2010) 

and flux-tower studies (e.g. Baldocchi, 2008), while fossil fuel inventories rely on fuel 

sales, census data and air pollution measurements to estimate emissions at regional 

scales (Gurney et al., 2009).  In contrast, atmospheric inversions (or top-down 

approaches) provide reasonably good constraints on carbon exchange at large scales, 

while uncertainties increase as the scale of estimation becomes finer.  Theoretically, CO2 

flux estimates from bottom-up and top-down models should converge at intermediate 

regional scales (~500 km x 500 km), although the currently large spread among model 

estimates of CO2 flux at such scales proves that this goal has not yet been attained (e.g. 

http://nacp.ornl.gov/mast-dc/int_synth_contreg.shtml).   

In general, top-down CO2 inverse models are limited by atmospheric data 

coverage (both in time and space), uncertainties in the atmospheric transport models 

used to relate concentration measurements to surface fluxes, and imperfections in the 

inversion setup for appropriately extracting information from the atmospheric 

measurements.  However, an expanding measurement network, continuous data 

collection at an increasing number of sites, improvements in the quality of atmospheric 

transport models and improvements in inversion setup should all help to improve the 

ability of top-down models to infer fluxes at sub-continental scales with reasonable 

uncertainties.  The atmospheric constraint could thereby be used to provide insight into 

the current spread of flux estimates across bottom-up models, and help improve the 

formulation of processes in these models for future flux prediction.  In fact, atmospheric 

measurements of CO2, if used appropriately, provide the main hope for validating 



109 
 

mechanistic models given that there is no way to directly measure regional-scale carbon 

exchange.   

Regional inversions that estimate fluxes on a fine grid (e.g. 1°x1°) for a limited 

domain have emerged as a means to take advantage of continuous data collection at 

continental, low-altitude sites in a computationally feasible setup.  This fine grid can 

help to reduce aggregation errors (Kaminski et al., 2001; Engelen et al., 2002) associated 

with estimating coarser-scale fluxes with highly variable measurement data.  In addition, 

the limited domain makes it possible to take advantage of computationally expensive 

Lagrangian transport models that can adequately resolve the near-field around the 

measurement locations (Gerbig et al., 2008; Lin et al., 2003).  However, regional 

inversions bring additional complications relative to global inversions, given that there is 

a need to specify atmospheric CO2 boundary conditions for the region of interest, which 

have been show to have a large influence on the resulting flux estimates (Peylin et al., 

2005; Göckede et al., 2010b).  Also, the appropriate use of continuous, continental 

measurement data in an inversion presents a challenging problem, given the combined 

influence of the diurnal cycle of biospheric fluxes, heterogeneous land cover, point 

source fossil fuel emissions and complex atmospheric transport on the atmospheric CO2 

concentrations. 

This chapter presents a regional grid-scale geostatistical inversion (Michalak et 

al., 2004; Mueller et al., 2008; Gourdji et al., 2008, or Chapter 4; Gourdji et al., 2010, or 

Chapter 5) for 2004 over North America using a limited sampling network of 9 towers 

collecting continuous CO2 measurements on the continent in this year, as well as 

available flask and aircraft data.   This inversion approach estimates fluxes at finer scales 

in both space and time than other published inversion studies for the same domain (e.g. 

Peters et al., 2007; Deng et al., 2007; Schuh et al., 2010; Butler et al., 2010), thereby 

reducing the impact of aggregation errors.  This is an advantage of the current inversion, 

given that these errors have specifically been shown to have a negative impact on flux 

estimation for the North American continent using continental in-situ measurements 

(Gerbig et al., 2003b; Schuh et al., 2009; Gourdji et al., 2010, or Chapter 5).   
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In addition, the geostatistical inversions presented here are designed to help 

disentangle the relative influence of the atmospheric data constraint and the bottom-up 

prior flux estimates used in other inversion approaches, allowing for a relatively 

independent comparison to bottom-up mechanistic model output.  While a 

geostatistical inversion can be run without the inclusion of any process-based datasets, 

thereby providing a completely independent comparison to biospheric models, such 

datasets defined at the grid-scale can also be incorporated into the inversion in a 

manner analogous to multi-linear regression.  These datasets can include fossil fuel 

inventories, remote sensing vegetative indices, climatological model output, or even 

biospheric model estimates of CO2 flux.  Statistical variable selection techniques are 

employed to select those variables that can optimally explain the signal in the 

atmospheric data, and the drift coefficients on these auxiliary variables are estimated 

simultaneously with the fluxes using the atmospheric data.  These inferred coefficients 

can thereby help to provide insight into flux drivers and their relationship to CO2 flux at 

the scale of estimation, while also confirming that the inversion setup is recovering 

fluxes that are consistent with process-based understanding.  Finally, incorporating 

these datasets can help to downscale and extrapolate the signal contained in the 

atmospheric data to under-constrained areas.   

In the current study, we present two main sets of inversion results.  First, we run 

an inversion incorporating only the atmospheric data and a fossil fuel inventory dataset.  

The second presented inversion incorporates diurnally-varying datasets associated with 

the biospheric signal from the North American Regional Reanalysis (Mesinger et al., 

2006).  After isolating the biospheric component in the a posteriori total flux estimates 

from both inversions, we compare results with a collection of bottom-up flux estimates 

from 16 forward models that participated in the North American Carbon Program 

Regional Interim Synthesis (Huntzinger et al., in prep).   

In this inter-comparison, three main features of the model estimates are 

compared:  the grid-scale spatial patterns in different seasons (Section 6.4.1), the shape 

of the seasonal cycle at aggregated spatial scales (Section 6.4.2), and the total annual 
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carbon budget at both the grid-scale (Section 6.5.1) and two aggregated spatial scales 

(Section 6.5.2).  Overall, these analyses of CO2 flux across different scales help to 

provide insight into the strengths and weaknesses of the inversion setup and data 

constraint for 2004, as well as into the large spread of estimates from the forward 

models.  Comparisons to other inversion studies are also included where appropriate. 

 

6.2  Data and methods 

The geostatistical inversion implemented here uses a setup optimized as part of 

a one-month pseudo-data study with a similar tower configuration for June 2004 (i.e. 

Gourdji et al., 2010 or Chapter 5).  Relative to synthesis Bayesian inversion studies (e.g. 

Baker et al., 2006; Peters et al., 2007; Butler et al., 2010) that rely on both prior 

estimates of flux and their uncertainties, the geostatistical inversion approach relies 

more directly on the atmospheric data to estimate fluxes at fine spatiotemporal scales, 

optimize covariance parameters and incorporate fine-scale flux variability provided by 

process-based datasets.  A brief review of the setup and methods implemented in this 

study is provided below; additional details are provided in Chapters 3 and 5.   

 

6.2.1  Flux domain and resolution 

This study estimates fluxes at finer spatial and temporal scales than previous 

inversion studies estimating fluxes over all of North America (e.g. Peters et al., 2007; 

Deng et al., 2007; Butler et al., 2010).  By estimating fluxes directly at the grid-scale (e.g. 

1°x1° in this study), rather than for eco-regions or large blocks covering several states or 

provinces, spatial aggregation errors are minimized in the solution.  These errors, which 

are caused by incorrectly specified flux patterns within large regions, are particularly 

problematic when making use of measurements collected in areas with high flux 

variability (Schuh et al., 2009).   

Temporal aggregation errors are also a concern when using continuous, 

continental measurement data.  The analyses in Chapter 5 (Gourdji et al., 2010) showed 

the importance of explicitly estimating the diurnal cycle of fluxes when using continental 
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measurements over North America in a regional inversion, in order to avoid biasing 

larger-scale post-aggregated fluxes.  In contrast to geostatistical inversions, most 

synthesis Bayesian inversions pre-subtract the influence of the biospheric diurnal cycle 

on measurement data a priori.  However, the large magnitude of the bias in inferred 

fluxes seen in Chapter 5 may also imply bias in other synthesis Bayesian inversions due 

to errors in the shape, phase and amplitude of the diurnal cycle specified by the bottom-

up prior estimates of Net Ecosystem Exchange (NEE; Huntzinger et al., 2011). 

 

 

 
Figure 6.1:  Domains of nested WRF winds, flux estimation grid, and the locations of 

towers, flask & aircraft measurements used in the inversions.  The map is displayed using 
an equal-area projection. 

 

   

Fluxes are estimated in this study from 10°N to 70°N and 50°W to 170°W, 

resulting in 2635 land grid-cells in the domain (Figure 6.1).  Given the results of Chapter 

5, inferred fluxes are allowed to vary at a 3-hourly timescale, resulting in approximately 
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8 million fluxes (2635*366*8) for the year.  In order to save computational expense, 

resolving fluxes for a 4-day average diurnal cycle was also considered, but ultimately 

rejected due to significant decreases in the quality of the inferred flux estimates using 

this coarser temporal resolution.   

 
 

6.2.2  Atmospheric transport, data and boundary conditions 

6.2.2.1  Atmospheric transport model 

Atmospheric transport models are used to provide a critical component of 

inversions, i.e. the footprints that link measured concentrations to upwind surface CO2 

fluxes.  For this study, the Stochastic Time-Inverted Lagrangian Transport Model (STILT) 

was chosen, given that Lagrangian models allow for improved representation of the 

near-field around a measurement location relative to grid-scale Eulerian models (Lin et 

al., 2003), and are therefore ideal for taking advantage of continuous measurements 

sited in areas with high CO2 flux variability and complex transport phenomena.  STILT 

has also been used in other inversion studies estimating CO2 fluxes at regional scales 

(Gerbig et al., 2003b; Lin et al., 2004; Matross et al., 2006; Trusilova et al., 2010). 

STILT was used in conjunction with high-resolution winds from the Weather 

Research & Forecasting (WRF) model to simulate backward particle trajectories for each 

measurement location and time period.  For this study, the WRF winds had a 10 km 

resolution for the eastern portion of the continent (capturing the near-field for 7 of the 

9 towers), nested within a 40km resolution winds for the rest of the continent, as shown 

in Figure 6.1.  The Grell-Devenyi cumulus parameterization was used for both the 10 and 

40-km resolution winds (Grell & Devenyi, 2002).  The ability to nest high-resolution wind 

fields for specific locations within WRF helps to capture small-scale dynamics near the 

receptor locations that can have a significant impact on simulated particle trajectories 

(Nehrkorn et al., 2010).  WRF has specifically been shown to have good performance in 

simulating small-scale atmospheric CO2 dynamics in the northeastern continental United 
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States (Nehrkorn et al., 2010), and also at coastal sites (Sarrat et al., 2007; Ahmadov et 

al., 2009).   

Concentration footprints for the inversion were calculated within STILT by 

releasing 500 particles for each measurement location and collection time, and then 

tracing the particle trajectories backwards for 10 days using the WRF wind fields.  The 

proportion of particles from each release reaching a given flux location and time interval 

was used to derive sensitivities to the measured concentration (Lin et al., 2003).  The 

atmospheric transport model used in this study will henceforth be referred to as WRF-

STILT.   

 

6.2.2.2  Atmospheric CO2 concentration measurements 

This study takes advantage of continuous, calibrated CO2 measurements taken at 

9 observational locations unevenly spaced across the North American continent in 2004.  

These include two tall towers with a height of 457 and 396m, two marine boundary 

layer (MBL) towers less than 25m in height, and five other inland, continental towers 

ranging in height from 30 to 107m (Table 6.1, Figure 6.1).  After preliminary data 

filtering to exclude low-quality flags and other obvious errors or anomalous spikes in the 

data, continuous measurements from all towers were averaged to a three-hourly 

timescale for use in the inversion.  In addition, to maximize the atmospheric data 

constraint for this relatively data-poor year that precedes the recent expansion of the 

North American measurement network (Mueller et al., in prep.), available flask and 

aircraft measurements were included.  Aircraft data from measurements below 4000m 

in altitude were used, where the strongest influence from surface CO2 fluxes on the 

continent is expected (Gerbig et al., 2003a); flasks at coincident continuous tower 

locations were also excluded.  Measurement locations and associated details for towers, 

flask and aircraft data are shown in Table 6.1 and Figure 6.1. 
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Table 6.1:  Measurement locations, along with other identifying characteristics of the 
sites and data included in the inversion.  The first 9 locations in the table have 
continuous data, while the last two represent flask and aircraft measurements from 
multiple locations across the continent.  Figure 6.1 shows the locations of towers, as well 
as individual flask and aircraft measurement sites.   

Measurement 
site code 

Site name 
Site latitude/ 

longitude 

Altitude 
above 

ground level 
(m) 

Night-
time data 
included? 

Number of 
data-

points for  
year 

LEF 
Park Falls, 
Wisconsin 

45.93N, 
90.27W 

396 
1 and 4 am 
year-round 

1500 

WKT Moody, Texas 
31.32N, 
97.33W 

457 
1 and 4 am 
year-round 

959 

SBL 
Sable Island, 
Nova Scotia 

43.93N, 
60.02W 

25 None 663 

BRW Barrow, Alaska 
71.32N, 

156.60W 
10 None 248 

ARM 
Norman, 

Oklahoma 
36.62N, 
97.50W 

60 None 879 

HFM 
Harvard Forest, 
Massachusetts 

42.54N, 
72.17W 

30 None 558 

AMT Argyle, Maine 
45.03N, 
68.68W 

107 None 795 

FRD 
Fraserdale, 

Ontario 
49.84N, 
81.52W 

40 None 878 

CDL 
Candle Lake, 

Saskatchewan 
53.99N, 

105.12W 
30 None 927 

FLA 
Flask samples 
from 6 sites 

See Figure 1 0 to 4 None 153 

AIR 
Aircraft vertical 
profiles from 15 

sites 
See Figure 1 139 to 3999 None 943 
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With a perfect transport model, it would be possible to use all available CO2 

measurement data in an inversion to help improve the atmospheric constraint on flux 

estimates.  However, systematic transport errors associated with certain measurement 

times and locations can lead to biased flux estimates, and potentially misleading 

scientific conclusions (Lin and Gerbig, 2005; Prather et al., 2008).  Systematic transport 

model errors that affect inversions mostly relate to misrepresenting the height of the 

night-time Planetary Boundary Layer (PBL) (Denning et al., 2008), and also the height of 

the PBL during morning and evening transition times (A. Andrews, personal 

communication).   

Therefore, this study takes a similar approach to other inversion studies (e.g. 

Peters et al., 2007; Schuh et al., 2010; Göckede et al., 2010a) in relying primarily on 

afternoon measurements of CO2 concentration when vertical convective mixing is 

strongest, and the height of the PBL is presumably well-modeled within WRF-STILT.  

Specifically, 3-hourly averages centered at 1 and 4pm were included year-round for all 

towers.  This study additionally included some morning and evening data (3-hourly 

averages centered at 10am and 7pm) during the height of the growing season when the 

air should also be well-mixed, with time periods selected for inclusion based on sunrise 

and sunset for each tower.  Also, following the data choices for the CarbonTracker data 

assimilation system (Peters et al., 2010; Andrews et al., personal communication), some 

night-time data (3-hourly averages centered on 1 and 4am) were included for the two 

tall towers (LEF and WKT, Table 6.1).  Finally, given presumed difficulties in 

appropriately modeling the coastal land-sea breeze, some of the flask and aircraft data 

collected on the Pacific coast were excluded, given a substantial misfit at these sites 

between measured concentrations and modeled fluxes transported forward to the 

measurement locations. 

In addition to systematic transport model errors, using real CO2 continuous 

measurement data in a regional inversion is subject to other concerns and limitations.  

First, measurement instruments are subject to failure, and therefore, there are several 

long gaps in the concentration record for certain towers.  For example, at Harvard 
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Forest, 45% of the potential measurements are missing for the year, particularly in the 

early part of the year, while at Moody, Texas, measurements are missing for January, 

August and most of September.  Other shorter data gaps occur throughout the year for 

all towers.   

Second, some of the variability in the measurement data is due to very local 

influence (Gerbig et al., 2009) which cannot be resolved by the transport model, the 

driving meteorological data, or the flux estimation grid, leading to representation errors 

in the inversion.  These data should ideally be excluded, although how to identify purely 

local influence remains a challenging research question.  Therefore, with the exception 

of filtering out extreme fossil fuel spikes (> 30 ppm over background air), this study took 

the approach of not attempting to filter the data for local variability.   

Third, measurements are influenced by both land and oceanic fluxes, although 

oceanic fluxes were not explicitly resolved in this study.  This is an issue particularly for 

marine boundary layer locations where mixing with ocean air can dilute the influence of 

land fluxes, thereby leading to misleading land flux estimates if this is not taken into 

account in the inversion framework.  Therefore, filtering was applied to exclude 

measurements with substantial oceanic influence (defined as less than 10% of the total 

sensitivity coming from land regions or a less than 0.5 ppm/(µmol*m-2*s-1) integrated 

land footprint).  After all data filters were applied, the number of included data points 

per tower, accounting for data gaps, is shown with other tower information in Table 6.1. 

 

6.2.2.3  Continental boundary conditions 

Regional inversions necessitate the use of boundary conditions that represent 

the influence of fluxes occurring outside the domain of interest, i.e. the North American 

land mass, on the measured concentrations.  This influence must be subtracted from 

the measurements before they can be used in the inversion to infer CO2 fluxes over 

North America.  However, these boundary conditions also have a strong potential to 

affect the total continental carbon budget.  Therefore, results are presented here using 

two plausible sets of CO2 boundary conditions, one optimized as part of the 
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CarbonTracker global CO2 data assimilation system (Peters et al., 2007), and the other 

derived more directly from measured CO2 concentrations, specifically those taken from 

the GlobalView database in the Atlantic & Pacific Oceans (Andrews et al., in prep).   

The CarbonTracker boundary conditions represent model output, and are 

subject to biases in the inferred global fluxes resulting from the data assimilation 

system.  In fact, the GlobalView dataset was derived in response to known seasonal 

biases in the CarbonTracker CO2 fields (Peters et al., 2010), and preliminary validation 

using measurements of “clean” ocean air sampled at Pacific and Atlantic coast locations 

shows that this new dataset helps to correct these biases (A. Andrews, personal 

communication).  These corrections led to a systematic offset between the two 

datasets, with the GlobalView values on average about 0.5 ppm lower than the 

CarbonTracker values, although this offset tends to be higher during the growing 

season, and is slightly lower for measurement locations on the East coast.  While the 

GlobalView boundary conditions are more empirical in that they rely on direct 

measurements of MBL air, they also lack synoptic variability as compared to the 

CarbonTracker CO2 fields.  Furthermore, they lack longitudinal variability, given that the 

GlobalView dataset is currently defined as a single vertical curtain representing an 

average of flask and aircraft-based measurements from the Atlantic and Pacific Oceans.   

These two sets of boundary conditions are used in conjunction with WRF-STILT 

to quantify the influence of sources and sinks outside the domain on measured 

concentrations, and this impact is then pre-subtracted from the data before use in the 

inversion.   

 

6.2.3  Inversion setup and algorithm 

6.2.3.1  Geostatistical inversions 

Geostatical inverse modeling, first developed in the field of groundwater 

hydrology (e.g. Hoeksema & Kitanidis, 1984; Zimmerman et al., 1998), has more recently 

been used in atmospheric applications to identify trace gas sources and sinks (Michalak 

et al., 2004; Mueller et al., 2008; Gourdji et al., 2008, or Chapter 4).  Geostatistical 



119 
 

inversions have also been applied in a pseudo-data regional inversion setup for North 

America (Gourdji et al. 2010, or Chapter 5), where the setup emerging from that study is 

used to inform the current work.   

Geostatistical inversions are similar to synthesis Bayesian inversions in many 

respects, except for two key differences.  First, while Bayesian inversions start from a set 

of explicit prior flux estimates derived from biospheric models, fossil fuel inventories, 

fire emission estimates, and ocean ship-track data, geostatistical inversions have no 

explicit prior.  Instead, the “prior” term in the geostatistical inversion objective function 

is replaced with a statistical linear trend whose coefficients are optimized using the 

atmospheric data as part of the inversion.  This trend can be as simple as a single mean 

flux in both time and space, avoiding the use of any process-based information in the 

model altogether.  Alternatively, fluxes can be modeled as having a trend with process-

based datasets, in a statistically rigorous manner, to help inform flux estimates at fine 

scales and in under-constrained areas.  By their ability to avoid the use of prior fluxes or 

incorporate them in a flexible way consistent with the atmospheric data constraint, 

geostatistical inversions can help to diagnose the inversion quality of synthesis Bayesian 

inversions, by decomposing the information provided by the prior fluxes vs. that 

contained in the atmospheric measurements.   

Secondly, geostatistical inversions incorporate an a priori spatial and/or 

temporal covariance between estimated fluxes (or flux residuals), which helps to 

regularize the solution, and also makes it possible to resolve fluxes at fine scales 

necessary for avoiding aggregation errors.  Spatial covariance assumptions are not 

unique to geostatistical inversions, and in fact have been introduced into other grid-

scale inversion studies as well (e.g. Rödenbeck et al., 2003; Carouge et al., 2010a,b; 

Chevallier et al., 2010).  However, these previous studies estimated fluxes on a coarser 

grid, and/ or had more limited freedom to adjust fluxes in time as compared to the 

current work.  Also, these studies specified the parameters of the covariance matrices 

based on an analysis of variability in measured data or bottom-up flux estimates (e.g. 

Baker et al., 2006), whereas these parameters are estimated in the current study 
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directly using the signal in the atmospheric measurements, as described further in 

Section 6.2.3.2.   

The geostatistical inversion objective function was minimized, and fluxes (𝐬�) and 

their uncertainties (V𝐬�), as well as drift coefficients (𝛃�) and their uncertainties (V𝛃�), were 

estimated using equations 3.2 through 3.7.  Please refer to Chapter 3 for more details 

on the implementation of the geostatistical inverse modeling approach. 

 

6.2.3.2  Covariance matrix structure and parameter optimization  

The 𝐐 matrix describes the spatiotemporal correlation structure of flux residuals 

that cannot be explained by the ancillary environmental variables included in the linear 

model of the trend.  Two parameters, the variance (σ2), and the spatial correlation 

length parameter (l), are used to populate the 𝐐 matrix assuming an exponential decay, 

as shown in equation 3.9. 

Flux covariance parameters are allowed to vary at a monthly timescale in the 

current study, given that these parameters have been found to have a strong seasonal 

cycle (Huntzinger et al., 2010) that should be appropriately accounted for in order to 

yield realistic flux estimates from the inversion.  A priori temporal correlation was 

additionally considered, as in Chapter 5 (i.e. Gourdji et al., 2010), but was ultimately 

rejected due to unrealistic extrapolation of flux patterns in both space and time in the 

current work.   

However, in Chapter 5, a priori temporal covariance assumptions were shown to 

help recover more realistic flux uncertainties from the inversion at temporally 

aggregated scales.  In this study, the estimated uncertainties recovered with a real data 

setup and a 3-hourly flux resolution were also seen to be artificially low at the post-

aggregated monthly and annual timescales.  Therefore, the calculated uncertainties that 

correspond with the presented fluxes are not shown in this study.  Instead, those 

corresponding to an inversion with a 4-day average diurnal cycle flux resolution are 

shown instead to give a general idea of the atmospheric data constraint provided by the 

inversion in different areas of the continent.  This coarser-scale flux resolution was seen 
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to have less of an impact on uncertainty collapse at aggregated temporal scales.  The 

recovery of realistic confidence intervals from an inversion, particularly at the annual 

timescale, remains an area of active research (e.g. Peters et al., 2010).   

The model-data mismatch covariance matrix (𝐑) describes how well the “true” 

flux solution should be able to match the recorded measurements, given errors 

associated with atmospheric transport, the measurement instruments, and the coarse 

grid of the inversion and transport model relative to the scales of variability in the true 

fluxes (e.g. Kaminski et al., 2001; Engelen et al., 2002).  In the current study, the model-

data mismatch matrix (𝐑) remains diagonal as in previous inversion studies, although as 

in Chapter 5, a different model-data mismatch was optimized per tower, with separate 

additional values for flask and aircraft data.  This allows the inversion to de-weight 

continuous measurement locations where the transport model may be of poorer quality 

or local variability in the measurement data is difficult to resolve, although the model-

data mismatch values for flask and aircraft measurements represent an average across 

sites.  In addition, the optimized model-data mismatch values were allowed to change 

monthly in order to account for seasonal variations in the quality of the transport model 

and inversion setup.   

The covariance parameters used to construct the 𝐑 and 𝐐 covariance matrices 

are optimized here using the Restricted Maximum Likelihood method (e.g. Kitanidis, 

1995) with the atmospheric measurements, minimizing equation 3.12.  (Please see 

Chapter 3, Section 3.2 for more information about this algorithm.)  Chapter 5 showed 

that not only was it possible to estimate reasonable covariance parameters using the 

atmospheric measurement data, but that fluxes estimated using these parameters were 

of comparable or superior quality to those estimated using the “true” covariance 

parameters associated with the underlying fluxes.  𝐑 and 𝐐 parameters are optimized 

simultaneously in the current study, such that inversion artifacts (such as dipoles, or 

artificially strong counteracting sources & sinks) are minimized in the inferred flux 

distribution.   
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6.2.3.3  Auxiliary variable selection 

While a geostatistical inversion can estimate fluxes with a very simple model of 

the trend (e.g. monthly means over the land and oceans, as in Mueller et al., 2008), grid-

scale environmental datasets with a mechanistic relationship to CO2 flux also have the 

potential to improve estimates if incorporated into the inversion in a statistically 

rigorous manner (e.g. Gourdji et al., 2008, or Chapter 4).  First, these variables help to 

downscale the atmospheric signal, particularly in areas well-constrained by the 

measurements.  Second, the selected variables and their inferred relationship to flux (𝛃�) 

can provide process-based understanding of flux drivers at the scale of the inversion, 

while also helping to validate the inversion model setup if the selected variables and 𝛃� 

values are consistent with process-based understanding.  Finally, auxiliary variables 

extrapolate the atmospheric signal to under-constrained areas using process-based 

relationships derived from the CO2 concentration measurements, although the selected 

variables and inferred drift coefficients (𝛃�) may be partly biased by the agricultural and 

forested regions in the center of the continent sampled by the 2004 measurement 

network.  For example, under-sampled arid regions of the continent may have 

additional significant flux drivers, and/ or somewhat different relationships between 

driving variables and CO2 flux. 

For the first inversion presented in this paper, we include only a single fossil fuel 

inventory dataset in the trend (𝐗).  In the continental United States, this dataset consists 

of diurnally and seasonally varying estimates from version 1.4 of the Vulcan database 

for 2002 (Gurney et al., 2009), scaled up to 2004 total emissions.  In Central America, 

Mexico and Canada, estimates were included from a monthly-varying dataset merging 

information from British Petroleum fuel statistics, remotely-sensed night lights, and the 

existing Carbon Dioxide Information Analysis Center (CDIAC) fossil fuel emission 

inventory.  This latter dataset was recently developed for global inversions using GoSat 

satellite data (Oda and Maksyutov et al., 2010).  By including only this single combined 

continental fossil fuel inventory in 𝐗, we help to localize the spatial patterns of the fossil 

fuel emissions within the total CO2 flux, while also estimating biospheric fluxes from the 
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inversion that are completely independent of mechanistic, forward model output.  This 

inversion will henceforth be referred to as the “FF-only” inversion. 

For the second presented inversion in this study, we incorporate auxiliary 

environmental variables associated with the biospheric signal into the model of the 

trend.  Overall, eleven 3-hourly datasets from the North American Regional Reanalysis 

(NARR; Mesinger et al., 2006) were considered, as well as two derived precipitation 

variables (16 and 30-day lagged average precipitation).  A subset of these 13 variables 

(Table 2), which are defined for all flux locations and time periods, was chosen for 

inclusion in a statistically rigorous manner using the Bayes Information Criterion (BIC) 

(Schwarz, 1978) combined with the Branch-and-Bound algorithm (Yadav et al., in prep.), 

as described in more detail in Chapter 3.  

The NARR datasets provide information regarding the diurnal cycle of water 

availability and radiation, as well as derived quantities such as evapotranspiration and 

canopy conductance, derived from the Noah Land Surface Model (Ek et al., 2003) within 

NARR, which should have more of a linear relationship to CO2 fluxes.  While remote-

sensing datasets, such as Leaf Area Index or Fraction of Photosynthetically Active 

Radiation from the MODIS instruments (e.g. Yang et al., 2006), could also provide useful 

information regarding the seasonal cycle and spatial distribution of CO2 flux, they are 

defined only at a weekly timescale, which complicates their correlation to diurnally-

varying fluxes.  Also, the evapotranspiration and canopy conductance variables from 

NARR implicitly include the Normalized Difference Vegetation Index from the AVHRR 

instrument, thereby providing an alternative to MODIS datasets.   

For the inversion including NARR datasets (termed the “NARR” inversion), we 

pre-subtract the influence of the fossil fuel inventory on the measurements before 

performing variable selection and the inversion itself.  While errors in the fossil fuel 

inventories will thereby become aliased onto the inferred biospheric fluxes with this 

setup, initial tests showed a recovered drift coefficient on the fossil fuel inventory near 

one (see Section 6.3.3), implying that the inventory dataset used in this study was a 

reasonable approximation.  By pre-subtracting the fossil fuel influence from the 
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measurements, we also reduce potential covariance in the inferred drift coefficients 

between the fossil fuel inventory and biospheric datasets due to covariance in the 

underlying processes, e.g. re-growing forests and high emissions in the eastern 

continental United States, or reduced populations and industrial activity in arid and 

snow-covered areas.  Such covariance would confound flux interpretation by making it 

difficult to separate the biospheric and fossil fuel signals a posteriori.   

 

6.2.4  Evaluation of inferred fluxes 

Given that there is no way to directly measure CO2 flux at the grid-scale 

(approximately 100 km x 100 km), nor even at coarser regional or continental scales 

where atmospheric inversions perform best, validating inversion flux estimates remains 

a challenge.  Some studies have taken the approach of excluding some atmospheric 

measurements from use in the inversion (e.g. aircraft measurements), and then 

comparing concentrations resulting from inferred fluxes to these excluded observations 

to evaluate the inversion (e.g. Peters et al., 2007; Chevallier et al., 2010).  However, 

given the limited amount of atmospheric CO2 measurement data in 2004, we wanted to 

use all available data-streams to help improve flux estimates and fill in regions of the 

continent otherwise under-constrained by the nine tower network.  Also, by comparing 

transported fluxes to measurement data excluded from the inversion, it is difficult to 

interpret the relative impact of biases in the inversion fluxes vs. errors in the transport 

model, limiting the power of such a technique. 

Rather, this study relies on pseudo-data inversions, as in Chapter 5, and the 

inter-comparison to the forward models to assess inversion biases and limitations.  In a 

pseudo-data inversion, synthetic measurements are created from a set of bottom-up 

flux estimates, thereby providing a “true” solution for comparison to inferred fluxes at 

various spatial and temporal scales.  Pseudo-data test results are not explicitly shown 

here, although they were used to guide the presentation and interpretation of the real 

data results, and are discussed at relevant points in the text.  Also, the inter-comparison 

with the forward model estimates of NEE, as well as the auxiliary variable selection 
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results from among the NARR datasets, both help to sense-check that inversion results 

are consistent with process-based understanding of biospheric CO2 flux.  While it is not 

possible to remove all possible sources of bias in inversions, particularly systematic 

transport model errors, the inversions presented here were deemed sufficiently 

representative enough of the atmospheric data constraint to begin to give insight into 

the spread of the forward models included in the NACP Regional Interim Synthesis. 

 

6.3  Results:  Footprints, covariance parameters and auxiliary variables 

6.3.1 Concentration footprint analysis 

In addition to constraining fluxes in the inversion, the concentration footprints 

derived from WRF-STILT allow one to assess which portions of the continent are “seen” 

by a certain set of measurements.  Given the limited network collecting continuous CO2 

measurements in 2004, not all portions of North America are equally well-constrained, 

as can be seen in the yearly-average footprint shown in Figure 6.2.  Not surprisingly, the 

best-constrained areas are in the central and eastern continental United States, and a 

large part of Canada near the measurement locations.  The under-constrained areas are 

in the tropics, northwest Canada and Alaska.  The areas with a partial constraint are in 

the western and southeastern continental United States.  The contour line in this figure 

identifies a high sensitivity area where fluxes are reasonably well-constrained 

throughout the year.  Pseudo-data testing revealed that annual budgets could be most 

reliably interpreted in this area, as will be discussed further in Section 6.5.2. 
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Figure 6.2:  Yearly average integrated footprint for all measurement locations.  The 
contour line shows the high sensitivity areas used for flux interpretation at the spatially 
aggregated annual scale (Figure 6.8). 
 
 
6.3.2  Inferred covariance parameters  

The monthly flux covariance parameters inferred using the atmospheric data 

with the RML method provide insights into the underlying variability of the true flux 

field, and how this changes throughout the year.   The inferred monthly model-data 

mismatch parameters by measurement location are representative of the ability of the 

inversion setup and transport model to appropriately take advantage of surface flux 

information contained in the measured CO2 concentrations.   

Figure 6.3a shows inferred monthly spatial flux covariance parameters from the 

FF-only inversion, where this covariance is among flux residuals from the trend, which 

represent the total biospheric flux in this case.  These monthly covariance parameters 

show realistic seasonality also seen in biospheric model output (Huntzinger et al., 2010), 

with the most variable fluxes during July and August (highest variance and shortest 

correlation length), and the least variable in the dormant season from November 

through April (lowest variance and longest correlation length).  The inferred correlation 

lengths (i.e. 3l, see Chapter 3, Section 3.2) range from ~2000 km in September to ~8500 
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km in January, somewhat shorter than that seen in modeled biospheric flux estimates 

(Huntzinger et al., 2010).  In the NARR inversion, inferred flux variances and correlation 

lengths are reduced relative to the FF-only inversion, by about ~13 and ~33% 

respectively, showing that the NARR variables are able to explain some, but not all, of 

the coherent variability in the inferred flux distribution.   

 

 

 
Figure 6.3:  Optimized covariance parameters using the RML algorithm with the 
atmospheric measurements, for the FF-only inversion with GlobalView boundary 
conditions.  a) Monthly flux covariance parameters, i.e. the sill variance (σ2

Q) and 
correlation length parameter (l).   b) Square root of the averaged monthly model-data 
mismatch variances (σR), (weighted by the number of data-points in each month), for 9 
towers, flask and aircraft data. 
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A yearly average of the monthly model-data mismatch variances for the 9 

measurement locations and flask and aircraft data is shown in Figure 6.3b, where these 

averages are weighted by the number of data points associated with each estimated 

parameter (per measurement site and month).  This figure shows that the tower with 

the highest model-data mismatch is Harvard Forest.  This tower is sited in a forested 

area about 100 km west of Boston, and even closer to Worcester and Springfield, 

Massachusetts, while the 1°x1° gridcell containing this site includes several other small 

towns and developed areas.  Therefore, the difficulty in matching the data at this tower 

is most likely due to spatial aggregation and representation errors from fossil fuel 

plumes and heterogeneous land cover in the region.  The two towers with the lowest 

model-data mismatch are SBL and BRW, the two MBL sites sampling relatively well-

mixed air and/ or low flux variability areas.  Similarly, the flask measurements, collected 

in either MBL or high-altitude locations, have low model-data mismatch.  Interestingly, 

FRD and CDL, which are short towers in a forested and agricultural region respectively, 

have lower model-data mismatch than the three other short towers.  Given their 

northern location in the domain where the horizontal grid-cell size is smaller (see Figure 

1), this may suggest potential improvements in inversion performance associated with 

resolving fluxes at finer spatial scales, perhaps the resolution of the driving winds in the 

transport model (in this case a 40-km grid for all North America).   

Model-data mismatch variances can also vary significantly within the year 

(results not shown).  For example, the optimized model-data mismatch at ARM is 1.1 

ppm in February, 6.1 ppm in April and 2.4 ppm in July.  The high model-data mismatch 

variance in April for ARM implies that the strength of local uptake visible in the 

measurement data in this month, perhaps due to the spring wheat crop planted in the 

near-vicinity of the tower, is not being interpreted to the full extent by the inversion.  

Again, a finer spatial flux resolution could potentially help to more appropriately use the 

information contained in this data in future inversions.   
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6.3.3 Auxiliary variable selection and inferred drift coefficients (𝜷�) 

Introducing covariates associated with the biospheric signal into the 𝐗 matrix 

gives an opportunity to identify significant flux drivers, and infer the relationship 

between these variables and flux as seen by the atmospheric data at the resolution of 

the estimated fluxes.  Also, if the selected variables and inferred relationships between 

the datasets and CO2 flux (i.e. 𝛃�) are consistent with process-based understanding, this 

helps to validate the inversion setup.  Table 6.2 shows the selected variables and 

inferred 𝛃� values for the FF-only and NARR inversions.  

Given that fossil fuel emissions are relatively well-known in comparison to the 

biospheric signal, the inferred drift coefficient on this dataset should be close to one, as 

seen in pseudo-data tests with perfect transport.  Values other than one could imply 

problems with the inversion setup, systematic transport model errors, or errors in the 

spatial and temporal patterns of emissions in the inventory dataset.  The results in Table 

6.2 are encouraging in that the inversion using GlobalView boundary conditions infers a 

𝛃� on the inventory of 1.00, and the value inferred using the CarbonTracker boundary 

conditions is 0.98.  While it is impossible to know exactly what is driving these values 

(for example, an oversampling of the morning and evening rush hours could 

compensate for a less than perfect correlation with the inventory dataset), these results 

suggest that the data choices made for the presented inversion may be helping to 

minimize the impact of systematic transport model errors on the estimated fluxes.  The 

𝛃� near one also makes it easier to separate the biospheric and fossil fuel contributions 

to the total flux a posteriori, particularly for the grid-scale spatial patterns, although 

again some aliasing of one signal onto the other is possible due to imperfections in the 

inventory dataset and inversion setup. 

The NARR variables selected for inclusion in the inversion are shown in Table 6.2, 

and are very consistent with process-based understanding of CO2 flux, providing 

additional support for the inversion setup implemented in this study.  For example, 

evapotranspiration is most strongly correlated with uptake (as indicated by a negative 

𝛃�), which is consistent with the near linear relationship between this variable and flux as 
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described in mechanistic theories of plant physiology (Bonan, 2008) and also found in 

other statistical studies of CO2 flux using eddy-covariance measurements (e.g. Mueller 

et al., 2010; Yadav et al., 2010).   

 

 
Table 6.2:  Selected variables and associated 𝜷� values from the FF-only and NARR 
inversions, using both sets of boundary conditions.  The fossil fuel inventory is in flux 
units (μmol/m2*s), such that the 𝜷� represents a scaling factor on this dataset.  Auxiliary 
variables from NARR were normalized to have zero mean and variance of one, such that 
𝜷�’s are directly comparable.  Shaded cells in the table represent variables not included in 
the model selection for a given trend, whereas variables with dashes ( ‘---‘) were 
considered but not selected by the BIC/ Branch & Bound algorithm.  All 𝜷� values were 
significantly different from zero at 2𝜎𝜷� . 

  Trend with fossil fuels only Trend with NARR variables 

  

GlobalView 

BC’s 

CarbonTracker 

BC’s 

GlobalView 

BC’s 

CarbonTracker 

BC’s 

Fossil Fuels 1.00 0.98     

Canopy Conductance     --- --- 

Downward Shortwave 

Radiation     --- --- 

Evapotranspiration     -1.54 -1.60 

Precipitation Rate     0.24 0.23 

Relative Humidity     --- --- 

Specific Humidity     0.10 0.30 

Soil Moisture     --- --- 

Air Temperature (@ 2m)     --- -0.21 

Plant Canopy Water Content     --- --- 

Snow depth     --- --- 

Snow cover (%)     -0.13 -0.19 

16-day Lagged Precipitation     --- --- 

30-day Lagged Precipitation     0.18 0.14 
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The positive 𝛃� values associated with precipitation rate, 30-day lagged 

precipitation and specific humidity are consistent with process-based understanding of 

the drivers of heterotrophic respiration (Ise and Moorcroft, 2006).  The source 

associated with precipitation rate at a 3-hourly timescale is consistent with flux tower 

studies showing pulses of respiration following rain events (Baldocchi, 2008), while the 

30-day lagged precipitation helps to better explain respiration fluxes associated with 

longer-term soil moisture and water availability.  Specific humidity, or the mass of water 

vapor per unit mass of air, scales with both water availability and temperature, and can 

therefore additionally help to explain the well-known temperature dependence of 

respiration (Lloyd & Taylor, 1994).  Snow cover acts to reduce respiration sources, which 

is consistent with process-based studies showing that snow can act to trap soil 

respiration fluxes until the spring thaw (Kelley et al., 1968; Björkman et al., 2010).  The 

inferred 𝛃� values using the two sets of boundary conditions are mostly consistent, 

although air temperature is additionally selected using the CarbonTracker dataset.  An 

analysis of the a posteriori covariance between the 𝛃� values (i.e. 𝐕𝛃�) shows that air 

temperature in this trend is mainly helping to correct the signal associated with specific 

humidity and percent snow cover.    

It should be noted here that not all processes that affect CO2 flux can be included 

in a statistical model like this one, especially discrete events like the escape of trapped 

respiration fluxes directly following snow melt.  Also, this study only chose to examine 

variables available from the NARR, and excluded other possible datasets that could help 

to explain fluxes (e.g. a fire emission inventory).  Finally, while evapotranspiration and 

canopy conductance implicitly incorporate a measure of biomass (specifically the 

Normalized Difference Vegetation Index), the trend with NARR variables still lacks a 

measure of substrate availability for respiration.  Despite these concerns as well as 

potential biases in the NARR datasets themselves, the design of the inversion is such 

that variability excluded or incorrectly specified in the linear model of the trend are still 

included (or corrected) in the best estimates of flux through the spatially-correlated 

stochastic component of the best estimate (see eq. 3.7). 
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6.4  Results:  Comparison of biospheric flux estimates to forward models 
and other inversions 

Given that there is no direct validation data for regional-scale CO2 land-

atmosphere exchange, an inter-comparison of inversion results with forward model 

estimates is bound to be somewhat inconclusive as to which models are more or less 

“correct.”  However, because of this lack of validation data, it is important to be able to 

identify strengths and weaknesses in specific models by a careful inter-comparison of 

different modeling approaches.  Such a comparison may point towards an approach for 

obtaining improved estimates in future work.  For example, while the atmospheric data 

constraint in this inversion study does not cover the entire continent (Figure 6.2), an 

inter-comparison of inversion results with the forward models may still allow us to draw 

conclusions regarding strong sources or sinks that are visible from the atmospheric data 

in the well-constrained areas that are not apparent in the forward model estimates.   

Results are shown in this section from both the FF-only and NARR inversions.  

The FF-only inversion provides a completely independent comparison to the forward 

models, while the NARR inversion may contain some variables also used as input into 

the forward models.  However, given that the NARR variables are selected and their 

relationships to flux are inferred using the atmospheric data, the NARR inversion can 

also provide some insight into the forward model spread.  In order to isolate the 

biospheric portion of the inferred flux, the fossil fuel inventory dataset is subtracted 

from the a posteriori flux estimates from the FF-only inversion, whereas the influence of 

the fossil fuels was already pre-subtracted from the measurements in the NARR 

inversion (Section 6.2.3.3). 

 

6.4.1  Seasonal grid-scale spatial patterns  

Figure 6.4 shows the three-monthly average fluxes from the FF-only and NARR 

inversions, as compared to the average NEE across the forward models included in the 

NACP Regional Interim Synthesis (Huntzinger et al., in prep.).  The Root Mean Squared 

Difference (RMSD) and spatial correlation values between 3-monthly average fluxes 
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between the inversions and the forward model mean are shown for each season in 

Figure 6.4.  The forward model mean, which masks the large spread in individual model 

results, was chosen for comparison, as this mean can be thought to represent the 

current “best guess” of the forward modeling community as a whole.  This mean, which 

reduces the influence of outliers while still reflecting consistent patterns across models, 

also shows the lowest RMSD with the inversion at the monthly grid-scale (when 

compared to the RMSD with individual bottom-up models), and the second highest 

correlation (see Section 6.4.3).  By comparing inversion results to the forward model 

mean, we help to identify features in the inversion that are more or less robust as 

compared to a set of process-based estimates.  We also use results we believe to be 

robust from the inversion to hint at missing or misrepresented processes in the forward 

models.    

As noted previously in Section 6.3.1, the atmospheric data constraint in 2004 

does not cover the entire continent (Figure 6.2), and it changes from month to month.  

The grid-scale uncertainties, not shown here, reflect the available data, with higher 

uncertainties in areas weakly or not constrained at all by the atmospheric 

measurements, as shown in Mueller et al. (2008).  As also discussed in Chapter 3, the 

estimated fluxes revert to the model of the trend (𝐗𝛃�) in under-constrained areas.  

Therefore, in the FF-only inversion, the trend provides little information about the 

biospheric fluxes in under-constrained areas, where these biospheric fluxes revert to 

zero.  For the NARR inversion, the trend is defined by the NARR auxiliary variables 

combined with their inferred drift coefficients (𝛃�).  To help avoid interpretation of fluxes 

exclusively defined by the trend in both inversions, fluxes from areas with almost no 

sensitivity to the measurements, i.e. Central America and Greenland, are not displayed 

in Figure 6. 

With the FF-only inversion estimates, spatial patterns are relatively diffuse and 

unrealistically smooth as compared to the NARR inversion and the forward model mean 

(Figure 6.4).  However, a comparison of these smooth spatial patterns across seasons 

can still help to shed light on the different model estimates.  At the most basic level, the 
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seasonal cycle of sources and sinks is consistent between the FF-only inversion fluxes 

and the forward model mean, i.e. strong sinks during the growing season and sources 

during the dormant season.  Also, the spatial patterns and magnitude of fluxes are most 

consistent between the inversion and the forward model mean during the height of the 

growing season from June to August when the flux signal is the strongest and most 

variable.   

From December to February, the FF-only inversion results are particularly 

smooth, given that this season has the longest inferred flux correlation lengths (Figure 

6.3a).  The isotropic spatial covariance structure in 𝐐 (equal correlation lengths in all 

directions) may also be unrealistically extrapolating sources to the northern and 

southern portions of the domain, as compared to the forward model mean.  The 

inclusion of NARR variables during this season is seen to have no impact on improving 

the correspondence with the forward model mean, perhaps because most of the 

selected NARR variables primarily help to explain fluxes during the growing season.  

Also, errors in appropriately separating the biospheric and anthropogenic signals in the 

total CO2 flux may be most apparent during the winter, complicating the correlation 

with NARR variables. 

The biospheric flux estimates from the FF-only inversion are mostly neutral from 

March to May, although the sources in the boreal North are somewhat inconsistent with 

the forward model mean, pointing to differences in the magnitude of respiration fluxes 

at the onset of the growing season in the bottom-up models.  During this season, the 

inclusion of the NARR variables has a particularly strong impact on flux estimates with 

more clearly identifiable flux patterns across the continent relative to the FF-only 

inversion.  With NARR datasets, realistic patterns are now seen in the under-constrained 

areas, e.g. sinks in the coastal Pacific forests and in the south-eastern continental United 

States.  From March to May, the correlation coefficient with the forward model mean 

goes up from 0.34 to 0.67 when including NARR variables, the highest increase across 

the different seasons.   
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Figure 6.4:  Three-monthly average grid-scale biospheric fluxes from the FF-only and NARR inversions with GlobalView boundary 

conditions, as compared to the forward model mean.  The fossil fuel inventory is subtracted a posteriori from the estimated total CO2 
flux to isolate the biospheric contribution.  Also shown are the spatial correlation (ρ) and Root Mean Squared Difference (RMSD) 
between the 3-monthly average inversion fluxes and the forward model mean.  Please note the different scales for each season. 
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During the height of the growing season from June to August, the strong uptake 

in the agricultural Midwest and relatively neutral fluxes in the desert southwest from 

the FF-only inversion are consistent with the forward model mean, while the weaker 

sinks in Alaska during this season most likely point to a lack of atmospheric data 

constraint, with large data gaps at the BRW tower throughout the year.  In the FF-only 

inversion results, stronger sinks are seen in the far boreal north and tundra as compared 

to the forward model mean, although the isotropic spatial correlation structure may 

again be affecting this result to some extent.  After including NARR variables, the 

correlation with the forward model mean goes up from 0.66 to 0.75, the highest 

correlation between the inversion and the forward model mean across the four seasons.  

Also, the inversion now shows a sharper transition from carbon sinks to neutral fluxes 

across the continental divide, and weaker sinks in the tundra, helping to correct 

potential biases associated with the correlation structure in 𝐐.   

From September to November, the FF-only inversion shows anti-correlations 

with the spatial patterns in the forward model mean.  The anti-correlations in this 

season appear to be specifically driven by large sources in October in the center of the 

continent from the inversion, which are not seen in the forward model mean, or in the 

great majority of the individual forward model results.  An analysis of the underlying 

concentration data shows a strong build-up of CO2 relative to background air at all 

towers in the continental United States for this month, particularly at the LEF and WKT 

measurement towers, implying that these sources in the center of the continent are not 

an artifact of the particular inversion setup used here.  Given that the central United 

States is a heavily agricultural area, this relatively robust feature of the inversion results 

may point to limitations in appropriately modeling agricultural CO2 fluxes in the forward 

models (Lokupitiya et al., 2009; Corbin et al., 2010; Huntzinger et al., in prep.).  The 

inclusion of NARR datasets improves the correlation with the forward model mean from 

-0.26 to 0.16 from September to November, although NARR inversion results are still the 

least correlated with the forward model mean during this season. 
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 Overall, this inter-comparison of grid-scale spatial patterns across models and 

different seasons shows that the introduction of NARR variables into the linear model of 

the trend improves the ability of the inversion to recover realistic spatial patterns, 

particularly during the growing season, as shown by an improved correspondence with 

the forward model mean.  Inversion results with and without NARR datasets also point 

to missing sources and/ or misrepresented processes in the forward models from 

September to November.   

  

6.4.2  Magnitude and timing of biome-scale seasonal cycle 

Figure 6.5 shows the monthly seasonal cycle for flux estimates aggregated to the 

seven biomes (Olson, 2001) shown in Figure 5.8, where these biomes define spatially 

continuous regions with similar land-cover and climatic characteristics.  Figure 6.5 also 

includes the aggregated seasonal cycle for the full continent excluding Central America 

and Greenland, given that, in these areas, there is little sensitivity to the atmospheric 

measurements for the inversions, and many forward models do not have estimates.   

The uncertainties shown in Figure 6.5, although inferred using an inversion run 

with a 4-day average diurnal cycle temporal flux resolution as discussed in Section 

6.2.3.2, generally reflect the atmospheric data constraint, with wider confidence 

intervals in the under-constrained biomes.   The narrower confidence intervals for North 

America indicate that the seasonal cycle at the continental scale is better-known than at 

finer spatial scales.  While pseudo-data testing revealed that the confidence intervals for 

all regions shown here may be too narrow, they also confirmed the general conclusion 

that the aggregated seasonal cycle from the inversion is mostly robust in the well-

constrained areas, i.e. the Eastern Temperate and Boreal Forests, the Temperate Grass, 

Savannah & Shrub (or the agricultural areas), and also for the continent.  Pseudo-data 

tests did show that the inversion infers a later start to the growing season as compared 

to the “true” solution, but that the inclusion of auxiliary variables helps to correct this 

bias. 
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Figure 6.5:  Seasonal cycle of monthly fluxes aggregated to seven eco-regions (shown in 
Figure 5.8) and the continent.  Inversion fluxes are shown for the FF-only and NARR 

inversions with GlobalView boundary conditions.  The 2𝜎𝑺� confidence intervals are from 
the NARR inversion.  Results are compared to all forward models with at least 85% area 

coverage for the given biome or domain, and a specific model having the closest 
agreement with the inversions at this aggregated spatial and temporal scale is also 

highlighted for each region. 
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A comparison of inversion results in Figure 6.5 from the FF-only and NARR 

inversions shows that the inclusion of NARR auxiliary variables has little impact on flux 

estimates at this aggregated scale, consistent with results from Chapter 4.  This shows 

that these environmental datasets do not bias flux estimates at aggregated spatial and 

temporal scales, where estimates are instead primarily constrained by the atmospheric 

data.  This result is particularly true in well-constrained biomes, such as the Boreal 

Forest and the Temperate Grass, Savannah & Shrub, as seen in Figure 6.5.  In the biomes 

with a weaker data constraint, e.g. the Tundra and Desert & Xeric Shrub, the NARR 

auxiliary variables have more of an impact, slightly nudging the inversion results 

towards the middle of the forward model spread, at least in some months of the year.  

The NARR auxiliary variables also lead to an earlier start to the growing season and a 

stronger magnitude of peak uptake in the Eastern Temperate Forests.  Parts of this 

biome are well-constrained (see Figure 6.2), but this biome also includes the under-

constrained southeastern United States forests, which are known to be very productive 

(Baker et al., 2010; Crevoisier et al., 2010). 

Flux estimates from both inversions are also compared in Figure 6.5 to the 

individual forward models.  In addition, one specific model is highlighted for each 

biome, where this model has the lowest combined rank in terms of RMSD and 

correlation with the inversions at this scale.  Given that the inversion results are 

relatively robust at this aggregated scale in well-constrained areas, this inter-

comparison helps to provide insight into the forward model spread.  By highlighting an 

individual model, we also provide hints as to how a specific bottom-up model would 

need to be corrected in future work in order to be more consistent with the 

atmospheric data constraint.    

With the exception of under-constrained biomes such as the Tropics and the 

Desert and Xeric Shrub, where unrealistic seasonality is most likely a result of 

extrapolation of inversion-derived fluxes from the better-constrained areas, Figure 6.5 

shows that the inversions generally recover a seasonal cycle within the spread of the 
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forward models.  That said, the forward model spread itself can be quite large, 

particularly in the Temperate Grass, Savannah and Shrub, i.e. the agricultural areas of 

the continent, and the Eastern Temperate and Boreal Forests, where the magnitude of 

peak uptake differs strongly among the models.   

CASA-GFEDv2 shows relatively close agreement with the FF-only inversion in the 

Eastern Temperate Forest, especially in terms of the timing and magnitude of fluxes in 

the early growing season, although the NARR inversion shows stronger uptake from 

April to August.  If the NARR inversion is more realistic in this area, particularly in terms 

of extrapolating the flux signal to the productive southeastern forests in the U.S., this 

may imply that CASA-GFEDv2 shows a late start to the growing season, as discussed in 

Randerson et al. (2009).  The inversions also show particularly strong agreement with 

CASA-GFEDv2 in the Northwest Coniferous Forests in terms of the timing of the peak 

uptake, in distinct contrast to the majority of the forward models which shift the peak 

uptake one or two months earlier.  In the Boreal Forests, SiB3.1 agrees very closely with 

the inversions, although with a slightly stronger seasonal cycle.  Given that this is a 

relatively well-constrained biome, this result helps to give increased confidence in the 

estimates from SiB3.1 relative to other forward model estimates in this region.   

The seasonal cycle in EC-MOD shows strong correspondence with the inversion 

from April through August in the Temperate Grass, Savannah & Shrub, or the 

agricultural regions, in terms of both the timing and magnitude of uptake.  However, EC-

MOD shows weaker sources than the inversion throughout the dormant season, 

particularly in March and October where the inversion shows sharp peaks in CO2 release 

to the atmosphere.  In fact, most of the forward models show weaker sources in March 

and October relative to the inversions, with the exceptions of CASA-GFEDv2, which 

appears to match the timing of the seasonal cycle fairly well from January to March, and 

DLEM, which shows strong sources in October, although with the peak source shifted 

one month later to November.  The generally larger sources from the inversion 

throughout the dormant season in this biome may also point to errors in appropriately 
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separating the biospheric and fossil fuel signals, which would be most apparent when 

the fossil fuel emissions are dominating the total CO2 flux. 

At the continental scale, the spread in the forward model estimates is narrower, 

and the inversion agrees relatively closely with most models, with the exception again of 

the sources in March and October which are still visible at this highly aggregated spatial 

scale.  Among the models, SiB3.1 has the closest agreement with the inversions for the 

continental seasonal cycle.   

Overall, this comparison of the aggregated biome-scale seasonal cycle shows 

how the inversion can possibly help to give insight into the forward model spread in the 

well-constrained areas of the continent, as well as point to potential improvements in 

individual models.  While pseudo-data testing showed that inversion results were 

mostly robust at this aggregated scale, implying that the inversion could be used as a 

validation tool for the forward models, systematic transport errors and/ or other 

problems with the inversion setup in a real-data environment could reduce the value of 

this inter-comparison.   

Despite the caveats, a few interesting results emerge from this inter-comparison.  

For example, the forward models in general estimate weaker sources than the inversion 

in March and October in the central areas of the continental United States (e.g. 

Temperate Grass, Savannah and Shrub).  This may again point to limited ability in the 

forward models to appropriately capture processes associated with planting and 

harvesting schedules in agricultural areas.  In terms of individual models, CASA-GFED has 

similar timing as the inversions in the Northwest Coniferous and the Eastern Temperate 

Forests, although with a late start to the growing season in this latter biome.  SiB3.1 

appears to do an excellent job in capturing the seasonal cycle in the Boreal Forests, 

while EC-MOD matches the inversion closely in the Temperate, Grass, Savannah & Shrub 

during the growing season, but misses the sources evident in the atmospheric data 

during the dormant season.   
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6.4.3  Grid-scale statistical comparisons between inversion and other models  

In Figure 6.6, we compare the grid-scale FF-only inversion results with individual 

forward models using statistical diagnostics.  Biospheric flux estimates are compared for 

the entire continent using the grid-scale RMSD and correlation between the inversion 

and the forward models at both the (a) monthly and (b) annual timescales.  The 

correlation at the monthly timescale is in both space and time, whereas the annual 

correlation is only in space.  In addition, results from three inversions with flux estimates 

over North America are included for comparison, those from Schuh et al. (2010), 

CarbonTracker v. 2009 (Peters et al., 2007), and Butler et al. (2010) with two underlying 

sets of prior flux estimates.  It should be noted that the grid-scale spatial patterns from 

the Peters et al. (2007) and Butler et al. (2010) studies are defined by their bottom-up 

prior flux estimates, with the inversion only adjusting these patterns at coarser spatial 

scales.  The FF-only inversion was chosen here for this inter-comparison given its 

complete independence from the forward model estimates, although the results using 

the NARR inversion led to similar conclusions at the monthly time-scale.  Differences at 

the annual time-scale between the two inversions will be discussed further below.   

At the monthly timescale, one can see that the inversion has the strongest 

correlation and lowest RMSD with CASA-GFEDv2 among all the forward models, and 

even other inversions.  While other forward models have a wide spread in terms of their 

correspondence with the inversion at this scale, one can also see that the forward 

model mean agrees closely, and in fact has a similar level of agreement with the 

inversion as CASA-GFEDv2.  This result may help to validate the choice of CASA-GFEDv2 

as an explicit prior flux estimate in the CarbonTracker data assimilation system (Peters 

et al., 2007).  At the monthly timescale, no conclusions can be drawn as to the relative 

agreement of prognostic vs. diagnostic models, given that there are models that agree 

more or less strongly in each category. 
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Figure 6.6:  Root Mean Squared Difference (RMSD) and correlation between grid-scale 
biospheric fluxes for the continent from the geostatistical inversion and the forward 
models included in the NACP Regional Interim Synthesis, as well as other inversion 

studies as described in Section 6.4.3.  Diagnostics were calculated at the monthly and 
annual timescales, where the correlation at the monthly timescale is in both space and 

time, and the annual correlation is just in space.  Flux estimates from the FF-only 
inversion with GlobalView boundary conditions are used here for the inter-comparison. 
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At the annual timescale, results show lower RMSD values than at the monthly 

timescale, but also lower correlations between the inversion and the forward models.  

These lower correlations can be explained in a few ways.  First, the annual-scale 

diagnostics are “spatial-only”, whereas the monthly-scale diagnostics also capture the 

seasonal cycle which is relatively well-known.  Second, the areas of the continent 

constrained by the atmospheric data in the inversion shift from month to month, and 

this, combined with systematic transport errors, most likely lead to larger biases in the 

inversion fluxes at the annual scale.  Finally, it may be that the forward models 

themselves have less skill at capturing net annual sources and sinks, relative to their 

ability to accurately model monthly spatial patterns and the shape of the seasonal cycle.   

The relative level of agreement between the individual forward models and the 

inversion also differs between the monthly and annual timescales.  For example, SiB3.1, 

CASA-GFEDv2 and VEGAS2, which had relatively close agreement at the monthly time-

scale, are anti-correlated with the inversion at the annual scale!  To help identify 

whether this difference was due to the inclusion of the well-known seasonal cycle in the 

monthly timescale plot, the average monthly “spatial-only” correlation was calculated 

instead.  These values were seen to be greater than zero for all the models, and greater 

than 0.3 specifically for SiB3.1, CASA-GFEDv2 and VEGAS2.  Therefore, the agreement 

between the grid-scale spatial patterns in the inversion and these forward models is 

definitively poorer for the aggregated annual timescale, relative to the monthly results.   

In addition, at the annual timescale, the prognostic models have lower RMSD, on 

average, than the diagnostic models.  In contrast, the large RMSD values seen in BEPS, 

EC-MOD and MOD17+, three diagnostic models, remained high from the monthly to the 

annual timescales.  Some of the prognostic models also improved their relative 

agreement with the inversion in terms of their correlation at the annual timescale.  For 

example, CLM-CASA’, a prognostic model, has the closest agreement with the inversion 

at the annual scale, while LPJ-wsl moves from being the least to the 2nd most correlated 

model from the monthly to the annual scales.  Overall, these results suggest not only 

that model quality may differ across timescales (Stoy et al., 2009; Yadav et al., 2010; 
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Mueller et al., 2010), but that the reliance on remote-sensing datasets to help capture 

fluxes at short timescales in the diagnostic models may be at the expense of capturing 

longer-term processes that drive net annual sources and sinks.   

Another interesting result from Figure 6.6 is that for all synthesis Bayesian 

inversions included in the inter-comparison, the geostatistical inversion sees a stronger 

correlation at the monthly timescale with the underlying biospheric model used as the 

explicit prior than the inversions themselves.  (CarbonTracker used CASA-GFEDv2 as a 

prior, Schuh et al., 2010 used SiB3, and Butler et al., 2010 used both CASA-GFEDv2 and 

SiB3.)  This result suggests that these previous inversion studies may be subject to 

aggregation errors due to their limited ability to correct fine-scale fluxes in both space 

and time around the towers.  For example, CarbonTracker only has freedom to adjust 

the prior flux estimates at the weekly, eco-region scale over North America (Peters et 

al., 2007), whereas Butler et al. (2010) estimates flux corrections at the monthly 

timescale for 10 sub-regions on the continent.  In contrast, at the annual timescale, 

these other inversion studies show relatively stronger agreement with the geostatistical 

inversion than their priors, suggesting that flux estimates at this scale are more driven 

by the atmospheric data constraint than the choice of bottom-up prior flux estimates. 

The inclusion of NARR datasets into the inversion moderately improves the 

agreement with the forward models at the monthly timescale, without changing the 

relative position of the models (results not shown).  However, including the NARR 

datasets into the inversion has the most impact at the annual scale.  Despite a slightly 

higher RMSD, 13 of 15 forward models and all inversions show stronger annual-scale 

spatial correlation with the inversion after the inclusion of NARR auxiliary variables.  For 

example, the correlation with CLM-CASA’ goes up from 0.38 to 0.44 for the continent, 

with an improvement of 0.27 to 0.58 specifically in the high sensitivity areas shown in 

Figure 6.2.  EC-MOD also becomes the most correlated model with the inversion at the 

annual scale (from 0.27 to 0.55) after including NARR data, although still with relatively 

high RMSD.  The agreement with CASA-GFEDv2 goes up from -0.08 to 0.14, although it 

still remains the 5th least correlated model with the inversion at the annual scale.   
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Overall, it is difficult to know if the higher level of agreement between the NARR 

inversion and the forward models at both the monthly and annual timescales is mostly 

due to the fact that some of these same variables were also used as input into the 

forward models.  If this is the case, then all models may be subject to correlated errors 

associated with biases in the input data.  However, the NARR variables are incorporated 

into the inversion in a manner consistent with the atmospheric data constraint, 

providing additional information especially important in this data-limited year.  

Therefore, it seems likely that these variables are helping to improve flux estimates 

from the inversion to some extent, and that the closer agreement between the 

inversion with NARR variables and the forward models may be taken as evidence that 

both sets of models are starting to converge on a “true” solution.   

   

6.5  Results: Annual carbon budget 

At the annual time-scale, we present results at three different spatial scales.  

First, we examine the grid-scale spatial patterns as compared to two specific forward 

models.  Next, we present spatially aggregated annual budgets for the continent, as well 

as for the high sensitivity areas shown in Figure 6.2, where we expect estimates to be 

mostly constrained by the atmospheric measurements year-round.  Also, while inversion 

results using the GlobalView boundary conditions were exclusively presented in Section 

6.4 for the inter-comparison of spatial patterns and the seasonal cycle of flux estimates, 

we present inversion results at the annual timescale using both the GlobalView and 

CarbonTracker boundary conditions.    

 

6.5.1  Annual grid-scale sources and sinks  

Figure 6.7 shows the annual grid-scale sources and sinks from the inversions with 

both sets of boundary conditions, as compared to EC-MOD and CLM-CASA’.  Only NARR 

inversion results are shown given their greater correspondence with the forward models 

at this scale, as discussed in Section 6.4.3.  EC-MOD and CLM-CASA’ are also chosen for 
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comparison given their high correlations with the NARR inversion results at the annual 

grid-scale.  

 

 

 
Figure 6.7:  Grid-scale annual biospheric sources & sinks from the NARR inversion, using 
two sets of boundary conditions.  Inversion fluxes are compared to annual flux estimates 

from EC-MOD and CLM-CASA’. 
 

 

In Figure 6.7, the boundary conditions are shown to mostly impact the 

magnitude of flux estimates at the annual time-scale, rather than their spatial patterns.  

However, these magnitude differences can be relatively large.  For example, the average 

annual grid-scale CO2 flux for the Eastern Temperate Forests is -0.3 µmol/(m2*s) using 

the GlobalView boundary conditions, but -0.4 µmol/(m2*s) using the CarbonTracker 

dataset, a 33% increase.  Also, the large sources in the desert Southwest with the 
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GlobalView boundary conditions are smaller in magnitude than results using the 

CarbonTracker dataset.  An analysis of monthly grid-scale flux estimates from both 

inversions showed that most of the magnitude differences at the annual time-scale 

were due to stronger net sinks in the inversion using CarbonTracker boundary 

conditions from March through August.  Magnitude differences in flux estimates were 

still evident, but smaller outside of the growing season.  However, the consistent offset 

in the same direction between the two sets of boundary conditions at all towers 

throughout the year ensures that monthly differences in flux magnitudes become 

additive across time, rather than canceling each other out. 

In terms of the net annual spatial patterns, inversions with both sets of boundary 

conditions show net uptake in the eastern continental United States and the boreal 

forests, as well as in southern Mexico and the Pacific coastal forests, although these 

latter regions are highly under-constrained by the atmospheric measurements.  The 

locations of net uptake from the inversion are in relatively close agreement with the 

estimates of Crevoisier et al. (2010) from 2004 to 2006, who used an independent 

carbon budgeting method for North America based on vertical profiles of CO2 

concentrations over the continent, as well as bottom-up inventory estimates from the 

State of the Carbon Cycle Report (CCSP, 2007).  The inversion also shows net sources in 

the desert Southwest, which is consistent in terms of sign with annual fluxes in most of 

the forward models, although the magnitudes from the inversion are much higher.  This 

may point to errors in the forward models in this region, underestimation of fossil fuel 

emissions in the inventory, errors in the boundary conditions (particularly GlobalView in 

this case), or problems with the inversion setup, e.g. systematic transport errors at WKT 

or ARM.  Given the limited vegetation in this area, Crevoisier et al. (2010) hypothesized 

that agricultural consumption in the pasture-lands in these areas could be contributing 

to neutral fluxes or net sources. 

Figure 6.7 also shows that the spatial patterns between the inversions and EC-

MOD have striking similarity, perhaps because EC-MOD uses a similar approach to the 

inversion in terms of extrapolating spatial patterns of flux with MODIS datasets (Xiao et 
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al., 2008).  Xiao et al. (2008) also chose these datasets in a statistically rigorous manner, 

although using eddy-covariance flux tower measurements to train the model, rather 

than atmospheric measurements in an inversion framework as implemented here.  

Figure 6.7 also shows that, although EC-MOD and the inversions show similar spatial 

patterns, the magnitude of flux differs, i.e. EC-MOD shows much stronger sinks in the 

eastern half of the continental United States than the inversions, and weaker sources in 

the western half, with some consistency in the existence of sources in the desert 

Southwest.  The annual-scale flux estimates from CLM-CASA’ also show similar spatial 

patterns compared to the inversion, e.g. sinks in the central and southeastern United 

States, faint sinks in the boreal forests, and some sources in northwest Mexico, but in 

general the net annual fluxes are much smaller in magnitude than those from either the 

inversions or EC-MOD.   

Overall this comparison of the net annual spatial patterns of CO2 flux suggests 

some convergence in the location of net sources and sinks over the continent among 

models for this year.  However, the divergence in flux magnitude across models still 

makes it difficult to provide carbon budgets with reasonable uncertainties at small 

regional scales, e.g. states or provinces, from either top-down or bottom-up approaches 

at the current time.  A number of additional tests exploring the sensitivity of the 

geostatistical inversion presented here to data choices, flux temporal resolution, and 

temporal covariance assumptions also showed a convergence in the pattern of net 

sources and sinks at the annual scale, but strong differences in the magnitude of flux 

across inversion setups. 

 

6.5.2  Spatially-aggregated annual budgets 

Figure 6.8 shows annual flux estimates spatially aggregated to both the high 

sensitivity areas (6.10a) and the whole continent (6.10b), as compared to the suite of 

forward models and other inversions.  Please note that some of the forward models and 

inversions included in the grid-scale and seasonal cycle inter-comparisons were 

excluded here, given that their flux domain covered less than 95% of either the high 



150 
 

sensitivity areas or the continent.  Figure 6.8 shows the total CO2 flux with a line for the 

contribution from the fossil fuels, as estimated by the combined fossil fuel inventory 

dataset used in this study.  While fossil fuel emissions are generally considered to be 

well-known, especially at the annual scale, there still remains some uncertainty 

associated with the magnitude of these estimates (e.g. Francey et al., 2010).  Therefore, 

we show total CO2 flux, as this is what is actually seen by the atmospheric 

measurements, and is the most robust result from the inversion.  Also, pseudo-data 

tests revealed that the annual totals in the high sensitivity areas are more reliably 

estimated than those for the whole continent; despite this, continental-scale estimates 

are still shown due to the larger scientific interest in understanding the total North 

American carbon budget.   

The most striking result seen in Figure 6.8 is the difference in the annual totals 

associated with the two different sets of boundary conditions.  While the high sensitivity 

areas show a significant net sink regardless of boundary conditions, not surprising given 

that these are mostly crop or forested areas, the GlobalView boundary conditions 

completely erase the North American biospheric carbon sink at the continental scale 

within the 95% confidence intervals.  In addition, the geostatistical inversion results 

using CarbonTracker boundary conditions give an almost identical North American 

carbon sink to CarbonTracker (Peters et al., 2007) itself.  These results suggest that the 

annual carbon budget for North America from regional inversions is strongly influenced 

by the continental boundary conditions, which in turn points to the need for more 

research into the most robust set of values to use before these models could potentially 

be used as a carbon budgeting tool.  Even in global inversions, fluxes and transport in 

other parts of the world essentially provide a boundary condition to the domain of 

interest, and errors outside the domain can therefore introduce bias into the total 

budget in the specified region.   
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Figure 6.8:  Annual total CO2 source and sink estimates spatially aggregated to a) the 
high sensitivity area shown in Figure 6.2, and b) the continent.  Results from the FF-only 

and NARR inversions using two sets of boundary conditions are compared to results from 
forward models and other inversion studies.  The dotted line indicates the CO2 flux from 
North American fossil fuel emissions, as estimated with the combined inventory dataset 

used in this study (Gurney et al., 2009; Oda and Maksyutov, 2010). 
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It should also be noted that in addition to the impact of the boundary conditions, 

the inferred biospheric carbon sink for the continent may also be biased by errors in the 

magnitude or spatial patterns of the fossil fuel inventory dataset, and by systematic 

transport and other errors in the inversion.  For example, a sensitivity test excluding the 

10am and 7pm data during the growing season increased the net sink in both the high 

sensitivity areas and the continent by 0.2 PgC/ yr.  In contrast, results here are shown to 

be relatively insensitive to the components in the model of the trend for the 

geostatistical inversions.  Therefore, these variables are useful for down-scaling the flux 

signal in the atmospheric data to finer spatial scales, for extrapolating to under-

constrained areas, and for inference regarding flux drivers, but they do not bias flux 

estimates at larger spatial and temporal scales, as also seen in Chapter 4 (i.e. Gourdji et 

al., 2008). 

When comparing the continental budget from the inversion with the GlobalView 

boundary conditions to the forward models, the inversion is seen to have close 

correspondence with the forward models that have more of a neutral biosphere (i.e. 

CASA-GFEDv2, SiB3.1, CLM-CN and ISAM).  If the GlobalView boundary conditions are 

assumed to be more empirical, and therefore more “correct”, as compared to those 

from CarbonTracker, the results shown here imply that the atmospheric constraint does 

not necessarily imply stronger net sinks than forward models, as seen in other bottom-

up/ top-down inter-comparison studies over North America (e.g. 

http://nacp.ornl.gov/mast-dc/int_synth_contreg.shtml).  However, in the high 

sensitivity areas, where pseudo-data testing showed more reliable annual budgets, the 

inversion results with GlobalView boundary conditions were closest to the forward 

models with intermediate sink magnitudes, e.g. Orchidee, DLEM and CLM-CASA’.  If this 

result were transferable to the entire continent, this would imply a continental sink only 

slightly weaker than the results from CarbonTracker or the Schuh et al. (2010) study, 

perhaps around 0.5 PgC/yr, in excellent agreement with the results from Crevoisier et al. 

(2010).   
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The stronger net sinks seen in other North American inversions in Figure 6.8, 

particularly those of Butler et al. (2010), may potentially be biased by their boundary 

conditions and/ or fluxes in the rest of the world, the oversampling of relatively 

productive areas and the day-time photosynthesis signal within the North American 

continent, and aggregation errors that spread this sink bias out over large areas.  Yet, 

without further research into the correct set of boundary conditions to use and the 

inclusion of additional measurement data from the post-2004 expanded measurement 

network, it remains difficult to accurately estimate the North American continental 

carbon budget using the atmospheric data constraint from any inversion study. 

 

6.6  Conclusions  

The geostatistical inversion approach implemented here resolves fluxes at finer 

scales in both space and time than other published inversion studies estimating fluxes 

over the North American continent (Peters et al., 2007; Deng et al., 2007; Schuh et al., 

2010; Butler et al., 2010).  By resolving fluxes at finer scales, this inversion reduces 

spatial and temporal aggregation errors associated with using continental 

measurements sited in areas with high flux variability.  Also, the geostatistical inversion 

eliminates the requirement for explicit prior flux estimates allowing for a more 

independent comparison to bottom-up model output.   

One encouraging sign in regards to avoiding systematic transport model errors in 

the inversion, which have the potential to significantly bias flux estimates, is that the 

recovered 𝛃� on the fossil fuel inventory dataset was almost exactly one.  This implies 

that the inversion is able to independently identify the fossil fuel signal in the total CO2 

flux (assuming that the spatial patterns and magnitudes in the inventory are basically 

correct), which provides hope for future work using the atmospheric constraint to 

validate the regional emissions and individual sectors that make up these inventories. 

Introducing NARR auxiliary variables into the inversion was seen to help 

extrapolate the flux signal from the atmospheric data in a realistic way, as compared to 

the forward model mean from the NACP Regional Interim Synthesis.  However, given 
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the limited atmospheric data constraint noticeable in the spatial patterns of the FF-only 

inversion (Figure 6.4), the drift coefficients (𝛃�) on these variables may be somewhat 

biased by the relatively productive regions of the continent sampled by the network.  

Future inversions using the expanded in-situ measurement network over the continent 

(Mueller et al., in prep.) may help to remedy this situation.  Regardless, the selected 

variables and inferred drift coefficients on the NARR variables were very consistent with 

process-based understanding of the drivers of both photosynthesis and respiration, 

providing further validation of the inversion setup implemented in this study. 

Despite the lack of direct validation data for biospheric CO2 fluxes at regional 

scales, the top-down/ bottom-up inter-comparison implemented in this study helped to 

provide insights into the strengths and weaknesses of both the inversion and the 

forward models.  One conclusion was that the inversion had the most consistent spatial 

patterns with the forward model mean in the growing season relative to the dormant 

season.  This could be due to errors in the fossil fuel inventories, which are more evident 

in the dormant season when emissions dominate the total CO2 flux, or the forward 

models themselves may have less skill outside of the growing season (e.g. Schwalm et 

al., 2010).  This result may also be related to the fewer number of measurements in the 

inversion during the dormant season when days are shorter, and there are fewer hours 

in the day with well-mixed conditions.  Finally, the fluxes during the growing season are 

stronger and more variable, and therefore perhaps easier to identify from the 

atmospheric signal. 

Another conclusion that emerges from the top-down/ bottom-up inter-

comparison in this study is that there are individual forward models that appear to 

agree well with the inversion in specific seasons, biomes or scales of comparison.  

However, there is no one model that appears to agree all the time with the inversions.  

For example, CASA-GFEDv2 has the closest agreement in terms of RMSD at the monthly 

timescale (including both spatial patterns and the seasonal cycle).  However, the grid-

scale spatial patterns of net annual fluxes in CASA-GFEDv2 were seen to be anti-

correlated with the inversion results!  Similarly, EC-MOD and CLM-CASA’ have closer 
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correspondence with the inversion at the annual, relative to the monthly, timescale.  

While a lack of agreement may imply errors in either the inversion or the forward 

models, pseudo-data testing did reveal that inversion results at aggregated scales within 

the well-constrained areas were relatively robust.  Therefore, the inversion was found to 

be useful for giving insight into the forward model spread, as demonstrated for the 

biome-scale seasonal cycle. 

One result from the inversions that was robust across all sensitivity tests (varying 

the data inputs, flux resolution and temporal covariance assumptions) were the strong 

sources in the center of the continent in March and October.  While the magnitude of 

these sources was somewhat sensitive to inversion setup, a peak in respiration sources 

in the same regions during these months was seen in very few of the forward models.  

This may confirm previous work suggesting that biospheric models in general need 

significant improvements in agricultural areas (Lokupitiya et al., 2009; Corbin et al., 

2010).   

Finally, accurate annual carbon budgets from either regional inversions or 

bottom-up models appear to remain an elusive goal at the current time.  While there 

appears to be some convergence in the location of net uptake and release over the 

continent in the inversions, EC-MOD and CLM-CASA’, the magnitudes of flux estimates 

were very different across models.  Furthermore, the boundary conditions used as input 

into the inversions led to strikingly different annual carbon budgets for the continent, 

making it difficult to highlight agreement between the inversion and the forward models 

at this scale.   

Overall, the North American geostatistical inversion for 2004 presented here 

shows promise for providing a robust inversion framework that can scale well with the 

recent expansion of the in-situ CO2 monitoring network over North America.  Results 

show that the flux signal sampled by the 2004 monitoring network is sufficient to 

accurately identify the fossil fuel emission signal, while also constraining biospheric flux 

estimates in a manner consistent with process-based understanding.  Top-down/ 

bottom-up inversion studies like this one can also help to provide insight into the large 
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spread of bottom-up model estimates of regional CO2 flux.  Such comparisons can 

therefore help to identify needed improvements in individual model formulation, in 

hopes that modeled CO2 flux estimates at regional scales from both the top-down and 

bottom-up approaches may at some point converge.  
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CHAPTER 7 

Conclusions and future directions 

 

This concluding chapter summarizes the objectives and findings of each of the 

three major components of the dissertation, acknowledges collaborations with fellow 

researchers, and also suggests directions for future work. 

 

7.1  Contributions of dissertation 

7.1.1  Global geostatistical inversion study 

The first objective of this dissertation applied the geostatistical inverse modeling 

approach to a global inversion with real data, using the atmospheric data constraint 

along with auxiliary environmental variables from remote-sensing and socioeconomic 

inventory datasets to constrain flux estimates.  Overall, results in this work, and in the 

companion paper (Mueller et al., 2008), showed that the geostatistical inversion 

approach is a viable alternative to synthesis Bayesian inversions for estimating 

continental-scale fluxes around the globe, while minimizing the number of process-

based assumptions included in other published inversion studies.  Also, by resolving 

fluxes at the relatively fine spatial resolution of the transport model, this approach 

reduced aggregation errors (Kaminski et al., 2001) associated with resolving fluxes for 

larger regions, while fixing spatial patterns within the region from a bottom-up model 

(e.g. Gurney et al., 2004; Baker et al., 2006).  Geostatistical inversion results were shown 

to provide intermediate values between results from two other global inversion studies 

(Baker et al., 2006; Rödenbeck et al., 2003), providing some indication that the 

presented inversion was able to reduce biases associated with spatial aggregation errors 

and the use of explicit prior flux estimates in these other studies (Mueller et al., 2008).   
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Furthermore, incorporating auxiliary variables into the global inversion, which 

were defined at the grid-scale from remote-sensing and socioeconomic inventory 

datasets, helped to recover realistic grid-scale heterogeneity and extrapolate the flux 

signal in the atmospheric measurements to under-constrained areas.  Also, flux 

estimates at the continental-scale were relatively consistent between two inversions 

with and without auxiliary variables, showing that flux estimates at large spatial scales 

from a geostatistical inversion are primarily constrained by the atmospheric 

measurements, especially in well-constrained areas.  Therefore, this approach provides 

a means to take advantage of process-based information, contained in remote-sensing 

and inventory datasets, and to downscale and extrapolate flux patterns in a manner 

consistent with the atmospheric data constraint, while not introducing biases at larger 

spatial scales. 

  

7.1.2  Regional synthetic data inversion study 

The second component of this dissertation extended the geostatistical inversion 

framework for estimating sub-continental scale fluxes in a regional inversion over North 

America using continental, continuous measurements of atmospheric CO2.  Given 

potential biases associated with using fixed patterns to describe fine-scale spatial and 

temporal variability within the flux signal, this component developed an inversion setup 

that could estimate this variability directly without the use of bottom-up model output.  

Estimating the diurnal variability in the fluxes was shown to be critical in a pseudo-data 

environment for inferring unbiased post-aggregated monthly, ecoregion-scale fluxes.  

Also, this component of the dissertation showed that it was possible to reliably estimate 

covariance parameters for the inversion with the atmospheric measurements, further 

reducing reliance on assumptions contained within bottom-up models for 

parameterizing the inversion.  Finally, this component investigated the impact of a priori 

temporal covariance assumptions on final flux estimates and uncertainties.  While 

introducing minimal bias into the flux solution in the pseudo-data environment, 
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temporal covariance assumptions were shown to be critical for recovering appropriately 

wide confidence intervals at aggregated temporal scales. 

   

7.1.3  Real data inversion for North America in 2004 

The third component of this dissertation, the real-data North American inversion 

for 2004, first showed that reasonable flux estimates could be inferred for the full year 

using solely the atmospheric data constraint with the inversion setup developed in the 

second component.  Furthermore, this component showed that by incorporating 

diurnally-varying auxiliary datasets into the inversion at the regional scale, a 

geostatistical inversion provides a viable means for directly estimating spatial patterns 

over the continent without relying on fixed fine-scale estimates from a biospheric 

model, which are likely to be incorrect in certain areas, seasons and times of the day 

given the large spread in individual forward model estimates.  In particular, auxiliary 

variables from the North American Regional Reanalysis (NARR; Mesinger et al., 2006) 

appeared to do an excellent job in terms of extrapolating and down-scaling the flux 

signal over the continent, as seen by closer correspondence between inversion flux 

estimates and the mean of a collection of forward models from the North American 

Carbon Program Regional Interim Synthesis (Cook et al., 2009, Huntzinger et al., in 

prep).  That being said, it is impossible to independently verify any of these individual 

model results, and the possible inclusion of NARR datasets as inputs into the forward 

models themselves reduced the independence of this comparison, potentially leading to 

correlated errors.   

Overall, the comparison between the geostatistical inversions, with and without 

NARR variables, and the forward model mean showed some convergence in terms of 

the inferred seasonal spatial patterns, particularly during the growing season.  During 

the dormant season, the lack of agreement between the inversions and the forward 

model mean could be due to lack of skill in the forward models outside of the growing 

season (e.g. Schwalm et al., 2010), errors in the fossil fuel inventories, or perhaps both.  
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In particular, the inversion results showed strong sources in the center of the continent 

in October at both the grid and aggregated biome-scale, which were seen in very few of 

the forward models.   

Model inter-comparisons at the annual timescale showed that the magnitude of 

net annual sources and sinks remains difficult to pinpoint from either top-down or 

bottom-up approaches at the current time, a difficult task in general given the small 

magnitude of net annual fluxes as compared to the seasonal cycle of individual flux 

components.  The boundary conditions in the inversion were also shown to have a large 

impact on the continental carbon budget, leading to very different conclusions in terms 

of the forward models that agree most closely with inversion results at this scale.  

Relying on the new empirically-based GlobalView data product for North American 

boundary conditions, the inversion returned a weaker continental sink for this year than 

that seen in previous published inversion studies. 

The real-data inversion results for 2004 more generally showed the constraint of 

the 2004 continuous measurement network on North American CO2 fluxes at various 

spatial and temporal scales.  For example, a number of sensitivity tests indicated that 

the spatial patterns of flux could be resolved more clearly by adding more data 

throughout the day and night into the inversion, although the impact of systematic 

transport model errors  could also be clearly seen in the resulting flux estimates.  A 

careful use of a priori temporal covariance assumptions also showed promise in 

recovering more realistic grid-scale spatial patterns without the inclusion of NARR 

auxiliary variables.  Another promising result was that the in-situ measurement network 

for this year within the geostatistical inversion framework could independently identify 

the signal associated with fossil fuel emissions in the total CO2 flux, as seen by a 

recovered drift coefficient (𝛃�) near one.  This provides hope for validating fossil fuel 

emission inventories, or individual sectors, in future work.   
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7.1.4  Overall contributions 

The three components of this dissertation, in sum, helped to develop the 

geostatistical atmospheric inversion framework for estimating CO2 fluxes directly at fine 

spatiotemporal scales, while minimizing process-based assumptions inherent to 

synthesis Bayesian inversion approaches.  Also, by eliminating the rigid constraints 

provided by mechanistic forward models  used as explicit prior flux estimates in other 

inversion studies, this work provides a relatively independent comparison to such 

models for helping to ultimately close the gap between bottom-up and top-down 

understanding of CO2 flux.  Finally, the infrastructure developed as part of this 

dissertation, in terms of the transport model runs and code developed for data 

processing, running the inversion, RML and variable selection algorithms (described 

further below), as well as the theoretical inversion framework itself, will hopefully help 

to inform future work using in-situ and satellite-based CO2 measurements to estimate 

regional-scale CO2 fluxes.  

 

7.2  Collaborations 

The inversion work that forms the core of this dissertation was performed most 

closely in collaboration with Kim Mueller, my fellow Ph.D. student at the University of 

Michigan.  First, the global inversion studies (Mueller et al., 2008; Gourdji et al., 2008) 

were published together as a two-part paper.  Second, her feedback formed a valuable 

contribution towards helping to develop a regional inversion setup in the second and 

third components that could ultimately recover reasonable flux estimates.  The second 

and third components of this dissertation are, in addition, helping to inform Kim’s work 

on the impact of the expanding in situ measurement network on regional inversions in 

North America (Mueller et al., in prep).  Arlyn Andrews at the National Oceanic and 

Atmospheric Administration (NOAA) also gave valuable feedback throughout on 

avoiding various pitfalls in regional inversions. 

The WRF-STILT transport model runs for the second and third components were 

done in close collaboration with colleagues at NOAA and AER Corp.  The WRF model 
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output was generated directly by Thomas Nehrkorn and John Henderson at AER, while 

Thomas, John and Janusz Eluskiewicz also generated a streamlined set of scripts for 

running WRF-STILT on the NASA supercomputers.  Adam Hirsch at NOAA helped to 

develop the original scripts and run the transport model in the early stages of the 

project, while the final production runs of WRF-STILT were performed on the NASA 

supercomputers by Kim and me, with the additional assistance of Mike Trudeau and 

Gaby Petron at NOAA.   

Finally, Vineet Yadav and Deborah Huntzinger, postdoctoral fellows at the 

University of Michigan, also contributed their time and efforts to the North American 

regional inversions.  Vineet helped to make the estimation of 8 million fluxes for a single 

year computationally possible by optimizing the inversion, RML and variable selection 

code using linear algebra identities to reduce needed computations, and by 

implementing parallel and distributing computing techniques.  In particular, Vineet, in 

collaboration with Kim, wrote the scripts for running real-data inversions on the NASA 

supercomputers in an efficient manner in the final months of the dissertation.  Debbie 

provided a valuable link to the forward modeling community, particularly for the third 

component of the dissertation. 

Finally, this dissertation had wider impacts beyond the specific work presented 

here.  For example, the scripts for running WRF-STILT on the NASA supercomputers are 

still being used by other members of Dr. Anna Michalak’s research group and colleagues 

at NOAA to investigate transport model errors (A. Andrews, M. Trudeau and G. Petron), 

as well as the potential placement of new measurement towers in North America for 

CO2 monitoring (Yoichi Shiga).  The WRF-STILT concentration footprints for 2004 and 

2008 and WRF meteorological fields for 2004 through 2008 are now freely available for 

download (http://puorg.engin.umich.edu) to the wider community for other 

atmospheric applications over the North American continent.  The code generated for 

the second and third components of this dissertation, written by Vineet and myself, is 

also well-documented and freely available for download from 

http://puorg.engin.umich.edu.   

http://puorg.engin.umich.edu/�
http://puorg.engin.umich.edu/�
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7.3  Future work 

7.3.1  Direct extensions to current work 

While the inversion work performed for this dissertation was mainly intended to 

help identify a reliable inversion setup that could be informative for future operational 

CO2 inversions, there are a few direct extensions of the current work that would help to 

make it more directly applicable to the larger carbon cycle science community.  For 

example, the introduction of temporal covariance assumptions into the real-data 2004 

inversion was not computationally feasible for generating annual uncertainties using a 

3-hourly flux temporal resolution.  However, this a priori covariance was also shown to 

help fill in spatial patterns in the inferred flux estimates, without relying on auxiliary 

variables that reduce the independence of the comparison to the forward models.  

While these temporal covariance assumptions must be used with caution in times of the 

year with rapid changes, e.g. in early spring, they may also help to further provide 

insight into the forward model spread over North America.  This topic warrants further 

investigation in order to improve flux estimates and recover reliable uncertainties that 

can help to strengthen conclusions from future top-down/ bottom-up inter-comparisons 

of CO2 flux.   

Given that 2004 was a very data-limited year, in comparison to the current time 

when there are more than 40 towers collecting continuous CO2 concentration 

measurements over the North American continent, it would make sense to repeat many 

of the analyses for this dissertation using an inversion for a later year with more 

available measurement data.  These analyses would help to confirm the conclusions of 

this dissertation, while also pointing to results that may have been specific to a data-

limited setup.  In fact, my colleague Kim Mueller has begun to investigate the impact of 

flux temporal resolution, data choices, and boundary conditions on geostatistical 

inversion results using data from 35 towers in 2008 (Mueller et al., in prep.).  

Preliminary results highlight the increased impact of temporal aggregation errors on 

inversion results using a denser measurement network, and also the value of adding 
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more measurement data in time into the inversion, in order to optimally take advantage 

of new measurement sites for constraining flux estimates at finer spatial scales.    

Future work using the 2008 inversion setup includes the incorporation of NARR 

auxiliary variables to test the consistency of selected variables and inferred drift 

coefficients (𝛃�) between 2004 and 2008, and also the incorporation of individual sectors 

from the Vulcan fossil fuel inventory database (Gurney et al., 2008) to potentially 

investigate the reliability of these inventories as seen by the atmospheric data 

constraint.    Finally, the 2004 and 2008 inversions could easily feed into a longer multi-

year inversion incorporating auxiliary variables, where these variables could help to 

provide inference regarding the drivers of inter-annual CO2 flux variability over North 

America. 

 

7.3.2  Larger community-wide future directions for regional carbon budgeting 

Apart from specific extensions to the current work implemented in this 

dissertation, there appears to be a need for a more coordinated approach in the carbon 

cycle science community for producing reliable model output which can be used for 

regional carbon budgeting.  A comparison of model output from both forward models 

and inversions currently shows a wide spread among and between the two types of 

models (Huntzinger et al., in prep., NACP Regional Interim Synthesis, 

http://nacp.ornl.gov/mast-dc/int_synth_contreg.shtml).  While this dissertation 

hopefully provided some insight into an optimal inversion setup for taking advantage of 

surface flux information contained in atmospheric CO2 concentration measurements, 

there is still a need for more in-depth analysis and controlled experiments involving 

different modeling groups.  Such a coordinated approach would make it easier to 

identify which features of the different modeling approaches appear to be most robust, 

while reducing redundant efforts.    

Also, in the case of inversions, there is a need to improve transport modeling 

capabilities in order to eliminate systematic biases that affect inversion results.  For 

example, numerous sensitivity tests for the third component of this dissertation showed 
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that increasingly well-resolved spatial patterns could be recovered (even without NARR 

auxiliary variables) as more measurements throughout the day were added into the 

inversion.  Improvements in transport model quality would make it feasible to 

incorporate more data, e.g. night-time measurements, into the inversion without the 

risk of biasing flux estimates.  However, currently, there appears to be limited funding 

and support within the community for building and improving this basic infrastructure 

which are critical for future operational CO2 inversions (A. Andrews and M. Trudeau, 

personal communication).  Similarly, there is a need for well-documented and robust 

coding practices that can make it easier for research groups to easily share and 

understand one another’s code. 

In summary, a community-wide effort is needed to find a consensus method for 

optimally ingesting both in-situ and satellite measurements of atmospheric CO2, as well 

as process-based information, into an inversion system that can provide operational 

regional carbon budgets around the globe and for specific domains like North America.  

Along with robust uncertainties associated with the resulting flux estimates, such a 

system can hopefully help to support and inform climate change mitigation policies by 

providing an understanding of the link between carbon management policies and 

resulting atmospheric CO2 concentrations.  For example, without a way to reliably 

confirm bottom-up estimates of fossil fuel emissions from the point of view of the 

atmosphere, it will be difficult to enforce future policy commitments for reducing these 

emissions (NRC, 2010).  Also, the atmospheric constraint could be used as a means to 

test the effectiveness of land management strategies designed to increase carbon 

sequestration in forests and on agricultural lands.  Finally, a better understanding of the 

drivers of regional-scale CO2 exchange, which can mostly come through improving 

models as in this dissertation, should help to improve projections of the future response 

of the terrestrial biosphere and oceans to already-committed climate changes.   
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