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ABSTRACT

Intercalation processes occur in a single crystallite of many electrode materials for
a certain period of charging and discharging processes of primary or secondary
batteries. These intercalation processes involve both phase transformation and
diffusion. As Li atoms are added to or taken out of the crystallite during the
(de)intercalation process, the crystallite relaxes to achieve minimum energy
morphology while often having sharp interfaces between two dissimilar phases. Since
the two phases have different mechanical properties, especially different lattice
parameters, this discrepancy in the lattice parameters near the phase-interfaces causes
coherency strain. The resulting coherency strain affects thermodynamic potentials.
Conversely the changed thermodynamic potentials vary solubility limits of Lithium,
voltage profile, and phase stability.

Although the importance of coherency strain has been noticed by many authors, the
effect of coherency strain on two-phase equilibrium has not been modeled to
satisfactory degrees for the LixFePO4 crystallite. We analytically derived chemical and
mechanical equilibrium criteria for 2-phase morphology of the LixFePO4 crystallites in
the quasi-static analysis. We checked the effect of coherency strain on the voltage
profile and on the optimal shape of the crystallites. Quasi-static FEA showed that

needle-shape crystallite along the a-axis of the LixFePOs crystallite minimized the

viil



coherency strain energy density. For olivine LixFePO4 (0 < x < 1) crystallite, by adding
the coherency strain energy term to the total free energy, we confirmed that the total
energy is minimized when the phase interface parallels the bc-plane, although the Li
ions diffuse along the b-axis of the crystallite.

In the time dependent analysis, not only the anisotropy of the elastic moduli, but
also the anisotropy of the diffusivity was considered. The evolution of the two-phase
interface was modeled with the Level set method, one of most accurate and efficient
methods to track a surface evolution. We showed a general time-dependent finite
element approach for Li-ion battery electrode materials demonstrating Li intercalation

processes with the phase interfaces.
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CHAPTERI

Introduction

1.1. Background of Coupled Physics of Li-ion Battery Electrodes

Intercalation processes occur in a single crystallite of many electrode materials for
a certain period of the charging and discharging processes of primary or secondary
batteries. This intercalation process involves both diffusion and first order phase
transformations [1-6]. Because of the phase transformation, many electrode materials
for Lithium-ion batteries have been shown to have moving interfaces between two
phase portions. For most of the electrode materials in lithium ion batteries, the
thickness of transition zones between two phase portions are infinitesimal compared to
the dimensions of typical mid-size electrode crystallites: e.g. 4~6 nm transition zone for
LixFePO4 (0 < x < 1) [7]. Usually insertion or removal of Lithium ions results in slight
structural changes of the host because of the changes in the lattice parameters. Also, the
resulting coherency strain near the interface affects thermodynamic potentials.
Conversely, the changed thermodynamic potentials could vary the solubility limits of
the Lithium, voltage profile, and phase stability.

This (de)intercalation Kkinetics in the electrode materials of Lithium-ion batteries
can be treated as a coupled problem of Lithium diffusion and two-phase coherent stress

equilibrium. When the (de)intercalation kinetics is modeled as a fully time-dependent



process, tracking the location of the thin interface is necessary and needs to be backed
up by numerical schemes that can depict the interface evolution. In this thesis, we adopt

the Level Set Method to follow the location of the interface [8].

1. 1. 1. Transport Problem

Anisotropic diffusion in LixFePO4 is treated with the diffusion equation by setting
diffusivity tensor properly so that one-dimensional diffusion along b-direction (space
group Pnma) is guaranteed. The b-direction faces outwards from the surface of the
crystallite in Figure 1.1. One-dimensional diffusion in LixFePOs was elucidated by
electron microscopy study of LixFePO4 by G. Chen et al. [7] and was confirmed by D.
Morgan, A. Van der Ven, and G. Ceder through first principal calculation [9]. The related

governing equation is known as Fick’s second law.

s
ai =-V. jé (1.1)
ot
where & = o, B. The flux in /5 in Eq. (1.1) is defined as
j* =-D°Vx® (1.2)



Figure 1.1. TEM imagés bf Li;,sFeP04
(a) aligned along the c-axis, (b) thin crystallite with crack in the bc-plane [7]

1. 1. 2. Stress equilibrium

The momentum balance equation takes care of the effect of strain discontinuity
from the lattice mismatch of two dissimilar anisotropic materials at the two-phase
interface. Regarding the momentum balance equation, a natural boundary condition
applies for all boundaries to Eq. (1.3), since we consider an isolated ideal single

crystallite.

=0 (1.3)

1. 1. 3. Two-Phase Interface Tracking

To track the position of the thin interface between the two phase portions for the
time dependent analysis, we adopt the Level Set Method (LSM). LSM was developed by
Stanley Osher and James Sethian to track interface evolutions [8]. With the interface
velocity, v, calculated from the concentration jump condition and flux jump condition, an

advection equation



g—z’w-w:o (1.4)

is solved and the zero contour of the solution indicates the evolving interface. Because
of numerical unstableness of the advection equation, a numerical stabilizing scheme,

Streamlined Upwind Petrov-Galerkin (SUPG) method is added to Eq. (1.4).

1. 2. Review of Related Studies

D. Morgan, A. Van der Ven, and G. Ceder [9] confirmed that Lithium ion diffusion in
LixFePO4 (0 < x < 1) is restricted to one dimensional channels parallel to the b-direction,
as illustrated in Figure (1. 2). However, contrary to intuition, the interface is
perpendicular to the a-direction not to the b-direction, which was discovered in
transmission electron microscopy (TEM) observation by Chen et al. [7] Chen et al.
argued that this interface orientation should minimize strain energy. Meethong et al.
also showed the importance of misfit strains on the rate capabilities of LiFePO4
crystallites. They showed that nucleation and growth kinetics depend on the misfit
strains between two phase portions of LiFePO4. They compared two morphologies and
concluded that spherical crystallites with spherical cap has far less strain energy

compared to the core/shell model.



1-D

Figure 1.2. One-dimensional diffusion along b-axis and
coherency strain near the two-phase interface of LixFePO4

1. 3. Motivation for Research

Many authors have recognized that coherency strains play an important role in
determining two-phase equilibrium, which was made evident by the discovery of Chen
et al. [7] However, rarely in their papers have they considered coherency strains
explicitly for (de)intercalation kinetics.

Past work on the coherent equilibrium of Li-ion electrodes is that the materials also
fails to investigate the materials as interstitial solids but as substitutional solids
instead, even though intercalation compounds should be viewed as interstitial solids
[10, 11].

Moreover, fully time dependent three-dimensional modeling using FE for Li-ion

battery electrode materials have not been tried to a satisfactory degree. Lithium (de)



intercalation process is an intrinsically non-equilibrium time dependent phenomenon.
Therefore deeper understanding of the (de)intercalation process could be gained from
time dependent analysis. An interesting challenge of implementing a time dependent
approach is how to track the moving interface between two phase portions. In this

thesis, we track the interface adopting the well-known Level Set Method [8].

1. 4. Thesis outline

In Chapter II, the quasi-static analysis is developed. We derive mechanical and
chemical equilibrium criteria and applied them to a single crystallite of olivine LixFePOs.
We describe how misfit strains or coherency strains regulate solubility limits and add
hysteresis in the voltage curve. The effect of coherency strains on overpotential and
underpotential is shown to initiate evolution of the coherency crystallite. In the case of
LixFePO4, we confirm that an interface orientation perpendicular to the a-direction
minimizes free energy. As a final result of quasi-static analysis, we show that a needle-
shape crystallite with the longest direction parallel to the a-direction minimizes the
strain energy due to the two-phase coexistence in the LixFePO4 crystallite. This optimum
shape reduces overpotential as well as the mechanical damage during charge-discharge
cycles.

In Chapter III, we describe the role of the coherency strain in time dependent
analysis. Through fully time dependent three-dimensional finite element model, we
describe the non-equilibrium (de)intercalation process, and thereby hope that we
contribute to the fundamental understanding of (de)intercalation Kinetics in the Li-ion

battery electrode materials.



In Chapter IV, we summarize the findings, draw conclusion, and suggest directions

of future work.



CHAPTERII

Quasi-Static Analysis of LiFeP0O4 Cathode Material

In Chapter II, we will rigorously derive two-phase coexistence equilibrium criteria
and will apply the criteria to LixFePO4 cathode material. FE analysis will be conducted
on the base of the derivation in the section 2.1 and will be compared with analytic
calculation. As a final result of FE analysis, we will show that a needle-shape crystallite
with the longest direction parallel to first direction minimizes the strain energy due to
two-phase coexistence in section 2.5. This Chapter is based on the paper written by A.

Van der Ven, K. Garikipati, S. Kim, and M. Wagemaker [12].

2. 1. Mathematical Formulation

We consider a crystallite having a shape of rectangular prism with 2 coexisting
phases, Li-poor a-phase and Li-rich 3-phase, as illustrated in Fig. 2.1. Because of two-
phase coexistence with crystallographic continuity at the interface and because of
different equilibrium dimensions, two phases are stretched or compressed in the 2- and
3-directions at the interface between the coexisting phases. Since the crystal is not
constrained on the surfaces perpendicular to the first direction, it can fully relax in that

direction with o, =0. So we can reduce the problem as a plane stress description.



We set phase fraction of each portion as ¢* and ¢f. When setting M as total number
of Li interstitial sites within the crystallite, then the number of interstitial sites within
a-phase and within B-phase portion is M¢* and MP respectively. We take N as total
number of Lithium ion within the crystallite. Then we set N* and NP(= N-N%) as the
number of Lithium ion within a-phase and the number of Lithium ion within -phase
portion respectively. Thus Lithium concentration within a-phase is calculated as x* =
N®/M¢* and Lithium concentration within B-phase portion is xf = NB/M¢B. Overall

Lithium concentration within the crystallite is x = N/M.

X = %* + @Bx® (2.1)

N
2 .
\ /
~N
Figure 2.1. Definition of the coordination system for the periodic two phase in orthorhombic crystallite
The dimension of the crystallite depends on Lithium concentration and phase fraction.

We define total strains, as written in Eq. (2.2), relative to the dimensions of the single-

phase crystallite at equilibrium when x = 0, viz., the dimensions of FePO4.In Eq. (2.2), L;



is a deformed length along i-direction, and L’ corresponds to reference undeformed

length when x = 0.

g =—" (2.2)

wherei=1,2,and 3.

Following conventional notation, we make 2" order strain tensor to a vector as below.

£ =8, E=E,, =8, E,=E;=E,,E=E;=¢;,and §, =€, =¢,.
Total strain, &, , is expressed as a change relative to the equilibrium volume of a single

phase crystallite having a concentration x = 0. The total strains are composed of
swelling strain and purely elastic strain. A dimensional change from swelling as Lithium

ions are added is denoted by swelling strain, € . The elastic strain from external

stresses or coherency constraints is ¢, .

& =¢(x)+g (2.3)

For only purely elastic strain, we use commonly used generalized Hooke’s law for
orthotropic symmetry material. Each term of coefficient matrix for LixFePO4 has been

determined by first principles analysis by T. Maxisch and G. Ceder [13].

10



0, | ¢y €y ¢ O 0 0 ] €
0, €y Cp €3 O 0 0 €
Os |_| % % G 0 0 0 & (2.4)
o, O 0 0 2, O 0 £,
o, 0 0 0 0 2 O £
o I 0 0 O 0 2c I\ &
Total free energy for the coherent crystallite including the strain energy penalty is
_a0ar of o Bar. B(.B strain
G=¢0"M-g (x )+¢Mg (x )+E 2.5)

The total free energy, G, is sum of the free energies of a- and B-phases in their
equilibrium dimensions without coherency constraints, and the total elastic energy,

arising from coherency strains. g*(x*) and g?(x”) are the free energies per unit cell of

the homogeneous o- and (3-phases. Since the crystal structure of the host is unchanged

with Lithium concentration, the free energy of LixFePOs per unit cell, g°(x°) , is

continuous function of the Lithium concentration, where £ = @ and B. In Eq. (2.5), the
strain energy is total elastic energy of the crystallite arising from coherency strain. We
neglect surface and interfacial free energy terms which is of importance for small
crystallites. However, the neglected terms are relatively small compared to the volume

contributions for a large crystallites.

11



Assuming homogeneous strains, we calculate an expression for the strain energy

analytically. The strain energy is calculated as below.

Eelasric :% J. 0282 + 6383 dVO —% J. [C22 82 + 2C23 (82 83)+ C33 83 ]dVO
Vo Vs (2.6)
where the plane stress elastic moduli is
~ C1i¢1
Cij =Cij —
€11 (2.7)

and i = 2 and 3. Detailed derivation of Eq. (2.7) is shown in the Appendix A. The elastic
constants, in principle, depend on the Lithium concentration. Since the crystallite is free

to relax in a-direction, o, is zero. So there is no term related to o, in Eq. (2.6). Assuming

uniform strain in each phase, Eq. (2.6) is simplified to

E €lastic _y, ((Paea( )+ (])B ﬁ(Sg 85)) (2.8)

In Eq.(2.8), €¢ is a strain energy density of each phase:

1
eé(gzsgs) 2[022(82) +2C2?(8§ 8§)+C”(8§) } (2.9)

12



where £ = o and f.

We write the total free energy per interstitial site of two-phase coexistence material as

5 G _ 4737 1 ¢B3B
8coex =7, = g + 8
m? ¢ (2.10)

where
g =g(x)+ Qe(g,.63) (2.11)

g can be interpreted as the free energy of a homogeneous crystallite per interstitial site

having concentration x when the crystallite is elastically strained in the 2 and 3

directions by €, and &, but free to relax in the 1 direction. So the free energy for the

strained crystallite explicitly depends on temperature T, the pressure P, the Lithium

concentration x, and the total strains &, and &, , ie., g(T,P,x,¢,,&,) . We take P = 0 to

avoid the Legendre transforms, which is a reasonable approximation for solids at
ambient conditions.

We consider a crystallite at constant temperature T, at constant pressure P = 0, and
with constant number of Lithium ions N. The crystallite has several degree of freedom
that are not fixed by external boundary conditions. Although we fix total number of
Lithium ion, there distribution over the coexisting phases is not. We can take N*

independent (Nf = N - N®) . Also one of the phase portions ¢* is independent ( % = 1 -

13



0%) and strains in two directions are controllable. Thus, in the Eq. (2.5), we choose four

independent variables: N* ,¢%, &, and &, .

To find equilibrium criteria, we minimize the Gibbs free energy with respect to the
four chosen variables. This minimum can be determined by setting the partial

derivatives of G in Eq. (2.5).

el
N Jgr 2,2, (2.12)
B

" N,z (2.13)
8l

2 v ot g, (2.14)
5.

83 Na’q)aéz (215)

The corresponding results are Eq. (2.16) - Eq. (2.19). Detailed derivation is shown in

Appendix A.

a=p (2.16)

14



8 —xofi" =P — xp0P (2.17)
9“0 + 9Pl =0 (2.18)
0“0 + 9Pl =0 (2.19)

The first two equations of equilibrium criteria coincide with the common tangent law.
For our special case with miscibility gap, the common tangent law means that
concentrations of the two stable phases lie on the common tangent to the curve of free
energy per unit volume, which is illustrated in Fig 2.2. Specifically, Eq. (2.16) specifies
that the slopes are equal, and Eq. (2.17) specifies that the intercepts on the ordinate are
equal. The rest two equations, Eq. (2.18) and (2.19), imply that average stresses along b-
direction and c-direction are zeros. Since free energy has strain energy term, chemical

potential in Eq. (2.16) is derived like Eq. (2.20) and Eq. (2.21), where & = oc and .

‘aé = (ai] (2.20)

15



.. dgt Q 2 &5 &5 2 95 3, de* Je’*
f= () =22l e) =2 +(e) =2 |-QY ——
K=o 2{( ) e e e) g e (e) Sr e oe g
i (2.21)
Since stress can be expressed as
de* g°
s_| X2 = | =
G"‘(ag.f] T [aéé y (222)

The second equality is possible because g(x), the free energy of the crystal at its
equilibrium volume, does not depend on elastic strains. So Eq. (2.18) and Eq. (2.19) are

summarized as

(2.23)

where implicitly the bulk concentration x is held constant during differentiation. Eq.
(2.23) means that the normalized free energy of the two-phase crystallite at the bulk
concentration x is minimum with respect to variations in the lateral dimensions in the
2- and 3- directions of the crystallite. The corresponding matrix of second derivatives

(0°8..., / 0€,0€,)is positive definite because the strain energy densities are convex by

construction. Hence the extrema are minima.

16



Since the elastic moduli and lattice parameters depend on chemical concentration,
the equations of mechanical and chemical equilibrium are coupled. Consequently, Eq.

(2.16)-(2.19) are to be solved simultaneously.

Q2

Px X xB

M

Li concentration X

Figure 2.2. Graphical construction of three dimensional common tangent method
to find equilibrium strain and concentration in each phase

The general idea of finding global minimum of free energy using common tangent
method is illustrated in Fig. 2.2. Once implicitly fixing total concentration x, then fixing

&, and &, , concentrations in two phases are determined. g, lies on the common

tangent at the total concentration, x. Then mechanical equilibrium is determined by the

minimum of g _, withrespectto £, and &,.

17



2. 2. Application to LixFePO4

For LixFePO4, we add some terms to a regular solution model, because behavior of
LixFePO4 deviates from a regular solution model due to its eutectoid decomposition as it
cools down from solid solution at high temperature. As it cools down, it decomposes to
two-phase through a eutectoid reaction with a eutectoid composition at x=0.6. To model
free energy more accurately, we used an empirical free energy expression commonly
used in calculation of phase diagrams (CALPHAD) descriptions of experimental

thermodynamic data, relying on Redlich-Kister polynomial expression [14].

g(x)=g8, (1-x)+ g - x+x(1- x)iLn(l—Zx)" +2RT{xInx+ (1—x)In(1-x)}
20 (2.24)

go and g1 are free energies of FePO4 and LiFePOg4, respectively. L, are Redlich-Kister
coefficients and we used terms up to n = 5 for our free energy calculation. The factor of
2 in front of the ideal-solution entropy expression arises from the fact that for every
Lithium site that can accommodate Li-vacancy disorder, and there is an Fe site that can
accommodate localized electron-hole disorder [15]. The Kister coefficients were
adjusted to match voltage curve derived from Eq. (2.24) with experimental open cell
voltage curve measured by Meethong el al. [16], and also to have two phase coexistence,

illustrated in Fig. 2.3. In Fig. 2.3, no coherency strain energy term is considered.

18
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Figure 2.3. Free energy curve without considering the strain energy

We make two more assumptions for Lithium iron phosphate. First, we assume that
elastic moduli are independent of Lithium ion concentration. Secondly, we simplify that
swelling strain is linearly proportional to concentration following Vegard’s law as below,

which says that the lattice parameters dependent on Lithium concentration [17].

l

e (x*)=7,-x" and &’ (x")=17,x* (2.25)

where i=2, 3.

In Eq. (2.25), 7; has the same value in both a- and S-phases: 12 = 0.036 and 73 = -0.186.
The values are based on the experimentally measured difference in lattice parameters
between and in the 2- and 3-directions [7]. As a quantitative estimate of realistic elastic
moduli, we used values predicted from first principles: average values of each c; for

FePO4 and LiFePO4 [13].

19



property FePO, LiFePO4
a [A] 9.826 10.334
b [A] 5.794 6.002
c [A] 4.784 4.695

Table 2.1. Lattice parameters of olivine LixFePO4 from by G. Chen et al. [7]

FePO, LiFePOs
property GGA+U GGA+U
c11 [GPa] 175.9 1389
c22 [GPa] 153.6 198.0
c33 [GPa] 135.0 173.0
cas [GPa] 38.8 36.8
css [GPa] 475 50.6
cos [GPa] 55.6 47.6
c12 [GPa] 29.6 72.8
c13 [GPa] 54.0 52.5
c23 [GPa] 19.6 458
p [g/cm3] 3.51 3.49

Table 2.2. Elastic constants of olivine LixPO4 from first principle

Since total stresses in the 2-direction and 3-direction are zero in Eq. (2.18) and Eg.

(2.19), total strain is written as

Detailed calculation for Eq. (2.26) is shown in the Appendix A. So combining Eq. (2.25)

and Eq. (2.26) yields elastic strains in the forms

e

calculation by T. Maxisch and G. Ceder [13]

Il
ﬂ
=

20




g =-T1, ~(x“—x) and &’ =-t, '(xﬁ—x)

l

By applying Eq. (2.27) to Eq.(2.21) yields

By integrating Eq. (2.28), we have

where

['=0,,T, +20,,T, - T, + CyTs

(2.27)

(2.28)

(2.29)

(2.30)

Eq. (2.29) is applied to two different total concentrations, 0.3 and 0.7 to produce Fig.

2.4, drawn in green curves. The red curves indicate the free energies of homogeneous

crystallite having no interface. In Fig. 2.4, the common tangent of green curves in the

two-phase coexistent is shown in the black curves. The black curve is always under the

red curves in the solubility limits and it means that the coherent crystallites are more

plausible to exist than the homogeneous crystallites are.
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Figure 2.4. Common tangent method for coherent two phase equilibrium,
with total concentration (a) x=0.3, (b) x=0.7
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2. 3. Effect of coherency strain on two-phase morphologies

Lithium diffusion in LixFePO4 is one-directional along 2-direction or b-direction.
Intuitionally two-phase interface is suggested to be perpendicular to the diffusion
direction, as the morphology Il in Fig 2.5. However, Chen et al. found that the two-phase
interface is parallels bc-plane, corresponding to the morphology I illustrated in Fig. 2.5
indicates. They argued that morphology I minimizes the strain energy, an assertion
confirmed through our analytic development. Fig. 2.6 illustrates free energies per
interstitial site for various possible morphologies in Fig. 2.5. Fig. 2.6 clearly shows that
morphology I has a lower free energy than morphology I, consistent with G. Chen et

al’s experimental observations [7].

Homogeneous
Incoherent two-phase mixture

i
C oy c y IHIHI
1@ -

Morphology I Morphology 11

Figure 2.5. Various possible morphologies. At low temperature, morphology I is preferred
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Figure 2.6. Free energies for two-phase coexistence for the various morphologies in Figure 2.5

2. 4. Coherency Strain and Voltage

While the effect of coherency strains is small on each phase concentration, its
influence on voltage curve is relatively bigger. Without coherency strain, voltage is
constant within a two-phase region as illustrated in Fig. 2.7 as a dashed line. Voltage of
Fig. 2.7 is only valid for individual crystallites when the concentration is controlled
externally.

The intrinsic voltage is related to Lithium chemical potential of the cathode
material crystallite while chemical potential of anode material is constant. F is Faraday’s

constant in Eq. (2.31).
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Li concentration

Figure 2.7. Voltage curve for a single crystallite, when controlling total concentration

When the total concentration is controlled externally, voltage increases linearly inside
two-phase region due to coherency. Assumptions applied are that elastic moduli are
constant and strains follow Vegard'’s law.

This phenomenon is unlikely to be observed with electrodes consisting of many
crystallites, since Lithium ions would redistributed among crystallites. So some
crystallites are only in Li-poor phase and some of them are only in Li-rich phase. This is
identical with incoherent case. However, during the exchange of Lithium ions, some
crystallites are in coherency two-phase equilibrium temporarily. Although, eventually

all the crystallites are in single phases, either Li-poor or Li-rich phases.
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Figure 2.8. Voltage curve showing the role of coherency strain, when controlling voltage

When controlling voltage, which can be done by imposing a constant Lithium
chemical potential, we measure concentration. The result, illustrated in Fig. 2.8(a),
shows hysteresis. When discharging the coherent electrode, significantly lower
underpotential should be applied to overcome coherency strain energy. Once
underpotential reaches, the crystallite transforms to Li-rich phase at the constant
external voltage. Similarly charging process needs overpotential to transform the
crystallite to Li-poor phase. To summarize, coherency strains lead to energy loss to
overcome strain energy that is released in an irreversible manners such as sound waves,

crack, and dislocation.
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2. 5. Periodicity and Error in Analytic Calculation

Figure 2.9. Two types of mesh of one periodic cell with ¢ﬂ = 0.5 for FE calculation

In reality, the LixFePO4 crystallite ruffles in the surfaces, while, for our simplified
model, only the lattice parameters change as the total concentration changes. Thus our
model has smaller degrees of freedom to deform and as a result our analytic strain
energies are the upper bounds for real. With periodicity in a and 3 phases along a-
direction, as illustrated in Fig. 2.10, our model depicts a real crystallite better, for the
crystallite rumples less in that case. In Fig. 2.10, we confirm that as periodicity
increases, relative errors in strain energy between our analytical model and more
realistic FE model decrease. For simplicity, we considered a rectangular shaped crystal

with same lengths L2 and L3 along 2- and 3-directions while changing the length of
periodicity A1 along first direction. Analytic calculation is based on the result of section

2.2, while the COMSOL software was used for FE calculations. In Fig. 2.10, the crystallite

is free to deform in the first direction that is perpendicular to the phase interfaces. In FE
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computation, the free boundary condition along the 1-direction is substituted by

modifying the displacement along first direction until the stress in the 1-direction, 61

reaches zero. The calculation was conducted with three different phase fractions: 0.01,
0.05, and 0.50. As illustrated in Fig. 2.10, the result shows that smaller fraction
insertions of different phase cause smaller relative errors between analytic and FE
calculation. The result meets the intuition because smaller fraction of dissimilar phase
insertions make the crystallite almost homogeneous. The discrepancy of FE and analytic
calculations for phase fraction 0.99 will have similar value to that for phase fraction
0.01. Similarly, so will be the difference with phase fraction 0.05 to that with phase
fraction 0.95. We expect the maximum discrepancy will happen near the phase fraction

0.50.

0.9,
0.8 | I
3 — ®P=0.01
0.7 — 7\‘1 —of=005
06 | }'\4 @P=0.50
E 05} Lz
<] 0.4}

0 5 10 15 20 25 30 35 40

= )

Figure 2.10. Relative error of analytic approximation compared to FE calculation
as a dimension of periodicity changes. The dashed line indicates 5% error
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2. 6. Ideal Crystallite Shape Based on Quasi-Static Analysis

The coherency strain energy scales with the size of the crystallite and depends on
the shape of the crystallite. For macroscopic crystallites, coherency strain energy is too
big to overcome by thermal fluctuation and only with a huge overpotential in the
voltage can two-phase coexistence be achieved. One way to reduce required
overpotential per volume of a macroscopic crystallite is to change shape of the
crystallite to reduce coherency strain. Through finite element analysis, we found that
needle shape crystallites have the least coherency strain energy densities, as illustrated
in Fig. 2.11. So minimum overpotential in the voltage is needed for two-phase
coexistence in the needle shape crystallites. Since the needle shape will have the least
area of two-phase interfaces per volume of a crystallite and hence the least coherency
strain energy, the result meets intuitions. A minimization of coherency strain also
reduces possibility of mechanical damages. Large localized stress during two-phase
coexistence can results in irreversible dislocations and cracks. These crystalline defects
hamper the passage of the interfaces during phase transformations and result in overall
particle degradation. As the crystallites approach the nanoscale, the total coherency
strain energy becomes small too. At the nanoscale, the coherency strain energy may
become comparable to thermal energy and could be overcome by thermal fluctuations.

So less of an overpotential is needed to initiate phase transformation.
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Figure 2.11. Coherency strain energy density as function of crystallite dimensions
when a-phase is enclosed by f-phase
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CHAPTERIII

Time dependent FE analysis of electrode materials

In this chapter, a time dependent analysis scheme for the Lithium (de)intercalation
processes of Li-ion battery electrodes will be conducted. There exist moving interfaces
between two coherent phases. Right behind the moving interface, the newly phase-
transformed part experiences infinitesimal structural changes from concentration

transition. We will formulate the diffusion process and stress equilibrium for the

Lithium (de)intercalation process both rigorously and numerically. Tracking of the
moving interfaces will be conducted with the Level Set Method. The coupled physics are
illustrated in Figure (3.1) for a special case of LixFePO4 with one-dimensional diffusion

along the b-axis.

1-D
diffusion

Interface motion

C
b a :
Coherency stress relaxation

Figure 3.1. Time dependent coupled physics for LixFePO4
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3.1. Mathematical Formulation
3. 1. 1.Transport problem

We use the mass balance equation with a sharp interface for the diffusion problem.
At the interface, the concentration changes discontinuously. The strong form of

transport problem is

ox*
= =_V.j
ot /
(3.1)
]'5 _ _Dévxé‘

where & = o and B. Eq. (3.1) is second Fick’s law.

In Eq. (3.1), x°, D%, and j* are the concentration of each phase, diffusivity, and flux of

each phase respectively. The anisotropic diffusion is possible by setting D* as

(3.2)

o
S

where the a-direction is perpendicular to the interface for the case of LixFePOa.
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For LixFePOs, the diffusion is confined to one-dimensional channels parallel to the a-
direction [18]. Here two dimensional diffusivity for LixFePO4is considered to calculate

the velocity of the propagating phase interface: D, > D,, D, =0.

The weak Form of Eq. (3.1) is

L,, Qﬁ(w%+wv-jjdv=0 (3.3)

where w is a weighting function.
By applying the divergent theorem to Eq. (3.3) and then enumerating all the boundaries
including the interface flux in the phase-interface I' between Li-poor a-phase and Li-

rich B-phase, we have

ox ) o
J.Q”uQﬁ ngv B J.Q“uQﬁ Vw-jdV + J.asz“\rw] ndV

(3.4)
of i nds+ [ wi”onds+ [ wi - (-mds =0
aQA\1r b r*
where the normal vector at the interface is illustrated in Fig. 3.1.
With a discontinuity bracket defined below, we define flux jump at the interface I.
[j-n]=G" =% n (3.5)

With Eq. (3.4) and (3.5), the weak form of the transport problem becomes
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ox . »
J.Q“uﬂﬁwgdv_ Q“uQﬁVW.JdV+jaQ“\rw] ndv (3.6)

B .
+jagﬁ\rW] -ndS + jrﬁw[[] . n]]dS =0

Figure 3.2. Definition of normal vector, n, at the interface I'

When seen from a moving frame I' in Figure 3.3, conservation of mass can be

expressed as
j“on=cv-n=j-n-cfv-n (3.7)

where v is the velocity of the interface.

So the velocity of interface can be calculated as
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(3.8)

o
X
B
Li rich . ~ Li poor
B-phase | x-phase

Figure 3.3. Mass balance at the interface I

Both essential and natural boundary conditions are possible to simulate the
transport problem correctly. First, an essential boundary condition on the surface with

active reaction and natural boundary condition for inactive rest can be applied.

x=x" on0dQ,
(3.9)
no flux on E)Qﬁ
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Alternatively, a natural boundary condition, Eq. (3.10) can be applied. For LixFePO4, the

only two non-zero components are g and g’ , because of the one-dimensional

anisotropic diffusion property of the material.

8
J=| & |onoQ,

83
(3.10)

8
j=| g |onoQ,

83

3. 1. 2. Mechanical Problem

Generally stress relaxation happens faster than the diffusion process in the Li-ion
battery materials. Hence we adopt quasi-static stress equilibrium in the reference

configuration with a natural boundary condition for all outer boundaries.

V-P=0 (3.11)

T=n-P=0 (3.12)

where P is the first Piola-Kirchhoff stress tensor and T is a traction force on the surface.
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The weak form is

J.Qa o P-VwdV — J-aga o wT dS =0 where w is the weighting funciton  (3.13)

From the Neumann condition, Eq. (3.12), Eq.(3.13) is simplified to

anUQﬁP-VvT/deo (3.14)

We calculate P from the following strain energy function.

W= %EC E,

ij " ijkl

1
= E(Elzlcllll + E222C2222 + E§3C3333

H2E EC 1y +2E EC 35 + 2E, ECyyy
HE[LC yp, +4ELC s +4E;Conyy) (3.14)

1
= E(Elzlcll + E222C22 + E§3C33

+2El 1E22C12 + 2E11E33C13 + 2E22E33C23
+4E122C66 + 4E123C55 + 4E223C44)

Through partial differentiation of Eq. (3.14) with the deformation gradient tensor F, we

get
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_OW _OWOIE W _

=—=——=F—=F(C:E 3.15
OF OE oF oE ( ) (3.15)
The components of P are shown in Eq. (3.17)
I Fij (CjklmElm) (3.16)

B = F,CLE, + F,(C, + C)Ey + F3(Cy + Cs5)Ey,
Py = F (Ciy + Co)Ey + FCpEy + Fiy(Cs + Cu)Es,
Py = F; (C3 + Cs)Ej; + Fy (Cyy + Cu ) Eyy + FCiEsy
Py = F,|(Cis + C5)Ej; + Fyy (Copy + C ) Eyy + F3CE),
By = F(Cs+ Cs)E; + Fy (Cy + C)E + F;CLE,
By, = F(Cp + Co)E, + FyCph By + F5(Cy + Cu)E,

(3.17)

F swell

~ A

Figure 3.4. Decomposition of the deformation gradient tensor
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As the concentration of the Lithium changes, swelling happens in the crystallite. I
assume that the changes in lattice parameters follow Vegard’s law: the changes in lattice
parameters are linearly dependent on the Lithium concentration, x. The anisotropic
expansion is handled by multiplying swelling term to deformation gradient. Since any
motions can be decomposed to pure swelling due to the chemical composition change

and typical deformation tensor, the deformation gradient tensor can be decomposed to

F = stellﬁv (318)

where deformation gradient tensor from chemical composition is defined as

& ¢
a—-a)x°_ . (b—=b)x"_ __
wae”:%€]®el+Mez®eZ+

ao bO CO

_ ¢
L@ o6, (3.19)

where ay, bo, and ¢y are lattice parameters of fully delithiated phase and aj, b, and c; are
those of fully lithiated phase. This decomposition process matches Eq.(2.3) in the

Chapter II.

3. 1. 3. Two-Phase Interface Tracking by Level Set Method

The brief explanation of Level set method in this section is excerpted from chapter
two of James Sethian’s book [8]. Stanley Osher and James Sethian developed Level set
method (LSM) to track interfaces and boundaries. LSM calculation is carried out with
fixed Cartesian grid (Eulerian perspective) and can be applied to complex topology

changes such as hole developing and surface splitting.
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Let the dimension of domain Q be N. Then LSM embeds propagating hypersurface I
of (N-1)-dimension as the zero level set of a higher dimensional function ¢.
The function ¢ is called signed function. Initial values of ¢ are the distance from the

hypersurface I', where d is the distance from the hypersurface.

d(x,t=0)=+d (3.20)

The initial hypersurface is defined as

[(t=0)=[x|l¢(x,t =0)=0] (3.21)

In Eq. (3.21), plus (minus) sign indicates that the corresponding point x is outside

(inside) of the initial closed hypersuface I'. The requirement is that as time passes, the

evolving zero level set always matches the propagating hypersuface.

d(x(t),1)=0 (3.22)

By applying the chain rule to Eq. (3.22), we get
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¢

L 4+Vo-x(1)=0
ot
(3.23)
a—¢+V¢-v(r)= 0
ot

With the velocity of interface, v, defined in Eq. (3.8), an advection equation is set to be

solved. The boundary condition for Eq. (3.23) is

¢=0or A, Vo=0 ondQ,t=[0,T]
(3.24)
where 1., is the normal vector at the walls
So the weak form of Eq. (3.24)
d¢
J‘ngdV+J.Qw(v-V¢)dV—0 (3.25)

is solved and the zero contour of solution indicates the location of interface.

We use a modified version of LSM by E. Olsson et al. [19] The modified version
differs in the initial condition from the original one and has enhanced mass
conservation property. Also, reinitialization of initial condition, which is generally
required for correct LSM calculation, is not necessary with the Olsson’s LSM in Eq (3.25)

because of its conservative property.
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Figure 3.5. Initial condition of E. Olsson’s LSM

0, p<—5
D LA SN 0 I
o (@) 5 25+2ﬂsm(6j, §<p<S (3.26)
1, ¢>0

When the advection term is dominating, numerical instability can be alleviated in a
consistent manner by adding residual based terms over the element interiors to the
Galerkin weak form. There are several ways to stabilize the equation, e.g., Streamlined
Upwind Petrov-Galerkin (SUPG) and Galerkin Least Squares method (GLS) [20, 21]. E.
Olsson’s version has a little complex spacial stabilizing scheme to guarantee mass
conservation especially for fluids problems. Instead of the complex stabilizing scheme,

we adopt SUPG for the LSM. By adding SUPG term to Eq. (3.24), we get
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[wo,av + [wv-Veyav + jr(%+ v-Vo)@, +v-Vo— f)dV =0 (3.26)

SUPG

For time stepping, forward Euler method is applied to both transport problem and

interface tracking LSM.

3. 2. Staggered Algorithm

Now that we have defined all three physics in the weak form, we can solve the
whole problem. Solving the coupled problem simultaneously is ideal to a get correct
solution. If we want to reduce the computational cost, we can adopt the staggered
algorithm, which solve one equation while fixing other variables, then solve another

equation in a similar manner.
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CHAPTERI1V

Conclusion and Future Work

4. 1. Conclusion

A single crystallite of many electrodes for Li-ion batteries undergoes two-phase
coexistent states during (dis)charge, since the crystallite of electrodes often have lower
free energies when two phase coexist. When two phases coexist, very sharp or
somewhat diffused interfaces between the two-phase portions have been observed in
many electron microscopy studies. The different lattice parameters for each phase
portion result in coherency strain at the phase interface. This coherency strain affects
chemical potential and total free energy. Reversely, changed thermodynamic potentials
vary solubility limits of Lithium, voltage profile, and phase stability. We suggested a way
to model the coupled Lithium (de)intercalation kinetics both analytically and
numerically.

In the quasi-static analysis, we derived mechanical and chemical equilibrium
criteria and applied them to olivine LixFePO4 (0 < x < 1) prism-shape crystallite. We
added coherency strain energy term to the free energy and found four equilibrium
conditions: two chemical and two mechanical equilibrium criteria. Two chemical
equilibrium criteria correspond to the well known common tangent method with

modified chemical potential and modified total free energy by added coherency strain
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energy. The rest two mechanical equilibrium means that the average stresses along two
directions equals zero, which parallel the phase interface.

When applying the criteria to olivine LixFePO4 crystallite, further assumptions were
made: (i) the elastic moduli are independent of the Lithium concentration and (ii) the
lattice parameters are linearly proportional to the Lithium concentration. We check the
effect of coherency strain on the voltage profile. Using the Lithium chemical potential of
LixFePOy4 crystallite, the effect of coherency strains on overpotential and underpotential
to initiate evolution of coherency crystallite was shown. For olivine LixFePO4 crystallite,
by adding the coherency strain energy term to the total free energy, we confirmed that
the total energy is minimized when the phase interface parallels the bc-plane, although
the Lithium ions diffuse along the b-axis of the crystallite.

Since actual crystallites ruffle in the surface, the free energy of the developed
analytic solution is always higher than the real value. One way to make the analytic
solution more accurate is increasing periodicity to alleviate the ruffles in the surface can
be alleviated. By comparing analytic solution with more realistic finite element
calculation, we confirmed that as periodicity increases, relative errors in strain energy
between our analytical model and more realistic finite element model decrease. Also,
the comparison confirmed the intuition that a smaller fraction of dissimilar phase
insertion leads to smaller surface ruffles. Because, with small fraction of alien phase, the
crystallite is more similar to the one in a homogenous state, the ideal analytic
calculations becomes closer to the more accurate FE calculations. Through the FE
analysis, we found that minimal coherency strain energy density corresponds to needle-

shape crystallite for the quasi-static case.
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In time dependent analysis, fully coupled general scheme for 3 physics is shown:
diffusion, coherent stress relaxation, and the two-phase interface evolution. First, the
diffusion equation dealt the Lithium ion diffusion in the host. Second, the mechanics
equation for the coherent stress relaxation is slight modification of quasi-static analysis.
Finally, the evolving two-phase interface was handled with the Level Set Method. We
adopted E. Olsson’s modified version of LSM and changed the spacial stabilizing scheme
of it with SUPG. We hope that fully coupled time dependent three-dimensional
numerical simulation of the electrode materials will inspire readers about new designs
of these materials.

For the application to LixFePOs, the quantitative as well as qualitative predictions of
our development are sensitive to the behavior of the free energy of the homogeneous
phase inside the incoherent two-phase region. This portion of the free energy of
LixFePOy is currently unknown and very difficult to be measured experimentally. The
effect of coherency strain on the composition of the coexisting phases, x* and x#, will be
more significant than predicted here if the difference between the homogeneous free
energy inside the two-phase region and the common tangent, Ag, is smaller than one in
the free energy model of LixFePO4 used in the Chapter Il. Also, two-phase coexistence
could be completely suppressed within individual crystallites at room temperature if
the maximum value of Ag inside the two-phase region is less than the coherency strain

energy penalty of two-phase coexistence.
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4. 2. Future Work

Implementation of the time-dependent scheme to actual electrode materials will
confirm the validness of the derivation in Chapter IIl. The sharp interface with
discontinuously changing concentration generally leads to oscillation. To accurately
model the discontinuously changing concentration, I recommend to adopt the
Discontinuous Galerkin (DG) method [22] or the enhanced strain approach [23]. Both

methods are stable when there is jumps in the field variables: strains and concentration.
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APPENDIX A

A.1. Plane Stress Elastic Moduli Derivation

From the plane stress assumption, we set the stress along first direction is zero.
O, =c¢,E +C,E +¢36=0 (A1)

From Eq. (A.1), we get

1
g =——(c,E&, +C15€;) (A.2)
11

The stresses in the 2nd and 314 direction are

0, =& + CpE, + 08, (A3)
O3 = C5,& + CyE, + (558,

By eliminating €,in Eq. (A.3), we get
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1 Ch (A4)

Now, by defining the plane stress moduli as below,

Cl'clj

l

) (2.7)

Gy =(c; =
11

where [, j =2,3.

we can express the stresses in the second and third directions as

0, = (&, + ()¢,

~ ~ (A.5)
03 = (€, 1 €338,
A. 2. Coherent Two-Phase Equilibrium Criteria Derivation
The total Gibbs free energy is shown in Eq. (2.5).
G=¢"M g"(x*)+¢’M - g*(«")+ E™" (2.5)

where M as total number of Li interstitial sites within the crystallite.

In Eq. (2.5), strain energy is
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(2.6)

Assuming that strains in each phase are uniform, elastic energy in Eq. (2.6) is simplified

to

Estrain — VO (q)aea (8;1 ,8;1) —+ ¢ﬁeﬁ (85 ,85 )) (2-8)

where

 (en8) = 5[ 0 (e8) + 200 (e - £)+ 2 (e (2.9)

In Eq. (2.5), we choose four independent variables:
N%, ¢“, &,, and E,.
To find equilibrium criteria, we minimize the total free energy with respect to the four

chosen variables. First one is

oG
=0 2.12
(... e

To expand Eq. (2.12)
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aizﬁg) + (83 )

2 9¢%,
A6
axﬁ} (46)

oes de)” ox”

ox* [ (e 9e 9e L[ 9" o 0ey”
&% €2 ox”

0eP 9edf oxP

To simplify Eq. (A.6), we use Eq. (A.7)-(A.9).

_NQ
Voo*

5 N’Q
V0"

xa

and x

where Q is the volume of the crystal per Lithium site.

Partial derivative of Eq. (A.7) is

ox“ Q ox? Q
= an =—
N Vet N T TV

Also from Eq. (2.3), it is clear that

dg]
e

where y=0,  and i=2, 3.
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Applying Eq. (A.7)-(A.9) to Eq. (A.6) results in

dg” _0g”
ox*  oxf
Ql, ,\20¢ o o OCr «\2 93
) S e en (e
Q 2 OF och, N2 0P
—3[(85) P REG ef)ax2;+(e3) a;g} (A.10)
_of[9¢" 987 ) [ 9e” 0ey”
dey ox” de; ox”
de’ 0e)’ de? g’
Q =0
’ (aef o’ j+[ae§ o’ H

By arranging terms in Eq. (A.10), we get

9e° O Lwdes L 6% 92 [ de” e
== 0 4. gy L e}
n 2[(82) e TE 83)8)6“ +He) 5 e ox" | | 9e" on
g’ Q[ 4\ 0ch, 2 985, de’ el’ de’ 0edf
_98 Q)% , _0
P 2{(82) 50 T2 ) ( ! 3 o ax? )"\ 9e? o’

(A.11)

So the first equilibrium condition is derived as Eq. (2.16).

i =pP (2.16)

where
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¢ ¢ 22 ¢ o8 23 & 33 i
== | (6) —F (e ef) 2 (e]) S |- QX ==
ox® 2 ox ox ox = 07 dx (2.21)
where &=q, P.
2nd equilibrium condition is
(%),
a¢ N% &, &
(2.13)
Having x” = x?(x*,¢*) in mind, we expand Eq. (2.13).
ﬁ B B
Mg® + Ve — Mg? — V¢ + Mo 28 o’ +v0¢ﬁae x* _y (A.12)

ax? 99” P 9¢”

By dividing Eq. (A.12) by M and expanding further, we get

dg” ox?
ox? 9¢”

axP| 1 2 9cP
B - 22 &b
+Q0¢ 20" { ((8) P ﬁ+2( - &,

-’

(ga)z 85_53 _ aeﬁ 88(2)/3 _ aeﬁ aggﬁ —0
2 oxP oel oxP oe? oxP

(A.13)

From the definition of Lithium chemical potential in Eq. (2.21), Eq. (A.13) is simplified

to
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By substituting the partial differential in Eq. (A.14), we get

Further manipulation is shown in Eq. (A.16) - (A.18).

5 XPOP + (97 — Dx”

50 _ =B _

g -8 +u =0
¢I3

~0 (¢a_l)xa ~ ~

T =g’ -

~a—x“ﬂﬁ=gﬁ—xﬁﬂﬁ

By applying first equilibrium criteria in Eq. (2.16) to Eq. (A.18), we get

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

third and fourth minimum conditions lead to mechanical equilibrium criteria. They will

be dealt together below.
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(2.15)

Since the elastic energy is dependent only on strains, Eq. (2.14) and Eq. (2.15) become

a B
Vo(df" o + ¢ de J=0 (A.20)

0 0F
where i=2, 3.

Since the elastic strains are function of pure mechanical strains, we apply the chain rule.

0e” O¢, de” o¢,
Vo| 99 ——=ZL+¢ —=—|=0 A21
0(¢ oc 0z 7% 2 aéi] (4.21)

Because the total strain is
£ =¢€"(N")+¢ (A.22)

, partial differentiation of Eq. (A.22) is obvious:
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df, | _
[gjw =1 (A.23)

Applying Eq. (A.23) and partial differentiation of Eq. (2.6) to Eq. (A.21), we get

D(a ¢ a ﬁ o o
Vo(qb aeg,. +¢ﬁaigj]=vo(¢ o’ +¢c’)=0 (A24)

As a result, the mechanical equilibrium criteria are derived.

¢*cs +¢Pc? =0 (2.18)

¢°cs +¢’cf =0 (2.19)

A. 3. Total Strain Derivation

[ will show detailed calculation for the total strain in Chapter II, which is

13

(2.26)

I
s
=

From the assumption that elastic moduli are independent of Lithium concentration and
the lattice parameters obey Vegrard’'s law, a solution to the mechanical equilibrium
criteria is possible without considering the chemical equilibrium criteria. The

mechanical equilibrium criteria is
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¢9%0% +¢Pab =0 (2.18)

0%0% +¢Paf =0 (2.19)

Since o7 = ¢,,e] +¢&,,e! and 6] =&,e? + .7, Eq. (2.18) and (2.19) can be written as

(pa (53283 + 5338(31) + ¢ﬁ (532‘5‘53 + 53385) =0

0% (Cppel + 8,80 ) + 0P (8,60 +8,,68)=0 (A25)
which can be rewritten as
8 (975 +¢7el) + (9" es +¢Ped) =0 426)
Cy (9765 +9P€l) + 0y (9%ed +9Pel) =0
Since Eq. (A.26) should be satisfied with any elastic moduli, we find
¢ +9"e; =0 (A.27)
Pl +¢Pef =0
Applying the relation of total strain Eq. (2.3) to Eq. (A.27), we get
0% (& — &3+ 0P (] - £7) = 95 —1,x) + ¢/ (&) - 1,x7)=0 A28)

(87 —e3)+ 0P (8P — )= ¢ (87 — 1. x") + ¢ (&F —1,x")=0
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Since & = £’ (= &, ) from coherency constraint, Eq. (A.28) can be written as

(@ +¢P)E, = —7,("x" + ¢°x”)

A.29
(@” +9P)E, = —1,(0"x" + ¢*x) (4.29)

To simplify Eq. (A.29), we use the properties of total concentration and sum of phase

fractions below in Eq (A.30) and Eq. (A.31).

X9 + xPpP = x (A.30)

0" +¢f =1 (A.31)

As a result, the total strains in second and third direction can be written as Eq. (2.26).

13

(2.26)

I
s
=
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