
An Intrinsic and Geometric Framework for the
Synthesis and Analysis of Distributed Compliant

Mechanisms

by

Girish Krishnan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2011

Doctoral Committee:

Assistant Professor Charles J. Kim, Co-Chair
Professor Sridhar Kota, Co-Chair
Associate Professor Jerome P. Lynch
Assistant Professor Shorya Awtar



c© Girish Krishnan 2011

All Rights Reserved



To my wife Ramya, and my parents.

ii



ACKNOWLEDGEMENTS

I especially wish to express my gratitude to my advisors, Professor Charles Kim

and Professor Sridhar Kota. In today’s world, I believe success has more to do with

inspiration than its allotted 10%. I got all the inspiration that I asked for from my

advisors. From the beginning, Professor Kim was a constant source of encouragement.

I sincerely thank him for all the discussions we had, all the ideas we exchanged, and

all the articles we wrote. When my ideas were half-baked, it was these discussions

that crystallized them and provided direction to my thinking. Furthermore, I owe

some important parts of my thesis to the strong foundation laid by him.

It is a great honor for me to be Professor Sridhar Kota’s student. When I got

the opportunity to work under him for my doctoral degree, it was a dream come

true. His motivation was unique. It encouraged free thinking in me by breaking

the barriers of convention. He always encouraged me towards solving some of the

toughest problems. Though both Professor Kota and Professor Kim were physically

away from my location of work, the entire three and a half years of research seemed

very smooth. This speaks more about their advising skills than my research acumen.

And If I had any research acumen to begin with, the credit goes to Prof. G. K.

Ananthasuresh at the Indian Institute of Science, who introduced me to the field of

compliant mechanisms.

I have also immensely benefited from the interaction with my committee members

Professor Jerome Lynch and Professor Shorya Awtar. I sincerely thank them for

reviewing my work. I have had significant interactions with Professor Shorya Awtar

iii



on my thesis. His deep sense of understanding of the subject, the suggestions he

provided, and continues to provide has greatly shaped my work. I would also like to

thank Professor Victor Li for being present for my oral defense.

Being a part of the Compliant Systems Design Laboratory, I consider myself very

fortunate to have interacted with a number of my colleagues. I would like to thank

Brian Trease, Christine Vehar-Jutte, Froukje Euwe, Youngseok Oh, Mike Cherry, and

Joshua Bishop-Moser. My initial interaction with Youngseok Oh and Mike Cherry

greatly shaped my work. My interaction towards the later half with Joshua Bishop-

Moser was of immense help. The rate at which he generates ideas is truly remarkable.

Furthermore, I would like to thank him for helping me proofread the dissertation and

helping me make prototypes.

Finally, I would like to thank my family for supporting me unconditionally through-

out my tenure as a graduate student. I would like to thank my wife Ramya for being

my friend, companion and support. My experiences of Ann Arbor with her are some

of my most cherished memories. My parents, Girija Krishnan and Mr. K. R. Kr-

ishnan have always supported me. It was their grooming, all the lessons that they

taught while I was young that made me what I am today. I see this doctorate as

a seed they sowed years ago. I would also like to thank my second parents and a

sister obtained through marriage. Their constant support and prayers have helped

me throughout.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTER

I. Literature Review: Compliant Mechanisms and their Design
Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Compliance in Nature . . . . . . . . . . . . . . . . . 2
1.1.2 Historical perspective of compliant mechanisms in

human history . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Lumped Compliant Mechanisms: Flexural Hinges . 4
1.1.4 Distributed Compliant Mechanisms . . . . . . . . . 6
1.1.5 Advantages and Limitations of Compliant Mechanisms 8
1.1.6 Functional Classification of Compliant Mechanisms 11

1.2 Design Methodologies of Compliant Mechanisms . . . . . . . 12
1.2.1 Single Port Compliant Mechanisms . . . . . . . . . 12

1.3 Building Block based Design Methodology . . . . . . . . . . . 17
1.3.1 Single Port Synthesis for Large Deformations . . . . 19

1.4 Multi-Port Compliant Mechanisms . . . . . . . . . . . . . . . 21
1.4.1 Topology or Conceptual Design . . . . . . . . . . . 21
1.4.2 Size and Geometry refinement . . . . . . . . . . . . 29

1.5 Identifying Gaps in Literature . . . . . . . . . . . . . . . . . . 31
1.6 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 33
1.7 Organization of the Dissertation . . . . . . . . . . . . . . . . 34

II. An Intrinsic Geometric Framework for the Building Block
Synthesis of Single Port Compliant Mechanisms . . . . . . . . 36

v



2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Building Block Characterization . . . . . . . . . . . . . . . . 38

2.2.1 Eigen-twist and Eigen-wrench decomposition, and Cen-
ter of elasticity . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Compliance Ellipse and Coupling Vector . . . . . . 42
2.3 Concatenation of Building Blocks . . . . . . . . . . . . . . . 44

2.3.1 Eigen-rotational Stiffness . . . . . . . . . . . . . . . 45
2.3.2 Coupling vector . . . . . . . . . . . . . . . . . . . . 45
2.3.3 Compliance Ellipse . . . . . . . . . . . . . . . . . . 47
2.3.4 Parallel Concatenation of the building blocks . . . . 48

2.4 Parametric Characterization of a Compliant Dyad Building Block 48
2.4.1 Parametric Trends . . . . . . . . . . . . . . . . . . . 49
2.4.2 Stress in a dyad . . . . . . . . . . . . . . . . . . . . 51

2.5 Guidelines and Examples for Building Block Concatenation . 54
2.5.1 Procedure for Serial Concatenation . . . . . . . . . 54
2.5.2 Series Concatenation: Example . . . . . . . . . . . . 56
2.5.3 Parallel Combination of building blocks . . . . . . . 58

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.8 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

III. Multi-Port Compliance Representation using Load Flow Vi-
sualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Quantifying Load Flow in Compliant Mechanisms . . . . . . 68
3.3 Load-Transmitter Constraint sets . . . . . . . . . . . . . . . . 71
3.4 A Compliant Dyad as a Load-Transmitter Constraint set . . . 77

3.4.1 Evaluating Transferred Load for a Dyad LTC set . . 77
3.4.2 Output Displacement Direction for Dyad LTC sets . 80
3.4.3 Output Constraint Beam Orientation: Force Trans-

mission or Motion Amplification . . . . . . . . . . . 81
3.5 Visualizing Load Flow in Compliant Mechanisms . . . . . . . 83

3.5.1 Combination of LTC sets leads to a load path . . . 83
3.5.2 Bifurcated load paths . . . . . . . . . . . . . . . . . 85

3.6 Identifying LTC sets in existing mechanisms . . . . . . . . . . 87
3.6.1 A Displacement Amplifying Inverter Mechanism I . 88
3.6.2 A Displacement Amplifying Inverter II . . . . . . . 90
3.6.3 A Compliant Scissor with flexures . . . . . . . . . . 90

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.8 Appendix A: Evaluating the compliance matrices for a simple

SISO mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi



IV. A Building Block Based Design Methodology for Multi-Port
Compliant Mechanism Synthesis . . . . . . . . . . . . . . . . . . 98

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Review of Load Transmitter Constraint Sets . . . . . . . . . . 100

4.2.1 transferred load . . . . . . . . . . . . . . . . . . . . 101
4.2.2 A Compliant Dyad as an LTC set . . . . . . . . . . 102
4.2.3 Constraint Bands and Amplification factor . . . . . 103
4.2.4 Expressing Compliance and stiffness as eigen-twist

and eigen-wrench parameters . . . . . . . . . . . . . 105
4.3 Single Load Path Mechanisms: Guidelines for Synthesis . . . 106

4.3.1 Possible Direction of Transferred Forces . . . . . . 107
4.3.2 Number of LTC sets . . . . . . . . . . . . . . . . . 107
4.3.3 Transmitter Topology . . . . . . . . . . . . . . . . . 108
4.3.4 Load Flow Directions . . . . . . . . . . . . . . . . . 109
4.3.5 Determining Possible Constraint Orientations . . . . 109
4.3.6 Designing Input constraint . . . . . . . . . . . . . . 111
4.3.7 Determining Dimensions and Designing Output Con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.8 Single Load Path: An Example . . . . . . . . . . . 115
4.3.9 A Practical example: An energy storage mechanism

for a stapler gun . . . . . . . . . . . . . . . . . . . . 117
4.4 Design Strategies for Mechanisms with Multiple Load Paths . 121

4.4.1 Design of Shape Morphing Compliant Mechanisms . 121
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

V. A Strength based Metric for Size Optimization . . . . . . . . 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Performance Metric: Definition and Physical Interpretation . 132

5.2.1 Evaluation of the Performance Factor for simple ge-
ometries . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Size Optimization of Single Port Compliant Mechanisms: Ex-
amples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 A Fixed-Guided Beam . . . . . . . . . . . . . . . . 138
5.3.2 A Compliant Vision based Force Sensor . . . . . . . 139

5.4 Performance Factor for Multi Port Mechanisms . . . . . . . . 140
5.4.1 Evaluation of the Multi Port Performance Metric for

Simple Topologies . . . . . . . . . . . . . . . . . . . 143
5.5 Shape and Geometry Refinement of Two Port Topologies . . 144

5.5.1 A Displacement Amplifying Inverter . . . . . . . . 145
5.5.2 A Mechanism for Energy Storage and Release . . . 146

5.6 Global Comparison of Conceptual Designs . . . . . . . . . . . 148
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

vii



VI. Conclusions, Contributions and Future Work . . . . . . . . . . 154

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

viii



LIST OF FIGURES

Figure

1.1 Flexures are inspired from rigid link with joints (a) A rigid link with
a revolute joint (b) A rigid link with a flexure and its deformation
(c) A decoupled XY Stage using flexures for nanopositioning (Li and
Xu (2010)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Distributed compliance is inspired by observing nature’s designs (a)
tapering branches of trees (b) stress in tapered beams are evenly
distributed all along its length (c) leaf springs are examples of dis-
tributed compliant mechanisms . . . . . . . . . . . . . . . . . . . . 6

1.3 Distributed compliance in engineered designs (a) a mission adap-
tive aircraft wing that changes its profile based on flight conditions,
(b) a MEMS displacement amplifier (Hetrick and Kota (2003)) (c)
a nanometer precision X-Y stage with distributed compliant beams
(d) a PDMS compliant suspension as a vision-based force sensor, (e)
a compliant spring used for a passive knee orthosis exoskeleton, (f)
a compliant one-piece wind shield wiper (Kota and Hetrick (2008))
showing above it the numerous parts of a traditional wipers, and (g)
a large displacement translational and revolute joint. . . . . . . . . 9

1.4 Remote Center of Compliance (RCC) Devices, where the compliance
in the end effector adjusts for any misalignment in the mating parts 14

1.5 Single port compliance design (a) using screw springs (b) constraint
based screw theory (c) geometric compliance ellipsoid approach. . . 16

1.6 A sewing machine and its constituents adapted from Chiou and Kota
(1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Building block method for the design of compliant mechanisms adapted
from Kim et al. (2008). . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



1.8 Synthesis of compliant mechanisms involving large deformations (a)
A cubic spline based network for optimization based generation of
(b) spring topologies with (c) nonlinear force displacement behavior
(adapted from Vehar-Jutte (2008)) (d) a robust bistable mechanism
with a living hinge and (e) a rotational bistable mechanism having
multiple equilibrium configurations (adapted from Oh (2008)) . . . 20

1.9 Pseudo-rigid body modelling of a (a) cantilever beam (b) equivalent
link and torsional spring that models the deformation behavior of the
cantilever beams (adapted from Howell (2001)) . . . . . . . . . . . 22

1.10 Steps in topology optimization of a compliant gripper adapted from
Joo (2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.11 Formulation of a problem based on the load path method adapted
from Lu (2004): (a) design domain initialization, and (b) optimal
topology for the problem specification. . . . . . . . . . . . . . . . . 26

1.12 A building block method for the design of two port compliant mech-
anisms adapted from Kim et al. (2008). . . . . . . . . . . . . . . . . 27

1.13 Instant center based design of two port mechanisms (Kim et al. (2006)). 28

1.14 A map based selection technique for compliant mechanisms: (a)
spring-lever model that captures the mechanism’s lumped behavior,
and (b) the map spanned by the lumped quantities (adapted from
Hegde and Ananthasuresh (2010)). . . . . . . . . . . . . . . . . . . . 30

1.15 Steps in shape and geometry refinement of a compliant gripper adapted
from Joo (2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 Eigen-twist and Eigen-wrench parameters for a particular building
block geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Compliance ellipse and Compliance coupling vector (cv). . . . . . . 43

2.3 Stiffness ellipse and Stiffness coupling vector (~sc). . . . . . . . . . . 44

2.4 Two building blocks BB1 and BB2 in series. The final coupling vector
is the vector addition of the modified coupling vector of BB1 (~rI/kg1)
and the coupling vector of BB2 (~rE2/kg2) . . . . . . . . . . . . . . . 47

2.5 The compliance ellipse of BB2 is augmented by a degenerate shift
ellipse r2m/(kg1 + kg2). . . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



2.6 Addition of Building blocks in parallel involves addition of the indi-
vidual stiffness ellipses and the coupling vectors. . . . . . . . . . . . 49

2.7 (a) A plot of np (b) A plot of the normalized value of af1 and (c)
normalized value of rE (d) angle β, and (e) Normalized stress factor
σn with respect to the dyad angle and dyad length ratios l2norm. . . 52

2.8 Guidelines with an example. (a) Problem Specification in terms of
Compliance Ellipse and Coupling vector (b) Choose E1,E2, Ipm and
evaluate shift ellipse (c) Net ellipse evaluation and subdivision into
smaller building block ellipses (d) Design geometry of the two build-
ing blocks and their orientation . . . . . . . . . . . . . . . . . . . . 59

2.9 Design for a circular compliance ellipse (a and b), and zero coupling
vector (c) alone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.10 Parallel Combination (a) Two symmetric halves (b) Addition of Stiff-
ness Coupling Vectors (c) Addition of Stiffness ellipses (d) Final
mechanism with a rigid probe . . . . . . . . . . . . . . . . . . . . . 61

2.11 The Center of elasticity of any mechanism due to a series combination
of building blocks will always lie within its footprint. (a) Entire
mechanism (b) Mechanism divided into a number of beams of length
l (c) Curve traced by the Coupling vectors, which define the position
of the center of elasticity. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Deriving the Load Transfer matrix for Complaint Mechanisms. (a)
Output displacement is evaluated for an applied input load (b) Out-
put reaction load is evaluated by enforcing the output displacement
from (a) with no input load. . . . . . . . . . . . . . . . . . . . . . . 71

3.2 (a) A simple single-input single-output compliant mechanism with
(b) Input Constraint (c) Intermediate Mechanism and (d) Output
Constraint (e) The simple compliant mechanism split into Input con-
straint together with the intermediate mechanism, and (f) Output
Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 A complaint mechanism with two load transfer stages. The input
force fi is applied at point A. fB and fC are transferred forces at
points B and C respectively . . . . . . . . . . . . . . . . . . . . . . 76

3.4 (a) Dyad with input force fiy and input moment mi (b) With output
transferred force fo . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



3.5 (a) The semicircular freedom band denoting the possible directions of
output displacements (b) The output beam with its degree of freedom
line (c) Direction of output displacement . . . . . . . . . . . . . . . 81

3.6 (a) An LTC set with an output constraint. The relative displacements
between the input and the output can be evaluated using instant
centers (b) Configuration that leads to effective force transmission
(c) Maximum amplification . . . . . . . . . . . . . . . . . . . . . . 82

3.7 Continuous load flow visualization of transferred forces at each sec-
tion of the transmitter beam. . . . . . . . . . . . . . . . . . . . . . . 83

3.8 (a) Combination of two LTC sets (b) The first LTC set with its
constraint band and output freedom band(c) Second LTC set with
its constraint band and output freedom band . . . . . . . . . . . . 84

3.9 Mechanisms with multiple load flow paths (a) Mechanism with input
and output. Mechanism is divided to separate two distinct load paths
(b) Load flow in one load path (c) Load flow in the other load path. 86

3.10 (a) The DaCM topology and(c) The deformed profile of the symmet-
ric half . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.11 Displacement Amplifying Mechanism (Hetrick and Kota (2003))(a)Identifying
the LTC sets that make up the entire mechanism (b) LTC1, (c) LTC2,
(d) LTC3 (e) LTC4 and (g) the direction of the final displacement . 89

3.12 (a) A Displacement amplifying compliant mechanism (Saxena and
Ananthasuresh (2006)) with the LTC sets identified. The direction
of load transfer in (b) LTC set 1, (c) LTC set 2 and (d) LTC set 3
(e)direction of displacements at points A and B, (f) deformed profile
of the compliant mechanism, (g) rigid leverage amplifies the displace-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.13 (a)Compliant scissors http://research.et.byu.edu/llhwww , (b) LTC set
1, (c) LTC set 2, (d) LTC set 3, (e) deformed symmetric half of the
mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.14 Evaluating compliance matrices (a) Compliance matrix at point B is a
series combination of the intermediate and input sub-mechanisms (b)
Compliance matrix at point C is a parallel combination of mechanism
at B and the output sub-mechanism . . . . . . . . . . . . . . . . . . 97

xii



4.1 (a) A simple compliant mechanism with input and transmitter ele-
ment (LTC set) (b) with output constraint. It is important to note
that ftr is not an applied load but the transferred load at the output. 102

4.2 (a) Dyad with input force fi. (b) With output transmitted force fo . 103

4.3 (a) Dyad LTC with its semi circular band (b) Output constraint beam
defines its output displacement . . . . . . . . . . . . . . . . . . . . . 104

4.4 Eigen-twist and Eigen-wrench parameters for a particular building
block geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Some constraint directions do not transmit load along the required
direction (a) Transmitter beams 1 and 2 with a possible constraint
Con1 (b) LTC set corresponding to beam 2 . . . . . . . . . . . . . . 110

4.6 Required Constraint orientation (a) Transmitter beams 1 and 2 with
a possible constraint Con1 (b) LTC set corresponding to beam 2
showing the transmission direction along beam 2 (c) The constraint
DOF must lie within the intersection of the two semicircular bands
SCC and SCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Stages in the evolution of the mechanism from specifications to topol-
ogy (a) Input output specifications with semicircular bands (b) Topol-
ogy of the transmitter beams (c) Load flow directions in each trans-
mitter beam (d) Truncated bands and constraints that define the
LTC sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.8 Constraint for the output of the mechanism as obtianed from defining
the topology to the eigen-twist and eigen-wrench parameters. . . . . 115

4.9 Designing input and output constraints (a) Input constraint to pre-
vent input rotation (b) Final mechanism with the output constraints
added (c) Deformation under input load . . . . . . . . . . . . . . . 116

4.10 Design of a Compliant Force Transmission Mechanism for a stapler
gun (a) Stapler gun, actuation lever and footprint within which the
mechanism must lie (b) semicircular bands for input and output (c)
Input displacement direction and its constraint band (d) Load paths
and the corresponding load flow lines (e) Constraints (f) Mechanism
with deformed profile. . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.11 Design of a Compliant Force Transmission Mechanism for a stapler
gun: Second Design (a) Conceptual topology using load flow(b) mech-
anism with deformed profile . . . . . . . . . . . . . . . . . . . . . . 120

xiii



4.12 A Mechanism consisting of two load paths (a) First load path (b)
Second Load path (c) The resultant load path. One of the possible
directions of the transferred force at the output is the vector combi-
nation of the individual transferred forces . . . . . . . . . . . . . . . 122

4.13 Problem Specification for the Shape Morphing Problem. (a) Initial
and the required deformed shape (b) Two single point forces of equal
magnitude and direction shown in the figure are required to attain
the deformed shape. These forces can be decomposed into horizontal
and vertical components for simplicity. . . . . . . . . . . . . . . . . 123

4.14 Load paths to obtain the required transferred force. (a) Transmitter
beams and the direction of load flow in each of them. This arrange-
ment delivers the Y− component of the transferred load. (b) Load
path that delivers the X− component of the required transferred load.124

4.15 (a) Final mechanism with the constraints added (b) Deformed profile. 125

5.1 Michell structure is the stiffest structure that supports the applied
load with minimum volume. All the bars in the truss framework have
the same stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Examples in nature with uniform stress distribution (a) A sea-anemone
subjected to water currents (Vogel (2003)) (b) A tree branch sub-
jected to wind loads (c) bending stress distribution at any given cross-
section (d) determining the thickness of the beam with distance from
the free end that uniformly distributes stresses along its length. . . 130

5.3 Comparison of three beams: (a) flexure with lumped compliance (b)
beam with uniform cross section (c) tapered beam with uniform stress
distribution, all having the same stiffness (d) comparison of the stress
distribution throughout their length . . . . . . . . . . . . . . . . . 131

5.4 Internal stressed state of a material such that (a) each point under-
goes the same stress, and (b) a loading case with nonuniform stress
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5 Force-displacement relationship at the input when load is gradually
applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Cross-section refinement for a fixed-guided beam (a) Initial beam
with uniform cross-section (b) Optimized cross-section (c) Optimized
beam used in a double parallelogram flexure . . . . . . . . . . . . . 139

xiv



5.7 Cross-section refinement for a vision based force sensor (a) Initial
topology with uniform cross-section (b) Optimized topology with de-
formed profile(c) Stress distribution along the elements in the initial
and optimized topology . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.8 Evaluation of output work through transferred forces (a) Input force
producing input and output displacements (b) Transferred force ap-
plied in the opposite direction at the output restricts its displacement,
and (c) Output force vs displacement curve . . . . . . . . . . . . . . 143

5.9 Size Optimization of a Displacement inverter [Hetrick and Kota (2003)]
(a)Intial topology with uniform thickness (b) optimized solution using
the performance factor objective function (η = 89%, npm = 0.064)
(c) solution obtained by optimizing mechanism topology using the
energy efficiency formulation without stress constraints (η = 94%,
npm = 0.009), and (d) comparison of stress distribution between
topologies (b) and (c) . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.10 Size Optimization of an energy storage and release mechanism: (a)conceptual
design 1 from Chapter 4, (b) its optimized solution using the perfor-
mance factor, (c) conceptual design 2 from Chapter 4, and (d) its
optimized design using the performance factor . . . . . . . . . . . . 147

5.11 performance Factor for various geometries and loading conditions . 150

5.12 Load flow patterns for the topology in SISO3 and DISO3 conditions
(a) Deformed Profile (b) Load flow in the topology for discrete ac-
tuation and output ports (SISO3) (c) Load Flow in the topology for
distributed actuation (DISO2) . . . . . . . . . . . . . . . . . . . . . 151

5.13 The topologies represented by SISO3 or SODI3 in Fig. 5.11. The top
and bottom faces can be enclosed with elastomers with reinforced
ribs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xv



ABSTRACT

An Intrinsic and Geometric Framework for the Synthesis of Distributed Compliant
Mechanisms

by

Girish Krishnan

Co-Chairs: Charles J. Kim and Sridhar Kota

Traditional engineering designs associate strength with rigidity. As a result, most

engineering systems that involve mechanical motion typically consist of rigid links

connected with joints or interfaces. In contrast, nature achieves motion by flexibility

or compliance through elastic deformation. It maintains strength by distributing com-

pliance throughout its geometry rather than localizing it. Incorporating distributed

compliance in engineering designs yield monolithic systems that are cost-effective,

lightweight, having reduced peak stress, and zero friction and wear. The principles of

mechanics accurately predict the behavior of these compliant mechanisms, but yield

little insight into their systematic synthesis. This thesis proposes a mathematical

framework to represent problem specifications and the mechanism behavior in terms

of geometrically intuitive quantities that enable analysis and synthesis. Compliance

representation is proposed for (i) single port mechanisms with a unique point of in-

terest in terms of geometric quantities such as ellipses and vectors, and (ii) multiple

port mechanisms with transmission of load and motion between distinct input(s) and

output(s) is captured in terms of load flow. This geometric representation provides
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a direct mapping between the mechanism geometry and their behavior, and is used

to characterize simple deformable members that form a library of building blocks.

The design space spanned by the building block library guides the decomposition of a

given problem specification into tractable sub-problems that can be each solved from

an entry in the library. The effectiveness of this geometric representation aids user

insight in design, and enables discovery of trends and guidelines to obtain practical

conceptual designs. Furthermore, the thesis proposes an optimization technique for

dimensional synthesis of conceptual designs to uniformly distribute stresses through-

out its constituent members, thereby reducing peak stresses that lead to failure.

The resulting metric used for refinement enables an objective comparison and global

ranking of various mechanism geometries and their actuation schemes based on their

ability to store energy, or perform work before failure.

The geometrically insightful conceptual synthesis methodology, optimization tech-

nique and global comparison of resulting designs furnish a pragmatic methodology for

the synthesis of distributed compliant mechanisms. This methodology is successfully

applied to obtain solutions for some practical applications.
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CHAPTER I

Literature Review: Compliant Mechanisms and

their Design Methodologies

This chapter reviews evolution of compliant mechanisms in literature and their de-

sign methodologies. The next section focuses on early compliant designs involving

lumped flexures, followed by distributed compliance inspired by examples in nature.

The following section introduces a functional classification of compliant mechanisms

into single port and multi port mechanisms. Compliance representation for these two

types of mechanisms are reviewed. Then, an overview of design methodologies of com-

pliant mechanisms is presented, highlighting their merits and demerits. This leads to

identifying the gaps in literature and defining the scope of the thesis. The chapter

concludes with the organization of the thesis.

1.1 Introduction

Compliance by definition implies the ability of a body to deform due to load applied

on it, while rigidity implies its ability to retain its original shape and form. In principle

there are no perfectly rigid bodies, as they all deform albeit minutely towards applied

loads. Thus compliance is a property that can be found in every object in universe.
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However, the usefulness of this property depends upon the ability of the body to

store and retrieve energy thereby deforming in a prescribed manner or performing

output work. Designs in nature and engineering use compliance to their benefit, as

seen below.

1.1.1 Compliance in Nature

Nature presents number of examples where motion is achieved through compliance

alone. Books on conceptual engineering designs by French (1988) and extensive com-

parison of designs in engineering and biology by Steven Vogel (Vogel (1988), Vogel

(1998), Vogel (2003)) have articulated compliance as a preferred mode of deformation

in nature and possibly in design. Invertebrates that lack a stiff backbone comprise

95% of the animal species. An example of compliance in insect locomotion can be

seen in spiders, which extends its flexible legs due to pressurized fluids.

Nature exemplifies compliance as it faces significant constraints in design; in the

limited choice of materials and manufacturing techniques. This leads nature to opti-

mize its geometry to increase strength and thus handle large loads before failure. An

example of this is the tapered and elliptical cross-section of tree branches. Though

trees and other plants act as structures, whose functions are to stay fixed, nature’s

constraints are unable to incorporate sufficient rigidity to withstand large wind loads.

However, by significantly flexing to wind loads they align themselves aerodynami-

cally thereby reducing drag forces and uprooting moments. Thus nature effectively

uses compliance to increase strength. In contrast, strength has always been synony-

mous with rigidity in traditional engineering designs. A historical perspective of how

compliance has evolved in engineering artifacts is presented below.
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1.1.2 Historical perspective of compliant mechanisms in human history

In prehistoric times, flexible strings were used as bows to store strain energy in

them through deformation, and retrieving it as kinetic energy imparted to the arrow.

These early historical artifacts are mentioned in a number of articles cited by Howell

(2001). A number of historical sightings of spring based devices were reported in the

ancient Greek and Roman civilizations by historians (Associated Springs Corporation

(1964)). However, the first coiled spring was not fabricated until early 15th century

(Dohrn-van Rossum (1997)) and found its use in clocks and later in the industrial

revolution. Ever since, springs have become one of the most fundamental building

blocks of mechanical design.

The above historical examples and springs can also be classified under mechanisms,

as they transform energy or force (Erdman et al. (2001)) (Eg. springs transform

strain energy to kinetic energy). Mechanisms that transform motion, on the other

hand historically were made of rigid bodies with joints in between them. When both

forces and motion specifications were involved, functional decoupling was advocated.

Rigid links were used to obtain required motion, and springs to store the prescribed

energy. For example, a number of consumer devices like staplers, pens, crimping

devices, automobile clutches etc. consist of springs and rigid links.

It was towards the later half of the twentieth century that mechanisms with com-

pliance in them started to appear. These were devices that had a deterministic direc-

tion of motion as well as stored strain energy in them. Coupling of function naturally

led to coupling of form resulting in the monolithic nature of these mechanisms. Flex-

ures were the earliest examples of this coupling, being used in precision instruments

since the 18th century (Smith (2000)). Mechanisms made of flexures were adapted

from rigid link mechanisms by using them to replace joints. These mechanisms are

classified under lumped compliant mechanisms.
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1.1.3 Lumped Compliant Mechanisms: Flexural Hinges

Flexural hinges are demonstrated in Fig. 1.1a and b. The deformation of flexures

resemble rigid links with joints. This is because the narrow hinges in flexures are

located at the joints. Paros and Weisbord (1965) were the first to locate the optimal

locations of flexure placement at the links. The strain energy stored due to defor-

mation is entirely concentrated in this region. Hence the name lumped compliance.

The similarity between rigid links and flexure behavior make it easy to design them

from rigid link kinematic approaches. Furthermore, they are easy to fabricate due to

their monolithic nature, lack of friction and wear thus being ideally suited towards

obtaining precise motion (Slocum (1992)). Furthermore, flexures act as near ideal

elastic constraints (Blanding (1999)) as they seem to deform about the hinge, with-

out considerable deflection in any other direction. Detailed analysis of different types

of flexures are presented in books by Smith (2000) and Lobontiu (2003). A number

of flexure based grippers, pliers and scissors have been introduced by Howell (2001).

Even to this day a number of flexure based positioning devices have been built at var-

ious length scales with integrated controls for obtaining motion that has nanometer

precision (Ryu et al. (1997), Li and Xu (2010),Liaw and Shirinzadeh (2010)). Apart

from precision instruments flexures are also used in a number of consumer products

like living hinges in cap openings fabricated using injected molding.

Despite their advantages, flexures have certain operational limitations. Flexures

undergo large stresses at the lumped joints. This limits their capability to pro-

vide large deformations and transmit loads simultaneously. These limitations led

researchers to distribute stresses evenly throughout the mechanism geometry so that

stresses are not localized at the joints. These are explained in the section below.
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(a) (b)

(c)

Concentrated Stress

Figure 1.1: Flexures are inspired from rigid link with joints (a) A rigid link with a
revolute joint (b) A rigid link with a flexure and its deformation (c) A
decoupled XY Stage using flexures for nanopositioning (Li and Xu (2010))
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1.1.4 Distributed Compliant Mechanisms

Figure 1.2a shows a tree branch with a tapering cross section. For a load acting

on the tip of a beam with tapered cross section shown in 1.2b, the stress is evenly

distributed throughout the mechanism. In literature, distributed compliant mecha-

nisms are referred to the presence of slender beams without any lumped flexures. An

example of distributed compliance is a leaf spring. Leaf springs were used since early

15th century and even to this day in automobiles as suspensions.

(c)

Figure 1.2: Distributed compliance is inspired by observing nature’s designs (a) ta-
pering branches of trees (b) stress in tapered beams are evenly distributed
all along its length (c) leaf springs are examples of distributed compliant
mechanisms

A number of engineering marvels have been accomplished by utilizing designs with

distributed compliance. Some of them are enlisted below

1. Aircraft wings that adapt to the surrounding weather and flight conditions

by changing their geometries have been designed and tested (see Fig.1.3a) by

Flexsys inc. (http://www.flxsys.com). These wings have within it a monolithic

compliant mechanism that is strong enough to withstand external loads, but will
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deform towards a predetermined shape when actuated. The monolithic nature

of the mechanism and the seamless wing profiles decrease the overall weight of

the wing, and increase fuel efficiency. The design of these mechanisms for shape

changing applications were researched extensively by Lu and Kota (2005).

2. The advantages of compliant mechanisms and its ease of manufacturing in the

MEMS scale have resulted in number of designs. One such design involved the

concept of displacement amplification to match the large force and small dis-

placement of electrostatic actuators to a large displacement needs of the output

(Hetrick and Kota (2003)). Such a design involving distributed compliance is

shown in Fig. 1.3b.

3. Though flexures are popular for obtaining precision motion, Awtar (2004) demon-

strated the design of a X-Y motion stage with nanometer precision using a

symmetric arrangement of distributed beams as shown in Fig. 1.3c using the

concept of elastic averaging.

4. Low cost force sensors for micro-manipulation involves flexible suspensions made

of materials like PDMS as shown in Fig. 1.3d. The deformation of the suspen-

sions is tracked using a microscope and the force is evaluated by inverse elasticity

as proposed by Cappelleri (2008).

5. Distributed compliant leaf springs made of carbon fiber reinforced composites

have been used as passive elements in an orthotic exoskeleton to aid in running

(see Fig. 1.3e) by Cherry (2009). These springs are designed to take in excess

kinetic energy of the foot during heel strike and release the energy as a boost

during toe-off. The exoskeleton complements the action of muscles and the

spring like tendons during running.

6. A compliant one-piece wiper blade (Kota and Hetrick (2008)) shown in Fig. 1.3f
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demonstrates the effectiveness of compliant mechanisms to reduce the number

of parts needed for assembly.

7. A large range of motion translational and revolute joints were designed by Trease

et al. (2005) to match the precision of flexures without any localized stresses.

The designs shown in Fig. 1.3g consist of optimum number of beams in parallel

aligned such that one degree of freedom is permitted.

The examples shown so far have exemplified different advantages of compliant mech-

anisms. Successful realization of the above examples is only an indication of their

increased use in the future. However, there are some limitations and challenges.

Some of these are intrinsic to the use of compliance, while others can be overcome by

better design. They are detailed in the section below.

1.1.5 Advantages and Limitations of Compliant Mechanisms

Most of the advantages of compliant mechanisms are due to its monolithic structure.

The combination of energy storage and motion generation within a monolithic device

have interested engineers and researchers alike. The advantages are listed below.

1. Reduced costs and easy to manufacture: This results from the reduced need to

assemble different parts. As devices get smaller, assembly requires more skill and

care. This is even more pronounced at the micron levels while fabricating using

silicon based semiconductor technology, where making moving parts compliant

and monolithic is the only solution.

2. Precision: Monolithic elastic mechanisms such as beams and flexures do not

experience friction at joints as there are no siding elements. Furthermore, there

is no backlash in these mechanisms leading to increasing accuracy and repeata-

bility. However, for cyclic loading hysteresis has often been reported.
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(f) (g)

Figure 1.3: Distributed compliance in engineered designs (a) a mission adaptive air-
craft wing that changes its profile based on flight conditions, (b) a MEMS
displacement amplifier (Hetrick and Kota (2003)) (c) a nanometer preci-
sion X-Y stage with distributed compliant beams (d) a PDMS compliant
suspension as a vision-based force sensor, (e) a compliant spring used for
a passive knee orthosis exoskeleton, (f) a compliant one-piece wind shield
wiper (Kota and Hetrick (2008)) showing above it the numerous parts
of a traditional wipers, and (g) a large displacement translational and
revolute joint.
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3. Maintenance free: Compliant mechanisms are maintenance free as there is very

little wear. This is again due to absence of sliding elements. However, for

longevity they have to be operating within the permissible stress. Mechanisms

made in the macro scale suffer from fatigue due to cyclic loads, but in the micro-

scale where there is a better control of micro-structure during fabrication, they

have been found to last a billion cycles without failure.

4. Functional Coupling: Compliant mechanisms can store energy as well as trans-

mit motion. Thus it couples kinematics and kinetics which is very useful in

some applications.

Some of the disadvantages of compliant mechanisms are

1. Range of Motion: Material stresses limit the range of motion and load carrying

ability of compliant mechanisms. With distributed compliance, range of motion

can be increased and failure stress decreased but this is in no comparison with

the rigid link mechanisms. Furthermore, continuous rotation motion can never

be achieved with compliant mechanisms.

2. Fatigue and Crepe: Compliant mechanisms made of polymers and plastics expe-

rience significant crepe when continuously stressed. Furthermore, cyclic loading

induces fatigue in designs with lumped compliance thus limiting their life.

3. Design Challenges: While conventional rigid link mechanisms are analyzed and

designed using kinematics and geometry alone, complaint mechanisms involve

an intricate coupling between motion and the forces that cause motion. For large

deformation ranges, this relationship is nonlinear. Though this nonlinearity

provides significant design freedom in obtaining a wide range of force deflection

and energy storage curves, their analysis involves large computational models.

Though the above disadvantages cannot be mitigated, their effects can be minimized

by better design. For example, distributed compliant mechanisms in literature have
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better stress distribution characteristics than lumped flexures. However most of them

do not strictly distribute material evenly. Effective material distribution is one of the

foremost design challenges for compliant mechanisms.

The chapter henceforth focuses on design methodologies for compliant mecha-

nisms. Towards this a functional classification is proposed in the section below.

1.1.6 Functional Classification of Compliant Mechanisms

Focus of compliant mechanisms in this thesis will be limited to monolithic elastic

mechanisms that have prescribed motion and force transformation characteristics.

As a consequence of this, there are two functional requirements that are important

1. Ability to selectively constrain motion in different directions. This requires

the mechanism to deform selectively to forces in different directions at a single

point of interest.The X−Y stage shown in Fig. 1.3c and a compliant suspension

based force sensor shown in Fig. 1.3d are examples of this mechanism as they

have a selected deformation response to applied forces. This usually requires

them to be stiff in one direction and compliant in the other. Furthermore, the

force deflection relationship can be nonlinear at that particular point of interest.

Together, these mechanisms are termed single port compliant mechanisms as the

focus is on the force deflection relationship at a single point of interest.

2. Ability to transmit forces and motion from one point (input) to another. Trans-

mission implicitly involves relative interactions between two unique locations.

The shape morphing examples of Fig. 1.3a and the displacement amplifier of

Fig. 1.3b are examples of transmission problems. They are required to match

the load characteristics of an actuator to the deformation requirement at the

output. As the focus is on more than one point of interest, they are termed as

multi-port compliant mechanisms with a special case being the two port single-

input single-output mechanism. Multi-port mechanisms also involve design of
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multiple single port mechanisms at various points to provide directionality.

The functional classification introduced above has important implications on the

methodology involved in design. Design is an iterative approach between analysis and

synthesis, which require a model or a mathematical representation of the mechanism

behavior. For single port mechanisms, this representation must capture the relation-

ship between applied force and obtained displacement at a single point. For multi-port

mechanisms, this representation must capture the relationship between applied force

at one point and obtained displacement at the other. The design methodologies for

compliant mechanisms are detailed below.

1.2 Design Methodologies of Compliant Mechanisms

This section reviews design methodologies of complaint mechanisms based on the

functional classifications, namely for single port and multi-port mechanisms. It details

the advantages and shortcomings of the methodologies that sets the stage for the scope

of the thesis.

1.2.1 Single Port Compliant Mechanisms

Single port compliance involves the characterization of the force displacement re-

lationship at a single point of interest. This relationship is expressed in terms of

compliance or stiffness matrix given by

u = Cf

f = Ku (1.1)

where C and K represent the compliance and stiffness matrices respectively, while

f and u represent the force vector displacement vector respectively. In three dimen-

sional space the stiffness and compliance matrices are 6 × 6 positive definite matrices,
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while the force and displacement vectors are 6 × 1 vectors signifying three transla-

tions and three rotational degrees of freedom. The degrees of freedom can also be

represented as screws and pitches.

Compliance at a single port has received attention in the design for robotic grip-

pers. The end effectors of the grippers are required to have an appropriate remote

center of compliance (RCC) that enables generation of a corrective moment to ac-

curately align parts that are prone to positional errors as described by Nevins and

Whitney (1985) (see Fig. 1.4a). The corrective moments re-orient the angle of the

shaft so that it accurately fits into the hole. This is accomplished only when the

elastic nature of the gripper enables the corrective moments to produce pure rotation

at the end of the shaft, without any translation. This decoupling of translations and

rotations have been the focus of researchers since the 70’s. Decoupling of translational

and rotational compliance was first mentioned in a textbook on structural mechanics

by Parcel and Moorman (1955). They called this point as the elastic center. Lon-

caric (1985) proposed a formulation to maximally decouple the 6 × 6 compliance

and stiffness matrices that result from the three dimensional linear elastic model-

ing of compliance at a point. Patterson and Lipkin (H. Lipkin (1992a), H. Lipkin

(1992b), Lipkin and Patterson (1992)) proposed a formulation of decoupling that lead

to the definition of geometric point known as the center of elasticity. At the center

of elasticity any force produces pure translation, while any rotation produces a pure

reaction moment. However, such a point does not physically exist for all geometries.

Ciblak and Lipkin (1996) reviewed RCC devices and their realization using beam

based topologies. Recently Kim (2008) proved the existence and the uniqueness of

the center of elasticity for 2-D planar geometries where it coincides with the elastic

center, remote center and the center of stiffness.

While the above efforts focus on simplifying the representation of compliance

from a general 6× 6 positive definite matrix to enable design, they do not propose a
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systematic synthesis methodology to obtain any required compliance behavior.

Figure 1.4: Remote Center of Compliance (RCC) Devices, where the compliance in
the end effector adjusts for any misalignment in the mating parts

Realization of Arbitrary Stiffness Matrix in 3D space

While the representation of compliance at a single point was motivated by applications

involving decoupling of translations and rotations, various researchers have indepen-

dently tried to design systems that can attain any given three dimensional compli-

ance using springs. Huang and Schimmels (Huang and Schimmels (1998a), Huang

and Schimmels (1998b), Roberts (1999), Huang and Schimmels (2000), Huang and

Schimmels (2001)) have defined a screw spring shown in Fig. 1.5a as a fundamental

building block to generate any given compliance requirement. However, difficulty in

the physical realization of screw springs have motivated the need for the use of com-

pliant building blocks to achieve the same. Furthermore, though the characterization

proposed is mathematically robust, it does not give an insight into the behavior of the

mechanism that they represent. This precludes user insight in systematic synthesis.

Principles of constraint based design are not directly based on the stiffness or the

compliance matrix, but provide a geometric insight into their behavior and enable

easier conceptual synthesis.
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A Constraint based Design using Screw Theory Formulation

Researchers in constraint based design have characterized flexures based on its most

compliant and most stiff directions as freedom and constraints respectively. The

guidelines for constraint based synthesis is illustrated in Blanding (1999). More re-

cent work by Hopkins and Culpepper (Hopkins and Culpepper (2010a), Hopkins and

Culpepper (2010b)), and Su et al. (2009) represent constraints and freedom in three

dimensions as wrenches and twists respectively. For a given motion requirement this

method focuses on generating constraint and freedom spaces. Principles of reciprocity

are used to generate constraint space from a given freedom space. The constraint lines

can be used to orient a flexure along that direction. Figure 1.5 b shows how each

constraint wrench corresponds to the axis of orientation of a flexure. This method of

generating conceptual solutions provides user insight as the representations of con-

straint wrenches directly correspond to the flexure geometry. However, constraints

and freedoms are subjective quantities in compliant mechanisms depending on the

ratio of stiffness between two directions. Thus, this representation and the design

methodology do not take into account the holistic compliance behavior. Awtar and

his group (Awtar et al. (2007), Awtar and Slocum (2007)) have analytically quantified

the behavior of beam flexures by evaluating cross-axis stiffness and parasitic errors to

provide an objective estimation of constraint and freedom. These characterizations

provide insight into better designs.

A Geometric Representation for Two-Dimensional Compliance Character-

ization

Kim et al. (2008) and Kim (2005) proposed a geometrically insightful characterization

of simple two dimensional complaint building blocks. The dimensionally reduced

from of Eq. 1.1 consisted of two translational degrees of freedom and two rotational

degrees of freedom. To overcome the dimensional mismatch between translational and
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Figure 1.5: Single port compliance design (a) using screw springs (b) constraint based
screw theory (c) geometric compliance ellipsoid approach.
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rotational quantities, normalizing length was used to convert rotations to translations

and moments to forces as shown below

Cn =


1 0 0

0 1 0

0 0 l1



C11 C12 C13

C12 C22 C23

C13 C23 C33




1 0 0

0 1 0

0 0 l2

 (1.2)

However, there was no physical relevance to these normalizing lengths l1 and l2.

This enabled an overall representation of compliance as an ellipsoid, with its semi-

major axis representing a principal direction of compliance. Apart from rendering

a geometric interpretation of the behavior of a mechanism, it enables a graphical

representation of series combination of two or more mechanisms as captured in Fig.

1.5c. This enables a systematic building blocks based methodology as detailed in the

section below.

1.3 Building Block based Design Methodology

Design of complex systems such as an automobile, aircraft and electronic gadgets

are always broken down into simpler subsystems that can be easily designed. For

example, an automobile consists of the combustion, transmission, electrical subsys-

tems all working together. These subsystems are designed and fabricated separately

and integrated during assembly. A similar building block approach was proposed for

mechanism design by Kota and Chiou (1992) for conventional rigid link mechanism

synthesis. Figure 1.6 shows how a complex mechanism such as a sewing machine can

be decomposed into a number of simple submechanisms each having its own kine-

matic function. In a building block based design approach, the required kinematic

specification was broken down into a number of simple, yet fundamental motion spec-

ifications. They used a building block library to solve subproblem specifications and

combined them to obtain the entire mechanism.
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Figure 1.6: A sewing machine and its constituents adapted from Chiou and Kota
(1999)

Kim et al. (2008) proposed a building block method for the design of single port

mechanisms shown in fig. 1.7. The required stiffness specification is represented as a

target ellipse. A number of simple deformable members like beams and dyads (series

combination of two beams) are characterized in terms of its ellipsoid parameters to

form a database of building blocks. First, a search is conducted to see if there is a

candidate building block to meet the problem specifications. If not the ellipsoid is

decomposed into two simpler ellipsoids, and the database is searched again to see if

there is a solution the subproblems. If a solution is found, the subproblems are assem-

bled to obtain the net mechanism. If no solution is found a different decomposition

is tried.

Though this method provided user insight in synthesis, it suffered from some

drawbacks. For example, ellipsoid representation was cumbersome and difficult to

visualize. Furthermore, there was no direct mapping possible between the topology

of a building block and the compliance ellipsoid. This was due to the physically non-

intuitive normalizing lengths that were needed to evaluate the ellipsoid parameters.

Furthermore, as required by early robotics applications, there was no natural decou-

pling of translational and rotational parameters. The effectiveness of the synthesis

methodology depended on the right decomposition and population of the building
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block library, both of which cannot be determined apriori. These shortcomings moti-

vate a characterization that is more intrinsic to the topology of the building block, and

the need for guidelines for determining the topology from the problem specifications.

Problem Specification

Evaluation of Candidate 
Building Blocks

Problem Decomposition

Mechanism 
Assembly

Target Stiffness ellipsoid

Compliant Dyad: A building block

= +

Decomposition into subproblem 
ellipsoids

+ =

Subproblem Solutions Assembly

Figure 1.7: Building block method for the design of compliant mechanisms adapted
from Kim et al. (2008).

1.3.1 Single Port Synthesis for Large Deformations

Apart from the design for linear Compliance, Vehar-Jutte (2008) proposed a

methodology for the design of nonlinear springs for a given force deflection profile

or energy profile as seen in Fig. 1.8a. This methodology uses an interconnected
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framework of cubic splines and a genetic algorithm to determine the optimum geom-

etry and cross-section dimensions that meet the required specifications. Oh (2008)

proposed a robust design for bistable compliant mechanisms, and a systematic com-

bination of bistable elements to obtain multistable mechanisms (see Fig. 1.8b and

c).

F

u
(a)

(b)

(c)

(d) (e)

Figure 1.8: Synthesis of compliant mechanisms involving large deformations (a) A cu-
bic spline based network for optimization based generation of (b) spring
topologies with (c) nonlinear force displacement behavior (adapted from
Vehar-Jutte (2008)) (d) a robust bistable mechanism with a living hinge
and (e) a rotational bistable mechanism having multiple equilibrium con-
figurations (adapted from Oh (2008))
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1.4 Multi-Port Compliant Mechanisms

Multi-Port compliant mechanisms involve transmission of applied input energy to

drive output loads. An example is a piezo-electric amplifier, where a large input force

and small input displacement is delivered to the output as a large displacement driv-

ing against a moderate load. Some other examples mentioned earlier are grippers,

and shape morphing mechanisms where a mechanism changes the shape of a surface

or contour through a handful number of actuators. Design of these compliant mech-

anisms are influenced by the two stage process of designing conventional mechanisms

as professed by Erdman et al. (2001).

1. Topology or Conceptual design

2. Shape-Geometry refinement

In this first stage a skeleton topology that approximately satisfies the kinematic re-

quirements is conceptualized, while in the second stage practical dimensions are as-

sociated with it to more accurately match the footprint and motion specifications.

It must be noted that while separation of the above two stages is accurate for rigid

link mechanism synthesis, the intricate coupling between the topology and the actual

associated dimensions for compliance makes the synthesis methodology inaccurate.

1.4.1 Topology or Conceptual Design

There are different methodologies to guide conceptual topology design of multi-port

compliant mechanisms. Each of these methodologies involve a different representation

of compliance to suit the design methodology. These are discussed below.

1.4.1.1 Kinematics based Design Methodologies

These are the earliest design methodologies for multi-port compliant mechanisms.

In order to use conventional rigid link topologies for a compliant mechanism design,
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certain approximations have to be made to the link lengths and joint stiffness. Howell

and Midha (Howell et al. (1996), Midha et al. (2000), Howell (2001), Howell and

Midha (1996)) devised a unique modeling technique known as pseudo-rigid body

modeling where the deformation of a compliant mechanism is modeled based on

the kinematics of an equivalent linkage and the force displacement relationship is

captured by torsional springs of appropriate stiffness at the joints as shown in Fig.

1.9. The value of the spring stiffness and the link lengths are established by empirical

approximations on the beams that make up the compliant mechanism. While this

modeling technique is used to explain the behavior of compliant mechanisms, synthesis

involves conceptualization of a rigid link mechanism with torsional springs at the

joints. The dimensions of the link lengths and its cross section are determined by the

values of torsional spring stiffness.

(a) (b)

Figure 1.9: Pseudo-rigid body modelling of a (a) cantilever beam (b) equivalent link
and torsional spring that models the deformation behavior of the can-
tilever beams (adapted from Howell (2001))

The effectiveness of this method is the simplistic representation of large defor-

mation, and the availability of a large body of literature in the area of rigid link

kinematics. However, various empirical approximations coupled with lumping com-

pliance as a torsional spring at the joints limits the accuracy of the model. For

example, the design method cannot account for off-axis and parasitic motion and

thus is not holistic in nature (Awtar and Sen (2010)).
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1.4.1.2 Optimum Search Based Methods

Topology can be defined in context of compliant mechanisms as an interconnected

set of deformable members that connects the input to the output and the fixed ports.

These connections can be direct or through a complex network of members. An

optimum topology is one which meets the kinematic specifications and all the stiffness

and stress specifications. The optimum search based methods require

• (a) A Ground Structure: This is a network of all possible interconnections

there can be among the input, output and the fixed points and contains as

many intermediate points as possible. These connections can be made of beam

elements or continuum plane stress or plane strain elements as shown in Fig.

1.10.

• (b) functional Metric: Any performance requirement, such as kinematic rela-

tion between the input and output, maximum attainable stress, stiffness re-

quirements, and volume must be expressed as functionals or as a metric that is

a function of all the geometric and size variables that make up the topology.

Figure 1.10: Steps in topology optimization of a compliant gripper adapted from Joo
(2001)

The basic philosophy behind this method is that an optimum solution is attainable

if it is contained within the network of members in the ground structure. An op-

timization algorithm minimizes (or maximizes) a primary functional known as the

objective function subjected to satisfying some secondary functionals known as the

constraints. The variables used for the optimization are the widths or thickness of
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the members in the network as described in the paper on homogenization by Bendsoe

and Kikuchi (1988). If the algorithm yields widths that are numerically insignificant,

that member will be deleted from the optimum topology. The first attempt at using

topology optimization on continuum elements was by Ananthasuresh (1994). The

functional used to guide this optimization is a weighted average of strain energy to

make the input stiff, and mutual potential energy to enable a large displacement at

the output. However, these methods yielded lumped flexures at the joints. To obtain

better distributed compliance Frecker et al. (1997) used a frame based ground struc-

ture. Hetrick and Kota (1999) used frame based ground structure with varying node

locations to capture more of the design space. Ever since, a number of researchers

(Saxena and Ananthasuresh (2006), Frecker and Canfield (2000)) have used the frame

based ground structure with an output spring as an external load. Additional criteria

towards obtaining distributed compliance was proposed by Luzhong Yin (2003). This

output spring was necessary to provide connected designs. Wang (2009) developed

a kineto-elastic formulation where the intrinsic mechanism stiffness is optimized to

obtain connected designs. Some of the functionals used in the generation of these de-

signs include ratio of the input and output displacements, energy efficiency and spring

efficiency. These objective functions were compared by Deepak et al. (2009). While

topology optimization yielded satisfactory designs for certain benchmark problems,

there were a number of disadvantages.

1. Optimization did not yield practical or readily manufacturable designs requiring

post processing of grey areas in continuum elements and unconnected or floating

areas in frame based elements in ground structure.

2. These algorithms do not provide user with any intuition on how optimum

topologies are reached.

3. Adding constraints of manufacturability or stress makes the problem complex
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and computationally intensive.

Lu and Kota (2005) and Lu and Kota (2006) developed the load path representation

to ensure connection between the input, grounded points, the output and some user-

defined intermediate points. A number of interconnections between them are explored

by a genetic algorithm and the best mechanism that minimizes the objective function

projected by the algorithm. The complexity of the topology depends on the number

of intermediate points between input, ground and the output that the user chooses.

Choosing more points increases the computation time, but the algorithm may choose

not to use any of them based on the optimum design. The optimization algorithm is

evolutionary in nature coupled with graph search techniques. Apart from determining

the connectivity the algorithm optimizes the cross-section of the beams that model

the connections. Stress constraints were further imposed in order to obtain practical

designs. While the designs that originate from this method are connected and feasible,

there is still a lack of user intuition as to why a certain connection is preferred over

the others. Furthermore there are no guidelines for the number of intermediate points

to be chosen. An attempt towards answering these questions are undertaken in the

building block method explained below.

1.4.1.3 Building Block Approach

Building block methods were developed by Kim (2005) to overcome the disadvantages

of topology optimization and develop a tractable learning curve towards the design

of compliant mechanisms. These methods were developed primarily for the design of

single port mechanisms, and were extended to cover single input single output mech-

anisms (Kim et al. (2008)) and dual input single output mechanisms (Kim (2009)).

A given two port problem was decomposed into three single port problems, namely

the input constraint, the output constraint and an intermediate transmission member

as shown in Fig. 1.12. Solutions for these single port problems were solved using a
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Intermediate point

Intermediate 
point

(a)

(b)

Figure 1.11: Formulation of a problem based on the load path method adapted from
Lu (2004): (a) design domain initialization, and (b) optimal topology
for the problem specification.
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parallel combination of dyad building blocks as detailed in the single port section.

Input Specification

Output Specification

- =
Intermediate mechanism
specificationOutput Input

Figure 1.12: A building block method for the design of two port compliant mecha-
nisms adapted from Kim et al. (2008).

There are a number of inaccuracies involved in this method of decomposition.

For example, the kinematic behavior of building blocks change due to the coupling

effects that arise from series combination of input constraint to the transmitter. This

means that though the subproblem specifications are exactly met by the correspond-

ing building blocks, the behavior of the assembled mechanism would be different from

the target specifications. This requires a holistic characterization of multi-port com-

pliance to capture the coupling between compliant building blocks when they are

combined. Kim et al. (2006) also attempted to capture approximate kinematic rela-

tionship between two ports in terms of instant centers. The premise of this method

is that the planar displacement of each point in the mechanism can be captured by

an instant center of rotation. For example, pure translation can be represented as

rotation about an axis at infinity. The relationship between the deformation of two

different points in a compliant mechanism can be represented by rotation about a
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common instant center. The distance between the instant center and the respective

input and output ports determines the kinematics (geometric or mechanical amplifica-

tion) of the mechanism (see Fig. 1.13. Though this technique is simple and intuitive,

it does not capture the coupling terms when two building blocks are combined.

BB1

BB2

Instant Center of 
BB1

Instant Center of 
BB2

Input

Output

l
2

l1

l
3

l
4

n=
l2
l1
×

l4
l3

Figure 1.13: Instant center based design of two port mechanisms (Kim et al. (2006)).

1.4.1.4 Selection Based Approach

With almost two decades of research on design methodologies for compliant mecha-

nisms, there is a growing literature of mechanism topologies for a number of appli-

cations. Almost any new problem specification can be solved by looking at existing

mechanisms. Towards this end, it is useful to have a database of existing mechanisms.

Furthermore since the behavior of mechanisms are not only dependent on their topol-

ogy but also the length scales,and dimensions associated with the cross-sections. In

order to enable an objective comparison of different topologies based on their stiffness

and kinematics, Krishnan and Ananthasuresh (Krishnan and Ananthasuresh (2008),

Krishnan (2006)) developed a lumped spring-lever model shown in fig. 1.14a. The

model completely captures the input and output stiffness as lumped springs and the
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kinematic relationship between them as a lever. Hegde and Ananthasuresh (2010)

used selection based maps to compare a number of topologies and systematically

select the best topology for the application. The map is a three-dimensional space

spanned by feasible values of the lumped parameters. The given problem specifica-

tion is expressed as a subset of this map. Then, a topology made of beams having

a certain uniform cross-section is taken, and its input stiffness, output stiffness and

the magnification factor is plotted in the map. A uniform increase or decrease in

the cross-section dimensions changes the lumped parameters. This is captured as a

path traversed by the mechanism on the map as shown in Fig. 1.14b. A similar

path can be drawn by uniformly changing the length scales of the mechanism. If any

of these path intersect the region defined by the problem specifications, then that

mechanism is taken as the potential solution. If no mechanism in the database meets

the specification set forth by the application, then a mechanism is synthesized afresh.

Though these charts provide insight into design, a three dimensional space is quite

nonintuitive to visualize. Furthermore, the lumped model can accurately represent a

unidirectional mechanism, but not its holistic behavior. Furthermore stresses are not

taken into account within the maps, and they are dealt with separately.

1.4.2 Size and Geometry refinement

The design methodologies reviewed in the previous section generates only a skeletal

or conceptual topology. Embodiment of the topology with practical dimensions to

meet given specification is the next step. In some design methodologies load path

method, topology and size are simultaneously designed. However, most conceptual

topologies need to undergo size and geometry refinement as the number of variables

to be optimized is lower when compared to topology generation. This speeds up the

computational time and enables handling of a number of constraints like stress and

manufacturability. Shape and geometry optimization were proposed by Hetrick and
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(a)

(b)

Problem specification

Initial Mechanism

Path traversed 
by the 
mechanism

Figure 1.14: A map based selection technique for compliant mechanisms: (a) spring-
lever model that captures the mechanism’s lumped behavior, and (b)
the map spanned by the lumped quantities (adapted from Hegde and
Ananthasuresh (2010)).
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Kota (Hetrick and Kota (1999), Kota et al. (1999)) where energy efficiency defined by

the ratio of the output work done on an external load to the input work supplied was

maximized with respect to stress constraints. The geometric locations of each node

and the thickness of each element were allowed to vary within a given limit. This

design process is shown in fig. 1.15. The authors state that using just the objective

functions without imposing any stress constraints yield designs with lumped compli-

ance. This indicates that lumped designs are more efficient due to their proximity

in behavior with rigid link mechanisms. Imposing stress constraints enables a more

distributed design. However the tendency towards lumped flexures remain. There is

a need to distribute stresses evenly in this stage of the design process.

Apart from the above techniques Xu and Ananthasuresh (2003) developed a

method to treat each member that makes up the topology as a bezier curve and

optimize the control polygon of the curves to attain a kinematic objective with stress

constraints. Special constraints are imposed to prevent self intersection of each curve.

However, apart from limiting the maximum stress, these techniques donot enforce

uniform stress distribution.

Figure 1.15: Steps in shape and geometry refinement of a compliant gripper adapted
from Joo (2001)

1.5 Identifying Gaps in Literature

Compliant mechanism design is dependent on the representation of compliance. Some

representations are mathematically robust, while others provide user insight without
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any basis from the fundamental principles of mechanics. every representation has its

limitations. For example the compliance ellipsoids represent the holistic nature of

the compliance, but is limited to small deformations and the physical relevance of

normalizing lengths. In contrast, pseudo-rigid body model is inaccurate in capturing

compliance holistically, but retains its accuracy over a large range of motion. For

topology optimization, the challenge lies in formulating the right functional that not

only captures compliance accurately, but guides the algorithm towards desired results.

The metrics proposed so far yield designs that tend towards lumped flexures far

from the vision of evenly distributing stress. Furthermore, computationally intensive

methods lack user intuition and require significant post-processing to obtain practical

designs. Thus there is a need for a representation that not only captures compliance

holistically and accurately, but also favors topology synthesis with user insight.

Apart from conceptual or topology synthesis, dimensional synthesis using size

and geometry refinement suffers from designs that tend towards lumped flexures.

Application of stress constrains lead to practical but sub-optimal designs. These

designs do not maximally utilize the material by evenly distributing stresses. Size and

geometry optimization thus requires a metric that can guide the optimizer algorithm

towards designs that distribute stress. In short, there are three wide areas where gap

in literature is identified

1. A mathematically robust representation of compliance that also enables user

insight in synthesis: while there is prior literature that attempts at such a

representation for single port compliance, there is no prior attempt for multi-

port compliance.

2. A synthesis procedure involving user insight: Computationally intensive auto-

mated synthesis process may provide a practical solution, but does not yield

insight on why a certain topology was achieved, why a certain specification was

achieved, or not achieved. If specifications are not met, it does not yield a
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plausible explanation. The user needs to make intelligent guesses on whether it

could be the domain initialization, choice of algorithm or unachievable specifi-

cation. In other words, there is no determinism in synthesis. Thus there need

to provide all this knowledge to the designer.

3. Moving away from lumped flexures: Every single optimization technique, both

conceptual topology generation as well as refinement of conceptual designs have

yielded thin regions at the joints or fixed ends. These emulate the behavior of

lumped flexures. Flexures fail when large loads are applied and thus are not

optimal. The metrics used for optimization have been based on efficiency and

other kinematic considerations, with stress imposed as constraints. There is

a need to propose a better metric that takes the strength considerations into

account.

1.6 Scope of the Thesis

The main goal of the thesis is to develop an accurate representation for single-port

and multi-port compliance that favours a systematic building block based method-

ology for topology synthesis. Such a methodology requires the representation to be

intrinsic to the mechanism geometry in order to permit a parametric characterization

of simple deformable members known as building blocks. Furthermore, it must enable

problem subdivision into tractable sub-problems that can be solved by the existing

library of building blocks. All formulations in this thesis will be limited to capturing

small deformation and linear elastic material behavior of the mechanisms. Though

the formulation is general its definition and application in the design methodology

will be limited to two dimensional planar problems alone. All representations will be

evaluated from linear finite element stiffness matrices using beam elements. This is

because most compliant mechanisms in literature consist of slender elements well ap-
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proximated by Euler-Bernoulli beams. However, the generality of the representation

does not preclude evaluation by other experimental and analytical methods. This

formulation will thus be based entirely on the principle of mechanics without any

approximations other than the ones mentioned above.

Apart from the building block methodology, this thesis seeks to formulate a metric

to evaluate the performance of mechanisms based on topology, relative dimensions

and actuation scheme. The objective of this metric is to objectively explain the ef-

fectiveness of designs in nature in terms of even stress distribution as opposed to

engineered designs that tend towards lumped compliance. Optimizing conceptual

topologies using this metric must yield designs that emulate the distributed com-

pliance of nature. Apart from dimensional synthesis, the metric must objectively

compare various topologies and their actuation schemes. Single-port, single-input

single-output and distributed-input single-output mechanisms must be compared un-

der the same scale in terms of its effectiveness in performing work and ability to

evenly distribute stresses. The resulting comparison must set the trend for future

research on compliant mechanisms.

1.7 Organization of the Dissertation

The thesis introduces a new representation of compliance from the fundamentals of

mechanics. While single port compliance is well articulated in literature, the thesis

aims to adapt the eigen-twist and eigen-wrench characterization within the frame-

work of the building block methodology. This includes providing graphical insight

into series and parallel combination of planar mechanisms. Chapter 2 presents these

insights along with practical guidelines for planar single point design. A compliant

suspension for vision-based force sensing in the micromanipulation of cells is designed

using the methodology.

Chapter 3 presents a unique characterization of multi-port compliance using the
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concept of load flow in structures. The physical interpretation of load flow is discussed

and evaluated in terms of transferred forces. Fundamental building blocks that are

responsible for load flow are isolated and their geometric embodiments are analyzed.

A framework for load flow visualization in compliant mechanisms is presented with

a number of practical examples from literature. Chapter 4 uses this characterization

of multi-port compliance to propose guidelines for a building block based synthesis

methodology. Some benchmark examples such as single-input single-output mecha-

nisms, and shape morphing applications are designed to illustrate the effectiveness of

the method.

While the above chapters focused on conceptual topology synthesis for compli-

ant mechanisms, Chapter 5 introduces a novel performance metric for dimensional

synthesis by size and geometry optimization of conceptual compliant mechanism de-

signs. This metric is obtained by evaluating nature’s designs for the amount of work

done before failure. Optimization using this metric yields deigns with better perfor-

mance. Benchmark problems are illustrated to confirm that the metric distributes

stress evenly within the topology. The conceptual topologies synthesized in the pre-

vious chapters are optimized to evenly distribute stresses in them. Furthermore, this

metric is used to compare various topologies with different actuation schemes. The

effectiveness of distributed actuation is highlighted to motivate a new class of mech-

anisms actuated with pressurized fluids. Conclusions, summary of the contributions

and future work are detailed in Chapter 6.

35



CHAPTER II

An Intrinsic Geometric Framework for the

Building Block Synthesis of Single Port Compliant

Mechanisms

In this chapter a characterization based on eigen-twists and eigen-wrenches is

implemented for the synthesis of a compliant mechanism at a given point. For 2-

D mechanisms, this involves characterizing the compliance matrix at a unique point

called the center of elasticity, where translational and rotational compliances are de-

coupled.Furthermore the translational compliance may be represented graphically as

an ellipse and the coupling between the translational and rotational components as

vectors. These representations facilitate geometric insight into the operations of se-

rial and parallel concatenation. Parametric trends are ascertained for the compliant

dyad building block and are utilized in example problems involving serial concatena-

tion of building blocks. The synthesis technique is also extended to combination of

series and parallel concatenation to achieve any compliance requirements.

36



2.1 Introduction

For a compliant mechanisms where the point of application of load and mea-

surement of displacement are the same, the compliance matrix captures the load-

displacement relationship. Mechanism geometry is intricately embedded within this

matrix, making it difficult to obtain meaningful mapping between geometry and func-

tion. There is a need to characterize the compliance matrix with parameters indepen-

dent of orientationto enable a general representation of the compliance matrix. One

such approach involves the eigen-values and eigen-vectors of a modified compliance

matrix, while representing it graphically as a 3-D ellipsoid (Kim (2005), Kim et al.

(2008)).

The compliance matrix has terms involving both translational and rotational com-

pliance. These terms are coupled within the matrix. The coupling prevents taking

direct eigen-values of the compliance matrix, which except under very special cases

yields a combination of the translational and rotational parameters. The eigenvectors

of the compliance matrix are dimensionally inconsistent, non-intuitive, and unsuit-

able for characterization. The rotational and the translational compliance must be

characterized separately. This can be effectively accomplished by shifting the point of

interest to a location where any force applied yields pure translation and any moment

applied yields pure rotation. This was defined by Lipkin and Patterson (H. Lipkin

(1992a), H. Lipkin (1992b)) for a general 3-D elastic body with six degrees of free-

dom as the Center of elasticity. At the CoE in 3-D, translations and rotations are

not necessarily decoupled, but in 2-D this decoupling is always guaranteed. (Kim

(2008)). In this case, this point is equivalent to the commonly used center of stiff-

ness (Hale (1999)), or the Remote Center of Compliance (RCC) in robotics (Nevins

and Whitney (1985)), or the elastic center which diagonalizes the compliance matrix

(Ciblak and Lipkin (1996)). Though the center of elasticity need not be a material

point, it can be accessed through a rigid body attached from this point to the input
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of the mechanism.

The main objective of the chapter is to apply the eigen-twist and eigen-wrench

characterization to 2-D compliant building blocks and decouple compliance terms

associated with translation and rotation. This characterization enables graphical

representation of series and parallel combination of building blocks. Guidelines are

proposed to enable synthesis of a mechanism topology for any given compliance re-

quirements.

The following section reviews the eigen-twist and eigen-wrench characterization

of the compliance matrix. These quantities decouple the effect of translations and

rotations and effectively characterize building blocks without the introduction of a

normalizing lengths. In Section 3, the parametric behavior of a common building

block, the compliant dyad, is described in terms of the eigen characterization. This

enables us to quantify its limitations and propose the need for combination of building

blocks. The effect of series combination are studied in Section 4. Based on this

understanding, the limits of series combination of building blocks are understood. In

Section 5, two examples to demonstrate the effectiveness of the characterization are

solved.

2.2 Building Block Characterization

This section reviews the mathematics involved in characterizing the compliance ma-

trix at a given point of interest. Kim et al. (2008) utilized compliance ellipsoids to

characterize the primary kinematic behavior of compliant building blocks. The draw-

back of this approach is the introduction of a normalizing length to resolve units of

length and rotation (and force and moment). The present characterization is adapted

from the screw-theory based representation of 3-D compliance wherein the rotational

and translational components of the compliance matrix are decoupled without the

introduction of normalizing lengths. The approach is mathematically robust and is
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invariant to coordinate transformations and changes in length scale. Stiffness and

compliance coupling vectors, which provide fundamental information key to the serial

concatenation of building blocks are identified. These concepts are described in the

sequel.

2.2.1 Eigen-twist and Eigen-wrench decomposition, and Center of elas-

ticity

In three dimensions, displacements may be represented as twists T, and loads as

wrenches w. Twists are a combination of translation vector ~δ and angular deforma-

tion vector ~γ. Similarly, wrenches are represented as a combination of linear force ~f

and torque ~τ . Lipkin and Patterson characterized the 6 × 6 compliance matrix by

separately normalizing the translation and the rotation degrees-of-freedom (H. Lipkin

(1992a)).The application of the characterization to 2-D compliant mechanisms can

be found in Kim (2008). This involved two constrained minimization problems given

by

Minimize : PE =
1

2
wTCw

Subject to : wT η̃w = 1 (2.1)

and

Minimize : PE =
1

2
TTKT

Subject to : TT ξ̃T = 1 (2.2)
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For 2-D elasticity w and T are 3× 1 vectors as represented below.

T =


δx

δy

γ

 w =


fx

fy

τ

 (2.3)

Where, δx (fx) and δy (fy) are translations (forces) and γ (τ) is the rotation (moment)

about an axis perpendicular to the plane through the input point. The Compliance

matrix C and the stiffness matrix K are 3× 3 symmetric matrices. The normalizing

matrices η̃ and ξ̃ are used to separately normalize the translation and the rotation

aspects of the wrenches and twists in Eq. 2.1 and Eq. 2.2 respectively.

η̃ =


1 0 0

0 1 0

0 0 0

 ξ̃ =


0 0 0

0 0 0

0 0 1

 (2.4)

Eq. 2.1 and Eq. 2.2 can be solved as constrained minimization problems. They lead

to two eigen-value problems shown in Eq. 2.5.

Cw = af η̃w KT = kgξ̃T (2.5)

This makes af (af1 and af2) the eigen translational compliance and kg the eigen

rotational stiffness. The components of the eigen compliance matrix af is given by

af1 and af2 . The eigen vectors wf are given as

wfi =

 êfi

~r × êfi

 (2.6)

The vector êfi gives the orientation of the eigen-compliances af1 and af2 in a 2-D plane.

This is shown in Fig. 4.4 as angle δ. The last term of the above vector describes a
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moment that results from the application of a force at a location ~rE away from the

input point. The head of the vector ~rE is located at the Center of Elasticity (CoE).

The CoE is of particular importance in the characterization of planar building blocks

because the application of force at this point results in pure translation. Similarly,

the application of pure moment at the CoE results in pure rotation.

β+δ

ef1ef2 δ
rE

CoE

Input

fx fy

m

Figure 2.1: Eigen-twist and Eigen-wrench parameters for a particular building block
geometry.

The terms in the eigen-twist and eigen-wrench characterization can be summarized

with respect to Fig. 4.4 as:

a) Translational Compliance: Given by af1 and af2 , these eigen-compliance parame-

ters depict the stationary compliance magnitudes and direction for pure trans-

lation, at the center of elasticity. The quantity af1 is the primary compliance

direction as observed from the center of elasticity. The ratio of the two eigen-

compliances are denoted by np = af2/af1 . This quantity denotes the cross axis

compliance.δ is the orientation of the semi-major axis of the ellipse (af1) with

respect to the horizontal. This angle can be changed by rotating the dyad about

the Z axis.

b) Eigen-rotational Stiffness (kg) : This gives the reaction moment produced by a

pure unit rotation at the center of elasticity.

c) Center of elasticity (~rE): Its distance (rE) and orientation (β) with respect to

the point of input represent the coupling between rotational and translational
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compliance. It must be noted that β is the orientation of the center of elasticity

from the input with respect to the af1 axis. If the dyad is oriented such that

δ= 0, the β is the orientation of rE with respect to the horizontal.

Each of the above eigentwist/eigenwrench parameters can be obtained from the terms

of the stiffness/compliance matrix. This is shown in Section.

2.2.2 Compliance Ellipse and Coupling Vector

In the following section, Compliance Ellipse and the Compliance Coupling Vector

are developed to represent the eigentwist/eigenwrench parameters graphically. This

representation is of particular importance for concatenation of the building blocks.

A similar representation is also developed as the Stiffness Ellipse and the Stiffness

Coupling Vector.

The Compliance ellipse has its semi major axes (af1) inclined at an angle δ with

respect to X− axis. It forms a part of the upper 2 × 2 portion of the compliance

matrix (shown in Fig. 2.2). The other part is a degenerate ellipse with magnitude

r2E/kg (matrix with one of its eigen values 0 and the other r2E/kg ) inclined at β + δ.

This signifies that the translational compliance at the input point is the sum of

the translational compliances at the CoE and an additional translational compliance

caused by applying a moment (~rE × ~f) at the CoE. The moment occurs as a result

of shifting the unit force from the input to the CoE.

The coupling vector ~c has a magnitude rE/kg and is inclined at angle β + δ to

the horizontal. The coupling vector signifies the amount of rotation produced at the

input point by applying a unit force at the CoE perpendicular to the orientation of

~rE. It must be noted that no rotation is produced by applying a force along the

orientation of ~rE. Due to symmetry of the compliance matrix, ~c also represents the

amount of translation at the input in a direction perpendicular to ~rE due to a unit

moment at the CoE. There is a total decoupling of forces and moments when the
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Figure 2.2: Compliance ellipse and Compliance coupling vector (cv).

magnitude of ~c vanishes. The C33 element of the compliance matrix is 1/kg.

Similar to the graphical representation of the compliance matrix, stiffness can

also be represented by the stiffness ellipse and a stiffness coupling vector, ~sc (shown

in Fig. 2.3). The semi-major and -minor axes of the stiffness ellipse as expected are

the reciprocal of the compliance ellipse. The magnitude and the orientation of ~sc are

shown below.

|~sc| =
2rE
af1

(
1

n2
p

cos β2 + sin β2)

γ = arctan
1− np

(1− np) cos 2β + (1 + np)
(2.7)

These representations show that the compliance and the stiffness matrices can be

graphically represented by six parameters af1-af2 , ~rE, rE, kg, δ and β. These quan-

tities will be used to characterize and intuitively combine building blocks for given

specifications. In the next section, the parametric variation of these parameters for a

common building block, i.e. a compliant dyad is investigated.
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Figure 2.3: Stiffness ellipse and Stiffness coupling vector (~sc).

2.3 Concatenation of Building Blocks

Building blocks can be combined in series or parallel. Serial concatenation does

not change mechanism topology, as the number of fixed points remains constant.

Instead serial concatenation modifies mechanism shape. A wide range of compliance

characteristics can be obtained from serial concatenation of building blocks. Series

concatenation for preliminary shape synthesis, which can be further refined to meet

specifications are studied. This involves understanding how coupling vectors and the

compliance ellipses transform under serial concatenation.

Serial concatenation presents distinct mathematical challenges because the point

of interest of one of the building blocks shifts. As shown in Figure 2.4, when BB2

adds in series with BB1, the input of BB1 shifts from Ip1 to Ip2. This shift is given

by the vector ~lr. The input point of the mechanism shifts from the input of BB1 to

the input of BB2. The compliance matrices of the two building blocks in series add

such that (Kim (2005),Hale (1999))

Cresultant = CBB2 + TTCBB1T (2.8)
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where

T =


1 0 0

0 1 0

lr sinψ lr cosψ 1


and lr and ψ are the orientation of the input of BB2 from the input of BB1, as seen in

Fig. 2.4. In the remainder of this section, it is examined how the eigen-twist and the

eigen-wrench parameters change graphically due to serial concatenation of building

blocks.

2.3.1 Eigen-rotational Stiffness

The eigen-rotational stiffness is not affected by the shift in the input point. This

can be seen by expanding terms of Eq. 2.8 and noting that kg = 1
C33

. The transfor-

mation TTCBB1T leaves the C33 term unchanged. Thus, serial concatenation always

adds the eigen-rotational stiffness in parallel such that

1

kgf
=

1

kg1
+

1

kg2
(2.9)

where kgf is the eigen-rotational stiffness of the combined mechanism.

2.3.2 Coupling vector

The individual building block coupling vectors (~c1 and ~c2) add vectorially under

serial concatenation with an additional term due to the shift in input for BB1. The

shift in the input is given by ~lr. This is shown in Fig. 2.4. The final coupling vector
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~cf is given as

~cf =

(
~c1 +

~lr
kg1

)
+ ~c2

~cf =
~rI
kg1

+
~rE2

kg2
= ~cn + ~c2

rEf =
|~cf |
kgf

(2.10)

The term in the brackets in the above equation adds to give a new vector ~rI , which

points from the input of BB2 to the CoE of BB1. The coupling vector ~rI/kg1 can be

termed as the modified coupling vector of BB1. Thus during series combination, the

modified coupling vector of the grounded beam BB1 vectorially adds to the coupling

vector of BB2. The center of elasticity for the resultant mechanism is given by the

last equation in Eq.2.10.

Application to beams

The CoE of a beam is at half its length. Its coupling vector can be given by

~cBeam = (
~lBeam

2
)/kgBeam

, where lBeam is the beam length and kgBeam
is its eigen-rotation

stiffness. When a beam is added in series to a grounded building block such as BB1,

its shift vector ~lr equals its length ~lBeam. Substituting these simplifications in Eq.

2.10, final coupling vector ~cf is obtained as

~cf =

(
~rE1

kg1
+
~lBeam
kg1

)
+
~lBeam
2kg2

~cf =
~rE1

kg1
+~lBeam

(
1

kg1
+

1

2kg2

)
(2.11)

This understanding is used to show in Appendix B that the center of elasticity for

series combination always lies within the footprint of the mechanism.
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Figure 2.4: Two building blocks BB1 and BB2 in series. The final coupling vector is
the vector addition of the modified coupling vector of BB1 (~rI/kg1) and
the coupling vector of BB2 (~rE2/kg2)

2.3.3 Compliance Ellipse

Serial concatenation requires more than adding the individual building block compli-

ance ellipses. There is an additional degenerate ellipse (ellipse with one of its axis

vanishing) known as the Compliance shift ellipse whose semi-major axis is denoted

by ashift that is added to the compliance ellipses of BB1 and BB2. The shift ellipse

signifies the shift in the point of interest from the input of BB2 to BB1. The compli-

ance shift ellipse is oriented at an angle δshift. This is perpendicular to ~rm, which is

the orientation of the center of elasticity of the first building block ~rE2 to the center

of elasticity of the second building block ~rE1 . This is shown in Figure 2.5. These

quantities may be calculated as

ashift =
(|~lr − ~rE2 + ~rE1 |)2

kg1 + kg2

δshift = Ω + π/2

~rm = ~lr − ~rE2 + ~rE1 = ~rI − ~rE2 (2.12)
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Figure 2.5: The compliance ellipse of BB2 is augmented by a degenerate shift ellipse
r2m/(kg1 + kg2).

2.3.4 Parallel Concatenation of the building blocks

Parallel concatenation of building blocks was extensively studied by Kim et al. (2008).

This type of concatenation is necessary to design mechanisms constrained to move in

a particular direction. Parallel concatenation is relatively straightforward with the

stiffness ellipses and the stiffness coupling vectors of the two building blocks add.

This is shown in Fig.2.6.

2.4 Parametric Characterization of a Compliant Dyad Build-

ing Block

Most compliant mechanisms are composed of slender, beam-like elements con-

nected in series or parallel.A fundamental building block for such mechanisms is the
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Figure 2.6: Addition of Building blocks in parallel involves addition of the individual
stiffness ellipses and the coupling vectors.

compliant dyad. A compliant dyad consists of two beams connected in series as shown

in Fig. 4.4 and is versatile in obtaining a wide variety of compliance characteristics

(Kim et al. (2008), Kim (2008)). In this section parametric trends of the compliance

quantities introduced in Section 2 are obtained for the compliant dyad. The trends

will be utilized subsequently to select building block geometries for given stiffness

requirements.

2.4.1 Parametric Trends

The shape of a compliant dyad is captured by the angle between the beams, α,

and the ratio of lengths of the two beams, l2norm = l2/l1 as shown in Fig. 2.7. The

total length of the dyad is defined as ldyad = l1 + l2 . For initial characterization, it

is assumed that the beams share the same cross-section (I = bh3

12
) and material (E).

The characteristics developed in Section 2 are presented here for the compliant dyad.

When possible, the characteristics have been normalized to highlight dependence on

shape alone.
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kg: The eigenrotational stiffness is independent of the dyad shape and is expressed

as
kg =

EI

lDyad
. (2.13)

np: The ratio of linear compliances is captured as np =
af2
af1

. Figure 2.7a shows the

dependence of np with the shape parameters of the dyad. Values of 0.001 <

np < 1 can be obtained by adjusting the geometric parameters of the dyad.

af1n : The linear compliance may be normalized such that

af1n = af1
EI

l3Dyad
. (2.14)

The normalization is valid for beams with slenderness ratios greater than 15.

The dependence on the geometry parameters for the normalized compliance is

shown in Fig. 2.7b

rEn : The distance to the center of elasticity may be normalized with respect to lDyad

such that rEn = rE
lDyad

. The dependence of rEn is shown in Fig. 2.7c. rE vanishes

only when α = 0◦, which is not feasible to fabricate. Furthermore, when a dyad

tends to a beam (i.e.α = 1800 ), its center of elasticity is at half its length, i.e.

rE = lDyad/2.

β: Figure 2.7d gives the dependence of the angle β while varying α and l2norm. When

α → 0◦ and 180◦, the direction to the center of elasticity is 90◦ with respect

to the orientation of af1 . This indicates that a beam’s center of elasticity is

oriented along its length.

It is possible to size a compliant dyad to obtain desired values for some of the

parameters. np is dependent on the shape alone , whereas both kg and af1 depend

on shape, cross-section, and material. The shape of a dyad (α and l2norm) may be

selected based solely on a desired n∗
p using Fig. 2.7a. The selected combination of α

and l2norm corresponds to a specific normalized linear compliance, af1n . Subsequently,
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the specific length, lDyad, and cross-section, I, may be ascertained by utilizing Eqns.

2.13 and 2.14.

However, if it is necessary to simultaneously achieve specifications on more than

one quantity (e.g. rE and np), a single dyad building block may be insufficient. Serial

or parallel combination of more than one building block provides increased capacity to

attain various combinations of specified characteristics. Synthesis of building blocks

connected in series will be presented in Section 5.

2.4.2 Stress in a dyad

The performance of a mechanism with desired stiffness characteristics largely depends

on the magnitude of bending stress induced for a given operating load. The bending

stresses are now related to the geometry of the dyad. For a force fx and fy in the

X and Y direction respectively together with a moment m, the maximum stress is

either at the beam junctions or at the grounded end. This maximum stress can be

expressed as

σ =
max(ME,MJ)b

2I
=
max|ME,MJ |6

hb2

ME = lDyad

(
fysin(α)l2norm + fx(1− cos(α)l2norm)

1 + l2norm

)
+m

MJ = lDyad

(
fysin(α)l2norm − fxcos(α)l2norm

1 + l2norm

)
+m (2.15)

where ME and MJ are bending moments at the grounded end and the junctions

respectively, I is the second area moment of the cross section, lDyad is the overall

length of the dyad, b is its in-plane thickness and h is the out of plane thickness of
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the beams . The above moments can be written as

ME =
flDyad

√
l22norm

+ 1− 2cos(α)l2normsin(θ + ω)

1 + l2norm

+m

MJ =
flDyadl2normsin(θ − α)

1 + l2norm

+m (2.16)

where θ = tan−1(fy/fx), f =
√
f 2
x + f 2

y and ω = tan−1((1−cos(α)l2norm)/(l2normsin(α))).

The maximum end moment for a force of magnitude f occurs when ω+θ = 90◦, while

the maximum junction moment is at θ − α = 90◦. The maximum stress can be ex-

pressed as

σ = (fσn +m/lDyad)
6lDyad
b2h

(2.17)

where σn is the normalized maximum stress factor given by

σn = max|
√
l22norm

+ 1− 2cos(α)l2norm

1 + l2norm

,
l2norm

1 + l2norm

| (2.18)

This normalized stress factor is plotted in Fig. 2.7e. The maximum stress at the

end of the dyad is obtained when α = 180◦ making σn = 1, indicating that for a

given applied load and overall mechanism length, a straight beam experiences the

maximum stress. The overall stress is lower for smaller dyad angles but they occur

at the junction between the beams.

Another guiding principle can be obtained by a restatement of the above equation

using the definition of kg from Eq.2.13. Substituting the in-plane width b in terms of

kg (= Ehb3

12lDyad
) in Eq.2.17, the following equation is obtained.

σ = (fσn +m/lDyad)(
12lDyadE

2

8k2g
)1/3 (2.19)

In Eq.2.18 that the maximum value for σn is 1. Furthermore the maximum moment

m can be thought of as the action of force f through a rigid body of length lDyad
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(which is also roughly the footprint of the dyad) separating the point of application

from the input of the dyad. Substituting fσn +m/lDyad = 2f in the above equation,

a safe operating value of kg can be evaluated knowing the maximum allowable stress

in the mechanism (σa) as

kg ≥

√
12lDyadE2f 3

hσ3
a

(2.20)

In most design problems, once the material is selected, the out of plane thickness

is known either based on the fabrication process or from the thickness of the sheet.

Furthermore knowing the maximum force that can be applied and the maximum

length of the mechanism, the lower limit of kg can be estimated such that the stress

will always be less than the permissible value from Eq. 2.20.

2.5 Guidelines and Examples for Building Block Concatena-

tion

In this section guidelines are provided for systematically generating conceptual topolo-

gies by series, parallel or both series and parallel combinations of compliant dyads.

The procedures are based on the mechanics of concatenation described in Section 3

and the parametric behavior of dyads described in Section 4.

2.5.1 Procedure for Serial Concatenation

For a given force, the maximum stress for a dyad always occurs when α = 180◦, i.e.

when it is a beam.

One strategy to lower overall stress levels in a mechanism is to use curved or folded

beams. This may be accomplished with a serial concatenation of compliant dyads.

To that end, systematic guidelines are proposed for the synthesis of mechanisms

composed of two dyads for required compliance behavior and stress constraint. The

procedure can be easily extended to synthesis involving multiple building blocks. The
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procedure is illustrated in Fig. 2.8 for the synthesis of a mechanism with equal linear

compliances (np = 1) and input at the center of elasticity (rE = 0). The steps are

briefly listed here and are utilized in a subsequent example.

Step 1 Graphical problem specification: The problem is specified in terms of a

compliance ellipse and coupling vector.

Step 2 Eigen-rotation stiffness estimation: Determine prudent values of kg for the

two building blocks based on stress considerations as shown in Section 4.2.

Step 3 Spatial CoE orientation: For a given footprint choose the CoE positions

of the two building blocks so that their combination results in the required

coupling vector as given by Eq. 2.10.

Step 4 Net ellipse evaluation: When two building blocks are combined in se-

ries, their relative CoE separation results in a degenerate shift ellipse given

by Eq.2.12. The required net ellipse is the difference between the problem

specification and the shift ellipse. The net ellipse must be positive definite.

Step 5 Net ellipse subdivision: Subdivide the net ellipse into two smaller ellipses

each corresponding to a building block. Different subdivisions lead to different

solutions.

Step 6 Building block design and combination: Determine building block geometries

based on their compliance ellipse specifications.The building blocks are placed

such that their CoEs are at the points determined in Step 3. To ensure connec-

tivity between the input of one building block and the fixed port of the other,

include rigid connections.

The above synthesis procedures aim at finding feasible values for kg to ensure that

the maximum stress is less than material yield. Subsequently the CoE of the two

building blocks are chosen to lie within the prescribed footprint. This is motivated by

55



the deep co-relation between the CoE, mechanism geometry and the overall footprint

(see Appendix B). The net ellipse is then subdivided to avoid overlapping members

and further maintain footprint specifications.Overall, the procedure is motivated at

simultaneously achieving the coupling vector and ellipse characteristics together with

constraining the mechanism within the footprint. It must be noted that there could

be alternate procedures to obtain a design for a given problem specification.

2.5.2 Series Concatenation: Example

The synthesis procedure is now explained in detail for a specific example. This ex-

ample proposes to design a mechanism that has equal compliance in the X and Y

direction of magnitude 0.15 mm/N and no coupling between forces and rotation (rE

= 0). The assumed material is spring steel (E = 210 GPa, σyield = 2000 Mpa) of

thickness h = 10 mm. The mechanism needs to withstand a maximum force f of 30

N and must fit within a footprint of 500 mm × 500 mm.

Step 1: The problem specifications can be represented as a circular compliance

ellipse of radius 0.15 mm/N and a coupling vector of zero magnitude as shown

in Fig. 2.8a.

Step 2: A value for minimum kg can be obtained by applying values from problem

specification into Eq.2.20 , to yield
√

12×500×(200e3)2×303

10×20003
= 7.5 × 104N − mm.

For simplicity, kg is assumed to be same for the two building blocks, i.e. kg1 =

kg2 = kg. Thus Eq. 2.10 reduces

~cf =
~rI + ~rE2

kg
(2.21)

As a consequence of this simplification, ~rI and ~rE2 add as vectors.

Step 3:The two vectors ~rI and ~rE2 denote the distance of the building block CoEs

from the input. To achieve a zero net coupling vector, ~rI and ~rE must be equal
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and opposite as shown in Fig. 2.8b. Note that these vectors have to be selected

to lie within the mechanism footprint. In the present problem, this distance has

been selected to be 120 mm (i.e., rI = 60 mm and rE2 = 60 mm) to satisfy the

footprint constraints.

Step 4: The shift ellipse is given by Eq. 2.12 by substituting ~rm = ~rE2 − ~rI = 2~rE2

as

ashift =
2r2E2

kg
=

2(60mm)2

7.5× 104N −mm
= 0.09mm/N (2.22)

The net required ellipse is then obtained by the difference of the circle of radius

0.15 mm/N and 0.09 mm/N , as shown in Fig. 2.8c. If this difference yields an

ellipse with a negative af1 or af2 , the relative CoE distances can be adjusted to

lower the value of the shift ellipse.

Step 5: The net ellipse can be further subdivided into two smaller ellipses as shown

in Fig. 2.8c. To aid in visualization, the two building block ellipses are chosen

to be oriented along the same direction. The sub-ellipses that make up the net

ellipse must correspond to building block geometry that conforms to the foot-

print specifications. Furthermore, the members of the building blocks should

not overlap with each other. The building block geometry and cross-section pa-

rameters are determined in Step 6. Thus, an optimal subdivision can be found

by iterating between steps 5 and 6 so that the mechanism geometry is well

within the prescribed footprint. In this example, the two sub-ellipses have af1

= 0.03 mm/N , af2 = 0.025 mm/N and af1 = 0.12 mm/N , af2 = 0.035 mm/N .

Step 6: The two ellipses obtained by subdividing the net ellipse has np of 0.833

and 0.3 respectively. These values are used to determine the geometry variables

(l2norm and α) of the dyad from Fig. 2.7a. The dyads were chosen such that

their l2norm = 1 and α are 57◦ and 87◦ respectively. Their cross section and dyad

lengths are chosen to match the respective af1 values based on the parametric
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dyad behavior in Section 4. The dyad lengths were found to be 313 mm and

489 mm respectively. The building block geometries are oriented such that their

CoEs are placed at E1 and E2. They were found to fit within the footprint

specifications. The input of the first building block is rigidly connected to

the fixed port of the second, while the input of the second building block is

connected to Ipm through a rigid body.

The final mechanism has a circular compliance ellipse (af1 = af2 = 0.15 mm/N)

and a zero coupling vector.

The presented guidelines are also valid for designing the coupling vector or com-

pliance ellipse separately.

a) Coupling vector. To design for a desired coupling vector alone,steps 4 and 5 can

be skipped.

b) Compliance ellipse. To design for a desired compliance ellipse specification

alone, the CoE’s of the two building blocks in step 3 can be placed arbitrarily.

Figures 2.9a and b show mechanisms obtained by applying the above guidelines to

design for a circular ellipse alone, without any specification on the coupling vector.

Figure 2.9 c shows a mechanism with its input at the CoE, without emphasis on its

ellipse characteristics.

2.5.3 Parallel Combination of building blocks

In the mechanism in Fig. 2.8, it is seen that the input is surrounded by the mecha-

nism. This makes it difficult to connect it to an actuator for practical applications.

Furthermore, it is shown in the Appendix B that CoE for serial concatenations are

bound within the footprint of the mechanism. This limits the compliance characteris-

tics that can be obtained by series combination alone. To overcome these limitations

it may be advantageous to use parallel combination of building blocks. This leads to
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robust designs, reducing the sensitivity of the compliance characteristics on geometry

and manufacturing errors (Awtar (2004)). Furthermore, during parallel combination,

the two building block ellipses and coupling vectors combine without the need for

shift ellipses and vectors. This makes parallel combination easy to implement.

The input and the COE is desired to be placed at a more accessible position

retaining the circular compliance. These specifications stem from the design of a

vision-based force sensor for micro-manipulation purposes (Cappelleri (2008), Cap-

pelleri et al. (2010)). It is further desired to accommodate a rigid probe at the input

of the mechanism for manipulation purposes. As shown in Figure 2.6 the stiffness

coupling vectors and the compliance ellipses add upon parallel combination. Further-

more, if the symmetric halves have circular compliance, the orientation of the stiffness

coupling vectors given by Eq. 2.7 becomes equal to the orientation of the compliance

coupling vectors, i.e., γ = 0◦. Thus it is desired to use two symmetric building blocks,

each having circular compliance as shown in Fig.2.10 a. These symmetric halves are

oriented such that their coupling vectors make an angle with the horizontal. From

the addition of coupling vectors shown in Fig. 2.10 b, the resultant coupling vector

(and thus the CoE) of the mechanism is at some vertical distance from the input.

A rigid pointer can thus be connected from the mechanism to its CoE as shown in

Fig. 2.10 d. Note that the net stiffness ellipse of the mechanism will be a sum of the

individual building block ellipses.

2.6 Discussion

Characterization of stiffness or compliance at a single point of interest in a compliant

mechanism consists of specifying a direction of maximum stiffness (constraint), direc-

tion of maximum flexibility (freedom) and quantifying the coupling between trans-

lation and rotation for any applied force. The chapter presents a unique graphical

characterization to denote the above quantities by representing the force-displacement
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relationship at a point by a compliance ellipse (specifying constraint and freedom)

and a coupling vector (specifying coupling between rotation and translation) obtained

from eigen-twist and eigen-wrench characterization of 2-D complaint members. The

parameters that are obtained from this characterization form a natural representation

of the governing behavior for concatenation. Series and parallel concatenation can

be represented by addition of ellipses and vectors, thus providing graphical insight.

Furthermore, the graphical approach introduced in this chapter aids in better visual-

ization than 3-D stiffness ellipsoids, as they have a direct co-relation to the building

block geometry and eliminate the need for normalizing lengths.

The graphical characterization along with the addition of stress constraints en-

ables realizing practical designs by eliminating topologies unfavorable to the required

stress and footprint considerations.These methods enable generation of quick alter-

nate topologies to populate the database of acceptable solutions. This is one of the
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greatest advantages of the this method over more computationally intensive tech-

niques. Furthermore the insight obtained on the bounds of the center of elasticity

(see Appendix B) for a given topology further enhances the usefulness of this method.

The usefulness of this methodology has been demonstrated by a practical vision-based

force sensor application having equal stiffness in the X and Y direction with decoupled

translation and rotation.

The chapter deals with beam based compliant dyads as building blocks. The

parametric analysis of Fig. 2.7 reveals that this simple dyad spans a wide space

of eigen-twist and eigen-wrench parameters and is thus an excellent candidate as a

building block. Furthermore the design methodology is not building block specific

and can be applied to simpler building blocks like beams, and more complex curved

building blocks.

2.7 Conclusions

The chapter highlights the use of eigen-twist and eigen-wrench characterization to-

wards series and parallel combination of 2-D compliant building blocks. Some of the

important findings of the chapter are summarized below

Main Contributions

1. Representation of 2-D 3× 3 compliance(or stiffness) matrix as an ellipse signi-

fying the translational compliance and a coupling vector signifying the coupling

between rotational and translational compliances.

2. Emphasis on a unique point known as center of elasticity where translational

and rotational compliances are decoupled.

3. Representation of series (or parallel) building block concatenation as addition of

individual building block compliance (or stiffness) ellipse and coupling vectors.
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4. A bound on the location of the Center of Elasticity within the footprint for a

mechanism obtained by a series combination of a number of infinitesimal beams.

5. Ability to obtain a practical topology for a given footprint and stress consider-

ations by following the proposed design guidelines.

2.8 Appendix A

Statement : The Center of elasticity for a 2-D member obtained by a series combina-

tion of a number of beams (however small) lies within the foot-print of the mechanism.

: Any mechanism as shown in Fig. 2.11a can be divided into a number of straight

beams of equal length l. The fixed point of the mechanism, from the point of input

can be expressed as a vector sum of all the vectors of length l that make up the

mechanism as shown in Fig. 2.11b.

Lmech =
N∑
k=1

leiθk (2.23)

Each beam of length l has a coupling vector which has the same orientation as the

beam itself. The magnitude of the resultant coupling vector for the mth beam is given

by

Nm = l(
1

2kgm
+

m−1∑
j=1

1

kgj
)eiθm (2.24)

The resultant coupling vector for the mth beam is the vector sum of its actual coupling

vector (rE/kg or l/2kg) and the change in input point, which in case of a beam is

its length l by the rotational stiffness of the building block that it is added into

(i.e.
∑

j=1..(m−1) 1/kgm). To obtain the resultant center of elasticity, the vector sum

of all the coupling vectors is divided by the reciprocal of the resultant rotational
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Figure 2.11: The Center of elasticity of any mechanism due to a series combination of
building blocks will always lie within its footprint. (a) Entire mechanism
(b) Mechanism divided into a number of beams of length l (c) Curve
traced by the Coupling vectors, which define the position of the center
of elasticity.

stiffness.

rE =
N∑
m=1

l(1/2kgm +
∑i−1

j=1 1/kgj)e
iθm∑N

k=1 1/kgk
⇒

N∑
m=1

l∗me
iθm (2.25)

Thus the coupling vector traces a curve similar to the actual mechanism, with

each elemental length of the mechanism l, mapped to a length l∗k for k=1...N. It is

sufficient for us to prove that for any 1 <= k <= N , l∗k <= l. This means that the

curve traced by the coupling vectors is contained within the geometry. This means

that the center of elasticity has to lie within the footprint of the mechanism.

l∗k =
l(1/2kgk +

∑k−1
j=1 1/kgj)∑N

m=1 1/kgm
N∑
m=1

1

kgm
=

k−1∑
m=1

1

kgm
+

1

2kgk
+

1

2kgk
+

N∑
m=k−1

1

kgm

N∑
m=1

1

kgm
≥ (

1

2kgk
+

k−1∑
j=1

1

kgj
) (2.26)
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The above equation means that the numerator is less than the denominator and

thus l∗k ≤ l. Because each segment length comprising the location of the center of

elasticity is shorter than l, the center of elasticity must lie within the footprint of the

mechanism.
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CHAPTER III

Multi-Port Compliance Representation using Load

Flow Visualization

Visualizing load flow aids in conceptual design synthesis of machine components. This

chapter presents a mathematical framework to visualize load flow in compliant mech-

anisms. This framework uses the concept of transferred forces to quantify load flow

from input to the output of a compliant mechanism. The key contribution of this chap-

ter is the identification a fundamental building block known as the Load-Transmitter

Constraint (LTC) set, which enables load flow in a particular direction. The trans-

ferred force in each LTC set is shown to be independent of successive LTC sets that

are attached to it. This enables a continuous visualization of load flow from the input

to the output. Furthermore, load flow is mathematically related with the deformation

behavior of the mechanism. The deformation behavior of a number of compliant mech-

anisms from literature are explained by identifying its LTC sets to visualize load flow.

This understanding inspires a systematic building block based design methodology.
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3.1 Introduction

This chapter introduces the concept of load flow visualization to represent compliant

mechanism behavior. The hypothesis is that deformation of compliant mechanisms

can be comprehended as an action of forces and moments that flow through the mech-

anism topology. This is motivated by the role of load flow visualization in conceptual

design and evaluation of structures and mechanisms (Skakoon (2008), Ullman (2002;

2003)). Furthermore, it has been argued that computer aided design using topology

optimization techniques for stiff structures entails the identification of a path taken by

applied forces to flow from the input to the fixed ends (Suzuki and Kikuchi (1991)).

Just as in structures, compliant mechanisms are also deemed to be dependent on

an optimal load path as investigated by ?. However, until recently the mechanics

of load flow in structures were not described mathematically, precluding systematic

implementation in design synthesis. This is because unlike stress, load flow is not a

physical state of the material. The main aim of this chapter is to evaluate load flow

in existing compliant mechanisms and to correlate it with mechanism topology and

deformation. The contribution of each member that makes up the overall mechanism

can then be comprehended based on load flow.

This chapter is organized into the following sections. In Section 3.2, reviews

the mathematical formulations of load flow in literature, and defines the concept

of transferred forces as a physical interpretation of load flow. This leads to the

definition of Load Transfer Matrix to relate the input and transferred loads. Section

3.3 identifies two explicit members that influence load flow, namely a Load Transmitter

member that transmits load and a Constraint member; together they constitute a

Load-Transmitter Constraint (LTC) set. One LTC set is proved to be independent

of the subsequent sets, thus enabling modular analysis of compliant mechanisms by

LTC set decomposition. Section 3.4 derives the elements of the Load Transfer matrix

for the simplest LTC set, i.e. a compliant dyad. In Section 3.5, the geometric insight
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obtained from examining the dyad LTC set is extended for mechanisms composed of

a number of dyad LTC sets, enabling a continuous visualization of load flow. Section

6 examines some compliant mechanisms reported in literature and show that they are

made up of a number of LTC sets. Finally, we conclude by summarizing the major

contributions of the chapter.

3.2 Quantifying Load Flow in Compliant Mechanisms

In this section we provide a mathematical framework to define and evaluate load flow

from the fundamentals of mechanics. Towards this, we review existing formulations

in literature that highlight aspects of load flow. The earliest available visualization

of load flow in a structure was to follow the trajectory taken by the principal stresses

from the point of force application along the continuum topology (Chong and Boresi

(2000)). However it is argued that the state of stress or internal reaction forces do

not accurately represent load transmission (Harasaki and Arora (2001a)). Concepts

from fluid flow visualization, where the principle of equilibrium was used to balance

forces acting along a hypothetical force ”stream tube” (Kelly and Tosh (2000)) have

been used. Another effective method used by Harasaki and Arora (2001a) was the

concept of transferred and potential transferred forces used to predict the contribu-

tion of each element towards load transfer from input to fixed supports in structures.

This formulation was used to supplement topology optimization techniques in ob-

taining feasible solutions (Harasaki and Arora (2001b)). Yet another formulation

introduced by Hoshino et al. (2003) aimed at plotting the change in compliance at

each point of the structure by fixing the point under consideration. All the techniques

mentioned above have been used only to post-process Finite Element Analysis of de-

signed structures, and not for systematic conceptual design synthesis. Marhadi and

Vekataraman (2009) in their comparison of these formulations conclude that there is

no one formulation that can claim to completely represent load flow.

68



In this chapter the definition of transferred and potentially transferred forces (Ha-

rasaki and Arora (2001a)) is adapted for compliant mechanisms, owing to their sim-

plicity and ability to provide insight. Towards this we define the Load Transfer Matrix

as shown below.

Load Transfer Matrix

Consider a mechanism shown in Fig. 3.1a with a distinct input and output port. The

relationship between the displacements and forces for such a mechanism is captured

by the compliance matrix.

uin

uout

 =

 Cin Cin−out

CT
in−out Cout


 fin

fout

 (3.1)

where uin and fin are the displacements and applied load respectively at the input,

and uout and fout are the displacements and applied load respectively at the output.

We will define load transfer in two steps

Load Step 1 The input is loaded with fin, while the output is unloaded (i.e. fout =

0). Under these conditions the output displacement can be evaluated from Eq.

3.1 as

uout = CT
in−outfin (3.2)

Load Step 2 The output displacement uout from Load Step 1 is enforced at the

output and the resultant reaction load is evaluated while the input is unloaded

(fin = 0)

uout = Coutf̃out

f̃out = C−1
outuout (3.3)
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where f̃out is the reaction force at the output due to the enforced displacement

boundary condition. By substituting for uout in Eq. 3.2 from Eq. 3.3, we obtain

f̃out = C−1
outC

T
in−outfin

TL = C−1
outC

T
in−out (3.4)

where TL is the Load Transfer (LT) matrix. Note that the output reaction load

f̃out in Step 2 is the transferred load at the output.

Load transfer can be thus defined as the output load that would cause the same

output deformation as an applied input load. This is similar to the notion of trans-

ferred forces defined in Harasaki and Arora (2001a). The relation between this trans-

ferred load and the applied load is given by the LT matrix given by Eq. 4.1.

The dimensions of the LT matrix for frame based topologies is 3 × 3. For such

topologies, each node has three degrees of freedom; −X and −Y translation and in-

plane rotation θz. Each displacement and force vector has dimensions of 3× 1 while

each compliance matrix term (Cin, Cin−out, and Cout) has dimensions 3×3. In general

the LT matrix is asymmetric and thus not amenable to decomposition by eigen values

or eigen-twist and eigen-wrench parameters. However, some physical insight may be

drawn from various components of the LT matrix.

TL =


TL11 TL12 TL13

TL21 TL22 TL23

TL31 TL32 TL33

 (3.5)

The upper left 2 × 2 part of the LT matrix relates the transferred and input forces.

TL13 and TL23 relates the transferred forces in the X and Y directions respectively to a

unit input moment. TL31 and TL32 relate the transferred moments due to a unit input

force in the X and Y direction respectively. The final diagonal term TL33 indicates the
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amount of output moment transmitted by a unit input moment. In the next section,

we will derive some important results that will enable a continuous visualization of

load flow through the LT matrix.

Input

Output

fin uin

uout

fin= 0

uout
fout= 0

fout

~

(a) (b)

Figure 3.1: Deriving the Load Transfer matrix for Complaint Mechanisms. (a) Out-
put displacement is evaluated for an applied input load (b) Output reac-
tion load is evaluated by enforcing the output displacement from (a) with
no input load.

3.3 Load-Transmitter Constraint sets

The LT matrix captures the relationship between the output transferred load and the

input applied load. To enable visualization of load flow, we establish an important

property of the LT matrix for a simple single-input single-output compliant mecha-

nism. In this chapter, a simple Single input Single output mechanism (Kim et al.

(2008)) will be decomposed into the three components described below and shown in

Fig. 3.2a.

1. Input Constraint : This mechanism shown in 3.2b is a single point mechanism

that determines the force displacement relationship at the input. Its compliance

matrix is given by Ci.

2. Transmission Mechanism: This mechanism shown in 3.2c connects the input
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port to the output port. The grounded part of the mechanism is connected in

series with the input constraint mechanism. Its compliance matrix is denoted

by Cb.

3. Output Constraint : This (see Fig. 3.2d) determines the stiffness at the output

and the direction of motion. Its compliance matrix is denoted by Co.

It must be noted that all the three compliance matrices Ci, Cb and Co are 3× 3

positive definite matrices.

fi

fo

fi

lr

γ

fR

-fR +

+

(a)

(d)(b) (c)

+

(e)

(f)

Figure 3.2: (a) A simple single-input single-output compliant mechanism with (b)
Input Constraint (c) Intermediate Mechanism and (d) Output Constraint
(e) The simple compliant mechanism split into Input constraint together
with the intermediate mechanism, and (f) Output Constraint.

We now state and prove an important theorem:

Theorem

The Load Transfer matrix for a simple compliant mechanism is independent of the

output constraint Co.

Consider the simple compliant mechanism shown in Figure 3.2a. An input applied

load fi produces a displacement at the output. This output displacement can be
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evaluated by sectioning the mechanism at the output node as shown in Fig. 3.2e and

f. This leads to two mechanisms consisting of

1. Output constraint

2. Input constraint with intermediate mechanism

The internal reaction load fR at the output due to sectioning the mechanism can

be considered as two equal and opposite applied loads at the output of both the

mechanisms. When considering the output constraint mechanism of Fig. 3.2f, the

output displacement can be easily evaluated from

uo = CofR (3.6)

The mechanisms in Fig. 3.2e and f are connected in parallel at the output and hence

have the same displacements. Thus the same output displacement evaluated for the

mechanism in Fig. 3.2e involves a linear combination of two terms shown below:

Term 1: Output displacement due to the input force fi. This can be obtained by the

input displacement (Cifi) and a rigid body transformation of this displacement

to the output (through the action of lr and γ).

uo1 = QTCifi (3.7)

Q is the rigid body transformation matrix as given in Eq. 3.26.

Term 2: Displacement due to the output force fR. To evaluate this displacement we

use the compliance matrix of the output of Fig. 3.2e evaluated in Appendix A.
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This matrix is given by Eq. 3.25 as

Cib = Cb + QTCiQ

uo2 = CibfR (3.8)

Thus the net output displacement is given by

uo = QTCifi + CibfR (3.9)

From Equations 3.6 and 3.9 we eliminate fR to obtain

uo = QTCifi + CibC
−1
o uo

uo = [I + CibC
−1
o ]−1QTCifi (3.10)

We now invoke Eq. 3.3 where the output transferred load is given in terms of the

output compliance of the overall mechanism Cout and the output displacement uo.

Output compliance of the overall mechanism (Fig. 3.2a) is evaluated in Appendix A

Eq.3.27 as

Cout = [I + CibC
−1
o ]−1Cib (3.11)

Thus the final force transformation matrix is given by

fo = C−1
outuo

fo = C−1
ib [I + CibC

−1
o ][I + CibC

−1
o ]−1QTCifi

fo = C−1
ib QTCifi (3.12)

TL = C−1
ib QTCi (3.13)

where Cib is given by Eq. 3.25. It is seen that Eq.3.13 expresses TL in terms inde-
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pendent of the output compliance Co.

QED

From the above theorem, we conclude that the load transfer between the input and

the output of a simple compliant mechanism is independent of the output constraints.

The only members responsible for transferring load are the input constraint and the

intermediate transmitter sub-mechanisms. Together these will be known as Load-

Transmitter Constraint (LTC) sets. Thus Load-Transmitter Constraint sets can be

defined as a series combination of a mechanism that determines the deflection behavior

of the input (Constraint) and a mechanism that connects the input to the output such

that none of its members are directly grounded (Transmitter). The LTC set is the

fundamental building block that transfers load in a simple single-input single-output

compliant mechanism. The definition of transferred forces together with the above

property of the LT matrix leads to two important observation that aids in visualizing

load flow.

• Observation 1 : An LTC set converts a two-port (input-output) problem into a

single port problem at the output. The force applied at the input is transferred

to the output by the LTC set. This transferred load can then be considered an

applied load at the output. The net stiffness of the mechanism at the output is

responsible for determining the value of the output displacement.

• Observation 2 : Load transfer can potentially take place in a number of stages,

each stage representing an LTC set. The transferred force from one stage be-

comes the input force for the next stage. Load transferred at each stage is

independent of the stages that succeed it. This further enables visualization of

the load flow path through various stages from the input to the output of the

mechanism

Observation 2 can be further explained with respect to Fig. 3.3. Here, the input load
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is transferred to the output in two stages, i.e. from point A to point C through point

B. In the first stage, load is transferred from A to B. The transferred load at B is

independent of beams 3, 4 and 5. For this stage the constraint member is beam 1

and transmitter member is beam 2. The transferred load fB now acts as the input

load for the next stage. For this stage, the constraint consists of beams 1,2,3 and the

transmitter is beam 4. The transferred load at point C is independent of beam 5.

A

B

C

1

2
3

4

5

4

fi

fB

fC

Figure 3.3: A complaint mechanism with two load transfer stages. The input force fi
is applied at point A. fB and fC are transferred forces at points B and C
respectively

In the above analysis, it has been assumed that the transmitter and constraint

sub-mechanisms are composed of compliant members. However, if the transmitter

sub-mechanism is rigid, i.e. Cb = 0, then Cib Eq. 8 becomes

Cib = QTCiQ (3.14)
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Thus Eq. 3.13 now becomes

TL = (QTCiQ)−1QTCi

TL = Q−1 (3.15)

Thus, if the transmitter sub-mechanism is rigid, the Load Transfer matrix is inde-

pendent of the input constraint Ci, and depends only on the geometric orientation of

the rigid body.

In the following section, we will look at an elemental LTC set and further consider

the above conclusions and their implications.

3.4 A Compliant Dyad as a Load-Transmitter Constraint set

In this section, we will look at the elemental LTC set, i.e. a compliant dyad shown

in Fig. 4.2. Its simplicity arises from the fact that constraint and transmitter sub-

mechanisms are straight beams. Dyads are well known building blocks for compliant

mechanism synthesis (Kim et al. (2008),Krishnan et al. (2010)). Most mechanism

topologies irrespective of their design methodology are observed to be composed of

dyads (Hetrick and Kota (2003), Lu and Kota (2005)). In this section, we will derive

analytical expressions for the transferred load of a dyad in terms of its geometry

variables. The transferred load will be related to the deformation of the dyad to

obtain geometric insight into its behavior.

3.4.1 Evaluating Transferred Load for a Dyad LTC set

The compliant dyad shown in Fig. 4.2, has input at point A and output at point B.

As an LTC set, the grounded beam of length l1 is the constraint, while length l2 is

the transmitter. The ratio of the lengths is l2norm = l2/l1. The angle between the two

beams is α. The ratio between the in-plane thickness for the two beams is given by
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br = b2/b1, and the out of plane thickness of the entire dyad is assumed constant. The

dyad is modeled using Euler-Bernoulli beams, with its length at least 15 times greater

than its thickness. Another valid assumption involves neglecting the compliance of

the beams along its axial direction (Blanding (1999), Kim et al. (2006)). It is thus

assumed that any force along the axis of the beam produces no deflection. Energy

methods (Castigliano’s II theorem) are used to evaluate beam deflections for any

applied force. As presented in Section 2, the transferred force can be evaluated in

two load steps.

Load Step 1 Force fiy and mi is applied at the input and output displacements

ux,uy and θ are evaluated.

Load Step 2 The above output displacements ux,uy and θ is enforced at the output

of the dyad, without applying any input force and output reaction forces f̃ox ,

f̃oy and m̃o are evaluated. These reaction forces are the transferred forces at

the output.

The obtained expressions are given below

f̃ox = cot(α)fiy −
3(l22normcos(α) + b3r)mi

2l1(l2norm + b3r)l2normsin(α)

f̃oy = fiy −
3l2normmi

2l1(b3r + l2norm)

m̃o = − b3rmi

2(b3r + l2norm)
(3.16)

The output transferred forces (f̃ox and f̃oy) depends upon the input force and input

moment. However, the output transferred moment (m̃o) is dependent on the input

moment alone and its direction is opposite to the input moment. Furthermore, from

the above equation, the magnitude of the transferred moment is lower than the applied

moment. The direction of the transferred force is given by angle β as shown in
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Fig.4.2b.

tan(β) =
f̃oy

f̃ox

β = α when mi = 0

β = tan−1(
tan(α)

1 + b3r
l22normcos(α)

) when fiy = 0 (3.17)

When there is no input moment, the output transferred force is along the axial di-

rection of the beam. Furthermore, applied input moments affect the direction of the

transferred force. The magnitude of the transferred force when there is no input

moment can be given as

f̃o =
√
cot(α)2 + 1fiy =

fiy
sin(α)

(3.18)

The magnitude of the transferred output force increases as α decreases. Furthermore,

this magnitude is independent of the cross-section or length of each beam, and de-

pends on its orientation alone. All these observations imply that the dyad transfers

loads along its stiffest direction, i.e. along the axial direction of the transmitter beam.

fiy
mi

l1

l2

α

β

b2

b1

fofo =

fox

foy

mo

{ }
A

B

Figure 3.4: (a) Dyad with input force fiy and input moment mi (b) With output
transferred force fo
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The simplicity of dyad LTC sets enables a closed form expression for the trans-

ferred load, and provides insight relating it to the dyad geometry. However, if the

transmitter sub-mechanism is not a beam, the magnitude and the orientation of the

transferred load cannot be determined looking at its geometry. In the next subsec-

tion, we will combine the observations of Section 3 together with the derivations of

transferred load for a compliant dyad LTC set to reveal geometrical insights about

its deformation behavior.

3.4.2 Output Displacement Direction for Dyad LTC sets

In Section 3, transferred load related the input applied load to the output deformation.

Output deformation can be evaluated as a single port problem, with the transferred

load as an applied load at the output. The magnitude and the direction of the output

deformation depends on the stiffness characteristics of the output constraint, which

from the conclusions of Section 3 does not affect the transferred load. A natural

question is whether any displacement can be obtained at the output by tuning the

output constraint. The principles of mechanics dictate that there are only select

output displacements that can be obtained. For a dyad, any input force produces

a transferred force along the axial direction of the transmitter beam. Treating this

as an applied output force and invoking the positive definiteness of the compliance

at a point, the possible translation directions lie in a semicircular band +90◦ - −90◦

with respect to the direction of the transferred force as shown in Fig. 3.5a. All the

possible directions that are contained within this semicircular band is termed as the

Freedom Space. It is possible to tune the magnitude of the output translation within

the directions in the freedom space based on designing a constraint at the output.

The most fundamental single-point constraint frequently seen in mechanisms is a

straight beam (see Fig. 3.5b). From the principle of constraint design (?) the degree

of freedom for a beam is perpendicular to its length for small displacements. The
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output displacement of the dyad LTC set is given by the intersection of this degree

of freedom line with one of the directions of the semicircular freedom space. This is

shown in Fig. 3.5c.

(a)

Freedom Space
Degree of
Freedom 
Line

Direction of Output
displacement

(b)

(c)

Figure 3.5: (a) The semicircular freedom band denoting the possible directions of
output displacements (b) The output beam with its degree of freedom
line (c) Direction of output displacement

3.4.3 Output Constraint Beam Orientation: Force Transmission or Mo-

tion Amplification

In this section, we will show that the orientation of the output constraints relative

to the transmitter beam decides the kinematics of the mechanism. Shown in Fig.

3.6 is an LTC set, with its semicircular band and the output constraint. If the

output constraint beam has its freedom line along the direction of the transferred

force, the output moves in this direction. This condition shown in Fig. 3.6b is ideal

for effectively transmitting force at the output as it has a small deviation angle (Kim

(2009)). This signifies that the angle between the stiffest direction and the direction of

force transmission is small. If the constraint beam has its freedom line close to 90◦ (or

ζ ≈ 0◦) to the direction of the transferred force, the output translates significantly
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relative to the input as shown in Fig. 3.6c. This configuration is used frequently

in motion-amplifying stages (Hetrick and Kota (2003)). The ratio of the output and

input displacement may be given by the method of instant centers (Kim et al. (2006))

as shown in Fig. 3.6a.

uout
uin

=
lo
li

=
sin(α)

sin(ζ)
(3.19)

Substituting ζ = 90◦ and → 0◦, we get the cases in Figs. 3.6 b and 3.6c respectively

for a fixed α.

lo

li IC

α

ζ
(a)

(b) (c)

ζ= 900 ζ ≈ 00

Figure 3.6: (a) An LTC set with an output constraint. The relative displacements
between the input and the output can be evaluated using instant centers
(b) Configuration that leads to effective force transmission (c) Maximum
amplification
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3.5 Visualizing Load Flow in Compliant Mechanisms

Geometric insight gained with the dyad LTC sets permits a continuous visualization

of load flow within the transmitter beam. A continuous visualization of load flow seen

in Fig. 3.7 implies that at each section of the transmitter beam slightly away from

point of application of the input force (to avoid local effects), the transferred load is

along the direction of transmitter beam and its magnitude is given by Eq. 3.17. In

this section, we extend this visualization for a combination of LTC sets.

Applied Load

Transferred 
Load Flow

Figure 3.7: Continuous load flow visualization of transferred forces at each section of
the transmitter beam.

3.5.1 Combination of LTC sets leads to a load path

One of the chief advantages of representing load flow using transferred forces is that

the transferred load at the output of one LTC set becomes the input applied load to

the next LTC set as shown in Fig. 3.3. This seamless transition between LTC sets

was possible because the transferred load from one LTC set was independent of the

successive sub-mechanisms at its output. A similar combination of two LTC sets is

shown in Fig. 3.8a, with load flow in the individual LTC sets shown in Fig. 3.8b and

c. Load flow in the first LTC set can be visualized along its transmitter beam just as

in Figs. 3.7 and 3.8c. The transferred load at its output acts as the applied load at
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the input of LTC set 2. Note the constraint for LTC 2 consists of a combination of

beams 3 and the entire LTC 1. A simplifying approximation that can ease evaluation

of transferred load for LTC 2 is to neglect LTC 1 as a constraint. The approximation

is valid as the deformation behavior of LTC 2 is largely dictated by its constraint

beam 3, while the stiffness contribution of LTC 1 towards the constraint for LTC 2

can be considered negligible. This approximation can be made when the LTC sets

are made of dyads. Thus the transferred load for LTC 2 can be evaluated by Eq.

3.17, and load flow can be visualized along its transmitter beam. The transmitter

beams of both the LTC sets together constitutes a load path. Furthermore, the net

Load Transfer matrix can be represented as a combination of Load Transfer matrices

of the two building blocks as shown

TLcombined
= TL1TL2 (3.20)

where TL1 and TL2 are the Load Transfer matrices for LTC 1 and LTC 2 respectively.

Input Force

Input Force

C1

T1

T2

C2 LTC 1: C1 and T1

LTC 2: C2 and T2

C1

T1
C2

T2

(a)

(b) (c)

Figure 3.8: (a) Combination of two LTC sets (b) The first LTC set with its constraint
band and output freedom band(c) Second LTC set with its constraint
band and output freedom band

84



3.5.2 Bifurcated load paths

A combination of two or more LTC sets connected in series leads to a single load

path. A complaint mechanism may consist of two or more independent load paths

between the input and output ports. Each of these load paths are comprised of LTC

sets. Shown in Fig. 3.9 are simple combination of two load paths. It is possible to

derive a relationship between the net transferred load at the output and the input

load in terms of the net Load Transfer matrix of individual paths. To enable this we

divide the mechanism as shown in Fig. 3.9b and c. The two points along which the

input is divided are connected in parallel, which implies that their stiffnesses add and

displace by the same amount. The forces acting on these two beams f1 and f2 thus

readjust so that their combination gives the applied input load fi.

f1 = C−1
1 u

f2 = C−1
2 u (3.21)

Where C1 and C2 are the compliance matrices as observed from Figs. 3.9b and c

respectively, u is the displacement of the input. The displacement u can also be given

by

u = CIfi (3.22)

Where CI is the combined compliance matrix of the input corresponding to Fig. 3.9a.

Combining the above two equations, we obtain

f1 = C−1
1 CIfi

f2 = C−1
2 CIfi (3.23)

From the above equation, it is seen that the forces at the input of Figs. 3.9b and c

respectively are proportional to their input stiffness. Furthermore from this figure, it
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is seen that the two paths from the input to the output can be given as A − B and

C −D respectively. Let the LT matrix for path A−B be TL1 while that for C −D

be TL2 . Note that these two paths are independent of each other since each path

acts as the output constraint for the other and thus does not affect their respective

transferred load. Furthermore from the principle of superposition, the two paths sum

up to give the net transferred load at the output given by

fo = TL1f1 + TL2f2

fo = (TL1C
−1
1 + TL2C

−1
2 )CIfi (3.24)

Thus, the output transferred load is a linear combination of the loads transferred due

to the individual load paths.

Input

Output Resultant Transferred 
Load

AA

B

C

D

fi

f1
f2

(a)

(c)(b)

Figure 3.9: Mechanisms with multiple load flow paths (a) Mechanism with input and
output. Mechanism is divided to separate two distinct load paths (b)
Load flow in one load path (c) Load flow in the other load path.

From this section, it can be concluded that identifying a net load path enables

visualization of load flow for both simple and complex topologies. Furthermore, the

86



deformation behavior of the topology can be understood by analyzing individual LTC

sets that make up the net load path. In the next section, we will identify load paths

and analyze their deformation behavior for some compliant mechanisms from the

literature.

3.6 Identifying LTC sets in existing mechanisms

To identify LTC sets and direction of load flow from input to the output of a mecha-

nism, we follow the guidelines below

1. Identify a net load path: A chain of serially connected line segments that tra-

verses a continuous path from the input to the output is identified as the net

load path. These line segments form the transmitters of the LTC sets that make

up the mechanism.

2. Identify constraint sub-mechanisms: Along the net load path, constraint sub-

mechanisms whose one end is grounded are identified.

3. Group transmitters and constraints into LTC sets and evaluate transferred load

for each LTC set: Grouping enables independent analysis of each LTC set.

Evaluation of transferred load in each LTC set leads to load flow visualization

along its transmitter.

4. Determine deformation behavior for each LTC set: The constraint at the output

of each LTC set is identified. This determines the direction of output displace-

ment and the relation between its input and output displacement.

We present some simple examples from the literature whose deformation behavior is

explained using the guidelines above.
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3.6.1 A Displacement Amplifying Inverter Mechanism I

A displacement amplifying inverter shown in Fig.3.10a is obtained by concatenating

a number of dyads in series Hetrick and Kota (2003). The mechanism is comprised

of two symmetric halves. It is sufficient to analyze one symmetric half to study its

deformation behavior. The two halves are connected at the input and the output

port.

(a) (b)

Figure 3.10: (a) The DaCM topology and(c) The deformed profile of the symmetric
half

The first stage as indicated earlier is to find a set of continuous line segments

from the input to the output. This is the net load path is highlighted in Fig.3.11a by

dark lines. The constraints are identified in the same figure as beams from a point

in the net load path to the grounded region as C1, C2, C3, C4 and C5 respectively

. Each constraint combines with a transmitter element to form an LTC set (Fig.

3.11c, d, e and f). The first LTC set is constrained by the symmetry boundary

condition represented by the vertical roller in Fig. 3.11c. This constraint guides the

displacement along the vertical. The direction of the transferred force at the output

of LTC set 4 permits displacement within a semicircular band around it shown in

Fig. 3.11g. Symmetry constrains the output to move along the vertically downward

direction.
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C1

T1 C2

T2

T3

C3

T4 C4

C1

T1

C2

T2

C3

T3

T4 C4

Constraint DoF 
due to Symmetry

Output 
Transferred 
Force

Displacement
direction

C1 & T1: LTC 1
C2 & T2: LTC 2
C3 & T3: LTC 3
C4 & T4: LTC 4

(a)

(b) LTC 1 (c) LTC 2 (d) LTC 3

(e) LTC 4

(f) 

Figure 3.11: Displacement Amplifying Mechanism (Hetrick and Kota
(2003))(a)Identifying the LTC sets that make up the entire mech-
anism (b) LTC1, (c) LTC2, (d) LTC3 (e) LTC4 and (g) the direction of
the final displacement
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3.6.2 A Displacement Amplifying Inverter II

Figure 3.12a shows the topology of a displacement inverter obtained from topology

optimization (Saxena and Ananthasuresh (2006)). We show that this nontrivial topol-

ogy is composed of LTC sets. Identifying the net load path and the constraints reveal

that the mechanism is composed of three LTC sets shown in Fig. 3.12b, c and d. The

overall load flow in the LTC sets is shown in Fig. 3.12e. The output constraint for

LTC 3 (i.e. C4) has its other end connected close to the input. Because the input

constraint is stiff, it does not undergo considerable deflection. Thus the other end of

C4 can be considered fixed. Output of LTC set 2 is constrained to move along the

vertical while the output of LTC set 3 moves at an angle to the horizontal (see Fig.

3.12f). The motion of the output of LTC set 3 seems to be rotating about the output

of LTC set 2. Adding a rigid body (members with larger in-plane thickness) to these

two points increases leverage and thus the amplification. The final output is seen in

Fig.3.12g.

3.6.3 A Compliant Scissor with flexures

The examples presented above consist of slender beams with dyads as their LTC

sets. In the final example we apply the concepts to flexure based mechanisms with

lumped compliance. Figure 3.13a shows compliant scissors comprised of rigid links

with flexural joints (http://research.et.byu.edu/llhwww). For this mechanism, it may

not be possible to isolate LTC sets and identify the net load path merely by inspecting

its geometry. However, on closer inspection it may be revealed that some of the

flexures are constraints while some others are transmitters. Furthermore, the rigid

members behave as transmitters. With these guidelines, we isolate LTC sets in the

top symmetric half of Fig. 3.13a.

1. LTC 1 consists of rigid link ABC as the transmitter with flexure 1 as the con-

straint (see Fig. 3.13b). Input load 1 N is applied along the circular hole in
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(a)
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Figure 3.12: (a) A Displacement amplifying compliant mechanism (Saxena and Anan-
thasuresh (2006)) with the LTC sets identified. The direction of load
transfer in (b) LTC set 1, (c) LTC set 2 and (d) LTC set 3 (e)direction
of displacements at points A and B, (f) deformed profile of the compliant
mechanism, (g) rigid leverage amplifies the displacement
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the handle. It was seen from Section 3 that load transferred along a rigid trans-

mitter depends upon its geometry and orientation alone. The Load Transfer

matrix for such a transmitter was further given by its rigid body transformation

matrix Q given in Eq. 3.26. Thus load transferred at points B and C are

• Point B: fBx = 0 N , fBy = −1 N , and mB = −1× 163 = −163 N −mm

• Point C: fCx = 0 N , fCy = −1 N , and mC = −1× 263 = −263 N −mm

The rigid body transformation does not change the magnitude and direction

of the transferred load, but changes the magnitude of the transferred moment

based the distance between the point under consideration and point of applica-

tion of the moment.

2. LTC 2 consists of the flexure 2 as the transmitter and the entire LTC set 1

as the constraint (see Fig. 3.13c). The direction of motion of the input of

this LTC set is dictated by the kinematics of point C. The transferred load at

point C now acts as the input load for this LTC set. An ideal flexure would

transfer forces along the axial direction alone, without transferring moment.

FEA analysis performed to evaluate the transferred loads at point D due to the

flexure yielded

• fDx = 1.68 N , fDy = 0.5 N , and mD = 3 N −mm.

3. LTC 3 (see Fig. 3.13d) consists of the rigid link DEF as the transmitter and

flexure 3 with its roller support along with the combinations of LTC 1 and 2

as the constraint. The input load at point D is the transferred load from the

previous LTC set. The transferred forces along the entire rigid link, i.e points

E and F are the same as point D, while transferred moments depend on the

distance between E and F with D. They can thus be evaluated as
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• fEx = 1.68 N , fEy = 0.5 N , and mE = 1.68 × −60 + 0.5 × 120 = −40.8

N −mm.

• fFx = 1.68 N , fFy = 0.5 N , and mF = 1.68 × −30 + 0.5 × 438 = 168.6

N −mm.

The deformed plot for the entire mechanism is shown in Fig. 3.13e.

A

B

C

163 mm 100 mm 

1 N 
applied load

CD

D

E

F

120 mm250 mm

60 mm

B

C
D

EF

AA

1
2

3

(a)

(b)

(c)

(d)

(e)

Figure 3.13: (a)Compliant scissors http://research.et.byu.edu/llhwww , (b) LTC set
1, (c) LTC set 2, (d) LTC set 3, (e) deformed symmetric half of the
mechanism
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3.7 Conclusions

In this chapter, we have presented a systematic framework to visualize load flow

in compliant mechanisms through the evaluation of transferred forces. Deformation

at each point in the mechanism can be evaluated as the effect of this transferred force

applied at the point under consideration. Furthermore the transferred force and the

deformation produced are deeply rooted in the principle of mechanics without any

assumptions. For compliant mechanisms this can be deemed as a natural represen-

tation of its deformation behavior just as kinematics represents the behavior of rigid

link mechanisms.

To facilitate design it is required to analyze load flow in each sub-mechanism of

building block and relate it to the behavior of the overall mechanism. This is enabled

by the definition of an LTC set that forms a fundamental building block for load

transfer. The load transferred in an LTC set was shown to be independent of the

output constraints, and dependent on the input constraints alone. For dyad based

LTC sets, this input constraint can be assumed to arise due to its beam constraint

alone, neglecting the effects of preceding LTC sets attached at its input. However,

this assumption need not be made for mechanisms with flexures and rigid links as

the transferred load does not depend on the input or the output constraint (see Eq.

3.15).

Throughout this chapter, we have considered dyad based topologies having dis-

tributed compliance and rigid link topologies having lumped compliance due to flex-

ures. In the LTC sets that make up distributed compliance topologies the transmitter

element transfers force along its axial direction and does not transfer moments. Rigid

link mechanisms however, transfer both forces and moments . This can be seen as a

fundamental distinguishing factor seen between transferred forces in distributed and

lumped compliance.

Some of the important contributions of the chapter are
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1. Evaluation of Transferred Loads : A mathematical framework to quantify trans-

ferred loads in compliant mechanisms leading to a methodology to evaluate the

Load Transfer matrix. This matrix relates the output transferred load to the

input applied load.

2. Insights on Load Transfer Matrix : The most important among them is the

independence of the LT matrix from the output constraints.

3. Identification of Load-Transmitter constraint sets as fundamental building blocks

for load transfer : This enables a continuous visualization of load flow along the

transmitter sub-mechanisms of all LTC sets.

4. Relating load flow with the mechanism deformation : Semicircular constraint

freedom spaces determine the possible displacement direction at the output,

with the actual direction depending on orientation of the constraint.

With the above insights, we were able to explain systematically the mechanism of

deformation of compliant mechanisms in literature. Though most of the mechanisms

presented had a single net load path made of compliant dyad LTC sets, the method

is applicable to a more general building block where the transmitter and constraint

elements are not beams. However, we will not be able to intuitively visualize load

flow and relate its load path to the topology. At this point, it becomes necessary to

evaluate the Load Transfer matrix to obtain the transferred load. Though the entire

chapter presents the load flow formulation in a planar 2-D case, all the results are

also applicable to generalized 3-D structures and mechanisms.
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3.8 Appendix A: Evaluating the compliance matrices for a

simple SISO mechanism

In this section, we will derive expressions for the compliance matrices at the input

and output of Fig. 3.14, required for the proof in Section 3. These compliance

matrices will be expressed in terms of the compliance matrices of the individual sub-

mechanisms Ci, Co, and Cb shown in Fig. 3.2 b, c and d.

The compliance matrix at the point B in Fig. 3.14a given by Cib is made up of

a series combination of the input (Ci) and intermediate sub-mechanisms (Cb). The

resultant compliance matrix is given by

Cib = Cb + QTCiQ (3.25)

where

Q =


1 0 0

0 1 0

lr sin γ lr cos γ 1

 (3.26)

and lr and γ are the orientation of the point B from the input, as seen in Fig. 3.14a.

The compliance matrix at the output point C in Fig.3.14b is formed by a parallel

combination of the mechanism in Fig. 3.14a at point B with the output constraint

(Co). In parallel combination, the stiffness matrices add, and thus the resulting

compliance at point C is given as

C−1
out = C−1

o + C−1
ib

C−1
out = C−1

ib [I + CibC
−1
o ]

Cout = [I + CibC
−1
o ]−1Cib (3.27)
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Figure 3.14: Evaluating compliance matrices (a) Compliance matrix at point B is a
series combination of the intermediate and input sub-mechanisms (b)
Compliance matrix at point C is a parallel combination of mechanism
at B and the output sub-mechanism
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CHAPTER IV

A Building Block Based Design Methodology for

Multi-Port Compliant Mechanism Synthesis

Designers have always conceptualized of load flow as a part of their initial design pro-

cess for mechanisms and structures. However, the lack of mathematical representation

of load flow makes it inappropriate to be included in systematic design processes. Load

Transmitter Constraint (LTC) sets provide a mathematical framework for visualizing

load paths in compliant mechanisms. In this chapter we propose a systematic design

methodology for compliant mechanisms by systematic combination of LTC sets. This

enables the designer to conceptualize load flow and choose relevant LTC sets to enforce

it. Apart from being intuitive this process gives an understanding of the importance

of each member in the mechanism. Furthermore this theory enables accurate and

deterministic design for given motion specification without the aid of extensive com-

putation. In this chapter we propose guidelines for the design of mechanisms with a

single load flow path and multi load flow path, particularly relevant in shape morphing

applications.
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4.1 Introduction

Design of mechanisms originate with a conceptual design. This may be the hardest,

but is certainly the most creative step in design. Converting the conceptual design to

realizable solutions can be systematically accomplished with the aid of analysis tools

and optimization softwares. One of the most important tool that aids in concep-

tual design is the visualization of load path (Skakoon (2008), Ullman (2002; 2003)).

This involves a global, yet simplified view of the path that the applied load takes

from the input to the output.In this chapter we seek to obtain guidelines for sys-

tematic generation of conceptual compliant mechanism designs using the load path

method. Though visualization of the load flow is intuitive for design, there has been

no attempt to propose guidelines for systematic synthesis of compliant mechanisms

by using this concept. This is because mathematical formulation of load paths have

been restricted to post processing of finite element analysis conducted on pre-existing

designs (Marhadi and Vekataraman (2009)).

The necessity for visualizing load flow and determining optimum load path has

been highlighted by Suzuki and Kikuchi (1991), and Lu and Kota (2005) for structural

and compliant mechanism designs, respectively. However there has been very little

accomplished towards systematically relating load flow in existing mechanisms and

structures to their topologies. In the preceding work (Krishnan et al. (2010)), we have

taken the first step to systematically visualize load flow in compliant mechanisms from

the concept of transferred loads (Harasaki and Arora (2001a)). This has beenaccom-

plished by identifying fundamental building blocks —Load-Transmitter Constraint

sets (LTC). The net load path in a compliant mechanism was shown to consist of a

number of LTC sets stacked successively.

In this chapter we will propose design guidelines based on characteristics of LTC

sets. Key to this method is the conceptualization of load path or the direction along

which load is transmitted from the input to output. Geometric guidelines are pro-
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vided to indicate all possible orientations of compliant dyad LTC sets that would be

applicable towards a given problem specification. The main strength of this method-

ology is the ability to provide near final designs that have roughly the same stiffness

and displacements as the specifications.

In this chapter we propose guidelines for the systematic design of single load path

mechanisms and multiple load path mechanisms. Mechanisms with multiple load

paths have two or more independent load paths. The findings of this chapter may be

used to augment Topology Optimization (Saxena and Ananthasuresh (2006), Anan-

thasuresh (1994)) techniques and amenable for analysis using Pseudo-Rigid Body

Model (Howell (2001)).

The organization of the chapter is as follows. In the next section, we will briefly

review the salient features of the Load-Transmitter Constraint sets from (Krishnan

et al. (2010)). We will then review the eigen-twist and eigen-wrench parameters that

provide a basis to describe the overall stiffness behavior of constraints. These are

geometrically intrinsic co-ordinate independent parameters that can be used to design

the topology of constraints (Krishnan et al. (2011)). In Section 3, we will propose

systematic guidelines for the design of single load path compliant mechanisms. Section

4 presents systematic guidelines to design multi load path mechanisms with shape-

morphing compliant mechanisms as an example. We then conclude with discussions

and future work.

4.2 Review of Load Transmitter Constraint Sets

Load Transmitter Constraint sets enable effective visualization of load flow in com-

pliant mechanisms. Krishnan et al. (2010) showed with a number of examples that

the deformation behavior of existing compliant mechanisms from literature can be

explained by the governing principles of LTC sets. In this section, we will review

key aspects of these principles that will enable proposing a design methodology for
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compliant mechanisms.

4.2.1 transferred load

Consider a mechanism as shown in Fig. 4.1a with two points of interest, i.e. input

and output. An input load applied produces an output displacement. The transferred

load signifies the load that needs to be applied at the output to obtain the same output

displacement. Thus one of the most important aspects of the output transferred load

is

• Observation 1: The transferred load converts an input-output two port problem

into a single port problem at the output

The relation between the output transferred load and input applied load is given in

terms of the 6× 6 compliance matrix that captures the compliance at the two points

as

ftr = C−1
outC

T
in−outfin

where Cin and Cout are the compliance matrices at the input and output respectively

and Cin−out is the cross diagonal term. An important property of this matrix for a

simple compliant mechanism consisting of an input constraint, output constraint and

an intermediate mechanism connecting the two is given as follows

”The relationship between the transferred load and input applied load is independent

of the output constraints”.

Thus in the mechanism shown in Fig. 4.1b the transferred loads are not affected by

the output constraint Co. These lead to two important implications

• Observation 2: The basic building block the transfers load from input to output

consists of two members namely a load transmitter and input constraint collec-

tively known as the Load-Transmitter Constraint (LTC) set.
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• Observation 3: In mechanisms with a number of LTC sets stacked together, the

output transferred load in one LTC set acts as an input load for the other LTC

set. This enables a continuous visualization of load flow from the input to the

output of the mechanism

We have shown a number of examples that support the above two statements in

DETC 1. Below, we will review the behavior of compliant dyads as Load-Transmitter

constraint sets.

Input

Output

fi

ftr

(b)

Input

Output

fi

ftr

(a)

Ci

Cm

Co

Figure 4.1: (a) A simple compliant mechanism with input and transmitter element
(LTC set) (b) with output constraint. It is important to note that ftr is
not an applied load but the transferred load at the output.

4.2.2 A Compliant Dyad as an LTC set

The simplest LTC set is a dyad as it contains a single beam as a constraint and yet

another beam as a transmitter as shown in Fig.4.2. It is also the most effective and

intuitive building block as it transmits load along its axial direction. For an input

load having components fix, fiy, and mi the output transferred loads are given by

fox = cot(α)fiy +
3(l22normcos(α) + b3r)mi

2l1(l2norm + b3r)l2normsin(α)

foy = fiy +
3l2normmi

2l1(b3r + l2norm)

mo = − b3rmi

2(b3r + l2norm)
(4.1)
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where l2norm = l2/l1, and br = b2/b1. It is seen from above that when there is no

input moment the transferred output force is along the axial orientation of the beam.

Furthermore, it is seen that the only components of the force along the Y− direction

(the constraint degree of freedom) is transferred as the beam is constrained along the

X− direction. With these insights we conclude

• Observation 4: The dyad LTC takes input forces along its degree of freedom and

transmits it along the axial orientation of the transmitter beam

fiy
mi

l1

l2

α

β

b2

b1

fofo =

fox

foy

mo

{ }
A

B

Figure 4.2: (a) Dyad with input force fi. (b) With output transmitted force fo

4.2.3 Constraint Bands and Amplification factor

An important aspect of understanding the deformation behavior of compliant

mechanisms is relating the load flow to its deformation. At the output of an LTC

set where the transferred load acts, the possible displacements that can be achieved

is represented by a semicircular band as shown in Fig. 4.3a. This is due to the

positive definiteness of the compliance matrix at any single point. The magnitude and

direction of displacement are determined by the orientation of the output constraint

as seen in Fig. 4.3b. The ratio of the output and input displacements also known as

the amplification factor can be expressed in terms of the geometry of the mechanism
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as shown below through the instant center method (Kim et al. (2006)).

uout
uin

=
sin(α)

sin(ζ)
(4.2)

These observations can be summarized as below

• Observation 5: The possible displacements that can be obtained at the output

is determined by a semicircular band centered around the transferred force. The

actual output displacement and kinematics is dependent on the output constraint

We will use all the above italicized observations towards proposing guidelines for

synthesis of mechanisms. It was pointed out earlier in the section that the transferred

load converted a two-port problem to a single port problem. This means that to obtain

a specified translation and rotation at the output, we require to design a single point

constraint mechanism that acted against the transferred load to obtain the required

displacement. In the next section we present a very brief review of specifying stiffness

and compliance as eigen-twist and eigen-wrench parameters.

α

ζ

(a) (b)

Figure 4.3: (a) Dyad LTC with its semi circular band (b) Output constraint beam
defines its output displacement
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4.2.4 Expressing Compliance and stiffness as eigen-twist and eigen-wrench

parameters

Compliance at a single point in 2-D can be represented as a 3× 3 positive definite

matrix. This matrix consists of two translational compliances, one rotational compli-

ance and the coupling between translational and rotational compliances. These terms

have been successfully represented in a co-ordinate independent geometrically intrin-

sic framework with the use of eigen-twist and eigen wrench parameters (Krishnan

et al. (2011)) explained below.

The terms in the eigen-twist and eigen-wrench characterization can be summarized

with respect to Fig. 4.4 as:

a) Translational Compliance: Given by af1 and af2 , these eigen-compliance parame-

ters depict the maximum compliance magnitudes and direction for pure trans-

lation, at the center of elasticity. The quantity af1 is the primary compliance

direction as observed from the center of elasticity. We denote np = af2/af1 .

This quantity denotes the cross axis compliance.δ is the orientation of the semi-

major axis of the ellipse (af1) with respect to the horizontal. This angle can be

changed by rotating the dyad about the Z axis.

b) Eigen-rotational Stiffness (kg) : This gives the reaction moment produced by a

pure unit rotation at the center of elasticity.

c) Center of elasticity : Its distance (rE) and orientation (β) with respect to the point

of input indicates the coupling that exists between rotational and translational

parameters. It must be noted that β is the orientation of the center of elasticity

from the input with respect to the af1 axis. If the dyad is oriented such that

δ= 0, the β is the orientation of rE with respect to the horizontal.
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Figure 4.4: Eigen-twist and Eigen-wrench parameters for a particular building block
geometry.

4.3 Single Load Path Mechanisms: Guidelines for Synthesis

In this section, we will propose guidelines for systematic synthesis of single load

path compliant mechanisms from the observations in the first section. The design

methodology stems from a continuous visualization of load flow in the transmission

elements of the mechanism. The path taken by the load flow can be related to the

topology of the transmission elements. Whenever there is a change in the direction

of load flow , there has to be a constraint enforcing it. Furthermore the constraints

determine the direction of displacement of each point in the mechanism. Thus each

mechanism can be thought of as a combination of Load-Transmitter Constraint sets;

its topology determined from a combination of load flow visualization (Transmitter)

and displacement specification (Constraints). The guidelines can be summarized by

the following steps.

1. Determine the possible direction of transferred forces at the output and dis-

placement direction at the input.

2. Determine the number of LTC building blocks based on required amplification

factor.
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3. Design the topology of transmitter elements connecting the input to the output.

4. Conceptualize the direction of load flow in each transmitter beams.

5. Determine the acceptable range of constraint orientations to enforce the required

load flow directions.

6. Design input constraint to obtain the exact input behavior.

7. Design the output constraint to match the required value.

We will now explain the above guidelines based on the observations of Section 2.

Figure 4.7-4.9 shows the systematic flow of these guidelines for an example detailed

later in the section.

4.3.1 Possible Direction of Transferred Forces

Load path connects the input to the output in such a fashion that the input force

is transmitted to the output. The magnitude and the direction of the transmitted

load must enable the output to move in the required direction. From Section 3, this

implies that the transmitted force must lie within a semicircular band centered on

the direction of the required output translation. This is seen in Fig. 4.7a as the band

SB2. This figure also shows the semicircular band SB1 about the direction of the

input force. This implies that the direction of input displacement has to be within

this band.

4.3.2 Number of LTC sets

One of the most common guidelines for the design of stiff structures is to have a direct

load path with minimum number of parts in between. This is to prevent the slightest

displacement along any of the members within the load path. However if a fixed

displacement amplification factor between the input and the output is desired, we
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need determine the number of building blocks based on this quantity. In section1, we

obtained a relation between the orientation of the LTC set and the output constraint

and realized that we can reduce chances of buckling and enable easier fabrication if

the angles α and ξ are above 20◦, which corresponds to an amplification of 2. If n is

the number of building blocks to be chosen, we have a relation

Namp = 2n

n = log(Namp)/log(2) + 1 (4.3)

In the above equation an additional building block has been added to distribute

the amplification better. The above guideline is valid for displacement amplification

problems alone. If force transfer is desired more than displacement amplification, we

choose a minimum number of building blocks that transfers the input force to the

output. This is usually determined by geometry of the problem specification. For

the specification in Fig. 4.7a, a single transmitter between the input and the output

is not a feasible solution as the transmitter would not carry load in the directions

contained by SB2.

4.3.3 Transmitter Topology

The two factors that decide the orientation of the transmitter beams are

1. Transmitter beams transfer loads along their axial direction.

2. The output transferred load has to lie within the band SB2.

Guided by the above two principles the designer has an infinite number of choices

to pick the orientation of the transmitter beams. However, a convenient guideline is

determined by the direction of the output applied load. In most compliant mecha-

nisms, the output moves against an external load. This external load counters the
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transferred load at the output to produce a resultant deformation. The orientation of

the output transmitter beam must be such that the direction of the transferred load

at the output must be along the beam’s axis. The other transmitter beams can be

oriented such that all have equal lengths (see Fig. 4.7b)

4.3.4 Load Flow Directions

Once the transmitter beams have been chosen, we have to determine directions

of load flow. This direction is fixed for the input transmitter beam as it corresponds

to a direction within its semicircular band. Similarly the output transmitter beam

transmits load along the direction that corresponds to its semicircular band. However,

the direction of load flow in transmission beams can be chosen arbitrarily. If the

direction of loading is unidirectional, it is convenient to orient load flow such that the

member experiences tension to avoid buckling (see Fig. 4.7c).

4.3.5 Determining Possible Constraint Orientations

Once we have the orientation of transmitter beams, to complete the LTC sets, we

require the orientation of the constraints. It was seen earlier that the constraints are

essential to ensure the direction of transmission of the load. We do not aim to design

for specific stiffness values but only the constraint directions. It must be noted that

the direction of constraint is denoted by the direction of its degree of freedom. This is

because the constraint such as a compliant beam is stiff in every other direction and

flexible only along its degree of freedom. The orientation of the constraint determines

the direction of load transmission along the transmitter beam. To ensure the right

direction of load transmission as determined at the end of the previous step, we will

determine the possible orientation of constraints. Consider Fig. 4.5 where we show

two transmitter beams 1 and 2. The first transmitter has a determined direction

of load flow. The second transmitter has a required direction of load flow that will
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be imposed by the direction of the constraint at point B. The semicircular band at

B gives the possible directions of its displacement. A constraint beam whose DOF

intersects with this band will allow the required deformation. However, it must be

noted that not all directions in the band would lead to the same direction of load

transmission for beam 2. This seen in Fig. 4.5 where the constraint forms an LTC

set with beam 2. This LTC set is oriented such that the output transferred load

at B leads to the opposite direction of load transmission in beam 2. However, it is

seen that the constraints in 4.6 permits load transfer along the required direction.

Further investigations reveal that the possible set of directions can be obtained by

the intersection of the semicircular band at point C with that at point B. Thus, the

semicircular bands drawn at each point needs to be replaced with an intersection of

itself with the succeeding constraint band. This is shown in Fig. 4.7d.

A

Con1
C

1

2

C

2

Force along this 

direction is 

transmitted

Constraint DOF

B

B

Con1

(a)

(b)

Figure 4.5: Some constraint directions do not transmit load along the required direc-
tion (a) Transmitter beams 1 and 2 with a possible constraint Con1 (b)
LTC set corresponding to beam 2

Determining the actual constraint orientation depends on the required amplification

from each LTC set. Each LTC set along with their output constraints (or the con-

straint of the successive LTC set) determines its amplification. The net amplification
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Figure 4.6: Required Constraint orientation (a) Transmitter beams 1 and 2 with a
possible constraint Con1 (b) LTC set corresponding to beam 2 showing
the transmission direction along beam 2 (c) The constraint DOF must lie
within the intersection of the two semicircular bands SCC and SCB

is given by

n =
sin(α1)

sin(ξ1)
× sin(α2)

sin(ξ2)
(4.4)

Furthermore, the input constraint’s DOF must coincide with the input displacement

direction.

4.3.6 Designing Input constraint

A beam was used as an input constraint to enable the formation of the first LTC

set. However further elements need to be added in parallel to this beam in order

to obtain the exact displacement characteristics. For example, the input might have

to be constrained so that it has no rotation. Towards this it is necessary to add a

compliant building block such as a dyad whose stiffness coupling vector cancels out

the beam’s stiffness coupling vector. This can be seen in Fig. 4.7e.
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4.3.7 Determining Dimensions and Designing Output Constraints

So far, we have identified the topology the mechanism that determines its load flow.

Furthermore, we have determined the orientation of constraint beams that define the

LTC sets. However, the actual dimensions of these beams and an output constraint

have to be determined based on the required output displacement. This aspect has

been traditionally dealt with as a part of the size and geometry optimization. For a

unit input force, we calculate the transferred force at the output. For LTC sets made

up of dyads, the transferred force is dependent on the geometry alone. Knowing this

force, we can design for the output constraint that gives the desired displacement.

The problem specification can now be expressed as a single point synthesis problem,

where we design for a required compliance at the output port. A part of the required

output stiffness is due to the stiffness of the mechanism as seen at its output. This

would correspond to the stiffness of point D in Fig. 4.7d. This stiffness would add

in parallel with the stiffness of the constraint to give the net constraint stiffness. To

enable design of a constraint, we need to evaluate this stiffness. This is done by

associating dimensions and elastic material properties for the whole mechanism. We

then evaluate the stiffness at the output in terms of its eigen-twist and eigen-wrench

parameters. It is required to obtain the eigen-twist and eigen wrench parameters of

an output constraint mechanism that adds with the stiffness at point D to give the
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required output displacement. The problem specification can be given by

Min v = (ux − u∗x)2 + (uy − u∗y)2 + (uθ − u∗θ)2

w.r.t X = [af1 ,np,rE,kg,β,δ]

s.t.


ux

uy

uθ

 = (Ko + Kc)
−1ft

Xlb ≤ X ≤ Xub (4.5)

In the above formulation design variable X is the eigen-twist and eigen-wrench values

of the constraint mechanism, Ko is the stiffness matrix of the output shown in Fig.

4.7e and Kc is the stiffness matrix of the constraint generated from the design variable

X. Optimization in MATLAB was used to obtain the optimum values of the eigen-

twist and eigen-wrench characteristics. Infeasible values for the design variables means

that the stiffness Ko is larger than required for to generate the output displacement.

In that case, we can decrease the in-plane thickness of the mechanism and evaluate

Ko. Once we find the eigen-twist and eigen-wrench parameters for the constraint,

we can design it following the instructions laid out in Krishnan et al. (2009). This

constraint will now be added in parallel to the output of the mechanism to obtain

the final mechanism. Further optimization based refinement can be used to exactly

constraint the output and input displacements.
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Figure 4.7: Stages in the evolution of the mechanism from specifications to topology
(a) Input output specifications with semicircular bands (b) Topology of
the transmitter beams (c) Load flow directions in each transmitter beam
(d) Truncated bands and constraints that define the LTC sets114



Rigid body

Connected to the 

output of Fig. 7d

Figure 4.8: Constraint for the output of the mechanism as obtianed from defining the
topology to the eigen-twist and eigen-wrench parameters.

4.3.8 Single Load Path: An Example

We will now solve a practical compliant mechanism to demonstrate the utility of the

guidelines. The problem can be formulated as

Required Output Deformation uout =


1/
√

(2) mm

−1/
√

(2) mm

1◦


Required Amplification n = 4

Required Direction of Input displacement uin = 90◦

Required Input Rotation θin = 0

Direction of the input force fin = 90◦ (4.6)

One or more of the above specifications need not be specified. In such cases, an

arbitrary value or the most intuitive value can be chosen. The specifications are

indicated in 4.7a. The transmitter beams that determine the load path is made to

lie within the bounding box. Since the amplification required is 4, the number of

LTC sets required as given by Eq. 4.3 is 3. The direction of the transmitter beam at
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Figure 4.9: Designing input and output constraints (a) Input constraint to prevent
input rotation (b) Final mechanism with the output constraints added
(c) Deformation under input load
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the output can be chosen to be along the same direction as shown in beam 3 in Fig.

4.7b. This maximizes the work done at the output thus maximizing the efficiency.

The direction of load flow in the input transmitter beam has to coincide within its

semicircular band. Similarly the output transmitter beam transmits load along the

direction that corresponds to its semicircular band. This direction of the intermediate

beam is chosen such that it is loaded in tension. If the load flow direction indicated is

towards the input of the beam, it can be considered to be loaded in tension. This is

indicated in Fig. 4.7c. The load path visualization enables choosing constraints that

enforce the direction of load flow as explained in the guidelines. They are shown in Fig.

4.7d. The input is further constrained to prevent any rotation under a unit load as

shown in Fig. 4.9a. By fixing dimensions and mechanical properties to the mechanism

(out of plane thickness =10 mm and Young’s Modulus = 200 MPa) we can evaluate

the output stiffness and obtain an output constraint by the process explained above.

The output constraint obtained is shown in Fig.4.8. When combined in parallel with

the designed mechanism we get the final mechanism shown in Fig.4.9b. Its deformed

profile is shown in Fig. 4.9c. Preliminary FE analysis using beam elements reveals

that the output moved by 0.9 mm (required displacement is 1 mm) at −44◦ (required

value 44◦) and output rotation was 0.8◦ (required 1◦). The output was amplified 3.6

times. These results indicate that the methodology was successful in designing a two-

port mechanism with the required output displacement. Further shape and geometry

refinement can always be used to achieve exact specifications.

4.3.9 A Practical example: An energy storage mechanism for a stapler

gun

A stapler gun is a popular consumer product that staples large bundles of paper with

minimum user force.This stapler uses a spring and a lever to store the user’s grad-

ual input as strain energy, and release it with considerable impact force to perform
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the actual stapling operation. The user would be applying a small force over large

range, without requiring to provide an impulse during the actual stapling operation

(www.paperpro.com (2007)). This example aims to design a force transmitting com-

pliant device that can provide mechanical amplification for the stapling operation.

The operational stage of this mechanism is as follows

1. In the first step, the input of the mechanism as shown in Fig. 4.10a is deformed

by the user applied force. The location of user input from the applied force

ensures a force amplification of almost 2.

2. After some prescribed displacement the force handle slips from the input, prompt-

ing the entire mechanism to move towards the undeformed configuration. Dur-

ing this step the output hits the staple striker (not shown) with a certain velocity

causing the stapling action.

The entire mechanism must fit between a 100mm×50mm area. A conceptual topology

will be first designed for this using the Load Flow techniques. The resulting topology

will be associated with practical dimensions in Chapter 5. The steps in conceptual

design are illustrated below.

Conceptual Design

Before designing the conceptual topology for this application, the kinematic specifi-

cations are laid. Since the problem involves force amplification, the geometric am-

plification has to be lower than unity. Assuming certain loss in the mechanism due

to strain energy (a 70% efficiency), a unit mechanical (or force) amplification can be

thought to produce a geometric amplification of at least namp = 0.7. The input force

direction is specified in Fig. 4.10a while its displacement direction is left for the user

to choose. However, the direction of output displacement is fixed. Input displacement

must lie in a semicircular band centered around the input force direction. If the direc-
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Figure 4.10: Design of a Compliant Force Transmission Mechanism for a stapler gun
(a) Stapler gun, actuation lever and footprint within which the mech-
anism must lie (b) semicircular bands for input and output (c) Input
displacement direction and its constraint band (d) Load paths and the
corresponding load flow lines (e) Constraints (f) Mechanism with de-
formed profile.
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tion of input displacement and applied force is the same, there is no direct connection

possible between the input and the output. Thus the input direction must be chosen

such that a semicircular band around it yields the required direct connection between

the two ports. It must be noted that this is necessary only for a single load path

mechanism.
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(b)

Figure 4.11: Design of a Compliant Force Transmission Mechanism for a stapler gun:
Second Design (a) Conceptual topology using load flow(b) mechanism
with deformed profile

Choosing an input displacement direction would require a constraint that limits

displacement in every other direction. A direct connection between the input and

the output would have its load flow in a direction centered around the semicircular

band around the input displacement. Note that the load flow lines have to intersect

with the output semicircular band. The output constraint must enforce the required

output displacement direction as shown in Fig. 4.10e.

Another conceptual design involving two load paths is presented in Fig. 4.11a. In

this design it is seen that the load flow direction is more along the direction of the
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required output displacement than the first design. These two conceptual designs are

4.4 Design Strategies for Mechanisms with Multiple Load

Paths

The net load path can be made up of multiple paths from the input to the output.

We showed that the output transferred load is a combination of the load transferred

by individual paths. The relative stiffness of the two paths decide which path would

be dominant. Consider the mechanism shown in Fig. 4.12. The net load transferred

at the output is given by the equation

fo = (TF1C
−1
1 + TF2C

−1
2 )CIfi (4.7)

It can be seen from the above equation that the output transferred load can range

between the transferred load due to Load Path 1 and transferred load due to Load

path 2. For example if the stiffness associated with Load path 1 is much greater

than that of Load path 2 then load path 1 will dominate the output transferred

load. Though we cannot intuitively determine which load path predominates, we can

determine the range of possible loads transferred at the output. This implies that

by tuning the relative stiffness of the load path any vector combination of the two

transferred loads can be obtained. This can be achieved through optimization.

In the section below we present an application of using multiple load paths to

morph the shape of a semicircular member.

4.4.1 Design of Shape Morphing Compliant Mechanisms

Shape morphing compliant mechanisms (Lu and Kota (2005)) have been proposed in

the past for a number of applications such as changing aircraft wing profiles during

flight. The need for multiple actuators to affect this change in shape is circumvented
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Figure 4.12: A Mechanism consisting of two load paths (a) First load path (b) Second
Load path (c) The resultant load path. One of the possible directions
of the transferred force at the output is the vector combination of the
individual transferred forces

by a compliant mechanism that transfers load from a single input actuator to multiple

points in the aircraft wing. To design such a mechanism, topology optimization was

used to determine the connectivity of members from the input to various parts in

the aircraft wing. The objective function for optimization was minimizing the least

square error between the desired shape and the actual deformed shape of the wing.

In this effort, we make the design process more intuitive by conceptualizing load

paths. This method converts an input-output two-port problem to a single port

stiffness design problem by evaluating the transferred force from the input that is

available at the output. To illustrate this, we will consider an example of a semicir-

cular arc as shown in Fig. 4.13a. The deformed profile required is shown. To obtain

this deformed profile, we first find out the number of force points, their relative mag-

nitude and direction of application of force. In this example we require two forces of

equal magnitude inclined at 135◦ and −135◦ to the horizontal. The design domain

for the mechanism to fit in is shown in fig. 4.13b. In order to be able to apply these

forces the transmitter members at the two force points P1 and P2 should be along the

tangent of the mechanism, which is not easy to fabricate. In such cases, we propose
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the following guideline

When the transferred force along a required direction cannot be achieved using a

single load path, we can decompose it into two or more components whose resultant

is in the required direction.

Design Domain

Input Force

Resultant 

Transferred 

Load

Deformed 

Shape

(a)

(b)

Figure 4.13: Problem Specification for the Shape Morphing Problem. (a) Initial and
the required deformed shape (b) Two single point forces of equal mag-
nitude and direction shown in the figure are required to attain the de-
formed shape. These forces can be decomposed into horizontal and ver-
tical components for simplicity.

Thus, we can decompose the required force at P1 and P2 into two components,

i.e. along the horizontal and vertical respectively. This is shown in Fig. 4.13b.

The load paths consisting of transmission beams and their desired direction of load

transmission is presented in Fig. 4.14a. Using the rules laid out in the earlier section,

we can draw truncated bands that enclose the degrees of freedom at the constraint.

The force from one of the nodes can be used as the input for a secondary load path

that provides the X− direction transferred load at P1 and P2 as shown in Fig. 4.14b

. We then place appropriate constraints to complete the mechanism design shown in

Fig. 4.15a.

Finally, we need to choose dimensions for these members to make it practical and

realizable. It must be noted that arbitrary dimensions are not going to place the

output load along the desired direction, as the resultant transferred load depends
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(a)

(b)

Secondary 

Load Path

Figure 4.14: Load paths to obtain the required transferred force. (a) Transmitter
beams and the direction of load flow in each of them. This arrangement
delivers the Y− component of the transferred load. (b) Load path that
delivers the X− component of the required transferred load.
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(a)

(b)

Figure 4.15: (a) Final mechanism with the constraints added (b) Deformed profile.

on the relative stiffness of the individual load paths. However, it is known to us

that the desired resultant transferred load can be obtained tuning this stiffness. We

thus formulate an optimization problem for the mechanism with the individual beam

thickness as the design variable.

Min v = (u− uo)
T (u− uo)

w.r.t X = in-plane thickness of the beams

s.t.f = Ku Governing Equation

Xlb ≤ X ≤ Xub (4.8)

where uo is the required deflection profile of the semi circle. The final mechanism and

the obtained deflection is shown in Fig. 4.15. It matches closely with the required

deformation.
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4.5 Conclusion

This chapter presents a systematic methodology to conceptualize compliant mecha-

nism designs utilizing load flow. A mathematical representation of load flow reveals

a number of new insights that can be directly adapted to guide designers. It enables

visualization of the entire mechanism as a combination of simple fundamental build-

ing blocks known as the Load-Transmitter Constraint set. The transmitter elements

of all the LTC sets that make up the mechanism are used to visualize load flow. This

is more intuitive for LTC sets comprise of compliant dyads as the load is transmitter

along the axial direction of the transmitter beam. These transmitter beams can be

stacked together along the direction of a load flow path that the designer conceptu-

alizes. Though the guidelines do not propose a unique optimum load path for each

problem, it presents general conditions that reveal all possible load paths. Each load

flow path is associated with a unique set of constraints that enforce directionality in

load flow. The design of LTC sets together with appropriate single point constraints

at input and output enable attainment of the required displacements at the two ports.

The design of mechanisms involving multiple load paths is more complicated as

the load transferred by individual load paths do not directly add according to vector

addition. The influence on the resultant transferred load for each individual load

path is proportional to its stiffness. However, one can determine the range of output

transferred loads attainable from the individual load paths and tune their stiffness

using optimization to obtain the desired value. These act as guidelines to decompose

the desired transferred load at the output into two tractable load paths comprising

of LTC sets. We have implemented these guidelines towards an example involving a

shape morphing compliant mechanism.
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CHAPTER V

A Strength based Metric for Size Optimization

Conceptual designs for compliant mechanism synthesis were extensively dealt with

in the previous chapters. This involved topology generation to satisfy kinematic re-

quirements at single and multiple ports. In this chapter, optimum dimensional em-

bodiments for the conceptual designs will be determined based on enforcing uniform

stress distribution throughout the mechanism topology. Uniform stress distribution

enables maximum material utilization where each member contributes equally towards

the overall function. Furthermore, it reduces the need for excessive material volume

making the mechanism stronger and lighter. A non-dimensional performance metric

is defined to quantify how evenly stress and thus strain energy is distributed within

the mechanism. An optimization based refinement is proposed to tune cross section

areas of conceptual designs to maximally distribute stress. Furthermore, an objective

comparison of different topologies using this quantity enables identification of some

geometries and actuation schemes that better distribute stresses.
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5.1 Introduction

An optimum engineering design aims at maximizing performance and minimizing cost,

or resources used. In structural design, optimality translates towards obtaining the

stiffest structure that has minimum weight. Michell (1904) proposed an optimum

arrangement of bars in a truss framework (also called Michell structure) as shown

in Fig. 5.2. One of the features of this design is that each bar in the framework

undergoes equal stress. Bars that are attached at either ends by revolute joints are

capable to taking axial internal forces alone, and this force creates stress that is

equally distributed throughout the volume of the bar. Thus, each elemental volume

in a Michell structure undergoes equal stress. This means that no single member

would be inclined to fail before the other, and this leads to maximum utilization of

material.

Applied Force

F

F

=
F
A

All Bars are equally stressed
Fixed region

Figure 5.1: Michell structure is the stiffest structure that supports the applied load
with minimum volume. All the bars in the truss framework have the same
stress.

Nature prefers flexibility or compliance over stiffness, but does not compromise

on strength. For example, plants subjected to large wind or water loads undergo

significant bending, but rarely fail. Flexibility is preferred because it leads to aerody-
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namic configurations in the bent state thus reducing the uprooting moment that wind

loads cause [Vogel (2003), Sivanagendra and Ananthasuresh (2009)]. However, it is

subjected to large bending moments that result in bending stresses. These stresses

are not equally distributed across the cross section but vary from maximum tension

to maximum compression with a central unstressed neutral axis. To distribute the

maximum bending stresses evenly throughout the length of a sea anemone or a branch

of a tree shown in Fig. 1.2, nature tends to taper the sections from being thick at

the fixed end to thin at the free end. For example, consider the end loaded cantilever

beam with rectangular cross section and uniform out of plane thickness (h). The end

load (F ) results in a moment that varies linearly with distance from the point of force

application. If stress σ is given by

σ =
F × x× b(x)

2I(x)
=

6F × x
b(x)2h

(5.1)

where I(x) denotes the second area moment of cross section, and b(x) is the thickness

of the cross section. For the above stress to be constant throughout we can find an

expression for b(x) as

b(x) =

√
6Fx

σh
(5.2)

which indicates a parabolic relationship between thickness and distance from the free

end. Similarly for a uniformly distributed load, the thickness is linear with respect

to distance.

To show that uniform distribution of stress indeed decreases peak bending stress,

three beams of equal stiffness and length are compared as shown in Fig. 5.3. The

first beam is a flexure with lumped compliance at its joint. The second beam has a

uniform cross section, while the third is a parabolic tapered beam that distributes

peak bending stresses equally along its length. Figure 5.3d shows the variation of the

maximum bending stress with respect to the distance away from the fixed end. It is
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A

A

Figure 5.2: Examples in nature with uniform stress distribution (a) A sea-anemone
subjected to water currents (Vogel (2003)) (b) A tree branch subjected to
wind loads (c) bending stress distribution at any given cross-section (d)
determining the thickness of the beam with distance from the free end
that uniformly distributes stresses along its length.
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seen that the the tapered beam has minimum peak stress and this stress is uniformly

distributed over the entire beam length. The flexure with lumped compliance has the

largest maximum stress.
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Figure 5.3: Comparison of three beams: (a) flexure with lumped compliance (b) beam
with uniform cross section (c) tapered beam with uniform stress distribu-
tion, all having the same stiffness (d) comparison of the stress distribution
throughout their length

The next section will focus on formulating a metric to evaluate how evenly stresses

are distributed in a mechanism.
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5.2 Performance Metric: Definition and Physical Interpre-

tation

The previous section motivated the need for evenly distributing stress in a mechanism.

For a simple comparison of beams having the same stiffness, this was shown to reduce

the peak bending stress. This section will propose a metric that evaluates how evenly

stress is distributed within the material volume. For an objective scale-independent

evaluation, the metric must be nondimensional and independent of the absolute values

of applied force, material properties and cross-section dimensions. This requires the

representation of failure stress and output work in terms of known quantities intrinsic

to the mechanism topology, and relative cross-section dimensions.

• Maximum Strain Energy: The maximum strain energy represents the energy

that can be stored in the mechanism if all its members are equally stressed to

a given permissible value. This is the maximum value of strain energy that can

be stored in a given volume. In most solid bodies subjected to a load, the actual

strain energy stored would be less than this quantity. Storing maximum strain

energy requires the strain energy density to be constant at every point in the

volume. Assuming only uniaxial stresses, as in beams or bars the strain energy

density is given by

SEdensity =

εmax∫
0

σ × dε (5.3)

where σ is the stress at any given point and ε is the strain at that point.

Assuming linear elastic material with Young’s modulus E these two quantities

are related as σ = Eε. Furthermore, if all points in the volume are equally

stressed, the maximum strain energy density is given by

SEdensitymax =

σmax∫
0

σ × dσ
E

=
σ2
max

2E
(5.4)
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The maximum strain energy that the given volume of material can hold be-

fore failure is then given by a product of the maximum strain energy density

(SEdensitymax) and mechanism volume (V)

SEmax =
σ2
max × V

2E
(5.5)

Figure 5.4a shows a state where every point in the material volume has the

same stress σmax.

Maximum Stress σmax

Applied Force f*

Uniform Stress σmax

Applied Force f

(a) (b)

Figure 5.4: Internal stressed state of a material such that (a) each point undergoes the
same stress, and (b) a loading case with nonuniform stress distribution

• Work done or Energy Input: From the principle of conservation of energy any

input energy supplied or work done into the system is stored in the material

as the internal strain energy. For a linear elastic material without considering

nonlinearity due to large displacements, input work is given by the area under

the force deflection curve as shown in Fig. 5.5 as

InputWork =
1

2
fTu =

V∫
0

σ2

2E
dV (5.6)
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where σ is not constant, but depends on the position of the point under con-

sideration similar to Fig. 5.4b.

In
pu

t F
or

ce
 F

in

Input displacement  u
in

Figure 5.5: Force-displacement relationship at the input when load is gradually ap-
plied

• Performance Factor np: The performance factor is given by the ratio of strain

energy stored in the mechanism caused by a certain loading condition given by

Eq. 5.6 and the maximum possible strain energy that can be stored in its

volume given by Eq. 5.5. In both conditions it is assumed that the maximum

stress (σmax) is the same (see fig. 5.4).

np =
2E
∫ V
0

σ2

2E
dV

σ2
max × V

=
EfTu

σ2
max × V

(5.7)

The performance factor measures the fraction of material volume that uniformly

distributes strain energy. Since the strain energy density at a point signifies its

contribution to the overall strain energy of the material, a performance factor of

value unity implies uniform strain energy density and thus maximum utilization of

the material. By laying out the significance of numerator and denominator terms

separately, the performance factor indicates the amount of external work that can
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be done on the material for a given maximum permissible stress. Furthermore, for

a given permissible stress and an applied input force, a higher performance factor

indicates larger displacements before failure.

5.2.1 Evaluation of the Performance Factor for simple geometries

The terms used to express the performance factor given in Eq.5.7 can be evaluated

for any geometry, simple or complex. However, it is limited to simplified models with

only uniaxial stresses such as pure tensile or compressive stress in axial deformation

of bars, and a combination of tensile and compressive stresses in bending of beams.

For more complex models including the consideration of shear in beams the above

terms are insufficient for expressing the performance factor. The thesis thus limits

consideration to slender beams and bars, and topologies that can be modeled using

an interconnected framework of these elements.

5.2.1.1 A bar in tension or compression

A simple bar in tension or compression, as mentioned earlier distributes stresses evenly

along its cross section. For a bar of length L, area of cross-section A and Young’s

modulus E, any axial force F produces a uniform stress σbar

σbar =
F

A
(5.8)

Since the stress is uniform along its length, σmax in Eq. 5.7 can be considered to be

equal to σbar. Furthermore a force F produces an axial change in length of the bar u

given by

u =
Fl

EA
(5.9)
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Substituting these terms in Eq. 5.7 the performance factor is evaluated by

np =
E × F × Fl

EA
F 2

A2 × A× L
= 1 (5.10)

Thus a bar in pure tension or compression utilizes all its material uniformly towards

storing the applied input work as strain energy.

5.2.1.2 A beam with uniform cross section under an applied end load

Consider a cantilever beam with an applied end load F (Fig. 5.3b).The end displace-

ment is

δend =
FL3

3EI
(5.11)

where E is the Young’s Modulus and I = b×h3
12

is the second area moment of the cross

section. Note that ’h’ is the in plane thickness and ’b’ is the out of plane thickness.

The input work done can then be given by

Work = F × δend/2 =
F 2L3

6EI
(5.12)

The maximum stress developed in the beam is at the fixed end given by

Stress =
F × L× c

I
(5.13)

where c = h/2. The volume of the entire beam is given by V = bhL. Substituting

these in Eq. 5.7 the performance factor can be expressed as

np =
4× F 2 × L3

(6×F×L×
b×h2 ))

2 × b2 × h4 × L

np = 0.11 (5.14)
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The interpretation of this factor is that a beam with uniform bending utilizes 11%

of its total volume into uniformly distributing strain energy. Furthermore, it is inter-

esting to note that this factor is independent of the actual values of the cross section

and length of the beam.

5.2.1.3 A beam with uniform cross section under an applied end moment

Consider the beam with the same dimensions as in the previous example with an

end moment M applied and no end force. The input work done on the beam can be

evaluated as the product of this applied moment and the tip slope or rotation as

Work = M × θend/2 = M × Ml

2EI
(5.15)

An interesting feature of an applied end moment is that the bending moment at every

cross section is constant and equal to the applied moment. This further indicates that

the maximum bending stress at any distance along the length of the beam will have

the same magnitude.

Stress =
M × c
I

(5.16)

Substituting these in Eq. 5.7 the performance factor can be expressed as

np =
M × Ml

2EI
× E

M2×c2
I2

bhL

np = 0.33333 (5.17)

The above factor indicates that in pure bending with each cross section under the

same bending moment and thus uniform maximum stress, only 33.33% material is

uniformly utilized. A similar stress distribution pattern is noticed in an end loaded

beam with parabolically varying cross section to distribute the peak bending stress

uniformly along its length. Even for such a beam the performance factor can be
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shown to be around 0.3333.

While we can derive the performance factors for simple geometries, finite element

analysis is required to evaluate the terms of Eq. 5.7 for complicated topologies com-

posed of beams. The main aim of this chapter is to refine topologies such that they

attain a higher performance factor, and thus distribute stresses more evenly in their

geometries. The next section presents this optimization based refinement strategy for

single port compliant mechanisms.

5.3 Size Optimization of Single Port Compliant Mechanisms:

Examples

The effectiveness of a single port mechanism as indicated by the performance factor

is in capturing as much strain energy as possible before failure. Single port topologies

introduced in Chapter 2 can thus be refined towards this end. The basis of the

refinement is to distribute material along the beam lengths such that the peak bending

stress in each cross section is the same. There may be manufacturing constraints

that are imposed on the thickness of the mechanisms that prevent the values of the

stresses to be exactly equal everywhere, nonetheless the refinement process guides the

mechanism towards maximal material utilization.

5.3.1 A Fixed-Guided Beam

A fixed-guided beam is a fundamental building block in suspensions for precision

motion stages [Awtar and Slocum (2007)]. The loading conditions subjected to this

beam does not distribute the peak stresses uniformly when the cross-section is uni-

form. The inplane thickness of the beams are varied as shown in Fig. 5.6a such that
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stress distribution is uniform. The optimization problem is stated below.

Maximize :np(Xi) =
FinuinE

σ2
maxV

Such that :Lbi ≤ Xi ≤ Ubi (5.18)

In this problem, the upper and lower bounds were fixed to 5 mm and 1 mm respec-

tively, the Young’s modulus of the beam is 200 GPa, out of plane thickness is 10

mm and the length of the beam was 70 mm. The optimized solution shown in Fig.

5.6b tapers towards the center. The optimized objective function value is around

0.28. Figure 5.6c shows a double parallelogram flexure and its deformed profile. The

resulting flexure can traverse a longer distance and handle larger input forces than a

beam of same stiffness but uniform cross section.

Xi

1

1

Input Force

(a) (b) (c)

1

Deformed
profile

Figure 5.6: Cross-section refinement for a fixed-guided beam (a) Initial beam with
uniform cross-section (b) Optimized cross-section (c) Optimized beam
used in a double parallelogram flexure

5.3.2 A Compliant Vision based Force Sensor

A compliant vision based force sensor was designed in Chapter 2 using a parallel com-

bination of two single point mechanisms. These single point mechanisms were them-
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selves a series combination of two or more beams arranged so that they have equal

eigen-compliances in the X and Y direction. In this section, the cross-sections of the

beams that make up this topology will be optimized to maximally distribute stresses.

However, changing the cross-section alone may alter the relative stiffness in the X

and Y direction. Thus, selected end nodes shown in Fig. 5.7a are allowed to vary

as design variables within the bounding box. Furthermore, apart from maximizing

the performance factor, there must be constraints enforcing equal eigen-compliances.

The problem statement is given below.

Maximize :np(Xi) =
FinuinE

σ2
maxV

Such that :(af1 − af2)2 ≤ 0

And :Lbi ≤ Xi ≤ Ubi (5.19)

In this problem, the upper and lower bounds were fixed to 5 mm and 1 mm respec-

tively, the Young’s modulus of the beam is 200 GPa, out of plane thickness is 10

mm. The optimized solution is shown in Fig. 5.7b. A force applied at 45◦ to the

horizontal displaces the input in the same direction as seen in the deformed profile.

The performance factor improved from an initial value of 0.09 to a final value of 0.2.

The stresses at all the elements are plotted for both the initial mechanism and the

optimized mechanism in Fig. 5.7c. The peak stress in the optimized mechanism is

around 50% lower than the initial topology.

5.4 Performance Factor for Multi Port Mechanisms

Multi port mechanisms are characterized by the effectiveness in which the input work

done is transmitted to the output. This transmission for compliant mechanisms is

through elastic deformation, thus storing significant strain energy within the mecha-

nism. Just as in single-port mechanisms it is desired that this strain energy is evenly
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Figure 5.7: Cross-section refinement for a vision based force sensor (a) Initial topol-
ogy with uniform cross-section (b) Optimized topology with deformed
profile(c) Stress distribution along the elements in the initial and opti-
mized topology
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distributed throughout the topology. Thus an ideal two port transmission mechanism

must efficiently transmit input energy to the output, such that the strain energy is

evenly distributed through all members of the mechanism ensuring maximum material

utilization.

Efficiency is evaluated using the definition of transferred forces introduced in

Chapter 3. Figure 5.8a shows the input force applied to a deformable body. The

input work can be evaluated by area under the curve of Fig. 5.5 as

InputWork =
1

2
Finuin (5.20)

The transferred force defined in Chapter 3 is an applied output force that causes

the same output deformation as a unit input force. Alternatively if a force equal and

opposite to the transferred force is applied at the output together with the input force,

the output deformation is completely restricted as shown in Fig. 5.8b. Furthermore,

if this output force is applied gradually, the force deflection curve at the output will

be given by Fig. 5.8c. Thus the output work is given by the area under this curve as

OutputWork =
1

2
Ftruout (5.21)

The efficiency η of the mechanism is given by the ratio of the output and input work.

η =
OutputWork

InputWork
=
Ftruout
Finuin

(5.22)

The maximum value of η is unity as this indicates a 100% transmission between input

and output. Multiplying efficiency with the performance factor for the single port

mechanisms yields a modified performance factor (npm) given below

npm =
η × E × FT

inuin
σ2
max × V

(5.23)
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Combining Eq. 5.22 into Eq. 5.23, we get

npm =
E × FT

truout
σ2
max × V

= η × np ≤ 1 (5.24)

The performance factor defined for a two port mechanism can be interpreted as the

fraction of the overall volume that not only distributes strain energy evenly, but also

takes part in completely transferring input energy to the output. It indicates the

amount of output work that can be performed for a given failure stress. Furthermore,

its maximum value is unity as the single port performance factor and the efficiency

have an upper bound of unity.

Fin

uout

uout

(a) (b) (c)Fin

Ftr Ftr

Figure 5.8: Evaluation of output work through transferred forces (a) Input force pro-
ducing input and output displacements (b) Transferred force applied in
the opposite direction at the output restricts its displacement, and (c)
Output force vs displacement curve

5.4.1 Evaluation of the Multi Port Performance Metric for Simple Topolo-

gies

Consider a beam of length L, area moment I, and Young’s Modulus E that is sub-

jected to uniformly distributed load. A uniform loading is expressed as w and has the

units of force per unit length (Fig. 5.11 CBD1). The end deflection and end slope
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due to such a loading are given by

δend =
w × L4

8× E × I
θend =

w × L3

6× E × I
(5.25)

This uniform load causes an end transferred force and end transferred moment given

by

Fend =
w × L

2
Mend =

5× w × L2

12
(5.26)

These transferred force if applied at the end would produce the same end deflection

as the uniform load. The maximum stress experienced at the grounded end is given

by

σend =
12× w × L2

b× h2
(5.27)

The performance factor can be then obtained by

nsp =
Fend × uend × E
σ2 × b× h× L

= 0.083 (5.28)

The above factor indicates that only 8.3% of the material volume maximally dis-

tributes strain energy along with being 100% efficient in transmission. In the next

section, this factor will be used to refine two port topologies for maximally distribut-

ing stress and increasing efficiency.

5.5 Shape and Geometry Refinement of Two Port Topologies

Chapters 3 and 4 concluded that a two port mechanism could be decomposed into

a number of fundamental building blocks known as load-transmitter constraint sets

(LTC sets). While transmitters involved in transferring forces and energy from one

point to another, constraints provide directionality to the motion. It was further
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concluded that the load flow direction along the transmitters were along its axis, while

the constraints experienced transverse forces and moments. The examples shown

below refine the cross-sections of transmitters and constraints to increase efficiency

and evenly distribute stresses within the geometry.

5.5.1 A Displacement Amplifying Inverter

Shown in Fig. 5.9a is the symmetric half of a displacement inverter topology

adapted from a patented design by Hetrick and Kota (1999) [Hetrick and Kota (2003)].

Its cross-section is optimized to obtain a large performance factor. However, changing

cross-sections may reduce the amplification factor or the leverage of the device. Thus a

constraint on maintaining a minimum geometrical advantage is imposed. The problem

statement is given below.

Maximize :npm(Xi) =
FtruoutE

σ2
maxV

Subject to :namp =
uout
uin
≤ 6

Lbi ≤ Xi ≤ Ubi (5.29)

Figure 5.9 a shows the initial topology with uniform cross-sections and Fig. 5.9 b

is the final optimized topology. The transmitters in the optimized topology have

almost a uniform cross-section to maximally distribute axial loads, while some of the

constraints taper, indicating the presence of transverse loads and moments. Figure

5.9 c shows a topology obtained by just maximizing the energy efficiency given by Eq.

5.22. The tendency for this formulation to result in lumped flexures is noted. Figure

5.9d shows a plot of peak bending stress in each element for the lumped design and

the design optimized by using the performance factor. There is a remarkable decrease

in stress levels in the optimized design. The performance factor increased from 0.02
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in the initial topology to 0.064 in the final topology.

1

2

3

4

5

678

9

10

11

12 13

14

15

16
17

18

19

2021
22

23
24

25
26

27
28

29
30

31
32

1

1

Input Force

Xi
Design variable

1

2

3

4

5

678

9

10

11

12 13

14

15

16

17

18

19

2021

22

23

24

25

26

27

28

29

30

31

32

1

1

1

2

3

4

5

678

9

10

11

12 13

14

15

16

17

18

19

2021

22

23

24

25

26

27

28

29

30

31

32

1

1

(a) (b)

(c)
0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

(c)

(b)

St
re

ss
 in

 M
Pa

Element Numbers

Figure 5.9: Size Optimization of a Displacement inverter [Hetrick and Kota (2003)]
(a)Intial topology with uniform thickness (b) optimized solution using
the performance factor objective function (η = 89%, npm = 0.064) (c)
solution obtained by optimizing mechanism topology using the energy
efficiency formulation without stress constraints (η = 94%, npm = 0.009),
and (d) comparison of stress distribution between topologies (b) and (c)

5.5.2 A Mechanism for Energy Storage and Release

Two conceptual designs for an energy storage and transmission mechanism were pre-

sented in Chapter 4. In this section, both conceptual designs are optimized for having

a high performance factor. Some stiffness requirements are imposed in the optimiza-

tion problem. Kinematic requirements are already met in the conceptual design stage.
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The optimization problem can be framed as

Maximize :npm(Xi) =
FtruoutE

σ2
maxV

Subject to :kinput =
fin
uin
≤ 12N/m

1mm ≤ Xi ≤ 5mm (5.30)

where Xi is the in-plane thickness of the beams to be optimized, and E is the Young’s

modulus of the material taken to be 2 GPa. The out-of-plane thickness for the

material is assumed to be 25.4 mm. The optimized solution for both the conceptual

designs are shown in Fig. 5.10b, and Fig. 5.10d respectively. The first design has

a performance factor of 0.11, while that of the second design is 0.12. Thus, upon

optimization, both designs are equally effective. The mechanisms move by 8 mm at

the output with a transferred force of 100 N and maximum stress of 40 MPa.
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Figure 5.10: Size Optimization of an energy storage and release mechanism:
(a)conceptual design 1 from Chapter 4, (b) its optimized solution us-
ing the performance factor, (c) conceptual design 2 from Chapter 4, and
(d) its optimized design using the performance factor

As seen from the above examples, the performance factor can be successfully used

for refinement. While most examples presented here are limited to size or cross-section
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refinement, it is equally applicable to refine the parameters that define the geometry

of the mechanism. However, both these techniques require a conceptual design that

meets the kinematic specifications set forth by the problem. The conceptual designs

need not always be generated afresh, but can be chosen from the wealth of literature.

Towards this the performance metric will enable comparison of a number of conceptual

designs and facilitate creating a database. Such a comparison of conceptual topologies

is detailed in the following section

5.6 Global Comparison of Conceptual Designs

Designing a compliant mechanism for practical applications involves a number of

steps: (a) designing a topology, (b) choosing an optimum material, and (c) refin-

ing the dimensions to suit the selected manufacturing process. These different steps

can either be designed separately for simplicity, or concurrently. Rakshit and Anan-

thasuresh (2008) [Rakshit and Ananthasuresh (2008)] used topology optimization to

simultaneously determine the optimum structure and choosing the appropriate ma-

terial for designing stiff structures. For the sake of simplicity this section chooses to

design them separately, so that the three distinct steps can be maximally decoupled.

This requires separately determining the optimum topology, optimum material and

the manufacturing process. Determining an optimum topology can be challenging

not only for designing it afresh, but also selection from an existing database. There

is a need for a global metric to compare the effectiveness of compliant topologies that

is independent of the overall footprint, actual thickness values and material prop-

erties. Evaluation of the performance factor for simple topologies like a beam or a

bar revealed that its value is independent of the material properties, and absolute

cross-section and length dimensions. Thus the performance factor can be used as a

metric for global comparison of compliant topologies.

Figure 5.11 plots a number of topologies that have different kinematic behav-
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ior, actuation schemes (discrete and distributed actuation), and functional behavior

(single port or multi port) under a single global platform. It must be noted that

the comparison is of the topology alone and does not depend on how large or thick

the mechanism is. The left column of the figure captures the performance factors of

beams. Some notable conclusions are that a uniformly loaded beam (CBD1) fares

better than a beam loaded discretely (CB2) at half its length. A single point mecha-

nism obtained by a series combination of three beams (FB1) has better performance

than an end loaded beam with uniform cross-section. Furthermore, beams with flex-

ures or lumped compliance (CBL1,CBLD,CBL2) have the lowest performance factors

and thus need to be avoided in conceptual designs.

The right half of Figure 5.11 compares a number of topologies (SISO1, SISO2, and

SISO3) used for transmission, with distinct input and output ports. It can be seen

that SISO3 has a better performance factor than the other two because of its rounded

edges. Furthermore, it is seen that for the same three topologies the performance

factors change by switching to distributed actuation as seen in DISO1, DISO2, and

DISO3. The performance of DISO2 and DISO3 increases when compared to SISO2

and SISO3 respectively. However the performance of DISO1 is lower than SISO1.

This can be explained by the effect of distributed actuation of the two constraints

of the topology producing antagonistic effects. Thus for aptly designed topologies

distributed actuation may increase performance factor than having purely discrete

actuation.

To further analyze the effectiveness of topologies with distributed actuation, load

flow in SISO3 and DISO3 are plotted in Fig. 5.12b and c respectively. While for

SISO3 discrete transmitters and constraints are noticed, the distinction between them

disappears in DISO3. It is seen that each element of the topology has both transverse

and axial loads, with moments flowing in them. Thus in this design transmitters and

constraints are distributed along the topology. This may be beneficial in terms of
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Figure 5.11: performance Factor for various geometries and loading conditions
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the performance factor as transmitters with axial load flow components would better

distribute stresses along its cross-section than constraints subjected to bending.

1234567891011121314151617181920
21

22

23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48 49 50 51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

(a) (b)

(c)

Figure 5.12: Load flow patterns for the topology in SISO3 and DISO3 conditions (a)
Deformed Profile (b) Load flow in the topology for discrete actuation
and output ports (SISO3) (c) Load Flow in the topology for distributed
actuation (DISO2)

Practical implementation of distributed actuation is possible through pressurized

fluidic actuation acting against flexible inner walls of the mechanism. These classes of

mechanisms are called elasto-fluidic mechanisms. However, two dimensional topolo-

gies as shown in the comparison above will not by themselves sustain pressurized

fluids. They have to be enclosed within a volume, whose surfaces deform with pres-

sure. The resulting load paths from the enclosures must not act antagonistic to the

required deformation of the mechanism. For example, Fig. 5.13 shows ribs that are

reinforced into the top and bottom faces of the topology SODI3. These ribs are

designed so that it contributes to the net load path of the mechanism. The space be-
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tween the ribs can be enclosed by a thin layer of elastomer, so that the entire volume

is airtight.

SODI3
Top and Bottom ribs 

Spaces can be filled by 
a thin layer of 
elastomer

Figure 5.13: The topologies represented by SISO3 or SODI3 in Fig. 5.11. The top
and bottom faces can be enclosed with elastomers with reinforced ribs.

5.7 Conclusion

The focus of this chapter was to propose a formulation that evaluates the perfor-

mance of a compliant mechanism based on how evenly stresses are distributed in

its constituent members. It was shown that even stress distribution reduces the net

peak stress, thus increasing the amount of strain energy stored or output work per-

formed before failure. The resulting performance factor is a nondimensional metric

that can be interpreted as the fraction of the total material volume that takes part

in evenly distributing strain energy or stress within the topology. Additionally, for

two port topologies this factor signifies the efficiency of transmission between input

and the output. The performance factor is used in an optimization procedure to

refine cross-section dimensions of conceptual topologies to meet practical specifica-

tions. The resulting optimized designs on comparison with the initial topologies show
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significant uniformity in stress distribution. Though this chapter presents the refine-

ment procedure for mechanisms undergoing small deflections, it can be extendable to

incorporate large deflections with geometric nonlinearity.

Furthermore, the nondimensional nature of the performance factor enables an

objective comparison of various topologies and actuation schemes. Effectiveness of

topologies with distributed actuation over discrete points of force application were

identified for transmission applications. This effectiveness was attributed to a dis-

tribution of transmitters and constraints over the entire topology, than at discrete

location. This motivates a new class of mechanisms that deform due to forces exerted

by pressurized fluids on their surfaces.
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CHAPTER VI

Conclusions, Contributions and Future Work

6.1 Conclusions

The purpose of this dissertation is to introduce novel representations of compliance

that facilitate analysis and synthesis of distributed compliant mechanisms. Compliant

mechanisms are being increasingly used in a number of applications owing to their

monolithic structure, and ability to transmit motion and energy through elastic defor-

mation without wear and backlash. Distributed compliant mechanisms make efficient

use of each of its constituent members by evenly distributing stresses in them. Tradi-

tionally computationally intensive optimization tools that lack user insight have been

used to obtain conceptual solutions. The resulting designs leaned towards lumping

compliance and localized stresses at these joints. The representations of compli-

ance proposed in this dissertation enables a pragmatic building block based synthesis

methodology that seeks to obtain a solution by a systematic combination of simple

deformable building blocks. This enables generation of multiple solutions with no ad-

ditional effort. Furthermore, the representations are derived from the fundamentals of

mechanics and thus accurately capture the behavior of mechanisms undergoing small

deformation and made of linear elastic material. This accuracy combined with ease

of synthesis and analysis deems the formulations to naturally represent compliant

mechanism behavior. These representations are proposed for single port mechanisms
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with one unique point of interest and multi port mechanisms with two or more points

of interest.

In addition to conceptual synthesis, the thesis proposes a systematic refinement

methodology to distribute stresses evenly in the constituent members of the mecha-

nism, by optimizing their dimensions. These refinement techniques are applicable to

single and multi port mechanisms alike, yielding designs combine both flexibility and

strength. The metric used for optimization indicates how evenly stress is distributed

within the mechanism. Even stress distribution reduces the peak failure stress in the

mechanism thus increasing its ability to store more energy and perform more work.

The metric is used to compare various topologies and actuation schemes on a global

scale. This sheds light on topologies and actuation schemes that are more favorable

for evenly distributing stresses. A number of benchmark examples were designed and

prototypes fabricated to verify the effectiveness of the proposed methodology.

6.1.1 Summary

The thesis can be summarized into three broad aspects. The first two deal with a

building block method for conceptual synthesis of single port and multi port compli-

ant mechanisms respectively, and the third deals with an optimization based refine-

ment technique that determines optimum cross-section dimensions for the conceptual

topologies that maximally distribute stress in the mechanism. These are further

expanded below.

Single-port Compliance Representation and Synthesis

The first aspect of the thesis presented in Chapter 2 dealt with a building block

based synthesis methodology for planar mechanisms that have a specified stiffness

behavior along its degrees of freedom. Stiffness (or Compliance) at a single point

was represented by the eigen-twist and eigen-wrench characterization. This involved
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shifting the point of interest to a new unique location in 2-D space known as the

center of elasticity, where translational and rotational compliance were decoupled. At

this location, translational compliance was represented as an ellipse and rotational

compliance by a scalar. The semi-major axis of the ellipse represented the primary

direction of compliance or the direction of least stiffness, where any force applied

yielded pure translation along that direction. The perpendicular direction is the

secondary, or the stiffest direction. The coupling between translations resulting from

a pure applied moment or rotations resulting from a unit force was denoted by a

coupling vector that is given by the distance between input and the center of elasticity.

These quantities (ellipses and vectors) are independent of the orientation and depend

on geometry and dimensions of the mechanism alone.

The variation of the eigen-twist and eigen-wrench parameters for a compliant

dyad (series combination of two beams) was studied by varying its geometry pa-

rameters. This building block was shown to be versatile as it spans the entire space

composed of the eigen-twist and eigen-wrench parameters.Furthermore, the character-

ization scheme enabled representing series combination of building blocks as addition

of individual building block ellipses and coupling vectors respectively. Parallel combi-

nation similarly resulted in adding the inverse of compliance ellipses and the coupling

vectors with some modification.

The graphical nature of the characterization, and series and parallel combinations

enabled a systematic design methodology. A given problem specification expressed in

the form of compliance ellipses and coupling vectors were systematically decomposed

into a number of smaller sub-problems that were solved by a dyad or beam build-

ing block. Guidelines were proposed to obtain designs that minimize stress. Using

these guidelines a vision based micro-Newton force sensor for micro assembly and

cell manipulation that has equal stiffness in the X and Y directions with decoupled

translational and rotational compliance was presented.
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Multi Port Compliance Representation and Synthesis

The second aspect of the thesis involved a building block based synthesis of transmis-

sion mechanisms where energy applied at an input drives an external load at distinct

output points. A holistic representation of this relative compliance between two geo-

metrically distinct locations was presented in Chapter 3 in terms of load flow between

input and output(s). The physical interpretation of load flow and its mathematical

characterization was explained through transferred forces. In a two port system with

an input and output, transferred forces can be defined as the abstract force acting on

the output producing the same displacement as a unit input force at the input.

The magnitude and direction of load flow in every member within the topology

was mapped to its function in the overall mechanism. Two fundamental functions

identified were (a)transmission of energy or forces, and (b)constraint to provide di-

rectionality for the mechanism deformation. This further led to the identification

of a building block that combines a transmitter and a constraint element, known as

the Load-Transmitter Constraint (LTC) set. In a complex geometry composed of a

combination of LTC sets, it was shown from the principles of mechanics that each

LTC could be can be analyzed independently. This is significant because it permits

modularity in the analysis and design of individual building blocks. A fundamental

LTC set, namely a compliant dyad, whose transmitter and constraints are straight

beams are characterized for load flow. For this building block, it is observed that load

flow in the transmitter is always along its axial direction. A number of examples from

literature are demonstrated to be composed of dyad LTC sets, whose identification

permits load flow visualization.

The functional independence of LTC sets was shown to facilitate a building block

based synthesis of compliant mechanisms in Chapter 4. Guidelines were proposed to

determine a feasible load path based on problem specifications. The load flow paths

were decomposed into several simple linear paths.The entire mechanism topology is
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constructed by combining a number of dyad LTC sets, with its transmitters aligned

along the load paths, and constraints oriented to enforce the required load flow di-

rection. These guidelines were used in the design of a benchmark example, i.e. a

single-input single-output mechanism and a continuous shape morphing mechanism.

The synthesis methodology provides user insight into the function of each member

that makes up the topology, and generates practical results that can be directly man-

ufactured.

Size and Geometry Refinement for Even Stress Distribution

The final aspect of the thesis deals with refinement of the conceptual topologies to-

wards generating practical designs with minimal failure stress. Synthesis of conceptual

mechanism topologies as summarized above met the kinematic specifications alone.

To obtain practical designs with the required stiffness for a given material, with min-

imal peak stress, and ensure manufacturability, the conceptual designs are refined for

the parameters that define their cross-sections. This was accomplished previously by

maximizing efficiency between the input and output ports.

A performance metric that evaluates the mechanism’s tendency to fail for a unit

strain energy stored or transmitted was proposed in Chapter 5. This metric is non-

dimensional and independent of the magnitude of the loading, and the length scales

and dimensions of the mechanism. It depends only on the topology and the nature

of loading. It was further shown that the performance metric maximally distributes

stress in all the members that make up the mechanism topology. Furthermore, it was

shown that an even distribution of stress decreases the overall maximum stress of a

mechanism without changing other aspects of its performance. Conceptual designs

generated by building block methods were optimized using the metric, and resulted

in designs that maximally distribute stress. Furthermore, the resulting designs could

perform more output work before failure, when compared with designs obtained from
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conventional energy efficiency formulation.

The non-dimensional performance metric was used to compare different topologies

and their actuation techniques on a global scale. For transmission based problems,

distributed actuation was shown to be preferred as it effectively utilizes all the con-

stituent members of the mechanism.

6.2 Contributions

The main contribution of the thesis is the formulation of compliance representation

that enables insightful synthesis of compliant mechanisms with evenly distributed

stress along its members. While the principles governing the behavior of compli-

ant mechanisms are the same, all representations that model their behavior are not

equally favorable towards systematic synthesis. For building block methods that fa-

cilitate user insight the fundamental contribution of the thesis is proposing a holistic

geometrical representation of compliance that enables a direct mapping of function

to topology. The specific contributions are

• A graphical representation of single port compliance in two dimensions : The

unique contribution of this work is the graphical characterization of compliance

for planar two-dimensional topologies that is intrinsic to the geometry. The

variables that define compliance are dependent on the topology alone and not

its orientation. This is a significant improvement over previous attempts to

obtain the same characterization that required arbitrary normalizing lengths,

and thus a dependence on length scales. The importance of the characterization

proposed in the thesis lies in representing compliance as graphically insightful

quantities such as ellipses and vectors. Series and parallel combinations were

explained graphically as additions of ellipses and vectors.

• A load flow formulation to represent multi port compliance: A load flow for-
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mulation is proposed to characterize relative compliance between two ports in

a deformable body. The physical interpretation of load flow is developed from

the fundamentals of mechanics in terms of this transferred load. This is the

first known effort to provide a physical interpretation to an otherwise abstract

concept of load flow in compliant mechanisms. The thesis formulates a Load

Transfer matrix to mathematically evaluate load flow between two points.

• Identifying a fundamental building block for multi port compliance: The me-

chanics of load flow visualization permits functional characterization of each

member that makes up the mechanism. The most important contribution of

the thesis lies in identifying a fundamental building block known as the load-

transmitter constraint set (LTC). The functional independence of one LTC set

over the others permit modularity in analysis and sets the frame-work for a

building block based synthesis.

• A building block based conceptual compliance synthesis : The representations of

compliance at single and multiple ports were geared towards enabling a building-

block based systematic synthesis methodology wherein (i) A given problem spec-

ification is expressed in terms of eigen-twist and eigen-wrench characterization

for single port, and the required input and output displacements and forces for

multi port problems (ii) The specifications are decomposed into a number of

sub-problems such as multiple compliance ellipses and coupling vectors for sin-

gle port synthesis, or a network of load flow paths for multi port synthesis, (iii)

finding appropriate building blocks that correspond to sub-problem ellipses, or

individual load paths, and (iv) combination of subproblem solutions to obtain

the required topology.

• A performance metric for size and geometry refinement : The performance fac-

tor formulated in the thesis yields designs that maximally distribute stresses in
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the constituent members of the mechanism upon size and geometry refinement.

This is by far the first attempt at obtaining designs with even stress distribution

and purely distributed compliance. Furthermore, the thesis presents a first at-

tempt towards an objective nondimensional and scale independent comparison

of various topologies that enables identifying topologies and actuation schemes

that can perform more output work for a given failure stress.

Some other contributions of the thesis are listed below

1. Design of a micro-Newton vision based force sensor for micromanipulation op-

erations. The sensor is a single-port mechanism with equal bi-axial stiffness and

maximally decoupled translational and rotational compliance.

2. A load flow based visualization tool that plots the transferred load at various

sections of members that make up the topology. This tool requires the topology

to be modeled by beam elements.

3. A global comparison of topologies and actuation schemes identified mechanisms

with distributed actuation to be more effective than discrete input force. This

motivates the need for elasto-fluidic mechanisms that combine the effectiveness

of fluidic actuation with the advantages of compliant mechanisms.

6.3 Future Work

Single Port Compliance in Three Dimensions

While compliance behavior for two dimensional topologies were studied in this the-

sis, a more general three dimensional characterization is required. Eigen-twist and

eigen-wrench characterization is in general defined for a three dimensional topology,

but a complete decoupling between translational and rotational compliance may not

be possible. Furthermore, the center of elasticity that was uniquely defined for a
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two dimensional topology may not correspond to a spatial location in three dimen-

sions. This loss in graphical intuition and increase in the number of parameters that

are required for characterization poses a significant challenge for synthesis in three

dimensions.

Characterizing Large Deformations

Compliance characterization was limited to small deformations compared to the

overall mechanism geometry. The stiffness or compliance matrix that denotes the

force displacement relationship at a point is positive definite for small deformations.

This permits eigen-twist and eigen-wrench characterization providing graphical intu-

ition in terms of ellipse and vectors. However the positive definiteness of the com-

pliance matrix is lost for large deflection analysis thus necessitating the need for a

different approach to provide graphical intuition and synthesis. Such a methodology

will be useful for conceptual synthesis of nonlinear springs that meet a predetermined

force displacement relation.

Extension of Load Flow based Characterization and Synthesis

Characterization of relative compliance and its physical interpretation using trans-

ferred forces and load flow are general principles. However, in this thesis their eval-

uation is limited to small deformations compared to the overall geometry. Extension

of load flow to account for large deformations will enables synthesis of mechanisms

that traverses a prescribed path. Furthermore, stress specifications in conceptual de-

signs have been ignored. Its inclusion would eliminate topologies that are inherently

unfavorable for minimizing stress.

The thesis uses reduced order beams to analyze and synthesize conceptual and

refined topologies. Though accurate and convenient, continuum models are required

to predict the exact stiffness and stress. For example, there is a considerable material
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build up at the corners where two beams meet leading to additional stiffness and

significant stress concentration at sharp corners. Integrating continuum modeling

with the design methodology will provide new practical insights on synthesis.

Size-Geometry Optimization

The performance factor proposed in this thesis is a general metric to characterize the

net usefulness of any compliant mechanism in terms of strain energy stored or trans-

mitted before failure. This factor needs to be extended to capture the performance

of springs with a prescribed nonlinear behavior. This can be direct extension of the

framework proposed in chapter 5 where the strain energy stored in the mechanism

given as the area under the force deflection curve is nonlinear.

Elasto-Fluidic Systems

The performance benefits of distributed actuation as seen from the global compari-

son of topologies with different actuation schemes necessitate the need for extending

the load flow based synthesis methodology to a class of fully enclosed shells that

deform when pressurized with fluid. Different aspects of how fluidic actuation cou-

pled with constraints imposed by structural stiffness can be used to design devices

such as robotic grippers, locomotion devices and other medical devices need to be

investigated.
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