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Abstract 

This study aims to understand the student’s position in instruction.  I conceptualize 

instruction as interactions between the teacher, students, and mathematics, in educational 

environments (Cohen, Raudenbush & Ball, 2003; Lampert, 2001).  In the three 

manuscripts contained in this dissertation, I look at the position (Harré & van 

Langenhove, 1999) of student from the perspective of the teacher, the student, and the 

mathematics. 

“Mathematical Arguments in a Virtual High School Geometry Classroom” looks at the 

position of the student from the perspective of mathematics.  It examines the 

mathematical arguments that could be made by learners in response to a virtual classroom 

discussion by comparing arguments made by a learner who had taken a geometry class to 

arguments made by a learner who had not.  It shows the virtue of the two-column proof in 

its affordance to support chains of implications in arguments.  However it also shows the 

drawback of the two-column proof in its lack of flexibility to support backings and 

rebuttals in arguments. 

“Teachers’ Perceptions of Geometry Students” looks at the position of the student from 

the perspective of the teacher.  It examines teachers’ perceptions of students that are 

instrumental in the work of teaching.  It shows that while ‘making conjectures’ teachers 

perceive students in terms of engagement, ignoring the mathematical value of students’ 

work.  While ‘doing proofs’ teachers perceive students in terms of the mathematical 
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content at stake.  These different perceptions of students crucially influence how students 

are supported in their mathematical work. 

 “The Work of ‘Studenting’ in High School Geometry Classrooms” looks at the position 

of the student from the perspective of the student.  It examines the work that students do 

in instruction and the tacit knowledge that could guide this work.  A theoretical model 

that describes ‘studenting’ is developed as well as a model for the rationality that 

supports ‘studenting.’ 

Each group of participants involved in this study responded to the same scenario of 

geometry instruction, depicting a geometry class working on an open ended mathematical 

problem.  These data sets provide three points of view on instruction.  Together they 

serve to inform the instructional position of students. 
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Chapter 1 

Introduction 

This dissertation is a study of instruction with the aim of better understanding the 

students’ role in this complex system.  I conceptualize instruction as interactions between 

the teacher, students, and mathematics, in educational environments (Cohen, Raudenbush 

& Ball, 2003; Lampert, 2001).  While instances of instruction are enacted by specific 

teachers, and specific students, learning specific mathematical ideas, in specific 

environments, the two actors, teacher, and student, can be thought of as positions (Harré 

& van Langenhove, 1999), that are taken up by individuals when they enter into 

instructional contexts.  These positions guide individuals’ notions of what is appropriate 

to do in a given instructional moment, they establish the relationship between individuals 

in these positions, and they give meaning to individuals’ actions. 

The students’ position in instruction is an interesting topic of study because the position 

of student is taken up by a large number of individuals who, unlike the individuals who 

take up the position of teacher, have no official training for how to enact their position.  

In many ways it is remarkable that instruction in school is possible.  One could imagine 

that if each student came to school and acted in the way that they deemed most fit for 

expressing who they are as individuals, instruction might be impossible.  Mathematical 
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work might or might not be done, but the phenomenon that we call instruction could not 

take place without a position of student for individuals to take up when they entered the 

classroom. 

This is not simply a matter of classroom management—of getting students to sit in their 

seats and respond to the teacher’s instructions.  This is a deeper issue of students knowing 

how to “do their job” as a student.  By the time students are in high school, they know 

more than that they should follow the teacher’s instructions, they know how to follow the 

teacher’s instructions.  When the teacher gives them a task they know more than that they 

should complete the task, they know what actions to perform, using what (mental or 

physical) tools, to complete the task.  They know the unspoken rules for how to act in the 

classroom and they know when it is acceptable to bend these rules to meet their goals 

(Mehan, 1979). 

The notion of position, and positioning theory (Harré & van Langenhove, 1999), says that 

individuals continually construct their position through the ways that they participate in 

communities, and how they make meaning from that participation.  Therefore, a student’s 

position in instruction is built up through the students’ actions within the environment of 

instruction. 
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Figure 1:  The students’ position in the instructional triangle 

From the instructional triangle (Cohen, Raudenbush & Ball, 2003; Lampert, 2001) one 

sees that central to the model are the relationships between teacher and student, student 

and content, and teacher and content.  These relationships are represented by arrows in 

Figure 1.  Thinking about the position of student as constructed by students’ participation 

in instruction one sees that this participation exists within these arrows, and this 

interaction with the teacher and the content shapes the possibility for further interaction 

and the meaning that students make of this interaction.  So, one can think of the position 

of student as it is constructed by the student’s interactions with the teacher (represented in 

Figure 1 as a blue circle surrounding “student”) and of the position of student as it is 

constructed by the student’s interactions with the mathematical content that is to be 

!"#$%!"&'()

(#*+%,#)

#%"'$%-)
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learned in the geometry course (represented in Figure 1 as a yellow circle surrounding 

“student”). 

In the intersection of these two spheres of interaction is the space that is available to 

students in instruction.  Within this space, students further respond to their own 

obligations and tacit understanding about what is appropriate for students to do in 

instruction (represented in Figure 1 as a red circle labeled “student”).  This space, shaped 

by students’ interactions with both the teacher and the content to be studied, and 

ultimately determined by the actions that students deem appropriate, is what I consider to 

be the position of the student in instruction. 

The three perspectives 

Through the three papers that comprise this dissertation I seek to understand better how it 

is that geometry students enact their position in instruction. From the instructional 

triangle one sees that the position of the student is partially defined by its relationship to 

the teacher’s position and to the mathematics to be learned.  So, each paper takes the 

point of view of one of the elements of instruction, the mathematics, the teacher, or the 

student, and attempts to explain how the students’ position is constructed from this point 

of view.  Each point of view adds information about the resources and constraints that are 

available to students as they enact their position. 

The first paper, “Mathematical Arguments in a Virtual High School Geometry 

Classroom,” looks at the position of the student from the point of view of mathematics.  

In this paper I examine the mathematical arguments made by learners of geometry in 

response to a virtual classroom discussion.  This study asks the research questions, 
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• How does the mathematics being studied in high school geometry classrooms 

shape the position of the student in geometry instruction? 

o What are the modes of mathematical argumentation that learners 

can employ in response to classroom discussions? 

o What mathematical territory can learners cover while elaborating 

mathematical arguments in response to classroom discussions? 

o How can the structure of the two-column proof affect the 

mathematical arguments that learners make and the mathematical 

territory that they cover? 

By studying these questions I am able to better understand how the mathematics that 

students engage with can shape the students’ actions, and therefore the position of the 

student. 

The second paper, “Teachers’ Perceptions of Geometry Students,” looks at the position of 

the student from the point of view of the teacher.  In this paper I examine how teachers 

perceive the position of the student.  I ask the research question, 

• What perceptions of students are instrumental in the work of teaching geometry? 

By studying this question I am able to better understand how the work that the teacher 

does, using her students as resources, can shape the position of the student. 

The final paper, “The Work of ‘Studenting’ in High School Geometry Classrooms,” 

looks at the position of the student from the point of view of students.  In this paper I 

examine the work that students see themselves doing in instruction and the tacit 

knowledge that guides this work.  I ask the research questions, 

• How can hypothesized norms of instruction be used to justify student actions? 
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• What other justifications for instructional actions do students provide for their 

actions, when the action supported by the norm is deemed inappropriate? 

• What is a model of ‘studenting’ that takes into account instructional norms for 

student actions as well as other research on students’ actions? 

By examining these research questions I am better able to understand the actions that 

students see as viable in instruction, and therefore shape the position of the student. 

Together these points of view show the affordances and constraints that students work 

with when they enact their position in instruction.  One sees the mathematical space that a 

learner might occupy as she learns geometry.  One sees the space that is created for 

student actions by the perception of the teacher, who conducts instruction.  And one sees 

the space that students feel entitled to occupy in instruction, guided by instructional 

norms. 

The participants 

The data used in this study was collected from three settings, each representing a 

different element of the instructional triangle.  Each group of participants was asked to 

respond to the same animated scenario of geometry instruction, depicting a teacher and 

her class working on an open ended mathematical problem.  The three data sets collected 

in relation to this animated scenario provide three different points of view on instruction.  

Together they serve to inform the instructional position of students. 

The first group of participants, representing the position of mathematics, was composed 

of two mathematically successful adolescent learners of geometry.  These participants 

engaged with the animated scenario from a mathematical viewpoint, attempting to 
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understand the mathematics discussed in the scenario.  Their responses map the 

mathematical territory that a student might encounter when she is learning geometry. 

The second group of participants, representing the position of the teacher, was study 

groups of experienced geometry teachers.  These participants engaged with the animated 

scenario from the position of the teacher, attempting to make sense of the teaching 

displayed in the scenario.  Their responses contain evidence for how the teachers perceive 

their students and how this perception of students is instrumental to the work of teaching. 

The third group of participants, representing the position of the student, was focus groups 

with high school geometry classes.  These participants engaged with the animated 

scenario from the position of the student, attempting to understand the actions of the 

animated students shown in the scenario.  Their responses provide evidence for the 

hypothetical norms that support students’ instructional actions. 

The data collection tool 

Below I describe the animated scenario that each of these groups of participants 

responded to.  I describe the animated scenario in two different ways.  First I discuss the 

features that make this, and similar animated scenarios, useful for collecting data about 

participants’ views of instruction.  Second I describe the story of instruction that is 

presented in this particular animated scenario and why it was chosen to use as a data 

collection tool in this dissertation. 

Description of animated scenarios 

The animations of scenarios of instruction used in this study were developed in the 

context of project ThEMaT (Thought Experiments in Mathematics Teaching), directed by 
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Patricio Herbst (Herbst & Chazan, 2003).  The instructional scenarios are animated using 

a set of cartoon characters that are sparse in terms of their human features (Herbst, 

Chazan, Chen, Chieu, and Weiss, 2010).  The characters are two-dimensional with large 

round heads, trapezoidal bodies, and stick legs.  Their hands are circles and they don’t 

have arms.  The characters show emotions through stylistic eyebrows and the changing 

shape of their mouths.  Despite their simplicity the characters have proven to be effective 

in representing the instructional scenarios that they enact so as to compel people to 

discuss these (Chazan & Herbst, in press; Herbst & Chazan, 2006; Herbst, Nachlieli, & 

Chazan, in press).  One reason I hypothesize that the characters are so effective is due to 

the fact that they are clearly not human, they encourage the suspension of disbelief, and 

viewers imagine themselves in the story depicted in the animated scenario. 

In addition to their visual characteristics, these animated scenarios present particular 

instances of instruction that can be used as conversation prompts.  By presenting a 

particular instance, the animated scenario allows for participants to discuss specific 

moves made by the teacher or students, or specific mathematical ideas that are at play, 

instead of talking in generalities about instruction.  Therefore, the animated scenario 

supports a discussion about the instructional particulars (meaning the particular details of 

the instructional story, or the interactions between teachers, students, and the 

mathematics), which yields information about the decisions and judgments that teachers 

and students make during instruction. 

Because the animated scenarios are constructed as opposed to recorded (as is the case 

with videos of instruction) they can embody targeted norms of instruction.  In the design 

of animated scenarios, viewers can perceive these norms to be complied with or breached 
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by the characters, hence allowing for the testing of the existence of hypothesized norms 

(Aaron & Herbst, 2007; Herbst, Nachlieli, & Chazan, in press).  Inside the description of 

each study in this dissertation I describe the designed aspects of the animated scenario 

that are related to the research questions of that study and the expected responses of 

participants that correspond with that design. 

The animated scenarios allow different viewers to notice different dimensions of the 

scenario (Ball & Lampert, 1999).  For instance, a participant might view an animated 

scenario as if she were the teacher in the scenario, or as if she were a student in the class, 

or from the point of view of an observer.  As an example, the three groups of participants 

in the studies presented here discussed different sets of issues in response to the scenario.  

The learners who participated in the case studies reported in the first paper focused on the 

mathematics in the scenario and were drawn into explorations of the number of possible 

intersection points of the angle bisectors of a quadrilateral.  The teachers in the study 

group sessions reported in the second paper discussed the value of students’ work in 

terms of students’ progress towards learning to prove.  The students in the focus group 

sessions reported in the third paper were concerned with the way that a student could 

disagree with another student’s conjecture.  Each of these three groups commented on 

issues visible from their point of view, but those issues were not necessarily present in the 

comments of the other groups. 

These animated scenarios immerse participants in the work of instruction so that when 

participants answer questions about the prompt, I hypothesize, they answer as if they 



 

 10 

were actors in the story, not detached observers.  Asking participants to respond to an 

animated scenario depicting a geometry class engaged in the angle bisectors problem1 is 

very different than asking students to work on the angle bisectors problem, or asking 

teachers how they would attend to their students as they engage them in the angle 

bisectors problem, or asking students what instructional moves they would make in 

response to the angle bisectors problem.  The answers to these questions often rely on 

tacit knowledge that would not be activated without some immersion in instruction.  The 

animated scenarios are a tool for tapping into this tacit knowledge about instruction. 

The animated scenarios are, in one way, very particular, in that they show a particular 

instantiation of instruction.  In another way, however, they represent a very general 

scenario.  There is no information in the animated scenario that describes the school in 

which the scenario takes place, the race, ethnicity, or social class of the characters 

(arguably, some of this is contained in the voices of the characters), or what events 

precede or follow the scenario.  Connelly & Clandinin (2006) refer to these details as 

time, place, and sociality.  These details are essential parts of a complete narrative but are 

purposely excluded from the animated scenarios.  This lack of particulars in terms of the 

narrative, but dependence on particulars in terms of instruction (how the teacher and 

student interact around the mathematics), allow for the gathering of data that, I 

hypothesize, informs actions that may be common across time, place, and people, 

                                                

1 The angle bisectors problem asks students to consider what can be said about the angle bisectors 

of a quadrilateral. 
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providing specific information about the instructional activities that are shown in the 

animated scenario. 

Description of The Square 

I now move to describing the particular animated scenario, The Square2, which was used 

for data collection in this dissertation.  The Square depicts a high school geometry class 

working on the angle bisectors problem, or “what can one say about the angle bisectors of 

a quadrilateral?”  The class begins by making conjectures in response to the problem and 

then they work on proving one of those conjectures.  Below I provide details of the story 

and highlight some possible alternatives to the story that is presented in The Square.  

These possible alternatives are meant to showcase the designed nature of the story and 

prompt the reader to engage with the story by thinking about how the story could have 

gone differently. 

The Square begins with the teacher reminding the class that when they studied triangles 

they learned that the angle bisectors of a triangle meet at a point.  The teacher then poses 

an open-ended question, “what can one say about the angle bisectors of a quadrilateral?”  

She asks the class to make conjectures with the idea that they will later try to prove those 

conjectures.  The problem that the teacher assigns to the class is abnormal3 because it 

                                                

2 The Square and the rest of ThEMaT’s animated classroom scenarios can be viewed at 

http://grip.umich.edu/themat. 
3 Throughout this description of the animated episode, The Square, I refer to actions that would 

be “normal” in a high school geometry class.  These views are based on norms for the situations 

of ‘making conjectures’ and ‘doing proofs,’ which are underdevelopment in the GRIP research 

project at the University of Michigan, under the direction of Patricio Herbst.  These norms and 

instructional situations are described in more detail in Chapters 3 and 4 of this dissertation. The 
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combines the activities of making conjectures and proving.  Normally, students would be 

asked to either make conjectures or do proofs, but not to prove conjectures that they 

make.  The teacher does not specify any particular resources or operations that the 

students are expected to use while working on this task.  The only resources that are 

specified are the mathematical objects, quadrilaterals and angle bisectors, as these are 

included in the problem statement.  However, by bringing up the angle bisectors of 

triangles the teacher implicitly invokes points of intersection as a resource that could be 

used in the task. 

The problem is open-ended in the sense that the teacher does not specify the types of 

claims that students should make about the angle bisectors of quadrilateral or how 

students should go about looking for those claims.  From the story that follows, it appears 

that no student worked on the question about a general quadrilateral.  The ensuing 

discussion revolved around particular quadrilaterals.  This work on particular 

quadrilaterals reflects some of the open-endedness of the problem. 

After the teacher gives instructions, students turn to their partners and begin to talk about 

the task.  Students work on the task for an unknown period of time before the teacher 

calls the class to order.  As the students are ending their conversations one student can be 

overheard saying that she drew a kite and the angle bisectors made a point.  When the 

students are quiet the teacher asks a different student, named Alpha, to share his 

conjecture with the class; in spite of the fact that the teacher had not asked for volunteers, 

                                                

adjective “normal” does not mean desirable or healthy, but rather perceived as appropriate by 

teachers and students of the usual geometry course (see Herbst, Nachlieli, and Chazan, in press). 
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and that Alpha had not volunteered to share his conjecture.  In light of that, one would 

expect the teacher to appreciate Alpha's contribution and find a way to make it a useful 

part of the conversation.  One can notice that the teacher did not call on the student that 

drew a kite, a mathematically more complicated quadrilateral that could support a more 

difficult proof. 

From his seat Alpha shares “about the square, they would have to bisect each other.”  The 

teacher asks him to come to the board to draw his diagram.  Alpha comes to the board 

and draws his diagram, a square with opposite vertexes connected, and describes it as “a 

square and the diagonals, they bisect each other.”  Alpha’s conjecture is reasonable in 

some ways and problematic in others.  On one hand, Alpha is correct; the diagonals of a 

square bisect each other.  Also, in the case of a square, the angle bisectors and the 

diagonals overlap so it is understandable to use the terms interchangeably.  On the other 

hand, Alpha does not seem to be answering the question about angle bisectors.  There is a 

large conceptual gap between a statement about diagonals and a question about angle 

bisectors. 

The teacher responds to Alpha’s conjecture by telling Alpha “the problem is about angle 

bisectors, not about diagonals.”  Here the teacher could have responded differently to 

Alpha.  Because the angle bisectors and the diagonals are the same in a square, and the 

problem the teacher asked is about angle bisectors, the teacher could have interpreted 

Alpha’s conjecture as saying that in a square the angle bisectors bisect each other.  While 

this is not a formally correct conjecture (angle bisectors are rays not segments) it could be 

seen as a useful starting point for a discussion about what one can say about the angle 

bisectors of a quadrilateral.  Also, the teacher began the lesson by reminding the class 
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that in triangles the angle bisectors meet at a point.  Alpha has brought up the case of the 

square where the angle bisectors also meet at a point.  The teacher could highlight this 

connection and Alpha’s diagram and overlook the exact statement that Alpha made. 

The teacher’s evaluation of his conjecture appears to lead Alpha to hang his head and 

seem dejected.  The emotional power of this statement can be read two ways.  First, this 

is upsetting for Alpha because the teacher does not appear to see the mathematical 

contribution that he is making to the progress on the problem.  In this case the teacher is 

not fulfilling her obligation to understand the mathematics at least as well as the students 

and to weave the students’ contributions into a complete mathematical solution.  The 

second way of reading the teacher's reaction to Alpha is that the teacher is mean.  In this 

reading the teacher does appear to understand how Alpha’s conjecture could be a 

reasonable response to the angle bisectors problem but instead she focuses on the fact that 

Alpha’s conjecture is not explicitly about angle bisectors and she uses this as grounds for 

dismissal of his conjecture.  In the first reading the teacher’s actions are flawed because 

she does not act as if she has the mathematical expertise that is required of a teacher.  In 

the second reading the teacher’s actions are also flawed because she willfully dismisses 

Alpha’s conjecture despite her ability to see its usefulness to the discussion. 

After the teacher reminds Alpha that the problem is about angle bisectors, another 

student, later addressed as Beta, is seen telling her neighbor that she thought that the 

diagonals and angle bisectors are the same thing.  The teacher and Alpha do not seem to 

hear this remark.  Beta’s comment could be understood in at least two ways.  The first is 

to see Beta as helping Alpha by pointing out that in the case of a square the angle 

bisectors and the diagonals are the same objects.  In this case Alpha would have reason to 
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be grateful for Beta’s comment.  In the second reading, Beta is talking out of turn and 

could be seen as increasing Alpha’s discomfort by drawing more attention to the fact that 

the teacher has told him he is wrong. 

After Beta’s whisper the teacher addresses the class and reframes the question to be one 

about only squares instead of all quadrilaterals.  Alpha returns to his seat, saying as he 

walks, “I just thought that the diagonal cuts the square in half.”  The teacher seems to like 

this conjecture.  She writes “Alpha:  The diagonal cuts the square in half” on the board 

and asks the class to elaborate on the statement.  Beta says, “Alpha means that the 

diagonals are also the angle bisectors.”  As with her earlier comment, Beta’s rewording of 

Alpha’s conjecture can be seen as either helping Alpha clarify his idea or as highlighting 

the fact that the teacher is not sanctioning his idea. 

It is interesting that the teacher wrote Alpha’s second statement on the board because she 

did not write Alpha’s earlier statement on the board, that the diagonals bisect each other.  

This could be because the second statement could arguably be more useful in the proof 

that the diagonals of a square are also its angle bisectors.  The teacher asks for 

elaboration of Alpha’s statement and Beta replies that the angle bisectors are the same as 

the diagonals. 

The teacher asks the class if they agree with Beta’s statement, that the diagonals are also 

the angle bisectors.  A student named Gamma speaks up and says, “Obviously they are 

not.”  She goes on to talk about the case of a rectangle where angle bisectors are not the 

same as diagonals.  Alpha protests that he was only talking about squares so Gamma’s 

counter-example does not apply; but the teacher asks Gamma to elaborate anyway. 
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Gamma comes to the board and extends Alpha’s diagram of a square into a diagram of a 

rectangle.  She does not seem to take responsibility for showing how her ideas fit with 

Alpha’s conjecture or into the bigger context of the discussion about angle bisectors of 

quadrilaterals.  Another student defends Alpha by saying that when he made his 

conjecture he was not talking about rectangles, only squares. 

One could imagine that at this point the teacher could take up the discussion about angle 

bisectors of rectangles and ask if other students had made conjectures about the angle 

bisectors of rectangles.  However, the teacher returns to the case of the square and asks if 

Gamma’s counterexample disproves Alpha’s conjecture, that the diagonals cut the square 

in half. 

At this point Beta, Gamma, and Alpha discuss Alpha's conjecture.  The exchange ends 

with Alpha restating his conjecture as “in a square the angle bisectors meet at a point 

because they are the diagonals.”  The teacher paraphrases Alpha's conjecture on the board 

by writing, “in a ☐ the ang bis ☒” and calls for volunteers to do a proof.  The teacher 

calls on Lambda.  By calling on Lambda to produce a proof the teacher shifts the activity 

from making conjectures to doing proofs.  There is a shift in the goal of the activity that 

students are working on as well as in the participation structure of the class.  Whereas in 

the first half of the animated scenario several students participated in the discussion, in 

the second half of the animated scenario, while Lambda presents a proof, there is much 

less participation from the other students.  Also, the teacher can be seen to take on a more 

directive role. 
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Lambda begins his proof by saying that the diagonals cut the square into equal pieces so 

they are the same as the angle bisectors.  The class presses him to prove this claim.  The 

teacher ignores the students’ call for a proof and asks Lambda which triangles he is 

talking about.  Without waiting for a response from Lambda, the teacher interprets 

Lambda’s statement as saying that the four small triangles formed by both diagonals are 

all congruent.  Beta confirms that these are congruent but Lambda responds by asking the 

teacher to remove one diagonal from the diagram so that the square is only cut into two 

triangles.  This is an abnormal request from a student because in the situation of doing 

proofs students do not alter the diagram available for use on the task (in particular they do 

not add or take away mathematical objects; see Herbst et al., 2009).  

Despite Lambda’s insistence that the proof only requires one diagonal the teacher leaves 

the diagonal on the diagram, citing the fact that squares have two diagonals.  Lambda 

continues with his proof, saying that the diagonal forms two triangles that are congruent 

and isosceles.  At this point the teacher asks Lambda what it is that he is trying to prove.  

This is understandable because the statement that the teacher wrote on the board before 

asking for a proof, although it was ambiguous, was a statement about at least two 

segments or rays.  Lambda seems to have segued into a proof about congruent isosceles 

triangles. 

Lambda tells the teacher that he is trying to prove that “the base angles on both triangles 

have to be equal to each other.”  The teacher marks the base angles of one of the small 

triangles as angles 1 and 2 and asks Lambda if these are the angles that he is trying to 

prove congruent.  If the teacher had erased one of the diagonals, as Lambda had 

requested, then this triangle would not exist.  The teacher is making the conversation 
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easier to follow by marking angles and giving them labels but she is also complicating 

the conversation by marking angles that are not the ones that Lambda is talking about. 

Instead of telling the teacher what it is that he is trying to prove Lambda again asks the 

teacher to erase one diagonal.  Beta supports the teacher’s decision to not erase one 

diagonal by expressing confusion with the idea of not showing both diagonals.  The 

teacher again refuses to erase the diagonal, this time saying that since Lambda is proving 

something about the intersection of the diagonals he must have both diagonals in the 

diagram.  The teacher says this despite the fact that Lambda has not told her what it is 

that he is trying to prove.  The teacher’s assertion about what Lambda is trying to prove 

does not match the statement that she asked Lambda to prove, or the statement that 

Lambda is attempting to prove.  Lambda tells the teacher that he is trying to prove that 

“the triangle is isosceles” so he only needs one diagonal of the square.  The teacher 

acquiesces to Lambda’s request and erases one diagonal. 

Even though Lambda is acting abnormally by asking the teacher to remove one diagonal, 

he seems aggravated by the fact that she will not comply with his request.  Like the 

teacher’s response to Alpha, the teacher’s response to Lambda could be read as either 

meaning that the teacher does not understand the mathematical argument that Lambda is 

advancing or that she is purposefully being obtuse. 

Lambda continues his argument, saying that the base angles of both triangles are 

congruent.  Instead of giving an argument for why this is true he simply asserts that it 

could be proven for one triangle and then the proof could apply to the other triangle.  The 

teacher accepts this reasoning and asks how this is connected to Alpha’s conjecture.  
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Lambda responds by saying that he’s showing that the diagonal is also an angle bisector 

and that the same proof could be used to show that the other diagonal is also an angle 

bisector.  The teacher does not sanction or reject Lambda’s line of reasoning.  Beta 

appears surprised by the fact that Lambda has brought the second diagonal back into the 

argument and another student justifies this move by saying, “the teacher said he could do 

it!” 

The teacher takes control of the conversation by writing the given and prove on the 

board.  First she writes, “given: ABCD is a square.” Then for the proof statement Alpha 

volunteers that the angle bisectors meet at one point.  The teacher writes, “prove: the 

angle bisectors meet at a point.”  Beta expresses confusion at this proof statement.  The 

animated scenario ends with the teacher calling for a proof of this statement and Lambda 

being indignant because he believes that he just did that proof.  By asking for the proof 

again and writing the given and prove statements on the board the teacher is devaluing 

Lambda's contribution as not an acceptable proof.  This move of the teacher could also be 

interpreted as an attempt to see if the rest of the class was following Lambda’s argument. 

Features of The Square 

This animated scenario has several characteristics that make it useful for gathering 

information about the position of the student in geometry instruction.  First is that it 

depicts two instructional situations, ‘making conjectures’ (Herbst et al, 2010) and ‘doing 

proofs.’ (Herbst & Brach, 2006)  The inclusion of both of these situations allows for 

comparisons between these two situations.  Seeing differences between the situations 

highlights the nature of each situation.  Also, each of these two situations contains 
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activities that are important in the discipline of mathematics.  Their importance in the 

discipline makes them important activities to study in the classroom. 

Another characteristic of this animated scenario that makes it useful for data collection in 

this dissertation is that it shows students engaging in a substantial discussion of 

mathematical ideas.  This type of student-centered discussion is something that is not 

often seen in geometry classrooms but that is a goal of educational reform (NCTM, 

2001).  Gathering responses to the animated scenario can inform what it is about this type 

of instruction that makes it uncommon. 

In addition to showing student-centered discussion, the animated scenario shows students 

supporting contradictory mathematical ideas.  In the beginning of the animated scenario 

Alpha puts forward a conjecture and then Gamma presents a counter-example.  Because 

students identify so closely with their ideas, students rarely share ideas that oppose the 

ideas of other students (Johnson, 1979).  Again, by using this particular animated 

scenario as a data collection tool one can gather information about how the position of 

the student in geometry instruction mingles mathematical ideas with student identities 

and results in students being unwilling to support opposing mathematical ideas. 

This animated scenario also showcases two student actions that are unusual and worthy 

of study.  The first is Lambda’s presentation of his proof.  Lambda’s presentation focuses 

on the key ideas of his proof without stating the details or producing statements and 

reasons in alternating order, like one would when constructing a two-column proof.  

Lambda is sharing a very smart idea, but it seems to have no traction in the classroom 

because of the form in which he shares his idea. 
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The other unusual student action is Lambda’s request that the teacher remove one of the 

diagonals from the diagram on the board.  It is unusual for a student to modify the 

resources that they are given to use in a task, like modifying the diagram.  The teacher 

resists this change and yet Lambda persists in requesting the change until the teacher 

finally acquiesces.  By removing the diagonal Lambda was able to focus his attention on 

one diagonal at a time and show that each diagonal was also an angle bisector.  

Removing the diagonal was instrumental in Lambda’s proof but it was not something that 

the teacher seemed prepared to do. 

This discussion of the animated scenario used for data collection in this dissertation 

highlights several features that recommend it as a useful tool for gathering information 

pertaining to the position of the student.  There are features of the animated scenario as a 

genre, like its immersive quality, and features of this animated scenario in particular, like 

the presence of student-centered discussion, that prompt the participant to respond to the 

animated scenario in ways that are tied to instruction and to the specific instructional 

activities that are of interest. 

The papers presented in the body of the dissertation are in the following order;  

“Mathematical Arguments in a Virtual High School Geometry Classroom,” “Teachers’ 

Perceptions of Geometry Students,” and “The Work of ‘Studenting’ in High School 

Geometry Classrooms.”  Each paper is self contained, however, the second and third 

papers build on a shared theoretical framework, and therefore reference each other for 

aspects of their theoretical development.  The dissertation concludes with a brief 

discussion of the understanding that these studies have provided of the position of student 

in instruction.
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Chapter 2 

Mathematical Arguments in a Virtual High School Geometry Classroom 

Since the time of the new math, and in particular, apropos of Bruner’s famous principle 

that “any subject can be taught effectively in some intellectually honest form to any child 

at any stage of development” (Bruner, 1960, p. 33), mathematics educators have been 

interested in the relationship between mathematics done by students in school and 

mathematics done by mathematicians working in the discipline.  Understanding this 

relationship is especially important in high school geometry classrooms where there is a 

particular emphasis on the mathematical activity of proving, the preeminent tool of 

knowledge production and verification in the discipline (Lakatos, 1976; Thurston, 1994).  

According to prior research in high school geometry classrooms, students do proofs in a 

two-column format, proving statements that are already known to be true and using a 

predetermined set of resources (Herbst, 2002, 2006; Herbst & Brach, 2006).  In the 

discipline of mathematics, however, mathematicians do not follow a particular form; 

more importantly they do not sit down to do a proof knowing what they will end up 

proving or what tools they will employ in the process (Lakatos, 1976). 

This paper is part of a larger project to understand the position (Harré & van Langenhove, 

1999) of the student in geometry instruction.  In particular, this study is aimed at 
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understanding how engagement with mathematical knowledge and practices shapes the 

nature of the work of being a geometry student.  I hypothesize that being a student in a 

geometry class requires work on the part of the student that can be traced to the nature of 

the content under study and is not dependent on the individual student doing that work. 

I make use of a metaphor that likens a classroom to an orchestra (Herbst & Balacheff, 

2009).  In this metaphor the students are the musicians and the teacher is the conductor.  

The mathematics that is under study in the classroom is analogous to the musical piece 

that is performed by the orchestra.  It takes the class as a whole, not an individual student, 

to enact this mathematics and this enactment is under the direction of the teacher.  

Extending this metaphor, I think of each student’s contribution in the classroom as 

consisting of both the argumentation style employed by the student and the mathematical 

content of the arguments that they elaborate.  This is analogous to the musical style and 

musical part that a musician plays. 

This metaphor helps to make visible the impact that the mathematical content has on the 

position of student.  Just like the work of being a musician is shaped by the music the 

musician plays, the work of the student is likewise shaped by the mathematical content 

they are studying, in terms of both the argumentation style and mathematical territory 

covered.  In most high school geometry classrooms one particular style of argumentation, 

the two-column proof, is favored above all others and the content is predetermined by the 

textbook (Herbst, 2002).  This arrangement of content in the high school geometry class 

has both advantages and drawbacks and both need to be explored in more detail. 
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This paper reports on a case study wherein the data represent cases of mathematically 

successful adolescent learners encountering novel mathematical problems in the context 

of classroom discussions.  From these particular cases I aim to better understand how the 

position of the student is shaped by the mathematical arguments and mathematical 

territory that could be elaborated by learners in these circumstances.  Stake (1978) makes 

the point that case studies are useful when the desired outcome of the study is “a full and 

thorough knowledge of the particular, recognizing it also in new and foreign contexts” (p. 

6).  My goal in this study is to move closer to a full and thorough knowledge of the work 

involved in elaborating arguments in geometry instruction.  These case studies provided 

understanding of two different ways (represented by two different participants) in which 

that work could proceed. 

In this study I am using two cases of students elaborating mathematical arguments as a 

means for better understanding the process of elaborating mathematical arguments within 

geometry instruction.  I am not interested in making general claims about these two 

students as individuals; rather, I am interested in making claims about the nature of the 

work that these students are engaged with.  Also, I claim that the nature of this work is 

somewhat separate from the individuals conducting that work.  The two students chosen 

to participate in this study represent two different possible ways to doing the work of 

elaborating arguments, insofar as the arguments that they elaborate reflect different 

modes of argumentation and cover different mathematical territory. 

While one of the participants provides the opportunity to study arguments that reflect the 

structure of the two-column proof format that is common in American high school 

geometry classrooms, the other provides the opportunity to study arguments that were not 
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influenced by this proof format.  I ask what affordances and constraints two column 

proofs may provide to students, as can be seen in their capacity to make authentic 

mathematical arguments. 

I explore the following research questions: 

• How can the mathematics being studied in high school geometry classrooms 

shape the position of the student in geometry instruction? 

o What are the modes of mathematical argumentation that learners 

can employ in response to classroom discussions? 

o What mathematical territory can learners cover while elaborating 

mathematical arguments in response to classroom discussions? 

o How can the structure of the two-column proof affect the 

mathematical arguments that learners make and the mathematical 

territory that they cover? 

The overarching research question that I am exploring looks at the position of the 

geometry student in instruction and asks how the mathematics that is being studied 

shapes this position.  To answer this question I conceptualize the mathematics being 

studied as being comprised of both the style of argumentation being used and the 

mathematical territory being covered.  The first sub question looks at the mathematical 

arguments that learners build and the modes of argumentation that are reflected in these 

arguments.  The second sub question looks at the mathematical territory that learners 

cover while they are building these arguments.  The third sub question looks at the 

differences uncovered in the previous two sub questions and asks how the structure of the 

two-column proof can explain these differences. 
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In this study I compare mathematical arguments elaborated by two middle school 

students, one who had taken a geometry course at a local high school and one who had 

not.  I do not make general claims about students who have and have not taken this 

course, but rather, I look at the characteristics of students’ arguments, some that reflect 

the structure of the two-column proof and some that do not.  I compare the data gathered 

from these two students as a way to see the different ways that learners can engage with 

the mathematical content being studied and in particular, see how this engagement is 

shaped by the mathematical arguments and territory that they elaborate. 

In the following sections I describe research on students’ use and understanding of proof 

in mathematics classrooms and writings that address the generation of mathematical 

knowledge in the discipline of mathematics.  I then describe the participants that took 

part in this study and the method of data collection that was used, including a description 

of the animated classroom scenario that was used as a conversation prompt in discussions 

with the participants, in terms of the mathematical arguments that it contains and the 

mathematical work that it might elicit.  The method of analysis used in this study builds 

on Toulmin’s scheme for analyzing arguments.  I describe Toulmin’s scheme and how I 

applied it to the data.  The second half of the paper is devoted to showcasing the 

mathematical territory covered by the participants and the arguments elaborated by the 

participants in response to the animated scenario.  The discussion returns to the research 

questions, making comparisons between the characteristics of the arguments made by the 

two participants.  In making these comparisons I make use of the notion of ‘disciplinary 

agency’ described in the literature section, and argue that the arguments elaborated by 

one participant reflect the disciplinary agency of the high school geometry classroom, 
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while the arguments elaborated by the other participant reflect a disciplinary agency that 

is closer to that found in the discipline of mathematics. 

Relevant literature 

To frame this study I draw from theoretical literature from two broad areas.  The first is 

literature on students’ work in classrooms (e.g., Hanna (1983, 1989, 1990, 1993); de 

Villiers (1990); Balacheff (1987, 1988); Chazan (1993); Schoenfeld (1985); Fosnot & 

Jacob (2009); Maher & Martino (1996); and Herbst (2002, 2004, 2006, Herbst & Brach, 

2006)) and the second is literature on the creation of mathematical knowledge (e.g., 

Lakatos (1976); Wilder (1981); Kitcher (1984); and Pickering (1995)).  These areas are 

related in that it is within the high school geometry classroom that teachers attempt to 

teach students about the creation of mathematical knowledge through proof. 

Mathematical ideas can come from many sources.  They can come from empirical 

exploration, intuition, guessing, teachers, textbooks, etc. However, mathematical 

knowledge, that is, ideas that are verified to be true, can only come through proof.  Proof 

is the only accepted source of mathematical knowledge.  In this study I consider the 

activity of doing proofs in a high school mathematics classroom as being comparable the 

activity of generating mathematical knowledge in the discipline of mathematics.  On the 

surface this may seem absurd; one obvious difference between these activities is that the 

statements that are proven by students are already known to be true, while the statements 

that are proven by mathematicians have not yet been verified.  However, the activity of 

proof in classrooms does resemble the generation of mathematical knowledge in the 

discipline on a much smaller timescale.  Students may be convinced of the truth of the 

statement but they are still required to prove it, they are compelled to deploy their 
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resources in a way that they cannot fully anticipate at the outset, and at the end of each 

proof they expand their knowledge of the mathematical territory that they are exploring.  

When the process of proving in high school classrooms is viewed in this light, I argue, it 

becomes reasonable to compare the activities of learners and the activities of 

mathematicians. 

Another reason that this comparison is worthwhile connects to the quote from Bruner.  

I’d like to raise the question, is the teaching of the two-column proof an “intellectually 

honest form” of teaching students about the generation of mathematical knowledge?  I 

argue here that the two-column proof provides both affordances and constraints in the 

quest to teach mathematics in an intellectually honest form. 

Literature on proof in classrooms 

Proof holds a contested but prominent place in American schools, and in geometry classrooms 

in particular.  Below are perspectives on the teaching and learning of proof in classrooms.  I 

divide the literature into three groups.  The first group contains papers that discuss what proof 

in schools should look like from a disciplinary perspective, the second group contains papers 

that discuss the learning of proof, and the third group contains papers that discuss the teaching 

of proof. 

Proof in schools from a disciplinary perspective 

The following writings give a vision of what proof in schools should look like if it were 

to resemble closely proof in mathematics.  These writings look at proof in mathematics 

and then make an effort to think about how these proofs can have an educative role in 

classrooms.  I look in particular at the work of Hanna (1983, 1989, 1990, 1993) and de 
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Villiers (1990).  Both of these authors look at the function that proof fulfills in the 

discipline and suggest that proof in schools could and should fulfill the same functions. 

Unfounded assumptions about proof in the discipline 

Hanna (1983, 1989, 1993) argues that the current place of proof in schools is based on 

unfounded assumptions.  She comes to the conclusion that the place of proof in schools 

should rest on its explanatory power as well as various ways that proofs can be applied to new 

ideas both in mathematics and related fields. 

Hanna asks the question, what does proof look like in the discipline of mathematics and what 

implications does this have for what proof should look like in school?  She finds that three 

common assumptions about proof in mathematics are false, leading to the conclusion that the 

ways proof is taught in schools are inconsistent with proof in modern and historical 

mathematical practice. 

Three assumptions; that proof is used as a way to convey understanding, that proof is the 

defining characteristic of mathematical practice, and that there exists a stable, agreed upon 

method of accepting new theorems based on their proof among practicing mathematicians, 

have lead to a misappropriation of rigorous proof in the mathematics classroom (Hanna, 

1983).  According to Hanna rigorous proof is one in which every definition, postulate, and 

theorem, as well as the logical connections, are explicitly stated.  It is this rigorous proof that 

Hanna claims has been wrongly incorporated into classrooms, and that is not the way that 

proof is conceptualized in the discipline of mathematics.  Hanna goes on to argue that proof 

should have a central role in the classroom, but it should be a role of communicating 

mathematical understanding, and in their communicative role, not all proofs are made equally. 
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The first assumption about proof is that it is a good way to convey mathematical 

understanding.  Hanna claims that some proofs, “proofs that prove,” do not necessarily have 

any explanatory power (Hanna, 1983, 1990).  She cites specifically proofs by induction and 

proofs by contradiction.  In Hanna’s opinion, these proofs do not provide any illumination of 

the underlying mathematical structures in question, and therefore they do not have the ability 

to explain that can be found in other proofs.  The proofs that have a place in the classroom are 

“proofs that explain.”  Examples of types of proofs that explain are proofs by construction or 

visual proofs.  Hanna gives the example of the proof that the sum of the first n whole numbers 

is equal to n (n+1)/2.  This can be proved inductively without giving the reader any indication 

of why it is that the statement is true, or it can proved using a visual proof showing that the 

sum of an increasing series of triangular numbers and can be seen to be half of the rectangle 

of dimensions n by n+1 (see Figure 2). 

 

Figure 2:  Visual proof of the claim that the sum of the first n whole numbers is 
equal to n(n+1)/2 
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According to Hanna, the second unfounded assumption about proof in mathematics is that 

rigorous proof is a key aspect of current mathematical practice (Hanna, 1983).  A common 

reason for teaching rigorous proof to high school students is that rigorous proof is the 

cornerstone of modern mathematics practice.  According to Hanna’s research, 

“[m]athematicians accept a new theorem when some combination of the following holds: 

1. They understand the theorem (that is, the concepts embodied in it, its 

logical antecedents, and its implications) and there is nothing to suggest it 

is not true; 

2. The theorem is significant enough to have implications in one or more 

branches of mathematics, and thus to warrant detailed study and analysis; 

3. The theorem is consistent with the body of accepted results; 

4. There is a convincing mathematical argument for it, rigorous or otherwise, 

of a type they have encountered before.” (Hanna, 1983, p. 70) 

None of these reasons entail the existence of a rigorous proof.  What is much more important 

is that the theorem is understood, significant in its domain, consistent with current thinking on 

the topic, and there exists a convincing argument.  This convincing argument can take many 

forms, with a rigorous proof not necessarily being preferred.  In fact, even when a formal 

proof exists its rigor and focus on detail can make it difficult for the reader to see the 

argument behind the lines of rigorous proof (Leron, 1983).   According to Hanna, “it would 

therefore appear that what needs to be conveyed to students is the importance of careful 

reasoning and of building arguments that can be scrutinized and revised” (Hanna, 1989, p. 

23). 

The third and final assumption is that within mathematics there is a consensus on what 

constitutes a proof, and therefore on what grounds a theorem should be accepted as true 

(Hanna, 1983).  Hanna points to the paradoxes that result from axiomatic set theory as proof 
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that mathematics has carried on, even after this ‘crisis of the foundations.’  Three schools of 

thought emerged from the crisis:  logicist, formalist, and intuitionist, each with their own 

understandings of the basic mathematical objects and logical system.  In addition to the 

different schools of thought, history shows that what counts as rigor is changing.  That is, 

what was rigorous to the Greeks was not rigorous to Euler was not rigorous to Cauchy is not 

rigorous to current logicians (Hanna, 1983). 

If the negation of these three assumptions tell us how proof in mathematics is not best 

reflected in schools, then what are ways of understanding the place that proof holds in 

mathematics and therefore by extension in classrooms?  Hanna places the meaning of 

mathematics in its application.  This is not application only in the sense of its utility in other 

disciplines like physics, but application within the discipline of mathematics.  Proof can reveal 

“new dimensions and new aspects of the theorems proved” (Hanna, 1993, p. 428).  These 

applications give meaning to possibly otherwise trivial theorems or observations. However, 

these applications are not always within the scope of what the student understands so, in many 

cases, the student must take on faith a teacher’s claim that a particular solution is better than 

another based on the teacher’s greater knowledge of mathematics (i.e., what will come later, 

the generalizability of an argument).  Of course it is preferable that students have 

understandings of the areas of application so that the applications will carry meaning (Hanna, 

1993). 

Starting from the assumption that proof in schools should reflect proof in mathematics, Hanna 

provides a vision for what position proof could hold in schools.  She argues that the 

explanatory nature of proofs should be highlighted along with the realization that proofs gain 

importance from the contexts in which they can be applied to expand understandings.  
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According to Hanna, schools should abandon the unfounded assumptions that proof needs to 

be rigorous and that there is an agreed upon criteria for accepting proofs and the statements 

that they prove. 

Functions of proof in the discipline of mathematics 

de Villiers, like Hanna, has a vision of proof in schools reflecting proof in the discipline 

of mathematics.  He claims that proof in the discipline of mathematics fulfills five 

functions: verification, explanation, systematization, discovery, and communication (de 

Villiers, 1990).  de Villiers argues that through understanding these functions of proof 

and bringing them into the classroom, teachers will be able to satisfactorily answer 

students’ question, “Why do we have to prove this?” 

The first function, verification, is the starting place for de Villiers.  He argues that many 

teachers and students are aware of this function and use this to justify their work with 

proofs.  This function of proof is aimed at verifying that a particular mathematical 

proposition is true.  de Villiers expands the notion of verification to include conviction, 

which places the emphasis of the justification not on mathematical and logical rules, but 

the ability to convince another person that the proposition is true.  This move from 

verification to conviction is precipitated by the belief that there is no such thing as 

absolute certainty in mathematics. 

The second function of proof is explanation.  Proofs that explain provide understanding 

of why a proposition is true with respect to a particular set of assumptions.  These proofs 

are different from proofs that convince because proofs that explain provide an 

understanding of why a proposition is true, beyond an understanding that the proposition 

is true.  de Villiers claims that proofs that explain are more preferable to many 
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mathematicians than proofs that convince.  In an educational context, one can see the 

clear advantage of providing students with proofs that explain rather than proofs that only 

convince.  Most likely a proof that explains will also convince, in addition to explaining. 

Systematization, the third function of proof, shows how mathematical concepts involved 

in a proof are related to other mathematical concepts.  Just as explanation is a function of 

proof that provides understanding, so is systematization.  While explanation provides 

understanding of why a proposition is true with respect to a particular set of assumptions, 

systematization provides understanding of why a proposition is true with respect to a set 

of mathematical concepts. Systematization allows for axiomatization and defining, two 

important activities of metamathematics. 

Discovery is the fourth function of proof put forward by de Villiers.  He argues that 

throughout history mathematicians have discovered theorems in the process of proving 

other theorems.  In particular, during a proof a mathematician comes upon the essential 

characteristics of the assumptions that allow for the conclusion, and therefore finds a 

more general proposition than she was originally proving. 

The final function of proof discussed by de Villiers is communication.  Proof allows for 

the discussion of mathematical ideas.  Through this discussion mathematicians share their 

discoveries with each other, agree and disagree with each other, and learn from each 

other.  Without this function of proof the mathematical community would cease to have 

any mathematically meaningful interactions with each other. 

These five functions of proof are important to education because they help to expand the 

role of proof in the classroom beyond verification.  Other functions of proof; explanation, 
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systematization, discovery, and communication, could each provide students with another 

avenue for appreciating the value of proof in their mathematical work.  These functions 

of proof are similarly useful for the current case study because they give ways to think 

about what the participants are doing when they create arguments, besides verifying the 

truth of a mathematical proposition. 

The literature reviewed here, from Hanna and de Villiers, attempts to bring proofs in 

schools closer to those done by mathematicians by focusing on how proofs can lead to an 

explanation of the statement being proven and the usefulness of statements in terms of 

being applied to other mathematical domains.  I focus on this set of writings because they 

provide a vision for what proof in classrooms might look like if school’s primary 

obligation was to the discipline, as Bruner suggested that it might be, when he said that 

any topic could be taught in an intellectually honest form.  However, as I will show in the 

following section, schools have other obligations, for instance, obligations to the learner 

of proof and to the work of teaching. 

Learning proof in schools 

In the following section I look at the literature on students’ learning how to prove, and I 

review different ways that students view proofs and the various cognitive obstacles that 

students encounter when learning how to prove.  This research on students learning how 

to prove will be beneficial in examining and understanding the arguments that study 

participants built. 
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Conceptions of proofs 

In the following section I describe literature on students learning to prove.  To frame this 

literature I begin with a quote from Balacheff (1987) that defines explanation, proof, and 

mathematical proof.  Balacheff says, 

We call explanation a certain type of discourse that attempts to make 

understandable the truth character of a proposition or result acquired by the 

speaker.  The reasons that he or she provides can be discussed, refuted, or 

accepted.  We call proof (Fr. preuve) an explanation accepted by a given 

community at a given moment of time.  The decision to accept it can be the object 

of a debate whose principal objective is to determine a common system of 

validation for the speakers.  Within the mathematical community, only those 

explanations that adopt a particular form can be accepted as proof.  They are 

sequences of statements organized according to determined rules: A statement is 

either known to be true or deduced from those that precede it using a rule of 

deduction from a set of well-defined rules.  We call these sorts of proofs 

mathematical proofs (Fr. demonstration) (Balacheff, 1987, pp. 147-148, translated 

by Herbst). 

This quote from Balacheff defines mathematical proof based on explanation and the 

acceptance of the mathematical community.  This definition highlights the expectation 

that a mathematical proof would both explain why a statement is true and that members 

of the community employing mathematical proof would understand how that proof 

relates to the truth-value of the statement being proven.  However, from the literature 

reviewed below, one sees that students have difficulty understanding how to interpret the 

results or existence of a proof.  That is, students often will not understand the significance 

of a proof and they will not have the tools to tell when a proof is valid or not.  This lack 

of understanding prevents students from seeing the value in mathematical proof.  In 
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addition, students do not feel compelled to prove a claim when they can see that the claim 

is true.  These difficulties that students encounter when learning how to prove are 

discussed below. 

Students view evidence as proof 

Some students believe that claims can be proven through the presentation of empirical 

evidence (Chazan, 1993).  These students are convinced by a series of examples that 

show the desired conclusion to be true.  Balacheff gives two views of proof that fit into 

this “evidence is proof” category.  These views are named “naïve empiricism” and “the 

crucial experiment.”  Both of these are described below. 

Naïve empiricism 

In this vision of proof, students take statements to be true if they can observe them in the 

world (Balacheff, 1988; Schoenfeld, 1985).  This view of proof has the benefit of being 

quick.  Students do not have to spend time considering the relationship between objects 

represented in the problem, but can make an observation and then report their finding.  

Also, this view of proof reflects a belief that a particular observable instance is the same 

as the phenomenon under examination. 

Schoenfeld (1985) provides axioms for empiricism that he suggests can be used to predict 

student actions when students are acting in line with an empirical view of proof.  These 

axioms are (paraphrased here): 

1. Insight and intuition come from drawings. 

2. Good hypotheses are visible in the diagram along with a path for testing them, 

and the hypotheses involve objects that are prominent in the diagram. 

3. The most likely hypothesis is tested first. 

4. Mathematical proof is irrelevant. 
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These axioms of empiricism, and especially axiom 4, can be seen to be direct barriers to 

students learning how to prove.  As long as students believe that mathematical proof is 

irrelevant they will not move from an empirical view of proof to a more advanced view 

of proof. 

The crucial experiment 

In this vision of proof, students are more aware of the problem of generalization, than in 

the view of naïve empiricism, where the students are oblivious to concerns of 

generalization.  Instead of taking any case of a phenomenon as the phenomenon itself, 

students engage in a crucial experiment for which they pick a useful case that they treat 

as a representative of a phenomenon that they wish to examine.  The purpose of the 

experiment is to choose between two specific hypotheses (Balacheff, 1988).  This 

choosing usually does not result in the confirmation of a hypothesis, but the rejection of 

one of the hypotheses. 

Students view proof as evidence 

Some students believe that claims that are proven through deductive means only hold for 

that particular case that is used in the proof (Chazan, 1993).  For example, if a geometric 

proof is done using a diagram then students will believe that the proof holds for that 

diagram only and not for a general class of objects. 

Generic example and thought experiment 

In this vision of proof, students are able to construct an example that preserves the 

essential characteristics of the phenomenon while eliminating superficial characteristics 

(Balacheff 1988).  Even students who have this more advanced view of proofs do not 
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necessarily realize that this generic example generalizes to all cases in some infinite set.  

They might see that the claim has been proven for this example, but not for all cases. 

Obstacles that students face when learning to prove 

The obstacles discussed below are ways of thinking mathematically that are useful in 

developing an understanding of proofs.  While they are not necessarily tied directly to the 

work of proving, in some cases they have been shown to be prerequisites for learning 

how to prove. 

An obstacle that students face when they are learning how to prove is the distinction 

between objects and processes (Fosnot & Jacob, 2009).  In mathematics this distinction is 

important because some objects can be understood as the result of an operation.  For 

example, the arithmetic object sum can be understood as the result of the process of 

addition.  So, the number sentence “3 + 2” could be seen as either an object or a process.  

An example from geometry is the object angle bisector, which is defined as a ray that 

bisects an angle.  Therefore the process of bisecting an angle is reified in the object angle 

bisector. 

According to Fosnot and Jacob there are certain mathematical ideas, such as the 

distinction between objects and process, which are prerequisites for more advanced 

deductive reasoning.  They studied this in the context of students’ conceptual reasoning 

with a number line.  In their work the combination of the context of the problem situation 

(frogs jumping) and the representation (intervals on a number line) confronted students 

with the distinction between process (jumping) and objects (intervals).  They concluded, 

“while examining students’ early attempts to use deductive reasoning in the context of 

equivalence, we found that their construction of certain mathematical ideas was 
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prerequisite” (Fosnot & Jacob, 2009).  The object/process distinction is not a fundamental 

aspect of proving, however the understanding of this distinction facilitated students’ 

learning of proof. 

Maher and Martino (1996) noticed some obstacles in the development of proof through a 

case study that traced one student, Stephanie, from first to fifth grade.  Since the 

researchers followed Stephanie for an extended length of time they were able to see how 

her thinking about proof and deductive reasoning developed.  Of particular importance in 

Stephanie’s learning of proof was the systemization of her reasoning.  In attempting to 

construct an argument that would become a “proof by cases” she was able to able to list 

the cases using patterns that allowed her to reason about the exhaustiveness of her cases.  

She was able to use local patterns to generate cases from existing cases and she was able 

to use global patterns to check for repeated cases and verify the inclusion of all cases. 

The literature reviewed here provides some guidance for other considerations that schools 

and teachers might have beyond their obligation to the discipline of mathematics.  This 

literature shows that students need to learn how to value mathematical proofs as well as 

learn some mathematical ways of thinking that will facilitate their understanding of 

mathematical proof.  In the next section I look at the learning of proof from the 

perspective of the classroom teacher. 

Teaching 

The literature below supports the claim that proof in schools responds to constraints that 

stem from the work of teaching.  That is, the work that is entailed in teaching proofs 

shapes how students learn about proofs.  One sees that proof in classrooms is taught 

inside the situation of ‘doing proofs’ (Herbst & Brach, 2006), in which students are 
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taught how to create proofs in two-column form (Herbst, 2002).  Below I discuss how the 

situation of ‘doing proofs’ and how the two-column proof impacts the proofs that 

students learn how to do. 

The evolution of the two-column proof mode 

In American geometry classrooms the most prevalent of style is the two-column proof 

(Herbst, 2002).  The two-column proof requires that proofs are presented in successive lines, 

each line consisting of a statement and a reason why that statement is justified based on 

previous lines and logical connectives.  Herbst argues that this format for the two-column 

proof supports teachers in assigning proof exercises that are of a suitable (short) length, and 

therefore doable by students, while still keeping structural similarities with proofs that are 

done by the book or teacher that are longer in length and more complicated in their content. 

There is a tension between teaching students how to prove and wanting all students to 

succeed.  Historically, it was thought that students should be able to prove new claims, but not 

all students should be expected to generate new knowledge (Herbst, 2002).  After the 

establishment of the two-column proof in geometry classrooms, students rely on the teacher or 

text to provide more powerful and complicated theorems.  Students are not expected to prove 

these statements but they need to use these more complicated statements as reasons in their 

own proofs.  The proofs of these more complex theorems give students a chance to see the 

argumentation that leads to the creation of new knowledge, without students being expected to 

form these arguments themselves.  By presenting these proofs teachers can justify that they 

are teaching the art of proof. 

The high school geometry class has evolved to rest on the assumption that the proofs that 

generate new knowledge and the proofs that students produce should be similar, but to make 
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the class function, and to have all students succeed, the proofs that students are expected to 

produce have to be separate from the need to generate new knowledge.  According to D. E. 

Smith, who published a geometry textbook in 1895, as quoted by Herbst (2002, p. 300), 

“whereas it [is] not reasonable to expect that all students would ‘discover new truths,’ proving 

truths stated by somebody else [is] something that all students should be able to do.”  The 

difference in goals of mathematicians (to generate new mathematical knowledge and 

understanding) and that of schools (to show that students have gained the ability to do proofs) 

is reflected in the role that proofs hold in these different environments. 

The instructional situation of ‘doing proofs’ 

The environment of the high school geometry class is very different than the environment that 

mathematicians work in. The school environment can be studied through the lens of the 

didactical contract (Brousseau, 1997; Herbst, 2006), along with embedded situations and 

tasks. The contract provides a framework in which the work that students do on mathematical 

tasks is valued as fulfillment of mutual responsibility that the teacher and the students have to 

teach and learn mathematical content, respectively (the task, situation, and contract are 

described in more detail in “Teachers’ Perceptions of Geometry Students,” this volume).  As I 

describe below, inherent tensions in this contract around the subject of proof can be seen. 

Herbst explains relations between contract, situation, and task as follows: 

The didactical contract constitutes a classroom as a space for trade of work for 

knowledge.  Situation and task are two constructs that point to things that matter in 

how this trade over knowledge takes place.  What thinking a problem can elicit 

(what kind of task) and which frame actors can use to interpret and value such 

work (what kind of situation) are objects of negotiation:  Participants interact as if 
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they were constructing agreed-upon responses to those questions, responses that 

would let them preserve and fulfill the contract.  (Herbst, 2006, p. 319) 

The classroom, within which proof and reasoning occur, places constraints on the possibilities 

of action and interpretation that are available to teachers and students.  Work done in the 

classroom trades for knowledge taught or learned (Herbst, 2004; Herbst & Brach, 2006). 

Negotiations of what will trade for what claims are often implicit, but they exert strong 

pressure on what students will do and how teachers will interpret students’ work.  According 

to this theory, when two-column proofs are done in high school geometry classrooms within 

the situation of ‘doing proofs’ the knowledge at stake is not only (or even at all) the goal of 

the task, it is to display teacher’s and students’ ability to teach and learn how to do proofs. 

In the geometry classroom, the instructional situation of “doing proofs” is an elaboration of 

the didactical contract that frames activities of proving geometric claims.  This is not an 

explicit agreement between an individual teacher and her students, but an implicit historical 

agreement that has been shaped over decades in the geometry classroom (Herbst, 2002).  The 

situation of ‘doing proofs’ is the marketplace in which work on some tasks is exchanged for 

claims on learning or teaching ‘proof.’ Herbst and Brach (2006) lay out the accountability 

structure for the situation of ‘doing proofs.’  This accountability structure is an example of 

how teachers and students shape the activities of teaching and learning ‘proof.’  The teacher 

acts as if she is accountable for posing problems with clear statements of what shall be taken 

as given and what is the statement that is to be proved, as well as providing an accompanying 

diagram with all of the relevant geometric objects available for inspection.  The student acts 

as if she is responsible for marking known statements on the diagram through various 
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markings and for laying out a sequence of “statements” and “reasons” in the form of a two-

column proof.  

This description of proof in high school geometry classrooms shows how proofs exist in a 

web of constraints and affordances based on the interactions between the teacher, the students, 

the content, and the institutional constraints of schools.  These affordances and constraints 

provide a possible explanation of how and why proof in classrooms is different from proof in 

the discipline of mathematics. 

From this literature on proof in classrooms one sees proof described in three different 

ways.  The first way of describing proofs is the way that proof in classrooms relates to 

proof in the discipline of mathematics.  One sees that proof in classrooms in based on 

unfounded assumptions about proof in the discipline and that proof in the discipline 

fulfills functions beyond those that are capitalized on in classrooms.  The second way of 

describing proofs in classrooms is the way students learn to prove, and in particular, 

difficulties that students face.  One sees that students have difficultly understanding the 

value of proof, and that the persuasiveness of empirical reasoning blocks students 

learning of how to prove.  Finally, the third way of describing proofs is the way that 

teachers teach proof.  One sees the prevalence of the two-column proof and the central 

role that it plays in allowing teachers and students to show that they have taught and 

learned ‘proof,’ respectively.  Below I look at how proof and the generation of 

mathematical knowledge are conceptualized in the discipline of mathematics. 

The generation of mathematical knowledge:  A review of relevant literature 

In the following section I describe ways that researchers and philosophers of mathematics 

have conceptualized the generation of new mathematical knowledge in the discipline of 
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mathematics.  These writings attempt to explain how novel mathematical concepts and 

theories arise from known mathematical concepts and theories.  I am interested in this 

because I would like to situate the current case studies as instances in which the 

participants are creating new mathematical knowledge.  Even though the claims that are 

arrived at by the participants are not new to the mathematical community, they are new to 

the participants.  The new mathematical knowledge created by the participants in this 

study also grew out of conversations, in response to authentic questions, so it was not 

delivered to the participants through an authority figure, but it was generated through 

their own work. 

However, it is important that the participants did not generate this knowledge in isolation.  

They worked in reaction to animated thought experiments (as described in the methods 

section) and the researcher guided them.  So, I’ve chosen to focus here on writings about 

the generation of new mathematical knowledge that pay careful attention to the interplay 

between the individual and the community in which the individual is working.  In this 

literature review I will not look at writings, like Poincaré’s “Mathematical Creation,” 

which focus on the individual aspects of the creation of mathematical knowledge.  

Poincaré identifies mathematical creation as “the activity in which the human mind seems 

to take least from the outside world, in which it acts or seems to act only of itself and on 

itself” (Poincaré, 2000, p. 85).  This view largely (if not totally) discounts the role of 

community in the creation of mathematical knowledge.  While this view is useful in some 

instances, in the current study I am interested in how mathematical knowledge is created 

in the intersection of individual and social activity.  Therefore, I have chosen to focus on 
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writings that acknowledge the importance of “communities of interaction” on knowledge 

creation. 

According to Nonaka (1994), “Although ideas are formed in the minds of individuals, 

interaction between individuals typically plays a critical role in developing these ideas.  

That is to say, ‘communities of interaction’ contribute to the amplification and 

development of new knowledge” ( p. 15).  I will follow his use of the term “communities 

of interaction” because it highlights both the fact that individuals create knowledge in 

communities that share knowledge and practices, and that within these communities 

individuals are interacting, or doing things together.  This emphasis on interaction, and 

not only action, places the focus on the dynamics between individuals, not solely the 

action of each individual. 

A similar concept to “communities of interaction” that is widely used is “communities of 

practice” (Wenger, 1998).  “Practice” has a much more specific meaning than 

“interaction” (Cook & Brown, 1999) and I do not want to argue that the activities that the 

participants in this study engage in are practices in that sense.  I will, however, argue that 

the activities that the participants in this study engage in can be seen to represent different 

ways of interacting mathematically that exist in the mathematics community and high 

school geometry classrooms. 

The writings that I am focusing on are Proof and Refutations (Lakatos, 1976), which 

highlights the importance of the dialectic between proofs and refutations in the generation 

of new mathematical knowledge;  Mathematics as a Cultural System (Wilder, 1981), 

which focuses on the role that the mathematical community plays in the generation of 
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new mathematical knowledge;  The Nature of Mathematical Knowledge (Kitcher, 1984), 

which argues for the empirical nature of mathematical knowledge; and The Mangle of 

Practice (Pickering, 1995), which discusses disciplinary agency and how it interacts with 

human agency to generate new mathematical knowledge.  Below I give a brief summary 

of each author’s thesis and relate their conceptualization of the generation of 

mathematical knowledge to the work that the participants do in the current study. 

The importance of the dialectic between proofs and refutations 

Lakatos’ Proofs and Refutations presents the reader with a dialogue between a teacher 

and his students in which they develop some new (to them) mathematical knowledge.  

This dialogue is crafted to showcase the process through which mathematical knowledge 

is formed.  The students in the class begin by stating a conjecture and collectively they 

alternate between refuting and refining that conjecture as they simultaneously develop a 

proof for the conjecture. 

The dialogue begins with the teacher asking his students if they have a proof for the claim 

that “for all polyhedra V - E + F = 2, where V is the number if vertices, E the number of 

edges and F the number of faces” (Lakatos, 1976, p. 7), known as Euler’s formula.  

Through the course of the dialogue the class develops a definition for polyhedra and a 

proof for the claim.  A significant feature of the conversation that develops is the 

interplay between students’ conjectures and the accompanying refutations of these 

conjectures.  The different characters in the dialogue are able to take up different 

positions (which are based on the historical development of Euler’s formula) and these 

differences push the argument forward. 
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In the introduction to the book Lakatos sets up his dialogue as a response to mathematical 

formalism and the rise of metamathematics.  He argues, “in formalist philosophy of 

mathematics there is no proper place for methodology qua logic of discovery” (Lakatos, 

1976, p. 3).  Mathematical formalism, which attempts to remove the mathematical objects 

from mathematics and reduce it to a system of logical deduction using a few axioms, 

erases the creative process of mathematics leaving only the statements of theorems and 

the formal proofs used to verify them.  The dialogue in Proofs and Refutations provides a 

counterexample to the claim that mathematics is formal mathematics.  Lakatos highlights 

the importance of informal mathematics in mathematical discovery. 

Lakatos helps us see the value in the informal mathematics that is done by the 

participants in the case studies.  His dialogue places the importance of mathematical work 

on discovery and uncertainty.  One sees that arguments that do not end in the statement of 

a correct mathematical claim can still be valuable if the arguer gains insight into the 

objects or propositions that are being explored. 

The role of the mathematical community 

Wilder’s primary project is to trace the development of mathematics through the 

movement of the component subfields of mathematics over the course of history (Wilder, 

1981, p. 16).  He stresses that he is not engaged in describing a history of mathematical 

culture, instead he is engaged in describing an evolution of mathematical culture, or “a 

process of change—a process by which various forms and structures change into 

(‘improved’) forms or structures, and is generally motivated by certain forces whose 

nature is dependent upon the types of forms or structures involved” (Wilder, 1981, p. 18).  
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He takes the view that evolution of mathematical subfields is propelled by the generation 

of new knowledge in these subfields. 

The role of the culture is essential to Wilder’s vision of the creation of mathematical 

knowledge.  While the actions of an individual may be the catalyst for the discovery, the 

resources that made that discovery possible are present in the culture.  “In each of these 

cases [of mathematical discovery], the so-called ‘inventor’ took a critical step in a series 

of steps leading to his invention; he was totally dependent not only upon ideas he gleaned 

from others, but, more important, for the push to invent which already existed in his 

culture.”  (Wilder, 1981, p. 10)  That is, each individual contributes ideas to a culture, and 

even though a single individual who contributes the final idea, or has the thought to tie 

the other ideas together, is credited with the discovery, this discovery would not have 

been possible without the support and “push” of the culture. 

Both Wilder and Kitcher (discussed below) see the importance of culture in maintaining 

the continuity of mathematical knowledge.  While Kitcher focuses on the role of 

authorities in transmitting knowledge from one generation to another, Wilder focuses on 

the growth that occurs between generations.  “A new generation does not have to re-do or 

re-invent concepts which were created by the older generation.  Rather, the new 

generation takes up from where the older left off, and goes on from there.  In this way, a 

culture grows, or evolves” (Wilder, 1981, p. 14).  It is not only that mathematical 

knowledge is created, but also it is created from something and this something is held by 

the culture. 
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Wilder’s focus on culture is useful for thinking about the current case studies.  The 

animated scenarios that are used as discussion prompts in this study provide the 

participants with ideas they can react to and build on.  I hypothesize that by having these 

extra cultural resources the participants are able to do mathematical work and build 

mathematical arguments that they might not have been able to do in isolation.  In the 

classroom, where students are evaluated on their individual merits, one might interpret 

this support of cultural resources as “cheating.”  But in the discipline of mathematics, 

where colleagues are indispensable resources of the work, this is actually more authentic 

than working alone.  Also, Wilder helps us see the “push” of the culture as an essential 

part of mathematical discovery.  In the case studies the culture that is embedded in the 

animated scenario provides the participants with the impetus to solve problems and 

explore questions that are meaningful in the culture. 

The “empirical nature” of mathematics 

In The Nature of Mathematical Knowledge (1984) Kitcher advances the argument that 

Mathematics is fundamentally an empirical discipline.  He argues that Mathematics grew 

out of humans’ perceptual interactions with the world and was developed over time by 

transmission through authorities and changes to mathematical practice.  In Kitcher’s view 

mathematics began with arithmetic.  Further, the claims of arithmetic are “true in virtue 

not of what we can do to the world but rather of what the world will let us do to it” 

(Kitcher, 1984, p. 108).  He goes on to say that it is not necessarily what we can do but 

what an ideal subject could do while executing ideal operations.  The result is an 

idealized empiricism that combines our interactions with, and observations of, the world 

with a vision of what these interactions and observations in an ideal world would admit. 
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In the case studies presented here, it is helpful to value the empirical aspects of 

mathematical work.  Work done in geometry throughout history has been supported by 

visual aids (Netz, 1998).  The participants in this study make extensive use of diagrams 

and move fluidly between thinking about concepts and thinking about objects represented 

through diagrams.  Kitcher helps to highlight the value of this empirical work and place it 

in an historical tradition. 

The role of disciplinary agency 

In relation to the creation of mathematical knowledge, Pickering (1995) focuses on the 

confrontation of human agency with disciplinary agency.  Human agency is understood 

as the combination of the ability to make choices and then to impose those choices on the 

world.  Pickering proposes disciplinary agency as the answer to the question, “How can 

the workings of the mind lead itself into problems?” (Weil quoted by Pickering, p. 113)  

Disciplinary agency takes over when the actor follows the path that has been established 

by their discipline.  In mathematics, disciplinary agency takes hold when mathematicians 

apply definitions or procedures.  A mathematician may decide that it is useful to look at 

the product of a • (b+c), but it is disciplinary agency that dictates the result is ab + ac. 

Mathematical knowledge is created in the intermingling, or mangle, of human agency and 

disciplinary agency.  That is, when humans choose to apply disciplinary agency to new 

contexts.  The result is not the outcome of the will of the mathematician, nor could it 

have existed without the push of the mathematician.  Pickering labels the application of 

known procedures to new contexts bridging and the application of disciplinary agency in 

these contexts as transcribing.  The final step of this process is filling, or the 
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interpretation of the new results in ways that are meaningful with respect to what is 

already known. 

The current study gives two examples of ways in which human agency can interact with 

disciplinary agency.  In the first case, the participant works in ways that mirror work in 

the high school geometry classroom (which I assume consists of its own specialized 

discipline, in particular, the two-column proof format, as described earlier) and in the 

second case the participant works in ways that are less constrained by this discipline, and 

closer to authentic mathematical work that might be seen in the discipline of 

mathematics.  As I will show in the results section, the first participant, Maria, who has 

had exposure to the two-column proof format, constructs arguments that are more 

efficient and predictable than those of the second participant, Sonia, because Maria acts 

as if she is led more reliably by the disciplinary agency of the two-column proof. 

This review of literature on the generation of mathematical knowledge in the discipline 

provides a lens with which to look at the participants’ arguments and a frame of reference 

for saying how mathematically authentic (or intellectually honest, à la Bruner) the 

participants’ work is.  For the discussion of the results that follow I focus on the writings 

of Lakatos and Pickering, because these two authors describe important aspects of 

argument creation that could be useful for understanding the arguments of the 

participants that are presented in this study.  From Lakatos one sees the integral role that 

the dialectic between proofs and refutations plays in the development of a mathematical 

idea.  Even when the participants create arguments that are not valid, one can still value 

the process through which these arguments develop.  From Pickering one is introduced to 

disciplinary agency.  This idea helps to explain the process through which mathematical 
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processes and human decisions about the application of these mathematical processes 

combine to result in new mathematical knowledge.  Disciplinary agency can be useful for 

understanding how the participants create their arguments.  In particular, one can see 

what forms of disciplinary agency the participants deploy in their arguments. 

Definition of proving 

From literature describing proving in classrooms and proving in the discipline one sees 

two very different definitions of proving.  In the classroom, proving is something that is 

done by individual students in a particular form (the two-column proof), where the 

statement being proven is provided by the teacher and known to be true.  The process of 

proving in classrooms is reduced to producing a series of statements and reasons that 

follow from the givens of the proof problem and rules of deduction and reaches a 

conclusion that is always known in advance. 

In the discipline of mathematics, one sees that the statement to be proven is developed 

simultaneously with the proof.  The process of proving is a dialectic between justifying, 

refuting, and refining claims that is done in a culture that provides support and impetus 

for the process of proving.  One sees that proving has an empirical basis that connects the 

work of the mathematician to the physical world, and the operations that mathematicians 

are able to perform in the world.  The structure of mathematical work can be seen in the 

form of disciplinary agency.  This agency is not under the control of the mathematician, 

but is under the control of the discipline of mathematics (determined by the properties 

that the community of mathematicians ascribes to mathematical objects) and dictates the 

outcome of the mathematician’s actions. 
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Data 

Description of data 

The data used in this study were collected in individual meetings with two middle school 

students, Maria and Sonia, during ten and fifteen one-hour sessions, respectively.  In each 

session the participant watched animated scenarios (see description below) with the 

researcher, and both participant and researcher paused the animated scenario to ask 

questions or give reactions.  Often the animated scenario would be paused for several 

minutes while the participant worked on exploring mathematical questions inspired by 

the animated scenario. 

Both participants in this study were successful mathematics students and about to enter 

ninth grade.  The first participant, Maria had taken a geometry course at a local high 

school during eighth grade, where she had been introduced to two-column proofs.  The 

previous year Maria had taken Algebra 1 in seventh grade, and the year before that she 

had tested out of her sixth grade mathematics class.  The second participant, Sonia would 

be taking geometry for the first time in ninth grade and had taken Algebra 1 in eighth 

grade.  Both participants were members of their school’s MATHCOUNTS® team.  These 

participants were chosen because they enjoyed mathematics and were inclined to spend 

time outside of school thinking about mathematics.  The fact that Maria had taken a high 

school geometry class and Sonia had not taken a high school geometry class allowed for 

the possibility to see the influence of their knowledge of the two-column proof format in 

the arguments they made. 

These two participants were chosen because it was expected that they could represent two 

different ways of doing mathematical work.  Maria’s experience in taking a high school 
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geometry class meant that she might produce mathematical arguments that reflect a style 

of argumentation that resembles the two-column proof.  Since Sonia had not formally 

been exposed to the two-column proof or a high school geometry class, but had engaged 

in a significant amount of mathematical work both in school and in out-of-school 

programs, it was expected that she might produce mathematical arguments that reflect a 

style of argumentation that resembles more authentic mathematical work that is informed 

by experience contemplating mathematical ideas and problems but that is not structured 

by a particular form or method of doing proofs.  This “authentic mathematical work” is 

also closer to the style of argumentation that is found in the discipline of mathematics 

(this is similar to AMD from Weiss et al (2009)). 

The participants watched several animated scenarios over the course of the study.  In this 

study I showcase arguments that the participants made in response to the animated 

scenario, The Square4, in which an animated teacher and her students consider the 

question, what can one say about the angle bisectors of a quadrilateral?  In particular, 

they discuss the relationship between diagonals and angle bisectors of a square (for more 

information about The Square and its use, see the Introduction to this volume).  This 

question was chosen because it provides learners with an opportunity to explore an open-

ended question. 

Both participants viewed The Square twice.  Maria viewed it during her first and last 

sessions.  Sonia viewed it over the course of her first three sessions and during a session 

                                                

4  The Square and the rest of ThEMaT’s animated classroom scenarios can be viewed at 

http://grip.umich.edu/themat. 
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near the end of the study.  Since Sonia was not as familiar with the content of geometry 

as Maria, it took her longer to watch the animated scenario.  Sonia would often stop the 

animated scenario to work through the mathematics that was being discussed.  Maria 

would watch longer sections of the animated scenario without pausing.  As a result Sonia 

created more arguments than Maria, as will be seen in the next section. 

The animated scenarios used in these case studies were developed for a different purpose; 

for uncovering the practical rationality of experienced high school geometry teachers 

(Herbst & Chazan, 2003).  Although these animated scenarios were not designed for the 

purpose of supporting students in making mathematical arguments, I argue that the same 

features that allow teachers to become immersed in the scenarios (Aaron & Herbst, 2007) 

also support students in work of making arguments as if they were engaged in an 

instructional scenario.  The animated scenarios invite immersion through the graphics 

that compose the animated scenarios and through the story that is presented in the 

animated scenario.  In terms of the graphics, the characters in the story are represented by 

2D-characters, which schematically represent human features (for example, they have 

hands but their hands are not attached to their bodies and their faces only display mouths 

when they are speaking).  By using non-realistic looking characters in the representations, 

I hypothesize that the participants are prevented from rejecting the idea that they could be 

the student in the scenario.  Since the characters clearly do not represent any real person, 

anyone could fill their position. 

In terms of the story depicted in the animated scenario, important aspects of the narrative 

have been omitted, like who the characters are beyond their performance in this scenario, 

what comes before or after this story in time, and in what school, in what city, in what 
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environment this story took place.  All of these missing aspects of the narrative invite the 

participant to project their own experiences onto the context of the story (Chazan & 

Herbst, in press; Herbst & Chazan, 2006; Herbst et al., in press).  The simplicity of the 

character set and narrative are balanced by the instructional complexity of the story being 

told. 

Another benefit of the use of the animated scenarios is that they allow the participants 

access to a mathematical discussion that they can pause, fast-forward, or rewind.  This 

control allows them to examine the discussion in detail, reviewing moments of interest 

and moving quickly through moments that did not catch their attention.  Because the 

mathematical ideas and concepts displayed in the animated scenario were constructed 

through the voices of several characters, the participants could more easily follow the 

positions and opposing views that went into building the discussion. 

This data collection prompt and the interview protocol of viewing an animated classroom 

scenario and asking participants to work through the mathematics presented therein, was 

employed because it allows access to the arguments that learners might produce in the 

context of a classroom discussion.  This is true for two reasons.  First, the data were 

collected from learners of mathematics who are encountering this mathematical content, 

as it exists on the edge of their mathematical horizon.  Like individuals in the position of 

student, these participants cannot yet be expected to see the connections between the 

ideas that they are encountering or connections to other areas of mathematics.  Second, 

the data were collected in the context of virtual classroom discussions.  The participants 

were able to build on the ideas of their virtual classmates; that is, they were able to make 

sense of the mathematical ideas of others in addition to being accountable for creating 
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those mathematical ideas on their own.  If the data had been collected from 

mathematicians, or from learners in response to a mathematical problem (not embedded 

in action), the analysis would not be as useful in answering questions about students in 

instruction. 

Sonia viewed The Square on July 8, July 9, July 10, and August 21.  Maria viewed The 

Square on July 7 and August 1.  Excerpts from these transcripts in the text are labeled, 

SA070808, SA070908, SA071008, SA082108, MC070708, and MC080108, 

respectively.  Lines of transcript are numbered according to the turns of talk.  

Below I describe the mathematical arguments that are elaborated in The Square and the 

mathematical work that could be prompted by engaging with The Square.  I offer this as a 

backdrop against which to view the mathematical territory covered and the mathematical 

argument elaborated by the participants.  In particular, the a priori analysis of the 

arguments elaborated in The Square helps us see the additional mathematical resources 

that the participants had to work with in addition to the statement of the angle bisectors 

problem.  The analysis of the mathematical work that could be prompted by the square 

helps us see the ways that the participants do (and do not) engage in mathematical 

practices that might advance their exploration of the problem. 

Map of the argument in the animated scenario 

Below I describe the mathematical arguments that the animated students built in The 

Square.  I provide these as a backdrop to the arguments that were elaborated by the 

participants, which will be described in the results section. 
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Figure 3:  Arguments in the first half of The Square 

 

Figure 4:  Arguments in the second half of The Square 
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Figure 5: The diagram used by the animated teacher 

 

Figure 6: The diagram used by Lambda 
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The first argument, which is created by Alpha and Beta, and can be seen in the top of 

Figure 3, states that in a square the diagonals bisect each other.  In the animated scenario 

Alpha warrants this by his exploration (or prior knowledge) of a square.  Beta rephrased 

Alpha’s conclusion by saying that it is equivalent to the claim that in a square the 

diagonals meet at a point. 

The second argument, which was created by Alpha, Beta, Gamma, and Lambda can also 

be seen in Figure 3.  This argument consists of one main line of argument along with one 

set of warrants/backings and a rebuttal.  The main line of argument begins with the claim 

that in a square the diagonals are angle bisectors.  The node that the angle bisectors are 

the diagonals is then used to support the conclusion that the angle bisectors meet at a 

point.  Alpha provides a warrant for this first implication by saying that the diagonals of a 

square cut it in half.  Lambda further supports this by providing backing in the form of 

the proof seen in Figure 4.  In response to the node that claims that the diagonals are 

angle bisectors, Gamma forms a rebuttal that this is not true in general, in particular, it is 

not true in a rectangle.  She bases her claim on the data of a square and its angle bisector 

from the bottom left corner and based on a transformation of this diagram into a 

rectangle, concludes that the angle bisector in the bottom left corner of the diagram will 

not be a diagonal if the diagram were a rectangle. 

There are two arguments formed in the second half of the animated scenario.  In the 

second half of the story the animated teacher and Lambda have difficulty communicating 

with each other and this results in them producing two parallel and disjoint arguments 

simultaneously (see Figure 4). 
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The animated teacher’s argument claims that in a square the diagonals form four 

congruent triangles and therefore angle 1 is congruent to angle 2 (see Figure 5).  Lambda 

does not dispute this argument, but builds a different argument, using a different diagram 

(see Figure 6). 

Lambda’s argument contains one embedded sub argument.  The main argument is that in 

a square the diagonals are angle bisectors because the diagonals cut the square into equal 

pieces.  Lambda then goes on to support this warrant with an embedded sub argument.  

He begins by asserting that in a square one diagonal cuts the square into two congruent 

isosceles triangles (∆BAC ≅ ∆DAC in Figure 6).  Since these triangles are congruent and 

isosceles, their base angles are congruent (∠BAC ≅ ∠BCA and ∠DAC ≅ ∠DCA in 

Figure 6).  Then, Lambda claims, these angles being congruent implies that the diagonal 

is an angle bisector.  This conclusion, however, does not directly follow because he does 

not provide the additional claim that the base angles of the two triangles are congruent 

(∠BAC ≅ ∠DAC and ∠BCA ≅ ∠DCA in Figure 6), which would imply that the 

diagonals are angle bisectors. 

In the sessions with participants, they were asked to view this animated scenario, and to 

untangle these arguments from the unfolding conversation.  As is shown in the results 

section, the participants reacted to these arguments in different ways and with differing 

levels of success.  The arguments made by the participants all respond to the animated 

teachers’ initial question, “What can one say about the angle bisectors of a quadrilateral?”  

All sessions with participants were audio recorded and then transcribed and indexed for 

analysis. 
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Possible mathematical work done in response to the angle bisectors problem 

The mathematical work showcased in The Square is one example of how mathematical 

work in response to the angle bisectors problem could proceed.  Figure 7 shows a map, 

developed by Herbst (P. Herbst, personal communication, September 28, 2010), which 

describes the general mathematical moves that one could make in response to the angle 

bisectors problem.  This map provides a backdrop against which to understand the 

mathematical significance of the work done in The Square, and the work done by the 

participants in response to The Square. 
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Figure 7:  Map of mathematical moves in response to the angle bisectors problem (P. Herbst, personal 
communication, September 28, 2010) 
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particular statement is true.  From the map, one sees that mathematical work on 

exploratory problems can be supported by different sets of prior knowledge.  In the case 

of the angle bisectors problem, two examples of useful prior knowledge are the taxonomy 

of quadrilaterals, or the theorem that the angle bisectors of a triangle meet at a point. 

Beyond the use of specific prior knowledge, the problem could be either generalized or 

specialized.  Generalization is the practice of finding a general property that could be 

used to answer the mathematical problem, while specialization is the practice of studying 

the properties of special cases.  Generalizing in response to the angle bisectors problem 

could be done in at least two ways; looking for sufficient and/or necessary conditions for 

the angle bisectors to meet at a point, or conjecturing a general property of the figure 

formed by the angle bisectors of any quadrilateral.  Specializing in response to the angle 

bisectors problem could also be done in at least two ways; finding out the conditions 

necessary for the angle bisectors to meet at a specific number of points, or investigating 

the different figures formed by the angle bisectors of different quadrilaterals. 

Within the practices of generalizing and specializing, the solver can either seek 

conditions under which a desired conclusion holds or seek conditions that could be made 

in given conditions.  Because answering the angle bisectors problem requires the solver 

to make some statement that consists of conditions and a conclusion, the solver could fix 

either of these and adjust the other to find interesting statements. 

This map of mathematical moves that could be made in response to The Square provides 

a description of some of the work that a solver could do while working on the angle 

bisectors problem, and in particular, that the participants might do in response to 
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engaging with The Square.  Two important types of moves are the decision to generalize 

or specialize and the decision to fix either the conditions or the conclusion and to vary the 

other.  The results section will show that Sonia, who had not taken a high school 

geometry course, and therefore had not been exposed to the two-column format for 

proofs, was more inclined to make these types of mathematical moves than Maria, who 

had taken a high school geometry course, and therefore was familiar with the two-column 

proof format.  Maria was more inclined to work as if the angle bisectors problem was a 

confirmatory problem and attempt to prove that a given statement was true. 

Available resources 

An important factor in the mathematical work that a learner might do in response to the 

angle bisectors problem is the physical resources that they have available to them.  In this 

study the participants worked with a researcher who structured the sessions, in terms of 

setting up the activity of watching the animated scenario, and occasionally pausing the 

animated scenario to ask questions of the participant.  The participants also had plain 

white paper and pencil available to them.  The participants used these to sketch geometric 

diagrams and write mathematical notes (mathematical questions, proofs, and ideas for 

proofs).  The biggest physical resource that participants interacted with was the computer 

that played the animated scenario.  The participants used the computer to watch the 

animated scenario but did not use the computer for any other purpose. 

A physical resource that is common in many high school geometry classes is dynamic 

geometry software.  This software allows students to use computers or hand-held 

calculators to quickly construct geometric objects that students can use for exploration 

and the development of conjectures and proofs.  The most powerful function of this 
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software is the ability to “drag” aspects of the construction to instantly visualize an 

infinite number of related shapes.  For instance, using dynamic geometry software, a 

student could construct a quadrilateral with one right angle (a rectangle) and its angle 

bisectors, and then “drag” one edge or vertex of the quadrilateral until the quadrilateral 

was a square.  As the student transformed the rectangle into a square they could observe 

the corresponding change in the angle bisectors (in this case, seeing them transform from 

four rays whose intersection form a square into two pairs of opposite overlapping rays 

which intersect in the center of the square).  This mode of interacting with geometric 

objects significantly changes the nature of the mathematical work that students engage in 

(Hölzl, 1996).  Since the participants in this study did not have dynamic geometry 

software available to them, I do not consider the effect that these resources could have on 

the mathematical work done by the participants in this study. 

Methods 

The current case study focuses on two mathematically successful adolescent learners’ 

interactions with an animated scenario from a high school geometry classroom.  Each of 

the learners worked on the same geometric task that was being worked on in the animated 

scenario.  The learners alternated working the mathematics and watching the animated 

scenario. 

The analysis in this case study examines the data to uncover the mathematical arguments 

that the participants create.  These arguments were made in response to mathematical 

tasks and I am interested in examining the characteristics of these arguments.  In 

particular I’m interested in seeing how the arguments that are made by the participants 
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correspond to the arguments that could be found in a high school geometry class or in the 

discipline of mathematics. 

Figure 8 shows a representation of the data collection methodology.  The left side of the 

figure depicts the thought experiment that the participants engaged in.  This thought 

experiment consisted of an animated instructional scenario that depicted a teacher and her 

class working on building an argument in response to a mathematical problem.  The right 

side of the figure shows the participant interacting with this thought experiment.  The 

participant and the researcher engaged with the thought experiment by viewing the 

animated scenario and discussing the mathematics done by the teacher and her class.  

During a viewing of the animated scenario the participant created new mathematical 

work in response to the mathematical work done in the animated scenario. 

 

Figure 8:  Data collection methodology 
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Analysis of mathematical arguments 

The conversations with participants were analyzed using Toulmin’s (1958) argument 

model (Figure 9).  Arguments made by the participants were compared in terms of the 

characteristics of arguments found in the literature on the creation of new mathematical 

knowledge in classrooms. Toulmin’s method of modeling arguments is a tool for 

describing the connections made between a set of data and a conclusion. Importantly, 

connecting these two are a warrant, or reason to believe that the conclusion follows from 

the data, a backing, or further support for the warrant, a qualifier that conveys the 

arguer’s confidence in the argument, and a rebuttal, or a counter argument that the arguer 

acknowledges.  Not every argument will make use of all these components, but Toulmin 

claims that all arguments can fit into this form. 

 

Figure 9:  Toulmin's model of arguments, which can be read as “D implies C with probability Q, on the basis of 
W, supported by B, unless R” 

When the case study participants make mathematical arguments, both separately and in 

tandem with the students in the animated scenario, they are constructing an argument 

connecting the hypotheses to the conclusion.  To analyze the data I search the transcript 
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for components of mathematical arguments.  I use Toulmin’s argument model as a 

template and therefore I code utterances as data, conclusions, warrants, backings, 

qualifiers, or rebuttals.  In the results section I provide maps for each of the arguments 

made by the participants.  When needed, a geometric diagram related to the argument is 

also provided. 

Toulmin’s argument model is useful for mapping arguments that are rational, in the sense 

that there is reasoning done in their creation, but that are not strictly deductive.  Since the 

warrants and backings for arguments could come from any field, the argumentation could 

be based on any warrant that is appropriate for the arguer.  In particular, it allows for the 

justification of geometric claims on the basis of intuition, exploration, or empirical 

observation. 

Another feature of Toulmin’s argument model is that it does not display the temporal 

sequence or duration of the process of creating the argument.  Once the argument has 

been recorded its nodes can be read in any order.  This lack of temporality takes the 

actions out of temporal sequence and allows the examination of their substantive 

relationships.  As with any simplification, this highlights some aspects and hides others.  

Arguments recorded using Toulmin’s model can be easily compared to each other in 

terms of overall structure and content of nodes.  This model for recording arguments 

hides information about how long it took to build the argument or the process through 

which the nodes were created.  In this study this is useful because it emphasizes the 

mathematical characteristics of the argument. 
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Earlier uses of Toulmin’s argument model 

Toulmin’s model has been used before in studies that look at students’ argumentation in 

mathematics classes (Krummheuer, 1995, 1998, 2000; Pedemonte, 2003, 2007; Wood, 

1999; Yackel, 2001; Yackel & Rasmussen, 2002).  These applications of Toulmin’s 

model have been used to study whole group or small group discussions, not arguments 

produced by a single student, as is done in the current study.  However, the participants in 

this study are able to use statements from the virtual students in the animated scenario as 

resources in their arguments.  Instead of the argument being elaborated by a group of 

students, led by a teacher, as in collective argumentation (Krummheuer, 1992; Miller, 

1986, 1987), the argument is elaborated by a single participant in interactions with the 

animated scenario.  The knowledge that is embedded in the animated scenario, in the 

form of utterances of the animated students, is available to the participants, and allows 

them to build virtually collective arguments.  These virtually collective contexts provide 

learners with collective resources, but result in arguments that more clearly reflect the 

thinking of one individual. 

Coding of the arguments 

The role of discourse in mediating activity cannot be underestimated.  Moreover, some 

activities are not just mediated by discourse, but discourse constitutes the activity.  The 

data presented in this study is an example of this type of discourse.  The participants 

deploy other recourses, like gestures and diagrams, to communicate, but the activity of 

elaborating arguments is primarily a discursively constituted activity.  That is, the 

operations performed by the participants, in concert with the animated scenario and the 

researcher, are performed through language. 
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So, then, to study the operations that the participants perform it is necessary to look at the 

linguistic resources that they use to construct those operations.  The examination of these 

linguistic resources is supported by the claim of Bakhtin (1986), that “even in the most 

free, the most unconstrained conversation, we cast our speech in definite generic forms” 

(p. 78).  Following this, I claim that the participants use language in predictable ways to 

construct arguments.  Below I describe the linguistic resources that are used as markers to 

find the arguments in the transcripts of the participants’ discussion of The Square.  This 

analysis is based on Systemic Functional Linguistics, a theory for looking at language a 

primarily a tool for making meaning (Halliday, 1994). 

The transcripts were coded for linguistic markers that pointed to various parts of 

Toulmin’s argument model according to the following scheme that I developed.  In 

particular, conjunction and process analysis (Martin & Rose, 2003) were useful in 

uncovering the structure of the participants’ arguments in the transcripts.  Conjunction 

analysis is concerned with the connections between clauses that describe how the clauses 

are related to each other.  For example, the conjunction “because” often points to a causal 

relationship between two clauses.  The preceding clause is likely a conclusion and the 

following clause is likely data.  Process analysis is concerned with the actions that are 

visible in the transcripts and can describe how objects or actors relate to each other.  For 

example, the process “proves” often points to the fact that the related mathematical 

statement will be the conclusion of an argument. 

Sections of transcript were designated as arguments if they contained a mathematical 

implication (see Table 1).  These are often marked by conjunctions like “because,” “so,” 

“since,” “if,” “then,” or “when” (Martin & Rose, 2003).  These conjunctions convey a 
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causal relationship between clauses.  In the case of “because” the clause before the 

conjunction is the conclusion of the implication and the clause after the conjunction is the 

data.  For the conjunction “so” the position of the clauses is reversed. 

Once it has been determined that a portion of transcript contains an implication the pieces 

of the argument need to be found.  The markers for data and conclusion, the end points of 

an implication, include all of the markers of implications.  In addition to the markers 

mentioned above, phrases like “I know,” “from here,” and “prove” are also markers.  “I 

know” could indicate either a data or conclusion, while “from here” and “prove,” indicate 

data and conclusion, respectively. 

The warrant and backing are found with the same markers because they have very similar 

functions in the argument model.  They each provide a justification for the data implying 

the conclusion.  In Toulmin’s model the backing is a more general rule than the warrant.  

The markers for the warrant and the backing could be similar to the markers for data, and 

conclusion, but the form of the warrant and backing is theoretically different from the 

form of the data and conclusion.  That is, theoretically, while the data and conclusion are 

both simple statements, the warrant and backing are both composite propositions.  

However, in practice, arguers do not always spell out both the hypotheses and conclusion 

of the warrant and backing; these are often elided in speech. 

Qualifiers are words or phrases that increase or decrease the modality of a statement.  

Common markers for qualifiers are “maybe,” “might,” and “could.”  Qualifiers are 

different than the other nodes in an argument because they are not statements or 

propositions.  Instead they are words or phrases that modify the force of the implication.  
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In recording the arguments of the participants I was not concerned with recording the 

qualifiers of their arguments because these are non-essential parts of the argument and 

they do not provide any mathematical content. 

Rebuttals are marked with conjunctions like “unless,” “but” or processes that contain 

marks for negation, like “didn’t cross,” “don’t make a square,” “wouldn’t be true.”  The 

conjunctions “unless” and “but” connect a conclusion to a rebuttal.  These conjectures 

signal that whatever follows it is contrary to what came before.  The rebuttal of an 

argument is in opposition to the conclusion.  Words like “didn’t,” “don’t,” and 

“wouldn’t” could also mark phrases that are in opposition to the conclusion. 

Table 1:  Markers for parts of an argument 

Part of argument Linguistic Markers 

Implication Because, so, since, if, then, when, and… 

Data Because, so, since, if, then, when, I/we/you know, from 

there, from here, and… 

Conclusion Because, so, since, if, then, when, and, I/we/you know, 

proved, discovered… 

Warrant Because, so, since… 

Backing Because, so, since… 

Qualifier Maybe, might, could be… 
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Rebuttal Unless, but, not, can’t, didn’t, doesn’t, wouldn’t… 

The circumstances of clauses, or the information about the setting for the rest of the 

information to be conveyed by the sentence (Martin & Rose, 2003), also contain markers 

about which parts of the argument the sentence contains.  If the circumstance sets the 

sentence temporally in the past it marks the following clause as data or warrant because it 

is implying that that information was known before the argument was formed.  Similarly, 

if the circumstance places the sentence in the future that implies that the following clause 

contains a conclusion because it was not known until after the argument had been made. 

Another method for coding parts of the arguments provided by the participants was to 

notice the question of the researcher.  During the conversation the researcher would 

prompt the participant to fill in a particular part of the argument.  For instance the 

researcher might ask, “what would you draw?” referring to the quadrilateral that the 

participant was basing her argument on.  If the participant responded, “square” then this 

would be coded as data.  Similarly, if the researcher asked, “why do you think [the 

conclusion]?” the reply from the participant would be coded as warrant. 

For arguments where the transcript is especially complicated I include a table that shows 

the coding for each piece of the argument.  In these tables, implications are labeled with 

“” or “” depending on the direction of the implication and in arguments that contain 

multiple implications I include a number to show where the implication falls in a series of 

implications.  Each part of the argument is labeled by its name, as well as a number that 

corresponds to which implication this part of the argument is related to.  This is because a 
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statement may be used as a conclusion in one implication and as data in the following 

implication. 

Analysis of mathematical territory 

To examine the mathematical territory covered by the arguments elaborated by each 

participant, I map the mathematical territory covered by her arguments.  This analysis 

highlights the mathematical content of the nodes of the participants’ arguments and 

allows for a comparison between the mathematical content explored by each participant. 

To perform this analysis, for each participant, I recorded the data and conclusion of every 

argument that she made and then arranged them in an array that collected similar data and 

conclusions, linking the conclusions to the data from which the participant deduced them.  

Valid implications are recorded with solid arrows and invalid implications are recorded 

with dashed arrows.  The center of each array is the question, “what can one say about 

the angle bisectors of a quadrilateral?”, surrounded by all the cases that participants used 

to examine this question, represented by shaded shapes.  The outer ring of the array 

shows the conclusion that each participant arrived at based on each case.  These 

conclusions are represented by white ovals.  If the participant arrived at the same 

conclusion using two different sets of conditions, the conclusion was only recorded once, 

with an arrow connecting it to each set of conditions. 

The methods described here are used to code the transcripts of the discussion between the 

participants and the researcher.  These codes yield maps of arguments that allow for 

analysis of the participants’ mathematical work and comparison of their work to the work 

of proving, as it exists in high school geometry classrooms and in the discipline of 

mathematics.  It also allows for a mapping of the mathematical territory covered by these 
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arguments.  Below I describe the arguments that were elaborated by each participant, 

including a discussion of the validity of those arguments, and I describe the mathematical 

territory that was covered by the arguments elaborate by each participant. 

Results 

In the following section I describe the results of this analysis.  The results are divided into 

two sections.  The first section describes the arguments that were elaborated by the 

participants in response to the animated scenario and the second section describes the 

mathematical territory that was coved by the arguments elaborated by each participant.  

From the first set of results one can see that the style of argumentation employed by 

Maria, who had taken a high school geometry class, reflect the structure of the two-

column proof, while the style of argumentation employed by Sonia, who had not taken a 

high school geometry class, reflects features of argumentation that might be found in the 

discipline of mathematics.  From the second set of results one sees that Maria covered 

less mathematical territory than Sonia, although the arguments that Sonia used to cover 

this territory were not necessarily valid. 

Maps of arguments 

In the following section I describe the arguments that were made by each of the 

participants.  The arguments created by the two participants are substantially different.  

From the descriptions of the creation of mathematical knowledge as it exists in schools, 

and especially the process of proof employing the two-column proof form, one can see 

that the participants’ arguments are different from each other.  These differences support 

the claim that Maria’s arguments would fit well into the system of proving using two-

column proofs that exists in classrooms, while Sonia’s arguments would not be supported 
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by this form of proof.  In addition, one sees that Maria’s arguments are able to connect 

data and conclusions using strings of implications and Maria’s arguments are, in general, 

more likely to be valid than Sonia’s. 

In the argument maps below the solid rectangles correspond to pieces of the argument 

that were made by animated students and then referenced by the participant.  Rectangles 

that are outlined are pieces of the argument that were produced by Maria or Sonia.  

Nodes that are crossed out are claims that the participants made and then later rejected.  

Nodes are labeled with the turn number from the transcript that they come from.  In the 

description of the arguments quotes from transcripts are referenced as (II, DDDDD, TN) 

where II are the initials of the participant’s pseudonym, DDDDDD is the date on which 

the conversation took place, and TN is the turn number of the transcript from which the 

quote was taken.  Sonia’s initials are SA and Maria’s initials are MC.  In the quotes from 

the transcript markers for pieces of the argument are recorded in italics. 

Maria’s arguments 

The following section describes maps of arguments that were elaborated by Maria.  Maria 

elaborated six arguments, over two viewings of the square.  For each argument I describe 

the elaboration of the argument as stated by Maria and discuss the validity of each 

argument. 

Maria’s conjectures in response to the angle bisectors problem 

Figure 10 shows maps of two arguments elaborated by Maria, who had taken a high 

school geometry course.  These arguments were made during the first session with Maria.  

After seeing the animated teacher pose the problem, “What can one say about the angle 

bisectors of a quadrilateral?” the animated scenario was paused and Maria spent some 
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time working on the angle bisectors problem.  The following argument map (see Figure 

10) displays the conjectures she made and the ways that she justified those conjectures. 

 

Figure 10:  Maria’s conjectures in response to the angle bisectors problem 

The first conjecture looks at the case of a parallelogram.  Maria made the claim that in a 

parallelogram the angle bisectors do not meet at a point and that the angle bisectors make 

a square.  Maria said, “I would, like, draw a quadrilateral, not necessarily a square 

but…maybe a parallelogram” (MC070708, 216-218).  The process “would, like, draw” 

marks “a quadrilateral” as the data for the argument.  Maria further refined this by saying 

that in particular, she would draw a parallelogram.  Maria went on to say, “with a 

parallelogram… [the intersection of the angle bisectors] wouldn’t be in the same spot” 

(MC070708, 220) and “well, the parallelogram, the angle bisectors would form, I think, 
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a square” (MC070708, 222).  In the first sentence “with a parallelogram” sets up the 

circumstances of the sentence, which marks the data of the argument.  The clause that 

follows marks the conclusion.  In the second sentence, the circumstances, again, mark 

“the parallelogram” as the data and what follows is the conclusion.  These comments 

from Maria set up to parallel arguments both beginning with the data “parallelogram.”  

When asked to justify these claims she responded, “I think there’s been a proof about it, 

but I can’t exactly remember.  But they won’t meet in the same point” (MC070708, 228).  

This warrant is marked by the researcher’s question that preceded it, “why do you think 

that?  You can just imagine that in your head?” 

One sees that the first of these conjectures, that the angle bisectors of a parallelogram do 

not meet at a point, is true, however, the second, that the angle bisectors of a 

parallelogram make a square, is false.  The second conjecture is only true if the 

parallelogram is a rectangle. 

Maria’s next conjecture is supported by a more elaborate argument.  The basic conjecture 

is that in a square the angle bisectors meet in the middle.  Maria said, “Because, well, the 

square, it [the intersection of the angle bisectors] would obviously be in the middle” 

(MC070708, 220).  “The square” is the circumstance of this sentence and this marks it as 

the data of the argument.  The following phrase “it would obviously be in the middle” is 

marked as the conclusion by the fact that this is the assertion of the sentence. 

Even though Maria’s phrasing is very informal, this basic implication, that the angle 

bisectors of a square “meet in the middle” is true if one interprets “meet in the middle” to 

mean that the angle bisectors meet at the center of the square.  Maria’s justification for 
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this implication is also very informal, but it seems to point toward the symmetry of the 

square, which supports the claim that the angle bisectors of a square meet at the center of 

the square’s rotational symmetry. 

In response to the researcher’s prompt, “how do you think you would prove that?” Maria 

provided the following chain of reasoning; each angle in the square is 90°, so each angle 

bisector comes from the vertex at the same angle, so the four triangles formed by the 

angle bisectors are congruent.  Maria said, “I’d start off with ‘in a square there’d be 90° 

angles’…and then… every line is coming out of every angle at the, like, same angle, 

which would eventually, like, after many theorems, you could prove that the four 

triangles that the lines make are congruent” (MC070708, 231).  There are several markers 

that allow us to parse the argument from this sentence.  First, the phrase “I’d start off 

with” marks “in a square” as the data because in time it is prior to the rest of the 

argument.  Next “there’d be” and “and then” mark “ninety degree angles” and “every line 

is coming out of every angle at, like, the same angles,” respectively, as the conclusions of 

implications.  The “and then” also marks “every line is coming out of every angle at the, 

like, the same angle” as the data for the second implication.  The process “could prove” 

marks the following clause, “the four triangles that the lines make are congruent” as the 

conclusion to the argument.  It is unclear what Maria meant by “after many theorems.”  

Theorems are usually used as warrants, but Maria is not specific about which 

implications she would warrant with which theorems (See Table 2 below). 

Table 2:  Maria’s elaboration (1) 

Well I’d start off with Marks data 
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‘in a square there’d be ninety degree angles’… Data (1) 

and then… 
 (1) 

every line is coming out of every angle at the, 

like, the same angle, 

Conclusion (1) 

Data (2) 

which would eventually, like, after many 

theorems, 

 

you could prove that 
 (2) 

four triangles that the lines make are congruent. Conclusion (2) 

This argument that Maria embedded in the warrant of her main implication begins with a 

true premise, that each vertex of the square is 90°, and ends with a true conclusion, that 

the four triangles formed by the angle bisectors are congruent.  However, the middle 

node, that each angle bisector comes out at the same angle is unclear.  Also, since this 

node only discusses angles, it would not be sufficient to make the claim that the triangles 

are congruent.  This claim would require some information about the sides of the 

congruent triangles.  It is true that the sides of the triangles are congruent because they 

share sides with the square, but Maria did not include this in her argument. 

Also missing from Maria’s argument is a reason why this warrant supports the main 

obligation.  It is not immediately obvious how the assertion that the angle bisectors form 

four congruent triangles implies that they meet in the center of the square.  This warrant 

is not incorrect, but it incomplete. 
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In addition to this warrant of the main implication, Maria also provided a rebuttal.  She 

said, “the square, it would obviously be in the middle, but with a parallelogram or a 

trapezoid it wouldn’t exactly, like always— [the intersection of the angle bisectors] 

wouldn’t be in the same spot” (MC070708, 220).  The conjunction “but” marks the 

clause that follows it as a rebuttal to the clause that preceded it.  Maria did not provide a 

warrant for this implication.  The rebuttal is in the form of an implication.  “With a” 

marks the data of this implication and “it wouldn’t exactly, like, always” marks the 

conclusion.  The rebuttal that Maria provided, that the angle bisectors of a parallelogram 

and a trapezoid do not meet at a point, is true. 

Maria’s arguments in response to Alpha’s comments 

Maria elaborated the arguments in Figure 11 after watching Alpha present his conjecture 

and Beta refine that conjecture.  The animated scenario was paused right before Gamma 

made her intervention.  The researcher asked Maria, “So what do you think about that? 

So what do you think about Alpha’s statement?”  Maria responded by creating the 

following arguments (see Figure 11). 
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Figure 11:  Maria’s arguments in response to Alpha’s comments 

Maria’s first move was to equate Alpha’s claim, that the angle bisectors bisect each other, 

with her claim that in a square the angle bisectors meet in the middle.  She said, “I guess 

[Alpha] kinda has the idea that the point meets in the middle…like, the diagonals bisect 

each other and that’s something that could be important in a proof” (MC070708, 266).  

Here the phrase, “[Alpha] kinda has the idea” marks that the clause that follows as 

something that Maria attributes to Alpha.  Maria went on to say, “that’s basically what 

the angle bisectors do, like the diagonals bisect each other”  (MC070708, 266).  The word 

“like” equates Maria’s statement that comes before, “the angle bisectors meet in the 

middle” to Alpha’s statement that follows, “the diagonals bisect each other.”  Maria also 

said, “could be important in a proof” which marks “the diagonals bisect each other” as 

data in the argument.  Maria then claimed that the four triangles formed by the diagonals 
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are congruent.  Maria said, “from there you can go, um, the triangles are all congruent” 

(MC070708, 266).  “From there you can go” marks the clause that follows, “the triangles 

are all congruent” as a conclusion of the implication. 

Here Maria reiterated two claims that she made in earlier arguments; that the angle 

bisector of the square “meet in the middle” and that the four triangles formed by angle 

bisectors are congruent.  Again, both of these claims are true, although the arguments that 

Maria elaborated to support these claims are incomplete.  Maria equated the first claim, 

that the angle bisectors “meet in the middle” with the claim that the diagonals bisect each 

other.  Insofar as the diagonals of a square are the angle bisectors, and “in the middle” 

means “equidistant from the each vertex,” this statement is true. 

Maria built a separate argument by remembering what Beta said in the animated scenario, 

that the diagonals and the angle bisectors are the same. Maria said, “it’s like the student 

in the back said, it’s technically the same in my opinion” (MC070708, 266).  Later Maria 

said, “the diagonals are the angle bisectors” (MC070708, 274).  In both of these 

statements the data that she is discussing, a square, is implicit.  The conclusion is that 

“it’s technically the same” or “the diagonals are the angle bisectors.”  Maria completes 

the argument by adding the rebuttal, that the four triangles formed by the angle bisectors 

are only congruent in a square, not other quadrilaterals.  Maria said, “Although, of 

course, they’re not in the other quadrilaterals, but in a square they are” (MC070708, 278).  

“Although” marks the clause that follows as being in opposition to the previous claim, 

“that the diagonals are angle bisectors.” 
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The implication of this argument is true, however, the rebuttal is incomplete.  Maria 

asserted that the angle bisectors of quadrilaterals besides squares are not diagonals.  In 

many cases this is true, for instance, in rectangles or trapezoids, but there are also 

quadrilaterals, such as rhombi, where the angle bisectors are diagonals.  The power of 

this argument is in the observation that although the diagonals of a square are also angle 

bisectors, this is not always true. 

Maria’s argument in response to Lambda’s comments (1) 

Following viewing the first half of Lambda’s description of his proof, Maria constructed 

the following argument parallel to Lambda’s (see Figure 12).  She began this argument 

with the conclusion and built up to the initial data.  Figure 13 shows the corresponding 

geometric diagram. 

 

Figure 12:  Maria’s argument in response to Lambda’s comments (1) 
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Figure 13:  Diagram accompanying Lambda’s comments 

Maria built this argument in two stages.  She began with the third implication, then she 

finished the argument by constructing the first implication.  Maria elaborated the third 

implication to explain what Lambda argued in the animated scenario.  The researcher 

asked Maria, “What do you think Lambda’s talking about?”  Maria replied, “I think he’s 

talking about how angles DBC and ADB are congruent…So the angle bisector of D and 

B are both the same line because they both intersect the angles at the same angle” 

(MC070708, 343-347).  “So” in the middle of this sentence marks the implication in this 

sentence with the data “angles DBC and ADB are congruent” and the conclusion is “the 

angle bisector of D and B are both the same line.”  Maria also gave a warrant, “they both 

intersect the angles at the same angle,” marked by “because” before the clause. 

Table 3:  Maria’s elaboration (2) 

I think he’s talking about how Equate to Lambda’s statement 
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because  

they both intersect the angles at the same angle Warrant (3) 

The data that and the conclusion that Maria elaborated for this implication are true, 

however the warrant that she provided is not sufficient to justify that the data imply the 

conclusion.  She seemed to be taking for granted the claim that the angle bisector of B 

goes through D, and the angle bisector of D goes through B.  This is understandable 

given that she was working with a diagram in which these objects (the angle bisectors 

and the opposite vertex) are concurrent.  Maria also took for granted that she is working 

with a square.  This assumption is made explicit when she constructed the first 

implication in this argument. 

Next Maria built the first and second implication of this argument.  The researcher asked 

her “Do you think that’s [the argument just described] is what Lambda’s saying, too?”  

Maria replied, “Yeah, because he said the base vertices of the isosceles [triangle] are 

congruent because, by, like, if you know the theorem for the isosceles triangle, like you 

already have proven that DC and BC are congruent so you know it’s isosceles” 

(MC070708, 353).  Here the two uses of “because” mark the two implications.  The first 

“because” marks the previous argument as the conclusion of the current implication.  The 

last implication begins with the data, “angles DCB and ADB are congruent,” and these 

are the base vertices of the isosceles triangle that she referenced at the beginning of this 

utterance.  The second “because” marks the second implication in the series.  It marks the 

preceding clause, “the base vertices of the isosceles [triangle] are congruent” as the 

conclusion and “the theorem for isosceles triangle” as the warrant that justifies this 
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conclusion.  The clause following this “because” is a warrant, and not data, because it is a 

theorem and therefore in the form of a compound proposition.  The phrase “you already 

have proven” marks the clause “DC and BC are congruent” as a statement that was 

known prior to the argument, and therefore the data of the implication.  The final “so” in 

this sentence marks a reinforcement of the first implication, with the conclusion “it’s 

isosceles” following from the data “DC and BC are congruent.” 

Table 4:  Maria's elaboration (3) 

Yeah,  

‘cause he said 
 (2) 

the base of these isosceles the base uh vertices of 

the isosceles are congruent 

Conclusion (2) 

because by like if you know  (2) 

the theorem for the isosceles triangle Warrant (1) 

like you already have proven that  

DC and BC are congruent Data (1) 

So  (1) 

you know  

it’s isosceles. Conclusion (1) 
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The first conclusion, that asserts that the triangles formed by one diagonal of the square 

are isosceles, is true based on the data, that the sides of the triangle are congruent.  

However, it is incorrectly warranted by the isosceles triangle theorem5.  Rather, it would 

be more appropriately warranted by the definition of isosceles triangle6.  The conclusion 

of the second implication, that the base angles of the isosceles triangles are congruent, 

could be seen to follow from the data, that the triangles formed by one diagonal are 

isosceles and that the figure is a square, but this implication is incomplete because Maria 

did not provide a warrant.  A reasonable warrant would be to claim that the triangles are 

congruent, in addition to being isosceles, and therefore the base angles of the two 

triangles are congruent because of CPCTC7. 

Maria’s argument in response to Lambda’s comments (2) 

The arguments that are mapped in Figure 14 were made in the beginning of Maria’s 

second viewing of The Square.  After watching the whole animated scenario of The 

Square the researcher asked Maria, “What about [Lambda’s] argument?  Did you follow 

his argument?”  Maria responded by outlining the following argument (see Figure 14). 

                                                

5 The Isosceles Triangle Theorem states that if two sides of a triangle are congruent then the 

angles opposite those sides are also congruent. 
6 This definition of an Isosceles Triangle is a triangle with at least two congruent sides. 
7 CPCTC is an abbreviation for the theorem “corresponding parts of congruent triangles are 

congruent.” 
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Figure 14:  Maria’s argument in response to the Lambda’s comments (2) 

Maria’s argument began implicitly with the data that the quadrilateral is a square.  She 

then claimed that the triangles formed by one diagonal are congruent.  Instead of 

asserting that the triangles are isosceles, Maria directly claimed that the base angles of 

these congruent triangles are congruent.  This assertion about congruent base angles was 

used to support the claim that the diagonal is surrounded by congruent angles.  Maria 

then made her conclusion, that the angle bisector from one vertex also bisects the 

opposite angle.  Maria said, “[Lambda] proved that the diagonals cut the square into two 

congruent triangles and they had congruent base angles so all of the angles around the 

diagonal were congruent making it the angle bisector of the opposite angle” (MC080108, 

34).  There are four implications in this sentence, marked by the processes “proved” and 

“making” and the conjunctions “and” and “so.”  These markers point to “the diagonals 

cut the square into two congruent triangles” as the conclusion for the first implication and 

the data for the second implication.  “They had congruent base angles” is marked as the 

conclusion of the second implication and the data for the third implication by “and” and 
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“so.”  “All of the angles around the diagonal were congruent” is marked as the conclusion 

of the third implication and the data for the fourth implication by “so” and “making it.”  

Finally, “ [the diagonal is] the angle bisector of the opposite angle” is marked as the 

conclusion of the fourth implication by “making it.” 

Table 5:  Maria's elaboration (4) 

[Lambda] proved that  (1) 

the diagonals cut the square into two congruent 

triangles 

Conclusion (1) 

Data (2) 

and  (2) 

they had congruent base angles Conclusion (2) 

Data (3) 
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so  (3) 

all of the angles around the diagonal were congruent Conclusion (3) 

Data (4) 

making it  (4) 

the angle bisector of the opposite angle Conclusion (4) 

This argument, although it contains no warrants, is a nearly valid argument for the claim 

that the diagonals of a square are angle bisectors.  The last implication would be better 

formed if it contained a justification for the switch from diagonals (which are the subject 

of the previous nodes) to angle bisectors (which are the subject of the final node).  The 

first implication could be warranted by the side-side-side theorem of triangle 

congruence8, the second implication could be warranted by CPCTC, the third implication 

is a restatement of the data to better position the fourth implication, and the fourth 

implication could be warranted by the definition of angle bisector. 

From looking at these arguments one can see that Maria’s arguments contain few 

rebuttals and backings, and that she often stung together several implications in a row to 

form a more complicated argument.  As I explain in the discussion section, these 

characteristics of her arguments set them apart from Sonia’s and they cause them to look 

similar to arguments that could be found in a high school geometry classroom.  Below I 
                                                

8 The side-side-side theorem of triangle congruence states that if two triangles have three pairs of 

corresponding sides congruent then the triangles are congruent. 
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describe the arguments that were generated from conversations with the second 

participant in the study, Sonia, who had not taken a high school geometry class.  Sonia 

also watched The Square twice, and her conversations with the researcher generated 

thirteen arguments.  As can be seen below, Sonia’s arguments do not share many 

characteristics with proofs that could be generated in a high school geometry classroom. 

Sonia’s arguments 

The following section describes maps of arguments that were elaborated by Sonia.  Sonia 

elaborated thirteen arguments, over two viewings of The Square.  For each argument I 

describe the elaboration of the argument as stated by Sonia and discuss the validity of 

each argument. 

Sonia’s arguments in response to the angle bisectors problem (1) 

Sonia watched the animated scenario until the moment when Alpha makes the conjecture 

that “about the square, they would have to bisect each other.”  Sonia heard Alpha say this 

and responded, “that’s what I’ve been thinking, too” (SA070808, 445).  The researcher 

asked Sonia, “How do you know, though?” and Sonia elaborated the argument that is 

mapped in Figure 15 in an attempt to show why the angle bisectors would bisect each 

other. 
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Figure 15:  Sonia’s arguments in response to the angle bisectors problem (1) 

For data, Sonia used a square and she added that the square has all congruent sides and 

angles.  Sonia said, “’Because it’s a square” (SA070808, 449).  The marker “because” 

tells us that “it’s a square” is used as data in her argument.  At the prompting of the 

researcher she went on to say the properties of a square, “all of [the square’s] sides are 

the same and all of the angles are congruent” (SA070808, 455).  Both of these properties 

follow from the definition of a square.  Sonia asserted that these data imply Alpha’s 

conjecture, that the diagonals bisect each other, based on the warrant that each angle 

bisector goes from each vertex of the square to the opposite vertex.  Sonia said, “because 

you go from one corner to the other corner, and, like, across from it” (SA070808, 449).  
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Here Sonia used the marker “because” again, here one can infer that this is the warrant 

for her argument. 

It is true that the data, a square, could support the conclusion that the diagonals bisect 

each other, as Sonia’s argument asserts, however, the warrant for this implication does 

not involve angle bisectors.  Sonia’s use of this warrant points to the fact that she may 

have misinterpreted Alpha’s conjecture “they bisect each other” to be a statement about 

angle bisectors instead of segment bisectors. 

Sonia said, as backing for this warrant, “since it’s a square if you cut it like that, don’t 

you end up with an equilateral triangle?” (SA070808, 451).  One can take this to be a 

backing because it is a proposition that she supplied in response to the researchers prompt 

to justify her warrant.  Then Sonia changed her mind, saying “No, that can’t be true” 

(SA070808, 453).  The rejection of this node is marked with a [X] in the argument map.  

She went on to support her warrant, that the angle bisector of one vertex also bisects the 

opposite vertex, with a different argument.  She claimed that if this were not the case, that 

is, in a quadrilateral in which the angle bisectors do not go through opposite corners, that 

the quadrilateral could not be a square because all the sides of a square are congruent.  

Sonia said, “if it didn’t go through the corners then it wouldn’t be a square because the 

sides are all the same” (SA070808, 457-459).  In this concise statement one sees that 

Sonia provided a set of data marked by “if” (“if it didn’t go through the corners”), a 

conclusion marked by “then” (“then it wouldn’t be a square”), and a warrant for that 

implication marked by “because” (“because the sides are all the same”).  This argument 

is similar to a contrapositive.  Sonia began by assuming the negation of what she wants to 
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conclude and then arrived at a conclusion that is the negation of what she was assuming 

in her larger argument. 

In creating this backing, one sees Sonia correctly rejected the claim that the angle 

bisector of a square forms two equilateral triangles.  Since they share a vertex with the 

square, these triangles contain an angle that measures 90° and therefore could not be 

equilateral (in which case all the angles would measure 60°).  The implication that Sonia 

built to support her warrant contains true data and conclusion.  She could have made a 

stronger claim, but her claim, that the quadrilateral is not a square, mirrors the data and 

warrant that she built in the main implication and therefore fits her argument. 

Besides providing this warrant and backing for her argument, Sonia also provided a 

rebuttal to her warrant.  This rebuttal is marked by the fact that it was preceded by the 

researcher’s request for a counterexample to her claim.  Sonia asserted that the claim, that 

the diagonals bisect each other, would not be true in a rectangle.  She created the 

implication that since the sides in a rectangle are not congruent, the angle bisector would 

not go from one corner to the opposite corner.  Sonia said, “if you had a rectangle and 

you bisected the angle then it wouldn’t go through the other corner because the sides are 

different lengths” (SA070808, 461).  In this statement the data is marked with “if”, the 

conclusion is marked with “then,” and the warrant is marked with “because.” 

Sonia’s claim, that the angle bisectors of a rectangle do not bisect the opposite vertex is 

true.  Also the warrant for this implication, that the sides are not congruent, can be seen to 

be appropriate, since if the other properties of the rectangle remained constant but the 

sides became congruent (the figure would be a square) the angle bisectors would bisect 
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the opposite vertex.  The non-congruent nature of the sides can be seen to be the essential 

characteristic of the rectangle that keeps the angle bisectors from bisecting opposite 

vertices. 

Sonia’s arguments in response to the angle bisectors problem (2) 

In response to the angle bisectors problem, Sonia elaborated three arguments about the 

points of intersection of the angle bisectors of quadrilaterals (see Figure 16). 

 

Figure 16:  Sonia’s arguments in response to the angle bisectors problem (2) 

Sonia’s first argument about points of intersection of the angle bisectors of quadrilaterals 

was that in a rectangle the angle bisectors do not meet at one point.  She said, “in a 

rectangle, um, not all the angle bisectors would cross necessarily…  Like, they wouldn’t 

all go to one point” (SA070808, 469-471).  Here the word “in” marks “a rectangle” as the 

data and there is no marker for the conclusion.  As Sonia considered the points of 
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intersection of a rectangle she also drew the diagram seen in Figure 17 of a rectangle and 

its angle bisectors.  In this diagram the angle bisectors can only be seen to intersect in two 

points.  Each angle bisector intersects once with one adjacent angle bisector and then 

ends at the boundary of the rectangle.  From this diagram it is not apparent that the angle 

bisectors are parallel to the angle bisector opposite or that each angle bisector has another 

point of intersection with the other angle bisector adjacent. 

The implication that Sonia elaborated here is true, however it is incomplete because it 

does not contain a warrant.  It is also a very weak claim in comparison to the fact that the 

angle bisectors of a rectangle form a square, which Sonia is prevented from making by 

the diagram that does not show the extension of the angle bisectors beyond the edges of 

the rectangle. 

 

Figure 17:  Sonia's first sketch of a rectangle and its angle bisectors 

Using this diagram (see Figure 17), Sonia made another assertion about the angle 

bisectors of rectangles.  She initially claimed that the angle bisectors meet at no more 

than two points.  She said, “I think that in a rectangle it has to, [pause] there can’t be 



 

 102 

more than two points where angle bisectors cross” (SA070808, 471).  “In” marks the 

conditions that Sonia uses as data, and then after a pause she made the assertion based on 

this data, that the angle bisectors of a rectangle can meet at no more than two points.  

This assertion is marked by the process “has to [meet].”  Sonia then drew a sketch of 

another rectangle and revised her claim (see Figure 18).  Her second diagram of a 

rectangle still had angle bisectors that ended at the boundary of the rectangle, but in this 

rectangle the angle bisectors intersected four times inside the rectangle. 

 

Figure 18:  Sonia's second sketch of a rectangle and its angle bisectors 

One can see here the power that the diagram has over the arguments that Sonia built.  In 

the first diagram that Sonia drew the angle bisectors only intersected twice (as a result of 

the proportions of the rectangle and her choice to end the angle bisectors at the boundary 

of the rectangle), while in the second diagram that Sonia drew the angle bisectors 

intersected four times (as a result of a change in the proportions of the rectangle).  This 

could have prompted the question of ‘under what conditions do the angle bisectors of a 

rectangle intersect four times inside the rectangle?’, based on a comparison of the two 

diagrams.  Instead Sonia rejected the first diagram and made a conjecture based on the 

second. 
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Based on this new diagram, Sonia refuted her previous assertion by claiming that the 

angle bisectors of a rectangle can have angle bisectors that meet in four points.  Sonia 

drew large dots on the four points of intersection and said, “here it crosses in lots of 

places” (SA070808, 481).  The data in her argument is embedded in Sonia’s gesture to 

her diagram, implying that she used a rectangle as her data.  From this she asserted that 

there must be four point of intersection among the angle bisectors.  Sonia did not attempt 

to justify these claims beyond empirical exploration of sketches of two rectangles. 

Like the first argument elaborated here, Sonia’s claims are true, but weak.  Sonia was 

content asserting that the angle bisectors of a rectangle meet at four points but she did not 

look further at describing the properties of those points, which form a square. 

Sonia then looked at the case of a general quadrilateral and wondered, “if you can get it 

to cross in more than four places” (SA070808, 483).  She sketched a few quadrilaterals 

and said, “I don’t think you can get it—an equilateral, I mean, a quadrilateral to cross in 

more than four places…That can’t be possible…if you took a kite… There can’t be more 

than four intersections” (SA070808, 483).  “I don’t think” marks the data in this 

argument, where “it” refers to a quadrilateral.  At the end of her utterance Sonia stated the 

conclusion, “there can’t be more than four intersections.”  Like with the previous 

argument, this argument is based on empirical exploration.  When Sonia said, “if you 

took a kite” this could alternatively be modeled as an attempted rebuttal to the 

implication that in a quadrilateral the angle bisectors meet at more than four points.  It is 

not modeled that way here because Sonia did not finish her thought.  She may have draw 

a kite as she was talking and seen that the angle bisectors do not meet at more than four 

points.  In fact, Figure 19 shows diagrams that Sonia sketched in the course of 
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elaborating these arguments, and it appears that Sonia drew two diagrams of kites, each 

with diagonals instead of angle bisectors. 

 

Figure 19:  Sonia's sketches of quadrilaterals and their angle bisectors 

This last argument that Sonia made is false.  She asserted that the angle bisectors of a 

quadrilateral meet at no more than four points, however, in a general quadrilateral the 

angle bisectors meet at six points.  Because Sonia did not continue to draw angle 

bisectors past the edge of the quadrilateral, and because she mistook the angle bisectors 

for diagonals in some cases, she did not see that the angle bisectors of a quadrilateral 

could meet at six points. 

Sonia’s argument in response to Alpha’s comments 

Sonia and the researcher watched the animated scenario until the moment when Alpha 

returns to his seat saying, “I just thought the diagonals cut the square in half.”  At this 

point the researcher paused the movie and asked Sonia, “So what do you think he might 

mean by that, ‘diagonals cut the square in half’?”  In response Sonia constructed the 

following arguments (see Figure 20). 
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Figure 20:  Sonia’s argument in response to Alpha’s comments 

The first argument is abnormal because it does not contain an implication.  Instead it 

contains an equality, where Sonia interpreted a statement from Alpha, an animated 

student.  The researcher asked Sonia, “What do you think [Alpha] might mean by that, 

‘diagonals cut the square in half?’”  Sonia replied, “Like it cuts it in half triangle wise.”  

Sonia’s response to the researcher’s question marks her statement as being the same as 

Alpha’s statement.  Later Sonia provided a rebuttal to this interpretation, in response to 

the researcher’s question, “do diagonals always cut the shape in half?”  Sonia pointed to 

the case of a kite, “here you would have this small little kite thing that does divide…” 

(SA070908, 455).  Sonia also provided a warrant explaining why her statement, “Like it 

cuts it in half triangle wise” is the same as Alpha’s.  After giving the counterexample of 
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the kite Sonia said, “But in a shape where the opposite sides are the same length, and then 

they cut the shape in half” (SA070908, 457).  Sonia drew examples of a rectangle and a 

parallelogram in which the diagonals cut the square in half.  From her examples one can 

infer that what she meant by “cuts it in half triangle wise” is that the diagonals cuts the 

quadrilateral into two congruent triangles.  To support this, she gave as examples the 

rectangle and the parallelogram as quadrilaterals that have diagonals that cut the shape in 

half and she gave the kite and its minor diagonal as a counter-example. 

What Alpha says in the animated scenario, that the diagonals cut the square in half, and 

what Sonia said to interpret Alpha’s statement, that the diagonals cut the square in half 

“triangle wise” are imprecise.  However, if one interprets Sonia’s restatement to mean 

that [both] the diagonals cut the quadrilateral into two congruent triangles, then the 

warrant that Sonia provided for her restatement, that it is true in a quadrilateral that has 

opposite sides that are the same length, is valid.  Sonia’s rebuttal, that the diagonals of a 

kite do not cut it in half “triangle wise” is also valid because the diagonal that connects 

congruent angles does not divide the kite into congruent angles. 

To establish the implication at the heart of the second argument (see Figure 20) Sonia 

said, “the diagonals are the same thing” (SA070908, 433) meaning that in a square the 

diagonals are the same as the angle bisectors.  Sonia said this in response to the 

researcher’s question of how Alpha’s statement, “the diagonals cut the square in half” 

was related to the animated teacher’s questions about angle bisectors of a quadrilateral.  It 

is clear that Sonia was considering the case of a square because she defended Alpha from 

the teacher by saying that “he’s not wrong if it’s a square” (SA070908, 455).  The 

warrant for this implication is marked by the “because” the beginning of Sonia’s 
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statement, “Because they’re at 90˚ angles at – on the side – on the shape that has the same 

length on all sides” (SA070908, 447).  Sonia continued to provide a backing for this, 

marked by the “so ” at the beginning of the statement, “so the diagonals and the angle 

bisectors are the same thing – or they go through the same path on the – square” 

(SA070908, 447). 

The implication and warrant that Sonia provided in this argument are appropriate, in that 

both the data and conclusion are true, and the warrant points to the properties of the 

square that support the conclusion.  Sonia also provided a justification of why these 

properties of a square support the conclusion, because the angle bisector from one vertex 

bisects the opposite vertex. 

Sonia’s arguments in response to Gamma’s comments (1) 

Sonia and the researcher watched the animated scenario until the moment when Gamma 

bids to come to the board to share her conjecture.  At this point the researcher asked 

Sonia, “So what’s her point?  What is she saying?”  In response Sonia built an argument 

that she perceived to mirror Gamma’s argument (see Figure 21). 
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Figure 21:  Sonia’s arguments in response to Gamma’s comments (1) 

Sonia summarized Gamma’s argument by saying, “it’s the sides of different lengths and 

the diagonals aren’t the same thing” (SA070908, 474).  Sonia’s language was missing the 

causal markers that would connect the data to the conclusion.  Instead she used “and” to 

connect the two clauses.  The fact that she stated the clause about sides of different 

lengths before the clause about diagonals hints that the first causally precedes the second.  

This implication was clear to Sonia based on her visualization of these objects.  She said, 

“Because you could draw the rectangle and be like, ‘diagonal, diagonal’ but then you 

could, like, bisect it and it’s not the same thing” (SA070908, 480).  As she said this she 

traced out a rectangle, and its diagonals and angle bisectors in the air.  Sonia’s warrant is 

marked by “because” at the beginning of her demonstration. 
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In this argument Sonia’s visualization skills served her well and she was able to correctly 

conclude that in a rectangle the diagonals are not the angle bisectors.  She pinpointed the 

properties of a rectangle that make it different from a square (where the diagonals are the 

angle bisectors), that is, the sides are of different lengths.  She appropriately warranted 

her implication on the visualization of the diagonals and angle bisectors of a rectangle.  

Sonia’s argument in response to Lambda’s comments (1) 

Sonia and the researcher paused the animated scenario when Lambda said, “you have to 

prove that the base angles on each triangle are equal to each other.”  In an attempt to 

describe what Lambda had said, Sonia made the following argument (see Figure 22). 

 

Figure 22:  Sonia’s argument in response to Lambda’s comments (1) 

Sonia began with the data, like Lambda did, that the quadrilateral under question is a 

square.  Sonia said, “so they have a square” (SA071008, 86).  The phrase “they have” is a 

marker for data because it implies that it is known before the argument is made.  Sonia 

came to the conclusion that is the converse of Lambda, that is that the angle bisectors are 
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diagonals, when Lambda concluded that the diagonals are angle bisectors.  Sonia 

concluded, “then it means that [the angle bisectors] are also the diagonals, right?” 

(SA071008, 100).  The phrase “then it means” marks the outcome of the argument and 

therefore the conclusion.  Sonia provided two additional links in her argument that 

support her claim.  These two nodes represent the claims that the two base angles of the 

large triangles are equal and therefore the two triangles formed by one diagonal are 

congruent.  Sonia said, “[Lambda’s] trying to prove that the two base angles are equal so 

that he can prove that the two triangles are congruent” (SA071008, 96).  The statement, 

“the two base angles are equal” is contained between the markers, “prove” that imply that 

it is both data and conclusion for different implications.  When the researcher asked 

Sonia why she made those claims she responded that it’s part of Lambda’s proof that the 

bisectors are diagonals.  This is a marker that the two previous statements are data for the 

final statement. 

The first three nodes of Sonia’s argument are appropriate for supporting the claim that the 

diagonals of a square are also angle bisectors.  However, the last node switches this order 

and makes the inverse claim, that the angle bisectors are diagonals.  Since the first three 

nodes assume that the segment connecting opposite vertices are diagonals, the conclusion 

of the argument should be an assertion about diagonals, not angle bisectors. 

Sonia’s arguments in response to Lambda’s comments (2) 

Since the claim that Sonia made in the previous argument sounded as if it were the 

converse of Lambda’s claim, the researcher suggested that they watch Lambda’s 

argument again, in the hopes that Sonia would realize that her claim was different from 

Lambda’s.  The pair watched the end of the animated scenario again, pausing it 
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occasionally for the researcher to ask clarifying questions.  When the animated scenario 

ended, the researcher asked Sonia, “What do you think the argument was?  It’s a little 

different than what you said a minute ago.”  Sonia replied by elaborating the following 

argument (see Figure 23). 

 

Figure 23:  Sonia’s arguments in response to Lambda’s comments (2) 

 

Figure 24:  Diagram accompanying Lambda's comments 

Sonia began her response to the researcher’s questions by saying, “Well, [Lambda] was 

saying that …” (SA071008, 138).  So one can take the argument that she made as an 
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interpretation of Lambda’s argument in the animated scenario.  Sonia went on to say, “if 

you took one diagonal, I mean, one angle bisector and prove that it cut the square in half, 

then the other angle bisector will also do that, so that means they’re the diagonals” 

(SA071008, 138).  “If you took” marks “one diagonal” the data for the argument because 

it implies that the statement that follows it was available before the argument was 

formed.  Implicit in Sonia’s utterance is that the diagonal belongs to a square.  Next, the 

process “prove” marks “it cut the square in half” as the first intermediate conclusion in 

the argument.  “Then” marks “the other angle bisectors will also do that” as either data or 

warrant.  Here it is coded as warrant.  Finally, “so” marks “they’re the diagonals” as the 

final conclusion of the argument.  This complete utterance, consisting of four connected 

statements, yields the main line of Sonia’s argument.  She began with a square and one 

angle bisector as her data.  From this she made the implication that the angle bisector cuts 

the square in half.  Then, she made the conclusion that the angle bisectors are diagonals.  

She warranted this last implication with the claim that the other angle bisector (the angle 

bisector from the opposite vertex, not that from an adjacent vertex) also cuts the square in 

half. 

Table 6:  Sonia's elaboration (1) 

if you took  

one diagonal, I mean, one angle bisector Data (1) 

and prove that  

it cut the square in half, Conclusion (1) 
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Data (2) 

then  (2) 

the other angle bisector will also do that, Warrant (2) 

so  (2) 

that means they’re the diagonals Conclusion (2) 

The argument is consistent in that it begins with the angle bisectors of a square and ends 

by making a conclusion about the angle bisectors of a square.  It is also valid in the sense 

that each node could be seen in an argument that supports the conclusion.  However, this 

is the inverse of Lambda’s argument that Sonia was trying to explicate. 

The researcher continued to press this distinction between angle bisectors and diagonals 

and said to Sonia, “So, start over.  If in this corner [the angle bisector] divides those 

angles how do you know that it goes through this corner over here [making it also a 

diagonal]?”  Sonia replied by creating the argument in the lower half of the figure above 

(see Figure 23).  Sonia began again with the data that the figure is a square and went on 

to say that therefore the sides of the figure must all be the same length.  She said, 

“because it’s a square, because the sides are the same length” (SA071008, 160).  Then 

she warranted the conclusion that the angle bisector is a diagonal by the statement that 

each angle bisector goes through the opposite corner.  In her words, “because the sides 

are the same length then it has to go through that corner” (SA071008, 160).  Sonia also 

gave an example where her warrant would not hold.  She provided the rebuttal that her 

warrant would not hold if the sides of the figure were not the same length.  She said, “if 
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[Lambda] made the sides longer then the angle bisectors no longer cross through opposite 

corners” (SA071008, 162). 

Sonia’s argument could be reduced to the claim, since all the sides of a square are the 

same length the angle bisector of one vertex also passes through the opposite vertex.  

This assertion is true.  Sonia’s argument, however, does not provide any justification for 

this assertion.  Her warrant is simply a restatement of her implication, and her rebuttal to 

the warrant is a negation of her data.  Sonia has done useful work in making this claim, 

but her work in justifying this claim is not useful. 

Sonia’s argument in response to Lambda’s comments (3) 

Sonia and the researcher re-watched Lambda’s argument.  When they reached the end of 

the animated scenario the researcher asked Sonia, “I realize that [Lambda] says ‘you want 

to show that [the triangles formed by one diagonal of a square] are congruent’ but he 

never actually says how you know that they’re congruent…how could you show that they 

were congruent?”  In response to this question Sonia created the following argument (see 

Figure 25). 
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Figure 25:  Sonia’s argument in response to Lambda’s comments (3) 

In this argument Sonia used the claim that the two triangles formed by one diagonal of a 

square are congruent to conclude that the diagonal is an angle bisector.  Sonia began her 

argument by claiming that the two triangles formed by one diagonal of a square are 

congruent because they have three pairs of congruent sides.  Sonia used as data the fact 

that two pairs of sides are congruent because they are sides of a square, and the fact that 

the third pair of sides is congruent because it the diagonal of the square is a shared side 

between the two triangles.  She did not give the warrant of the “side-side-side” theorem 

of triangle congruence.  Sonia said, “We know that these two sides are congruent ...  Then 

we know that this line here [the diagonal] is—they have it in common so they have to be 

equal [congruent]” (SA071008, 263).  The “we know” at the beginning of both these 

sentences marks the first clause in both sentences as data.  So “the sides are congruent” 
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and “they have it in common” are both data.  The “so” in the middle of the second 

sentence marks the clause that follows it as a conclusion.  Therefore, the intermediate 

conclusion is that “they have to be equal.”  From here Sonia made the implication that the 

diagonal is an angle bisector.  In response to the researcher’s probe, “how did you know 

that the diagonal’s an angle bisector? Sonia said “it cuts it in half” (SA071008, 267).  In 

this case the conclusion to the argument is marked by the researcher’s probe.  Sonia 

further supported this with the backing that the angles on either side of the diagonal are 

congruent.  Sonia said, “because the angles are both congruent” (SA071008, 271).  The 

“because” and this statement’s position directly following the warrant marks this 

statement as a backing. 

Table 7:  Sonia's elaboration (2) 

We know that  

these two sides are congruent Data (1) 

Then we know that  

this line here [the diagonal] is—they have it in 

common 
Data (1) 

so  (1) 

They [the triangles] have to be equal [congruent] Conclusion (1) 

Here, by focusing on the claim that the triangles formed by the diagonal of a square are 

congruent, Sonia created an argument that matched Lambda’s argument and concluded 

with the claim that the diagonals are the angle bisectors, instead of the claim that the 
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angle bisector is a diagonal.  In addition to supporting the correct claim, the argument is 

valid.  Sonia used triangle congruence to show that the angles on either side of the 

diagonal are congruent; therefore the diagonal is an angle bisector. 

Sonia’s summary of The Square 

Sonia and the researcher revisited The Square in a session near the end of their meetings, 

eleven days after the last time that they viewed The Square.  The researcher began the 

viewing by asking Sonia what she remembered from her pervious viewings of The 

Square, without reminding her of any of the details of the story.  Sonia replied by giving 

a short chain of implications that supported the claim that the angle bisectors of a square 

meet at a point (see Figure 26). 

 

Figure 26:  Sonia’s summary of The Square 

Sonia began with the data that the quadrilateral is a square and used this to imply that the 

diagonals of a square are angle bisectors.  She said, “We were trying to prove that the 

diagonals of a square are also its angle bisectors” (SA082108, 16).  The process “trying 

to prove” marks “the diagonals of a square are also its angle bisectors” as the conclusion 

of the implication.  When the researcher pressed her further by asking, “why would we 

care about that?” Sonia extended this to saying that the angle bisectors of a square meet at 

a point.  She said, “They were talking about that it meets at a point” (SA082108, 18).  

The researcher’s question marks Sonia’s response as a further conclusion. 
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Although this argument is incomplete because it does not contain warrants for the 

implications, it is valid because each node is consistent with the others and could be used 

to support the claim and the angle bisectors meet at a point.  The first implication could 

be supported by an argument that shows that the diagonal cuts the square into two 

congruent triangles, which means that each diagonal is also an angle bisector.  The 

second implication could be supported by the warrant that the diagonals of any convex 

quadrilateral intersect. 

It is interesting that the argument that Sonia lays out captures the main points of the 

argument in the story.  She did not remember Alpha’s conjecture, Gamma’s rebuttal, or 

the details of Lambda’s argument, but she did remember the key mathematical points, 

that the angle bisectors of a square meet at a point because they are the diagonals. 

Sonia’s argument in response to Gamma’s comments (2) 

Sonia and the researcher watched the segment of The Square in which Gamma comes to 

the board and gives a counter argument to the claim that the angle bisectors are the 

diagonals.  The animated scenario was paused at the moment when the teacher calls for a 

proof of Alpha’s conjecture.  The researcher then asked Sonia, “What about Gamma? … 

Can you say anything about her?”  In response to this question Sonia summarized 

Gamma’s argument (see Figure 27). 
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Figure 27:  Sonia’s argument in response to Gamma’s comments (2) 

Sonia saw that Gamma was making the claim that the angle bisectors are not the 

diagonals.  Sonia said, “Well, she was trying to show that the angle bisectors aren’t 

always diagonals” (SA082108, 64).  The process “trying to show” marks the clause “the 

angle bisectors aren’t always diagonals” as the conclusion of the argument.  Sonia 

recognized that Gamma’s argument was based on the observation of the transformation 

of a square into a rectangle.  She said, “To prove that she turned the figure, the square on 

the board, into a rectangle…It just further proves that the diagonals and the angle 

bisectors aren’t the same thing” (SA082108, 64-66).  The phrase “to prove that” marks 

the warrant for the implication, which is her [mental] observation of the transformation of 

a square into a rectangle.  The data of Sonia’s argument was implicit in her utterances.  

Because her warrant was particular to rectangles, I took “a rectangle” as her data, 

however, it’s possible that she was thinking of “all quadrilaterals” as data, and simply 

providing the case of a rectangle as an example. 

Sonia’s argument is a valid argument, based on perception, which shows that the 

diagonals of a rectangle are not its angle bisectors.  Sonia used the same warrant as 

Gamma in the animated scenario, saying that as a square transforms into a rectangle the 

diagonals move so that they are no longer angle bisectors. 
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Sonia’s argument in response to what the animated teacher wrote on the board 

After Sonia elaborated the argument shown in Figure 27, the researcher asked Sonia, “So 

the teacher wrote that thing on the board right there [“In a ☐ the ang bis ”] and she 

said, ‘how do we prove something like that?’ Um, how do you think we would prove 

something like that?”  Sonia gave a brief argument for how to show that the diagonals are 

the angle bisectors (see Figure 28).  Like other arguments that she built during this 

viewing, she did not provide warrants, only a string of implications.  Apparently, Sonia 

interpreted the animated teacher’s statement as meaning that “in a square the diagonals 

are angle bisectors.” 

 

Figure 28:  Sonia’s argument in response to what the animated teacher wrote on the board 

Sonia began by constructing the implication that in a square, the angles surrounding the 

diagonals are congruent.  Sonia said, “if you can prove that the angles are all 

congruent…” referring to the angles that are formed at each vertex of the square by the 

diagonals.  The process “can prove” marks the clause “the angles are all congruent” as a 

conclusion of the implication.  She continued, “then you can prove that those are the 

angle bisectors” (SA082108, 72).  Again, “can prove” marks the conclusion, that “those 

are all angle bisectors.”  The conjunction “then” between Sonia’s sentences marks a 

continuation of the argument so the implications are in a series.  Like in the previous 

argument, the data was implicit in Sonia’s utterances.  This argument is the outline of the 

argument that Lambda provides in the second half of the square.  Here Sonia omitted the 
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reasoning that supports the implication that in a square the angles formed by the 

diagonals are all congruent. 

This is the sketch of a valid argument and a reasonable response to the statement that the 

animated teacher writes on the board.  Sonia provided the data and conclusion as well as 

an intermediate node to support the conclusion.  The first implication could be warranted 

by an argument about the triangles formed by one diagonal of a square.  The second 

implication could be warranted by the definition of angle bisector. 

Sonia’s argument in response to Lambda’s comments (4) 

Sonia and the researcher watched Lambda begin his argument that the diagonals are the 

angle bisectors in a square.  They paused the animated scenario when the teacher erases a 

diagonal at Lambda’s request.  The researcher asked Sonia, “So what about the argument 

that Lambda’s trying to make? Um, you think he’s doing a good job making an 

argument?”  In response to this question Sonia elaborated the following argument that is 

parallel to Lambda’s argument (see Figure 29). 

 

Figure 29:  Sonia’s argument in response to Lambda’s comments (4) 

In this argument, Sonia began with the data that the quadrilateral is a square and she 

endorsed the implication that since the two triangles formed by one diagonal are 

congruent then the diagonals must be angle bisectors.  Sonia said, “it makes sense if you 

can prove that those triangles are congruent and that there’s an angle bisector” 

!"#$%&'()*'+,$-./$

/"#$,0.'1#$&*/)$

#0.'+$2&#-#,$3456$

!"#$%&'()*'+,$

'1#$'*(+#$

7&,#-/)1,$3456$

8$,0.'1#$3456$ !"#$/9)$/1&'*(+#,$

:)1;#%$7<$)*#$

%&'()*'+$'1#$

-)*(1.#*/$3=>?$5@A6$

8$,0.'1#$

!"#$%&'()*'+,$

'1#$'*(+#$

7&,#-/)1,$3=>6$



 

 122 

(SA082108, 98).  The process “can prove” marks that “those triangles are congruent” as a 

conclusion of an implication, and Sonia’s continuation “and [you can prove] that” marks 

that “there’s an angle bisector” is another conclusion to an implication.  The data for this 

argument is implicit, but it is clear that Sonia was talking about a square because she 

references “those triangles” which are the triangles formed by one diagonal in a square.  

Like in previous arguments, Sonia did not give warrants for these implications. 

Sonia’s elaboration of this argument matched Lambda’s argument, and is valid, despite 

the lack of warrants.  The first implication could be warranted by properties of the square 

and the side-side-side theorem for triangle congruence.  The second implication could be 

warranted by CPCTC and the definition of angle bisectors.  In general, the arguments that 

Sonia elaborated on her last viewing of the animated scenario are better formed than the 

arguments that she elaborated during her first and second viewing. 

Looking across these arguments elaborated by Sonia, who had not taken a high school 

geometry class, one sees that she made arguments that had a very complex structure, 

often employing compound arguments, or arguments that had implications embedded 

within rebuttals or warrants.  However, the complexity of her arguments is different than 

the complexity displayed by Maria’s arguments.  Sonia’s arguments are less predictable 

in that the structure of each argument cannot be predicted from the arguments that come 

before.  Below I describe the results of the analysis of the mathematical territory covered 

by the arguments elaborated by the participants. 

Map of content 

From Lakatos (1976) one sees the value of mathematical exploration, and the importance 

of making “conscious guesses” (p. 30).  Proofs and Refutations highlights the interplay of 
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exploration and justification in the form of making conjectures, or conscious guesses, and 

then attempting to support or refute them.  The following figures show how the 

participants made conjectures and explored the mathematical territory surrounding the 

angle bisectors problem.  Of course, these conjectures are not ends to themselves, but 

starting places for testing the validity of mathematical claims.  In Figures 30 and 31 one 

sees the mathematical territory coved by Maria and Sonia through the conjectures that 

they made in response to the angle bisectors problem.  One sees that Sonia covered more 

territory than Maria, through examining more types of quadrilaterals, and making more 

conjectures for each of these quadrilaterals. 

 

Figure 30:  Mathematical territory of Maria's arguments 

Figure 30 shows the mathematical territory covered by the arguments elaborated by 

Maria.  From this map one sees that Maria explored the angle bisectors of three types of 

quadrilaterals, parallelograms, trapezoids, and squares.  She drew one incorrect 
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conclusion about parallelograms and one correct conclusion about both parallelograms 

and trapezoids.  Maria’s explorations were focused on the case of the square, and in 

particular she focused on the conclusions that are discussed in the animated scenario, The 

Square. 

This map supports the claim that Maria interpreted the angle bisectors problem as a 

confirmatory problem, which called for her to prove that given statements are true.  

Instead of taking the problem as an opportunity to explore the mathematical territory 

surrounding the angle bisectors problem, she attempted to recall statements that she has 

heard in the past about the angle bisectors of a quadrilateral and then, in her arguments, 

attempted to support these claims. 
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Figure 31:  Mathematical territory of Sonia's arguments 

There is a clear contrast between the map of the mathematical territory covered by Maria 

and the map of the mathematical territory covered by Sonia.  In Figure 31 one sees that 

Sonia looked at more types of quadrilaterals than Maria, and that Sonia made more 

conjectures about each type of quadrilateral.  Sonia explored the case of a rectangle, a 

square, a rhombus, a “general” quadrilateral, a parallelogram, and a quadrilateral with 

sides of different lengths.  From the conjectures that Sonia made about each of these 

types of quadrilaterals one can see that, among other things, Sonia was interested in the 

question of how many times the angle bisectors of a quadrilateral would intersect.  She 
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was also able to make good progress in answering the angle bisectors problem by 

exploring many types of shapes and by creating conjectures for each of these shapes. 

This map supports the claim that Sonia interprets the angle bisectors problem as an 

exploratory problem, which calls for the solver to discover some information.  More so 

than Maria, Sonia is able to create conjectures in response to the angle bisectors problem.  

In the work of doing mathematics, this activity of generating conjectures is a substantial 

aspect of the work, and once the conjecture is made, doing the proof to justify the 

conjecture can be relatively straightforward (K. Smith, personal communication, October 

5, 2010). 

In the following section I discuss conclusions that can be drawn from the arguments 

elaborated by Maria and Sonia and the mathematical territory covered by each of them. 

Discussion 

In this discussion I support the claim that the arguments elaborated by Maria and Sonia 

are substantially different from each other.  I show how the key difference between the 

arguments made by the two participants is that the arguments that are elaborated by 

Maria reflect the structure of the two-column proof that is pervasive in the high school 

geometry classroom, while the arguments elaborated by Sonia reflect features of the work 

of developing new knowledge in discipline of mathematics.  By comparing Maria’s 

arguments to those of Sonia one sees that the structure of the two-column proof allowed 

Maria some affordances that are not visible in Sonia arguments, as well as some 

constraints that did not appear to affect Sonia’s arguments. 
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To focus the discussion I use the idea of disciplinary agency to examine the arguments 

elaborated by the two participants.  I claim that the different forms of argumentation seen 

in arguments elaborated by the two participants can be traced to the disciplinary agency 

that the participants worked within to form the argument.  From the literature on the 

creation of mathematical knowledge in high school geometry classrooms, I construct a 

description of what disciplinary agency entails in the high school geometry classroom.  I 

then use this description of disciplinary agency to highlight differences between the 

arguments elaborated by the participants. 

Disciplinary agency of the two-column proof 

From the literature reviewed in this study, proof in high school geometry classrooms is 

dominated by two-column proofs, created by students inside the instructional situation of 

‘doing proofs.’  Two column proofs are written in these situations using a very specific 

set of rules that can be related to disciplinary agency.  Once a student picks (or is 

provided with) a set of assumptions, this disciplinary agency guides students through the 

process of applying known theorems, postulates and definitions to each statement in the 

proof to produce the next statement.  Disciplinary agency also guides students through 

the process of proving triangles congruent, if there are any triangles in the diagram that 

accompanies the proof task. 

This disciplinary agency for the high school geometry classroom describes the actions 

that students would take while they work on a proof, but it also has implications for the 

argument that could result from these actions.  This disciplinary agency of the two-

column proof consists of producing statements and reasons for the two-column proof, 
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which results in an argument that consists of a string of implications, connected by 

warrants.  There is not room in this process for the construction of rebuttals or backings. 

Sonia’s arguments are not as consistent or focused as Maria’s because they do not appear 

to be guided by the disciplinary agency of the two-column proof.  For Sonia, apparently 

she can draw geometric objects and infer relationships among the corresponding concepts 

from these diagrams.  So her process for building arguments appears to consist of taking 

a new set of data, say a square and its angle bisectors, drawing it and inferring 

information from her diagram about these objects.  She then supports these claims by 

translating her observations of relationships into rationale for her claims.  This process is 

less disciplined than Maria’s and therefore Sonia arrives at arguments that are not as 

organized as Maria’s, or as valid. 

Below I argue that the disciplinary agency of the two-column proof can be seen in 

Maria’s arguments and that this agency is not as visible in the arguments elaborated by 

Sonia. 

Arguments that contain chains of implications 

Chains of implications are one of the main characteristics of the two-column proof.  Of a 

total of six arguments elaborated by Maria, two arguments, or one-third of her arguments 

consisted of chains of implications longer than two implications.  Sonia elaborated a total 

of fourteen arguments and only one of her arguments contained a chain of implications 

that contained three implications. 

Chains of implications containing data, conclusions, and (possibly) warrants focus on the 

most important pieces of an argument.  They convey information about the chain of 
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implications and provide a justification for the conclusion of each implication.  The 

creation of long chains of reasoning is essential for creating advanced arguments.  To 

construct complex arguments students not only have to create different pieces of an 

argument (like the data, conclusion, and warrant) but they also have to tie these 

arguments together into larger arguments.  From looking at the participants’ arguments, it 

seems that arguments that are structured like a two-column proof support the construction 

of longer chains of reasoning. Considering that there is a limited amount of time for 

teaching proof it is understandable to focus on these aspects of the argument. 

Arguments that do not contain rebuttals or backings 

The two-column proof provides a very structured method for students to create 

arguments; one benefit of this is the affordance of creating chains of implications as 

discussed above.  However, the two-column form encourages students to construct 

arguments by producing a series of statements and reasons, and does not have room for 

either rebuttals or backings. 

Of Maria’s six arguments, only 2 arguments, or one-thirds of her arguments, contain 

either rebuttals or backings.  Of Sonia’s fourteen arguments, six arguments, just under 

one-half, of her argument contain either rebuttals or backings.  These rebuttals and 

backings are important pieces of arguments because they both point to the validity of an 

argument.  Rebuttals point to cases when the implication would not hold and backings 

provide reasons why the warrant is an appropriate justification for the implication. 

Arguments that are compound 

Another structural outcome of the disciplinary agency of two-column proofs is the focus 

on one implication.  Most of Maria’s arguments focus on one implication, or one series of 
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implications, whereas Sonia’s arguments contain compound arguments, or arguments that 

involve multiple implications that are not in a series.  In compound arguments, 

implications are found within a warrant, or rebuttal.  Comparing arguments from the two 

participants one can see that Maria’s arguments are built as a series of implications, while 

Sonia builds more on the periphery of the implication.  Compound arguments result in 

arguments that are less analytic, but cover more mathematical territory. 

Arguments that contain congruent triangles 

A technique that is very common in high school mathematics classes, and related to the 

disciplinary agency of the two-column proof, is the strategy to prove that triangles are 

congruent.  This allows students to make claims about pairs of congruent segments and 

angles that make up these triangles.  Maria made claims about congruent triangles, which 

had not been prompted by the animated scenario in two of her arguments and Sonia never 

used congruent triangles except when they were suggested by the actions of the animated 

students in The Square. 

Taken together these observations about the arguments elaborated by the participants 

show that the arguments elaborated by Maria would better fit into a high school geometry 

classroom.  The arguments elaborated by Sonia would not fit as well into the high school 

geometry class as her arguments reflect a style of argumentation is not technically 

proficient with the tools of the two-column proof. 

Arguments that cover mathematical territory 

From looking at the maps of the mathematical territory that the participants covered with 

their arguments one sees that Sonia’s arguments covered more territory than Maria’s.  

Through her engagement with The Square, Sonia approached the angle bisectors problem 
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as an exploratory problem that allowed her to test out conjectures and therefore cover 

new mathematical territory.  Maria approached the angle bisectors problem as a 

confirmatory problem and this allowed her to confirm conjectures that she remembered 

from past experiences, but not generate new conjectures and cover new mathematical 

territory. 

These two ways of approaching the problem are echoed in the validity of the arguments 

that were used to cover the mathematical territory.  Maria’s arguments were more likely 

to be valid than Sonia’s, so even though Sonia covered more territory, the arguments that 

she used to cover that territory are often invalid.  In the arguments made by these two 

participants, there seems to be a balance between the amount of territory covered and the 

validity of the arguments.  As the amount of mathematical territory covered increases the 

validity of the arguments decreases, and vice versa. 

Different modes of argumentation 

I can now return to the metaphor for thinking about work done in mathematics 

classrooms as thinking of the class as an orchestra, conducted by the teacher and where 

each student plays a different instrument (Herbst & Balacheff, 2009).  Each student adds 

ideas at different moments in time and each student’s contribution is seen to consist of a 

mathematical idea along with the style of argumentation that is used to justify that idea.  

Together these disparate ideas and argumentation styles combine to form a performance 

that may embody a mathematical concept.  In that view, Maria and Sonia represent two 

different instruments because they represent two different ways of arguing for ideas.  In 

particular, Maria’s arguments (instrument) resemble the arguments that coincide with the 

mathematical arguments that are supported by a high school geometry classroom.  
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Extending the metaphor, Maria’s arguments would be harmonious with the arguments 

elaborated in class, while Sonia’s arguments would be inharmonious within the context 

of the high school geometry classroom.  That is not to say that Sonia’s arguments are not 

valuable or productive, only that they do not fit well with the other arguments that exist 

in this context. 

Conclusion 

This study examines the mathematical arguments created by mathematically successful 

adolescent learners in response to an animated scenario of geometry instruction.  These 

arguments are taken as examples of the creation of new mathematical knowledge.  By 

looking at these arguments I have been able to show to what degree they resemble the 

arguments that would be expected in a high school geometry classroom.  The form of 

argumentation displayed by Sonia, and expected in the high school geometry classroom, 

both affords and constrains the arguments that are created. 

In terms of affordances for argumentation provided by the two-column proof, one sees 

that it supports arguments that are built from strings of implications.  These strings of 

implications are essential for constructing advanced arguments that connect data to 

conclusions that do not follow directly.  The two-column proof also provides the 

opportunity to practice applying the theorems of geometry and tools of argumentation, 

like triangle congruence.  These lead to arguments that are both efficient and more likely 

to be valid. 

In term of constrains for argumentation that stem from the two-column proof, one sees 

that it constrains arguers from including rebuttals or backings in their arguments.  These 
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are important pieces of arguments that point to the validity of the implication.  Use of the 

two-column format also encourages arguers to approach problems as confirmatory 

problems instead of exploratory problems.  This results in arguments that cover less 

ground because they confirm known statements instead of generate new statements. 

Returning to the research question of “How can the mathematics being studied in high 

school geometry classrooms shape the position of the student in geometry instruction?” 

one sees that the key aspect of mathematics being studied that can shape the position of 

the geometry student is the two-column proof format and the disciplinary agency it can 

engender.  Looking at the arguments elaborated by the two participants one sees that 

arguments that reflect the structure of the two-column proof show the affordances of 

strings of implications, and the productive use of triangle congruence.  However, these 

arguments are also constrained by the lack of rebuttals and backings, and they do not 

contain compound arguments.  From the mathematical territory covered by the arguments 

elaborated by the two participants one sees that the disciplinary agency of the two-

column proof can result in approaching problems as confirmatory problems, not as 

exploratory problems.  Interpreting problems in the latter way can allow for covering 

more mathematical territory and mirrors an important aspect of how mathematical work 

is done in the discipline. 

The concepts of disciplinary and human agency can help highlight the difference between 

arguments that are elaborated in response to confirmatory problems and arguments that 

are elaborated in response to exploratory problems.  If we think about the angle bisectors 

problem, there are ways of working on the problem that reflect human agency, that is 

ways that involve the human decision to generalize or specialize, and there are ways of 
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working on the problem that reflect the disciplinary agency of the two-column proof, like 

producing a string of statements and reasons that lead from a set of data to a known 

conclusion.  Looking at the arguments created by Maria and Sonia we see that Maria’s 

arguments reflect the disciplinary agency of the two-column proof and Sonia’s arguments 

reflect the human agency. 

In addition to these observations, this study shows that Toulmin’s model of 

argumentation can be a powerful tool for studying the arguments elaborated by students 

in the course of discussions.  By developing codes for the linguistic markers that label 

parts of arguments in speech, I have been able to distill mathematical arguments from 

conversations about classroom interaction.  These arguments avail themselves to 

comparison and analysis of their characteristics.  The characteristics of arguments used in 

this case study came from the literature discussing the creation of mathematical 

knowledge in classrooms and in the discipline of mathematics. 

This study raises questions about what is being taught in high school geometry classes.  

Returning to the quote from Bruner, “any subject can be taught effectively in some 

intellectually honest form to any child at any stage of development,” (p. 33, 1960) one is 

pressed to ask the question, “are students in high school geometry classrooms learning an 

intellectually honest form of proof and argumentation?”  This study illustrates the 

possibility that some learners may come into this class with some ways of arguing that 

are similar to those that are found in the discipline of mathematics but that are not 

supported by the two-column proof.  However, learners may leave the high school 

geometry class making arguments that are more likely to be valid, employing some 

technically advanced tools for argumentation (like triangle congruence and common 
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geometric theorems), and constructing arguments that connect data to conclusions that 

require a series of several implications to establish.  These are key steps in learning how 

to build advanced arguments that the two-column proof can support. 
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Chapter 3 

Teachers’ Perceptions of Geometry Students 

A major (if not the major) goal of educational research is to improve student learning.  

This is often attempted through efforts to improve pedagogical practices, increase 

educational resources, or improve curriculum.  This study seeks to improve student 

learning through improving instruction (Cohen, Raudenbush & Ball, 2003; Lampert, 

2001), by first attempting to understand instruction.  Instruction is conceived of as 

relationships between teachers, students, and content in environments.  To fully 

understand instruction, one would need to understand each of these relationships along 

with their interaction with the environment.  This study focuses on the relationship 

between teachers and students; in particular, I focus on understanding teachers’ 

perception of their students.   

Teachers’ perception of their students is an important aspect of the relationship between 

teachers and students because teachers’ perception of students is a key resource that 

teachers use to make instructional decisions.  Teachers observe student behavior and then 

they interpret that behavior using their perception of students.  Teachers use these 

interpretations to make decisions; about lesson planning, about how to conduct a lesson, 

about how to grade a test. 
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Much research on teaching has followed a unidirectional model in which teaching 

influences learning.  But this relationship is at least circular, with students’ actions also 

influencing teacher actions (Clark and Peterson, 1986).  Instruction in classrooms is 

driven partially by students’ actions, but it is the responsibility of the teacher to sustain 

this interaction (Brousseau, 1997).  Hence, for the teacher, students’ actions in 

classrooms are not just an outcome to produce (in the form of work on tasks and 

classroom discussions) but more generally, student actions are resources that are essential 

to the teacher’s work.  A better understanding of teachers’ perceptions of students will 

lead to a better understanding of the work of teaching by understanding how teachers use 

students in that work. 

A metaphor for thinking about the relationship between students and the work of teaching 

is musicians and the work of conducting an orchestra (Herbst & Balacheff, 2009).  In this 

work the conductor is responsible for managing the work of the individual musicians to 

form a coherent performance of a piece of music.  Each musician plays only one 

instrument, and only plays at specific times during the performance.  However, from the 

point of view of an observer the contributions of each musician combine to form a 

unified performance of a piece of music.  This is similar to the way that a teacher unites 

the work of her class of students to form a unified performance of a piece of 

mathematical work despite the fact that each student only has access to his or her own 

experience, and each student only publically participates at specific moments during the 

lesson. 

Recognizing the importance of students in the teachers’ work leads to the question of 

how teachers perceive their students.  The way that the teacher eventually conducts 
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instruction relies on the tools, including her students, which she perceives as available to 

her.  In this study I ask the following question: 

• What perceptions of students are instrumental in the work of teaching geometry? 

I’m interested in uncovering the ways that teachers perceive their students that are 

instrumental in the work of teaching.  That is, when they are engaged in the work of 

teaching, how do teachers characterize their students in ways that aid in their work?  I 

will revisit this research question later in the paper with the assistance of the theoretical 

framework. 

To address this question, I begin by looking at past research on teachers’ perceptions of 

students.  Although a significant amount of research has been done on teachers’ 

perceptions of students these studies do not provide information on teachers’ perceptions 

of students inside instruction.  Instead, these studies provide valuable information about 

how teachers think about students outside of specific instructional scenarios, during 

activities such planning lessons and predicting students achievement.  After discussing 

this literature I introduce the theoretical frameworks that I use to parse the work of 

teaching and teacher knowledge.  The framework for teacher decision making, practical 

rationality (Herbst & Chazan, 2003), builds on the framework for the work of teaching to 

model teacher knowledge as dependent on the work of teaching.  I then describe my 

methods for data collection.  The data analyzed in this study consists of conversations 

among high school geometry teachers in response to an animated scenario of geometry 

instruction.  Using the frameworks for the work of teaching and teacher knowledge, and 

systemic functional linguistics (Martin & Rose, 2003), I analyze the conversations among 
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teachers to examine how the participants perceived students who are instrumental in the 

work of teaching.  I present the results from this analysis and discuss implications for 

understanding the work of teaching. 

Past research on teachers’ perceptions of students 

In the following section I review relevant literature on teachers’ perceptions of students.  

I focus on studies that explore the categories of students that are salient to teachers.  This 

literature provides a foundation for studying teachers’ perceptions of students as well as 

providing examples of types of students that have been interesting to researchers in the 

past.  I document a gap in this existing literature: teachers’ perceptions of students within 

instructional contexts.  A conclusion from my review is that the majority of work that has 

been done in this area focuses on characteristics of students that are not necessarily 

instrumental in the moment-to-moment enactment of instruction. 

The discussion of literature is divided into two main sections, studies that explore 

teachers’ perceptions of students that are generated by researchers, and studies that 

explore teachers’ perceptions of students that are generated by teachers.  In the first 

section there are studies that are survey based, studies that ask participants questions 

about hypothetical students described though a handful of characteristics, and a study in 

which the researcher attributes perceptions of students to a teacher through classroom 

observation.  In the second section there are studies that are based on interviews with 

individual teachers about students, and observations of conversations among teachers 

about teaching. 
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Researcher generated categories 

In the studies of teachers’ perception of students discussed below the researchers begin 

their study with a set of categories of students already in hand.  In these studies the 

researchers ask teachers to provide their opinion about these categories of students but 

the teachers have no part in developing the list of students. 

Ideal pupil checklist 

The Ideal Pupil Checklist consists of a list of several general traits of students, like, 

“adventurous,” “does work on time,” “non-conforming,” “quiet,” and “talkative,” that 

teachers are asked to rate as desirable, neutral, or undesirable in a student.  The traits 

listed on the survey “have been found through empirical studies to differentiate fully 

actualized or creative persons from less creative people”  (Schaefer, 1973, p. 444).  The 

aims of research utilizing this survey seem to be primarily descriptive in nature, looking 

for similarities in views among individual teachers and groups of teachers.  Two studies 

that use the Ideal Pupil Checklist to study teachers’ perception of students were 

conducted by Schaefer (1973) and Yamamoto (1969), both described below. 

Schaefer’s (1973) study found that the student traits most valued by teachers in a special 

education setting are “being considerate of others,” “independent in judgment,” 

“determination,” “independent in thinking,” “receptive to ideas of others,” and “sense of 

humor;” while these teachers negatively valued the traits: “negativistic,” “disturbs class 

organization,” and “fault-finding.” Yamamoto’s (1969) study found that pre-service 

teachers positively valued a different set of traits: “courteous,” “desires to excel,” “does 

work on time,” “obedient,” “considerate of others,” “industrious,” and “sincere” and 
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negatively valued the trait of being “unwilling to accept others.”  Only one trait, 

“considerate of others” was valued highly by teachers in both studies. 

Differences between the lists of highly valued traits can be attributed to the differences 

between the work settings of the two sets of teachers.  The teachers in the Schaefer study 

were working with boys in a school that was designed to support students with 

difficulties in school, while the teachers in the Yamamoto study were pre-service teachers 

who had very little experience with students.  It is interesting that the more experienced 

group of teachers included traits related to thinking and judgment on their list of positive 

traits while these types of traits where missing from the list of traits that were positivity 

valued by the pre-service teachers.  The pre-service teachers seemed to value hard work 

and motivation over the content of the students’ ideas. 

Hypothetical students 

A method for studying teachers’ perceptions of students that was used in the studies 

below, is to present a teacher with a written description of a student that is then used to 

make predictions about that hypothetical student’s future achievement.  In these studies 

the categories were provided by the researchers and embedded in the descriptions of 

hypothetical students.  The research was aimed at determining which of these categories 

had an effect on teachers’ instructional predictions. 

Shavelson et al (1977) gave teachers fictitious scenarios describing students in terms of 

their father’s occupation, student’s use of time, intelligence, academic ability, curiosity, 

and their attitude toward school.  The researchers gathered information on the 

instructional decisions that teachers made using this information, and which of these 

types of information was the most persuasive to the teachers. 
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The researchers gave the participants a short scenario that read: 

“Michael is ten years old and beginning the fifth-grade.  He lives with his parents, 

an older brother, and two younger sisters” (Shavelson et al, 1977, p. 89). 

The researchers then gave the participants two more sets of information about Michael, 

asking them to make instructional decisions after each set of information.  The 

information given at each staged varied in terms of valence (positive or negative) and 

reliability (from a reliable source or not).  An example of (positive and reliable) 

information to be used in the first instructional decision is: 

“In an interview with his parents, his father gave his occupation as an engineer in 

an aerodynamics firm.  In the interview his parents also noted that Michael spent 

about two hours each evening on his homework and reading books.  On an 

individual intelligence test, Michael scored quite high”  (Shavelson et al, 1977, p. 

89). 

An example of (negative and unreliable) information to be used in the second 

instructional decision is: 

“When interviewed, some of Michael’s classmates said that they didn’t 

particularly like him and that they thought he wasn’t a very good student.  Cathy 

Robbins, an education student at a nearby college, had been hired as a substitute 

aid in Michael’s school.  She had assisted in Michael’s class for a few days and 

had decided to administer an inkblot test to the class.  She interpreted the results 

to mean that Michael’s curiosity led him to be easily distracted from academic 
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activities and that he had a negative attitude toward school”  (Shavelson et al, 

1977, p. 91). 

The researchers found that the reliability of the information given affected the 

participants’ decisions and that, in situations where participants were given conflicting 

information about Michael, they made decisions that were predicted by the more reliable 

information.  The categories of students that were created for the use of this study are 

clearly related to the work of teaching, but the researchers assumed that the categories 

that matter to teachers’ decision-making are static and do not vary between moments, 

contexts, or even academic subjects. 

A study by Borko et al (1979) supports the claim that teachers’ categories of students are 

instrumental in teachers’ decision making.  In this study, participants were given the 

same prompts as described in Shavelson et al (1977).  The researchers then determined 

which of the types of information given in the hypothetical prompt were the most 

persuasive for participants.  The researchers found that the most significant factor in 

participants’ decision making was their perception of Michael’s ability, which was 

established prior to the first instructional decision and then participants modified their 

perception based on the information they receive prior to the second instructional 

decision. 

By looking closer at instances where information given about Michael seemed to have no 

effect on participants’ decisions, the researchers found that teachers’ decisions are also 

based on other factors:  beliefs and attitude about education, the nature of instructional 

tasks, and the availability of alternative strategies and materials to the teacher. 
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Classroom observation 

Morine-Dershimer’s (1983) observations of whole class discussions showed how the 

teachers’ evaluations of student contributions created groups of students who were seen 

as either “students to learn from” or “students who participate.”  “Students to learn from” 

were defined as students who contributed to the class discussion and received positive 

feedback from the teacher.  “Students who participate” were defined as students who 

contributed to the classroom discussion.  In the teachers’ evaluation of student 

contributions the teacher was implicitly telling the students how well a particular student 

was doing his job of being a student.  And in particular, the teacher was telling the 

students how well the student was engaging with the task as envisioned by the teacher.  

By giving feedback on students’ contributions the teacher encouraged some types of task 

involvement and discouraged others.  A finding of this study is that the teachers who 

engaged in this evaluation of student responses had classes that did better on measures of 

student achievement than classes of teachers who did not engage in this evaluation. 

The studies described above are all examples of research on teachers’ perceptions of 

students in which the researchers began the study with a system for categorizing students 

that they used as a prompt for opinions for teachers.  Below I describe studies that are 

examples of research on teachers’ perceptions of students in which the participants in the 

study determine the system for categorizing students. 

Teacher generated categories 

Below are studies of teachers’ perceptions of students where the participants in the study 

generated the categories of students.  Unlike the studies discussed above, the researchers 
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did not begin the study with a list of categories of students.  Rather, the categories of 

students emerged from the research. 

Individual interviews about students 

Morine-Dershimer (1978a) explored teachers’ views of students by asking teachers to 

perform a “pupil sort task” in which participants sorted index cards with their students’ 

names into piles according to similarities in behavior during a particular lesson or at a 

particular time in the school year.  The researchers asked participants to sort their 

students five different times over the course of the school year.  Each time the 

participants were given a similar prompt, to sort their students in relation to what they’d 

been observing about their students, but the observation focus was different each time.  

The first sort task was done in relation to the first day of school, the second was done 

shortly after teachers received the students’ diagnostic reading scores, the third and fourth 

were in relation to a reading lesson, and the fifth was in relation to the end of the school 

year.  This study shows teachers’ perception of students to be dynamic over the course of 

the year and responsive to the context (in terms of Time of Year, Observational Setting, 

and Teacher’s Curriculum-management System).  The results showed that participants 

sorted their students across several characteristics, Ability/Achievement, Involvement in 

Instruction, Personality, Peer Relationships, Activity Orientation, and Growth/Progress.  

Importantly, the ways that teachers were attuned to these characteristics of students 

varied on the observational setting, e.g., if teachers were discussing their students in 

general or with respect to a particular lesson. 

From the point of view of the current study, the most interesting finding is that Activity 

Orientation was seen as a category for sorting students with regards to specific lessons 
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but never with regards to general (non-lesson specific) observations.  This gives weight to 

the claim that teachers do see their students in a different light while they are engaged in 

specific instructional activities. 

Morine-Dershimer (1978b) reported on the accuracy of teachers’ predictions for their 

students’ success.  Twice, after the participant completed the pupil sort task described in 

the previous study, the interviewer asked the participant to predict student performance 

on an upcoming achievement test for each student.  These predictions were made in 

September and again in November.  In general, participants did better in predicting 

students’ performance on the test in November.  The researcher found that teachers’ 

predictions were more accurate for students who they anticipated would succeed than for 

students that they anticipated would fail and that teachers were likely to predict that a 

student would be successful if they also rated the student highly on characteristics that 

they viewed as important for effective functioning within their classroom.  Also 

associated with participants’ accurate predictions were participants’ categorization of 

students during the pupil sort task in terms of level of involvement in instruction, 

personality, ability/achievement, and peer relationships. 

Individual interviews about teaching 

A study by Mayer and Marland (1997) attempts to record the perception that teachers 

have of their students.  Using data gathered from five participants through individual 

interviews about teaching, the researchers were able to sort the participants’ perceptions 

of students into the following categories: work habits, abilities, previous schooling, 

personalities, attributes, interests, family/home background, in-class behavior, 

playground behavior and peer relationships.  The categories that the researchers found in 
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the data reflected the goals of the participants that were interviewed.  Participants 

classified students in such a way as to leverage the categories to help them meet their 

teaching goals.  The perception of students presented in the Mayer and Marland study are 

focused on relationship building and less focused on instruction. 

In their study, Mayer and Marland mapped the perceptions that participants have of their 

students as well as how these perceptions related to their view of the role of the teacher.  

They also looked at how these perceptions were used in making instructional decisions.  

What one learns from Meyer and Marland’s study is, in addition to the specific categories 

that came out of the analysis, that there is evidence that teachers sort their students along 

stable dimensions. 

Observation of teacher conversations 

Horn (2005, 2007) collected the categories of students that were apparent in 

conversations of teaching practice that centered on problems of teaching in particular 

lessons.  In the department meetings observed by Horn, participants discussed problems 

that had arisen in their classes and together they worked on interpreting and 

understanding the problems of practice that the lesson displayed. 

The ways that participants classified their students in the conversations presented by 

Horn (2005, 2007) were in terms of students’ abilities and motivation.  These categories 

were then used to decide upon the organization of courses and student placement in these 

courses.  In one school, during a conversation around restructuring the algebra and 

geometry sequence participants talked about their students as “‘regular,’ ‘not-quick,’ 

‘lazy,’ ‘college-bound’” (Horn, 2005, p. 222).  In another school, participants talked 

about “fast kids” and “slow kids” in relation to group activities that are suitable for both.  
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The other participants in this school challenged these categories noting that “fast kids” 

are not really fast at everything, just as “slow kids” are not really slow at everything. 

Participants in both schools used their perception of students to think about how to best 

teach students, but participants at the second school had a much more dynamic view of 

students and their ability that led to more productive discussion about instructional 

decisions.  “In both departments, teachers communicate their assumptions abut students, 

subjects matter, and teaching through the kinds of categories they invoked in 

conversation and the ways that they deployed these categories to model and solve their 

problems” (Horn, 2005, p. 225). 

Horn’s contribution is to describe how participants’ categories of students are 

instrumental in shaping instruction and school wide curriculum because they were 

collected from discussions in departmental meetings and therefore impact departmental 

decision-making.  However, I argue that since students are not discussed in the context of 

instructional scenarios, these descriptions of students do not necessarily impact 

instructional decision-making.  Participants’ assumptions about students, subject matter, 

and teaching are visible in these categories and do shape the actions that participants see 

as possible in their classrooms.  In Horn’s research these assumptions are framed with 

respect to the “Mismatch Problem,” or the perceived difference between students’ 

abilities and the intended school curriculum. 

The studies described above show systems of categorizing students that come from the 

teachers in the study, instead of the researchers conducting the study.  These studies tell 

us something about the importance of students in the work of teaching that is not visible 
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in the studies in which the categorization of students is generated by the researchers.  

These studies allow us to see which characteristics of students are salient to teachers and 

how these characteristics of students matter in the work of teaching. 

In looking across the literature on teaching geometry, one finds a large body of literature 

on the use of dynamic geometry software (Gawlick, 2002; Laborde et al 2006; Schwartz 

& Yerushalmy, 1987).  However, much of this literature is focused on the affordances of 

the software and the interactions between the teacher and the software or the student and 

the software.  This literature (with the exception of Lampert,1988, discussed below) does 

not pay close attention to how the software affects the interactions between the teacher 

and students or, in particular the teacher’s perception of students. 

Overall, the types of students that are explored in the studies reviewed here are not 

necessarily instrumental to the moment-to-moment enactment of instruction.  Some 

examples of the categories of students discussed in these studies are gender, 

socioeconomic status, overall motivation and ability, and consideration of others.  While 

all of these perceived characteristics may have consequences for students’ behavior 

inside instruction these studies do not provide a direct connection between these labels 

and how these students might participate in instruction.  For instance, if a student is 

determined to have a low ability level how does this affect their instructional behavior?  

Do they have difficulty understanding the resources of a task?  Do they stop after writing 

the ‘given’ and ‘prove’ when they work on proofs?  Do they disrupt the class when they 

become confused?  The answers to these questions could be useful in designing effective 

instruction for this student.  Simply labeling a student as “low ability” does not provide 
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any information for how that student might act or what corresponding teacher action is 

called for. 

The current study aims at answering these questions. I look at teachers’ perceptions of 

students as they relate to the work that the teacher does to enact instruction. 

In the following section I review two studies of teachers’ perceptions of students that do 

look at teacher’s perceptions of students inside instruction.  The study, “Teachers’ 

thinking about students’ thinking about geometry” (Lampert, 1988) provides guidance for 

the current study in the way that it focuses on teachers’ perception of students’ cognition 

and behavior in instructional contexts.  The idea of a ‘modal student,’ or the teacher’s 

hypothetical partner in instruction (Herbst, 1998), points to the importance of teachers’ 

perception of students while enacting instruction. 

Motivation for study 

There is little research on teachers’ perceptions of students that highlights the importance 

of instruction in these perceptions.  I would like to describe two exceptions that act as 

motivation for the current study.  The first is Lampert’s study, “Teachers’ thinking about 

students’ thinking about geometry” (1988).  The second is Herbst’s construct of the 

“modal student” (Herbst, 1998).  Both of these are remarkable in the way that they 

foreground the work that teachers and students do in their description of how teachers 

think about their students. 

Lampert (1988) looked at how teachers describe students during work in novel classroom 

situations and how they described this work as different than in traditional lessons.  She 

describes teachers’ reflections on geometry lessons that incorporated a dynamic geometry 
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software package, The Geometric Supposer (Schwartz, & Yerushalmy, 1987).  These 

reflections were gathered in individual interviews with teachers about their experience 

teaching with the Supposer. The teachers were teaching with curriculum materials 

designed around the use of the Supposer that made use of open-ended questions and had 

students make inductive claims about geometric relationships. 

The teachers in the study reported several ways that this method of interacting with the 

content is different than in traditional lessons.  Although Lampert does not explicitly 

discuss the students that the teachers in the study perceived, she does discuss the work 

that teachers see students doing, and from this one can infer descriptions of students in 

terms of their action.  Here I give two examples of ways that teachers described the work 

that students do that highlight the instructional significance of these descriptions. 

In the open-ended explorations of Supposer lessons the normal work of being a geometry 

student was disrupted in two ways.  First, the teachers saw that students would make 

discoveries that came out of order with respect to the order of topics in a traditional 

geometry course.  This lack of a stable order resulted in teachers perceiving students who 

made claims and discovered relationships that they did not have the tools to prove 

deductively.  Second, because of the visualization of geometry concepts afforded by the 

Supposer, students would make geometric discoveries but they would not necessarily see 

the need to deductively prove their claims.  From these descriptions of instruction 

employing the Supposer, one can formulate descriptions of students; students who 

discover relationships that could not be proven deductively, and students who do not see 

the need to produce deductive proofs.  Both of these descriptions point to students who 

clash with the traditional work of a geometry classroom.  In a traditional geometry 
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classroom students would need to justify claims by making deductive links that connect 

their assumptions to their conclusion based on theorems that they have previously 

proven.  The participants worried that the affordance of the software to support inductive 

reasoning would work against efforts to support these students in learning to make 

deductive arguments, which are seen by the participants as a cornerstone of the work of 

geometry students. 

Herbst (1998) conceives of the “modal student.”  The modal student is an imagined 

rhetorical partner for the teacher while she is conducting instruction.  Herbst defines the 

modal student as “a hypothetical person playing the role generalized across all students in 

the class” (Herbst, 1998, p. 150).  That is, returning to the metaphor of the class as an 

orchestra, the modal student would be the equivalent of an instrument imagined by the 

conductor that played in the voice of any instrument.  Classroom interaction is different 

than other interactions that individuals have outside of school because, even though it is 

constructed by, maybe, 30 individuals, the interactional pattern mirrors interaction 

between only two individuals; the teacher and the students.  In this interactive pattern all 

of the students function as one voice in conversation with the teacher.  This imagined 

conversation partner of the teacher is what Herbst conceives of as the modal student. 

The modal student is useful for thinking about the work of teaching; because it makes 

clear that there are actions that some students must perform to allow instruction to 

proceed.  Without students interacting with the teacher (even in the form of silent 

listening), the conversation between the teacher and students would collapse to a 

monologue constructed by the teacher, without an audience, and there could be no 

learning on behalf of the student.  Part of my work in the current study could be 
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conceptualized as describing this modal student, as it exists for the high school geometry 

teacher.  That is, as geometry teachers conduct instruction, who are their rhetorical 

partners? 

In the work of Lampert and Herbst one sees that it is important to the teachers’ work to 

characterize the student in terms of the work that they do, not who they are.  This means 

that there is no need for an inference about how the description of the student will 

correlate with the teachers’ expectation for how these students will act in instruction.  For 

example, if a teacher reports that a student is “bad at reasoning,” which is a report on who 

the student is, it is not clear how the teacher expects this to be reflected in the students’ 

actions and therefore not clear how this description leads to an instructional decision.  

However, if a teacher reports that a student “will make claims without seeing the need to 

prove them,” which is a report on what the student does, then it is easier to see how the 

teacher expects this student to act during instruction, and therefore easier to see how this 

description could lead to an instructional decision. 

The current study aims at collecting descriptions of students in terms that are relevant to 

instruction.  My goal is to learn about teachers’ perceptions of students that teachers see 

as instrumental to instruction.  Because teachers are the agents who conduct instruction, 

using students as resources, understanding how teachers perceive students gives a better 

understanding of how instruction is enacted and how exactly particular teaching acts are 

dependent on students. 

To achieve this goal of describing teachers’ perceptions of students that are instrumental 

to the work of teaching, it is necessary to have a theoretical framework for describing this 
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work.  Also, because teachers’ perception of students are a subset of teacher knowledge, 

it is necessary to have a theoretical framework for describing teacher knowledge.  In the 

next section I describe the theoretical frameworks that I deploy in this study. 

Theoretical framework 

In this section I will describe particular frameworks for classroom interaction, the work 

of teaching, and teacher knowledge.  Each of these frameworks builds on the previous, so 

the framework for the work of teaching is based on the framework for classroom 

interaction and the framework for teacher knowledge is based on the framework for the 

work of teaching.  The frameworks for the work of teaching and for teacher knowledge 

will be used in the analysis of the data to describe the ways that teachers’ perceive their 

students that are instrumental to instruction. 

This section builds to a description of practical rationality (Herbst & Chazan, 2003), 

which is a framework for teacher decision-making based on the work of teaching.  It 

hypothesizes that the “knowledge” used in teacher decision making is not necessarily true 

or verifiable, but that it is a rationale for teachers’ action based on the dynamics of the 

work of teaching.  Before I describe practical rationality I describe a framework for the 

work of teaching that highlights the work that teachers do to manage students’ work on 

mathematical task and value this work with respect to the didactical contract.  I begin this 

section with a description of the didactical contract, instructional situations, and 

mathematical tasks, which are tools for interpreting classroom interaction. 

I use these frameworks for this study because they provide a coherent method for 

connecting teachers’ descriptions of students, as a subset of teacher decision making, to 
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the work of teaching, and to classroom interaction.  Also, practical rationality 

conceptualizes of teacher knowledge not as something that is rational, as in correct, but 

rational in the sense that it is sensible, or justifiable based on the work that teachers do.  

This view allows for the contradictions and inconsistencies that are inherent in teacher 

decision-making. 

Model of classroom interaction 

To understand classroom interactions I use a model of classroom interaction developed 

by Herbst that is based on Bourdieu’s notion of symbolic economy (1980, 1998) and 

Brousseau’s notion of didactical contract (1997).  According to this model, teachers and 

students act as if they are trading classroom work for claims that they have taught and 

learned a bit of the geometry curriculum.  The foundational hypothesis is that inside 

educational institutions the teacher and her students enter into this economy because of 

their obligation to a didactical contract that brings students and teachers together to teach 

and learn geometry.  A didactical contract specifies in rather general terms what it means 

to teach and learn geometry and what the geometry is that needs to be taught and learned. 

The didactical contract can be thought of as a set of norms, or tacit rules for how an 

observer would conclude that instruction should proceed.  Norms, or dispositions, are 

cultural resources that actors use to construct their performances in particular settings.  

According to Bourdieu, norms are “structured structures predisposed to function as 

structuring structures (p. 53)”.  That is, these structures for action are preexisting in the 

culture but when a particular actor enacts them in a particular moment they feel (to the 

actor and his companions) as if they are spontaneous improvisations in response to the 

current circumstances. 
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Teachers use these norms to construct their instructional moves and to value their work 

and the work of their students.  Of, course not all moves that a teacher makes are 

according to the norms, and each decision made by the teacher feels unique, as if it were 

constructed solely by her own choices and circumstance, not as if it were scripted by a set 

of rules.  Instruction that appears to be constructed according to these norms is 

considered “normal” instruction. 

An important problem of the framework of the didactical contract, which an observer can 

infer from the actions of a teacher and her students, is to find out how the norms of the 

contract apply to specific chunks of work, or conversely, how their work on a specific 

task contributes to meeting the demands of the contract.  Research on the use of specially 

designed tasks (e.g., Brousseau, 1997; Herbst, 2003) has shown that one way this 

problem is handled is by negotiating how the contract applies to the task when a task is 

implemented—this negotiation can be viewed as changes to the task itself or to the way 

in which the task is taken as contributing to the didactical contract.  In the extreme the 

task can be dramatically changed or its place as part of the course of studies can be 

severely alienated. 

Another way in which this problem can be seen to be handled is through the existence of 

instructional situations (Herbst, 2006).  Instructional situations are recurrent patterns of 

activity that organize the actions of the students and teacher so that they can engage in 

work that exchanges for claims on the contract.  In particular, tasks that are traditional in 

a mathematics course, such as “solve 2 x – 1 = 3 x + 4” in algebra, do not often call for a 

negotiation of the task, since the word “solve” and the existence of one variable both act 

as cues to conjure up what the student is supposed to do (Chazan & Lueke, 2009).  In 



 

 161 

general I hypothesize that these customary, recurrent patterns of activity make room for 

some canonical tasks saving people the need to negotiate how the contract applies for the 

task.  In geometry the existence of the situations of “doing proofs” (Herbst & Brach, 

2006) and “installing theorems” (Herbst, Nachlieli & Chazan, in press) has been 

documented.  In this study I focus on the instructional situations of ‘making conjectures’ 

and ‘doing proofs.’  For a description of these situations see “The work of ‘studenting’ in 

high school geometry classrooms” (Aaron, this volume). 

By using this model of classroom interaction, classroom activity is viewed as made up of 

tasks, often embedded in situations that facilitate the exchange of work on tasks (Herbst, 

2006).  Therefore, the opportunities for action in the classroom can be viewed through the 

lens of the tasks that are enacted in class.  Below I describe how task is used in the 

current study. 

Following Doyle, a task can be modeled by identifying a product or goal that students are 

expected to arrive at, a set of resources for students to utilize, and a set of operations 

students can enact to reach that goal (Doyle, 1983; Doyle, 1988).  The goal and resources 

of the task make up the task milieu, or the environment that the student works within.  

The milieu provides feedback to the student when the student performs operations on 

resources (See Figure 32).   A task could be a proof exercise where the product would be 

a proof that connects the premise that a triangle ABC is isosceles to the conclusion that 

its base angles are congruent.  In this case the operations could include the introduction of 

an auxiliary line and the discovery of congruent triangles.  The resources could include a 

diagram, a ‘given’ and ‘prove’, and the two-column proof format.  If a student were 

provided a diagram as a resource and then performed the operation of drawing an 
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auxiliary line, the milieu could provide feedback to the student in the form of showing a 

new diagram containing, for example, new triangles to use as resources. 

 

Figure 32:  Students' work on tasks (adapted from Herbst, 2010) 

As an example, consider the angle bisectors problem: What can one say about the angle 

bisectors of a quadrilateral?  That problem could be part of several tasks. When students 

are working on the angle bisectors problem, if a dynamic geometry sketch of a 

quadrilateral were part of the task design then it could be expected that students might 

use this resource to explore many cases (by “dragging” the vertices of a given 

quadrilateral). In contrast, without the software it could be expected that students might 

only draw a handful of different quadrilaterals.  Similarly, if students were working in 

small groups it could be expected that students might have more opportunities to produce 

counterexamples and counterarguments in response to their classmates’ ideas than if they 

were working independently. Thus a task is not just the problem statement but the chain 
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of anticipated, possible, or enacted operations using resources to achieve the end product 

stipulated in the statement. 

In thinking about teachers’ perception of students, I hypothesize that when teachers talk 

about their students within the context of instruction they will describe their students in 

terms that can be understood to relate to the task, situation, and contract.  For instance, 

teachers discussing their students in terms related to the task could describe the resources 

that the student is using.  A teacher could say, “she was thinking about a square,” 

describing the resources that a student used on a task.  Descriptions related to both the 

situation and contract involve the valuing of student work with relation to the contract.  

For instance, teachers discussing their students in terms related to the situation or contract 

could describe which student had a conjecture that was worth sharing with the class.  A 

teacher could say, “I’d bring the kid who worked on a special case to the board” in 

relation to the norm for the situation ‘making conjectures’ that states that the teacher 

should call a student to the board who has a conjecture that is apparently correct but that 

other students can build on.  Or a teacher could say, “I know lots of students made 

mistakes like this, so we should talk about it together” in relation to the contractual norm 

that states that the teacher is responsible for recognizing and publicly identifying errors 

(Herbst et al, 2010). 

Now, building on this framework for classroom interaction, I describe a framework for 

the work of teaching.  This framework illustrates the various pieces of work that a teacher 

would need to do to conduct classroom interaction as described above.  This framework 

for the work of teaching will then be used to construct a framework for practical 

rationality. 
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Model of the work of teaching 

Central to this framework for the work of teaching (Herbst, 2010) is students’ work on 

tasks (See Figure 32).  In the figure the solid arrows indicate the teachers’ work.  She is 

responsible for observing the tasks enacted by students, the milieu of these tasks, 

transactions between the students’ work on and the mathematics to be learned, and the 

mathematics to be learned.  The grey arrows show that the aspects of the teachers’ work 

that are dependent only on the relationship between the teacher and the mathematics and 

do not directly involve students so they are less important to the current study.  The 

dotted arrow represents the exchange of work that students do on tasks for claims on the 

didactical contract.  The dashed arrows represent the student’s interaction with the task 

milieu. 
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Figure 33:  The work of teaching (adapted from Herbst, 2010) 

Figure 32 shows the hypothesis that to support students’ work on tasks, the teacher is 

responsible for doing work to design and support the milieu, observe students’ 

performance of operations and the feedback they receive from the milieu, and value 

students’ completed work in terms of the didactical contract.  The work of valuing 

students’ work on task in terms of the didactical contract is related to the instructional 

situation, which, if the class is working in an established situation, will guide this work.  

The teacher also is responsible for drawing from and being informed by the mathematical 

content that is at stake in the course; since this work does not interact directly with 

students it is not used in the current analysis. 
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Returning to the research questions about teachers’ perception of students, from Figure 

32 one can see that students who are described in terms of the resources or goals of a task 

could be instrumental to the work of designing and supporting the milieu.  Students who 

are described in terms of the operations of a task could be instrumental to the work of 

observing the student’s work on the task.  Students who are described in terms of the 

situation or contract could be instrumental to the work of valuing students’ work in terms 

of the contract. 

An important goal of the current research is to explain how descriptions of students, 

which are related to classroom interaction, and which can be seen to be instrumental in 

the work of teaching, can be systematically organized within a framework for teacher 

knowledge.  That is, how are these descriptions of students integrated into teachers’ 

decision-making?  The following section describes a framework for teacher decision 

making, practical rationality, which provides a guide for thinking about how teachers’ 

perceptions of students are used in teacher decision-making. 

Practical Rationality 

The teachers’ perceptions of students that are the focus of this paper are one facet of 

teachers’ practical rationality (Fenstermacher & Richardson, 1993; Green, 1976; Herbst 

& Chazan, 2003).  As conceived of in this paper, practical rationality includes 

dispositions to abide by norms that originate from the role a teacher needs to play in the 

instructional situations of a given contract, and dispositions to respond to professional 

obligations that originate from the position of “mathematics teacher,” and it complements 

the personal resources that an individual brings to the work (See Figure 33, Herbst, 

2010).  Each of these types of knowledge contains some subset of knowledge about 



 

 167 

students, or encourages particular ways of perceiving students.  That is, the norms of the 

situation lay out expectations for students’ actions, the professional obligations of 

teaching oblige teachers to attend to their students in particular ways, and individual 

teachers bring beliefs about students and abilities to understand students’ mathematical 

arguments. 

Figure 33 shows teachers’ how professional obligations and the work of teaching 

contribute to practical rationality.  This practical rationality is mediated by teachers’ 

personal resources before it results in action.  Each of these constructs is explained 

below, but first I explain the structural relationships between these constructs.  Following 

Herbst, I assume that the norms that guide the work of teaching, shown on the right-hand 

side of Figure 33, model normal classroom interaction, and stem from the frameworks for 

classroom interaction and the work of teaching outlined above.  However, because the 

profession of teaching is enacted by people with obligations and resources, teaching a 

particular set of students, in a particular environment, instruction often does not follow 

these norms.  To account for this deviation in the model of practical rationality, teachers’ 

actions are also conceived of as being influenced by teachers’ professional obligations, 

shown on the left-hand side of Figure 33.  These professional obligations provide 

justification for perceived breaches of norms.  That is, when instruction does not go 

normally, I hypothesize that teachers can attribute the perceived breaches to an obligation 

of the profession.  I also hypothesize that all individuals who take on the role of 

“geometry teacher” share a familiarity with norms of instruction and professional 

obligations.  However, within this group there is still variance in action, which is 

accounted for by individuals’ personal resources, seen in the lower middle of Figure 33.  
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These resources are used to explain why two teachers, who share the same familiarity 

with the work of teaching geometry and professional obligations might act in different 

ways while conducting instruction.  Below I explain these norms, professional 

obligations, and personal resources in more detail. 

 

 

Figure 34:  The practical rationality of teaching (adapted from Herbst 2010) 

Situational norms are ‘activated’ by situational cues that prompt teachers to act as if a 

course of action is appropriate at a particular moment.  These norms are embedded in 

instructional situations (Herbst, 2006).  Depending on the instructional situation, teachers 
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act as if they are compelled to make different instructional decisions.  These norms are of 

three different types, accountability norms that dictate who (teacher or student) should do 

what work in the classroom, temporal norms that dictate when specific actions should be 

done, and exchange norms that dictate what work trades for what claims on the didactical 

contract.  These norms are resources that teachers use to construct normal classroom 

interaction. 

Professional obligations are hypothesized, tacit commitments that teachers have to the 

profession of teaching (Herbst & Balacheff, 2009).  I assume that these commitments are 

normative for all members of the profession and are applicable at all times that an 

individual is in the role of teacher.  These obligations are hypothesized to come from four 

sources, or stakeholders in educational endeavors; individual, interpersonal, disciplinary, 

and institutional.  Individual obligations are obligations that teachers have to individual 

students.  Interpersonal obligations are obligations that teachers have to their students as a 

group and to the smooth functioning of this group of individuals.  Disciplinary 

obligations are obligations that the teacher has to the discipline of mathematics.  

Institutional obligations are obligations that the teacher has to the institution of the school 

that she works within (Herbst, 2010).  As explained above, these obligations interact with 

situational norms to produce perceived breaches of norms in favor of commitments to 

one of the stakeholders listed here. 

Each teacher brings her own personal set of resources to the work of teaching.  This is a 

diverse set of resources that include, teacher beliefs (for example see Cooney, Shealy, 

Arvold, 1998; Leatham, 2006), mathematical knowledge for teaching (For example see 

Ball, Hill & Bass, 2005), educational characteristics (like the number of courses that 
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they’ve taken), and professional characteristics (like the number of years that they’ve 

been teaching).  These personal resources mediate the professional obligations and 

situational norms that guide teachers’ instructional decision making.  Although these 

personal resources are an important part of the model of practical rationality, the current 

study focuses on the collective aspects of practical rationality, and takes participants to be 

informants for the profession of teachers. 

Now, in light of this framework for practical rationality, I reformulate the research 

question.  Originally, I posed the question; 

• What perceptions of students are instrumental in the work of teaching? 

I can now ask the questions, 

• What perceptions of students are instrumental in the work of designing and 

supporting the task milieu? 

• What perceptions of students are instrumental in the work of observing students’ 

work on a task? 

• What perceptions of students are instrumental in the work of valuing students’ work 

in terms of the didactical contract both in general and in the particular instructional 

situations of ‘making conjectures’ and ‘doing proofs’? 

• What perceptions of students are instrumental in encouraging the teacher to breach 

the norms of instruction in favor of a professional obligation? 

The first three research questions inquire into instruction that unfolds according to the 

hypothesized instructional norms.  They seek to understand how teachers’ perceptions of 

students are used to create instruction.  The last question inquires into instruction that is 
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not normal, or not guided by the norms of instruction.  It seeks to understand the 

teachers’ perception of their students in terms of their professional obligations that 

encourage them to act in ways that could be perceived as a breach of an instructional 

norm. 

In this section I have detailed the theoretical frameworks that guide this study.  I began 

with a framework for viewing classroom interaction as comprised of mathematical tasks, 

instructional situations, and the didactical contract.  Using this framework for classroom 

interaction I detailed a framework for viewing the work of teaching. For the current study 

I focus on the work of designing and supporting the task milieu, observing students’ task 

operations, and valuing students’ work on tasks in terms of the didactical contract.  This 

framework for the work of teaching was then used to detail a framework for teacher 

rationality based on this work of teaching.  Together, these frameworks allow me to 

reframe the research questions to look at teachers’ perceptions of students that are 

instrumental in specific aspects of the work of teaching.  I am also able to utilize the idea 

of breaches of perceived norms based on professional obligations, to see teachers’ 

perceptions of students that are related to teachers’ professional obligations.  In the 

following section I describe the data that was used in the current study to inform these 

research questions. 

Data 

The data presented here were collected over the course of two school years, during which 

the ThEMaT (Thought Experiments in Mathematics Teaching) research project held 

study groups with experienced geometry teachers.  Each year, two groups of five to 

twenty teachers met for three hours once per month.  Participants came from a diverse 
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group of schools including urban, suburban, and rural schools.  Participants served a 

diverse group of students.  In these study group sessions, participants watched and 

responded to animated classroom scenarios in conversations with fellow participants and 

members of the ThEMaT research team.  Participants also engaged in other activities 

related to the animated scenarios, like working on mathematical tasks, looking at student 

work, and reading and writing scripts for classroom scenarios. 

These sessions were video and audio recorded and then transcribed and indexed for 

analysis.  To index the data corpus sessions were divided into intervals based on changes 

in the activity structure of the session (Herbst, Nachlieli, & Chazan, in press).  An 

interval is a continuous length of time during a study group meeting in which participants 

are engaged in a particular activity or conversation.  Herbst, Nachlieli & Chazan define, 

“An interval consists of segments of group interaction that participants construct as units 

of conversation by way of employing a combination of the organizational features.”  

These features include who the active participants are, the specialized division of labor in 

the conversation, the labels that participants use to describe the theme being discussed, 

and length of interval (intervals are normally of the order of 2 to 8 minutes).  These 

features result in intervals that cover the timeline of the session, but overlap at their 

boundaries. 

These intervals are used as the units of analysis because I theorize that they represent 

self-contained mini-conversations within the larger conversations that constitute the study 

group sessions.  This parsing collects turns of conversation that are, from the point of 

view of the participants, related, and separates turns of conversation that are, from the 

point of view of the participants, unrelated.  That is, I use the flow of the conversation to 
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determine which topics are related and which are not, instead of imposing a researcher’s 

view of which topics are related or unrelated. 

The data in this study consists of all the intervals in which the participants discussed one 

particular animated scenario, The Square9.  The Square was watched in eight sessions, 

which are made up of 367 intervals.  Of those intervals, The Square was discussed in 136 

intervals.  In the other intervals participants were discussing other animated scenarios, 

responding to prompts not related to the animated scenario, discussing logistics, or eating 

dinner.  Table 8 provides a summary of the sessions included in this study, the 

participants who attended each session, the number of intervals in each session, the 

number of intervals in each session spent discussing The Square, and the total duration of 

each session. 

Table 8:  Summary of the Intervals Included in the Analysis 

Session 
Name 

Participants in Attendance Number of 
Intervals in 
Session 

Number of 
Intervals 
Discussing 
The Square 

Length of 
Session 

ThEMaT 
081905 

Carl, Lucille, Melissa, 
Esther, Karen, Lynne, James, 
Cynthia, Edwin, Glen, Mara, 
Penelope, Greg, Tina, 
Megan, Denise 

21 13 1h 40m 

ESP081905 Carl, Lucille, Melissa, 
Esther, Karen, Lynne, James 

37 4 2h 22m 

ITH081905 Cynthia, Edwin, Glen, Mara, 
Penelope, Greg, Tina, 

51 11 2h 22m 

                                                

9 The Square and the rest of ThEMaT’s animated classroom scenarios can be viewed at 

http://grip.umich.edu/themat. 
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Megan, Denise 

ESP091305 Carl, Lucille, Melissa, 
Esther, Karen, Lynne, James 

57 9 2h 40m 

TMT110706 Edwin, Cynthia, Raina, 
Melanie, Stan, Jake, Megan 

72 48 3h 1m 

TMW111507 Madison, Mark, Tina, 
Denise, Karen, Tabitha 

55 43 3h 10m 

TMT062007 Edwin, Lucille, Raina, 
Melanie, Stan, Jake 

41 6 1h 35m 

TMW062007 Glen, Madison, Tina, Denise, 
Karen, Tabitha 

33 2 1h 17m 

Total  367 136 18h 7 m 

When quotes from the transcripts of these sessions are displayed in the results section 

they are labeled with a parenthetical citation that contains the session name, the interval 

number within the session, and the turn number within the interval, that points to where 

the quote is located. 

The sessions were conceived of as modified breaching experiments (Garfinkel, 1964; 

Herbst & Chazan 2003, 2009; Herbst, Nachlieli, & Chazan, in press).  A breaching 

experiment is aimed at uncovering participants’ tacit knowledge by confronting them 

with a scenario that breaks with their expectations for social interaction.  I assume that 

much of teachers’ knowledge about how to teach is tacit and therefore inaccessible by 

simple probing.  By asking teachers to react to scenarios that display an action that we 

hypothesize will be perceived as a breach in normal action, teachers have the chance to 

respond to that hypothesized breach by narrating the scenario as it would normally occur, 

pointing to the norms for instruction, imagining the consequences of the actions in the 

scenario, or pointing to the rationale behind an action.  A difference between the 
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breaching experiments used in this study, and breaching experiments as they were 

originally conceived is that our teachers are not actually taking part in the scenario, but 

are experiencing it vicariously by engaging with an animated scenario of geometry 

instruction. 

The animated scenarios used in the breaching experiments were developed explicitly for 

this purpose.  I argue that these animated scenarios have unique features that allow 

teachers to become immersed in the scenarios that they depict (Aaron & Herbst, 2007).  

The animated scenarios invite this immersion through the graphics that compose the 

animated scenarios and through the story that is presented in the animated scenario.  In 

terms of the graphics, the characters in the story are represented by blue, animated 2D-

characters (see Figure 35).  The use of non-realistic looking characters in the 

representations is hypothesized to prevent the viewer from rejecting the idea that they 

could be the actor in the scenario.  Since the characters clearly do not represent any real 

person, anyone could fill their position.  In terms of the story depicted in the animated 

scenario, important aspects of the narrative have been omitted, like who the characters 

are beyond their performance in this scenario, what comes before or after this story in 

time, and in what school, in what city, in what environment this story took place.  All of 

these missing aspects of the narrative invite the viewer to project their own experiences 

onto the context of the story (Chazan & Herbst, in press; Herbst & Chazan, 2006; Herbst 

et al., in press). 



 

 176 

 

Figure 35:  Characters in an animated representation of instruction 

Description of animated scenario 

The following is an analysis of the work that the animated class does in the animated 

scenario, The Square.  This analysis divides the timeline of the animated scenario into 

“segments,” according to the mathematical task that is underway.  In particular, each 

segment of The Square is defined by the task product that the class is working towards 

and the task resources the class has available to work with.  Within each segment students 

deploy operations, using resources, with the aim of reaching the task product, along with 

other things that make up the scenario but are not necessarily tied to the task.  These tasks 

structure the flow of the work of the class and characterize the mathematical work that is 

being done.  A segment is all of the activity that is depicted in the animated scenario 

during the time that a particular task is being deployed. 

In The Square there are nine segments during which the class works on nine different, but 

related, tasks.  The first six segments show tasks within the instructional situation of 
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‘making conjectures.’  Segments seven, eight, and nine show tasks within the 

instructional situation of ‘doing proofs.’  Within the situation of ‘making conjectures,’ (1) 

the class is given a conjecturing task about angle bisectors of a quadrilateral; (2) Alpha 

shares his conjecture about diagonals of a square; (3) the teacher rephrases the task to be 

about angle bisectors of a square; (4) the teacher asks the class if diagonals and bisectors 

are the same thing; (5) Gamma illustrates that diagonals and angle bisectors are different 

using the case of a rectangle; and (6) in light of Gamma’s counter-example the class 

reformulates Alpha’s conjecture.  Within the situation of ‘doing proofs,’ (7) the teacher 

calls on Lambda to provide a proof for Alpha’s conjecture; (8) the teacher removes one 

diagonal from the diagram on the board to assist Lambda’s proof and; (9) the animated 

scenario ends with the teacher calling for a two-column proof of Alpha’s conjecture.  

Below I describe each of these segments in terms of the task that the class is working on. 

Segment 1:  The class is given a conjecturing task about angle bisectors of a quadrilateral 

The mathematical story in The Square begins with the reminder that the angle bisectors 

of a triangle meet at a point and the statement of the problem, “What can one say about 

the angle bisectors of a quadrilateral?”  The teacher asks the students to make conjectures 

in response to this problem, telling them that they will then try to prove some of those 

conjectures.  The animated scenario shows students sitting at desks with a partner as they 

begin to discuss the problem. 

This set up of the problem and the time that students spend working independently 

constitutes the first segment.  There are a few resources that are available to the students 

to use on the task.  From the statement of the problem one sees the mathematical 

resources, quadrilaterals and angle bisectors; in addition, from the reminder about 
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triangles, the mathematical resource of point of intersection is also available to students.  

Students also have the resources of their partner to work with on this problem and the 

paper and pencil that students have on their desks. 

Segment 2:  Alpha shares his conjecture about diagonals of a square 

At the end of the time that the teacher has allocated for working on the problem the 

teacher calls the class to order and asks Alpha to share his conjecture from the board. 

Alpha comes to the board, draws his diagram and says, “It’s a square and the diagonals.  

They bisect each other.” 

When the teacher ends students’ work on the angle bisectors problem, she is changing the 

product of the task, from one of producing conjectures, to one of sharing and discussing 

conjectures.  In terms of the mathematical task, there are two important aspects of 

Alpha's statement.  First, he changes the focus of the problem, from one about general 

quadrilaterals to one about squares.  This changes the resources of the task by introducing 

squares as a possible resource.  Second, instead of talking about angle bisectors as the 

original task called for, Alpha is introducing a new mathematical resource to the task, 

diagonals, and not saying anything explicitly about angle bisectors. 

Segment 3:  The teacher rephrases the task to be about angle bisectors of a square 

In response to Alpha’s conjecture, the teacher corrects Alpha by saying that the problem 

is about angle bisectors, not about diagonals.  The teacher seems to be dismissing the 

possibility that either Alpha misspoke and did mean to talk about the angle bisectors, or 

that Alpha was implicitly making a claim about the relationship between the diagonals 

and angle bisectors of a square.  The teacher changes the task by removing diagonals 
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from the set of resources that are acceptable to make claims about.  She also implicitly 

accepts the addition of squares to the set of resources that students have at their disposal. 

In this segment I expect participants to see confusion around the resources of the task.  In 

segment 2,  Alpha introduced the diagonals as a resource and in this segment the teacher 

rejects diagonals as usable resources.  This confusion is exacerbated by the fact that in the 

case of a square, which the class is looking at, the diagonals and angle bisectors are 

represented by the same objects. 

Segment 4:  The teacher asks the class if diagonals and bisectors are the same thing 

The teacher asks the class, “What can one say about angle bisectors of a square?” and 

Alpha returns to his seat saying, “I just thought that the diagonals cut the square in half.”  

The teacher writes “Alpha:  the diagonal cuts the square in half” on the board and asks 

for elaboration.  Beta elaborates on Alpha’s comment by saying that the diagonals are 

also the angle bisectors.  The teacher then asks the class if they agree with Beta’s 

assertion, that the diagonals are also the angle bisectors. 

In this segment the teacher quickly changes the product of the task twice.  First she asks 

the students to elaborate on Alpha’s statement, that the diagonals cut the square in half, 

and then she asks the students if they agree with Beta’s statement, that the diagonals are 

the angle bisectors.  The two statements made by Alpha and Beta, that the diagonals cut 

the square in half, and that the diagonals are the angle bisectors, are also added to the 

resources that the students have to use on the task. 



 

 180 

Segment 5:  Gamma illustrates that diagonals and angle bisectors are different using the case 

of a rectangle 

Gamma disagrees with Beta’s statement that the diagonals are the angle bisectors and 

brings up the example of a rectangle.  She comes to the board to present a counter-

example.  She asks the class to imagine a square being elongated to form a rectangle.  As 

this happens, the angle bisectors of the figure remain constant while the diagonals are 

deformed so the diagonals cannot be the same as the angle bisectors.  Alpha defends his 

claim by saying that he was making a claim about squares, not rectangles. 

In this segment Gamma can be seen to enlarge the task resources by talking about the 

case of a rectangle in addition (and contrast) to the case of a square.  She also highlights 

the difference between the two mathematical resources of diagonals and angle bisectors.  

By showcasing the example of a rectangle, Gamma shows that the diagonals and the 

angle bisectors are represented by different objects in the case of a rectangle, therefore 

rejecting the idea that they are, in general, the same. 

Segment 6:  In light of Gamma’s counter-example the class reformulates Alpha’s conjecture 

Gamma returns to her seat and Beta rejects her counter-example.  Beta reformulates 

Alpha's conjecture by specifying the condition that the quadrilateral is a square; Beta says 

that Alpha meant, “in a square the diagonals meet at a point.”  This claim is quite 

different from Alpha's original conjecture that the diagonals of a square bisect each other.  

Gamma further clarifies Beta's statement by saying that “in a square the angle bisectors 

meet at a point.”  This reformation of Alpha's conjecture is about angle bisectors instead 

of diagonals and it specifies the case of a square so it is not vulnerable to Gamma's earlier 

counter-example.  In response to Beta and Gamma’s reformulation Alpha makes the 
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statement, “in a square the angle bisectors meet at a point because they are the 

diagonals.”  The teacher writes “in a ☐ the ang bis ☒” on the board. 

In this segment several more statements become available for students to use as resources 

on the task.  Of the statements made by Beta, Gamma, and Alpha, the teacher writes only 

“in a ☐ the ang bis ☒” on the board for the whole class to see.  Because this statement is 

about angle bisectors, it is most closely related to Gamma’s statement, that in a square, 

the angle bisectors meet at a point.  The confusion between angle bisectors and diagonals 

that was apparent in earlier segments is gone in this segment and the class acts as if they 

are clear about the importance of the square in Alpha’s conjecture.  This is the last 

segment during which the class is working on making conjectures.  In the next segment 

the teacher reframes the task and asks the class to begin working on doing proofs. 

Segment 7:  The teacher calls on Lambda to provide a proof for Alpha’s conjecture 

This segment begins with the teacher asking Lambda to provide a proof of Alpha’s 

conjecture.  Lambda’s proof begins with the claim that the diagonals cut the square into 

two equal pieces so the diagonals are the same as the angle bisectors.  The teacher 

interprets Lambda as meaning that the four small triangles formed by both diagonals are 

congruent instead of the two larger triangles formed by one diagonal are congruent.  

Seeing that the teacher is not looking at the same triangles that he is, Lambda asks the 

teacher to remove one diagonal, saying that only one is required for the proof.  The 

teacher responds that she will leave both diagonals on the diagram because squares have 

two diagonals. 

Lambda continues his proof by saying that the two triangles formed by one diagonal are 

congruent and isosceles.  At this point the teacher asks Lambda to state the claim that he 
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is trying to prove.  Lambda responds by saying that “the base angles of both triangles 

have to be equal to each other.”  Here Lambda is referring to the angles at the vertex of 

the square, formed by one diagonal.  The teacher misinterprets this to mean the two base 

angles of one of the small triangles formed by two diagonals.  Lambda again asks the 

teacher to remove one diagonal from the diagram.  Beta expresses confusion at the idea 

of only having one diagonal.  The teacher reminds Lambda that the proof the class is 

working on is about the intersection of the diagonals, therefore there must be two 

diagonals in the diagram, and otherwise there would be no intersection. 

In this segment one sees Lambda trying to convince the teacher to remove one diagonal 

from the square.  This would change the resources of the task by removing an element 

from the diagram.  In general, the teacher is in control of these diagrammatic resources 

and so the animated teacher resists Lambda’s attempt to change the task in this way.  

Reciprocally, the teacher makes a request that Lambda does not comply with.  The 

teacher asks Lambda to clarify what it is that he is proving and Lambda ignores her 

request.  The teacher had already written a proof statement on the board but she 

apparently thought that Lambda might be working on proving something besides this 

statement.  If Lambda had admitted had he was proving a statement other than the one 

given by the teacher this would also change the resources of the task. 

Segment 8:  The teacher removes one diagonal from the diagram on the board to assist 

Lambda’s proof 

Lambda insists that his proof only needs one diagonal.  The teacher gives into Lambda's 

requests and erases one diagonal from the diagram at the board.  Once the teacher has 

removed one diagonal Lambda concludes that the base angles of both triangles are 
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congruent because they are isosceles.  He goes on to say that this can be used to show 

that the diagonal is also an angle bisector.  Lambda asserts that a similar argument could 

be repeated to show that the other diagonal is an angle bisector. 

In this segment that teacher removes one diagonal from the diagram of the square, 

changing the resources of the task.  In removing the diagonal the teacher removes some 

embedded triangles from the diagram, but she also makes other embedded triangles easier 

to see.  Also in this segment Lambda finishes his elaboration of the argument that in a 

square, the diagonals are angle bisectors.  The teacher, however, does not treat this as the 

completion of the task, since, in the following segment, she asks the class for a proof of 

the claim. 

Segment 9:  The teacher calls for a two-column proof for Alpha’s conjecture 

The animated scenario ends with the teacher starting to summarize Lambda’s argument. 

She asserts that Lambda’s ‘given’ is that the figure is a square and Alpha offers the proof 

statement that the angle bisectors of a square meet at one point.  Using these resources 

the teacher begins work on a two-column proof of Lambda’s conjecture. 

The actions of Alpha and the animated teacher in this segment recast the task, calling for 

a two-column proof.  To set the stage for this proof the class establishes the resources of 

the ‘givens’ and the proof statement that will be used in the proof. 

These segments of The Square are used to organize the descriptions of students that are 

collected from the conversations among participants (as described below in the methods 

section).  Each description of a student is found in an interval of a study group 

conversation that participants had around The Square (see description of ‘interval’ 
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above).  These descriptions of students are then organized according the segments of the 

animated scenario.  A description of a student is associated with a segment when the 

participant describes the student in relation to the work on the task that can be seen in a 

particular segment.  In the following section I describe how the data that was collected in 

these sessions, in response to the animated scenario The Square, was analyzed. 

Method 

This section describes the methodology used in uncovering teachers’ perceptions of 

students.  First I give a brief overview of the overall method and then I describe each step 

in detail.  The transcripts of intervals were first coded using participant analysis from 

systemic functional linguistics.  Participant analysis focuses on the people and things that 

take part in the actions described in the conversation.  This analysis resulted in a list of 

descriptions of students taken from the conversations among teachers.  This list of 

descriptions of students was further coded for the components of classroom interaction 

(task, situation, and contract) or professional obligations (individual, interpersonal, 

institutional, or disciplinary) that were used in the description.  From these descriptions in 

terms of classroom interaction, descriptions were mapped onto aspects of the work of 

teaching in which they are instrumental.  Finally, descriptions were categorized in terms 

of the work of teaching.  The results of this analysis are presented in the next section. 

The data in this study were first analyzed using systemic functional linguistics.  In 

particular, I used participant analysis and cohesion chains to find categories of perception 

(Herbst, Nachlieli & Chazan, in press).  A category of perception refers to an object, 

material or mental, that participants are aware of with respect to the instructional context 

and is usually represented in language as a cohesion chain (Martin & Rose, 2003).  That 
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is, a category of perception is anything that the participants perceive as being relevant to 

the work of teaching.  In coding the corpus of data our research group was interested in 

several specific groups of categories of perception.  These groups are:  time, space, 

student, class, teacher, task, solution, diagrams, mathematical objects, propositions, 

proofs, mathematical practices, teaching acts, material resources, other stakeholders, and 

curriculum.  In this study I am only interested in categories of perception used to describe 

students. 

Systemic functional linguistics views language primarily as a tool through which 

speakers and listeners construct meaning.  It is concerned with the linguistic resources 

that speakers have available to them to construct various meanings about the world, and 

position themselves with respect to the world.  The current analysis is an attempt to learn 

about how teachers construct descriptions of students through linguistic resources and 

infer from that what meaning these descriptions have for the work of teaching. 

I hypothesize that the descriptions of students in the data will include two types of 

descriptions about students.  The first type of descriptions is in terms of classroom 

interaction; in particular they are related to the task, situation, and didactical contract.  

Descriptions of students in terms of the task provide information about the products, 

operation and resources that student use in the task.  With respect to the instructional 

situation, one learns about actions that the participants hold students accountable for, 

work that students could do that would trade for claims on the didactical contract, or the 

order of the work that the participants expect the students to engage with.  Descriptions of 

students in terms of the didactical contract are similar to descriptions in terms of the 

instructional situation; except that descriptions in terms of the didactical contract describe 
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students in terms of actions that could happen across instructional situations, not 

specifically during a particular instructional situation. 

The second type of descriptions of students are in terms of the professional obligations 

that teachers respond to; in particular they are related to teachers’ individual, 

interpersonal, institutional, or disciplinary obligations.  Since these descriptions are in 

terms of obligations, and not in terms of classroom interaction, they are more general.  

Descriptions in terms of individual obligations provide information about the various 

cognitive abilities, emotional profiles, unique personalities, and behavior that participants 

attribute to students.  Descriptions in terms of interpersonal obligations provide 

information about how participants perceive individual students interacting with the 

collective discursive space, physical space, and social space of the classroom.  

Descriptions of students in terms of institutional obligations provide information about 

how participants perceive students’ relationship with the institution of school.  These 

perceptions of students could be related to the time, curricular, assessment, etc., 

constraints of school.  Descriptions of students in terms of disciplinary obligations 

provide information about how participants view their students’ relationship with the 

discipline of mathematics.  These views could be related to knowledge of mathematical 

statements, mathematical practices, or mathematical applications. 

Categories of perception of students are coded in the transcript whenever participants 

talked about either an animated student from The Square, a real student from their 

classroom, a hypothetical student, or a general student.  When participants describe any 

of these, the coding scheme records both the description that the participant gave and any 
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additional information that participants gave about this student, like actions that they 

perform, challenges they present for the teacher, etc. 

The unit of analysis for this coding is the interval, not the turn, the individual speaker, or 

the session.  In particular, I am not looking at categories of students held by individuals 

but at the categories of students that have currency among the group of teachers.  Each 

category of student was coded at most once per interval and if a category of student was 

discussed in two different intervals then it would be coded twice. 

Once categories of perception had been coded for all the intervals in the data corpus the 

categories of students were sorted according to the theoretical framework for classroom 

interaction.  These codes are described in Table 9 and are named students described by 

task, students described by situation, students described by contract, and students 

described by obligation. 

Table 9: Descriptions of codes applied to categories of perception 

Code Explanation of Code 

Students 

described by 

task 

This code was applied to participants’ comments in which students 

were described in terms of the task that they were engaged with.  In 

particular, these are descriptions of students in relation to the task 

product, resource or operation. 

Students 

described by 

situation 

This code was applied to participants’ comments in which students 

were described terms of the situation that they were working within.  

In particular, these are descriptions of students that are related to the 
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norms of either ‘making conjectures’ or ‘doing proofs.’ 

Students 

described by 

contract 

This code was applied to participants’ comments in which students 

were described in terms of their role with respect to the didactical 

contract.  In particular, these are descriptions of students that are 

situated inside interactions between teachers and students, around 

mathematical content, in a classroom 

Students 

described by 

obligation 

This code was applied to participants’ comments in which students 

were used to describe the teacher’s professional obligations.  In 

particular, these are descriptions that stem from one of four sources; 

individual, interpersonal, institutional, and/or disciplinary. 

Participants’ comments about students were coded as “students described by task” when 

the participants discussed students in terms of the task that the students were engaged 

with.  These comments include information about the goals of the task that students are 

working towards, the resources that students have available to them as they work on the 

task, or the operations that students do to complete the task.  For example, the comment, 

“students who are thinking about diagonals” would be coded after “students described by 

task” because it describes a student in terms of the resources of the task that he is 

engaged with. 

Participants’ comments about students were coded as “students described by situation” 

when the participants discussed students in terms of the situation that they were working 

within.  For a description of the norms of ‘making conjectures’ and ‘doing proofs’ please 

see “The work of ‘studenting’ in high school geometry classrooms” (Aaron, this volume).  
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These comments include information about the division of labor between the teacher and 

students in a particular situation, the timing of events within the situation, and the 

exchange value of classroom work (what claims on the didactical contract could such 

work allow) in a particular situation.  For example, a comment about, “students who 

know they are not supposed to ‘go by looks’ when they do proofs” would be coded after 

“students described by situation” because it describes a student in terms of the value that 

participants see in their work in the instructional situation of ‘doing proofs.’ 

Participants’ comments were coded as “students described by contract” when the 

participants discussed students in terms of their role in the general didactical contract.  

These comments were connected to the work of teaching but were not tied to a particular 

instructional situation.  For example, a comment about “students who like to come to the 

board and dominate the conversation” would be coded after “students described by 

contract” because it describes a student in terms that are not situation specific.  However, 

this description of the student is in terms of the work that students might do which 

separates it from “students described by obligation” listed below which are not situated 

inside interactions between teachers and students, around mathematical content, in a 

classroom. 

Participants also talked about their students in terms of their professional obligations.  

These are comments that are not directly tied to instruction. Rather they point to the 

figurative stakeholders that classroom mathematics instruction is accountable to. These 

obligations stem from four sources: individual, interpersonal, instructional, and 

disciplinary.  Below I describe the coding after each of these sources of obligations. 
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Participants’ comments are coded after “students described by obligation:  individual” if 

the comment reflects a teacher’s obligation to honor the differences among and 

uniqueness of individual students.  These comments may include descriptions of students 

as particular types of learners, like visual learners, or as individual students who behave 

in different ways, like getting frustrated.  For example, a teacher could say, “most of my 

students are very shy.” 

Participants’ comments were coded after “students defined by obligation:  interpersonal” 

if the comment reflects an obligation to the class of students as a group.  These 

descriptions of students are related to the teachers’ obligation to manage the shared space, 

time, and other resources of the classroom.  For example, a teacher could say, “Some 

students will talk all period and not leave room for anyone else, if you let them.” 

Participants’ comments are coded after “students defined by obligation:  institutional” if 

the comment reflects an obligation to adhere to the constraints that are imposed by the 

institution of the school.  These descriptions of students are related to requirements like 

the fact that teachers assign grades based on students’ work, and that teachers and 

students meet according to a preset schedule.  For example, a teacher could say, 

“Students who failed Algebra get a new start in Geometry.” 

Participants’ comments are coded after “students defined by obligation:  disciplinary” if 

the comment reflects an obligation to faithfully represent the discipline of mathematics.  

These descriptions of students relate to the nature of mathematics and the understanding 

of truth and proof as it relates to mathematics. For example, a teacher could say, “my 
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goal is to make sure that when students leave my class they appreciate the beauty of 

mathematics.” 

This coding of the categories of perception allowed me to map the participants’ 

descriptions of students onto classroom interaction.  As mentioned in the theoretical 

framework, students described in terms of each of these aspects of classroom interaction, 

tasks (by way of their goals, operations and resources), situations, and the contract can all 

be related to the work of teaching.  Students described in terms of task goals and 

resources could be instrumental to the work of designing and supporting the task milieu.  

Students described in terms of the operations of a task could be instrumental in the work 

of observing a students’ work on a task.  Students described in terms of the instructional 

situation or didactical contract could be instrumental in the work of valuing students’ 

work in terms of the didactical contract.  Also students defined in terms of teachers’ 

professional obligations could be instrumental in compelling a teacher to act in a way that 

could be perceived as a breach of a norm in response to a commitment to an educational 

stakeholder. 

These methods allow for analysis of participants’ perceptions of students and of the work 

of teaching more generally.  They support a coherent connection between the description 

of teachers’ knowledge (in the form of perceptions of students), the work that teachers 

do, and the dynamics of classroom interaction.  In the next section I show the results of 

this analysis. 



 

 192 

Results 

Below I report on the results of the analysis.  I use segments (described above in the data 

section) of the animated scenario, The Square, to organize descriptions of students that 

were uncovered in the analysis.  The notion of “segment” is helpful because it connects 

the animated students’ actions with the participants’ perceptions.  As described in the 

data section, a segment is a subdivision of time in the animated scenario in which the 

class is working on one particular instantiation of a mathematical task.  In particular, a 

segment is a characterized by the task product that the class is working towards and the 

resources that the class has available to use in their progress toward that task product.  

Since not all the students described by the participants can been seen in the animated 

scenario (because many are hypothetical students, or students from the participants’ 

classrooms), descriptions of students are assigned to the segment that the participants 

were discussing when they described that student. 

For each segment I describe the significant features of the story that the participants 

viewed, explain the descriptions of students that participants perceived, provide evidence 

from the transcript that supports these descriptions, and connect these descriptions of 

students to the work of teaching.  Within each segment, the participants discuss several 

different types of students and within each type of student the participants describe 

several particular students.  Each section addressing a type of student contains a table 

with a heading that names the type of student, a left hand column that describes the work 

of teaching that these students are instrumental in, and a right hand column that lists the 

particular descriptions of students.  The section ends with a list of all the descriptions 

uncovered in the analysis. 
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Segment 1:  The class is given a conjecturing task about angle bisectors of a quadrilateral 

In the first segment, before students begin working on or discussing the angle bisectors 

problem, the teacher poses the task for students to make conjectures.  The teacher first 

reminds the class that the angle bisectors of a triangle meet at a point and then she poses 

the problem, “what can one say about the angle bisectors of a quadrilateral?” 

After the animated teacher poses the angle bisectors problem the students begin to work 

on the task.  Below are descriptions of students that participants noticed working on the 

original task.  The animated teacher provided the resources “quadrilateral,” and “angle 

bisector” in the statement of the task, and in the example about triangles before she posed 

the task she introduced “triangle” and “point.”  The animated teacher told the students 

that their goal was to make conjectures (that they would later prove), but she did not 

suggest any operations for students to use in the task. 

By stating that the students’ goal was to make conjectures, the animated teacher situates 

their work in the instructional situation of ‘making conjectures.’  One can anticipate that 

participants will talk about students in terms of the actions that they are accountable for 

performing while they are producing conjectures, like creating diagrams and proposing 

relationships between mathematical concepts.  One can anticipate that participants talk 

about the value of students’ work, and the timing of the actions that students perform 

while they are producing conjectures. 

Students who use angle bisectors and diagonals as resources of the task 

When participants talk about their students in relation to their work on the angle bisectors 

problem while they are making conjectures they focus on students’ use of, and distinction 

between, angle bisectors and diagonals.  Participants generally notice that students 
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interchange these two mathematical concepts.  Tina expects that if she talks about angle 

bisectors in class, “half the class is gonna be thinking ‘diagonal’” (TMW111506, 43, 

1201). The participants saw confusion between angle bisectors and diagonals as being 

exacerbated by the animated teacher talking about both concepts in one conversation.  

James said that the animated teacher “had already thrown them off a little bit about 

saying ‘diagonal, angle bisector, what are we talking about?’” (ESP091305, 11, 210).  

This particular confusion is worsened by the fact that in a square the angle bisectors and 

the diagonals are the same object (the segment connecting opposite vertices of a square).  

Denise said that if she insisted to her students that diagonals and angle bisectors are 

different her students would look at a square and respond, “No, you don’t know what 

you’re talking about because they are the same” (TMW111506, 48, 1326). 

Table 10:  Students who use angle bisectors and diagonals as resources of the task 

Students who are 

instrumental in 

the work of 

designing and 

supporting the 

milieu 

• Student who thinks “diagonal” when the teacher says “angle 

bisector” 

• Student who is confused by the teacher talking about both 

concepts, angle bisectors and diagonals, in one conversation 

• Student who insists that the diagonals are the angle bisectors 

Here the participants are describing students in terms of the resources that they use in the 

task, and in particular the participants’ are describing their concern with the fact that they 

do not see the students making a distinction between angle bisectors and diagonals.  This 

shows that part of the teachers’ work is to monitor the resources that the students use in a 
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task and it is important to the participants that the students understand the concepts that 

they are deploying in the task. 

Students who use other mathematical objects as resources of the task 

The participants talked about students in terms of the mathematical concepts, besides 

angle bisectors and diagonals, which students deploy as resources in the angle bisectors 

problem.  Some of these mathematical concepts are square (Mark, TMW111506, 18, 

504), rectangle (Greg, ThEMaT081905, 13, 168; Raina, TMT110706, 59, 847), 

parallelogram (Jillian, TMW111506, 29, 802), kite (Greg, ThEMaT081905, 13, 168; 

Megan, TMT110706, 13, 123), rhombus (Megan, ThEMaT081905, 17, 196), parallel 

lines (Megan, TMT110706, 60, 853), basic quadrilateral (Lynne, ThEMaT081905, 8, 

125), and types of quadrilaterals (James, ThEMaT081905, 9, 142; Jillian, TMW111506, 

30, 830).  The participants also mentioned the diagrams that students utilize, such as the 

diagram of a rectangle with its diagonals and angle bisectors (Stan, TMT110706, 59, 

831). 

Table 11:  Students who use other mathematical objects as resources of the task 

Students who are 

instrumental in 

the work of 

designing and 

supporting the 

milieu 

• Student who uses a square as a task resource 

• Student who uses a rectangle as a task resource 

• Student who uses a parallelogram as a task resource 

• Student who uses a kite as a task resource 

• Student who uses a rhombus as a task resource 

• Student who uses parallel lines as a task resource 

• Student who uses a basic quadrilateral as a task resource 

• Student who uses types of quadrilaterals as a task resource 
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• Student who uses a diagram of a quadrilateral and its angle 

bisectors as a task resource 

Here one again sees the participants describing students in terms of the resources that 

they use in the task.  The participants describe the particular quadrilaterals that students 

might use on this task.  The task activates the concept “quadrilateral” as a resource, but 

the participants see that students would not use a general quadrilateral to make 

conjectures, but they would instead look at classes of quadrilaterals that they are familiar 

with.  This gives more evidence to the claim that part of the teachers’ work is to monitor 

the resources that the students use in a task. 

Students who use additional tools as resources of the task 

There are several other tools that participants saw that the animated teacher could provide 

to students that could aid their work on the angle bisectors problem.  The participants saw 

that students could work on the task with a partner and this partner could communicate 

the pair’s ideas to the class.  Raina suggested, “maybe [Alpha’s] got the kid that he's 

sitting next to that he's working with him and they come up with this idea together” 

(TMT110706, 17, 206).  They also saw that students could use dynamic geometry 

software to create the diagrams used in the task.  Lucille recommended, “I think some 

kids like the computers or the calculators” (ESP091305, 4, 45).  To help students 

navigate the hierarchy of quadrilaterals the participants saw that the animated teacher 

could provide the class with a worksheet that contained several examples of one type of 

quadrilateral, several different quadrilaterals, or a hierarchical list of the quadrilaterals 

(Jillian, TMW111506, 30, 830; Jillian, TMW111506, 30, 832; James, ThEMaT081905, 

9, 142).  The participants saw that the animated teacher could also provide additional 
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resources by writing students’ ideas on the board.  Denise interpreted the animated 

teacher’s actions as, “put[ting] all the points [students’ ideas] up there [on the board] so 

you can come up with one big point [idea]” (TMW111506, 37, 985). 

Table 12:  Students who use additional tools as resources of the task 

Students who are 

instrumental in 

the work of 

designing and 

supporting the 

milieu 

• Student who uses a partner as a task resource 

• Student who uses dynamic geometry software as a task 

resource 

• Student who uses a worksheet listing several examples of 

one type of quadrilateral as a task resource 

• Student who uses a worksheet listing different types of 

quadrilaterals as a task resource 

• Student who uses a worksheet with a hierarchical list of 

quadrilaterals as a task resource 

• Student who uses ideas written on the board as a task 

resource 

The earlier resources that the participants saw the students using were resources that 

students brought to the task, or chose to take up without intervention of the teacher.  

These resources are examples that the participants saw that the animated teacher could 

provide to her students to aid them in their work on the task.  These resources show that 

part of the work of teaching is to monitor students’ work on tasks and to provide them 

with additional resources that could aid their work. 

From this analysis of the resources that the participants saw that students could use on 

this task, one sees that the participants described students who used the resources that the 
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animated teacher provided her students with, but the participants also described several 

students who used resources other than the ones provided by the animated teacher.  In 

particular, the participants brought up students who confused the concepts angle bisector 

and diagonal and they described students who looked at particular quadrilaterals instead 

of a general quadrilateral, as mentioned in the statement of the task.  Also, the 

participants described students who used additional resources that the teacher could 

provide to aid the students in their work on the task. 

Students who draw quadrilaterals as an operation of the task 

While students are making conjectures in response to the angle bisectors problem, the 

participants saw the need for them to draw quadrilaterals.  The participants report that 

some students might not know to draw a quadrilateral to begin work on the problem.  

These students might instead be involved in activities that are not related to the task.  The 

participants would prompt these students to draw any quadrilateral.  Tabitha narrated 

which students would need help, “I'd probably start with the kids who are sitting there, 

either talking to their neighbor or staring at the wall and say, ‘all right, well. Draw 

something with four sides. Draw in angle bisectors. Draw somethin' else with four sides’” 

(TMW111506, 12, 327).  Participants report that other students might have the idea to 

draw a quadrilateral but they might not know how to strategically pick a quadrilateral so 

that they would be able to make a conjecture.  If the participants saw a student drawing 

several of the same type of quadrilateral they would prompt the student to draw a 

different type of quadrilateral.  Similarly, if the participants saw a student who had drawn 

several different types of quadrilaterals the participants said they would compliment the 

students and encourage her to draw conclusions from her diagrams.  Tina said, “I'll have 
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kids who'll draw a square three times in a row. ‘Well, draw something different than a 

square’… Other kids who have done, maybe done three different ones, you might just 

say, ‘Good job,’ you know, ‘Keep going’ you know, ‘Draw some conclusions’” 

(TMW111506, 13, 359).  Without the teacher’s prompting the student might draw a 

conclusion that was less general than the student realized. 

Table 13:  Students who draw quadrilaterals as an operation of the task 

Students who are 

instrumental in 

the work of 

observing 

student’ work on 

tasks 

• Student who draws quadrilaterals 

• Student who does not have the idea to draw quadrilaterals 

• Student who sits in her seat, talks to her neighbor, or stares at 

the wall 

• Student who strategically picks quadrilaterals to use to make 

conjectures 

• Student who draws several of the same type of quadrilateral 

• Student who uses diagrams of quadrilaterals to make 

conjectures 

Like with the descriptions of students in terms of the resources that participants saw that 

they could use on the task, here too one can infer something about the work of teaching.  

Here one sees the participants using the operations that students are performing, like 

sitting and talking to a neighbor, as cues that the teacher needs to prompt this student to 

perform some other operation so that the student can be successful on the task. This 

shows that part of the teachers’ work is to monitor the operations that the students use on 

tasks and it is important to the participants that the operations that students deploy will 

lead students to complete the task. 
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Students who draw angle bisectors and make conclusions as operations of the task 

According the participants, during work on the angle bisectors problem, once students 

have drawn a diagram of a quadrilateral they must draw in the angle bisectors (not the 

diagonals) and they must interpret the diagram and make conjectures based on the 

diagram.  Participants saw that many students would draw the diagonals of the 

quadrilateral instead of the angle bisectors.  Mark narrated the story that he imagined 

unfolding in his classroom, “‘Are we talking about angle bisectors today?’ ‘Yes.’ ‘Are 

we talking about diagonals?’ ‘No.’ ‘No,’ it's like, ‘ok, so are we going to look at any 

diagonals today?’ ‘No.’ And then you still give the exercise and you still walk around, 

and they'll still be five Alphas out there who draw you a square and want to put diagonals 

through it” (TMW111506, 28, 769).  The participants also saw that most students would 

not be able to infer meaning from complicated diagrams.  Melissa said that students will 

never be able to effectively use diagrams because “some kids are just never gonna be able 

to use their imagination well in order to picture any of it” (ESP091305, 33, 775).  This 

confusion is exacerbated by the fact that students who have trouble deciphering diagrams 

will not let the teacher know that they do not understand.  Megan said, “The ones that 

don't get it won't complain” (TMW111506, 55, 769). 

The participants saw Alpha using his diagram to perform two operations; noticing that 

the diagonals bisect each other and “guesstimating.”  These operations are not shown in 

the animated scenario but the participants inferred that Alpha performed these from the 

fact that he makes a conjecture.  Tina hypothesized that Alpha thought, “‘I had two 

diagonals and it worked [they bisect each other]’” (TMW111506, 27, 721).  Denise saw 

Alpha guesstimating; she said, “he just, he's just estim-- guesstimating here, you know?” 
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(TMW111506, 28, 744).  The participants made the observation that Alpha was able to 

make this conjecture but he was unable to explain it to the class. 

Table 14:  Students who draw angle bisectors and make conclusions as operations of the task 

Students who are 

instrumental in 

the work of 

observing 

student’ work on 

tasks 

• Student who draws angle bisectors 

• Student who interprets the diagram 

• Student who makes conjectures based on the diagram 

• Student who draws diagonals (thinking they are angle 

bisectors) 

• Student who infers meaning from a complicated diagram 

• Student who notices that the diagonals of a square bisect each 

other 

• Student who “guesstimates” 

Here the participants are describing students in terms of task operations that they see will 

lead to successful completion of the task.  From this list of students one sees that 

participants anticipate that students will have trouble with the operations of drawing 

angle bisectors and drawing conclusions from their diagrams.  In addition to the students 

that will have difficulty with drawing quadrilaterals, the participants described more 

students who they anticipated would have difficulty with this second phase of the task.  

Again this list of students in terms of the operations of the task supports the claim that 

part of the work of teaching is monitoring the operations that students use on tasks. 

From this analysis of the operations that the participants saw students could use on this 

original task, one sees that the participants described students working on the task in two 

phases.  The first phase involves drawing quadrilaterals and the second phase drawing 
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angle bisectors of those quadrilaterals and using the resulting diagram to produce 

conjectures.  The participants described students who would have trouble with the each 

phase of the task.  One sees that the participants describe more students who have trouble 

with the operations of the task than students who are successful in deploying the 

operations of the task.  This does not reflect the number of students who have trouble 

with the task, but the number of ways in which students could have trouble with the task. 

In discussing this segment of the story the participants described students who deployed 

specific resources and operations in the completion of the task.  From these descriptions 

one learns that part of the work of teaching is to monitor the resources and operations that 

student use during tasks.  The participants’ point to the fact that the teachers’ work also 

includes providing additional resources that are not included in the statement of the task 

if they aid the students’ work on the task.  One also learns that the participants anticipate 

that conjecture tasks are completed in two phases, the first determines the overall shape 

of the diagram to be used in producing a conjecture (in the case of the angle bisectors 

problem is entails picking an appropriate quadrilateral), and the second phase completes 

the diagram and asks the student to infer claims from the diagram (in the case of the 

angle bisectors problem this entails drawing angle bisectors and producing a conjecture).  

The participants described students from each phase of the task who would have 

difficulty completing the task. 

Segment 2:  Alpha shares his conjecture about diagonals of a square 

Once students have completed their individual work on the angle bisectors problem the 

animated teacher calls the class back together.  The animated teacher begins the 

discussion of students’ conjectures by calling Alpha to the board to share his conjecture.  
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At the animated teacher’s request, Alpha shares his conjecture at the board.  Initially he 

claims, “they bisect each other” and draws a diagram that he titles “a square and its 

diagonals.”  This comment could pose a challenge for the teacher because it could 

simultaneously be seen as helpful and detrimental to the classroom conversation. 

There are ways to describe Alpha’s presentation that recommend it as a good conjecture 

to share during ‘making conjectures.’  Alpha’s diagram truthfully depicts the objects, 

squares, diagonals, and angle bisectors.  His diagram is useful for illustrating that the 

angle bisectors of a square meet at a point and for illustrating that the angle bisectors of a 

square are also its diagonals.  Both of these are claims that would be reasonable 

conjectures to make in response to the angle bisectors problem.  Alpha’s claim that the 

diagonals bisect each other could be used to show that each of the four triangles formed 

by the diagonals are pair-wise congruent and therefore the diagonals are angle bisectors.  

Also, since Alpha’s diagram invites the claim that angle bisectors are diagonals, it allows 

for other students to react by providing counterexamples to this claim based on other 

quadrilaterals that they have explored. 

There are also ways to describe Alpha’s presentation that do not recommend it as a good 

conjecture to share during ‘making conjectures.’  Most notably, Alpha’s conjecture is not 

a reasonable response to the angle bisectors problem because it is not about angle 

bisectors.  The task asked students to make conjectures about angle bisectors and Alpha 

responded with a conjecture about diagonals.  Also, Alpha chose a square as a 

quadrilateral that he would make conjectures about which is a very special case.  So 

claims about squares would likely not allow other students to talk about similar claims 

with other quadrilaterals. 
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One can anticipate ways that the participants might describe Alpha to justify the decision 

to call him to the board.  According to the hypothesized norms of the situation ‘making 

conjectures,’ the animated teacher should call someone to the board who has a conjecture 

that is apparently correct, but still allows for other students to comment. 

From the comments below one can also learn about the characteristics of students that are 

important to teachers while they are managing students’ work at the board.  In terms of 

the task one can see that Alpha has used resources in producing his conjecture that were 

different than the resources provided by the animated teacher.  From the norms of the 

situation one can expect that the participants will hold Alpha accountable for presenting a 

conjecture that is apparently correct and that will prompt other students’ responses.  Since 

Alpha’s conjecture is apparently incorrect (because it involves diagonals instead of angle 

bisectors), one can expect that the participants will perceive that Alpha’s conjecture does 

not satisfy this norm.  Also, the contractual norm, that students are responsible for 

communicating their ideas, could elicit comments from participants about Alpha’s 

actions regarding communicating his conjecture. 

Students who have conjectures that should be shared at the board 

One way that participants value the work of students within the situation of ‘making 

conjectures’ is to call students to the board.  The participants reported that the teacher can 

call on some students to shape the conversation.  Denise posed a question to the group, 

“What [students] have on their paper, would that matter who you would call on to give 

you an answer?”  It is not that participants will only call students to the board who have 

correct conjectures, but that students’ work must have characteristics that make it useful 

in the class discussion.  Participants said they would call students to the board to share if 
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they will be able to make a contribution to the discussion while still leaving room for 

other students to participate.  One example of this is that participants will call on students 

who don’t have a complete answer, or a conjecture that could be expanded on by other 

students.  Denise said, “I would intentionally call on someone who didn't have a complete 

answer” (TMW111506, 14, 378) and Madison said that she would call on “Someone we 

can build on” (TMW111506, 14, 381).  For example, while making conjectures in 

response to the angle bisectors problem, Tina said that she would call on a student who 

had a conjecture that he thought applied to all quadrilaterals but, in fact, only applied to a 

subset (TMW111506, 14, 383).  Participants saw that this type of conjecture allows other 

students to point out counter-examples to and refine this student’s conjecture.  In the case 

of the angle bisectors problem, participants might not call on the student who had worked 

on the case of the square because it is a special case does not provide enough room for 

input from others. 

Table 15:  Students who have conjectures that should be shared at the board 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contract 

• Student who does not have a complete answer 

• Student who had done work that can be built upon 

• Student who had an conjecture other students can refute 

• Student who worked on a special case 

Here that participants report that they would comply with the perceived norm of bringing 

a student to the board that had produced a conjecture that is apparently correct, but still 

allows for other students to comment.  Implicit in their comments is the assumption that 
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the conjecture that one of these students would present would also be apparently correct.  

By bringing these students to the board the teacher is showcasing them as important 

examples of the work of making conjectures, and therefore valuing students’ work on the 

task in terms of the didactical contract, which states that student are supposed to learn 

how to make conjectures (NCTM, 2000). 

Besides the students listed above that conform with the norm of who the teacher should 

call to the board, the participants saw that there are other students that she could have 

called on.  These students are described below in terms of the professional obligation that 

the teacher sees that she fulfills by calling on these students.  The participants also saw 

that there are students who the teacher should not call on.  These students are also 

described in terms of teachers’ professional obligations. 

When participants are faced with students bidding to speak who rarely talk in class they 

are inclined to call on them.  Megan said that if a quiet student raises her hand in class the 

teacher might say, “Oh my god, they have an idea, I need to grab that”  (TMT110706, 8, 

74).  This choice could be justified on the individual obligation that the teacher has to 

respond to her students’ individual needs.  However, the participants saw this as not an 

ideal choice because there is a chance that these students are not skilled at 

communicating their ideas and will confuse other students.  Megan went on to say, “If 

people are already confused and you have this person who's not a great student and all of 

a sudden they have their hand up, you might not pick them” (TMT110706, 8, 74).  This 

revision that Megan made to her choice of student to bring to the board could be justified 

by the interpersonal obligation that teachers have to respect the shared discursive space of 

the classroom or the individual obligation to not embarrass students.  Participants 
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recognize that some students are disruptive by asking random questions and the 

participants may choose not to call on these students.  Megan said, “[students] in class 

start just asking these random questions, and it sucks up your whole time” (TMT110706, 

8, 68).  Not calling a disruptive student to the board could be justified by the teachers’ 

interpersonal obligation to the shared discursive space.  Finally, regarding picking 

students to share their conjectures in class, participants see that they need to give time to 

the student who has the conjecture that the teacher would like shared, since participants 

see that it is the teacher’s responsibility to make sure that all the students hear the correct 

answer.  Lucille said, “eventually you have to do that because that’s our job” 

(ThEMaT081905, 6, 104).  The choice to bring the student to the board to covey a 

particular piece of mathematical knowledge could be justified by the teachers’ 

disciplinary obligation. 

Table 16: Students who have conjectures that should be shared at the board 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contract 

• Student who is quiet in class 

• Student who is not skilled at communicating their ideas 

• Student who is disruptive 

• Student who produced a conjecture that conveys a particular 

piece of mathematical knowledge 

This list of students displays the students that the participants reported could influence 

their decision of who to call to the board, described in light of teachers’ professional 

obligations.  In particular, these obligations could encourage the teacher to deviate from 
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the norm for whom to call to the board.  These professional obligations could prevent the 

teacher from valuing students’ work according to the instructional norm. 

Students who share their conjecture at the board in terms of the resources of the task 

Based on the conjecture that Alpha presented at the board, the participants noticed that 

Alpha was confused about the resources that he was using in the task.  The problem is 

posed in terms of angle bisectors of a quadrilateral so this is the resource that participants 

expected him to use.  Mark made the observation about Alpha, “He never used the term 

bisector at any time” (TMW111506, 27, 723).  Instead Alpha makes claims about the 

diagonals of a square.  Participants made a point of this distinction and pointed out that 

Alpha does not seem to be aware of the distinction.  Tabitha said about Alpha, “The kid 

probably doesn't even understan-- realize the difference” (TMW111506 21, 563). 

Table 17:  Students who use resources at the board 

Students who are 

instrumental in 

the work of 

designing and 

supporting the 

task milieu 

• Student who uses the expected resources in a task (such as angle 

bisectors in the angle bisectors problem) 

• Student who does not use the expected resources in a task (such 

as diagonals in the angle bisectors problem) 

Here the participants are holding the student at the board accountable for presenting a 

conjecture that used the appropriate resources.  They see that Alpha does not do this, but 

they do not sanction Alpha, only note that he might not understand the difference 

between the resources that were provided for the task and the resources that he used on 

the task.  These descriptions of students support the claim that part of the teachers work is 
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to monitor students’ presentations of conjectures to verify that the students used the 

appropriate resources during the task. 

Students who share their conjecture at the board in terms of the instructional situation 

The participants noticed that while the class was engaged in ‘making conjectures’ the 

animated teacher calls Alpha to the board and that for a stretch of time he is standing at 

the board.  Tina saw that the animated teacher, “brought Alpha to the board” 

(TMW111506, 28, 740) and Melanie noted that she might “let Alpha sit back down” 

(TMT110706, 28, 358) since he was standing at the board while the class was discussing 

his conjecture.  The participants also noticed that although Alpha stated his conjecture in 

front of the class, it was the animated teacher, and not Alpha, who wrote Alpha’s 

conjecture on the board.  Tina noticed that the animated teacher was the one to “write 

what Alpha said.” (TMW111506, 38, 1042)  The participants also noticed the animated 

teacher’s goal in working with Alpha.  Tina made the observation that, “what we were 

trying to do is to get Alpha to understand that the diagonals and the angle bisector of a 

square were the same thing” (TMW111506, 51, 1426).  According to the participants, the 

animated teacher’s goal in the discussion is to have Alpha both state and understand the 

conjecture that the angle bisectors of a square meet at a point. 

Table 18:  Students who share their conjecture at the board in terms of the instructional situation 

Students who are 

instrumental in 

the work of 

valuing students’ 

work on terms of 

• Student who comes to the board to state his conjecture 

• Student who stays at the board for a stretch of time 

• Student who states his conjecture in front of the class 

• The teacher wrote this student’s conjecture on the board 
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the contact • Student who doesn’t understand the resources of the task 

These descriptions of students point to the actions that the participants hold a student at 

the board responsible for when they present a conjecture at the board.  In terms of student 

work, the responsibilities of the students are low.  The student is expected to come to the 

board, stay there for some time, and during this time they are expected to state their 

conjecture.  According to the participants’ comments there is no expectation for the 

student to explain their conjecture.  The teacher is seen to have responsibilities in the 

form of making sure that the student has used the appropriate resources and writing the 

student’s conjecture on the board. 

The participants’ descriptions of students in this segment showcase the students who are 

instrumental in the teachers’ work to bring a student to the board to share his conjecture.  

Participants see these descriptions of students in terms of the situation as supporting their 

work in ways that they perceive to be complying with that norm that states who the 

teacher should bring to the board.  They also see descriptions of students in terms of 

professional obligations that would prevent them from complying with that perceived 

norm. 

Segment 3:  The teacher rephrases the task to be about angle bisectors of a square 

The focus of the mathematical work in the third segment of The Square is to evaluate 

Alpha’s conjecture.  In response to Alpha’s conjecture the animated teacher said, “Alpha, 

the question is about the angle bisectors not about the diagonals.”  In the animated 

scenario, Alpha hangs his head, returns to his seat and says, “Well, I just thought that the 

diagonals cut the square in half.”  One can anticipate that the participants will respond to 

the teacher’s evaluation of Alpha’s conjecture by providing descriptions of Alpha that 
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argue why the animated teacher should have found something positive in his conjecture, 

and descriptions of Alpha that argue why it was appropriate for the animated teacher to 

treat Alpha the way she did. 

Students who would be hurt by the animated teachers’ dismissal 

The participants in the study groups were concerned about Alpha’s emotional well-being.  

They saw that the animated teacher acted inappropriately towards Alpha by responding 

harshly to his conjecture.  By responding to Alpha the way she did, the participants saw 

that the animated teacher encouraged Alpha to disengage from the discussion and she did 

not attending to his emotional needs.  They saw that Alpha would feel pain in response to 

the animated teacher’s reaction to his conjecture, that he didn’t like being wrong, that he 

was devastated by the animated teacher’s response, and that he would not be likely to 

come to the board in the future to share his ideas.  When Cynthia heard the animated 

teacher’s response to Alpha conjecture she said, “Ouch!” (TMT110706, 20, 227).  

Penelope observed that, “Alpha sure didn't like being wrong” (ITH081905, 11, 247).  

Madison went further and observed “the devastation” that the animated teacher’s 

response had on Alpha (TMW111506, 26, 708). 

However, the participants also ascribed some resilience to Alpha, saying that he began 

the lesson happy and that he recovered quickly from his hurt feelings.  As Alpha walks to 

the board to share his conjecture, Stan saw that, “He’s all happy” (TMT110706, 20, 234).  

And Penelope saw that Alpha was able to “get past his hurt feelings” (ITH081905, 11, 

247).  Melanie said that if she were in the place of the animated teacher, “I definitely 

would try to make sure he didn't feel out of place” (TMT110706, 2, 258). 
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Table 19:  Students who would be hurt by the animated teachers’ dismissal 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who is hurt by the teacher’s reaction to his conjecture 

• Student who is devastated by the teacher’s response 

• Student who is happy 

• Student who is resilient 

• Student who feels out of place 

These descriptions of students show the participants’ views of the students who would be 

the most affected by the animated teacher’s perceived breach of the norm that states that 

the teacher should find something positive in students’ conjectures.  These students are 

all described in relation to the teachers’ professional obligation to her individual students’ 

emotional needs.  The participants see that while the teacher is responding to students’ 

conjectures she has an obligation to tend to her students’ emotional needs. 

Students who would not be hurt by the animated teacher’s dismissal 

The participants explained the animated teacher’s perceived breach of the norm by 

justifying it using descriptions of Alpha.  These descriptions showed that he could benefit 

from the animated teachers’ rejection of his conjecture.  If Alpha were a disruptive 

student who talked too much, or was “being stupid,” then the participants said that the 

animated teacher acted reasonably when she responded harshly to his conjecture.  Tina 

said that it is possible that the animated teacher doesn’t “want him talking anymore” 

(TMT110706, 22, 267).  The participants saw that it is her duty to control Alpha; to keep 

him from disrupting the class and to teach him that his behavior is inappropriate.  On the 

other hand, the participants hypothesized that Alpha might be, an “A student.”  Greg said 
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that “[Alpha] knows his stuff, he's probably an A student” (ITH081905, 5, 73).  Greg 

went on to say that Alpha “was the brightest kid in the class, he kind of knew his stuff” 

(ITH081905, 5, 75).  If this were the case then the participant saw that the animated 

teacher might also have acted reasonably when she responded harshly.  In this case the 

animated teacher might be relying on Alpha’s strength to allow her to push his thinking 

further. 

Table 20:  Students who would not be hurt by the animated teachers’ dismissal 

Students who are 

instrumental in 

the work of 

valuing students’ 

work on terms of 

the contact 

• Student who is disruptive and talks too much 

• Student who is disruptive and is “being stupid” 

• Student who is an “A student” and is the brightest student in the 

class 

The participants justified the animated teacher’s rejection of Alpha’s conjecture by 

describing Alpha in terms of the teachers’ professional obligations.  The participants 

described Alpha in terms of both interpersonal obligations (“disruptive”) and in terms of 

obligations to students’ individual cognition (“brightest student in the class”).  These 

descriptions of Alpha provide justification for the animated teacher’s perceived breach of 

the norm that states that the teacher should find something positive in students’ 

conjectures. 

This segment showcases the animated teacher responding negatively to Alpha’s 

conjecture, which I hypothesized the participants will perceive as a breach of an 

instructional norm.  The participants’ responses showcase the use of professional 
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obligations to justify perceived breaches in norms.  The participants provide justifications 

for both why the animated teacher could have and why the animated teacher should not 

breach this hypothesized norm by describing Alpha in terms of individual and 

interpersonal obligations.  From these comments I gather evidence that when teachers 

respond to students’ conjectures they are concerned with both the student’s emotional 

well-being and the shared discursive space of the class. 

Segment 4:  The teacher asks the class if diagonals and bisectors are the same thing 

The participants see Beta as the focal student in segment four.  The participants notice 

Beta whispering while Alpha is standing at the board, saying that she thought that the 

diagonals and the angle bisectors were the same thing.  Later, after Alpha has returned to 

his seat the participants notice Beta clarifying Alpha’s conjecture.  One can anticipate 

that the participants will talk about the resources that Beta deployed in her work on the 

task, especially because Beta’s comments focus on the relationship between diagonals 

and angle bisectors, the two concepts that the participants saw Alpha having difficulty 

with.  Because Beta whispered her comment, which is not a normal mode of 

communication in the classroom, one can expect participants to provide possible 

justification for her whispering instead of speaking at a normal volume. 

Students who use propositions as resources 

The participants described Beta in terms of the resources that she used on the task, 

however, unlike Alpha, the resources they saw Beta using were propositions about the 

relationship between angle bisectors and diagonals (therefore implying that Beta 

recognizes that they could be different).  For instance, Tina heard Beta saying, “that the 

diagonals are also the angle bisectors of a square” (TMW111506, 37, 1016).  And Megan 
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said of Beta, “she was saying ‘the angle bisector is the diagonal’” (TMT110706, 22, 271).  

The resources that the participants saw Alpha making use of are mathematical objects 

and concepts, while the resources that the participants saw Beta making use of include 

also mathematical propositions.10 

Table 21:  Student who use propositions as resources 

Students who are 

instrumental in 

the work of 

designing and 

supporting the 

task milieu 

• Students who use propositions about the relationship between 

diagonals and angle bisectors of a quadrilateral 

• Students who use the proposition, the diagonals are also the angle 

bisectors of a square 

• Students who use the proposition, the angle bisector is the 

diagonal 

These comments about the resources that Beta used to work on the task provide further 

evidence for a claim about the work of teaching.  This claim, which was also supported 

by comments that the participants made in response to the resources that Alpha used on 

the task, is that part of the work of teaching includes monitoring the resources that 

students use to complete a task.  According to the participants, the teacher should be 

doing this work while students present conjectures at the board (like Alpha did) and while 

students are engaged in a discussion about conjectures (like Beta is engaged in.). 

                                                

10 Unlike mathematical concepts, like diagonals and angle bisectors, mathematical propositions, 

like “diagonals and angle bisectors are the same thing,” describe some property of the 

mathematical concept involved or describe relations between mathematical concepts. 



 

 216 

Students who whisper  

The participants explained Beta’s whispering in terms of unique qualities that she 

possessed.  Noticing Beta’s whisper in this way is related to teachers’ professional 

obligations to individual students.  The participants noticed that Beta whispered in class, 

and referred to her as “the whisper[er]” (ITH081905, 6, 92). They also interpreted Beta’s 

actions in the animated scenario as meaning that she is shy and according to Denise, Beta 

is a “little smart-mouth” (TMW111506, 26, 700).  In response to the content of her 

whisper, the participants judged that Beta is smart.  Tabitha said, “Beta was smart here” 

(TMW111506, 37, 1026).  Megan and Edwin said that even if Beta were shy it would 

have been ok for the teacher to call on her, because she had the correct answer 

(TMT110706, 22, 273-274). 

Table 22:  Students who whisper 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who whispers 

• Student who is a smart-mouth 

• Student who is smart 

• Student who is shy 

• Student who would give the correct answer if the teacher called 

on her 

Here one sees participants’ descriptions of Beta that explain why she would whisper in 

class in terms of teachers’ professional obligations to individuals.  These comments show 

that whispering in class is abnormal; otherwise Beta’s mode of communication would not 

invoke comments from the participants (e.g., no participants commented on the volume 

of Alpha’s voice).  Because the participants saw that Beta is acting abnormally they 
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attribute personality traits to her, like smart-mouth, smart, and shy.  These first two 

descriptions of Beta explain why she might have felt the need to speak at this segment in 

the story and the third description of Beta explains why she would do so in a whisper, 

instead of at full volume.  These comments provide evidence to support the norm that 

students should communicate their ideas in class, implying that they should also 

communicate these ideas in an appropriate manner.  The perception of Beta as a 

whisperer shows that participants saw that they had a professional obligation to 

understand why it is that Beta would not feel comfortable complying with this perceived 

norm. 

Students who clarify other student’s conjectures 

Beta’s actions in the animated scenario evoked from participants concerns about students 

having the opportunity to talk to each other.  They saw that students should have space in 

the classroom to talk to each other instead of always talking to the teacher.  Karen said 

that she would rather have students talk to each other and she “worrie[s] about how much 

I’m interjecting between any two people who are talking” (ThEMaT081905, 19, 216).  

Also, participants saw that the language that students use is important in having other 

students understand them.  Cynthia said that as a teacher, “you're trying to get [the 

student’s] language to be right so the rest of the class can understand” (ThEMaT081905, 

6, 102).  This can be seen to be relevant to Beta’s comments in the animated scenario 

because her rephrasing of Alpha’s conjectures is an attempt to clarifying the language he 

is using and therefore help the animated teacher and the rest of the class understand his 

conjecture. 
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Table 23:  Students who clarify other student’s conjectures 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who makes comments in class 

• Student who talks to other students 

Here the participants describe Beta in terms of their interpersonal obligations to the class.  

These comments point to another part of the work of teaching, that is, supporting 

students’ communication to each other, instead of to the teacher.  The participants’ 

comments support the claim that within a discussion of a student’s conjecture, the teacher 

is responsible for encouraging the students to address each other, not only the teacher, 

despite the fact that they are acting as if it is a norm for students to only address the 

teacher.  This obligation provides justification for this action that participants mark as a 

breach of this norm. 

In this segment, when a student whispers clarification of another student’s conjecture, 

one sees that the participants were aware of at least two levels of classroom interaction.  

The first level is the level of the task, where students use resources to make conjectures, 

and the second level is the level of the instructional situation, where students are asked to 

use their experience making conjectures as a basis for discussing a particular conjecture.  

At the level of the task, the participants’ comments support the claim that the teacher is 

responsible for monitoring the resources that students use in a task.  At the level of the 
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situation, the participants’ comments support the claim that the teacher is responsible for 

encouraging students to discuss conjectures with each other, not only with the teacher. 

Segment 5:  Gamma illustrates that diagonals and angle bisectors are different using the 

case of a rectangle 

In segment 5 the mathematical work is focused on Gamma’s counter-example to Beta’s 

claim that the diagonals are the angle bisectors.  Upon hearing Beta say that the diagonals 

are the angle bisectors, Gamma replies from her seat, “obviously they are not,” 

continuing the discussion about Alpha’s conjecture.  The animated teacher calls Gamma 

to the board to share her point and Gamma comes to the board saying, “I guess I don’t 

have a point, but what I was saying is that, in general, if you have a quadrilateral the 

angle bisectors are not the diagonals.” 

In this segment one sees that the animated teacher failing to keep the classroom 

discussion on topic, which we hypothesize participants will perceive as a breach of a 

contractual norm.  By inviting Gamma to the board to share her observation about a 

rectangle the animated teacher could be seen as changing the topic from a discussion 

about a square to a discussion about a rectangle. 

One can anticipate ways that the participants might comment on the teacher’s decision to 

bring Gamma to the board, especially because Gamma is disagreeing with another 

student, and bringing up the case of a new quadrilateral.  The work that Gamma does to 

visualize the transformation of a square into a rectangle is not a common operation for 

the geometry classroom because it involves modifying a diagram and it required complex 

visualization skills.  Gamma had to visualize the top and bottom sides of the rectangle 

elongating, displacing the vertical sides of the rectangle.  One could also anticipate that 
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participants might comment on this operation.  Below are the participants’ comments on 

Gamma’s contribution to the discussion. 

Students who refute the conjectures of other students in terms of the product of the 

task 

When Gamma spoke up in class, the participants saw Gamma provide a counterexample 

to Alpha’s conjectures by saying that Alpha’s conjecture only holds for squares and that 

in general angle bisectors are not diagonals.  Megan, talking about Gamma’s response to 

Alpha’s conjecture, said, “[Gamma] said it’s not true for a rectangle” (TMT110706, 33, 

248). The participants also noted that Gamma refuted Alpha’s conjecture.  James, talking 

for a student in the animated class who just heard Gamma’s comments about Alpha’s 

conjecture said, “‘Ok they’re not [the same], [Alpha] is way off base, forget about the 

square, those aren’t angle bisectors, they’re just diagonals that happen to be intersecting’” 

(ThEMaT081905, 18, 203). 

Table 24:  Students who have a goal to disagree 

Students who are 

instrumental in 

the work of 

designing and 

supporting the 

task milieu 

• Student who provides a counterexample for another student’s 

conjecture 

• Student who refutes another student’s conjecture 

These descriptions of Gamma in terms of the product of the discussion task show that the 

participants noticed how Gamma’s contribution shaped the conjecture that was being 

discussed.  The participants reported that Gamma provided resistance to Alpha’s poorly 
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formulated conjecture in the form of a counterexample and refutation.  This disagreement 

between Alpha and Gamma could be understood in many ways (e.g., Gamma doesn’t like 

Alpha, Gamma is a know-it-all, Alpha and/or Gamma didn’t understand the task) but the 

participants discuss this disagreement in terms of the products of the task that the 

animated students are engaged with. 

Students who refute the conjectures of other students in terms of the situation 

The participants gave two descriptions of Gamma in relation to the situation of ‘making 

conjectures;’ that Gamma was not working on making a conjecture, and that Gamma 

made a point that was so essential to the discussion that if Gamma had not been in class, , 

then the animated teacher would need to bring up the case of the rectangle.  Megan 

seemed to devalue Gamma’s contribution by saying, “[Gamma’s] not trying to make a 

conjecture” (TMT110706, 47, 656).  However, Tabitha said, “If you don't have a 

Gamma, you tell them [the class], ‘Draw a rectangle, now draw in--’ or if they just draw 

diagonals, you help them ‘draw in angle bisectors’” (TMW111506, 40, 1140). 

Table 25:  Students who refute the conjectures of other students in terms of the situation 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who is not working on making a conjecture 

• Student who brings up an essential case 

These two comments are contradictory in the sense that the first description places 

Gamma’s contribution outside of the situation, but the second description positions 
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Gamma’s comment as essential to the discussion.  This contradiction can be resolved if 

one sees that, following Tabitha’s comment, Gamma’s contribution is more appropriate 

for the teacher to make than for the student.  In the situation of ‘making conjectures’ the 

participants saw that the value of students’ contributions is in the production of new 

conjectures but the evaluation of those conjectures is the responsibility of the teacher.  

The participants reported that Gamma’s action is appropriate, however she was the 

inappropriate person to perform it. 

Students who are hesitant to come to the board 

The participants hypothesized that Gamma had a clear idea when she was sitting at her 

seat, but that she did not want to share this idea with the rest of the class.  When Gamma 

said, “I guess I don’t have a point,” Madison interpreted her as thinking, “Oh you want 

me to share it? Well I don’t know if it’s really that big of a deal” (TMW111506, 39, 

1098).  Another hypothesis was that Gamma said this in case it turned out that she was 

incorrect.  Madison said that Gamma could have said that “just to cover herself in case it 

didn’t end up being right” (TMW111506, 39, 1098). 

Table 26:  Students who are hesitant to come to the board 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who did not want to share her idea with the rest of the 

class 

• Student is uncertain of her answer 
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In these comments one sees the participants describing Gamma in terms of the teacher’s 

obligations to individual students.  In the first description, Gamma is cast as a particular 

kind of individual, one who does not like to share her ideas with the group, reflecting an 

individual obligation.  In the second description, Gamma is cast as a student who is 

uncertain of her answer and therefore hesitant to come to the board.  In both of these 

descriptions Gamma is seen as complying with the norm, but she is also seen as resisting 

it.  These professional obligations explain how the participants justify Gamma’s 

resistance to comply with the perceived norm. 

This segment showcases the students who are instrumental in the teachers’ work of 

managing a discussion where a student refutes another students’ conjecture, which 

involves a combination of supporting the task milieu and valuing students work in terms 

of the didactical contract.  In particular, the teacher supports the task milieu by noticing 

the different task resources that are being used by the two students. The teacher values 

students’ work in terms of the didactical contract by placing the work of refuting a 

conjecture outside of the domain of the student in the situation of ‘making conjectures.’ 

Segment 6:  In light of Gamma’s counter-example the class reformulates Alpha’s conjecture 

In segment 6 the animated students discuss Alpha’s conjecture in light of Gamma’s 

counter-example, refine Alpha’s conjecture to be about angle bisectors instead of 

diagonals, and they specify that the figure involved is a square.  The push from Gamma, 

in the form of her counter-example, allows Alpha and the other students to reformulate 

Alpha’s conjecture into a correct statement about the angle bisectors of a square.  After 

the animated students discuss and clarify Alpha’s conjecture the teacher represents 

Alpha’s conjecture on the board by writing, “in a ☐ the ang bis .” 



 

 224 

Even though there are several animated students at the heart of this segment the 

participants do not comment on the students in this segment.  The lack of participant 

comments on students could be due to the fact that the key issues in this segment; the fact 

that the statement is not parsed into ‘given’ and ‘prove’, and the unusual register that the 

teacher uses to write the statement, do not involve students.  These issues are more 

closely tied to normal teaching practice than to the students who participants see 

inhabiting the classroom. 

Segment 7:  The teacher calls on Lambda to provide a proof for Alpha’s conjecture 

Segments 7 and 8 contain Lambda’s proof of Alpha’s conjecture.  The proof is separated 

into two segments because during segment 7 the diagram of a square on the board 

contains two diagonals and during segment 8 it only contains one diagonal.  The change 

in the diagram reflects a change in the task that the class is working on. 

After writing, “in a ☐ the ang bis ” on the board, the teacher calls on Lambda to 

produce a proof for the statement.  From his seat Lambda verbally sketches a proof, using 

conceptual language, for why the diagonals of a square are its angle bisectors.  During 

this proof sketch he requests that the teacher remove one of the diagonals from the square 

so that attention could be focused on the two triangles formed by only one diagonal of the 

square.  When the teacher calls for a proof of Alpha’s conjecture the instructional 

situation can be seen to change from ‘making conjectures’ to ‘doing proofs.’ 

Prior to the teachers’ call for a proof the animated students were working on the activity 

of conjecturing, which I see as guided by the norms of the situation ‘making conjectures.’  

However, when the teacher asked Lambda to produce a proof for Alpha’s conjecture the 

activity that the class was working on shifted to producing a proof, which could been 
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seen as guided by the norms of ‘doing proofs.’  From an analysis of the story depicted in 

the animated scenario Lambda could be seen to be not complying with many of the 

norms for the situation of ‘doing proofs.’  In particular, his argument is not produced as a 

series of statements and reasons, and he attempts to modify the diagram associated with 

the proof by removing one diagonal.  Also, one sees that in the animated scenario 

Lambda was not as precise in this description of the proof that the diagonals are angle 

bisectors as it would be expected when ‘doing proofs.’  In particular, when Lambda refers 

to objects in the diagram, like angles and triangles, he does not refer to them by their 

labels.  Instead he talks in vague language about things like “top and bottom triangles.”  

Lambda also leaves out some crucial steps of his proof, like stating which two triangles 

are congruent, that allow him to say that the angles on either side of the diagonal are 

congruent.  The norms for the situation of ‘doing proofs’ provide a frame for viewing the 

actions that students perform while engaged with this activity. 

One can anticipate ways that the participants might talk about how Lambda constructs his 

proof, in particular the language Lambda uses and his choice to talk about key ideas in 

the proof instead of providing sequential statements and reasons.  Participants might also 

talk about the teacher’s decision not to bring Lambda to the board, especially after the 

teacher had brought both Alpha and Gamma to the board to share their ideas.  One can 

also anticipate that participants might respond to the teacher’s work of choosing a proof 

statement. 

Students who should not do a proof at the board 

A piece of the work of teaching highlighted by the animated teacher’s interaction with 

Lambda is managing students at the board.  Generally, the participants saw this work as 
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reduced to keeping disruptive students from coming to the board.  The participants 

suspected that the animated teacher might have kept Lambda from the board because she 

knew that he could be a disruptive student.  The participants saw that these students are 

disruptive because they enjoy the attention and do not focus on the mathematics, or they 

dominate the conversation without letting other students participate.  Karen said, “several 

times [I] have had students that really want to get to the board and sort of dominate the 

conversation” (ThEMaT081905, 6, 90).  Greg said that before he calls students to the 

board he asks himself, “is it the person who just always goes up there to get attention?  Is 

it the designated person to let everybody off the hook?” (ThEMaT081905, 6, 106).  

Participants also reported that in some classes there are students who always come to the 

board and the other students do not like this.  Greg said, “sometimes that person’s met 

with animosity” (ThEMaT081905, 6, 106).  Greg also said that the student at the board 

might begin to feel like he is doing all the work while his classmates observe.  Greg went 

on to say that a student might be “tired of always having to bail everybody out and 

explain himself on the board” (ThEMaT081905, 6, 106). 

Table 27:  Students who should not do a proof at the board 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Disruptive student 

• Student who enjoys the attention of being at the board 

• Student who dominates the conversation at the exclusion of other 

students 

• Student who shares ideas that confuse the rest of the students 

• Student who always comes to the board 
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With these descriptions of students the participants provide a justification for why a 

teacher might breach the hypothesized contractual norm that states that students should 

be disposed to share ideas in public when so asked.  Each of these students embodies 

either an interpersonal or individual obligation that would compel the teacher to not bring 

them to the board.  Students who would disrupt the class, students who would dominate 

the conversation at the exclusion of other students, students who would confuse other 

students, and students who annoy other students by always coming to the board are all 

examples of students described in terms of the teacher’s interpersonal obligation.  A 

student who enjoys the attention of being at the board is example of a student described 

in terms of the teacher’s individual obligation to her students. 

Segment 8:  The teacher removes one diagonal from the diagram on the board to assist 

Lambda’s proof 

Segment 8 begins with the teacher consenting to Lambda’s request to remove one 

diagonal from the diagram of the square on the board and ends with Lambda finishing his 

sketch of the proof that the diagonals of a square are also angle bisectors.  As mentioned 

above, in the description of segment 7, the participants perceive Lambda’s actions as a 

breach of several norms of the situation ‘doing proofs.’ 

Like in segment 7, one can anticipate the participants might talk about the language 

Lambda uses and his choice to talk about key ideas in the proof instead of providing 

sequential statements and reasons.  Since Lambda’s moves are so atypical, one can 

anticipate the participants to talk about how a student would typically produce a proof, 

pointing out the differences between Lambda’s actions and what is expected. 
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Students who understand proofs 

Participants described how their students related to understanding proofs.  Participants 

said that linear and detail-oriented students need to see every detail of a proof.  James 

said about linear, detail-oriented students, “if they don’t see each step, you know, I mean 

it’s the person who yells out, ‘isn’t that a segment?’  ‘Oh yeah, draw a line over it’” 

(ESP081905, 30, 584).  James was pointing out that these students need every detail of a 

proof to be in place, including notation of segments.  James insisted on using the correct 

order of letters to name objects when writing proofs because, “I just think that it stops 

students from interrupting when they get lost” (ESP081905, 25, 452).  The participants 

also report that students have difficulty with changes being made to diagrams.  Tina said 

about the animated teacher’s removal of one diagonal in the square, “A lot of kids are 

visual learners and that's [changing a diagram] a hard thing for them” (ThEMaT081905, 

5, 54).  The participants saw that students need to perform various operations that aid 

them in understanding the proof of the claim that the angle bisectors of a square meet at a 

point presented by Lambda.  The participants expect that most students would be able to 

follow Lambda’s proof, but the fact that it was an oral argument and not written down 

might cause difficulty for some students.  Denise said that she expected the other students 

to follow along with Lambda’s proof, “other students can kind of catch on along the way, 

you know going through each step” (ThEMaT081905, 6, 92).  However, Megan said, 

“you need to write it down because some of the kids didn't get that” (TMT110706, 81, 

1278). 

Table 28:  Students who understand proofs 

Students who are • Linear, detail-oriented student 
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instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who will interrupt the teacher if she makes a notational 

error 

• Student who has difficulty with changes being made to diagrams 

• Student who has trouble following an oral argument 

These descriptions of students are all in terms of the work that teachers do to value 

students’ work in terms of the contract because they describe the ways that students can 

understand proofs, and doing proofs is a skill that students need to learn according to the 

didactical contract (NCTM, 2000).  In particular, these descriptions describe the ways 

that participants perceive students having difficulty fulfilling this requirement of the 

contract. 

Segment 9:  The teacher calls for a two-column proof of Alpha’s conjecture 

Segment 9 comes after Lambda has articulated the argument supporting the claim that in 

a square the diagonals are angle bisectors.  Instead of praising his work the teacher 

dismisses it and calls for a proof of the claim.  The key action in this segment is the 

teacher’s valuing of Lambda proof.  Accordingly, one can anticipate that the participants 

will discuss students in terms of how they work on proofs and the value that these proofs 

have in terms of the didactical contract.  Below are participants’ descriptions of students 

related to valuing proofs and the work that students put into producing proofs. 

Students who do pseudo-proofs 

The participants describe Lambda in terms of the work that he did while doing a proof in 

response to the angle bisectors problem.  They said that he “had a plan” (Edwin, 

TMT110706, 8, 79), “had an idea” (Carl, ESP091305, 12, 228), had a “separate idea” 
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(Lynne, ESP091305, 14, 311), “could have” written a proof (Jillian, TMW111506, 53, 

1468), did a “fairly coherent proof” (Karen, ESP091305, 12, 218), and had done a proof 

“in his mind” (Melissa, ESP091305, 45, 254).  All of these speak well of his ability and 

the participants’ perception of his ability.  However they also pointed to the fact that his 

work was somewhat incomplete.  The participants either credit him with a plan for a 

proof or some qualified proof, but not a full-fledged proof.  In addition to these 

comments about the work that Lambda did, the participants said that in response to 

Lambda’s work the teacher should have called him to the board and asked him to prove 

Alpha’s conjecture. 

Table 29:  Students who do pseudo-proofs 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who had a plan/idea/separate idea 

• Student who should take charge/could have written a proof 

• Student who did a fairly coherent proof/thinks that he has done a 

proof 

These descriptions of students highlight the students who are instrumental in the work at 

a teacher does to value students’ work on mathematical tasks in terms of the didactical 

contract.  The participants saw that all of these students are making progress on learning 

to do proofs, however they do not yet know how to produce what the participants would 

label as an unqualified proof.  I label these as pseudo-proofs because as the participants 

talk about these, they are not simply proofs but some specific, qualified proof that 

teachers are compelled to distinguish from normal proofs. 
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Students who do produce steps in proofs 

Participants assign value to different types of proofs and then characterize the students 

who wrote these proofs.  For instance, participants saw students who are not able to focus 

on the main arguments in proofs by adding extra and irrelevant steps as clueless.  Karen 

described, “the kids are just like totally clueless and they’re just wandering around” 

(ESP081905, 22, 405).  Students who turn in a proof that contains many more steps than 

it requires are seen as having trouble with proofs.  Carl said that, “occasionally I’ll have a 

kid who has trouble with proofs and they finally get proofs and then they turn in their test 

and theirs are twenty-five lines in a ten line proof” (ESP081905, 22, 360).  On the other 

hand, students who write more abstract steps in their proofs are more advanced in their 

thinking process.  Melissa said, “someone that’s more advanced in their thinking process 

could be abstract” (ESP081905, 22, 370).  There are students who participants saw as 

refusing to do proofs.  These students would not write any more than they needed to, and 

Karen said that with some students all they would do is “write the given and the 

conclusion” (ESP081905, 22, 405). 

Table 30:  Students who do produce steps in proofs 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who loose the focus of an argument 

• Student who turns in a proof that contains more steps than are 

required 

• Student who writes more abstract steps in their proofs 

• Student who refuses to do proofs 
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These descriptions of students are related to the value that a teacher assigns to proofs that 

are produced by students.  Here one sees some of the ways that students could produce 

proofs that contains steps that are abnormal in some regard, either too long, contains 

abstract statements, or incomplete.  Since these are descriptions of ways of creating 

proofs that do not match with a proof as described in the situation of doing proofs, these 

students are considered to be instrumental in the work of valuing students’ work in terms 

of the contract. 

Students who are producing a proof 

When the participants discussed students’ work on ‘doing proofs’ they talked about 

actions that students are accountable for.  One such action is for students to remember the 

names of theorems and postulates.  Lucille said, “they are still struggling with 

remembering what the theorems and postulates are” (ESP091305, 32, 747).  Jillian said, 

“I still want somebody to know the definition, and you know, knows their theorems and 

postulates” (TMW111506, 39, 1108).  Participants expected to be able to direct students’ 

attention to the parts of the diagram that are important for the proof.  Megan said, about 

using color to highlight objects in a diagram, “It just shows [the students] ‘look there’s 

more’” (TMT110706, 63, 906).  Participants didn’t always expect students to be precise 

in their write up of proofs but participants took responsibility for showing students proofs 

that contain all the necessary details.  Esther said, “I still show my students all those 

things” (ESP081905, 21, 325).  Participants did, however, expect that students could 

follow the completed proofs of other students.  Melissa said that for some students, “they 

get it when they see somebody writing it but they don’t think of it themselves” 

(ESP081905, 26, 505).  When students were unable to complete a complicated proof the 
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participants expected students to raise their hand and see if the teacher or another student 

would complete it for them.  Carl talked about getting stuck on a complicated proof, 

“You might as well just raise your hand and see if someone can bail you out” 

(ESP081905, 8, 114). 

Table 31:  Students who are producing a proof 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who has trouble remembering the names of theorems and 

postulates 

• Student who knows the definitions 

• Student who has attention directed to the parts of the diagram that 

are important for the proof 

• Student who is precise in the write up of a proof 

• Student who is shown proofs that contain all the necessary details 

• Student who is able to follow the completed proofs of other 

students 

These descriptions of students are all in terms of the instructional situation ‘doing proofs’ 

because the actions that participants expect students to perform match with the 

accountability norms for the situation.  Here one sees that participants expected students 

to know how to perform most of the necessary actions to produce a proof.  However, 

participants recognize that students might have trouble remembering the name of 

theorems and postulates, and in some cases students may need to have their attention 

directed to important parts of the diagram.  These students are all instrumental in the 

work that teachers do while observing student work on proof tasks. 
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Students who value proof 

Participants saw their students not understanding the connections between mathematical 

knowledge and mathematical proof.  According to the participants, students will look at a 

statement they are asked to prove and assert that since they are asked to prove this 

statement it must be true.  Mara said, “I have kids that in a geometry classes think it's 

pointless to do all these proofs because these proofs have been proved, already proved” 

(ITH081905, 10, 199).  The fact that students are only asked to prove true statements 

weakens the link between proof and truth in their minds.  Karen said that students “have 

not yet connected truth and proof like this” (TMW111506, 50, 1395).  The individual 

steps in a proof do not build to a convincing argument for students.  Tabitha said that her 

students will look at a completed proof and say, “Did we finish?” instead of seeing the 

larger argument that they have built (TMW111506, 52, 1444). 

Table 32:  Students who value proof 

Students who are 

instrumental in 

the work of 

valuing students’ 

work in terms of 

the contact 

• Student who does not understand the connections between 

mathematical knowledge and mathematical proof 

• Student who looks at a prove statement and asserts that it must be 

true 

• Student who only attempts to prove true statements 

• Student who does not see how individual steps in a proof build to 

a convincing argument 

• Student who looks at a completed formal proof and says, “Did we 

finish?” 
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Here participants describe their students in terms of the understanding that students have 

of the connection between mathematical knowledge and mathematical proof.  These 

descriptions describe the ways that students can misunderstand this relationship.  Insofar 

as this understanding is something that teachers are expected to teach students according 

to the didactical contract, these descriptions of students are instrumental to the work of 

valuing students’ work in terms of the didactical contract. 

In this section I have detailed the participants’ descriptions of students that are 

instrumental in instruction.  These descriptions of students are organized by the segments 

that appear in the animated story, The Square, however, the students that are described 

here are relevant to the particular work of teaching that is exemplified in the animated 

scenario, regardless of the particular instructional context.  The animated scenario is a 

useful tool for eliciting the participants’ comments, but it is only that, a tool.  The 

comments that it elicits stand on their own as observations about instruction.  In the 

following section I discuss these results in terms of what these results say about the work 

of teaching. 

Discussion 

In the following section I discuss the findings of this study.  I return to the research 

questions to guide this discussion.  The research questions are: 

• What perceptions of students are instrumental in the work of designing and 

supporting the task milieu? 

• What perceptions of students are instrumental in the work of observing students’ 

work on a task? 
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• What perceptions of students are instrumental in the work of valuing students’ work 

in terms of the didactical contract? 

• What perceptions of students are instrumental in encouraging the teacher to breach 

the norms of instruction in favor of a professional obligation? 

I will address each of these questions below. 

The first research question asks, “What perceptions of students are instrumental in the 

work of designing and supporting the task milieu?”  Besides listing the students that were 

uncovered in the analysis (as shown in Table 33) I offer some general discussion of the 

students that this list contains.  These comments capitalize on the difference between the 

situations of ‘making conjectures’ and ‘doing proofs’ to highlight features of the list of 

students. 

Table 33:  Students that are instrumental in the work of designing and supporting the task milieu 

Students who do 

not understand the 

resources of the 

task 

• Student who thinks “diagonal” when the teacher says “angle 

bisector” 

• Student who is confused by the teacher talking about both 

concepts, angle bisectors and diagonals, in one conversation 

• Student who insists that the diagonals are the angle bisectors 

Students who use 

other mathematical 

objects as 

resources of the 

• Student who uses a square as a task resource 

• Student who uses a rectangle as a task resource 

• Student who uses a parallelogram as a task resource 

• Student who uses a kite as a task resource 

• Student who uses a rhombus as a task resource 
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task • Student who uses parallel lines as a task resource 

• Student who uses a basic quadrilateral as a task resource 

• Student who uses types of quadrilaterals as a task resource 

• Student who uses a diagram of a quadrilateral and its angle 

bisectors as a task resource 

Students who use 

propositions as 

resources 

• Students who use propositions about the relationship between 

diagonals and angle bisectors of a quadrilateral 

• Students who use the proposition, the diagonals are also the 

angle bisectors of a square 

• Students who use the proposition, the angle bisector is the 

diagonal 

Students who use 

additional tools as 

resources of the 

task 

• Student who uses a partner as a task resource 

• Student who uses dynamic geometry software as a task 

resource 

• Student who uses a worksheet listing several examples of one 

type of quadrilateral as a task resource 

• Student who uses a worksheet listing different types of 

quadrilateral as a task resource 

• Student who uses a worksheet with a hierarchical list of 

quadrilaterals as a task resource 

• Student who uses ideas written on the board as a task resource 
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Students who use 

resources at the 

board 

• Student who uses the expected resources in a task (such as 

angle bisectors in the angle bisectors problem) 

• Student who does not use the expected resources in a task 

(such as diagonals in the angle bisectors problem) 

Students who have 

a goal to disagree 

• Student who provides a counterexample for another student’s 

conjecture 

• Student who refutes another student’s conjecture 

These descriptions of students can be grouped into categories of students who use 

mathematical resources, students who use physical resources, students who use resources 

at the board, and students who have a goal to disagree.  These categories of students 

suggest that within the situation of ‘making conjectures’ there is a wide range of 

resources that students could use, and differences in students’ resource use are important 

to the teacher’s work. 

This is an interesting contrast to the situations of ‘doing proofs’ where teachers do not 

describe any students in terms of the work of designing and supporting the task milieu.  I 

propose that a reason for this difference is that within the situation of ‘making 

conjectures’ students typically have many resources available to them and part of their 

responsibility is to choose the resources that they will use on the task, while in the 

situation of ‘doing proofs’ students are expected to use exactly the resources that are 

made available by the teacher.  The fact that students are accountable for choosing 

resources causes teachers to be more attentive to the resources that they use. 
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The second research question asks, “What perceptions of students are instrumental in the 

work of observing students’ work on a task?”  These students are listed below in Table 

34. 

Table 34:  Students who are instrumental in the work of observing students’ work on a task 

Students who draw 

quadrilaterals as an 

operation of the 

task 

• Student who draws quadrilaterals 

• Student who does not have the idea to draw quadrilaterals 

• Student who sits in her seat, talks to her neighbor, or stares at 

the wall 

• Student who strategically picks quadrilaterals to use to make 

conjectures 

• Student who draws several of the same type of quadrilateral 

• Student who uses diagrams of quadrilaterals to make 

conjectures 

Students who draw 

angle bisectors and 

infer conclusions 

as operations of 

the task 

• Student who draws angle bisectors 

• Student who interprets the diagram 

• Student who makes conjectures based on the diagram 

• Student who draws diagonals (thinking they are angle 

bisectors) 

• Student who infers meaning from a complicated diagram 

• Student who notices that the diagonals of a square bisect each 

other 

• Student who “guesstimates”  
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There are only two categories of students that were found to be instrumental to this work; 

students who draw quadrilaterals, and students who draw angle bisectors and infer 

conclusions, and both of these categories of students were generated from participants’ 

discussions about students involved in ‘making conjectures,’ none of these categories of 

students were generated from participants’ discussions about students involved in ‘doing 

proofs.’  Similar to students described in terms of the work of designing and supporting 

the task milieu above, students’ task operations seem to be more relevant in the situation 

of ‘making conjectures’ than in the situation of ‘doing proofs.’  Also from these 

categories of students one can hypothesize that student actions besides these are invisible 

to the participants, i.e. if a student performs a different type of move then the teacher may 

not notice, and therefore not be able to support the student in their work. 

The third research question asks, “What perceptions of students are instrumental in the 

work of valuing students’ work in terms of the didactical contract?” These students are 

listed below in Table 35 and 36.  Table 35 contains students described within the 

situation of ‘making conjectures’ and Table 36 contains students described within the 

situation of ‘doing proofs.’ 

Table 35:  Students who are instrumental in the work of valuing students’ work in terms of the didactical 
contract within the situation of ‘making conjectures’ (described with respect to the contract) 

Students who 

have conjectures 

that should be 

shared at the 

board 

• Student who does not have a complete answer 

• Student who had done work that can be built upon 

• Student who had a conjecture other students can refute 

• Student who worked on a special case 
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Students who 

share their 

conjecture at the 

board 

• Student who comes to the board to state his conjecture 

• Student who stays at the board for a stretch of time 

• Student who states his conjecture in front of the class 

• The teacher wrote this student’s conjecture on the board 

• Student who doesn’t understand the resources of the task 

Students who 

whisper 
• Student who whispers 

• Student who is a smart-mouth 

• Student who is smart 

• Student who is shy 

• Student who would give the correct answer if the teacher called 

on her 

Students who 

clarify other 

student’s 

conjectures 

• Student who makes comments in class 

• Student who talks to other students 

Students who 

refute the 

conjectures of 

other students 

• Student who was not working on making a conjecture 

• Student who brought up an essential case 

This list of students who are instrumental in the work of valuing students’ work in terms 

of the didactical contract within the situation of ‘making conjectures’ suggests that the 
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value of students’ work on making conjectures is more dependent on engaging students 

with the lesson then on learning any new mathematical knowledge or practice.  Only four 

students in this list of eighteen descriptions of students are described in a way that is 

related to mathematics; “student who does not have a complete answer,” “student who 

worked on a special case,” “student who doesn’t understand the resources of the task” 

and “student who brought up an essential case.”  Besides these four descriptions of 

students all the other descriptions are related to the participation structure of the class.  

This is very different from the list of students who are instrumental in the work of valuing 

students’ work in terms of the didactical contract within the situation of ‘doing proofs,’ 

which is discussed below. 

The following table contains the list of students who are instrumental in the work of 

valuing students’ work in terms of the didactical contract within the situation of ‘doing 

proofs.’ 

Table 36:  Students who are instrumental in the work of valuing students’ work in terms of the didactical 
contract within the situation of ‘doing proofs’ (described with respect to the contract) 

Students who do 

pseudo-proofs 

• Student who had a plan/idea/separate idea 

• Student who should take charge/could have written a proof 

• Student who did a fairly coherent proof/thinks that he has done a 

proof 

Students who do 

produce steps in 

proofs 

• Student who loose the focus of an argument 

• Student who turns in a proof that contains more steps than is 

required 

• Student who writes more abstract step in their proofs 
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• Student who refuses to do proofs 

Students who are 

producing a 

proof 

• Student who has trouble remembering the names of theorems and 

postulates 

• Student who knows the definitions 

• Student who has attention directed to the parts of the diagram that 

are important for the proof 

• Student who is precise in the write up of a proof 

• Student who is shown proofs that contain all the necessary details 

• Student who is able to follow the completed proofs of other 

students 

Students who 

understand 

proofs 

• Linear, detail-oriented students 

• Student who will interrupt the teacher if she makes a notational 

error 

• Difficulty with changes being made to diagrams 

• Student who has trouble following an oral argument 

Students who 

value proof 

• Student who does not understand the connections between 

mathematical knowledge and mathematical proof 

• Student who looks at a “prove” statement and asserts that it must 

be true 

• Student who only attempts to prove true statements 

• Student who does not see how individual steps in a proof build to 

a convincing argument 
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• Student who looks at a completed formal proof and says, “Did we 

finish?” 

This list of students, who are instrumental in the work of valuing students’ work on tasks 

in the situation of ‘doing proofs,’ is much more focused on the mathematics than the 

corresponding list for the situation of ‘making conjectures.’  Here one sees that the value 

of students’ work is based on being able to produce and understand proofs.  This list 

shows that teachers don’t necessarily expect student to always be able to successfully do 

the work of ‘doing proofs,’ but, in general, teachers value students’ work on proof based 

on a mathematical standard. 

These lists of descriptions of students; students who are instrumental in the work of 

designing and supporting the task milieu, students who are instrumental in the work of 

observing students work on tasks, and students who are instrumental valuing students’ 

work on tasks, describe the students that teachers perceive as being instrumental in the 

work of conducting instruction according to the norms.  In the following section I 

describe the students that teachers perceive to be instrumental for conducting instruction 

in ways that they perceive to be a breach the instructional norms. 

Tables 37 and 38 contains the list of students who are instrumental in compelling teachers 

to act in ways that they see as a breach of instructional norms within the situations of 

‘making conjectures’ and ‘doing proofs.’  I discuss these descriptions of students below. 

Table 37:  Students who are instrumental in compelling teachers to act in ways that they perceive as a breach of 
instructional norms within the situation of ‘making conjectures’ (described with respect to professional 
obligations) 

Students who • Student who is quiet in class 
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have conjectures 

that should be 

shared at the 

board 

• Student who is not skilled at communicating their ideas 

• Student who is disruptive 

• Student who produced a conjecture that conveys a particular 

piece of mathematical knowledge 

Students who 

would be hurt by 

the animated 

teachers’ 

dismissal 

• Student who is hurt by the teacher’s reaction to his conjecture 

• Student who is devastated by the teacher’s response 

• Student who is happy 

• Student who is resilient 

• Student who feels out of place 

Students who 

would not be 

hurt by the 

animated 

teachers’ 

dismissal 

• Student who is disruptive and talks too much 

• Student who is disruptive and is “being stupid” 

• Student who is an “A student” and is the brightest student in the 

class 

Students who are 

hesitant to come 

to the board 

• Student who did not want to share this idea with the rest of the 

class 

• Student is uncertain of her answer 
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Table 38: Students who are instrumental in compelling teachers to act in ways that they perceive as a breach of 
instructional norms within the situation of ‘doing proofs’ (described with respect to professional obligations) 

Students who 

should not do a 

proof at the 

board 

• Disruptive student 

• Student who enjoys the attention of being at the board 

• Student who dominates the conversation at the exclusion of other 

students 

• Student who shares ideas that confuse the rest of the students 

• Student who always comes to the board 

 Again, there is an interesting comparison between the students who teachers perceive as 

instrumental in compelling them to act in ways that they perceive as a breach of 

instructional norms within the situations of ‘making conjectures’ and ‘doing proofs.’  

There are many more descriptions of students that participants see as calling for 

perceived breaches of instructional norms in the situation of ‘making conjectures’ than in 

the situation of ‘doing proofs.’  This makes sense in light of the claim that the value of 

students’ work in ‘making conjectures’ is more dependent on engagement in the lesson 

and the value of students’ work in ‘doing proofs’ is more dependent on learning 

mathematical practices.  I propose the explanation that since the value of making 

conjectures is to engage students in the lesson, the teacher is more attuned to the 

individual and interpersonal obligations that she has to her students in this situation.  

When the teacher is conducting the situation of ‘doing proofs’ she is more attuned to the 

mathematical obligations that she might have (that do not surface in this study because 

they do not include perceptions of students). 

This discussion highlights the different ways that teachers perceive their students 

between the situations of ‘making conjectures’ and ‘doing proofs.’  I propose that the 
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value of students’ work in the situation of ‘making conjectures’ is based on the 

engagement that students have with the lesson.  Similarly, I propose that the value of 

students’ work in the situation of ‘doing proofs’ is based on the possibility that students 

learn about the mathematical practice of proving.  This difference in the value of 

students’ work affects the ways that teachers perceive their students and the work that 

teachers do when they conduct instruction within these two situations. 

Conclusion 

In this paper I report on a study that looked at geometry teachers perception of students in 

instruction.  The findings show that teachers’ perceive students differently depending on 

the work that the teachers perceive the class to be engaging in.  This is true in two senses.  

First, to the extent that teachers see their responsibility to conduct instruction, teachers 

perceive their students differently depending on which aspect of the work of teaching 

they are immersed in when they perceive the student.  If teachers are immersed in the 

work of designing or supporting the task milieu, then they perceive students in terms of 

the task goals and resources that students are using.  If teachers are immersed in the work 

of observing students’ work on tasks, then teachers perceive students in terms of the task 

operations that students are performing.  If teachers are immersed in the work of valuing 

students’ work in terms of the didactical contract, then they perceive their students in 

terms of the instructional situation they are working within. 

Second, to the extent that teachers see students engaged with various tasks, within 

different instructional situations, they perceive students differently.  When students are 

seen as engaged in ‘making conjectures’ the teacher perceives students in relational terms 

that emphasize students engagement with the lesson.  When students are seen as engaged 
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in ‘doing proofs’ the teacher perceives students in mathematical terms that emphasize 

their progress in learning the process of proving. 

Valuing work in ‘making conjectures’ 

The way that teachers perceive their students within the situation of ‘making conjectures’ 

is tied to tensions that are inherent in the teacher’s work in this situation (Herbst et al, 

2010).  Chazan (1995) points out that when students are working on making conjectures 

both teachers and students are unsure what exactly it means to “make conjectures.”  Both 

students and teachers are comfortable with the more defined activity of gathering data to 

use in making conjectures, but they lose momentum when it comes time to generalize 

those data into conjectures. 

Teachers’ and students’ uncertainty about this work leads to the teacher’s lack of tools for 

valuing students’ conjectures.  On one hand, teachers want to value any conjecture that 

students come up with, placing the emphasis on the work that was done to arrive at the 

conjecture, instead of the conjecture itself.  On the other hand, valuing all conjectures 

equally goes against the mathematical disposition that some conjectures are more 

relevant or interesting than others.  Also, according to Chazan’s (1995) argument, when 

teachers only value some conjectures students feel as if the teacher is “fishing” and 

students’ best chance for success is guessing what the teacher has in mind. 

Teachers describe students in terms of the resources that they use on conjecturing tasks 

and the operations that they use to gather information before they make generalizations, 

but they do not describe students in terms of the operations that are needed to generalize 

and come up with conjectures.  This matches the results that Chazan (1995) found when 

he studied teachers work managing students working on conjecturing tasks. 
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These observations about managing students’ work on making conjectures raises the 

question of what could be done to help teachers better value students’ work on 

conjecturing.  I see two difficult aspects to this work.  First, is the need to structure 

students’ work on ‘generalizing.’  Second is the need for teachers to respond to students’ 

conjectures that they had not anticipated.  To support teachers in structuring students’ 

work on ‘generalizing’ teachers need to understand some discrete operations that students 

can use to achieve this goal beyond reducing this work to ‘intuition.’  To support teachers 

in responding to unanticipated student conjectures, curriculum materials could provide 

teachers with a map of the mathematical territory that students are exploring.  This map 

could aid teachers in locating students conjectures that might be otherwise unexpected by 

teachers and help teachers value these conjectures. 

Convergence of perception and experience 

The categories that teachers employ to sort their students affect, and are affected by, the 

traits of their students that they find meaningful (Bowker & Star, 1999).  That is, teachers 

form categories of students from their experience teaching, and once a teacher has 

established categories of students, these categories “create” students to be put into them.  

Bowker and Star label this phenomenon as convergence.  This convergence allows 

systems of classification to disappear as categories emerge from experiences and then 

these categories shape subsequent experiences.  In the words of Bowker and Star, “This 

blindness [to the classification system] occurs by changing the world such that the 

system’s description of reality becomes true” (Bowker &Star, 1999, p. 49). 

If one takes Bowker and Star’s claims seriously, then these perceptions of students that I 

describe here are not only perceptions that exist in the conversations among teachers.  



 

 250 

These perceptions of students shape the way that teachers see the world of their 

classroom, therefore shaping individual students into the types of students that they 

perceive.  By being aware of teachers’ perception of students we can take a first step 

toward building classrooms where students are capable and successful. 

Connection to student learning 

I began this paper with the claim that understanding teachers’ perception of their students 

could lead to improving student learning.  In this conclusion I revisit this claim in light of 

the findings of this study.  Since teachers are responsible for conducting instruction, their 

perception of students open up or close down opportunities for student action. 

Looking at the findings related to the students that teachers perceive when they are 

immersed in the work of designing and supporting the task milieu, one sees that teachers 

see many more types of students involved in the situation of ‘making conjectures’ than in 

‘doing proofs.’  This points to the well-defined nature of proof tasks and the ill-defined 

nature of conjecturing tasks.  I would like to see teachers be more aware of the different 

types of students that could be involved in this work while immersed in ‘doing proofs.’  

The milieu of proof tasks could be designed so that students had an opportunity to make 

sense of the resources that are made available to them—to choose which given and prove 

statements work best for the task and which style of argumentation is the best suited to 

the proof.  This could provide students with better opportunities to learn about the 

relationships between the assumptions and conclusions of an argument and to become 

more flexible in their mathematical argumentation style. 

Similarly to the students that teachers perceive when they are immersed in the work of 

designing and supporting the task milieu, teachers also do not see any students with 
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respect to the work of observing students’ work on a task within the situation of ‘doing 

proofs.’  By studying proof tasks, teachers could become more aware of the possible 

work that students might do on a proof task and therefore be more aware of the types of 

students that they could see working on these tasks. 

Looking at the findings related to the categories of students that teachers perceive when 

they are immersed in the work of valuing students’ work in terms of the didactical 

contract, one sees that teachers do not perceive students doing valuable mathematical 

work within the situation of ‘making conjectures.’  In the situation of ‘making 

conjectures’ teachers value students’ work in terms of how they engage with the lesson, 

while in the situation of ‘doing proofs’ teachers value students work in terms of students 

progress toward understanding the mathematical practice of producing proofs.  This 

points to the claim that during the situation of ‘making conjectures,’ students are not 

supported in work that has a mathematical basis (Herbst et al, 2010).  I argue, then, that it 

would be worthwhile to look at the situation of ‘making conjectures’ and think about 

ways to make students’ work in this situation more valuable to teachers—either by 

changing the work that students are asked to do, or by helping teachers see the 

mathematical value of the work that students already do in this situation. 

The findings about teachers’ perceptions of students in terms of their professional 

obligations also supports this claim, that teachers do not value the mathematical work that 

students do in the situation of ‘making conjectures.’  I hypothesize that since teachers do 

not perceive the mathematical value of students’ work in this situation, they focus instead 

on the relational work that can be done, often acting is ways that they see as breaching 

the norms of the situation to do so. 
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This study gives us a better sense of the work of teaching and the ways that teachers 

perceive their students as resources in that work.  It also gives us a better sense of the 

work of being a student and that possibilities that are available or not, valued or not, 

depending on the perception of the teacher.  The ways that teachers perceive their 

students shapes the ways that teachers design and support the task milieu that students 

engage with, it shapes they ways that teachers observe the work that students do on those 

tasks, and it shapes the ways that teachers value students work once it has been 

completed.  Students are essential resources of the teacher’s work, and a teacher’s 

perception of her students is the mode through which she accesses those resources.
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Chapter 4 

The Work of Studenting in High School Geometry Classrooms 

This study seeks to better understand the actions that students perform during geometry 

instruction.  Often, improvements in student learning are sought through improvements in 

teaching.  However, the conception of instruction as interactions between teacher, 

students, and content, in environments (Cohen, Raudenbush & Ball, 2003) points to the 

fact that teaching is dependent on, and interactive with, the instructional actions of 

students.  Therefore, to improve student learning, improvements in instruction must take 

student actions into account.  It follows, then, that the path to improved student learning 

requires understanding students’ actions in instruction.  The paper attempts to develop 

that understanding. 

This study is part of a larger project to understand the position of the student in geometry 

instruction.  I hypothesize that this position of the student is shaped, in part, by the 

mathematical content that geometry students encounter in instruction, the perception that 

geometry teachers have of their students, and the way that students perceive the work of 

‘studenting’ in geometry instruction.  The current study looks at this last shaper of the 

position of the student in geometry instruction, students’ perception of the work of 

‘studenting.’ 
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As the actions that teachers take within instruction are often referred to as ‘teaching’ I 

look at the corresponding student actions, referred to as ‘studenting’ (Fenstermacher, 

1986).  I claim that studenting, while it may not be rational in the sense of correct, does 

reflect a rationality of sorts that comes from enacting the position of student.  By position 

of student I mean that individual adolescents come into high schools and automatically 

are subject to expectations about how they should act in relation to the teacher, their 

peers, and the mathematical content they that they are expected to learn.  Even students 

who do not act according to these expectations are still exposed to them and are aware of 

them.  It is these expectations of how a student should act that I am concerned with in this 

study. 

This paper contains both empirical and theoretical discussions of the question, ‘what is 

the work of ‘studenting’ in high school geometry instruction.’  The empirical discussion 

consists of an empirical study of the norms of studenting.  I follow Bourdieu (1990, 

1998) and Herbst (2003, 2006) in defining norms as cultural resources that individuals 

use to construct performances in social contexts.  These resources are available to 

members of particular social groups, so, for instance, geometry students are inclined to 

construct their action in a different ways (using different cultural resources) from 

geometry teachers, or from elementary students.  In this empirical study I look at students 

perception of the norms of geometry instruction. 

The theoretical discussion of ‘what is the work of ‘studenting’ in high school geometry 

instruction’ builds on the results of the empirical study.  In particular, the results of the 

empirical study show that there are some student actions that are not explained by the 

existence of instructional norms.  Instead, participants’ comments point to actions that 
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represent departure from the norms.  I use these cases, where students justify their actions 

using alternative justifications, as motivation to formulate a tentative model for the 

rationality of studenting that incorporates both the norms of instruction and other 

explanations of student actions that have been studied in prior research. 

In the past, students’ actions have been explained in many disparate ways; students’ 

personal resources, like motivation, personality, and cognition, students’ relationship to 

the school, students relationship with the work that this done in classrooms, and students’ 

response to tacit norms for action.  However, there is not much research on how these 

different ways of explaining student action relate to each other.  This study attempts to do 

two things; to further explore the norms that guide students’ actions in instruction and to 

integrate other research on students’ actions into a more coherent theory to describe 

student action. 

The following are the research questions I explore in this paper: 

• How can hypothesized norms of instruction be used to justify student actions? 

• What other justifications for instructional actions do students provide for their 

actions, when the action supported by the norm is deemed inappropriate? 

• What is a model of ‘studenting’ that takes into account instructional norms for 

student actions as well as other research on students’ actions? 

The first question is the subject of the empirical study.  This study begins with a list of 

hypothesized norms and examines the data to see how students’ comments in response to 

an animated classroom scenario reflect adherence to or departure from these 

hypothesized norms.  The second question looks at the perceptions of students that reflect 
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justifications for actions that are expectations to the hypothesized norms.  To answer this 

question I look for similarities across these alternative justifications and return to the 

literature to find support for these justifications from other research.  Then, using what I 

learned from the current empirical study and a survey of the literature, I explore the final 

question by proposing a model for the rationality of the work of studenting, based on a 

model for the rationality of the work of teaching developed by Herbst (2010a, 2010b). 

I begin by discussing past research on student actions in classrooms.  I look at research 

that assumes that student actions are determined by students’ personal resources, students 

relationship with the school, students relationship with the work done in classrooms, and 

previous work on ‘studenting.’  I then discuss the current study, which engaged classes of 

high school geometry students in conversations around an animated scenario from a high 

school geometry classroom.  In these conversations students reacted to the actions of the 

animated students and provided evidence that either supported hypothesized instructional 

norms or provided alternative justifications to these actions.  These alternative 

justifications were examined using previous research to understand the departures from 

the norms.  The results from the empirical study and the examination of the literature to 

explain the evidence that supports alternative justifications yielded a tentative theoretical 

model for describing student actions within the instructional situations of ‘making 

conjectures’ and ‘doing proofs.’  These instructional situations and the theory of 

instructional exchanges that is key to this work is described in detail in “Teachers’ 

perceptions of geometry students” (Aaron, this volume).  In the following section I begin 

by describing past research on students’ actions in classrooms. 
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Research on student actions 

In the following section I survey research that has tried to explain why students act in the 

ways that they do.  This is clearly an important topic to study because students’ actions in 

instruction are, in many ways, determine students’ success.  Students outnumber any 

other group of people in a school, and their involvement and engagement are the primary 

reason that the school exists.  The research below is divided into three areas; research that 

assumes that student actions are guided by personal resources held by individual students, 

research that assumes that student actions are guided by commitments that students hold 

due to their role as “student,” and research that assumes that student actions are guided by 

norms of instructional interactions. 

Looking across the literature on students’ work in geometry class, one finds a large group 

of studies on students’ work with dynamic geometry software (Forsythe, 2007; Galindo, 

1998; Battista, 2002).  I did not include this literature in the current review for two 

reasons.  First, research on students’ use of dynamic geometry software looks primarily at 

students’ cognitive structures and epistemology.  While these both could be seen to 

influence the actions that students take in instruction, they are much larger issues that are 

outside the scope of the current study.  Second, the instructional situations being 

examined in the current study, ‘making conjectures’ and ‘doing proofs’ are greatly 

changed by the introduction of dynamic geometry software.  I have decided to limit my 

study to instruction not including this powerful resource.  Further studies are warranted to 

examine how these situations are affected by dynamic geometry software. 
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Literature on personal resources 

The field of educational psychology has contributed greatly to the question of what 

personal resources are related to different educational actions, emotions, and cognitions.  

By personal resources I mean characteristics or traits of individuals that unique to 

specific individuals in a particular context.  For this review of related research I am 

interested in concepts of multiple goals and goal orientation theories (Dweck & Leggett, 

1988; Harackiewicz et al., 2002; Pintrich, 2000; Pintrich & Schunk, 1996) and attribution 

theory (Weiner, 1985).  Multiple goals and goal orientation theories examine the question 

of which academic goals students hold and how those goals manifest in student action.  

Attribution theory examines the connections that students see between outcomes and 

perceived causes, in the form of events or behavior.  These approaches view goals and 

attributions to be key factors that influence the actions that students take in schools.  In 

the following section I discuss the relevant literature on students’ goals and attributions. 

Students' goals and view of their ability 

Depending on students’ outlook on classroom work, they can be described as having 

either mastery, performance-approach, or performance-avoidance goals (Pintrich & 

Schunk, 1996).  Students with mastery goals are interested in developing their academic 

abilities.  To these students, the expenditure of effort is a necessary part of their 

intellectual development and a sign of high ability.  These students will therefore be 

likely to set goals for themselves based on a comparison of their current ability with their 

ability in the past.  On the other hand, students who hold performance goals are focused 

on how their ability level is evaluated by their teacher and classmates.  These students are 

interested in how their ability is perceived by others (in contrast to developing their 

ability).  Expending effort is not seen as productive, but rather, a sign of low ability 
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because high ability would imply that no effort was required to succeed. It is 

conceptually useful to divide performance goals into performance-approach and 

performance-avoidance goals (Schunk, Pintrich & Meece, 2008).  Performance-approach 

goals reflect a student’s interest in displaying his or her positive ability while 

performance-avoid goals reflect a student’s interest in concealing his or her negative 

ability.  Research has show the highest performance outcomes are correlated with holding 

both mastery and performance-approach goals (Harackiewicz et al., 1998). 

Related to mastery and performance goals is the question of how students view the 

possibility of change in their own abilities (Dweck & Leggett, 1988).  That is, do they see 

their ability as something that can be grown and developed, or something that is 

constant?  Students who see their abilities as something that is constant and immune to 

development usually do not take up mastery goals.  From their point of view effort has no 

effect on their abilities; either they are able or they are not.  Since developing their ability 

is not an option, their goals for classroom work are likely to be to either display or 

conceal their ability level. 

Students’ attributions: interpretations of cause and effect 

In students’ attempts to make sense of their classroom environment, students attribute 

causes to events.  Attributions are driven by the questions, “why did such-and-such 

happen?”  These attributions are an important part of how students make meaning from 

the activities of their geometry class.  In answering the question of what a geometry 

student might do, attribution theory helps explain how students make sense of the causes 

and effects of their actions on their environment and vice versa. 
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Attributions are parsed across three dimensions; stability, locus, and control (Pintrich & 

Schunk, 1996).  The dimension of stability measures how much, in the eyes of the 

attributor, the effect was caused by something that is stable across time and people.  The 

dimension of locus measures how much the effect was caused by something that is either 

internal or external to the actor.  The dimension of control measures how much the effect 

was caused by something that is controllable. 

The literature discussed above attempts to explain students’ actions by way of their goals 

and attributions.  One sees that one reason that students would pick a particular 

instructional action over another is that they perceive that one of these actions would 

better advance their goals.  The way that students determine which actions would best 

advance their goals is explained by attribution theory. 

Literature on students’ commitments 

The following studies are aimed at understanding how students’ relationship inside the 

school can influence the actions that they make.  In schools there are two key elements 

that students have a relationship with; the school as a whole (including the institution, the 

individual teachers, and other students), and the academic work that they do.  Below I 

look at studies that fall into these two categories. 

Relationship with the school 

In the following section I describe literature that discusses students actions in schools, 

focusing on research that assumes that students’ actions in schools are related to the 

relationship that students have with the institution of school.  This studies look at the 

school as a whole, focusing on the curriculum, peer groups and relations, relationships 
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with teachers and administrators, and the value students place on their experiences in 

school. 

The high school ethnography, Jocks and Burnouts (Eckert, 1989) describes and attempts 

to explain the existence of two groups pervasive to American high schools, the Jocks and 

Burnouts.  The Jocks are students who see themselves as part of the high school 

community and engage in school activities like sport teams and school dances.  These 

students see the preparation—both social and academic, that they receive in high school 

as a valuable resource in their future.  The Burnouts do not see themselves as part of the 

high school community, and see high school as a waste of time because it keeps them 

from activities, like working in their uncle’s auto repair shop or taking care of their 

siblings, that they see as more relevant to their future and current life. Jocks and Burnouts 

highlights the interaction of the social groups as a key part of their continual 

regeneration.  Jocks define themselves in terms of being “not burnouts” and Burnouts 

define themselves as “not jocks.” 

Life in classrooms consists of activities such as passing and failing tests, being frustrated, 

accomplishing challenging task, but these highlights exist in a vast sea of sitting, 

listening, walking to recess, and completing mundane tasks.  Jackson (1968) examines 

the moment-to-moment activities of students in classrooms, focusing on the unremarked 

“daily grind” instead of the remarkable highlights of students’ days.  Jackson focuses on 

three aspects that contribute to the daily grind; crowds, praise and power.  In response to 

these aspects of classrooms students develop strategies to pass the time in harmony with 

their teacher and fellow students, gain praise from their teacher (or at the least avoid 
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censure), act in deference to the imbalance of power strongly skewed in favor of the 

teacher. 

A result of the large number of students in schools is a “one size fits all” classroom 

environment (with a few exceptions).  There may be a large amount of variety among 

courses that are available to students, but once a student is in a class, each member of the 

class receives the same instruction (Powell et al., 1985).  The sorting process may be 

painstaking, but once it is completed most instructional individuality is lost.  This does 

not mean that students do not experience class differently from the student next to them, 

but the institution of school treats them the same as long as they don’t stand out enough 

to be moved to a different class, as is the case with students who are labeled as needing 

‘special education.’ 

In a study on the causes of students dropping out of high school, Farrell, Peguero, 

Lindsey, and White (1988) found that social pressures were all encompassing for students 

and school was adding stress without providing any payoff.  Like other studies of 

students’ experience with school, these students reported the overwhelming feeling that 

school is boring and exerts pressure that is out of proportion to the pay offs that students 

get from being “good students.”  Efforts of the teacher to place demands on students, and 

then to evaluate students’ response to those demands, make students less likely to engage 

with the material and more likely to experience boredom in the classroom. 

Anagnostopoulos (2006) studied how students who were held back a grade were 

categorized by other students and the adults in the school.  There are two distinct groups 

of students who were demoted a grade.  The “true demotes” are students who were seen 



 

 267 

not to attempt to succeed in school.  These true demotes were also seen as lazy and 

morally inferior to other students in the school.  The name “true demote” reflects the 

view that these students deserved to be demoted a grade.  The other category of demotes 

are “kids who got tripped up.”  These students were seen to have extenuating 

circumstances that caused them to not do well in school, despite their best efforts.  

Teachers and their peers agreed that they did not really deserve to be held back, but their 

demotion was a necessary consequence of their situation. 

A key difference between ‘true demotes” and “students who got tripped up” was their 

attitude towards school.  True demotes were seen as disruptive and angry.  Whether these 

students were disruptive and angry before they were demoted or demotion led them to be 

perceived as disruptive and angry is not clear.  Also, it is not clear how accurate this 

description of true demotes is.  Teachers described their regular classes as ‘teasing’ each 

other, while demote classes were described as ‘bickering.’  Teachers of demoted classes 

may have been inclined to see demoted students in a negative light. 

The book “Doing School” (Pope, 2001) looks at how students interacted with schools in 

terms of their choice of classes and relationships with teachers.  Pope interviewed five 

students, each of whom had developed their own ways to cope with the pressures of high 

school.  Each of the students included in the book were recommended by teachers at the 

high school for being outstanding, either in terms of academics, sports, clubs, or work 

ethic. 

Pope’s ethnography uncovered the stress that these students experienced that was 

invisible to their teachers and parents, as well as the strategies that these students had 
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adopted for coping with the pressure and workload.  The students’ main goal was to get 

high paying jobs when they reached adulthood.  To get these jobs they believed that they 

needed to attend a top tier university.  And to be admitted to a top tier university they 

needed to have great grades and lots of extra curricular activities on their high school 

transcripts.  To garner the praise of their teachers and coaches, these students were 

willing to cheat, do homework during class, “suck up” to teachers, and contest low 

grades.  All of these behaviors are generally associated with “bad” students, not the stars 

of the student body. 

Each of these studies looks at how students relate to the institution of school.  They place 

importance on how students view the curriculum, the other members of the school, and 

the value that school has in their lives.  In the studies below, the researchers focus instead 

on the relationships that students have to the work that they do in classrooms and how 

this can be seen to influence their actions. 

Relationship to school work 

In the studies described below, the researchers look at how the academic work that 

students are asked to do in school influences their actions.  Many of these studies look at 

how students interpret the tasks that they are asked to do in classrooms, both in terms of 

what work the task requires of them and in terms of what that task is worth in their eyes. 

Fried argues in his book, The Game of School that both students and teachers often do not 

engage in authentic teaching and learning, but rather play “the game of school.”  In this 

game, teachers give tasks that do not promote deep thinking on behalf of their students 

and students complete assignments in ways that will garner them passing grades without 

regard to what could be learned from the assignment.  According to Fried, “The Game 
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begins whenever we focus on getting through the school day rather than actually 

learning.” (Fried, 2005, p. x)  The game of school is the result of teachers and students 

focusing on the outcome of their school activities, like grades and performance 

evaluations, and ignoring the educational experience. 

Lave’s chapter, “The Culture of Acquisition and the Practice of Understanding” in 

Situated Cognition (1997) looks in detail at what it is that students do in classrooms in 

response to tasks.  In Lave’s observation, students left to complete mathematical work 

without direct supervision of the teacher would use strategies that they knew to work 

instead of the methods sanctioned by the teacher.  Those methods were used because they 

had been shown to give the correct answers in the past and so it was safer to secretly use 

these methods than to risk using the new methods and arriving at incorrect answers.   

Lave labels this as an “appearance of understanding” as opposed to a demonstration of 

understanding as the teacher had in mind.  By using methods to complete the task that are 

different than those expected by the teacher, students changed the task.  However, 

because students arrived at the expected answer, the teacher was unaware of the change 

in the task. 

Herbst (2003) gives an example of a task that differed for the students and the teacher 

within the context of using novel tasks to elicit new knowledge from students.  The 

teacher’s goal of having students generate new knowledge while working on the task 

resulted in a key difference between the task as envisioned by the teacher and the task as 

described to the students.  The students in this example were given cardboard cutouts of 

eight triangles and asked to order them with respect to area.  The students were reminded 

of the area formula for triangles, but they were told that they should use the formula as 
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little as possible.  In terms of the operations to be enacted within the task, the teacher 

envisioned the students using the area formula to compare the area of triangles by 

uncovering the multiplicative nature of the area formula (thus not “using” the area 

formula in the sense of calculating areas).  This operation could not be explicitly told to 

the students because that would remove the possibility of students generating this as new 

knowledge.  This example shows the importance of how students interpret a task on the 

subsequent work that students do.  The students in this study acted as if they interpreted 

the teachers’ instructions as meaning that they must not use the area formula for triangles 

at all and this substantially impacted the progress they were able to make on the task. 

According to Boaler (1998), many schools do not usually facilitate the ways that girls 

learn mathematics.  Boaler argues that mathematics instruction often rewards students 

who enact tasks with goals of speed and accuracy instead of understanding of concepts.  

During interviews, boys felt accomplishment when they completed a task quickly and 

accurately, whereas the girls’ sense of accomplishment relied on the feeling that they 

understood the concepts being learned.  The girls in Boaler’s study were not lacking 

some key ability that kept them from doing mathematics as well as the boys, but these 

girls interpreted goals for the task based on conceptual understanding that did not match 

with the goals of the tasks as interpreted by the teacher. 

Students from different backgrounds bring different approaches to being a student into 

the classroom.  Sfard and Prusak (2005) found that recent immigrants from the former 

Soviet Union (“new comers”) approached assignments very differently from their native 

Israeli peers (“old timers”).  On an assignment where the teacher did not explicitly ask for 

students to turn their work in, the “new comers” were less likely than the “old timers” to 
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have written any notes.  In this context, note taking was a method for students to show 

the teacher that they had exerted effort on a task.  The “new comers” were not concerned 

with showing the teacher their work.  They engaged with tasks in a way that Sfard and 

Prusak argue was directed at understanding the mathematics; the “new comers” were able 

to show a deeper level of understanding than the “old timers.”  The authors interpret the 

difference between the work of these two groups of students as a quest of a deeper 

understanding that is tied to conceptions of learning as inherently good, and not just for 

the grade or certificate at the end of the course. 

Aaron & Herbst (in review) found that groups of students in the geometry classroom 

view the work of being a student differently.  Some students come in attuned to the 

evaluation of the teacher, with a goal of getting high grades.  Other students enter the 

classroom attuned to the content and focused on understanding the mathematics put 

before them.  Still other students are not attuned to either of these.  This last group of 

students simply do whatever is asked of them in the classroom so that they can avoid 

punishment.  These are three different ways that individuals can conceive of the work of 

being a student, and each could lead to students acting differently during instruction. 

Students’ trajectories are a useful way to describe students’ metaphorical paths through 

school and their relationship with particular classes (Chazan, 2000).  The idea of 

trajectories takes into account ‘where students have been’ in terms of past experience at 

school, at home, and what they have seen done by their parents and others in their 

communities; and it also takes into account ‘where students are going’ in terms of their 

academic and career goals.  A particular class that students are enrolled in can either fit 

with their perceived trajectory, by building on their past experiences and giving them new 
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experiences that they anticipate to be valuable in the future, or a class can not fit in a 

student’s perceived trajectory by seeming disjoint from past and future experiences.  

Chazan used the metaphor of student trajectories to explain why students in his Algebra I 

class would or would not engage with the material in class and complete homework.  For 

students who perceived the class as coincident with their trajectory, the class work was 

meaningful and therefore they would engage with it.  For students who perceive the class 

as non-coincident with their trajectory, the class work was irrelevant and therefore they 

would disengage. 

Lampert (2001) discusses students’ disposition to be ‘people who learn in school’ and the 

teacher’s responsibility to help promote this disposition in his or her students.  Without 

this disposition toward productive study of academic subjects, Lampert claims that 

students are less likely to engage with the material, less likely to learn anything from that 

engagement, and even if they did learn, they would be unlikely to use that knowledge in 

public.  Lampert tells the story of how she assisted two students in developing this 

disposition.  The first student, Richard, is supported through the process of learning how 

to make mistakes in front of his peers.  The second student, Saundra, also learns how to 

make mistakes in front of her peers; in addition she learns how to interact with 

educational materials in a constructive way.  These examples both showcase how the 

teacher can support students in developing positive relationships with the work of school. 

These studies discussed above look at students’ relationship to the work that they are 

asked to do in classrooms.  The researchers look at the actions that students take in 

response to tasks and how students value these tasks.  In the literature described below 

the authors look that the work of ‘studenting’ or the work of being an expert student. 
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Literature on studenting 

In the following section I discuss studies that have looked at explanations of student 

actions that are based on the work of being a student, or studenting.  I follow 

Fenstermacher in defining “studenting” as the set of actions performed by an individual 

in the position of student.  According to Fenstermacher, studenting is defined as the 

activities that may allow learning to take place, such as “recite, practice, seek assistance, 

review, check, locate sources, and access material” (Fenstermacher, 1986, p. 39).  In this 

light, learning is something that is a result of studenting, by way of studying, and only 

indirectly a result of teaching.  Within the context of modern schools, studenting takes on 

a larger meaning than that given above.  It must be expanded to include activities such as 

getting along with one’s peers, teacher and parents, navigating textbooks, deciphering 

handouts from the teacher, as well as nonacademic aspects of life in school.  In general, 

learning how to be a person who studies in school (Lampert, 2001).   

Children are not born knowing how to be a student.  Through their time in school they 

learn how to behave and what is expected of them.  Students learn what they would like 

to get out of school and they learn what school would like to get out of them (Doyle, 

1983).  These expectations vary from subject-to-subject.  By the time students reach high 

school they are adept at reading their teachers and scanning the content offered to see 

what matches with their goals for the course.  Students are only able to focus in this way 

because they have learned how through years of experience in classrooms with teachers 

and content. 

Brousseau & Warfield (1999) describe the interactions that Gaël, an eight year old boy, 

had with his tutor around subtraction problems.  The interaction was designed to help 
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Gaël, as he was struggling in mathematics.  During the course of the tutoring sessions it 

became apparent that Gaël had developed a strategy to avoid being in a position of not 

knowing; he would defer to the adult, or his conception of what was expected of him, 

instead of consulting his own reasoning and computations.  For example, when the tutor 

asked Gaël how many chips are in the large bag, if there are 10 in the small bag, and 56 

all together, Gaël counted to ten and stated the number 5, seemingly at random.  Gaël 

acted as if the appropriate response to the tutor’s question was to count out loud to some 

number (his favorite seemed to be ten) and then to offer some number as an answer.  Gaël 

showed little evidence that he knew how to subtract, but he did show evidence that he 

knew how to ‘play the game’ of subtraction. 

The case of Gaël shows an example of a student who could interpret the task that is posed 

to him, and was motivated to provide the correct answer, he may even have been capable 

of successfully completing the task.  His actions seemed to be guided by some other 

source.  Gaël could be seen to be “studenting” as an attempt to avoid thinking.  He was 

performing some of the actions that are appropriate for his situation, but he was 

unsuccessful because he was not deploying any mathematical reasoning. 

Some students become “expert students” similar to the expert teachers studied by 

Leinhardt and Greeno (1986).  The expert teachers were found to execute routines while 

teaching.  A key feature of these routines is that they place a low cognitive demand on the 

teacher, so that she can allocate cognitive resources to other demands of teaching.  I 

hypothesize expert students also enact routines that allow them to free up cognitive 

resources for other activities. For example, a geometry student may look at the theorems 

introduced in the section before starting her homework.  This routine reflects an 
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assumption that tasks ordinarily require theorems recently learned as resources.  This 

reduces the number of possible arguments there might be to solve a problem to only those 

arguments that hinge on recent theorems. 

Schoenfeld discusses how students have a long history of doing mathematical tasks in 

schools, 

The student comes to the problem having solved a huge number (in the tens of 

thousands) of mathematics problems.  Whether or not the student is conscious of it, 

this prior experience shapes the amount of time and effort that will be invested in this 

problem.  Prior experience will determine what information the student thinks is 

relevant and what concepts the student thinks are appropriate to the problem. 

(Schoenfeld, 1989) 

Each new task is not really a new task, but one task in a long string of tasks that the 

student faces.  The student’s experience with previous tasks shapes how the student will 

approach the current task.  This gives weight to the claim that students learn how to 

“student” over their time in classrooms.  Even though each year in a student’s school 

career could mean a new teacher and new classmates, and surely new tasks, the student 

brings with her many experiences of prior teachers and classmates and tasks that 

influence how she acts in this new instructional context. 

An example of a student using classroom time and the cover of a task assigned by the 

teacher to fulfill her own goals comes from Mehan’s article, “The Competent Student.”  

Mehan (1980) narrates a classroom episode in which a teacher assigns a student, Carolyn, 

the task of leaving the rug circle to check the cupboard for recess balls.  To the teacher, 
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this task will provide her and the rest of the class with information that will help plan the 

day’s activities.  For the student, this task is an opportunity to use the teacher’s request as 

a cover to hang up her sweater in the closet next to the ball cupboard.  Leaving the rug 

without permission from the teacher would have been against the classroom rules.  

Carolyn volunteered for this task knowing that she had a different goal than the teacher.  

She knew the classroom rules well enough to know that her goal was in opposition with 

the rules, but she also knew the rules well enough to know which activities she could best 

use to meet her needs.  Although this is not an academic task, it highlights the ways that 

expert students can navigate the complex terrain of classroom tasks and use them to meet 

their own goals. 

The norms that students are expected to work within are determined by the class that they are 

in, and the activity structure that students are engaged with.  Herbst and Brach (2006) layout 

the accountability structure for the situation of ‘doing proofs’ inside high school geometry 

classrooms (for more information on this see “Teachers’ Perceptions of Geometry Students,” 

Aaron, this volume).  This accountability structure is an example of how teachers and students 

shape the activities of teaching and learning ‘proof’ by acting as if they are following a set of 

norms for action.  The teacher is accountable for posing problems with clear statements of 

what shall be taken as ‘given’ and what is the statement that is to be proved, as well as 

providing an accompanying diagram with all of the relevant geometric objects available for 

inspection.  The student is responsible for marking known statements on the diagram through 

various markings and for laying out a sequence of “statements” and “reasons” in the form of a 

two-column proof.  
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All of these studies are focused on studenting, insofar as they provide explanations of 

students’ actions that are dependent on the nature of the work that students do in 

classrooms.  The current study adds to this literature by providing a theoretical 

framework describing “studenting” and by showing how this framework can explain 

students’ actions in high school geometry classes.  Below I describe the empirical study 

that was conducted to test hypothesized norms of geometry instruction, and the 

instructional situations of ‘doing proofs’ and ‘making conjectures.’ 

Data 

The data to be used in this study was collected during one-time focus group sessions with 

classes of high school geometry students.  These data come from eight classes in two 

schools.  School 1 is a high-achieving public school serving 2,800 students in grades 9-

12.  School 2 is a low-achieving public school serving 1,200 students in grades 9-12.  At 

School 1 I collected data in two honors level classes taught by Megan and two regular 

level class taught by Madison.  At School 2 I collected data in two regular level classes 

taught by Jack and two remedial level classes taught by Sharleen.  These schools, 

teachers, and classes were chosen so that the data corpus would represent a diverse group 

of students and experiences. 

Near the end of the 2007-2008 school year I met with each class of students for one class 

period (about 50 minutes).  Each class of approximately thirty students was shown the 

animated scenario, The Square11 in five short clips.  Each of the clips was between one 

                                                

11 The Square, along with all of ThEMaT’s animated scenarios, can be viewed at 

http://grip.umich.edu/themat 
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and two minutes in length and highlighted the actions of a small group of animated 

students.  The first clip was an exception because it featured only the animated teacher 

posing the angle bisectors problem to the class.  The second clip focused on Alpha and 

Beta, the third clip focused on Gamma, and the fourth and fifth clip focused on Lambda.  

After viewing the first clip participants were given some time to work in small groups or 

individually on the angle bisectors problem.  After viewing each of the clips the 

moderator lead a discussion, in the form of a semistructured interview (De Groot, 2002), 

among participants with the aim of collecting general comments about what the 

participants just viewed as well as collecting comments regarding the participants’ views 

of the animated students they saw in the animated scenario. 

While watching The Square, participants were potentially comparing and contrasting 

their experiences with the events displayed in the animated scenario.  Participants worked 

to make sense of the actions of the animated teacher and students; reporting on the 

actions that drew their attention, evaluating those actions, providing justifications for 

those actions, and suggesting alternatives.   

The classroom teachers were present in all eight sessions and participated to varying 

degrees in the conversation.  The most common interventions made by the classroom 

teachers were to help participants work on the angle bisectors problem and to prompt 

participants for comments when participants were slow in answering the moderator’s 

questions. 
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These sessions were video and audio recorded and then transcribed and indexed for 

analysis.  This indexing consisted of dividing the transcript based on the clip of the 

animated scenario being discussed. 

In the following section I describe the analytic methods that were used to examine the 

data and the methodology of collecting the data.  I include a description of the animated 

classroom scenario, a list of hypothesized norms that were the object of the analytic 

coding, and describe how these codes were applied to the data. 

Methods 

The focus groups with students were cases of modified breaching experiments (Garfinkel, 

1964; see Aaron, this volume for a full description of the use of animated scenarios as 

breaching experiments).  These breaching experiments were used to allow participants to 

point to things that are abnormal in familiar situations.  I hypothesized that by showing 

participants the animated scenarios, which were designed to display actions that the 

participants could perceive as breaches in the normal running of a high school geometry 

class, I would be able to elicit from them the tacit perceptions they had of the norms of 

the work of being a geometry student.  Because these perceptions are tacit, participants 

might not have been able to share them with an interviewer in a traditional interview.  

The immersive quality of the animated scenarios coupled with the provocation of the 

embedded hypothesized breaches of normal instruction prompted participants to share 

their perception of the geometry classroom. 

For the most part the stories shown in the animated scenarios conformed to the norms for 

the instructional situations that they depict.  However, they also displayed actions that 
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could be perceived as breaching these norms in a few meaningful ways.  The 

participants’ responses to these hypothesized breaches provided clues as to what the norm 

is that they perceive as being breached and reasons why a student might feel obliged to 

breach that norm. 

The animated scenarios were created to be used as prompts in breaching experiments 

with teachers (Herbst & Chazan, 2003; see Aaron, “Teachers’ perceptions of geometry 

students,” this volume for a description of the creation and use of the animated 

scenarios).  This study employs the animated scenario in the collection of data from 

students, instead of teachers, which required a slightly different use of the animated 

scenario.  For instance, instead of asking the participants to stop the animated scenario at 

moments when they have comments (as was done with teacher participants), the 

moderator stopped the animated scenario at predetermined points and asked the 

participants open-ended questions about what they had watched.  The differences in data 

collection protocol between the teacher participants, for which the animated scenario was 

designed, and the student participants reflects the different positions of the teacher and 

student in instruction; teachers are in a much more direct control of the flow of the class 

while students do not have much control of the overall activities of the class (despite 

having control over their individual actions).  The differences also reflect the confidence 

and authority with which teachers are able to discuss instruction, and the hesitance that 

some students display when talking in front of their peers. 
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Hypothesized norms 

The right-hand column of Tables 39, 40, and 41 lists the hypothesized norms for student 

action that were tested in this study.  This is a partial list of the norms12 of the didactical 

contract and the situations of ‘making conjectures’ and ‘doing proofs.’  To generate this 

list of norms I began with a partial list of norms for teacher action from prior research 

(Herbst et al, 2010; Herbst et al., 2009; Herbst & Brach, 2006) that are listed in the left-

hand column of Tables 39, 40, and 41.  Norms for teacher action are included in this list 

if they are visible in The Square and if they have implications for student actions.  For 

instance, the norm the teacher is responsible for asking questions that keep the classroom 

discussion on topic is included in the list because it is related to the animated teacher’s 

choice to ask Gamma to come to the board and because it suggests the corresponding 

norm for student action; students’ interventions should address the topic that the teacher 

was proposing.  I generated this list of corresponding norms for student action based on 

the chosen norms for teacher action.  The corresponding norms for student action are 

designed so that the student action would normally occur in concert with the teacher 

action. 

This list of norms that are examined in this study is much shorter than a comprehensive 

list of norms for geometry instruction, however, as can be seen from the results, it is long 

enough to provide valuable insight into how norms appear to guide student actions and 

shape the position of student in the geometry classroom.  Primarily, this list allows for 

                                                

12 The hypothesized norms of the didactical contract and the instructional situation ‘making 

conjectures’ that are used in this paper are currently under development in the GRIP research 

group, under the direction of Patricio Herbst. 
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confirmation of some norms of geometry instruction, and for the preliminary exploration 

of other justifications that the participants provided for student action.  The combination 

of the confirmation of norms and alternative justifications for action is used as a 

motivation for a more complex model of student action. 

Below the norms that are explored in this study are listed and a short description of the 

situations ‘making conjectures’ and ‘doing proofs’ is provided.  These norms are further 

described, and evidence for them is shown in the results section.  Table 39 shows 

hypothesized norms of the didactical contract in the geometry classroom. 

Table 39:  Contractual norms for geometry instruction 

Norm for teacher action  Corresponding norm for student actions 

Students should share their ideas that are 

different than other students' ideas 

The teacher is responsible for eliciting 

students’ ideas 

Students should complete incomplete 

arguments given in class 

The teacher is responsible for keeping the 

classroom discussions on topic 

Students' interventions should address the 

topic that the teacher is proposing 

Some student ides should be displayed for all 

students 

Students should be disposed to share ideas 

in public when so asked 

[There is no corresponding norm for teacher 

action] 

Students in the audience should support 

the presenter in public 
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The teacher should assess student ideas 

Students should be amenable to 

assessment 

Table 40 shows hypothesized norms of the instructional situation of ‘making 

conjectures.’ 

Table 40:  Situational norms for 'making conjectures' 

Norm for teacher action  Corresponding norm for student actions 

The teacher should enable students’ 

conjectures to become public 

Students should communicate their 

conjectures to the class 

The teacher should ask the class to agree or 

disagree 

Students can respond to other students' 

conjectures 

The teacher should end the activity once the 

desired conjecture has been stated 

Students should stop talking about a 

conjecture once it has been agreed upon or 

refuted 

Based on the norms that are hypothesized here, one can sketch how a normal instance of 

‘making conjectures’’ would proceed.  In the situation of ‘making conjectures’ the 

teacher is responsible for engaging with a task that asks students to make a conjecture.  

The teacher is also responsible for providing students with resources to use on the 

conjecture task.  After students have time to work independently, with the teachers’ 

supervision, on the conjecture task, the teacher chooses a student to come to the board to 

share their conjecture.  After the student has stated his conjecture the teacher is 

responsible for pointing out a positive aspect of this conjecture.  Other students may then 
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agree or disagree with this conjecture.  Once the conjecture has been either agreed upon 

or rejected the class moves on to discussing another conjecture or to engaging in another 

activity.  Table 41 shows hypothesized norms of the instructional situation of ‘doing 

proofs.’ 

Table 41:  Situational norms for ‘doing proofs’ 

Norm for teacher action  Corresponding norm for student actions 

The teacher provides proof tasks that are 

answerable as posed 

Students should not make changes to the 

proof problem 

In the situation of ‘doing proofs’ the teacher is accountable for posing problems that call 

for a proof as part of the response, with clear statements of what shall be taken as given 

and what is the statement that is to be proved, as well as providing an accompanying 

diagram with all of the relevant geometric objects available for inspection.  The student is 

responsible for marking known statements on the diagram though various markings and 

for laying out a sequence of “statements” and “reasons” in the form of a two-column 

proof.  Since these norms are not visible in The Square, and the participants did not bring 

them up in their discussions, they are not included in the discussion. 

These hypothesized norms were used to code the transcripts from students.  The purpose 

of the coding was to find evidence that would support the existence of these norms.  

Below I describe the animated scenario that was used in the current study.  The 

description includes commentary on normal and abnormal behavior according to the 

norms of the high school geometry classroom and the instructional situations of ‘making 

conjectures’ and ‘doing proofs.’ 
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Analysis of The Square 

Below is a sketch of the animated scenario, The Square.  The outline of the plot is 

provided along with a description of some of the norms that could support the actions 

seen in the story. 

The animated scenario begins with the teacher reminding the class that when they studied 

triangles they learned that the angle bisectors of a triangle meet at a point.  She then poses 

an open-ended question, “what can one say about the angle bisectors of a quadrilateral?”  

She asks the class to make conjectures with the idea that they will later try to prove those 

conjectures.  The problem that the teacher assigns to the class is abnormal because it 

combines the activities of making conjectures and proving.  Normally students would be 

asked to either make conjectures or do proofs but not to prove conjectures that they make.  

Also, the teacher does not specify any particular resources or operations that the students 

are expected to use while working on this task.  The only resources that are specified are 

the mathematical objects quadrilaterals and angle bisectors, as these are included in the 

problem statement.  By bringing up the angle bisectors of triangles she implicitly invokes 

points of intersection as a resource that could be used in the task. 

After the students work on the task for an unknown period of time the teacher asks Alpha 

to share his conjecture with the class.  Here one can notice that the teacher did not ask for 

volunteers, and in particular, Alpha did not volunteer to share his conjecture.  Despite not 

volunteering, Alpha comes to the board to share his conjecture.  Alpha draws a diagram 

on the board and describes it as “a square and the diagonals, they bisect each other.”  

Here Alpha could be seen to be complying with the norm that students should be 

disposed to share ideas in public when so asked, and students should communicate their 
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conjectures to the class.  On the surface Alpha appears to be acting in a way that could be 

perceived as breaching the norm students interventions should address the topic that the 

teacher is proposing, since his conjecture is stated about diagonals of a square instead of 

angle bisectors of a quadrilateral.  Alpha’s action could also be seen to be complying with 

the norm students should share ambiguous ideas, although it’s unclear if Alpha realized 

that his idea was ambiguous. 

The teacher comments on Alpha’s conjecture by saying, “Alpha, the question is about 

angle bisectors, not about the diagonals.”  Speaking from her seat in the front row Beta 

whispers, “but it’s the same thing, isn’t it?”  Beta, depending on how her comment is 

interpreted, could be seen as either complying or breaching the norm students in the 

audience should support the presenter in public.  On one hand she could be seen as 

defending Alpha’s answer, or, on the other hand, she could be seen as talking out of turn.  

Beta’s action could also be related to several other norms, students should complete 

incomplete arguments given in class, students can respond to other students’ conjectures, 

and students should stop talking about a conjecture once it has been agreed upon or 

refuted.  The first of these two norms support Beta’s action, while the last norm suggests 

that it was inappropriate for Beta to whisper since the teacher’s reaction to Alpha 

conjecture could be interpreted as a rejection. 

After Beta’s whisper Alpha clarifies his conjecture by saying, “I just thought that the 

diagonals cut the square in half,” which Beta further clarified by saying “the diagonals 

are also the angle bisectors.”  This statement prompts Gamma to come to the board, at the 

teacher’s request, to show that this claim is not true for a rectangle.  Gamma shows a 

diagram of a rectangle, which has angle bisectors that are different than its angle 
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bisectors.  By coming to the board Gamma could be seen to be complying with the norm, 

students should be disposed to share ideas in public when so asked.  Gamma could also 

be seen to be complying with the norms students should share ideas that are different 

than other students’ ideas, students’ interventions should address the topic that the 

teacher is proposing, students should communicate their conjectures to the class, and 

students can respond to other students’ ideas. 

Gamma’s response to Alpha’s conjecture prompts Alpha to restate his conjecture as, “in a 

square the angle bisectors meet at a point because they are the diagonals.”  The teacher 

then writes on the board, “in a ☐ the ang bis ” and calls for volunteers to do a proof. 

When no one volunteers the teacher calls on Lambda.  The teacher writing this statement 

on the board and asking students to produce a proof signals a change in instructional 

situation from ‘making conjectures’ to ‘doing proofs.’ 

Lambda stays in his seat and describes a proof of the claim that the diagonals of a square 

are also the angle bisectors.  During the course of this proof he asks the teacher to remove 

one of the diagonals so that he can prove the claim about each diagonal separately.  By 

staying in his seat Lambda could be seen to be breaching the norm students should be 

disposed to share ideas in public when so asked.  His actions can also be interpreted as 

breaching the norm, students should not make changes to the proof problem (Herbst et 

al., 2009), when he asks the teacher to remove one diagonal from the diagram.  Lambda’s 

description of the proof, which highlights the key statements, but does not provide 

reasons for the statements, can also be seen to be inappropriate based on the norm 

students produce profs by alternating between creating statements and reasons for those 

statements (Herbst et al., 2009). 
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This animated scenario was shown to participants in five clips.  The first clip ended with 

the teacher giving students time to work on the problem.  The second clip ended with the 

teacher asking the class if they agree with Beta’s statement that the diagonals are the 

angle bisectors.  The third clip ended with the teacher calling for a proof of the statement 

"in a ☐ the ang bis ."  The fourth clip ends with the teacher erasing one diagonal from 

the diagram of the square on the board.  The fifth clip ends with the animated scenario 

and the end of Lambda’s proof. 

After viewing the first clip the participants were asked to work on the mathematical 

problem so that they would become familiar with the concepts involved in the problem.  

After each of the following clips participants were asked what they noticed about the 

students in the clip.  Below is a description of the how the discussions of this animated 

scenario were coded. 

Coding for norms 

To analyze the data I look at participants’ responses to the actions of the animated 

students.  By examining these reactions one can see how well the animated students’ 

actions are suited to the instructional situation in which their actions are embedded from 

the students’ perspective.  The participants’ comments are examined to see if they reflect 

a norm of instruction. 

First, each comment from the participants was tagged as being in reference to a particular 

moment dealing with an animated student or the animated teacher.  Second, within these 

moments, comments were summarized and similar comments were compiled.  Third, the 

summarized and compiled comments were then coded as reflecting any situational norms.  

This coding was based on the norms listed in Tables 39, 40, and 41. 
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Perceptions of animated students’ actions, with relation to a norm, could be coded in one 

of four ways.  The participants could see that the animated students complied with a norm 

and that this compliance was appropriate.  The participants could also see that the 

animated students complied with a norm, however this compliance could be seen as 

inappropriate.  That is, the participants thought that the animated student should have 

breached a norm.  The participants could also report that a norm was breached by the 

animated students and that this breach was appropriate.  Finally, the participants could 

report that a norm was breached by an animated student and that this breach was 

inappropriate, that is, the animated student should not have breached that norm. 

If an animated student’s action was coded as either an inappropriate compliance or an 

appropriate breach with respect to a norm then that perception of the action was revisited 

at the end of the coding to look for commonalities.  These perceptions of either an 

inappropriate compliance or an appropriate breach of a norm point to an action that is 

supported by something other than the norm, but not a rejection of the norm.  In the 

discussion section I discuss other possible rationale for these actions.  These other 

rationales for student action are then used to develop a more complete framework for 

describing the factors that influence student action. 

In the following section I share the results of the analysis.  The results are organized by 

norm.  For each norm I list the actions in the animated scenario that the participants 

perceived as being related to the norm.  Each action could be listed more than once in the 

results, associated with a different norm.  For each action associated with a norm, I 

describe the evidence from the data that supports the claims that participants saw the 



 

 290 

action of the animated students as an appropriate compliance, an inappropriate 

compliance, an appropriate breach, or an inappropriate breach of the norm. 

Results 

Below is a list of hypothesized norms for the geometry classroom.  For each 

hypothesized norm I list animated student actions that activate this norm and evidence 

from the student focus groups that point to the existence of this norm.  This list of 

hypothesized norms for student action was generated from a list of norms for teacher 

actions from prior research (as described in the methodology section).  I used a coding 

scheme based on these norms to examine the transcripts for comments that provided 

evidence that these hypothesized norms played a role in guiding student actions.  Some 

norms on the list do not have any evidence to support them.  This does not mean that 

these are not norms for student action, only that the particular prompt that was used in 

data collection did not produce conversation about these norms.  More studies would 

need to be done to look for confirming or refuting evidence for these norms. 

Evidence from the transcript could support either a perceived breach or perceived 

compliance with a norm, and participants could see this breach or compliance as either 

appropriate or inappropriate.  When participants mark a norm as either appropriately 

complied with or inappropriately breached, participants are reporting that, with regards to 

a particular action, student actions should be in line with the norm.  When participants 

mark a norm as either inappropriately complied with or appropriately breached, 

participants are reporting that, with regards to a particular action, student actions should 

not be in line with the norm.  I will return to these cases in the discussion section and use 
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them as a motivation to build a framework to describe the influences on student action in 

geometry instruction. 

Contractual norms 

Below is evidence for the hypothesized contractual norms.  These norms guide student 

action in the classroom but are not specific to any one instructional situation. 

Students should share their ideas that are different than other students' ideas 

The norm students should share their ideas that are different than other students' ideas 

says that when students are sharing ideas in class, it is appropriate for students to share 

their ideas that are mathematically different than other ideas that have been previously 

shared.  Implicit in this norm is that students should not share ideas that are 

mathematically similar to ideas that have previously been shared.  This norm was 

activated by one action that is listed in Table 42, along with evidence for the existence of 

the norm. 

Table 42:  Actions related to the norm, students should share their ideas that are 
different than other students’ ideas 

Action Perceived relation to norm 

A student comes to the board to share her 

idea 

Appropriate Compliance  

A student comes to the board to share her idea (Appropriate Compliance) 

The participants saw the norm students should share their ideas that are different than 

other students' ideas to be related to the action of a student coming to the board to share 

her idea.  They saw that, in The Square, Gamma appropriately complied with this norm 

when she came to the board to share her idea because her idea was different than the idea 
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that had just been presented by Alpha.  Roma from Sharleen’s third period class said, 

“[Gamma] wanted herself, like, to show what she thought about the problem too.  So, 

that’s what she was trying to do.”  This response from Roma showed the opinion that it is 

appropriate for students to share ideas.  He emphasized the fact that Gamma was sharing 

her idea “too,” implying that it is appropriate for Gamma to share her idea despite the fact 

that another student had already shared their idea, presumably because Gamma’s idea 

was different.  Cal, also from Sharleen’s third period class, said that Gamma came to the 

board “’cause there’s like more than one way to answer a question and she’s showing 

them her way and [Alpha] was showing his way.”  Cal was explicit in saying that the 

reason that it was appropriate for Gamma to share her idea is because it is different than 

the idea previously shared by Alpha. 

Also related to this norm, participants said that although it is appropriate for students to 

share ideas that are different than the ideas of other students, students are not expected to 

say how their idea fits into the bigger picture of the lesson.  Paul from Megan’s third 

period class compared Gamma’s contribution in The Square to a situation where students 

discovered something interesting but that was not necessarily connected to the lesson, 

“Like, when we were doing circles, like, we found that triangles inside of circles are 

similar but we weren’t actually trying to find that out, we were just trying to find 

something else out.  We just pointed it out.”  Here Paul was giving an example from his 

experience in geometry class, as a reason why it was appropriate for Gamma to share an 

idea but to not say how that idea is related to the other ideas that have been shared in 

class. 
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Each of these comments from participants shows evidence for the norm students should 

share their ideas that are different than other students’ ideas.  These participants saw that 

it was appropriate for Gamma to share her idea because it was different than Alpha’s.  

Students should complete incomplete arguments given in class 

The norm students should complete incomplete arguments given in class says that when 

students are sharing ideas in class, it is appropriate for students to share ideas that fill in 

gaps in the ideas shared by other students.  This norm provides students with an 

opportunity to speak in class, despite the fact that other student may appear to have 

control of the floor.  This norm was activated by two actions that are listed in Table 43.  

Below is evidence from the data. 

Table 43:  Actions related to the norm, students should complete incomplete arguments 
given in class 

Action Perceived relation to norm 

A student whispers a contribution to a 

solution 

Appropriate Compliance  

A student whispers a contribution to a 

solution 

Inappropriate Breach  

Participants saw the norm students should complete incomplete arguments given in class 

as relevant to the action of a student whispering a contribution to a solution.  Some 

participants’ comments reflected the opinion that this action is appropriate in light of this 

norm, while the comments of other participants reflected the opinion that this action 

represents an inappropriate breach of the norm.  This difference of opinion can be 



 

 294 

explained by the fact that some participants consider a whispered contribution as an 

appropriate form of contributing in class while others do not. 

A student whispers a contribution to a solution (Appropriate Compliance) 

Some participants saw that the action, a student whispers a contribution to a solution, was 

appropriate in light of the norm students should complete incomplete arguments given in 

class.  In The Square, this action was performed by Beta when she whispers from her seat 

while Alpha is at the board sharing his conjecture.  The participants suggested that while 

the animated students worked on forming conjectures, Beta formed a similar conjecture 

to the one that Alpha presented at the board.  In this case, they see that Beta had some 

responsibility to fill in the missing pieces of his argument.  Seth from Sharleen’s fifth 

period said, “[Beta] thought she was doing it the same way [Alpha] did it.”  According to 

Seth, when Beta whispered, “but it’s the same thing, isn’t it?” she was filling in a step of 

the work [stating that the diagonals and angle bisectors are the same] that she did to reach 

the same conclusion as Alpha [that the angle bisectors of a square meet at a point].  In 

this interpretation of Beta’s action, the participants focused on the fact that Beta is 

making a contribution to Alpha’s incomplete solution, and ignored the fact that she 

whispers instead of speaking at normal volume.  Their comments reflect the opinion that 

she was complying with the norm because she shared an idea that completed the 

incomplete argument that Alpha was sharing at the board. 

A student whispers a contribution to a solution (Inappropriate Breach) 

Other participants’ comments reflected the opinion that Beta’s action of whispering a 

contribution was an inappropriate breach of the norm students should complete 

incomplete arguments given in class.  Despite the fact that Beta did attempt to contribute 
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to Alpha’s incomplete solution, these participants interpreted her contribution as being 

negated by the fact that she whispered.  Participants saw that it was inappropriate for Beta 

to breach this norm because if she had spoken louder, therefore complying with the norm, 

then her fellow classmates could have used her comment as a resource.  Marlo from 

Sharleen’s third period class said, “[Beta] said they were the same but she didn’t say it 

loud enough.”  Marlo’s comment supports the claim that Beta’s action would be in 

compliance with the norm if she had spoken louder, but she spoke too quietly to be in 

compliance with the norm.  

Participants also gave reasons why Beta should not have breached the norm by speaking 

so quietly.  The participants saw that through sharing her idea, Beta had the opportunity 

to aid the whole class in building a solution to the problem that the teacher posed.  

Spencer from Madison’s first period class said with respect to Beta’s whispered 

contribution, “Well, I think sometimes you should take a chance and say it because you 

might be right.”  Spencer’s comment reflects the idea that sharing a potentially correct 

answer is appropriate because it could be true and therefore helpful to the class.  Pamela 

from Megan’s fourth period class said, “I think that maybe if Beta spoke up then Alpha 

might, like, I don’t know, get, like, a spark in his mind, like, maybe he had a little idea 

but maybe if she said that then he can get another idea and he can keep going on and the 

teacher would see that, ‘Yeah, that actually does lead to the question she asked before.’”  

Pamela’s comment can be seen as an elaboration of Spencer’s comment.  Pamela 

explicated the process through which Beta’s contribution could be helpful to Alpha and 

the class.  She saw that Beta’s contribution could spark an idea in Alpha’s mind, allowing 

him to form a solution that would be acceptable to the teacher. 
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Depending on how the participants interpreted Beta’s action, either as primarily 

contributing to the classroom discussion or primarily preventing herself from contributing 

by whispering, the participants saw that she either complied with or breached the norm 

that says students should complete incomplete arguments given in class.  The difference 

between the two interpretations is that in the first interpretation, the participants saw that 

Beta was acting appropriately by filling in gaps in Alpha’s argument, and in the second 

activation the participants saw that Beta was acting inappropriately by not speaking 

loudly enough for her classmates to hear her. 

Students’ interventions should address the topic that the teacher was proposing 

The norm students’ interventions should address the topic that the teacher was proposing 

says that when students are responding to problems posed by the teacher, their responses 

should match that problem.  This means that their responses should use the appropriate 

mathematical concepts, should connect their answer to the question, and students should 

not change the problem from how it is posed by the teacher. This norm was activated by 

two actions that are listed in Table 44.  Below is evidence from the data. 

’Table 44:  Actions related to the norm, students’ interventions should address the topic 
that the teacher was proposing 

Action Perceived relation to norm 

A student presents an ambiguous solution Appropriate Breach  

A student provides a counterexample to 

another student’s idea 

Appropriate Compliance  
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The actions related to this norm are a student presenting an ambiguous solution, and a 

student providing a counterexample to another student’s idea.  These actions are 

preformed at different moments in The Square.  In the beginning of The Square Alpha 

can be seen presenting an ambiguous solution, and later Gamma can be seen providing a 

counterexample to Alpha’s idea. 

A student presents an ambiguous solution (Appropriate Breach) 

The participants’ comments reflected the opinion that the first of these actions, a student 

presents an ambiguous solution on the board, was an appropriate breach of the norm 

students’ interventions should address the topic that the teacher was proposing.  The 

participants justified this perceived breach based on the perception that Alpha had some 

cognitive difficulty while he was solving the problem, so unwittingly, his response 

changed the topic. 

The participants saw that Alpha’s action in The Square was a breach of the norm because 

it was not clear how his conjecture connected to the problem that the teacher posed.  

However, the participants suggested reasons why it was appropriate for Alpha to provide 

the response that he did.  Each of these reasons points to a cognitive difficultly that 

participants saw that Alpha could have had while working on the problem.  One cognitive 

difficulty suggested by participants was that Alpha could have been thinking about 

perpendicular bisectors instead of angle bisectors.  Art from Madison’s third period class 

said that Alpha was “thinking of, like, perpendicular bisectors [instead of] angle 

bisectors.”  If this were the case, then the participants claimed that Alpha could have been 

making the conjecture that the diagonals of a square are perpendicular bisectors of each 

other. 
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Another cognitive difficulty suggested by participants was that Alpha did not have a fully 

formed conjecture, but simply had the idea to look at the case of the square.  Denise from 

Madison’s third period class said Alpha “doesn’t know the answer, he just went up there 

and did a square.”  Gordon from Megan’s fourth period class said, “Sometimes it’s hard 

to put your thoughts into words especially if you are, um, shaky on the topic, so I think 

that’s kinda what happened to Alpha.”  Gordon explains Alpha’s breach of the norm by 

hypothesizing that the material was taxing for Alpha and therefore it was difficult for him 

to communicate his idea. 

These comments from participants support the norm that students responses should 

address the problem and provide an example of a cognitive difficulty that participants 

attribute to Alpha to explain why he was unable to comply with the norm.  The 

participants see Alpha attempting to answer the animated teacher’s questions, but he is 

lacking the mathematical understanding needed to provide an acceptable conjecture. 

A student provides a counterexample to another student’s idea (Appropriate 

Compliance) 

The participants’ comments reflected the opinion that the second of these actions, a 

student provides a counterexample to another student’s idea, is an appropriate compliance 

with the norm students’ interventions should address the topic that the teacher was 

proposing.  Participants saw that Gamma’s contribution of thinking about the diagonals 

and angle bisectors of a rectangle was a counterexample to Alpha’s conjecture and had an 

important mathematical component in terms of answering the problem posed by the 

teacher.  That is, Gamma noticed that Alpha’s conjecture was only true for squares and 

that Alpha’s conflation of angle bisectors and diagonals is only non-problematic in 
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certain quadrilaterals.  The participants recognized Gamma’s point, that in rectangles the 

angle bisectors are not the diagonals, as a mathematically valid point to make because the 

problem posed by the teacher is about quadrilaterals in general, not only squares.  Bob 

from Madison’s third period class said, “[Gamma] was trying to make it more general 

because [Alpha] was just talking about a square.”  Bob’s comment reflects the opinion 

that it is appropriate for Gamma to provide a more general response than Alpha, which 

was too specific to answer the question posed by the teacher. 

Also in light of Gamma’s counterexample and this norm, some participants said that 

special cases, like Alpha’s square, are not useful or are irrelevant when responding to 

general questions, like the angle bisectors problem.  Muna from Megan’s third period 

class said, “[Gamma] was just trying to point out that, um, what Alpha was saying was 

sort of irrelevant because they were talking about all quadrilaterals not just squares.  So, I 

guess, answer the actual question.”  This comment from Muna highlighted the view that 

Alpha’s conjecture did not address the teacher’s problem, so it was appropriate for 

Gamma to provide a counterexample that was more clearly connected to the teacher’s 

problem. 

Other participants agreed that Gamma was making a distinction between squares and 

other quadrilaterals, but unlike Muna, these participants do not see the hierarchical 

relationship between squares, rectangles, and quadrilaterals so they did not see that 

Gamma’s counterexample was a move towards answering the teacher’s problem.  Mary 

from Madison’s third period class said, “Like, I don’t know if [Gamma] realized it, but 

she was kind of saying that the rules for the squares are different than the rules for the 

rest of the quadrilaterals.”  Mary’s comments showed a recognition of Gamma’s 
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counterexample, but did not place a mathematical value on Gamma’s move from squares 

to rectangles. 

The norm students’ interventions should address the topic that the teacher was proposing 

was activated twice.  The participants saw that it was appropriately complied with once 

and appropriately breached once.  In the first case the participants saw that this norm was 

appropriately complied with since a student provided a counterexample to another 

student’s idea. The participants saw that Alpha provided an answer to the teachers’ 

question that only addressed a special case, so Gamma appropriately expanded on 

Alpha’s response to make it a better answer to the teacher’s question.  On the second case 

the participants saw that the norm was appropriately breached because a student did not 

have the cognitive capabilities to respond to the problem that the teacher posed. 

Students should be disposed to share ideas in public when so asked 

The norm students should be disposed to share ideas in public when so asked says that 

when students are sharing solutions to problems in class they should present these 

solutions from the board.  Student ideas, or student reactions to other students’ comment 

may be shared from the student’s seat, but when a student is presenting a solution, which 

usually consists of several connected ideas and could last for an extended period of time, 

that student should be at the board. This norm was activated by two actions that are listed 

in Table 45.  Below is evidence from the data. 

Table 45:  Actions related to the norm, students should be disposed to share ideas in 
public when so asked 

Action Perceived relation to norm 
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A student is hesitant to present his solution 

at the board 

Inappropriate Compliance  

A students shares his solution from his seat Inappropriate Breach  

The actions related to this norm are a student is hesitant to present his solution, and a 

student shares his solution from his seat.  These actions are performed at different 

moments in The Square.  In the beginning of The Square Alpha can be seen as hesitant to 

present his solution, and toward the end of The Square Lambda can be seen sharing his 

solution from his seat.  The participants’ comments reflect the opinion that Alpha’s action 

was in compliance with the norm, however they saw this compliance as inappropriate in 

light of students’ fear of presenting incorrect solutions at the board.  The participants’ 

comments also reflect the opinion that Lambda’s action was a breach of the norm, and 

they saw this breach as inappropriate; he should have come to the board to share his 

solution. 

A student is hesitant to present his solution at the board (Inappropriate 

Compliance) 

After seeing the teacher call Alpha to the board to share his conjecture, the participants 

anticipated that Alpha would resist the animated teacher’s call to the board.  This 

resistance shows the tension between the norm that states that students should be 

disposed to share ideas in public when so asked, and the fear that student have of 

presenting incorrect solutions at the board.  Since Alpha is unsure of his idea, he is 

resistant of the teacher’s request that he share it will the class.  Kenneth from Sharleen’s 

third period class said, “I think he felt unsure because he had the idea but he didn’t know 

if it was right or wrong” and Robin from Jack’s fourth period class said that if she were in 
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Alpha’s place she would feel “stupid” because, “I always get it wrong.”  Both of these 

students are sharing the concern that students should not share an incorrect solution. 

In the scenario described by the participants, Alpha complies with the norm students 

should present their ideas from the board but his compliance with this norm is 

encumbered by his inclination to stay in his seat and not share a solution that may be 

incorrect.  Alpha’s lack of confidence in the correctness of his solution explains his 

hesitance to come to the board. 

A student shares his solution from his seat (Inappropriate Breach) 

The participants saw Lambda breaching the norm students should present their ideas 

from the board.  Participants gave reasons why this breach was inappropriate, therefore 

providing evidence for the norm.  Resha from Madison’s first period class said, “I think 

[the teacher] should have let [Lambda] come to the board and show exactly what he 

meant.”  Here Resha was pointing to the perceived breach of the norm and saying that 

Lambda should have complied with the norm.  According to the participants, this move 

would help both the teacher and the rest of the class better understand Lambda’s idea.  In 

particular, this would give Lambda control over the diagram on the board so that he 

would then be able to erase one of the diagonals.  Resha goes on to say that if Lambda 

had gone to the board “he would have redrawn the square so that people could see it 

visually.”  Resha provides a reason that Lambda should comply with the norm and 

present his solution from the board; so that he could use the diagram to better 

communicate his solution with the class.  

The norm students should be disposed to share ideas in public when so asked was 

activated by two moments in The Square.  The participants saw that it was 
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inappropriately complied with when a hesitant student came to the board.  Since the 

student was unsure of his solution he should have stayed in his seat and not risked sharing 

an incorrect solution from the board.  The participants also saw that this norm was 

inappropriately breached when a student shared his solution from his seat.  The 

participants said that this student should have complied with the norm by presenting his 

solution from the board. 

Students in the audience should support the presenter in public 

The norm students in the audience should support the presenter in public says that when 

students watch other students present solutions at the board, students should act in ways 

that support the presenter in public.  This could mean helping clarify their ideas, not 

disagreeing with them or staying quiet. This norm was activated by three actions that are 

listed in Table 46.  Below is evidence from the data. 

Table 46:  Actions related to the norm, students in the audience should support the 
presenter in public 

Action Perceived relation to norm 

A student whispers while another student is 

presenting a solution at the board 

Appropriate Compliance  

A student clarifies another student’s idea Appropriate Compliance  

A student clarifies another student’s idea Inappropriate Breach  

The actions related to this norm are a student whispers while another student is presenting 

a solution at the board and a student clarifies another student’s idea.  The participants see 

the first action as an appropriate compliance with the norm, and they see the second 
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action as both an appropriate compliance and an inappropriate breach.  These actions can 

both be seen in the same moment in The Square.  While Alpha was presenting his 

conjecture at the board, the teacher told Alpha that the problem was about angle 

bisectors, not diagonals.  From her seat Beta whispered, “but it’s the same thing, isn’t it.”  

Some participants labeled Beta’s action as ‘whispering while another student is 

presenting a solution at the board’ and other participants labeled Beta’s action as 

‘clarifying another student’s idea.’ 

A student whispers while another student is presenting a solution at the board 

(Appropriate Compliance) 

As a member of the class, listening to Alpha present his conjecture at the board, the 

participants saw that Beta is entitled to some reaction to Alpha’s conjecture; in particular, 

it is appropriate for Beta to whisper from her seat.  Some participants interpreted Beta’s 

whisper as an agreement with Alpha’s conjecture and confusion at the teacher’s rejection.  

Rebecca from Jack’s second period class said that she would be likely to say something 

very similar to Beta’s comment.  She said, “When someone does something on the board 

that I think is correct but then someone says it’s not, I tend to say, ‘well, that doesn’t 

sound wrong, it’s the same thing, isn’t it?’”  This comment from Rebecca shows the 

position that while a student is presenting a solution at the board it is appropriate for other 

students to whisper reactions to this solution. 

A student clarifies another student’s idea (Appropriate Compliance) 

Participants saw that Beta’s whisper was a means of supporting Alpha by clarifying his 

idea for the teacher and acting as a bridge between Alpha and the teacher.  Corinne from 

Madison’s third period class said, “[Beta], like, tried to help [Alpha] out in, like he didn’t, 

she didn’t really try to make him feel bad or make him feel like he got the wrong answer 
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but she tried to help him by telling what he probably meant to the teacher.”  Corinne’s 

comment suggested that it was appropriate for Beta to whisper a comment while Alpha 

was at the board because her comment was meant to help the teacher understand what 

Alpha was saying.  Paul from Megan’s third period class made a similar comment.  He 

said, “Pretty much all of us students pretty much can tell what each other is saying except 

in some instances when it’s really, really unclear but I think most of the time it’s hardest 

communicating that to the teacher.”  Paul pointed out the difficulty that students have 

communicating with the teacher, and used this as a rationale to support Beta’s action.  

Paul seems to be saying that it was appropriate for Beta to whisper because she was 

helping Alpha overcome the difficulty of communicating his idea to the teacher. 

Some participants saw that the teacher was wrong in thinking that Alpha had made an 

incorrect conjecture and, so, it was appropriate for Beta to help the teacher see the 

correctness of Alpha’s conjecture.  Julia, another student from Megan’s third period 

class, said that Beta acted appropriately when she spoke on Alpha’s behalf, “just to let the 

teacher know that that’s maybe what he meant, maybe [the teacher] understood it wrong 

and just give [Alpha] a little support.”  Unlike the comments above, from Corinne and 

Paul, which focused on helping Alpha communicate his conjecture, this comment from 

Julia focused on helping the teacher understand Alpha’s comment.  The participants saw 

that Beta’s whisper had the potential to show the teacher how Alpha’s conjecture was 

related to the original problem by pointing out that the angle bisectors and diagonals are 

the same in a square. 

Robert, also from Megan’s third period class, made the interesting observation that 

students are not allowed to tell the teacher that she misunderstood Alpha, however 
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students are allowed to ask questions that can surface the teacher’s misunderstanding.  

Robert said, “You don’t always get to say to the teacher like, ‘You’re wrong, you didn’t 

notice this’ you could just ask it, like, in a question, like, ‘Well, aren’t the ang- the 

diagonals the same as the angle bisectors?’ like, implying and then she’d be, like, ‘Oh, 

yeah.”  Robert’s comments, suggest that Beta’s whispered question was not genuine 

confusion, but an attempt to prompt the teacher to see her mistake in rejecting Alpha’s 

conjecture. 

These comments support the norm students in the audience should support the presenter 

in public by showing how Beta’s actions could be interpreted as helping Alpha explain 

his idea or helping the teacher understand Alpha’s conjecture.  Both of these 

interpretations of Beta’s action are seen as compliance with the norm. 

A student clarifies another student’s idea (Inappropriate Breach) 

Unlike the participants quoted above, who interpreted Beta’s whisper as a means of 

supporting Alpha, other participants interpreted Beta’s action as talking out of turn and 

not supporting Alpha while he was presenting his conjecture at the board.  The teacher 

and Alpha were engaged in a conversation and participants saw that the role of the other 

students was to listen quietly.  According to these participants, it was inappropriate for 

Beta to interrupt this conversation because she was not supporting Alpha in his position 

of ‘presenter in public.’  Neil from Megan’s fourth period class said, “[Beta] shouldn’t 

have said anything because it wasn’t even her idea.  And you don’t’ even know if [the 

teacher] heard her or not or was even paying attention so you can’t really say anything.  

And it doesn’t depend on the situation anyway because it’s not [Beta’s] responsibility at 

all.”  Neil’s comment provided evidence that Beta’s action was inappropriate.  According 
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to Neil, Beta should not have participated in the discussion between the teacher and 

Alpha for several reasons; the idea being discussed was not Beta’s idea, the teacher may 

not have been paying attention to Beta, and Beta did not have any responsibility to 

support Alpha.  Taynia from Sharleen’s third period class made a comment that also 

gives evidence that Beta’s comment was inappropriate.  She said, “It’s just a comment 

that you really keep to yourself.”  Taynia seemed to be saying that Beta’s comment is not 

appropriate for the whole class to hear.  These comments from Neil and Taynia point to 

the norm the students in the audience should support the presenter in public because they 

are saying that by virtue of the fact that Alpha is standing at the board he has the right to 

speak at this time and Beta does not.  The participants saw that not only was Beta not 

required to participate in the discussion while Alpha is at the board, she should not have 

been allowed to speak while Alpha is at the board.  By speaking while Alpha was at the 

board the participants saw that she breached the norm. 

The norm students in the audience should support the presenter in public was activated 

during one moment that was interpreted three different ways.  Depending on how the 

participants interpreted Beta’s whisper while Alpha was sharing his conjecture at the 

board, they either saw that she was appropriately complying with this norm or 

inappropriately breaching it.  Some participants saw that Beta was helping Alpha 

communicate his idea to the teacher, therefore supporting Alpha and complying with the 

norm; while other participants saw that Beta was interrupting a discussion between the 

teacher and Alpha, therefore not supporting Alpha and breaching the norm. 
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Students should be amenable to assessment 

The norm students should be amenable to assessment says that when students have an 

idea that could be interpreted in multiple ways they should share it with the class.  These 

ambiguous ideas could be seen initially as correct or incorrect, but their potential value to 

the discussion overrides their potential incorrectness. This norm was activated by one 

action that is listed in Table 47.  Below is evidence from the data. 

Table 47:  Actions related to the norm, students should be amenable to assessment 

Action Perceived relation to norm 

A student shares an ambiguous idea with 

the class 

Appropriate Compliance  

A student shares an ambiguous idea with the class (Appropriate Compliance) 

In the beginning of The Square, Alpha made the conjecture that the diagonals of a square 

bisect each other.  The participants saw that Alpha’s conjecture was ambiguous because it 

could be interpreted as either right or wrong.  That is, Alpha’s conjecture was a true 

statement, but on the surface it did not look like an appropriate answer to the angle 

bisectors problem that Alpha was supposedly responding to.  The participants saw that 

ambiguous ideas like Alpha’s are appropriate to share in class.  Noa from Megan’s third 

period class said, “Like [Alpha] interpreted it in a different way so that what was, like, 

technically wrong was actually right in a different way.”  Noa’s comment provided 

evidence for the norm since she seemed to be saying that it was appropriate for Alpha to 

share his conjecture since there is the possibility that it could be interpreted as being 

correct.  Selena, also from Megan’s third period class, agreed that an ambiguous 

conjecture could be a source of redemption for the student stating it.   She said, “Well, 
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then you’re kinda thinking ‘Oh, I did something wrong’ and um, but at the end he was 

actually right so it didn’t really matter.”  Selena’s comment showed how a student who 

was initially thought to have presented an incorrect conjecture, could, in the end, be seen 

to have presented a correct conjecture.  Marilyn from Madison’s first period class had a 

similar interpretation of Alpha’s conjecture when she said, “But then part of his idea was 

kind of right in the end, though, like they ended up being the same thing so he was kind 

of right in a way.”  These comments from Noa, Selena, and Marilyn, all provided 

evidence for the norm that students should be amenable to assessment based on the 

rationale that initially appearing incorrect is worth the benefit of later appearing to be 

correct. 

Situational norms for ‘making conjectures’ 

Below is evidence for the hypothesized situational norms for the instructional situation 

‘making conjectures.’  The results are organized by the hypothesized norms and 

synthesized in tables within each section. 

Students should communicate their conjectures to the class 

The norm students should communicate their conjectures to the class says that after 

students work independently to make conjectures they should then share their conjectures 

with the class.  The teacher is responsible for conducting this work, but the students are 

responsible for being willing and able to share their conjectures. This norm was activated 

by four actions that are listed in Table 48.  Below is evidence from the data. 
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Table 48:  Actions related to the norm, students should communicate their conjectures 
to the class 

Action Perceived relation to norm 

A student is hesitant to share his idea at the 

board 

Inappropriate Compliance  

A student whispers while another student 

presents a solution at the board 

Appropriate Breach  

A student clarifies another student’s idea Appropriate Compliance  

The actions related to this norm are; a student is hesitant to share his idea at the board, a 

student clarifies another student’s idea, and a student whispers while another student 

presents a solution at the board.  The participants saw that Alpha was hesitant to share his 

idea at the board, and this led them to interpret his action as an inappropriate compliance 

with the norm in light of his desire to keep his idea private.  The participants’ comments 

also reflected the opinion that the action, a student whispers while another student is at 

the board, which was enacted by Beta, is related to this norm.  Beta’s action was seen as 

an appropriate breach of the norm because although it would be appropriate to share her 

idea, since she is not sure that it is correct, it is better to keep it to herself.  The 

participants saw the action, a student clarifies another student’s idea, when Gamma made 

the point that in general, diagonals are not angle bisectors.  This action was seen as an 

appropriate compliance with the norm. 
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A student is hesitant to share his idea at the board (Inappropriate Compliance) 

Although Alpha came to the board to share his idea when the teacher asked him to, the 

participants reported that Alpha might prefer to keep his idea private and not share it with 

the class.  According to the participants, it could be the case that Alpha came up with 

good ideas while working on forming conjectures but he would prefer to not share these 

ideas with the class.  Brianna from Jack’s second period class said, “I think that maybe 

he’s that guy that, like, thinks things but like doesn’t have—doesn’t want to actually say 

them so someone else can hear them.”  Similarly, Tony from Megan’s third period class 

said, if he were in Alpha’s position he’d be thinking, “I just wanted to answer the 

question and now I have to go and, like, do a demonstration on the board.”  Both of these 

students were conveying the opinion that regardless of the fact that it would be 

appropriate for Alpha to share his idea at the board, Alpha would like to keep his idea out 

of the public arena. 

Even though participants saw that Alpha complied with the norm students should 

communicate their conjectures to the class the participants saw reasons why he should 

breach it.  The participants saw that it was reasonable for Alpha to respect his desire to 

not share his idea.  The participants felt that it was their prerogative to keep their ideas to 

themselves even when the norms of the situation dictated that all conjectures should be 

made public. 

A student whispers while another student presents a solution at the board 

(Appropriate Breach) 

The participants’ comments provided evidence for the norm, students should 

communicate their conjectures to the class, and an opposing reason for Beta to not 

communicate her idea, with respect to Beta’s whisper while Alpha was at the board 
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sharing his conjecture.  If the participants had perceived Beta sharing her idea at normal 

volume, then this would have been seen as a compliance with the norm, but since she 

instead whispered her idea, it was perceived as a breach of the norm.  On one hand, since 

Beta has an idea, it would be appropriate for her to share it with the class.  On the other 

hand, the participants interpreted Beta’s actions as showing that she was unsure about the 

truth of her idea, so she should not share her idea in case it is not true.  Martha from 

Madison’s first period class said, “If it was a new unit and I really wouldn’t know for 

sure so I probably wouldn’t say it unless I knew for sure.”  Martha’s comment reflects the 

opinion that Beta should not have shared her idea because there was a chance that it was 

incorrect.  The participants’ comments reflect an appropriate breach because they said 

that a student would be uncomfortable expressing an idea that was possibly false and this 

resulted in Beta whispering instead of speaking at regular volume. 

A student clarifies another student’s idea (Appropriate Compliance) 

Some participants interpreted Gamma’s actions as an appropriate compliance with the 

norm since the participants perceived that he was trying to help the teacher and the other 

students understand Alpha’s conjecture.  By helping the teacher and the class understand 

Alpha’s conjecture Beta was seen as helping Alpha communicate his conjecture to the 

class, in accordance with the norm that Alpha should communicate his conjecture.  

Samuel from Sharleen’s third period class said that Gamma wanted to come to the board 

because “she thought that she could show everybody how to do it.”  That is, Samuel 

suggested that Gamma was trying to show the class how to solve the problem, expanding 

on Alpha initial attempt. 
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The norm students should communicate their conjectures to the class could be seen to be 

activated three times and twice the participants implied that it would be appropriate for 

the animated student to breach is norm.  In the case of the action, a student is hesitant to 

share his idea at the board, the participants saw that it would be reasonable for Alpha to 

heed his preference t keep his idea private.  In the case of the action, a student whispers 

while another student presents a solution at the board, the participants saw that it would 

be reasonable for Beta to not share her idea because she was uncertain that it was correct.  

The participants also saw in one case that if a student was unable to share his conjecture 

then it is appropriate for another student to explain the conjecture on his behalf. 

Students can respond to other students’ conjectures 

The norm students can respond to other students’ conjectures says that when a student 

shares his conjecture other students may publicly agree or disagree with that conjecture.  

This norm was activated by one action that is listed in Table 49.  Below is evidence from 

the data. 

Table 49:  Actions related to the norm, students can respond to other students’ 
conjectures 

Action Perceived relation to norm 

A student provides a counterexample to 

another student’s idea 

Inappropriate Compliance  

A student provides a counterexample to another student’s idea 

In the eyes of some participants, Gamma made a transgression when she shared her idea 

about the angle bisectors and diagonals of a rectangle.  Gamma’s action was seen as a 

transgression despite the fact that it was in line with the norm.  Participants interpreted 
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Gamma’s tone and the timing of her comment as meaning that she disagreed with Alpha 

and was refuting his conjecture.  These participants interpreted Gamma’s comments as 

meaning that she believed Alpha had said something that was not true and that Gamma 

had a desire to point out that he is wrong.  Eric from Madison’s first period class said, 

“[Gamma] thinks she’s right and everybody else is wrong, like ego-ish.” Eric seems to be 

interpreting Gamma as putting down the rest of the class and announcing that she has the 

correct answer.  The participants report that it is inappropriate for Gamma to make 

declarative statements instead of asking questions, as would be appropriate for a student.  

Caroline, also from Madison’s first period class said, “[Gamma] kinda bothered me 

because she seemed like she knew everything and, I don’t know, I tend to think when 

people make a statement they ask it—they turn it into more of a question.”  According to 

Caroline’s comment, it would have been more appropriate for Gamma to soften her blow 

by putting it in the form of a question or somehow downplaying her confidence to make 

the attack on Alpha less aggressive.  The participants attributed Gamma’s intervention 

more to Gamma’s “ego” and her desire to put Alpha down, and less to Gamma’s concern 

for sharing important mathematical ideas. 

The participants’ comments give evidence that Gamma is acting in compliance with this 

norm students can respond to other students’ conjectures however, their comments point 

to the fact that Gamma’s actions are inappropriate.  I take this to mean that either the 

hypothesized norm is incorrect or there is another influence on student actions that 

compels students to act in ways that are perceived as a breach of this norm.  Both of the 

quotes above refer to the social interactions of students in class and the importance for 

students to not act as if they know more, or are smarter, than their peers.  Therefore this 
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concern is related to the interpersonal relationships among students, and the fact that 

students expect other students to not put each other down, or act as if they are smarter 

than other students. 

Students should stop talking about a conjecture once it has been agreed upon or 

refuted 

The norm students should stop talking about a conjecture once it has bee agreed upon or 

refuted says that once the class has established that a conjecture is true or false the 

students should stop discussing that conjecture.  The class could establish the truth of a 

conjecture by discussing it as a group, or the teacher could announce that a conjecture is 

true or false. This norm was activated by one action that is listed in Table 50.  Below is 

evidence from the data. 

Table 50:  Actions related to the norm, students should stop talking about a conjecture 
once it has been agreed upon or refuted 

Action Perceived relation to norm 

A student comments on a conjecture after it 

has been agreed up on or refuted 

Inappropriate Breach  

Participants saw the norm students should stop talking about a conjecture once it has bee 

agreed upon or refuted as relevant to the action of a student commenting on a conjecture 

after it has been agreed up on or refuted.  In the beginning of The Square, some 

participants interpreted Beta’s actions as making a comment about Alpha’s conjecture 

after the teacher has announced that it was incorrect.  The participants view this as an 

inappropriate breach of the norm. 
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A student comments on a conjecture after it has been agreed up on or refuted 

Some participants said that that Beta should not have made any comments on Alpha’s 

conjecture because the animated teacher had already said that Alpha’s conjecture was 

incorrect.  This opinion is in agreement with the norm.  Neil from Megan’s fourth period 

class said, “If somebody is up at there [at the board] and they’re doing a problem and the 

teacher just says they’re wrong, like the teacher did, even though you would, even though 

Alpha would have liked to have help I don’t think anybody should’ve because the teacher 

doesn’t usually change her opinion unless she sees something there and it doesn’t seem 

like the teacher saw anything so if somebody jumped in they would have felt the same 

way as Alpha.”  Neil’s comment was strongly in support of the norm, because it reflects 

the belief that, regardless of what Beta says, the teacher has decided that Alpha’s 

conjecture is incorrect, so there no reason for Beta to give her opinion. 

The norm students should stop talking about a conjecture once it has been agreed upon 

or refuted was activated once, with respect to Beta’s action of commenting on Alpha’s 

conjecture.  This action was viewed as an inappropriate breach the participants perceived 

that the teacher had established the conjecture as false. 

Situational norms for ‘doing proofs’ 

Below is evidence for the hypothesized situational norms for the instructional situation 

‘doing proofs.’ The results are organized by the hypothesized norms and synthesized in 

tables within each section. 

Students should not make changes to the proof problem 

The norm, students should not make changes to the proof problem says that student 

should work on the proof problem as it is posed by the teacher, and not modify the proof 
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statement or the diagram accompanying the proof problem. This norm was activated by 

one action that is listed in Table 51.  Below is evidence from the data  

Table 51: Actions related to the norm, students should not make changes to the proof 
problem 

Action Perceived relation to norm 

A student requests to modify a problem Appropriate Breach  

The norm, students should not make changes to the proof problem, was activated by the 

action, a student requesting to modify a problem.  This action could be seen in the 

animated scenario when Lambda asked the teacher to remove one diagonal from the 

diagram of the square that this on the board. 

A student requests to modify a problem (Appropriate Breach) 

The participants’ comments reflected the opinion that the action, a student requests to 

modify a problem, is an appropriate breach of the norm.  The participants saw this breach 

of the norm as appropriate because, even though Lambda’s intervention did not address 

the topic that the teacher proposed, it did address a true statement.  The participants saw 

that by requesting that the teacher removed one diagonal Lambda was creating a new 

problem that was not the one posed by the teacher.  Participants saw Lambda as 

reasonable in his desire to make these changes and that the teacher was unreasonable for 

not allowing these changes.  The participants supported this breach of the norm by saying 

that Lambda had a valid mathematical method for solving the problem.  Paul from 

Megan’s third period class supported Lambda’s actions and would go further to get his 

ideas across.  He said, “I get pretty annoyed, I’d just say ‘draw that there’s one and let me 

prove that there’s these two triangles are congruent.’”  Paul’s comment reflects the 
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opinion that it is appropriate for Lambda to request a change to the problem since he 

would be able to prove a true statement.  According to the participants, the teacher should 

either understand why this is an appropriate move or give Lambda the chance to show his 

proof anyway. 

By asking the teacher to erase one diagonal from the diagram of the square Lambda was 

changing the problem that had been given by the teacher and therefore could be seen to 

be breaching the norm students’ interventions should address the topic that the teacher 

was proposing.  However, since Lambda believes his proof to be the best way to prove 

Alpha’s conjecture the participants saw that it is appropriate for him to ask the teacher to 

modify the diagram to produce the proof. 

Summary of results 

To summarize the results, Table 52 lists all the norms for which the focus groups 

contained evidence along with the corresponding student actions that activated those 

norms.  The first column of this table lists the scope of the instructional norm, either the 

didactical contract of the geometry classroom, the situation of ‘making conjectures’ or 

the situation of ‘doing proofs.’  The second column lists the norm.  The third column lists 

the student actions related to each norm.  The final column describes the relationship 

between the norm and the action in terms of appropriateness and compliance.  In the case 

that an action suggests an departure from the norm (actions that are perceived as an 

inappropriate compliance or an appropriate breach), the justification for that departure 

from the norm is also listed in this column.  This list provides a starting point for 

describing the work of studenting.  The norms, actions, and relationships that participants 

perceived between these norms and actions, provide the basis for a framework describing 
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students’ actions in geometry instruction, both with respect to the general didactical 

contract and with respect to the particular instructional situations, ‘making conjectures’ 

and ‘doing proofs.’ 

Table 52:  Summary of norms and actions 

 Norm Action Perceived relation 

to norm 

Students should share their 

ideas that are different than 

other students' ideas 

 

A student comes to the 

board to share her idea 

Appropriate 

Compliance  

A student whispers a 

contribution to a 

solution 

Appropriate 

Compliance  

Students should complete 

incomplete arguments given 

in class 

 A student whispers a 

contribution to a 

solution 

Inappropriate 

Breach  

A student presents an 

ambiguous solution 

Appropriate 

Breach:  Cognitive 

Difficulties 

C
ontract 

Students’ interventions 

should address the topic that 

the teacher was proposing 

 A student provides a 

counterexample to 

Appropriate 
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 another student’s idea Compliance  

A student is hesitant to 

present his solution at 

the board 

Inappropriate 

Compliance:  

Worry of 

Incorrectness 

Students should be disposed 

to share ideas in public when 

so asked 

 

A students shares his 

solution from his seat 

Inappropriate 

Breach  

A students whispers 

while another student is 

presenting a solution at 

the board 

Appropriate 

Compliance  

A student 

clarifies another 

student’s idea 

Appropriate 

Compliance  

Students in the audience 

should support the presenter 

in public 

 

A student clarifies 

another student’s idea 

Inappropriate 

Breach  

 

Students should be amenable 

to assessment 

 

A student shares an 

ambiguous idea with 

the class 

 

Appropriate 

Compliance  
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A student is hesitant to 

share his idea at the 

board 

Inappropriate 

Compliance:  

Desire to keep idea 

private 

A student whispers 

while another student 

presents a solution at 

the board 

Appropriate 

Breach:  Worry of 

Incorrectness 

Students should 

communicate their 

conjectures to the class 

A student clarifies 

another student’s 

conjecture 

Appropriate 

Compliance 

Students can respond to 

other students’ conjectures 

 

A student provides a 

counterexample to 

another student’s idea 

Inappropriate 

Compliance:  

Politeness 
‘M

aking C
onjectures’ 

Students should stop talking 

about a conjecture once it 

has been agreed upon or 

refuted 

 

A student comments on 

a conjecture after it has 

been agreed up on or 

refuted 

Inappropriate 

Breach  
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‘D
oing Proofs 

Students should not make 

changes to the proof problem 

A student requests to 

modify a problem 

Appropriate 

Breach:  Share true 

ideas 

One sees that the relationship between each action and its associated norm is coded as an 

appropriate compliance, inappropriate compliance, appropriate breach, or inappropriate 

breach in relation to the norm.  That is, participants’ responses could either confirm the 

hypothesis that the norm guides student action, or the participants’ responses could point 

to the fact that the norm should not be applied in a particular moment, and an action other 

than the one that is recommended by the norm is appropriate.  The actions that 

participants perceived to be inappropriate compliance with the norm or appropriate 

breaches of the norm do not disconfirm the norm, rather this evidence provides support 

for the claim that, in addition to the norms, there are other influences on student action. 

I use these norms as a basis for building a theoretical model of the influences on student 

action.  I take the view that the primary explanations for student actions are social, that is 

behavioral norms and commitments that students have as members of the school.  I also 

take into account the individual characteristics and traits of students that influence their 

actins in geometry instruction.  In the discussion I describe this model, using these results 

as motivation, especially the need to explain the relationship between norms and actions 

that participants perceived as either inappropriate compliance with the norm or 

appropriate breach of the norm. 

In the discussion section I discuss the implications of these particular norms, actions, and 

perceived relationship between the norms and actions.  I begin by discussing what I learn 
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from the confirmation of these norms.  I then look at the cases in which students provide 

evidence that reflects justifications for action that are departures from the norm.  I return 

to the literature to attempt to explain these justifications.  I end with a tentative model for 

justifications for student action, motivated by this empirical study and the examination of 

the evidence that supports departures from the norms, and based on a model for the 

rationality of teacher action developed by Herbst (2010a, 2010b) 

Discussion 

In the following section I discuss the results of this empirical study and use these results 

as motivation for describing a tentative framework for the rationality of the work of 

studenting.  To begin this discussion I look across the evidence for the hypothesized 

norms to make generalizations about the instructional norms that guide students’ actions.  

I then look at the evidence that participants provided that point to moments that are 

departures from the norm and are justified by alternative means.  I return to the literature 

to find support for these alternative justifications.  Then, motivated by this empirical 

study and the findings from the literature I build a tentative model for the rationality of 

studenting, based on a parallel model for the rationality of teaching, developed by Herbst 

(2010a, 2010b). 

Discussion of hypothesized norms 

From these results one sees that the participants, while responding to the animated 

scenario, did provide evidence to support the hypothesized norms.  This list of 

hypothesized norms is not a complete list of the norms for the model of interactions 

developed for geometry instruction (Herbst & Brach, 2006; Herbst et al., 2009), but it 

does reflect the primary norms that can be seen to be active in The Square.  Unlike 
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previous research on instructional norms in geometry classrooms, this study focuses both 

on perceptions of norms during instruction (unlike Herbst & Brach, 2006 which focused 

on students’ perceptions of norms while working on proof tasks in isolation) and on 

instructional norms from the students’ point of view (unlike Herbst et al. 2009, which 

primarily looks at instructional norms from the perspective of the teacher). 

Conflating students and their ideas 

Two concepts that get conflated in the participants’ talk and in the resulting analysis are 

the concepts of an idea that is correct and the idea of a student that is correct.  From these 

conversations one can see that students strongly associate persons with ideas.  That is, if a 

student voices an idea that is wrong, then that student is wrong, conversely, if a student 

voices an idea that is correct, then that student is correct.  This conflation highlights the 

need for students to become risk-takers (Lampert, 2001).  Since voicing a wrong answer 

carries the possibility of making a student a ‘wrong person’ then it is understandable that 

students would be hesitant to take intellectual risks. 

The only norm included in this study that gives a student the space to disagree with 

another student’s idea, and by extension, with another student, students can respond to 

other students’ conjectures, is supported by students only as long as it is seen as being 

breached.  Because refuting a conjecture is essentially the same as telling another student 

that they are wrong, politeness seems to overrule the norm.  Because students are 

unwilling to disagree with other students they are unable to disagree with ideas. 

Another norm that is related to this conflation is the norm students should communicate 

their idea to the class.  Participants report that this norm should also be breached.  This 

norm creates an opportunity for students to publicly invite the teacher or other students to 
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disagree with their conjecture and therefore disagree with them.  To avoid this danger 

students report that it is appropriate to breach this norm if the student can not be sure that 

their idea is not incorrect. 

Participants’ comments regarding these norms point to the fact that correct ideas and 

students who voice those ideas have a privileged place in the geometry classroom.  In 

their view, students should try to associate themselves with correct ideas so that it is not 

just that the idea is right, but the idea becomes their idea and so they are right. 

Alternative justifications 

In providing reasons why it would be appropriate to breach a norm the participants 

provided five alternative justifications.  These alternative justifications are departures 

from the rules determined by the norms.  They are; cognitive difficulties, worry of 

incorrectness (invoked twice), desire to keep an idea private, politeness, and desire to 

share true ideas.  Below I return to the literature to see how previous research can help 

explain these alternative justifications. 

The first of these alternative justifications, cognitive difficulties, could be understood at 

one level to the expression of inadequate personal resources.  That is, each student comes 

into the classroom, and whether or not an individual has the ability to solve a problem is a 

personal matter.  However, I would like to suggest that this could also be an expression of 

part of the student’s relationship to school work.  Since students are constantly being 

confronted with material that is new to them, it is expected that not all students will 

understand all the material all the time.  So, part of being a student involves experiencing 

cognitive difficulties.  Lampert (2001) expressed this same view when she stressed the 
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importance of teaching students to be ‘people who study in school,’ and in particular to 

be people who take academic risks, which may lead to some cognitive difficulties. 

The second of these alternative justifications, worry of incorrectness, could be understood 

as an expression of performance-avoid goals (Pintrich & Schunk, 1996), which is thought 

of as a personal resource of an individual student. Students who justify the breach of 

norms on account of this worry are concerned with how their abilities are perceived by 

others and they are interested in concealing any deficits in their ability.  This same 

exception to the norm could be interpreted as a concern for the integrity of the 

mathematics being discussed instead of concern for the individual expressing the idea.  A 

significant part of being a student is developing a commitment to truth, and to learning 

how to tell truth from falsehood.  Using this interpretation, participants are not trying to 

hide their lack of ability, but they are concerned with promoting true ideas as opposed to 

false ones.  This corresponds to a commitment that students have with respect to their 

relationship with the work done in classrooms. 

The third of these alternative justifications, the desire to keep an idea private, could be 

understood as personal resource in the form of a personality trait.  In general, students are 

expected to share their idea with their classmates, at the request of the teacher, but here, 

participants are saying that some students remove themselves from this sharing.  This 

action of keeping an idea private does not seem to be perceived by the participants as part 

of the work of studenting, but a reason why a student would momentarily stop doing this 

work. 
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The fourth of these expectations, politeness, could be understood as an aspect of a 

student’s relationship to the school.  Since students are in school and in classrooms with 

so many other students, and since these students spend an extended amount of time 

together, it’s reasonable for this closeness to compel students to attempt to be polite to 

each other.  This is related to what Jackson refers to as “crowds” (Jackson, 1968).  Part of 

being a student means getting along with your peers (and possibly the adults) in the 

school. 

The fifth and final of these alternative justifications, sharing true ideas, is related to the 

commitment to truth that students are expected to develop.  The participants see that it is 

reasonable to breach a norm in favor of sharing an idea that that is true.  Much of students 

time and energy in classrooms is directed toward discovering true ideas and justifying 

those ideas, so when they encounter a true idea, even one that might not be directly 

connected to the current problem, the participants see this as a valid topic to bring up.  

Like, the worry of incorrectness, this can be seen to be related to the work that is done in 

classrooms. 

One can see that the five alternative justifications for student actions to the instructional 

norms that can be seen in the participants’ comments; cognitive difficulties, worry of 

incorrectness, desire to keep an idea private, politeness, and sharing true ideas, reflect 

personal resources of individuals, the relationship that students have with the school, and 

the work that students do inside classrooms.  Below I will describe a framework that 

combines each of these and the norms to form a model for the rationality of studenting. 
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Framework for the rationality of studenting 

The theory of practical rationality of teaching (Herbst, 2010a, 2010b) has been explored 

in detail, both conceptually, and empirically for instructional situations particular to high 

school algebra and geometry classrooms (Chazan & Lueke, 2009; Herbst & Brach, 2006; 

Herbst, Nachlieli, & Chazan, in press).  In the following section I will briefly describe 

this conceptual framework of practical rationality of teachers, which is described fully in 

“Teachers’ perceptions of geometry students” (Aaron, this volume).  I will then discuss 

the reconceptualization of this framework to account for the rationality of students. 

Practical rationality of teachers 

The practical rationality of teaching is a framework for finding the justification for the 

actions that teachers take inside instruction.  This framework  begins with the assumption 

that classroom interaction is a type of symbolic economy (Bourdieu, 1990; 1998) in 

which actions on mathematical tasks are exchanged for claims on the didactical contract 

(Brousseau, 1997; Herbst, 2002).  This symbolic economy is described in detail in 

“Teachers’ perceptions of geometry students” (Aaron, this volume).  From this view of 

teachers’ work (see Figure 35), one sees that two major responsibilities of teachers in 

instruction are orchestrating students’ work on mathematical tasks and managing the 

exchange of student work for claims on the didactical contract.  Focusing on 

orchestrating students’ work and managing the exchange is a simplified view of the work 

that teachers do, however it is sufficient to model the instructional situations examined in 

this study. 
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Figure 36:  The work of teaching (adapted from Herbst 2010a) 

This work that the teacher engages in gives rise to a rationale for decision-making, or a 

set of norms for action, that feeds teachers’ decision-making.  Another source of 

information for decision-making is teachers’ professional obligations.  These obligations 

are constraints on the work of teaching and come from four stakeholders (Herbst & 

Balacheff, 2009).  These stakeholders are individual students, the class as a whole, the 

institution of school, and the discipline of mathematics.  These obligations, historically, 

can be seen to contribute to the development of the norms of instruction, and during the 

course of instruction can override the teacher’s inclination to act according to a particular 

norm. 
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For example, a hypothesized norm inside the situation of ‘making conjectures’ is the 

teacher should make students’ conjectures public.  This results in the action that, after 

students have had time to work independently making conjectures, the teacher will ask 

students to share their conjectures.  However, the teacher’s professional obligations could 

stop her from doing this.  Responding to an individual obligation, a teacher could know 

that an individual student is shy, so she would not ask that student to share his conjecture.  

Or, in response to an interpersonal obligation, a teacher could worry about the effects on 

her class of validating conjectures that come from some students and rejecting 

conjectures that come from others, so she would not have any students share their 

conjectures.  Or, responding to an institutional obligation, a teacher could decide that she 

does not have enough time to have students share their conjectures.  Or, responding to a 

disciplinary obligation, a teacher could worry that since her students may come up with 

conjectures that are not correct she should not make space for them to be heard in class.  

In each of these examples the teacher is perceived to be breaching the norm in favor of a 

professional obligation. 

Figure 37 shows the interaction of instructional norms and professional obligations that 

leads to teacher action (Herbst, 2010a).  On the right hand side is the instructional norms 

for teacher action, based on the work of teaching.  On the left hand side are the 

professional obligations that could compel a teacher to act in a way that could be seen as 

a breach of an instructional norm in favor of another action.  These two, instructional 

norms and professional obligations contribute to teachers’ practical rationality.  

Mediating this practical rationality is a teacher’s personal resources.  Personal resources 

are influences on teachers’ action that are held by individual teachers (as opposed to 



 

 331 

norms which are cultural resources).  An example of a personal resource is a teacher’s 

level of mathematical knowledge for teaching (Ball et al., 2005). This framework 

provides a way of describing teachers’ actions in instruction that is based on the work of 

teaching and on the professional obligations of teaching. 

 

Figure 37:  The practical rationality of teaching (adapted from Herbst 2010a) 

Practical rationality of students 

An aim of the current paper is to reconceptualize the framework for the practical 

rationality of teaching to account for the rationality of studenting.  This involves mapping 

the work of the student, hypothesizing norms for student action, and hypothesizing 
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obligations that students respond to, which could possibly override students’ inclination 

to act according to these norms. 

I argue that “studenting” is a practice (Cook & Brown, 1999).  According to Cook and 

Brown, a practice consists of “the coordinated activities of individuals and groups in 

doing their ‘real work’ as it is informed by a particular organizational or group context” 

(p. 386-387).  When students do work in classroom they are doing their ‘real work’ in the 

sense that as geometry students their major responsibility, as laid out by the didactical 

contract, is to do mathematical work in classrooms.  They have learned how to do this 

work over the course of many years in school, and math classrooms in particular, and 

their work is informed by the judgment of their peers.  One could imagine that when 

watching the animated scenario all of the participants could have said, “I don’t know why 

Alpha acted that way.  I’m not Alpha.”  But instead the participants felt that they had a 

right to speak on Alpha’s behalf because they also engage in the practice of studenting. 

Cook and Brown illustrate that medicine is a practice with the following example.  “In 

the simplest case, if Vance’s knee jerks, that is behavior. When Vance raps his knee with 

a physician’s hammer to check his reflexes, it is behavior that has meaning, and thus is 

what we call action. If his physician raps his knee as part of an exam, it is practice. This 

is because the meaning of her action comes from the organized contexts of her training 

and ongoing work in medicine (where it can draw on, contribute to, and be evaluated in 

the work of others in her field)” (p. 387).  Extending this illustration to the practice of 

studenting, if an individual student raises her hands to signal that she would like to share 

a counter-example to a conjecture that another student put forth, to show that another 

student has missed an important mathematical point, in the context of a classroom 
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discussion with her peers, it is practice.  This group of peers who give weight to the 

choices of individuals makes the work of studenting a practice.  

 I would like to argue that the practice of studenting rests on a rationality that is similar to 

the rationality that supports the practice of teaching.  Over the course of a student’s life in 

school, and in mathematics classrooms in particular, students become tacitly aware of the 

norms of the classroom and what they “ought to do” at a particular moment, within a 

particular instructional situation.  Simultaneously students develop obligations of the 

position of student that will be such that they are occasionally compelled to act in a way 

that could be perceived as a breach of a norm in favor of acting in accordance with that 

obligation.  For the sake of symmetry with Herbst’s (2010a) model for the practical 

rationality of teaching, I refer to students’ tacit knowledge for how to act during 

geometry instruction as the “practical rationality of geometry studenting,” and I refer to 

students’ commitments to the position of student “students’ professional obligations.” 

Figure 38 reformulates instruction from the point of view of the student.  The students’ 

main responsibility is to do work on mathematical tasks.  The student receives these tasks 

from the teacher and interacts with available resources to complete the task.  Once the 

work is done, it is submitted to the teacher to be valued as either an instance of 

mathematical learning, or a chance to receive evaluation from the teacher (Aaron & 

Herbst, under review).  Since the responsibility of exchanging students’ work for claims 

on the contract is primarily in the domain of the teacher it is not included in this diagram 

of the work of studenting. 
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Figure 38:  The work of studenting 

Building on the description of the work of studenting in Figure 38, one can envision the 

corresponding description of the practical rationality of studenting.  In Figure 39 the right 

hand side shows the work of studenting and contributes the instructional norms for 

student action to practical rationality.  The left hand side shows the obligations that 

students respond to and could potentially override students’ inclinations to act according 

to the norms for student action.  The instructional norms and obligations combine to form 

the rationality of studenting, and individual student’s personal resources mediate this 

rationality.  An example of a personal resource would be student’s goal orientation 

(Pintrich, 2000). 
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Figure 39:  The practical rationality of studenting 

In this model, the norms of instruction and the obligations constitute the practical 

rationality of studenting.  Both the norms and obligations are shared social resources that 

students use to make meaning of instruction.  Students’ personal resources are factors that 

mediate these social resources and affect students’ actions on an individual level.  The 

norms are theorized to stem from the work of instruction, the obligations stem from the 

four sources of individual, interpersonal, institutional, and truth, and the personal 

resources stem from students’ individual cognitive abilities, emotional dispositions, life 

experiences, etc. 
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In constructing this framework, I begin with the hypothesis that the obligations that 

students respond to correspond to the obligations teachers respond to.  Since students are 

in the same classroom environment, with the same class, in the same institution, dealing 

with the same discipline as the teachers it is plausible that students would be obliged to 

the same stakeholders as the teachers.  So I hypothesize that students respond to 

obligations from students as individuals, interpersonal relations in the classroom, and the 

institution of school.  However, at least one adjustment is called for to fit the teachers’ 

professional obligations to the students.  Since students are learning about the discipline 

of mathematics, and do not yet know what obligations the discipline would impose on 

their actions, I replace the obligation to the discipline with a more general obligation to 

truth.  I hypothesize that students do have tools to measure true and false and they 

support the endorsement of true ideas and reject the endorsement of false ideas. 

From the empirical study of students’ perception of instructional norms, one sees that the 

participants do act as if they respond to some set of obligations that act as departures 

from the norms.  The findings showing alternative justifications lend support to the model 

for the rationality of studenting seen in Figure 39, in particular to the interaction between 

norms and obligations.  The content of the obligations also is supported by the empirical 

study.  In this model the obligations stem from four sources; individual students, 

interpersonal relations, the institution of school, and truth. 

The five alternative justifications that were found in the empirical study; cognitive 

difficulties, worry of incorrectness, desire to keep an idea private, politeness, and desire 

to share true ideas, can be mapped onto these sources for obligations, and personal 

resources.  Cognitive difficulties could be seen as an obligation that students have to 
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individual students in the sense that each individual student is entitled, and expected, to 

have some cognitive difficulties as a result of being a student in school.  The worry of 

being incorrect could be interpreted as either a personal resources in the form of a 

performance-avoid goal orientation, or it could be interpreted as an aspect of the students’ 

obligation to truth in the sense that students should not endorse or support ideas that are 

incorrect.  The desire to keep an idea private is an example of a personal resource 

because it reflects a desire for the student to step out of the student role temporarily.  

However, the participants saw that this is sometimes a reasonable move for a student to 

make.  Politeness is as aspect of students’ obligation to the interpersonal relations of the 

class; because the student is not just an individual student, but also a member of a class, it 

is required that students are polite to each other.  Finally, a desire to share true ideas is 

another aspect of the obligation to truth.  Like the worry of incorrectness, it reflects 

students’ commitment to endorse and support true ideas. 

This model for the rationality of studenting is useful because it combines several theories 

that have been used to explain student action.  In particular, it describes how instructional 

norms, which in this model are the primary explanations for student behavior, can be 

overruled in particular moments by students’ professional obligations.  What I consider 

professional obligations have been considered in the literature in many ways, such as 

students’ relationships with the schools and students’ relationship to work in classrooms.  

These instructional norms and obligations combine to form the rationality of studenting, 

which, I claim, shapes the position of student in geometry instruction.  This rationality is 

expected of all students (unlike the personal resources), and is directly related to the work 

of studenting.  Practical rationality, before it results in action, is mediated by individual 
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student’s personal resources.  The personal resources are not expected to be shared by all 

students, and they are not necessarily tied to the work of studenting.  Much of the work in 

educational psychology, which looks at the cognitive, emotional, and behavioral actions 

of individual students, would fit into the category of personal resources. 

Conclusion 

The work of being a student is complex work, which is guided by a unique rationality 

based on this work.  The current paper makes two contributions to understanding this 

work and this rationality.  First, this paper contributes an empirical study of the 

instructional norms of geometry instruction.  In this study classes of geometry students 

responded to an animated classroom scenario of geometry instruction, which allowed 

students to respond to particular instructional norms.  These responses were coded 

according to a list of hypothesized norms, looking for confirmatory evidence for these 

norms, or evidence that students would act in a way that is a departure from the norm.  

This evidence of alternative justifications, which was unaccounted for by the theory of 

instructional norms, was than used as motivation to conceptualize a framework for the 

rationality of studenting using the framework for understanding the practical rationality 

of teaching developed by Herbst (2010a, 2010b).  This framework for the rationality of 

studenting incorporates instructional norms, professional obligations, and personal 

resources.  Each of these components is supported by past research. 

As I mentioned in the beginning of this paper, the current study is part of a larger project 

aimed at better understanding the position of the student in geometry instruction.  The 

framework described here adds to this understanding by describing the shared obligations 

and norms that students work within when they construct their actions in geometry 
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instruction.  The instructional norms explored in this empirical study, and the obligations 

hypothesized here and supported by the literature, are cultural resources that are available 

to individuals who take up the position of geometry student.  Individuals become familiar 

with these resources as they spend time in schools and in geometry classrooms in 

particular. 

Holland et al (1998) define positional identities as having to do with “the day-to-day and 

on-the-ground relations of power, deference and entitlement, social affiliation and 

distance—with the social-interactional, social-relational structures of the lived world”  (p. 

127).  This definition of position highlights the importance of action in the “lived world” 

and how these actions construct our relationships with others.  Within geometry 

instruction, students’ actions construct their relationship with the content to be learned, to 

their peers, and to the teacher.  The framework outlined here provides a theory for how 

these actions are constructed through instructional norms, professional obligations, and 

personal resources. 

By understanding the student’s position in geometry instruction we will be better able to 

understand geometry instruction as a whole.  Understanding the complex system of 

geometry instruction is the first step to making informed improvements to the system.  

From this study it is clear that it is not enough to understand any one influence on the 

actions of geometry students, but these influences are all interconnected.  A change in 

curriculum that is expected to produce a particular student action based on an 

understanding on instructional norms could result in an unexpected action that could be 

explained in terms of an obligation that is held by students.  That is, changes to any part 

of the system should take into account their effect on other parts of the system, and these 
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possible interactions can only by predicted by first understanding the system as a whole.  

The current paper represents an attempt in that direction. 

Unlike teachers, students go through no professional training for how to be a student, so 

their actions are guided solely by the rationality that they develop from doing the work of 

studenting.  There is, therefore, a circular relationship between studenting and the 

rationality of studenting.  The actions that students engage in mold the rationality of 

studenting and the rationality of studenting shapes future actions.  It is difficult, if not 

impossible, to change students’ instructional actions directly, but if we can uncover the 

rationality of studenting we can use this as a lever for changing student action (see 

Lampert, 2001, chapter 10).  The first step after understanding student rationality would 

be to design instructional activities where students’ rationality could be use in favor of 

instruction.  That is, in cases where students’ actions are undesirable due to students’ 

interpretation of a task or situation, that task or situation could be reengineered in such a 

way that the students’ rationality would result in more beneficial instructional actions.  

As students spend time engaged in mathematical tasks, performing actions that embody 

more desirable mathematical work, then their rationality of studenting could possibility 

change to naturally support more productive mathematical work. 
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Chapter 5 

Conclusion 

As a study of instruction, this dissertation provides insight into the position of the student 

inside instruction.  This insight is gained through the combination of three studies, each 

looking at the position of student from a different instructional point of view.  The first 

study looks at the position of the student from the viewpoint of mathematics, the second 

looks at the position of the student from the viewpoint of the teacher, and the third looks 

at the position of the student from the viewpoint of the student.  Together these studies 

develop a view of the position of student that reflects its dependence on both the 

mathematics and the teacher, and reflects the interdependent nature of the elements of 

instruction.  From this dissertation one gets a better understanding of the ways that the 

students’ interaction with the teacher and the mathematics shape this position, and of the 

tacit norms that guide student action. 

From a mathematical viewpoint, the first study provides examples of two different ways 

of making meaning from mathematical discussions.  It also shows the virtue of the two-

column proof in its affordance of supporting of chains of implications in arguments.  

However it also shows the drawback of the two-column proof in its lack of flexibility to 

support backings and rebuttals in students’ arguments.  One sees that learners bring 
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resources for argumentation to the classroom that are not sufficiently supported, like 

creating backings and rebuttals, while the two-column proof does seem to provide useful 

support to students in shaping longer arguments. 

This knowledge of the arguments that learners could produce when they are engaging 

with classroom discussions describes some of the mathematical space that individuals 

could occupy when they are in the position of student.  One sees that this mathematical 

space affords the resources for building arguments in the form of long strings of 

implications, but that it restricts students from making arguments that are not of this form 

and arguments that include elements besides simple implications. 

A finding of this study is that students, in instruction, elaborate arguments using different 

styles of argumentation.  This study provides an illustration of two of these 

argumentation styles, but there could more styles worthy of study.  For instance, it would 

be interesting to conduct a case study with students who are less successful in 

mathematics than the participants in the current study.  Also, a longitudinal study that 

traced the development of a single student’s arguments over the course of the high school 

geometry course could show how a familiarity with the argumentation style of the two-

column proof develops over time.  Another future project could be to look across the 

arguments of several students and build a conceptualization of different argumentation 

styles. 

From the perspective of the teacher, the second study shows that teachers perceive 

students differently in the context of the instructional situations of ‘making conjectures’ 

and ‘doing proofs.’  In the situation of ‘making conjectures’ teachers perceive students in 
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terms of engagement with the lesson.  This focus on engagement ignores the 

mathematical value of students’ work in this situation.  In the situation of ‘doing proofs’ 

teachers perceive students in terms of the mathematical content at stake.  These different 

ways that teachers perceive their students has implications for how students are supported 

in their mathematical work 

Understanding these opportunities for action helps explain how the teacher shapes the 

position of the student.  That is, because teachers are responsible for conducting 

instruction, teachers’ perception of students shapes the work that is available for students 

to do.  This description of how the teacher perceives her students while doing the work of 

teaching, inside instructional situations, describes the opportunities for action that the 

teacher makes available for students. 

In future research it would be interesting to study teachers’ perception of students in an 

algebra course, particularly the situations of ‘solving equations’ and ‘doing word 

problems.’ (Chazan & Lueke, 2009; Chazan, Sela & Herbst, in review)  I would expect to 

find that teachers’ perception of their students also varies across instructional situations in 

this course.  A study of teachers’ perception of students in algebra classrooms would also 

afford a comparison with teachers’ perception of students in geometry classrooms.  Since 

these courses appear to be so different in terms of the material for students to learn, it 

would be interesting to see if these differences were reflected in teachers’ perception of 

students. 

From the viewpoint of the student I conceptualize theoretical frameworks for studenting 

and the system of tacit knowledge that guides studenting, the practical rationality of 
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studenting.  This framework is based on the frameworks for the work of teaching, and the 

practical rationality of teaching (Herbst, 2010).  I support the conceptualization of these 

frameworks for studenting and the practical rationality of studenting by investigating 

students’ practical rationality in the high school geometry classroom.  This practical 

rationality of studenting provides a description of the actions that students see as viable in 

instruction and therefore shapes the position of the student. 

From the perspective of the student, the third study shows that the practical rationality of 

studenting consists of norms for student action and obligations that students hold to 

educational stakeholders.  One sees that student actions can partially be accounted for by 

hypothesized instructional norms.  When students’ action are perceived as breaching 

instructional norms, these perceived breaches can be accounted for by obligations that 

students hold, based on their obligations to individuals, interpersonal relations, the 

institution of school, and truth.  These norms and obligations of studenting can be seen to 

guide the work that students do in geometry instruction. 

More research is called for to further develop the conceptualization of studenting.  One 

aspect of research that is needed is to see if the results found in this study could be 

supported in additional conversations with students, possibly in smaller groups, so that 

more voices could be heard.  Also, past research has shown that different students take on 

different instructional identities (Aaron & Herbst, in review) and research is needed to 

connect these instructional identities, which are related to students’ overall stance 

towards the didactical contract, to the specific norms and obligations that are found in the 

current study. 
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Animated scenarios of classroom instruction proved to be valuable data collection tools 

in each of these studies.  In the first study, on learners’ mathematical arguments, the 

animated scenarios allowed participants access to classroom discussions that they could 

pause, rewind, or fast-forward.  This ability to control the flow of time allowed them to 

examine the discussion in detail; dwelling on moments that caught their interest and 

moving quickly through moments that did not.  The animated scenarios also provided the 

participants in this study with access to mathematical ideas that were presented through 

the voices of multiple characters, which highlighted the multiple views that go into 

developing a mathematical idea.  The fact that these characters were simple animated 

characters instead of real students in a real classroom reduced the complexity of the 

representation so that the participants were more able to focus on the mathematical 

discussion. 

The success of this method of engaging learners with mathematical ideas recommends it 

for use in future research aimed at understanding students’ mathematical behavior and 

thinking, and for use in the teaching of students.  For example, studies making use of 

animated scenarios could be aimed at understanding how learners take up the 

mathematical ideas of others as they are learning the subject.  These animated scenarios 

could also be used with students in classrooms as supports for classroom discussions.  

Discussing mathematical ideas is a skill that students learn from experience.  Students 

who have never had the opportunity to experience mathematical discussions could learn 

this skill from engaging with the animated scenarios.  Eventually, the goal would be to 

have students discussing ideas with each other. 
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In the second and third studies, on teachers’ perception of students and the practical 

rationality of studenting, the animated scenarios acted as the basis for breaching 

experiments that elicited teachers’ and students’ tacit knowledge about how to enact their 

respective positions in instruction.  The animated scenarios allowed teachers and students 

to vicariously experience a familiar setting, being part of a high school geometry 

classroom, in which action did not proceed according to the normal rules for social 

interaction in that context.  The abnormality of the interaction would prompt the teachers 

and students to respond in ways that could be seen to display the norms of practical 

rationality of teaching and studenting, respectively. 

This method of vicarious breaching experiments could be used to uncover other tacit 

knowledge, besides the knowledge of teaching and studenting.  For example, animated 

scenarios of medical diagnosis or courtroom proceedings could be developed to study the 

tacit knowledge of medical professionals or law professionals.  These animated scenarios 

could be discussed by experienced practitioners and norms for action inferred from their 

conversations. 

Overall, this dissertation offers a detailed description of the complex position of student 

that individuals take up in instruction.  By looking at the position of student from the 

viewpoint of the teacher and mathematics, instead of only the student I develop a 

conceptualization of the student’s position that is dependent not only on who the student 

is, but how the student interacts with the teacher and with the mathematics.  This 

multifaceted view is essential in understanding the position of the student in instruction. 
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