
Efficient Data Center Architectures Using

Non-Volatile Memory and Reliability Techniques

by

David Andrew Roberts

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2011

Doctoral Committee:

Professor Trevor N. Mudge, Chair
Professor David Blaauw
Professor Dennis Sylvester
Associate Professor Scott Mahlke

c© David Andrew Roberts 2011
All Rights Reserved

ACKNOWLEDGEMENTS

I’d first like to thank my research advisor, Trevor Mudge, for his continued support

and sharing of his expertise while being flexible enough to let me explore alternative

research directions that I found interesting. My committee members David Blaauw,

Scott Mahlke and Dennis Sylvester have also had a major influence on the ideas that

shaped my thesis. Profs Todd Austin, Mark Brehob and Thomas Wenisch provided

valuable advice and collaboration on several of my research papers.

The learning experiences enabled by my managers and colleagues during intern-

ships at HP Labs and ARM Ltd. were very rewarding. I’d especially like to thank

Parthasarathy Ranganathan, Jichuan Chang and Mehul Shah at HP whom I col-

laborated with on the “Nanostores” project during the summer of 2009. Partha,

Jichuan and I developed the evaluation methodology and system design for this

energy-efficient data center architecture. During the initial brainstorming sessions,

Mehul provided us with valuable insights on large-sale workloads and the types of

system architectures currently used to solve these data-oriented problems. All three

contributed significant effort in enhancing and editing our conference paper sub-

missions, for which I am very grateful. Access to their computer resources during

my time as a visiting researcher allowed me to continue to perform simulations and

run-time measurements using a large number of networked servers.

At ARM I had the pleasure of working with David Bull, Krisztian Flautner, David

Flynn and Dipesh Patel on several energy-related projects. Prior to starting my Ph.D

ii

studies, they exposed me to CPU energy efficiency concerns and dynamic voltage

scaling (DVS), controlled by their Intelligent Energy Manager (IEM) software. I

worked on the first implementation of IEM based on Krisztian’s thesis work, then

went on to explore Razor timing-fault tolerance and fault-tolerant “Block Grouping”

caches under their funding while at Michigan.

My fellow graduate students provided inspiration and entertaining discussions,

and I’d like to thank Geoff Blake, Shidhartha Das, Ron Dreslinski, Dave Fick, Taeho

Kgil, Seokwoo Lee, Yuan Lin, Dave Meisner, Sujay Phadke, Sangwon Seo, Korey

Sewell, Denny Vandenberg, Ilya Wagner, Mark Woh and Bo Zhai, among others. I

owe much of my success to my girlfriend Dan Chang and the rest of my family for

their support and encouragement over the years. I’d also like to thank my friends

for giving me the chance to step back from the focus of study and have some fun.

Thanks to Bill and Kim Battle, Mike Morelli, Dan O’Karma, Gary Wallen and the

rest of the Ann Arbor chapter of the Ride Motorcycle club. And also thanks to

musicians Kevin Kapalla, Mumtaz Karatas, Roy Schmidt and Greg Scott for many

enjoyable jam sessions, performances, guitar lessons etc. Elson Liu and Adam Zettel,

you were great roommates.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Data Center Trends . 2
1.1.1 Energy-efficient Data Center Architectures 2
1.1.2 Workloads and Datasets . 4

1.2 Technology Trends . 6
1.2.1 Storage Technology and I/O interfaces 6
1.2.2 Networking and Communication 10
1.2.3 Emerging memory technologies . 11

1.3 Challenges . 11
1.3.1 Overcoming the inefficiencies of existing storage devices 11
1.3.2 Breaking the I/O bandwidth barrier 12
1.3.3 Modelling and optimization at data-center scale 13
1.3.4 Overcoming non-volatile memory endurance limitations 13
1.3.5 Breaking CPU voltage-scaling limits 14

1.4 Contributions . 14
1.4.1 Re-architecting the storage hierarchy with Nanostores 14
1.4.2 Extending wear-leveling to distributed storage 15
1.4.3 Overcoming the limits of CPU voltage scaling 15

1.5 Thesis Structure . 16

II. Background and Related Work . 17

2.1 Efficient Data Center Architectures . 17
2.2 Emerging Technologies . 18

2.2.1 Memory technology scaling trends and limitations 18
2.2.2 Non-Volatile Memories . 21
2.2.3 3D die stacking . 23

2.3 Memory Reliability . 23
2.3.1 Non-Volatile Memory Wear-Leveling in Data Centers 24
2.3.2 Cache Memory Fault Tolerance . 27

III. Nanostores: Co-located Compute-Storage NVRAM-based Architecture
for Data-Centric Workloads . 32

iv

3.1 Introduction . 33
3.2 Architecture: Nanostores . 34

3.2.1 Motivation . 34
3.2.2 Proposed architecture . 37

3.3 Evaluation Methodology . 43
3.3.1 Challenges . 43
3.3.2 Proposed benchmarks . 44
3.3.3 Proposed evaluation methodology 47
3.3.4 Choice of parameters and baselines 58

3.4 Evaluation Results . 60
3.4.1 Baseline benefits . 60
3.4.2 Analysis of performance benefits 62
3.4.3 Analysis of energy efficiency benefits 65
3.4.4 Applicability of nanostore techniques in other system architectures 67
3.4.5 Other objective functions . 69
3.4.6 Impact of relaxed power density and network constraints 69
3.4.7 Model Validation . 72
3.4.8 Discussion . 78

3.5 Conclusions . 79

IV. Non-Volatile Memory Reliability for Data Center and Server Applications 81

4.1 Wear-out mitigation techniques . 81
4.2 Estimating storage device wear-out in the Nanostore architecture 82
4.3 Distributed Wear Leveling . 83

4.3.1 Introduction . 83
4.3.2 Background and Motivation . 86
4.3.3 Experimental Methodology . 88
4.3.4 Distributed Wear Leveling . 96
4.3.5 Results . 101
4.3.6 Conclusion . 105

4.4 NAND Flash based Disk Cache Reliability 106

V. On-Chip Cache Memory Reliability for Energy Reduction 111

5.1 Introduction . 112
5.2 Background . 114
5.3 Impact of on-chip cache failure rate on processor performance 115

5.3.1 On-chip cache device scaling and failure rate 115
5.3.2 Performance impact of set-associative cache defects 117

5.4 Comparison of fault-tolerance techniques . 119
5.4.1 Existing fault-tolerance schemes . 121
5.4.2 Proposed fault-tolerance scheme . 125

5.5 Results . 133
5.5.1 Performance and area under voltage scaling 133
5.5.2 Performance under cell scaling . 134
5.5.3 Energy saving using block grouping at low voltage 135

5.6 Conclusions . 137

VI. Conclusions and Future Work . 138

APPENDICES . 141

v

BIBLIOGRAPHY . 147

vi

LIST OF FIGURES

Figure

1.1 IDC survey indicates increasing cost of power and cooling [1, 2] 3

1.2 Comparison of flash usage models in a server [2] . 7

2.1 Predicted cell areas of different memory technologies [3] (DRAM and Flash from
ORTC-2A, Phase-Change memory (PCM) from Focus C, PIDS5). Note that DRAM
and NAND Flash do not have known manufacturable solutions for scaling beyond
2011 timeframe. For Memristors (MRT) we assume a feature size similar to NAND
Flash projections, and cell area factor A=10f2, based on direct discussions with
HP. We do not show MRT predictions prior to the target year of our study (2015)
due to the current experimental nature of the technology. 21

3.1 Nanostore system architecture . 38

3.2 Per-node capacities derived from ITRS roadmap 2009 [3]. Note that we use design
points at the 2015 timeframe in our models. DRAM capacity represents 16 off-chip
DIMMs consisting of 16 DRAM chips each. The 3D-stacked PCM and MRT consist
of 8 stacked die, while the MRT also has 4 internal layers on each die. 39

3.3 A data-centric workload taxonomy . 44

3.4 Workload mapping . 45

3.5 Two-level simulation with design optimizer . 48

3.6 Sort: Separate Data Store and Main Memory . 49

3.7 Sort: Unified Data Store and Main Memory . 50

3.8 cksum: Separate Data Store and Main Memory . 53

3.9 cksum: Unified Data Store and Main Memory . 54

3.10 video: Separate Data Store and Main Memory . 55

3.11 video: Unified Data Store and Main Memory . 56

3.12 Recommender . 57

3.13 Search . 58

3.14 System parameters . 59

vii

3.15 Baseline architectures . 59

3.16 Performance and energy efficiency improvements relative to 2015 baselines (EDP-
optimized). 60

3.17 Configurations and scale multipliers of the baseline and SSD/DRAM/nanostore
designs. ScaleX refers to the system-level scale factors relative to the baselines,
as follows: Node (networked node count) OPS (peak compute throughput (Opera-
tions/second)) DS (Data store bandwidth) Net (Network bandwidth) 62

3.18 Power breakdown (% of total) for sort hardware configurations (energy-optimized).
Net, DS, Mem and Core refer to network, data store, main memory and core power,
respectively. A suffix of I refers to Idle (background) power, and A refers to Active
power. 66

3.19 Impact of the optimizers objective function . 69

3.20 Impact of thermal/network constraints . 69

3.21 Energy-efficiency and performance relative to baseline designs under different Ther-
mal and Network bandwidth limits. 72

3.22 Block diagram of MPI-based shuffle phase software used in model validation 73

3.23 Per-node network bandwidths. The three points in the legend represent the number
of cores per networked node. 76

3.24 Aggregate data sorting bandwidths. The first three legend items represent mea-
sured results for different numbers of cores. The points labelled NanoX represent
the theoretical Nanostore performance model for each core count (modelled assum-
ing 80 MB/s local sorting throughput), and their best-fit lines are also shown. . . . 77

3.25 Aggregate data sorting bandwidths (Nanostore models assume 60 MB/s local sort-
ing throughput). 77

3.26 Measured nsort merge throughput . 78

4.1 Estimated lifetime in years for PCRAM based system. Cache sizes in MB are shown
below each column . 82

4.2 NAND Flash plane . 86

4.3 NAND Flash SSD . 86

4.4 High-Level System Configuration, This figure shows the physical organization of
the baseline system. All 13 servers are connected via a Gigabit Ethernet switch,
supporting 1 Gbit/s (128 MB/s) of bandwidth for each one. Every volume is
replaced with a 1 TB SSD drive. 88

4.5 Total data written (GB) per volume over the 7-day tracing period 90

4.6 Block and access classification. Data are for 7-day traces. 91

viii

4.7 Time behavior of writes. Each data point is recorded for a 3-hour interval. 92

4.8 Correlation between time intervals. Outlier block 48128 has been removed. Each
point represents a 64KB block accessed in either (or both) of successive 3-hour
intervals. The x-axis represents write count to the block during the first, and
y-axis the second interval. 93

4.9 Correlation between the earliest write bursts. Note that for proj 2, blocks with low
write counts were omitted for faster plotting. 94

4.10 Top-level diagram . 97

4.11 Distributed wear leveling algorithms . 99

4.12 (RS+POOL) run-time wear-leveling policy. The x-axis represents elapsed time in
3-hour intervals. The y-axis shows improvement over baseline. 102

4.13 (LFPS+POOL) run-time wear-leveling policy. The x-axis represents elapsed time
in 3-hour intervals. The y-axis shows improvement over baseline. 103

4.14 Local SSD wear-leveling write efficiency. 104

4.15 Peak network bandwidth . 104

4.16 NAND Flash based disk cache block diagram . 107

4.17 BCH decoding latency for varying numbers of correctable bits. Source: Taeho Kgil
[4] . 108

4.18 Optimal access latency and SLC/MLC partition for various multimode MLC Flash
sizes . 108

4.19 Relative frequency of lifetime mitigation events and the corresponding improve-
ments in lifetime. Source: Taeho Kgil [4] . 109

4.20 Network bandwidth as a function of DRAM size (including primary disk cache)
and secondary disk cache technology. The system was provisioned with 1GB of
secondary disk cache. 110

5.1 The one bit implementation (OBI) technique . 115

5.2 Normalized cell failure rates as a function of voltage for three different memory cells116

5.3 L2 miss rate in (a) and IPC in (b) as a function of number of randomly disabled
blocks. A-Cholesky, B-FFT, C-LUContig, D-LUNoncontig, E-Radix, F-Barnes,
G-FMM, H- OceanContig, I-OceanNoncontig, J-Raytrace, and KWaterNSquared,
respectively. 119

5.4 The proposed block grouping scheme . 126

5.5 Example of selector usage (2 bits/selector). 127

5.6 Percentage of faulty blocks using block pairing (G = 2) for different group restric-
tions. Block size = 32 bytes. 129

ix

5.7 L2 miss rate in (a) and normalized IPC in (b) for each technique. A-Cholesky,
B-FFT, C-LUContig, D-Radix, E-OceanContig, and F-OceanNoncontig, respectively.133

5.8 Comparison of schemes when scaling cell size. Cell size is relative to the smallest
considered size from Figure 5.2 . 134

5.9 Comparison of schemes when scaling voltage . 135

7.1 Start-Gap Normalized Endurance . 143

x

LIST OF TABLES

Table

2.1 Storage technology parameters (single-cell density, bandwidth, latency, energy and
write endurance). We focus on non-volatile memories as candidate permanent data
stores. The DRAM DIMM is included for baseline system modelling. The first
three rows are estimates for an entire storage device rather than individual bit
cells alone, projected to the 2015 timeframe, based on historical scaling trends. We
assume 10 Watts total power per HDD and 2 Watts per SSD. Off-chip DRAM access
energy is derived from [5]. The lower section contains published parameters from
various sources. PCM and Memristor numbers were scaled according to ITRS’09
projections for the year 2015. 20

2.2 Memory idle power [6]. 22

3.1 Network layer scaling . 57

3.2 Hardware configurations. Optimized CPUs have their frequency, issue width and
number of cores per socket adjusted for optimal system performance (throughput,
energy or EDP) . 70

4.1 List of traces . 89

4.2 Baseline SSD parameters . 96

5.1 M5 CPU Configuration . 118

5.2 Candidate cache fault-tolerance schemes and their storage overheads for an 1MB
cache . 121

5.3 Selector bit caching parameters and results . 132

5.4 Block grouping energy saving example . 136

xi

ABSTRACT

Efficient Data Center Architectures Using Non-Volatile Memory and Reliability Techniques

by
David Andrew Roberts

Chair: Trevor N. Mudge

The cost of running a data center is increasingly dominated by energy consump-

tion, contributed by power provisioning, cooling and server components such as pro-

cessors, memories and disk drives. Meanwhile, emerging classes of complex data

center workloads place a heavier burden on processing and storage hardware, in-

volving accesses to huge datasets for each operation. Fortunately, emerging tech-

nologies promise better performance and efficiency. Non-volatile (NV) memories for

applications such as disk caches [7, 4, 2, 8] are proven ways to save energy, and in

recent developments, byte-addressable persistent storage such as phase-change mem-

ory (PCM) or Memristors can serve as both main memory and permanent storage,

reducing data transfers between layers of hierarchy. Further, 3D die-stacking pro-

vides a low-energy high-bandwidth means of connecting storage with computation

xii

hardware. The challenge lies in how to optimally combine and balance system ele-

ments when data-center workload demands vary significantly. Once combined, new,

inherent drawbacks such as limited memory write endurance need to be countered.

Further, as processors often dominate system power consumption, they become a

critical target for energy optimization. Unfortunately, current CPU architectures

cannot fully exploit voltage scaling due to the need for safety margins [9] as well as

having large caches that fail at higher voltages than the logic circuits [10].

In this thesis, we address these challenges via the following novel techniques;

• We propose a distributed, energy-efficient data center architecture [11, 12], re-

placing hard disk drives and DRAM main memory with non-volatile Memristors

or PCM. The system is composed of a network of uniform building blocks called

Nanostores that combine processors with a permanent data store. To reduce

unnecessary data movement, DRAM and disk layers are eliminated, resulting

in a flattened memory hierarchy.

• Because NV memories wear out with the number of data writes, we propose

novel wear-leveling solutions. First we propose distributed data center wear-

leveling [13] to address SSD-based and future Nanostore based storage, with

a 3.9x improvement in lifetime. Second, we propose server-level reliability im-

provements for Flash memory based disk caches [4] that provide 20x improve-

xiii

ments in lifetime on average.

• We propose a novel on-chip cache fault tolerance scheme that allows more than

a 30% improvement in energy efficiency [14, 15, 16].

xiv

CHAPTER I

Introduction

This thesis proposes that new architectures at the chip, server and data-center lev-

els have the potential to save energy and increase performance by significant factors.

Although optimization at any one level provides some of the benefits, the improve-

ments multiply when combined at the system level. In the era of “cloud computing”

where applications are provided as a globally accessible service that accesses per-

sistent data, these are critical issues. The data centers which house the computing,

storage and associated cooling infrastructure for these services are now being designed

around minimizing cooling costs. For example, there have been studies on operating

at different temperatures [17] and special building designs for improved cooling [18].

These cooling costs are directly related to the power consumption, so minimizing

energy per unit of work (efficiency) can bring significant cost reductions. Meanwhile,

the applications themselves have to process and combine multiple discrete data items

in a single operation, for example, combining information about multiple friends on

a Facebook web page, or correlating the raw text and images of multiple websites

[19]. To handle this type of data, alternative storage such as DRAM (instead of hard

disk) provides a higher performance, but expensive alternative.

Fortunately, these demands come at a time when technology is becoming available

1

2

that may overcome the limitations of conventional architectures. Flash-based solid-

state disks have been around for several years and are gradually being adopted to

augment or replace hard disks due to their performance and efficiency. Further

out on the horizon are competitors to DRAM and SRAM including phase-change

memory (PCM), Memristors (MRT) and MRAM (Magnetic RAM) which promise

future scalability, higher capacities and lower energy than current storage. Most of

these non-volatile memories have an important limitation - finite write endurance -

that has been addressed through write reduction, wear-leveling and fault-tolerance

schemes. However, because we want to take advantage of these devices in the data

center, this thesis proposes mechanisms for system-wide wear-leveling rather than

conventional leveling inside one SSD only. Finally, we identify that especially for

current systems, and even for our new architecture, the CPU often consumes the

largest fraction of system power. To address this critical component, we enable an

existing energy-saving technique (voltage scaling) to work even more effectively, by

reducing the voltage at which on-chip memories fail.

This section describes the changing data center landscape in detail, from system

architecture to workload types. We go on to examine emerging technology trends

and architectural device parameters, then specify the challenges which this thesis

overcomes.

1.1 Data Center Trends

1.1.1 Energy-efficient Data Center Architectures

Energy consumed by data centers is a significant contributor of costs to companies

and the environment [20]. For example, a survey estimates that over a third of op-

erating costs in 2010 are on power and supporting infrastructure (power distribution

and cooling) (see Figure 1.1). In an attempt to reduce these costs, recent research

3

98 COMMUNICATIONS OF THE ACM | APRIL 2009 | VOL. 52 | NO. 4

research highlights

DOI:10.1145/1498765.1498791

Today, NAND Flash can be found in handheld devices such
as smart phones, digital cameras, and MP3 players. This
has been made possible because of its high density and low
power properties. These result from the simple structure of
Flash cells and its nonvolatility. Its popularity has meant that
it is the focus of aggressive process scaling and innovation.

The rapid rate of improvement in density has become the
primary driver to consider Flash in other usage models. There
are several Flash usage models in the data center that are cur-
rently being examined by industry and academia that address
rising power and cooling costs, among other things. Two com-
mon usage models are disk caches or storage devices. Some
efforts have lead to product development,8, 19 while others have
influenced storage and memory device standards.16, 18

This paper provides an overview of the benefits of inte-
grating Flash onto a server. Specifically, in this paper:

We provide an analysis of current and potential Flash 1.
usage models for servers.
We argue that the extended system memory model2. 10 is
the best usage model to reduce data center energy when
the contribution of system memory power exceeds the
contribution of disk power.
We review two architectural modifications to improve 3.
NAND-based disk caches.11 First, we show that by split-
ting Flash-based disk caches into read and write regions,
overall performance and reliability can be improved.

Integrating NAND
Flash Devices onto Servers
By David Roberts, Taeho Kgil, and Trevor Mudge

Abstract
Flash is a widely used storage device in portable mobile
devices such as smart phones, digital cameras, and MP3 play-
ers. It provides high density and low power, properties that
are appealing for other computing domains. In this paper,
we examine its use in the server domain. Wear-out has the
potential to limit the use of Flash in this domain. To seriously
consider Flash in the server domain, architectural support
must exist to address this lack of reliability. This paper first
provides a survey of current and potential Flash usage models
in a data center. We then advocate using Flash as an extended
system memory usage model—OS managed disk cache—and
describe the necessary architectural changes. Specifically we
propose two key changes. The first improves performance
and reliability by splitting Flash-based disk caches into sepa-
rate read and write regions. The second improves reliability
by employing a programmable Flash memory controller. It
changes the error code strength (number of correctable bits)
and the number of bits that a memory cell can store (cell den-
sity) in response to the demands of the application.

1. INTRODUCTION
Data centers are an integral part of today’s computing plat-
forms. As cloud computing initiatives provide IT capabilities
that incorporate software as a service, it requires internet service
providers such as Google and Yahoo to build large-scale data
centers hosting millions of servers. Energy efficiency becomes
a first-class citizen to address the increasing cost of operat-
ing a data center. Data centers based on off-the-shelf general-
purpose processors are unnecessarily power hungry, require
expensive cooling systems, and occupy a large space. In fact,
the cost of power and cooling these data centers contributes to
a significant portion of the operating cost. Figure 1 breaks down
the annual operating cost for data centers. It clearly shows that
the cost of power and cooling servers increasingly contributes
to the overall operating costs of a data center.

System memory power (DRAM power) and disk power
contribute as much as 50% to the overall power consump-
tion in a data center. Further, current trends suggest that
this percentage will continue to increase at a rapid rate as
we integrate more memory modules (DRAM) and disk drives
to improve throughput.

Fortunately, there are emerging memory devices in the
technology pipeline that may address this concern. These
devices typically display high density and consume low idle
power. Flash, Phase Change RAM (PCRAM) and Magnetic
RAM (MRAM) are examples.

In particular, Flash is an attractive technology that is
already deployed heavily in various computing platforms.

A previous version of this paper, entitled “Improving NAND
Flash-based Disk Caches” was published in Proceedings
of the International Symposium on Computer Architecture
(ISCA 2008).

Figure 1: IDC estimates for annual cost spent on powering and
cooling servers and purchasing new servers.17

0

25

50

75

100

125

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

S
pe

nd
in

g
(b

ill
io

ns
 o

f d
ol

la
rs

)
0

5

10

15

20

25

30

35

40

45

50

In
st

al
le

d
ba

se
 o

f s
er

ve
rs

 (m
ill

io
ns

)

Power and cooling
New server spending
Installed base of servers

Figure 1.1: IDC survey indicates increasing cost of power and cooling [1, 2]

has focused on several different approaches to reduce energy footprint. These include

aspects such as data center cooling schemes and efficient power supply provisioning.

However, this thesis focuses on the server and networking hardware components. In

this area, initial work has focused on choosing the right balance of system components

to prevent energy waste. For example, simple processors remove circuit complexity

and increase efficiency for workloads that perform large amounts if I/O and have

low instruction-level parallelism (ILP). Also, the use of solid-state disks instead of

hard disks yield further benefits in idle and active power. Components are generally

provisioned to be fully utilized. For example, an idle hard disk still consumes a large

fraction of full power when not being accessed, unless it is switched to a low-power

state with long wake-up delay. A typical study of this type is JouleSort [21] which

employs a low-power CPU with 13 laptop disk drives to sort a fixed amount of data

using minimum energy. More radical system architecture changes take component

integration even further and utilize low-power cores with emerging memory technolo-

gies. Low-power cores are viable for storage I/O intensive workloads because they

do not need to perform complex processing on data (reducing circuit complexity),

and can run at a low frequency and voltage. Flash based storage is better than hard

4

disk because is has almost no idle power (versus up to 80% of peak for hard disks)

and lower access energy per bit. For example, FAWN and Gordon [22][23] approach

the problem by combining low-power, simple processors with energy-efficient Flash

memory. Gordon represents a distributed network of nodes consisting of a large

amount of Flash memory for storage and a small amount of DRAM along with a

power-efficient 1.9 GHz Intel Atom processor. They emphasize a 75% reduction in

power consumption combined with 900 MB/s of storage bandwidth over conventional

designs. FAWN is a similar system but uses 500 MHz cores and is designed specifi-

cally for a key-value data store. While these two designs derive their benefits from

low-power cores and Flash-based storage, there is another performance-driven end of

the spectrum. RamCloud [24] is another architecture trend whose energy efficiency

has not been widely studied. A RamCloud uses distributed DRAM main memory to

hold all persistent data instead of disk drives. It is argued that because of the very

low latency and high bandwidth of DRAM, energy per operation can be orders of

magnitude lower than hard disks based systems, and 5-10x better than Flash SSD

systems. Our results also demonstrate that applications which are not bottlenecked

on other system components such as the network do have better energy per opera-

tion than disk based systems. Our Nanostore design provides even greater benefits

however, by combining non-volatility with low latency and high bandwidth similar

to DRAM.

1.1.2 Workloads and Datasets

The amount of data being created is exploding, growing significantly faster than

Moore’s law. For example, the size of the largest data warehouse in the Winter Top

Ten Survey has been increasing at a cumulative annual growth rate of 173% [25].

The amount of online data is estimated to have risen nearly 60-fold in the last seven

5

years [26]. Data from richer sensors, digitization of offline content, and new appli-

cations like twitter, search, etc., will only increase data growth rates. Indeed, it is

estimated that only 5% of the worlds offline data has been made online so far [27].

This growth in data is leading to a corresponding growth in data-centric applications

that operate on data in diverse ways (capture, classify, analyze, process, archive,

etc). Compared to traditional enterprise workloads (e.g., online transaction pro-

cessing, web services), emerging data-centric workloads change a lot of assumptions

about system design. These workloads typically operate at larger scale (hundreds

of thousands of servers) and on more diverse data (e.g., structured, unstructured,

rich media) with I/O intensive, often random, data access patterns and limited lo-

cality. In addition, these workloads have been characterized by a lot of innovations

in the software stack targeted at increased scalability and commodity hardware (e.g.,

Google MapReduce/BigTable). MapReduce [28] is a software framework that breaks

workloads into “Map” and “Reduce” functions. During the map phases, data is sep-

arated into small units and each one is processed on a different worker node. The

results are sent back to a master node where the Reduce function extracts the final

answer from all of the sub-problem results. BigTable is the distributed database sys-

tem used to handle data manipulation by MapReduce tasks. As for the applications

themselves, emerging data center workloads have diverse requirements in multiple

dimensions. For example, some impose a response time constraint e.g. Web searches,

while others may be background tasks, such as data compression and de-duplication.

Other dimensions include compute complexity, I/O intensity, data access locality

and volume of data to be processed in a single operation. These application require-

ments significantly influence the best system architecture for performance or energy

efficiency. Further, we would like to ensure that the data center architecture that we

propose provides benefits for all types of workload. To ensure this, in Section 3.2.1

6

we propose a taxonomy of the relevant dimensions that a representative data center

benchmark set should cover. We then use benchmark models that we identified to

optimize our proposed efficient data center design in Section 3.3.3.

1.2 Technology Trends

1.2.1 Storage Technology and I/O interfaces

Historically, hard disk drives have been the major persistent storage device used

in data centers. They are available in a wide range of capacities up to around 2

GB, and with multiple rotational speeds to trade off latency, bandwidth and cost.

With a relatively high random seek time of several milliseconds, sequential accesses

provide higher performance. A further drawback of hard disks is that even when

idle, a large fraction of peak power is consumed by the spinning disk. Although

disks can be “spun down” during idle periods, the long spin-up times reduce energy

savings. More recently, NAND Flash-based solid-state disks (SSDs) have been made

available, offering random access times of tens of microseconds, with much lower idle

power. The highest-performing SSDs are composed of single-level (SLC) Flash which

stores one bit per cell. Cheaper, denser Flash chips using multi-level cells (MLC) can

be used at the price of roughly double the read latency and triple the write latency

for 2-bit-per-cell MLC. Clearly, NAND Flash is most suitable for data where high

IOPS (I/Os per second) are required. Due to the price premium of an SSD, hybrid

systems are likely to be more common in the near-term.

Current consumer-grade hard disks and solid-state disks employ serial-ATA (SATA)

interfaces, allowing throughputs of up to 3 Gbit/s or 6 Gbit/s for revision 2 or 3 of

the standard. This narrow channel can act as a bottleneck for SSDs, preventing the

peak theoretical throughput of the storage medium from being reached. Therefore,

multiple drives on separate channels can be used together for higher bandwidths. For

7

more I/O intensive workloads that can benefit from greater bandwidths, PCI-express

based I/O cards based on NAND Flash memory [29] provide bandwidths up to 1.5

GB/s. These bandwidths are still very low relative to the memory interface of a

typical computer system, and present a bottleneck for workloads that spend most of

their time moving data with little or no local manipulation.

The usage models pursued by industry and academia for NAND Flash integration

can be categorized as follows [2].

• Extended system memory usage model: A NAND Flash memory module is con-

nected to the current system memory interface or to a dedicated Flash memory

interface.

• Storage accelerator usage model: A NAND Flash PCI express card is connected

to the PCI express interface.

• Alternative storage device usage model: A Solid State Drive (SSD) replaces or

augments the hard disk drive. It is connected to the disk interface. An example

would be a SATA SSD.

100 COMMUNICATIONS OF THE ACM | APRIL 2009 | VOL. 52 | NO. 4

research highlights

problem, because garbage collection generates extra writes
and erases in Flash, reducing performance and endurance as
the occupancy of the Flash increases. Figure 2(b) shows how
the time spent garbage collecting increases as more Flash
space is used. It is normalized to an overhead of 10% and is
for a 2GB Flash memory. It can be seen that garbage collec-
tion becomes overwhelming well before all of the memory is
used.

2.2. NAND Flash usage models in a server
Industry and researchers in academia are making strides to
integrate Flash onto the data center. Industry has recently
released several Flash-based products and Flash standards
targeted for servers, while researchers in academia have
recently published several papers proposing techniques for
integrating emerging memory technologies including Flash.

NAND Flash usage models pursued by industry and aca-
demia can be categorized as follows:

1. Extended system memory usage model: A NAND Flash
memory module is connected to the current system
memory interface or to a dedicated Flash memory
interface.

2. Storage accelerator usage model: A NAND Flash PCI
express card is connected to the PCI express interface.

3. Alternative storage device usage model: A Solid State
Drive (SSD) replaces or augments the hard disk drive. It
is connected to the disk interface. An example would
be a SATA SSD.

Each usage model presents a unique set of benefits
and challenges. Table 1 qualitatively captures them. The
“extended system memory” usage model presents Flash
as a part of the system memory. It addresses the rising
 contribution of power consumed by DRAM in addition to the
electrical constraints limiting the integration of more system
memory. For example, to increase storage capacity without
having to reduce the operating frequency of the memory
channel, MetaRAM14 packs more DRAM onto each DIMM
module. Using denser memory such as Flash may serve a sim-
ilar purpose. However, this usage model requires modifica-
tion to the operating system kernel. Specifically, the current
implementation in the kernel memory manager that sup-
ports nonuniform memory architectures needs to be aware
of the unique organization and behavior of Flash. Flash reli-
ability management can be performed by the kernel memory
manager with the assistance of the Flash controller.

The “storage accelerator” usage model presents Flash
as a PCI express device that can be directly managed by the
user application. This usage model allows the server appli-
cation to manage Flash directly as a cache that stores fre-
quently accessed code and data. It reduces the number of
accesses to the hard disk drive thereby reducing overall disk
power. Further, it may also be used as a way to implement
the “extended system memory” usage model but with sev-
eral drawbacks such as higher latency, lower throughput and
added complexity in managing Flash. Flash management is
distributed across the user application, device driver stack and
the Flash PCI express card firmware. To truly leverage Flash as
a “storage accelerator,” the user application should be Flash
aware. A device driver stack needs to be implemented to sup-
port the PCI express device. The device driver stack needs to
implement device sharing mechanisms such that other con-
current user applications and kernel components can make
use of it simultaneously. In Fusion-io’s Solid State Storage7
they have also shown the “storage accelerator” usage model
can expose the Flash PCI express device as an SSD by provid-
ing disk emulation features in the device driver stack.

The “alternative storage device” usage model presents
Flash as an SSD that replaces a hard disk drive.15 This usage
model improves the latency and throughput to disk and
reduces overall disk power consumption in a data center.
With appropriate filesystems such as ZFS,19 it improves stor-
age device scalability in a data center. Industry has heavily
adopted this usage model and has recently released several
products.8, 9 These solid state drives are used to implement
a storage area network (SAN) or network attached storage
(NAS) in a data center. They employ similar reliability features
such as RAID, commonly found in a hard disk drive based
SAN or NAS. Flash reliability management is performed by
the Flash device controller in the SAN or NAS. However, this
usage model also requires modification in the kernel, and a
complex Flash device controller that is capable of perform-
ing intelligent Flash reliability management. A customized
filesystem needs to be implemented to fully take advantage of
the benefits of Flash.12, 19 Further, this usage model ties itself
to the non-Flash aware features that are found in a hard disk
drive interface protocol such as SATA. For example, the device
driver can only communicate to disk using SATA commands
that are not defined with Flash in mind. On the other hand,
the operating system in the “extended main memory” model
has full visibility of memory page classification and activity
statistics that can be used for more intelligent mapping of
data to Flash.

Table 1: Comparison of Flash usage models in a server.

 Primary
powersavings

Secondary
powersavings

Hardware
complexity

OS kernel
modification

Application
modification

Comments

Extended system
memory

DRAM Disk Minimal Medium None Extend kernel memory manager
to manage Flash devices

I/O accelerator Disk DRAM Medium Medium Yes Need to build I/O accelerator
driver stack

Alternative storage
device

Disk DRAM High Minimal None Need to implement filesystem
for Flash

Figure 1.2: Comparison of flash usage models in a server [2]

Each usage model presents a unique set of benefits and challenges. Figure 1.2

qualitatively captures them.

The “extended system memory” usage model presents Flash as a part of the sys-

tem memory. It addresses the rising contribution of power consumed by DRAM in

8

addition to the electrical constraints limiting the integration of more system mem-

ory. For example, to increase storage capacity without having to reduce the operating

frequency of the memory channel, [30] packs more DRAM onto each DIMM mod-

ule. Using denser memory such as Flash or PCRAM may serve a similar purpose.

However, this usage model requires modification to the operating system kernel.

Specifically, the current implementation in the kernel memory manager that supports

non-uniform memory architectures needs to be aware of the unique organization and

behavior of Flash. Flash reliability management can be performed by the kernel

memory manager with the assistance of the Flash controller.

The “storage accelerator” usage model presents Flash as a PCI express device that

can be directly managed by the user application. This usage model allows the server

application to manage Flash directly as a cache that stores frequently accessed code

and data. It reduces the number of accesses to the hard disk drive thereby reducing

overall disk power. Further, it may also be used as a way to implement the “extended

system memory” usage model but with several drawbacks such as higher latency,

lower throughput and added complexity in managing Flash. Flash management is

distributed across the user application, device driver stack and the Flash PCI express

card firmware. To truly leverage Flash as a “storage accelerator,” the user application

should be Flash aware. A device driver stack needs to be implemented to support

the PCI express device. The device driver stack needs to implement device sharing

mechanisms such that other con- current user applications and kernel components

can make use of it simultaneously. In Fusion-IOs Solid State Storage [29]— they

have also shown the “storage accelerator” usage model can expose the Flash PCI

express device as an SSD by providing disk emulation features in the device driver

stack.

The “alternative storage device” usage model presents Flash as an SSD that re-

9

places a hard disk drive. This usage model improves the latency and throughput

to disk and reduces overall disk power consumption in a data center. With appro-

priate filesystems such as ZFS [31] it improves storage device scalability in a data

center. Flash reliability management is performed by the Flash device controller in

the SAN or NAS. However, this usage model also requires modification in the ker-

nel, and a complex Flash device controller that is capable of performing intelligent

Flash reliability management. A customized filesystem needs to be implemented to

fully take advantage of the benefits of Flash. Further, this usage model ties itself to

the non-Flash aware features that are found in a hard disk drive interface protocol

such as SATA. Flash-specific commands have only just been implemented in the disk

drive standards, such as the TRIM command which informs an SSD when certain

blocks are no longer needed, assisting in garbage collection. On the other hand, the

operating system in the “extended main memory” model has full visibility of mem-

ory page classification and activity statistics that can be used for more intelligent

mapping of data to Flash. Servers clearly benefit from all three usage models that

essentially integrate Flash as a faster hard disk or disk cache. All usage models help

(1) reduce unnecessary standby power from hard disk drives and (2) improve overall

throughput by reading and writing from disk cache instead of a hard disk drive.

This thesis proposes to employ the “extended system memory” storage model

to reap the benefits of using the same physical medium for memory and persistent

storage. When moving from Flash-based storage to an emerging resistive memory

such as PCRAM, the storage cells already have similar properties to the system

memory. Indeed, several proposals have been made for using PCRAM as a DRAM

main memory replacement [32, 33, 34]. It is a logical extension of this model to

combine main memory and data storage in the same device, minimizing inter-device

data transfers and maximizing communication bandwidth.

10

1.2.2 Networking and Communication

Different communication paths are fundamental to data center systems, and we

described the storage layer in the previous section. Inter-server data center networks

can currently contribute up to 50% of cluster power [35]. Therefore it is important

to consider the network as both a potential performance bottleneck and power con-

sumer, as we do in this thesis. Modern Ethernet networking can provide 40-100

Gbit/s per link (40/100GBASE). In terms of topologies, many have been explored,

including more traditional folded clos (fat-tree) [36, 37] as well as proposals for other

designs such as flattened butterfly [35]. This design supports the same bisection

bandwidth (peak bandwidth when network is split into two equal parts) with fewer

links and router chips. Further, there have been proposals for dynamically adjusting

the bandwidth to enable power scaling (power proportionality) in network interfaces

(NICs) and switches. This is particularly useful for energy saving where bandwidth

demand varies over a period of time.

Optics have also been studied for on-chip communication [38, 39], promising higher

performance for connecting cores and memories. However, we do not consider on-

chip optical networking for this thesis because practical implementations are likely

to be beyond our target 2015 timeframe. However, we do exploit 3D die stacking

technology [40, 41, 42, 43, 44]. Instead of using an external bus that is restricted by

pin count, through-silicon vias (TSVs) are used to connect die together. By using

a short, wide interconnect between processors and memory, higher bandwidths and

lower bus energy can be achieved. In addition, it allows tight integration of devices

with different process technologies, such as logic and DRAM processes.

11

1.2.3 Emerging memory technologies

Charge-based memories such as DRAM and Flash memory are reaching scaling

limits [3] where manufacturing solutions beyond a 2012 time-frame are not known.

This is due to the decreasing amounts of charge that can be stored in any bit cell.

Fortunately, resistance-based memories such as Phase-Change memory (PCM) are

in production and do not depend on charge storage to record data values [32, 45].

Instead, PCM employs a chalcogenide glass material that can change between crys-

talline and amorphous states when heated, correspondingly changing its resistance.

The major drawback with PCM is a high programming current. Other resistive

RAMs (RRAM) [46] may help to overcome the high write-current limitations of

PCM. The Memristor [47], for example, is predicted to have much lower write en-

ergy and higher density due to a multi-layer crossbar architecture [43, 48].

Each technology has system-level drawbacks, such as high latency (Flash), high

idle power (DRAM) or high write energy (PCM). We consider these architectural

and power parameters during our data center modelling and optimization process.

In this work we consider DRAM, PCM and Memristors as the main memory and

primary data store, with their different latency, energy and density characteristics,

to determine the best data center configuration for each one.

1.3 Challenges

1.3.1 Overcoming the inefficiencies of existing storage devices

System memory power (DRAM power) and disk power contribute as much as

40% to the overall power consumption in a data center [8]. Further, current trends

suggest that this will continue to increase at a rapid rate as more DRAM and disk

drives are integrated to improve throughput. Both technologies also have a signifi-

12

cant idle power component, further reducing efficiency. There are emerging memory

devices in the technology pipeline that may address this concern. These devices typ-

ically display high density and consume low idle power. Flash, Phase Change RAM

(PCRAM), Memristors and Magnetic RAM (MRAM) fall into this class. Flash is

an attractive technology that is already deployed heavily in various computing plat-

forms. Today, NAND Flash can be found in hand-held devices such as smart phones,

digital cameras and MP3 players. This has been made possible because of its high

density, low power properties and non-volatility. Its popularity has meant that it is

the focus of aggressive process scaling and innovation. The rapid rate of improve-

ment in density has become the primary driver to consider Flash for other usage

models. There are several Flash usage models in the data center that are currently

being examined by industry and academia to address rising power and cooling costs,

among other things. Recently, PCRAM has received much attention because of the

challenges Flash faces when we scale below the 22nm process technology node. Stud-

ies [3] have shown that PCRAM is expected to scale better than Flash post 22nm and

emerge as an important and widely used memory device. It currently has DRAM-like

read latencies and has been proposed as a DRAM replacement. Memristors [47] are

a memory technology predicted to behave similarly to PCRAM with potential for

even higher capacity than PCRAM due to their stacked crossbar structure. Although

their basic parameters may be better than DRAM or Flash, the most effective ways

of integrating them in a system still need to be explored.

1.3.2 Breaking the I/O bandwidth barrier

In Section 1.2.1 we mentioned that the fastest PCI-express based Flash storage

cards can achieve around 1.5 GB/s bandwidth. However, modern off-chip DRAM in-

terfaces can achieve over 10 GB/s of throughput, while on-chip 3D-stacked processor

13

designs such as [40] achieve over 32 GB/s of bandwidth. As an extreme example, a

3D-stacked DRAM-PCRAM checkpointing system was designed for 2.5 TB/s trans-

fers [49]. By opening up the bandwidth per unit of capacity, it may be possible to

reach new levels of performance and efficiency in the data center. This in itself raises

issues of balance in provisioning processors and networking, as well as reaching other

constraints such as power density.

1.3.3 Modelling and optimization at data-center scale

Detailed performance and power modelling is possible for individual servers, pro-

cessing and storage devices. However, when modelling systems that are scaled up to

Petabytes of storage and thousands of compute nodes, detailed full-system simula-

tion requires unrealistic amounts of time and hardware. Simplified models may run

faster at the cost of some accuracy. Therefore, choosing the right methodology to

draw meaningful conclusions about data center designs remains a major challenge.

1.3.4 Overcoming non-volatile memory endurance limitations

With growing numbers of Flash based SSDs in use, as well as emerging technolo-

gies such as resistive memories, there are concerns over whether the memories will

last long enough to be viable solutions. The majority of NV memories can only

sustain a limited number of re-writes per bit before becoming unreliable (around 105

for NAND Flash and 108 for PCRAM, for example). Further, due to the very low

latency of emerging NV memories, the write limit can be reached in a very short

time and can be exploited by viruses, for example. These issues have been addressed

to some extent using wear-levelling techniques [50, 51] whereby writes are spread

across memory locations as evenly as possible within a chip or SSD. However, in the

data center, there is significant imbalance of write-bandwidth between individual

14

SSDs. This makes effective wear-levelling difficult to perform in an ensemble, and

no solutions currently exist to address this.

1.3.5 Breaking CPU voltage-scaling limits

Processors consume a large fraction of energy in the data center, and improved

efficiencies in this component will have a significant overall impact. To minimize

power, an appropriate power supply voltage is used at a given frequency, including

a safety margin to accommodate power supply noise and process variations. How-

ever, processor architectures cannot fully exploit voltage scaling due to the need for

safety margins [9] as well as having large caches that fail at higher voltages than

the core logic [10]. On-chip SRAM caches operating at the same voltage as the rest

of the core can limit voltage reduction at lower frequencies, restricting chip-wide

energy savings. As voltage is reduced, increasing numbers of bits fail to operate,

but gorrecting them with conventional error-correcting codes (ECC) can introduce

intolerable latencies. There is clearly a need for low-latency fault-tolerance schemes

to maintain a functional cache with small latency overhead.

1.4 Contributions

1.4.1 Re-architecting the storage hierarchy with Nanostores

This thesis proposes and evaluates a novel data center system architecture that

enables higher energy efficiency and performance to be achieved compared to con-

ventional disk-based or DRAM-based architectures. The key features of the design

are a uniform storage building block consisting of processing cores, a network in-

terface, 3D-stacked interconnect and a unified data store/main memory device. By

allowing I/O to take advantage of the high bandwidth normally reserved for main

memory alone, emerging I/O intensive workloads get significant performance and

15

energy-delay-product (EDP) increases over an aggressively optimized baseline. The

unified storage design also removes the need for data copying between disk and RAM.

Further energy efficiency is gained from the use of low-power cores and efficient stor-

age technologies. The nodes or “Nanostores” are networked in a conventional fat-tree

configuration and appear to software as a conventional cluster of networked servers.

1.4.2 Extending wear-leveling to distributed storage

We propose extending wear-leveling algorithms normally constrained to a single

storage drive to the entire data center. This is required to support the energy effi-

ciency improvements of distributed non-volatile storage (SSDs or Nanostores). By

exploiting typical access patterns present in data center disk workloads, we are able

to significantly increase the time to first failure (TTFF) of a data center storage

ensemble. Further, we propose novel techniques to increase the performance and

lifetime of MLC Flash memory devices installed in servers. These include dynami-

cally switching between SLC and MLC modes for pages of Flash, and progressively

increasing the number of correctable errors to minimize average access latency.

1.4.3 Overcoming the limits of CPU voltage scaling

Because CPU energy is a significant power consumer for several data center work-

loads (especially in non-optimized conventional designs), we focus on techniques

to reduce CPU power. Our first contribution was a voltage control system for a

delay-fault-tolerant processor that can remove voltage safety margins [52, 53, 54].

The second (which is the focus of this thesis) is a low-latency cache fault-tolerance

scheme that allows whole-chip energy savings by enabling cache operation at reduced

voltages [14, 15, 16].

16

1.5 Thesis Structure

This thesis is structured as follows. Chapter II presents prior work related to

data center architecture, emerging technologies and memory reliability. Chapter III

presents our proposed Nanostore data center architecture and evaluation results.

Chapter IV goes on to examine how memory reliability can be addressed in dis-

tributed non-volatile storage for the Nanostore design or SSDs. It also presents life-

time enhancements made specifically for NAND Flash-based disk cache applications.

Chapter V completes the energy-saving techniques with a scheme to lower CPU volt-

age and save energy in one of the most power-hungry data center components. We

conclude in Chapter VI.

CHAPTER II

Background and Related Work

In this section we provide background information on related data center archi-

tectures and the emerging technologies used in our proposed designs. This includes

projections for future non-volatile memory device parameters and process scaling.

2.1 Efficient Data Center Architectures

Several of the principles leveraged in our Nanostore design have been studied

in prior work. The iRAM and PIM work [55, 56] examine integrating a processor

with DRAM in the same process, and consider benefits with vector streaming pro-

gramming models. While thematically similar, our implementation is significantly

different in several ways, including the use of lower-power commodity processors

with a diskless flat hierarchy based on non-volatile memory, and a distributed soft-

ware model. Active Storage [57] incorporates compute closer to disk, but only in

the form of more powerful disk controllers for offloading and streaming. The main

processor is still a deep hierarchy away. Recently, the RAMCloud project [24] has

proposed distributed systems where all data resides in DRAM. Their planned re-

search primarily focuses on the software stack, around low-latency remote procedure

calls (RPC), durability, data model, scaling, and consistency. While several of their

17

18

motivating arguments are similar to ours, we differ in our assumptions around all

data residing in 3D-stacked non-volatile RAM and in our architectural explorations

around balanced system designs. Our results validate their projected performance

but show even better benefits from our approach. Some recent studies have exam-

ined using lower-power (thin or wimpy) cores for energy efficiency [22, 58, 59, 21]

while also being aware of the impact on quality of service [60]. There has also been

prior work on ultra-low-voltage core design [61]. Like these studies, we also ex-

plore the benefits from better balanced designs, but synergistically in combination

with rethinking compute-data proximity and hierarchy. Other studies have examined

special-purpose architectures optimized for specific data-centric workloads including

use of GPUs [62], FPGAs [63], and even ASICs [64] and co-design of hardware and

software for data-centric workloads. (e.g., MonetDB [65], MapReduce [28]). Such

optimizations would be applicable in our solution as well. Regarding data center

workload classification, Google [66] classify groups of tasks that have similar work-

load demands. Tasks are classified by time in seconds, CPU usage in cores, and

memory usage in gigabytes. Their main observation was that tasks have a bi-modal

distribution between short-running and long -running. Short-running tasks are most

common, while a few long-running tasks dominate execution. In contrast, our tax-

onomy captures more dimensions such as deadlines, access patterns and read/write

ratio that have a clear impact on hardware requirements.

2.2 Emerging Technologies

2.2.1 Memory technology scaling trends and limitations

This thesis explores several existing and emerging memory technologies to assess

their benefits in an optimized data center design. They can be broadly divided into

charge-based memories (e.g. SRAM, DRAM, NAND Flash) and resistance-based

19

memories (e.g. phase-change memory (PCM), Memristors (MRT) and Magnetic

RAM (MRAM)). In this section we examine scaling trends, timing and energy pa-

rameters for these devices based on published data.

SRAM is commonly used for processor caches due to its low latency and ability

to integrate with logic on-die. We assume that SRAM is used for all on-chip cache

memories due to its low latency and high endurance. Prior work has explored caches

built from alternative or hybrid technologies [67], but with such high access rates

and small capacities it is difficult to guarantee sufficient lifetime for some of these

designs. For simplicity, we use SRAM caches in our Nanostore designs (Section III),

and address SRAM cache reliability issues in Section V.

DRAM can be used for caches [68], main memories and data storage [24]. However,

the scalability of charge-based memories such as DRAM is limited by physical factors

such as the tiny amount of charge that must be stored and measured. DRAMs have

an area advantage over SRAM which makes them more cost-effective. However, they

need to be refreshed periodically, which increases their idle power consumption.

Figure 2.1 presents the scaling trends from the ITRS roadmap 2009 [3] for the

memory technologies under consideration. For DRAM beyond 40nm and NAND

Flash after 2011 (28nm), the limiting factors are dielectric material and thickness.

Therefore, resistance-based memories such as PCRAM, Memristors and MRAM have

the potential to scale further. The main limitations of PCM are a high programming

current and relatively long programming time. However, because the quantity of

phase change material decreases with each technology generation, both of these issues

become easier with scaling [69].

20

Technology Density BW R Lat. W Lat. R Energy W Energy End.

Units µm2/bit GB/s ns ns pJ/bit pJ/bit Wr/bit

HDD [70] 0.00006 0.5 3,000,000 3,000,000 2,500 2,500 -

Flash SSD 0.00210 1.0 25,000 200,000 250 250 105

DRAM DIMM

[5]

0.00380 26 55 55 12.5 12.5 -

PCM (25nm)

[32, 3]

0.00250 - 48 150 2 19.2 107

Memristor

(18nm) [71]

0.00320 - 100 100 2 2 107

MRAM (65nm

512K) [72, 3]

0.0423 - 2.3 11.0 1.68 9.76 -

STT-RAM

(32nm reg. file)

[73]

0.0102 - 0.12 3.23 0.01 0.31 -

SRAM (32nm

4M) [73]

0.1495 - 2.36 2.36 2.48 2.48 -

STT-RAM

(32nm 4M) [73]

0.0102 - 1.96 7.76 1.56 1.86 -

Table 2.1: Storage technology parameters (single-cell density, bandwidth, latency, energy and write

endurance). We focus on non-volatile memories as candidate permanent data stores.

The DRAM DIMM is included for baseline system modelling. The first three rows are

estimates for an entire storage device rather than individual bit cells alone, projected to

the 2015 timeframe, based on historical scaling trends. We assume 10 Watts total power

per HDD and 2 Watts per SSD. Off-chip DRAM access energy is derived from [5]. The

lower section contains published parameters from various sources. PCM and Memristor

numbers were scaled according to ITRS’09 projections for the year 2015.

21

!"#$%&'()$*(%+,-./01%2+,-%3445*6!7$89

:;+/%+<=0%,>/,%?,@+;>%A=B/>0%?>;C%D4%E<=@<%=0%?>/FG/H+.I%@=+/A

J3KL%E=+<%M3%.,I/>0%2N%A=/0%O%P%.,I/>09

4Q4444%

4Q4484%

4Q4D44%

4Q4D84%

4Q4344%

4Q4384%

344P% 3445% 34D4% 34DD% 34D3% 34DM% 34DN% 34D8%

!"
##$
%
&"
'$
()
*
+,
-$

."'&$

7#RS%(/..%,>/,%2GCT39% 6(S%(/..%,>/,%2GCT39%

S#"%(/..%,>/,%2GCT39% :R:7%&.,0<%(/..%,>/,%2GCT39%

D%

D4%

D44%

D444%

344P% 3445% 34D4% 34DD% 34D3% 34DM% 34DN% 34D8%

!'
/'

01
23
45
60
7"
2$(
8
9-
$

."'&$

7#RS%KLU(6)%0;@V/+%2DW%7!SS9% 6(S%KLUM7X@<=Y%2P%.,I/>09%

S#"%KLUM7X@<=Y%2P%.,I/>0%Z%N9%Figure 2.1: Predicted cell areas of different memory technologies [3] (DRAM and Flash from ORTC-

2A, Phase-Change memory (PCM) from Focus C, PIDS5). Note that DRAM and

NAND Flash do not have known manufacturable solutions for scaling beyond 2011

timeframe. For Memristors (MRT) we assume a feature size similar to NAND Flash

projections, and cell area factor A=10f2, based on direct discussions with HP. We do

not show MRT predictions prior to the target year of our study (2015) due to the current

experimental nature of the technology.

2.2.2 Non-Volatile Memories

Table 2.1 presents the characteristics of emerging non-volatile storage units and

memory devices. The first three rows use historical scaling trends to predict aggres-

sive performance and energy efficiencies for conventional storage media, scaled to

the 2015 timeframe. These will serve as our baseline storage parameters, and are

expected to over-estimate the actual efficiencies we will see in 2015. Similarly, we

use 2015 projections for the PCM and Memristor parameters, which serve as our

target technologies. It should be noted that the access energy/bit values for DRAM,

PCM and Memristor have little impact on the overall results because their power

contribution is dwarfed by other components such as processors and storage idle

power (see Section 3.4.3). Approximate idle power for current-generation memory

22

Technology Idle Power

Units mW/GB

DRAM 100

PCM 1

NAND Flash 1

Table 2.2: Memory idle power [6].

chips is shown in Table 2.2. MRAM and STT-RAM are currently being explored

as interesting candidates for future on-chip cache applications [72, 73], but are not

as mature as PCM which has been commercialised and is being considered as a re-

placement main memory [32, 33, 44, 34]. For this reason, we omit these two devices

from our system design exploration. Their parameters for MRAM and STT-RAM

were included in the table for comparison, where they have much lower latency and

similar access energy to the Memristor.

Previous studies have discussed different ways to use existing and emerging non-

volatile memories e.g. Flash [23, 58, 74, 4], PCM [32, 33, 44, 34], and Memristors

[48, 75, 47, 43, 76]. While Flash memories have been shown to be effective as storage,

disk replacement, or disk cache [58, 29, 74, 4], their latency and endurance limita-

tions make them inapplicable for our work. Recent work on PCM has examined its

use both as Flash replacement and as memory replacement (including in 3D-stacked

configurations [44]), but there have been no studies that have focused on simplifi-

cation of the data hierarchy, in the context of data-centric workloads. Prior studies

have prototyped and evaluated Memristors, but we are not aware of any architectural

studies using Memristors. Several studies have proposed optimizations to improve

endurance [32, 33, 44, 34] and others have identified potential improvements in the

future [3].

23

2.2.3 3D die stacking

Recent architectural proposals have studied 3D stacking and demonstrated its

viability and its benefits for improved bandwidth and memory redesign (e.g. [40,

44, 77]). Multiple die are bonded together either face-to-face or face-to-back, typ-

ically between a combination of logic and memory die. It is therefore possible to

closely couple die built on different process technologies. Communication between

die is achieved using through-silicon-vias (TSVs) which provide a very dense, low-

capacitance communication bus. We propose to take advantage of the extra band-

width afforded by 3D stacking as a means of connecting servers to their primary data

storage and main memory in the datacenter. Bandwidths of 32 GB/s were demon-

strated in [40] using a 1024-bit TSV bus, while [77] proposes a 4 KB bus to improve

the single-thread performance of 3D-stacked processors by aggressively prefetching

large amounts of data.

2.3 Memory Reliability

Memory reliability concerns vary depending on whether they are volatile or non-

volatile. This thesis deals specifically with on-chip SRAM caches and on- or off-chip

NV memories (Flash, PCRAM and Memristor). The SRAM failures of interest are

non-persistent i.e. at a higher voltage, the SRAM cell may function correctly again.

The NV failures are wearout-induced, when bits fail to reliably store the written

value after a certain number of write cycles. This section covers related work for

these two classes of memory.

24

2.3.1 Non-Volatile Memory Wear-Leveling in Data Centers

Wear-leveling and fault tolerance

The two main methods of dealing with wear-out are wear-leveling and fault tol-

erance. The first attempts to maximize the useful lifetime of the memory by using

every storage location as much as possible before failures occur. The second at-

tempts to work around failed bits after they have already stopped reliably reading

or writing data. These two techniques have additive effects. Wear-leveling in NAND

Flash SSDs is typically managed by the FTL. There are several FTL variants in ex-

istence that trade-off metadata storage requirements, performance and lifetime. The

main functions of an FTL are address mapping (including allocation), garbage collec-

tion or cleaning (erasing blocks containing stale data and moving valid pages out of

the erased blocks) and wear-leveling. The three basic address mapping schemes are

page-level, block-level or hybrid [78]. For a page-level mapping, the FTL maintains

a table that maps individual 512B disk blocks to physical pages on the SSD. This

incurs a high overhead and requires a large mapping table. Block-level schemes use a

coarser granularity (e.g. an entire erase block), reducing the mapping table size but

requiring an entire block to be copied to a new block even if just one page is mod-

ified. Hybrid schemes maintain several log blocks which are page-mapped, targeted

towards pages with temporal locality. This reduces mapping table overheads while

reducing page copying overhead. Garbage collection is typically triggered by the free

block capacity of an SSD falling below some threshold. When that happens, blocks

are selected to be erased, where those containing the fewest valid pages incur the

lowest cleaning time. Before erasure, any remaining valid data must be copied from

the old block to a new block which is both time consuming and incurs additional

writes. Wear-leveling is affected by the address allocation and garbage collection,

25

and wear-leveling algorithms are often an intrinsic part of the cleaning mechanism.

Dynamic wear leveling only considers blocks that have been overwritten. However,

some data is cold or static and may be ignored by this simple FTL, so static wear

leveling sometimes swaps the active blocks with randomly chosen cold blocks [50].

This introduces migration overhead but balances wear more effectively. Despite the

abundance of local wear leveling policies, there is no known prior work to address

coordinated wear-leveling across servers.

Wear-leveling in distributed systems

Load balancing across servers has been widely studied for performance, power

and cost reasons. As well as small-scale datacenters with a number of independent

networked servers running different applications, infrastructures such as MapReduce

[28] take advantage of distributed data and massive parallelism while also performing

load balancing. With these emerging data-dominated workloads, managing wear-

leveling on a distributed scale has been neglected. Although most storage drives are

modular and replaceable, without proper monitoring and control, SSDs will fail at

unpredictable physical locations and times. Replacement and data migration to new

drives is therefore a time consuming process, although replication (at additional cost)

can allow resilience to wear-out failure. We argue that with monitoring and control

through distributed wear-leveling algorithms, the replacement, data restoration and

replication costs can be reduced. The ideal distributed wear-leveling system should

provide accurate estimates of remaining lifetime, as well providing a degree of control

over failure times. The solution proposed in this paper is a step towards that goal,

achieved by altering the write bandwidths to individual SSDs.

There have been a large number of papers on both SSD design [79] and wear-out

mitigation for both NAND Flash such as [78, 50] and PCRAM devices [51, 34, 33, 32].

26

Several studies have assessed the benefits of hard disk replacement or augmentation

with SSD file caches such as in [74, 4, 80, 81]. We go beyond the scope of these prior

studies to consider wear imbalance across storage devices. Some works have consid-

ered wear-out on the scale of RAID arrays (Differential RAID) [82]. By distributing

parity bits unevenly across the drives, they produce an age disparity so that drive

failures are staggered. The Griffin system [83] uses hard disks as log-based write

buffers for SSDs. For desktop workloads, writes to Flash are reduced by 49% on

average. Such a design could be applied in front of our activity monitoring nodes for

further lifetime benefits. Other work considers large-scale deployment of Flash mem-

ories to improve energy efficiency and performance such as Gordon [23] and FAWN

[22]. Unlike our work, endurance was not considered in detail. The Write off-loading

[84], SEA [85] and PEARL [86] systems consider data placement on disk arrays, for

performance and power saving. In particular, PEARL redistributes data between

SSDs and a hard disk that each one is associated with, reacting to changing access

patterns. Periodically, blocks of data (zones) are classified as write-excessive, read-

exclusive and read-write. If the frequency of writes exceeds a threshold, that data

zone is placed on hard disk. As a result, wear-out is limited. Unlike this work, we ex-

amine a much larger system and longer traces with the primary focus on wear-leveling

across servers, not within them. Our system model is different, with an emphasis

on distributed systems that rely on network bandwidth for communication. We also

examine the interaction of the system-level policy with the low-level wear leveling on

each SSD. Our paper provides significant, non-trivial contributions beyond this prior

work. First, the prior work proposes vertical movement of data between a single hard

disk and a single paired SSD. Instead, we use horizontal movement across multiple

SSDs, with no limitation on where we can move data. Second, they use a single

threshold to determine if writes to Flash exceed a lifetime requirement. This will not

27

result in effective inter-SSD wear-leveling because, for any read-mostly disk that is

below the write threshold, they cannot move blocks horizontally between hard disks

to fully balance writes.

2.3.2 Cache Memory Fault Tolerance

Minimizing CPU operating voltage is important in improving the energy efficiency

of data centers, where processors can contribute a large fraction of total power con-

sumption. However, on-chip cache memories can restrict the minimum voltage at

which a CPU chip can operate [10]. This is due to process variations introducing

imbalance between transistor devices, leading to read, write, access time or retention

failures [15, 16]. When the voltage is too low, increasing numbers of cells exhibit

failures. Failed cells may require cache lines to be disabled, increasing the miss rate

and decreasing performance and energy efficiency. One solution is to scale up the size

of the SRAM cells, or use alternative (larger) SRAM cell designs. These solution re-

quire additional area, however. Another solution is to employ error detection and/or

correction. Conventionally, simple error-correction codes (ECC) such as parity can

only handle a few faulty bits, but aggressive voltage scaling introduces hundreds of

failures. More powerful codes require a long time to decode, drastically reducing

the performance of the critical cache component. Therefore, alternative low-latency

fault-tolerance that can handle large numbers of errors at low voltage is required.

The following publications are related to this problem space.

Pour and Hill [87] derive an analytical model of the performance loss of a set-

associative cache given a set of defective blocks. They employ an extra valid bit per

cache block to identify whether or not it is defective. Their key findings for caches of

size up to 32 kB are that miss ratio increase is negligible unless a set is completely

disabled by faults. In [88] they present a model to estimate memory-failure prob-

28

ability using combined row and column redundancy. The Power4 architecture [89]

employs parity on L1 caches and Hamming codes on L2. In addition, L1 and L2

have spare bits, while L3 has redundant cache lines. If correctable error thresholds

are exceeded, a cache line delete function allows up to 2 deletions per L3 cache. For

defects detected at power-on BIST that cannot be handled, the L3 cache is disabled.

The Nanobox [90] applies redundancy and other ECC codes to logic functions built

using lookup tables. A technique for memory self-repair at high defect densities is

presented in [91]. It relies upon prior knowledge of the polarity of the error (i.e.

faults are always stuck at 0 or 1). In our cache application, the scheme will not

work because the value read from faulty bits is unpredictable and can change with

operating point (e.g. voltage or temperature). Agarwal et al. [92] noted that the

number of defective cells and their location changes depending on operating voltage.

In addition, they proposed a cache block re-mapping technique for direct-mapped

caches. The technique relies on a defective block mapping table determined prior

to execution using BIST. They consider the use of block re-mapping in conjunction

with ECC and row redundancy.

The following related work was published after our first publication of a dynami-

cally resizeable cache employing “block grouping” fault-tolerance [15]1. To the best

of our knowledge, our work was the first to propose segmenting cache lines, iden-

tifying faulty segments with a fault map composed of more reliable bit cells, then

combining cache line segments to produce working cache lines. Further, our scheme

reaps the majority of voltage scaling benefits relative to an unprotected cache. Refer-

ring to Figure 9 in [93], at a yield of 1 in 1000 caches being defective, the most basic

variant of block grouping (word-fix) enables a voltage drop of over 0.35V, whereas

the improved designs offer less than 0.1V of additional savings.

1Initially submitted to ISCA’06

29

Makhzan [94] presents a fault-tolerance scheme that saves energy on an entire

chip by reducing the miss rate caused by lowering the voltage. They obtain 40%

energy savings with performance under error conditions that is close to defect-free

operation. As with our work, they maintain a defect map (in a high voltage region)

with one bit per word in the cache, to identify where the faulty bits are. They

also cache the recently accessed parts of the defect map, similar to our “selector

bit caching.” However, they use an external cache called the IDC that is used to

store data that would otherwise be placed in defective cache locations. Wilkerson

[10, 95] presents two fault-tolerance schemes with an energy per instruction (EPI)

reduction of 53%. The schemes are word-disable and bit-fix, where word-disable is

an implementation of block grouping [96] with adjacent cache lines paired together

(“adjacent pairing”). This is the least complex variant to implement, but improved

fault tolerance can be achieved through same-set or whole-cache pairing (see Section

V). The cache is resized during a low-voltage mode to 50% or 75% of full capacity for

each scheme, whereas ours is dynamically resized to allow fault-free lines to operate

normally. The bit-fix scheme dedicates one way of the cache to storing patches

which can replace faulty locations in the main cache. It is similar to the Log(B)

scheme which we proposed in [15], except that multiple patches can be applied per

block, and the patches reside within a cache way. Instead of using a higher voltage

domain or larger 6-transistor SRAM cell to store the defect map, their work proposes

the use of an alternative SRAM cell design with more transistors. Koh [97, 98]

presented the Buddy Cache and Salvage cache. The Buddy cache is almost identical

to block grouping with “same-set” pairing, where one faulty cache line is paired with

another in the set (its buddy), assuming that fault positions do not overlap (they are

compatible [15]), to produce one non-faulty cache line. They require an additional

table (the Buddy Map) to identify which compatible blocks can be combined (see

30

our “grouping table” [15]). Relative to the adjacent pairing used for word-disable

[10], they see a less dramatic reduction in cache size as voltage is lowered. The

Salvage Cache is a similar technique that uses a single non-functional block to repair

several others, while disabling that block. In addition to the fault map, they add a

victim map entry per cache line (instead of the buddy map) which stores the index

of a block in the same set used to repair its faulty segments. Sasan [93] proposes

the Resizable Data-Composer cache (RDC). The RDC considers each bank of the

cache as a sequence, with one way of the next bank being used to replace defective

words in the other ways. This improves performance as both banks can be accessed

simultaneously. Ansari [99, 100] proposes a first scheme where compatible lines are

grouped together, and one line is specified as the “sacrificial” line whose working

segments are used to replace faulty segments in the other lines. The second design,

called ZerehCache, partitions the lines into same-sized logical groups, each with one

spare line. Logic circuits can shuffle the location of non-faulty line segments to make

the lines compatible with each other. They formulate the problem of configuring

the groups as graph colouring, and solve it with an approximate algorithm. Chishti

[101] proposed multi-bit segmented ECC (MS-ECC), allowing dynamic cache resizing

without relying on a fault map, and providing coverage of soft or transient errors.

The scheme uses an Orthogonal Latin Square code on segmented cache lines to

provide the low latencies needed for caches, at the expense of more check bits than

some other codes. Abella [96] proposed a scheme for a set-associative cache whereby

faulty segments of cache lines are disabled and recorded in a fault map. On a cache

hit to a faulty segment, the line is evicted as if it were a miss. The faulty line is

then promoted to most-recently-used, preventing it from being filled next time there

is a miss to that line. Because the data in the faulty segment is likely to be accessed

again in the near future, it will probably be stored in a different cache line, where

31

the corresponding segment is non-faulty. As a further means of ensuring consistent

performance of applications, a scheme is proposed where all cache addresses are

periodically re-mapped, averaging out any slowdown a workload has due to its data

being mapped to faulty segments. Ipek’s Dynamically Replicated Memory (DRM)

[102] applied the concept of block grouping to non-volatile memories such as PCM.

The memory is protected with a parity bit for every byte. As errors emerge in the

bits due to wear-out, they are detected by the parity bits, and the faulty page is

grouped with another compatible faulty page, under operating system control. They

use the same greedy algorithm to select block pairs as in block grouping, where the

first available block that is compatible with the current block is selected for pairing.

Error-correcting pointers (ECP) [103] is another fault tolerance design for memories

that wear out. It achieves better fault-tolerance than DRM [102] by using several

repair pointers and associated spare bits per block, similar to our Log(B) scheme [15]

and bit-fix [10].

CHAPTER III

Nanostores: Co-located Compute-Storage NVRAM-based

Architecture for Data-Centric Workloads

The increasing gap between the speed of the processor and the time to access

the data in the disk has historically been offset with deeper and larger memory hi-

erarchies with multiple levels of SRAM, DRAM, and more recently, Flash layers

for caching. However, recent trends that point to a potential slowdown of DRAM

growth and the emergence of alternate resistive non-volatile memory technologies and

properties of emerging data-centric workloads offer the opportunity to rethink future

solutions. Specifically, we examine an approach that leverages both the memory-like

and disk-like attributes of emerging non-volatile memory technologies. We propose

a new architectural building block called Nanostores that co-locates computation

with a single-level data store in a flat hierarchy, and enables large-scale distributed

systems for future data-centric workloads. We present a new evaluation methodology

to reason about these new architectures, including benchmarks designed to system-

atically study emerging data-centric workloads. Our evaluation results demonstrate

significant potential for performance benefits from our approach (often orders of

magnitude) with better energy efficiency.1

1This project was initiated at HP Labs and was a collaboration with Parthasarathy Ranganathan, Jichuan Chang,

Mehul Shah and Trevor Mudge.

32

33

3.1 Introduction

Section 1.1 presented the increasing data center energy costs associated with power

provisioning, cooling and server components such as disks and processors. Further,

due to the explosion in data volumes involved in each application, data center in-

frastructure must scale-out to accommodate enough storage capacity and compute

capability. Although many workloads are I/O dominated and may take advantage of

devices such as simple processor cores to save energy, other workloads are perform-

ing increasingly complex processing on each data item [60]. Given these trends in

data scale, workload diversity and the need for energy efficiency, it is clear that data

center architecture should be revisited. Concurrently, significant changes are also ex-

pected in the memory industry (see Section 2.2.1). Recently, new non-volatile RAM

(NVRAM) memory technologies have been demonstrated that significantly improve

latency and energy efficiency compared to Flash and Hard Disk. Some of these NV

memories, such as Phase-Change Memory (PCM) and Memristors have been demon-

strated to have the potential to replace DRAM with competitive performance and

better energy efficiency and technology scaling. At the same time, several studies

have postulated the potential end of DRAM scaling [3, 32, 33, 34] over the next

decade, further increasing the likelihood of DRAM being replaced by these NVRAM

memories in future systems.

The confluence of these trends (future large-scale distributed data-centric work-

loads with I/O intensive behavior, the corresponding innovations in the software

stack, the end of scaling for DRAM, and their potential replacement with NVRAM

memories) offers an opportunity to rethink traditional system architecture and mem-

ory hierarchy design for future workloads.

The rest of the chapter is organized as follows. Section 3.2 motivates and presents

34

the design of nanostores, a new building block for data-centric systems. A nanostore

includes 3D-stacked non-volatile memory with a layer of compute cores and a network

interface, and can operate as a system node in a larger distributed system running

a data-parallel environment like MapReduce. Section 3.3 presents a new evalua-

tion methodology to reason about these new architectures. Our approach includes

a hybrid evaluation model that incorporates high-level application models akin to

database query plans or MapReduce simulations in combination with detailed micro-

architectural simulations and a data-centric workload taxonomy and a benchmark

suite designed to systematically exercise this taxonomy. Section 3.4 presents our

evaluation results demonstrating significant benefits even when compared to aggres-

sive future extrapolations of current best systems one to three orders of magnitude

performance improvements at 2X to 10X improved energy efficiency. We break down

the benefits across the key design aspects, discuss workload-specific trends and key

assumptions in leveraging these benefits, and present sensitivity results to technology

trends and limits. Section 3.5 concludes the chapter.

3.2 Architecture: Nanostores

3.2.1 Motivation

Data-centric workloads

An important trend in the emergence of data-centric workloads has been the emer-

gence of complex analysis at immense scale (coupled closely with the growth of large-

scale internet web services). Traditional data-centric workloads like web serving and

online transaction processing are being superseded by workloads like real-time mul-

timedia streaming and conversion, history-based recommendation systems, searches

of text, images and even videos, and deep analysis of unstructured data (e.g., Google

Squared). From a system architecture point of view, a common characteristic of these

35

workloads is that they are generally implemented on highly distributed systems and

adopt approaches that scale by partitioning data across individual nodes. Their large

scale is reflected both in the total amount of data involved in a single task and the

number of distributed compute nodes required to process the data. Additionally,

these workloads are I/O intensive often with random access patterns to small-sized

objects over large data sets. Many of these applications are also operating on larger

fractions of data in memory. A recent study reports that, for non-image data, the

total amount of DRAM used in Facebook is approximately 75% of the total data size

[24]. While this trend partly reflects the little or no locality due to complex linkages

between data for the Facebook workload, similar trends can be seen for memcached

servers (DRAM distributed data cache) and TPC-H (database benchmark) winners

over the past decade. Similarly, search algorithms (e.g., from Google) have evolved

to store their search indices entirely in DRAM. These trends motivate us to rethink

the balance between memory and disk-based storage in traditional designs. Second,

recent data-centric workloads have also been characterized by a lot of commercially

deployed innovations in the software stack (e.g., Google BigTable and MapReduce,

Amazon Dynamo, Yahoo PNUTS, Microsoft Dryad, Facebook Memcached, LinkedIn

Voldemort). Indeed, a recent talk mentions that the software stack behind the very

successful Google search engine was re-architected significantly four times in the last

seven years, to achieve better performance at increased scale [20]. The growing im-

portance of this class of workloads, their focus on large-scale distributed systems

with ever increasing use of memory, and their openness to software-level innovations

together offer an opportunity for a corresponding clean-slate architecture design tar-

geted at these workloads.

36

Technology trends

Concurrently, recent technology trends are providing opportunities for better sys-

tem designs. Recent microprocessors have favored multicore designs, emphasizing

multiple simpler cores for greater throughput. This is well matched with the large-

scale distributed parallelism discussed earlier in data-centric workloads. Operating

cores at near-threshold voltage has been shown to significantly improve energy ef-

ficiency [61]. Similarly, recent advances in networking, particularly around optics,

show a strong growth in bandwidth for communication between different compute

elements at various levels of the system design. The most important technology

changes pertinent to data-centric computing, however, relate to the advances and

adoption of non-volatile memory. Flash memories have been increasingly adopted

in popular consumer systems (e.g. smartphones) and are starting to gain adop-

tion in the enterprise market (e.g, FusionIO [29]). Emerging non-volatile memories

have been demonstrated with superior properties to Flash, most notably, Phase-

Change Memory (PCM) and, more recently, Memristors. Table 2.1 summarizes key

attributes (density, bandwidth, latency, energy and endurance) of potential storage

alternatives in the next decade. These trends suggest that future non-volatile memo-

ries can be viable DRAM replacements, achieving competitive speeds at much lower

power consumption, and with non-volatility properties similar to disk but without

the power overhead. Additionally, several recent studies have identified a slowing of

DRAM growth (Section 2.2.1) due to scaling challenges for charge-based memories.

The adoption of NVRAM memories as DRAM replacement can potentially be ac-

celerated due to such limitations in scaling DRAM. Two traditional limitations of

NVRAM technologies have been around density and endurance, but recent trends

suggest that these limitations can be addressed. Increased density can be achieved

37

within a single-die through multi-level designs, and potentially multiple layers per

die [43]. At a single chip level, 3D die stacking using through-silicon vias (TSVs)

for inter-die communication can further increase density. Such 3D stacking also

has the additional advantage of closely integrating the processor and memory for

higher bandwidth and lower power (due to short length low capacitance wires). In

terms of endurance, compared to flash, PCM and Memristor offer significantly better

functionality (107-108 writes per cell compared to the 105 writes per cell for Flash).

Optimizations at the technology, circuit, and systems levels [51, 32, 34, 33] have been

shown to further address endurance issues, and more improvements are likely as the

technologies mature and gain widespread adoption. (We discuss the lifetime of our

proposed designs further in Chapter 4.2.) These trends suggest that technologies like

PCM and Memristors, especially when viewed in the context of advances like 3D die

stacking, multicores, and improved networking, can induce more fundamental archi-

tectural change for data-intensive computing than traditional approaches that use

them as solid-state disks or as another intermediate level in the memory hierarchy.

3.2.2 Proposed architecture

High-level design

Combining the opportunity for a clean-slate architectural redesign for data-centric

workloads with the potential to use emerging NVRAM memories in more disruptive

ways, we propose a new system architecture and memory system design that co-

locates power-efficient compute cores with non-volatile storage, eliminating many

intervening levels of the memory hierarchy. All data is stored in a single NVRAM

data-store layer that replaces traditional disk and DRAM layers (disk is relegated

to archival backup). Figure 3.1 illustrates the proposed solution consisting of a dis-

tributed system comprised of a large number of small homogeneous building blocks.

38

4

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

Non-Volatile Data
Store

Core

L2
L1

Core

L1

Network Interface

Switch

L2

Nanostore
Boards

Fat Tree
Network

Figure 1: Nanostore system architecture

through multi-level designs, and potentially multiple layers per die [19]. At a single chip level, 3D die

stacking using through-silicon vias (TSVs) for inter-die communication can further increase density. Such 3D

stacking also has the additional advantage of closely integrating the processor and memory for higher

bandwidth and lower power (due to short length low capacitance wires). In terms of endurance, compared to

flash, PCM and Memristor offer significantly better functionality (107-108 writes per cell compared to the 105

writes per cell for Flash). Optimizations at the technology, circuit, and systems levels [18] [39] [26] [27] have

been shown to further address endurance issues, and more improvements are likely as the technologies mature

and gain widespread adoption. (We discuss the lifetime of our proposed designs further in Section 4.)

These trends suggest that technologies like PCM and Memristors, especially when viewed in the context of

advances like 3D die stacking, multicores, and improved networking, can induce more fundamental

architectural change for data-intensive computing than traditional approaches that use them as solid-state disks

or as another intermediate level in the memory hierarchy.

2.2 Proposed architecture

2.2.1 High-level design

Combining the opportunity for a clean-slate

architectural redesign for data-centric workloads

with the potential to use emerging NVRAM

memories in more disruptive ways, we propose a

new system architecture and memory system design

that co-locates power-efficient compute cores with

non-volatile storage, eliminating many intervening

levels of the memory hierarchy. All data is stored in a single NVRAM data-store layer that replaces traditional

disk and DRAM layers (disk is relegated to archival backup).

Figure 1 illustrates the proposed solution consisting of a distributed system comprised of a large number of

small homogeneous building blocks. Our individual building block is a single chip and we refer to it as

nanostore. A nanostore consists of multiple 3D-stacked layers of dense silicon non-volatile memories (e.g.,

PCM or Memristors) with a top layer of power-efficient compute cores. TSVs are used to provide wide, low-

energy data paths between the processors and data stores. Power and thermal issues are important concerns

with 3D-stacking. This limits the amount of compute that can be included in a nanostore. In this paper, we

make 3D-packaging assumptions similar to the PicoServer project [12] and focus on low-power simpler cores

for the nanostore. Our assumption of simpler cores also means that we can correspondingly provision the

bandwidth to save power. Each nanostore can act as a full-fledged system with a network interface.

The individual nanostores are networked via an on-board connector to form a large-scale distributed system or

cluster akin to the existing solutions for data-centric workloads discussed in Section 2.1.1. In terms of physical

Figure 3.1: Nanostore system architecture

Our individual building block is a single chip and we refer to it as nanostore. A

nanostore consists of multiple 3D-stacked layers of dense silicon non-volatile mem-

ories (e.g., PCM or Memristors) with a top layer of power-efficient compute cores.

TSVs are used to provide wide, low-energy data paths between the processors and

data stores. Power and thermal issues are important concerns with 3D-stacking. This

limits the amount of compute that can be included in a nanostore. In this work, we

make 3D-packaging assumptions similar to the PicoServer project [40] and focus on

low-power simpler cores for the nanostore. Our assumption of simpler cores also

means that we can correspondingly provision the bandwidth to save power. Each

nanostore can act as a full-fledged system with a network interface. The individual

nanostores are networked via an on-board connector to form a large-scale distributed

system or cluster akin to the existing solutions for data-centric workloads discussed

in Section 3.3.2. In terms of physical organization, multiple nanostore chips are or-

ganized into small daughter boards that, in turn, plug into traditional blade server

boards.

39

System design choices

While the above description summarizes the high-level organization, there is a

wide range of possible implementations. There are a number of design choices in

terms of the provisioning, organization, and balance of the compute, storage, and

network per nanostore as well as the sharing model across the individual nodes

and the topology of the network (including potential differences between the on-

chip, on-board, and cross-cluster networks). The design choices are constrained by

technology- and circuits-level parameters such as the size of the die and the yield, or

the number of 3D-stacked or intra-die layers, as well as packaging constraints such

as the power/thermal budget per chip or board.

!"#$%&'()$*(%+,-./01%2+,-%3445*6!7$89

:;+/%+<=0%,>/,%?,@+;>%A=B/>0%?>;C%D4%E<=@<%=0%?>/FG/H+.I%@=+/A

J3KL%E=+<%M3%.,I/>0%2N%A=/0%O%P%.,I/>09

4Q4444%

4Q4484%

4Q4D44%

4Q4D84%

4Q4344%

4Q4384%

344P% 3445% 34D4% 34DD% 34D3% 34DM% 34DN% 34D8%

!"
##$
%
&"
'$
()
*
+,
-$

."'&$

7#RS%(/..%,>/,%2GCT39% 6(S%(/..%,>/,%2GCT39%

S#"%(/..%,>/,%2GCT39% :R:7%&.,0<%(/..%,>/,%2GCT39%

D%

D4%

D44%

D444%

344P% 3445% 34D4% 34DD% 34D3% 34DM% 34DN% 34D8%

!'
/'

01
23
45
60
7"
2$(
8
9-
$

."'&$

7#RS%KLU(6)%0;@V/+%2DW%7!SS9% 6(S%KLUM7X@<=Y%2P%.,I/>09%

S#"%KLUM7X@<=Y%2P%.,I/>0%Z%N9%

Figure 3.2: Per-node capacities derived from ITRS roadmap 2009 [3]. Note that we use design

points at the 2015 timeframe in our models. DRAM capacity represents 16 off-chip

DIMMs consisting of 16 DRAM chips each. The 3D-stacked PCM and MRT consist of

8 stacked die, while the MRT also has 4 internal layers on each die.

Figure 3.2 presents the projected device capacities used for Nanostore and base-

line evaluations. The baselines, similar to conventional designs, have a die area

of 250mm2 and a maximum power (TDP) of 80 Watts. We assume a nanostore

40

die size of 100mm2, similar to the cost-effective design point for memories [3]. For a

Memristor-based design circa 2015 [47], assuming 8 layers of 3D stacking and 4 intra-

die layers [43], the on-chip datastore capacity is approximately 75 GB per socket.

An area-equivalent 8-layer PCM-based design would have 25GB per socket, as shown

in the figure. These capacities were derived by taking the cell size and array area

efficiency as predicted by ITRS, to determine capacity per layer. The Memristor

projections employed a cell area factor of 10F 2 and the same feature size as NAND

Flash memory. For in-memory DRAM based baseline designs, we assume that the

per-socket DRAM capacity is 128 GB, unless stated otherwise.

For the number of supported cores, we estimated the die area requirement of

a single core by performing automatic place-and-route (APR) of a simple 32-bit

embedded processor using 45nm technology, with an area of 45,000 µm2. Scaled to

22nm 2, this is approximately

(3.1) 45, 000µm2/

(
452

222

)
/106(µm2 per mm2) ≈ 0.012mm2scaled to 22nm

For the caches, scaling a 0.145 µm2 bitcell from 32nm technology [104] and allow-

ing 25% overhead for peripheral circuits, the area of a 1 MB per-core cache is

(3.2) 0.145µm2/

(
322

222

)
= 0.0685µm2scaled to 22nm

0.0685(µm2) ∗ (8 ∗ 1024 ∗ 1024)(bits per cache)

∗ 1.25(overheads)/106(µm2 per mm2) ≈ 0.76mm2

2Dave Fick is acknowledged for assistance and validation of these area calculations

41

Therefore, with a total area of 0.77mm2 per core, each 100mm2 die can accom-

modate up to 100/0.77 = 129 cores.

The read and write latencies as well as access energy are given in Table 2.1. The

objective is to include data store capacity, latency, and energy in the overall model

to understand the sensitivity of our results to alternate NVRAM instantiations in

the future. The cores in the compute layer are based on low-voltage power-efficient

microarchitectures with simple SRAM cache hierarchies. Different organizations are

possible for the compute layer in the number of cores (1 to 128), clock frequency

(100MHz to 2GHz), issue width and pipeline depth (2-way simple to 4-way deep),

and L2 cache size (512KB or 1MB per core) and we study this design space. To

ensure realistic designs, we limit the power density at the socket (32 Watt/cm2).

Later, we vary this power constraint to see the effect on the best designs chosen by our

optimizer. For our projected timeframe, we expect 3D stacking to provide significant

bandwidth (we model up to 32GB/s as per the PicoServer design [40]) between the

processor and stacked memory, and 80Gbps (2x 40Gbps NICs) networking bandwidth

per socket (in a traditional architecture) but we vary these as design space parameters

too. Since PCM requires 150ns to write a bit, a certain number of physical banks

are required to achieve this (worst-case) sustained write throughput. Assuming a

1024-bit TSV bus (as per Picoserver) we would need to interleave accesses over 41

banks to reach 32 GB/s. This is achievable (reference [77] used 64 3D-stacked DRAM

banks), and read accesses would require fewer banks due to their lower access latency.

We assume a large-scale distributed shared-nothing system abstraction. This is well-

matched with current data-centric workloads. Each nanostore can be viewed as a

complete independent system executing the software stack needed to implement a

data parallel execution environment like MapReduce.

42

Discussion

The two most important aspects of nanostores are (1) the co-location of power-

efficient computing with a single-level data store, and (2) the support for large-scale

distributed design. Together, these enable several benefits. The single-level data

store enables improved performance due to faster data access (in latency and band-

width). Energy efficiency is also improved from the flattening of the memory hierar-

chy (fewer data transfers) and the increased energy efficiency of NVRAM over disk

and DRAM. The large-scale distributed design allows for higher performance from

increased parallelism and higher overall data/network bandwidth. This design also

improves energy efficiency by partitioning the system into smaller elements that can

leverage more power-efficient components (e.g., simpler cores). At the same time,

there are potential disadvantages. Given the smaller capacities of per-socket storage,

the number of individual elements in the system increases dramatically. This can

potentially increase the stress on the networking subsystem around bandwidth con-

tention (particularly for all-to-all communication), topological complexity and port

count, and power. Software scalability can also be an issue. While large-scale de-

ployments of data-centric workloads have been demonstrated, latency requirements

(e.g., 500ms response time for a search request) will still have to be carefully con-

sidered in the sizing of the system. Finally, chip-level thermal constraints can limit

the compute per nanostore; this could lead to compute bottlenecks (e.g., for sophis-

ticated data processing like collaborative filtering). The rest of this chapter analyses

the performance and power benefits relative to aggressively scaled and optimized

versions of conventional architectures, in the 2015 timeframe. We identify the var-

ied balance points between storage capacity, compute power, memory and network

bandwidths for each system type. As well as providing detailed power and perfor-

43

mance breakdowns and a novel hybrid modelling methodology, we look at sensitivity

to important thermal and network constraints.

3.3 Evaluation Methodology

3.3.1 Challenges

Evaluating our proposed architecture and understanding the design space poses

several challenges. Our focus on the combination of multiple future technologies for

emerging workloads poses several challenges in the choice of benchmarks, technology

parameters and baseline systems appropriate to this longer timeframe.

Furthermore, given the speculative nature of such an exercise, we need to relate

these assumptions to a systematic understanding of the trends as well as understand

the variance of the results to alternate constraints (affecting both the specific pa-

rameters and the combinations in which they are used). We also back up our results

via small-scale experiments, using a cluster of networked machines with up to 64

processors to validate our performance models.

To evaluate our proposed design and its tradeoffs, we need to model large-scale

clusters running distributed workloads operating on large volumes of data. We also

need to examine tradeoffs at the full system level including computing, networking,

memory, and storage layers. Conventional architecture simulators not only lack the

ability to cope with this level of system scale, but also the modeling means for storage

and network subsystems at a distributed systems level. There is also a combinato-

rial explosion in the design space from various assumptions at the fine-grained and

coarse-grained architectural levels as well as the choice of technology and workload

parameters. An appropriate evaluation methodology is required to systematically

reason about this large design space. To address these challenges, we next discuss a

new set of benchmarks that provides systematic coverage of data-centric workloads

44

and develop a new evaluation framework that uses hybrid performance models to

reason about future new architectures.

3.3.2 Proposed benchmarks

7

Response
Time

Real-time Real-time or interactive responses required
Background Response time is not critical for user needs

Access
Pattern

Random Unpredictable access to regions of data
store

Sequential Sequential access of data chunks
Permutation Data is re-distributed across the system

Working
Set

All The entire dataset is accessed
Partial Only a subset of data is accessed

Data
Type

Structured Metadata/schema/type are used for data
records

Unstructured No explicit data structure, e.g.,
text/binary files

Rich media
Audio/video and image data with
inherent structures and specific
processing algorithms

Read
vs. Write

Read heavy Data reads are significant for processing
Write heavy Data writes are significant for processing

Processing
Complexity

High
Complex processing of data is required
per data item. Examples: video trans-
coding, classification, prediction

Low
Dominated by data access with low
compute ratio. Examples: sort, upload,
download, filtering, and aggregation.

Table 2: A data-centric workload taxonomy

Table 3: Workload mapping

To evaluate our proposed design and its tradeoffs, we need to study large-scale clusters running distributed

workloads operating on large volumes of data. We also need to examine tradeoffs at the full system level

including computing, networking, memory, and storage layers. Conventional architecture simulators not only

lack the ability to cope with this level of system scale, but also the modeling means for storage and network

subsystems at a distributed systems level. There is also a combinatorial explosion in the design space from

various assumptions at the fine-grained and coarse-grained architectural levels as well as the choice of

technology and workload parameters. An appropriate evaluation methodology is required to systematically

reason about this large design space.

To address these challenges, we next discuss a new set

of benchmarks that provides systematic coverage of

data-centric workloads and develop a new evaluation

framework that uses hybrid performance models to

reason about future new architectures.

3.2 Proposed benchmarks

The space of data-centric workloads is vast, fast-

evolving, and characterized by rich diversity across

multiple dimensions. To study a subset of workloads

that provide sufficient coverage and representativeness,

we systematically create a taxonomy of data-centric

workloads to characterize the key dimensions of

diversity and pick a subset of workloads that exercises

all these dimensions.

Table 2 illustrates the taxonomy of data-centric

workloads that we developed based on examination of

a wide class of emerging applications. Key dimensions

include: response time (real-time vs. background),

access pattern (random, sequential or permutation),

working set (all vs. partial), data type (structured,

unstructured and rich media), type of access (read vs.

write dominated), and processing complexity (low, medium or high). Table 2 further explains the attributes of

each dimension. Table 3 shows an example of mapping some popularly-referenced workloads to the taxonomy

and picking a small subset with full coverage (shaded rows). Our chosen workloads provide representative

coverage of different dimensions of data-centric workloads, capture emerging trends towards data analysis and

Figure 3.3: A data-centric workload taxonomy

The space of data-centric workloads is vast, fast-evolving, and characterized by

rich diversity across multiple dimensions. To study a subset of workloads that pro-

vide sufficient coverage and representativeness, we systematically create a taxonomy

of data-centric workloads to characterize the key dimensions of diversity and pick a

subset of workloads that exercises all these dimensions [12]. Figure 3.3 illustrates

the taxonomy of data-centric workloads that we developed based on examination of

a wide class of emerging applications. The key dimensions are as follows. Response

time may be real-time with a time constraint or background tasks with no deadline.

The access pattern is either dominated by random, sequential or permutation ac-

cesses, where data are read then re-written elsewhere. The working set could involve

45

7

Response
Time

Real-time Real-time or interactive responses required
Background Response time is not critical for user needs

Access
Pattern

Random Unpredictable access to regions of data
store

Sequential Sequential access of data chunks
Permutation Data is re-distributed across the system

Working
Set

All The entire dataset is accessed
Partial Only a subset of data is accessed

Data
Type

Structured Metadata/schema/type are used for data
records

Unstructured No explicit data structure, e.g.,
text/binary files

Rich media
Audio/video and image data with
inherent structures and specific
processing algorithms

Read
vs. Write

Read heavy Data reads are significant for processing
Write heavy Data writes are significant for processing

Processing
Complexity

High
Complex processing of data is required
per data item. Examples: video trans-
coding, classification, prediction

Low
Dominated by data access with low
compute ratio. Examples: sort, upload,
download, filtering, and aggregation.

Table 2: A data-centric workload taxonomy

Table 3: Workload mapping

To evaluate our proposed design and its tradeoffs, we need to study large-scale clusters running distributed

workloads operating on large volumes of data. We also need to examine tradeoffs at the full system level

including computing, networking, memory, and storage layers. Conventional architecture simulators not only

lack the ability to cope with this level of system scale, but also the modeling means for storage and network

subsystems at a distributed systems level. There is also a combinatorial explosion in the design space from

various assumptions at the fine-grained and coarse-grained architectural levels as well as the choice of

technology and workload parameters. An appropriate evaluation methodology is required to systematically

reason about this large design space.

To address these challenges, we next discuss a new set

of benchmarks that provides systematic coverage of

data-centric workloads and develop a new evaluation

framework that uses hybrid performance models to

reason about future new architectures.

3.2 Proposed benchmarks

The space of data-centric workloads is vast, fast-

evolving, and characterized by rich diversity across

multiple dimensions. To study a subset of workloads

that provide sufficient coverage and representativeness,

we systematically create a taxonomy of data-centric

workloads to characterize the key dimensions of

diversity and pick a subset of workloads that exercises

all these dimensions.

Table 2 illustrates the taxonomy of data-centric

workloads that we developed based on examination of

a wide class of emerging applications. Key dimensions

include: response time (real-time vs. background),

access pattern (random, sequential or permutation),

working set (all vs. partial), data type (structured,

unstructured and rich media), type of access (read vs.

write dominated), and processing complexity (low, medium or high). Table 2 further explains the attributes of

each dimension. Table 3 shows an example of mapping some popularly-referenced workloads to the taxonomy

and picking a small subset with full coverage (shaded rows). Our chosen workloads provide representative

coverage of different dimensions of data-centric workloads, capture emerging trends towards data analysis and

Figure 3.4: Workload mapping

all stored data, such as distributed sorting, or a smaller subset. The data type may

be structured (database-like), unstructured (e.g. raw text) or rich media (requiring

complex processing to encode or decode). Access type can be read or write domi-

nated. Finally, processing complexity (low, medium or high) is a qualitative measure

of the number of transformations required per unit of data being processed. Figure

3.3 further explains the attributes of each dimension. Figure 3.4 shows an example of

mapping some popularly-referenced workloads to the taxonomy and picking a small

subset with full coverage (shaded rows). Our chosen workloads provide represen-

tative coverage of different dimensions of data-centric workloads, capture emerging

trends towards data analysis and media processing, and support publicly available

implementations that we can use for simulation. We describe these workloads next.

• Sort: The sort benchmark models a two-pass distributed sort of a 1 petabyte

dataset. The workload is both read- and write-heavy, and stresses the balance

between compute/storage/networking subsystems. The algorithm we study is

massively data-parallel and has two phases: (i) a shuffle phase where each server

first reads keys from its local storage and sends them over the network to their

46

individual target servers while simultaneously receiving keys from other servers.

As the memory fills with incoming keys, the server sorts the buffered keys and

writes the results to its local storage. (ii) a local merge phase after the shuffle,

where each nanostore reads partially sorted keys from many local files, performs

a merge sort then writes the final sorted results to local storage. We use the

nsort benchmark to model the local sort phases of this workload.

• Checksum in data deduplication: This benchmark cksum implements check-

sum calculation in data deduplication, resulting in mostly read-only, sequential

access with low processing complexity. We model a massively parallel imple-

mentation of cksum over a 1 Petabyte dataset. Each server scans its local files

and generates block or file signatures using the SHA-1 hash function. We use

sha1sum for our simulations.

• Video transcoding: This benchmark models popular video encoding/transcod-

ing web services that exploit cloud infrastructure for batch processing. The

algorithm reads the video input files, transcodes, and then stores the output in

a new format locally. For our simulations, we use the ffmpeg benchmark over a

1 petabyte dataset. Our sample video is in FLV format at 320x240 resolution

and is transcoded into JPEG snapshots. The average size of the video is 10MB.

• Recommender: This benchmark recom represents parallel machine learning al-

gorithms with high processing complexity and regular communication patterns.

Our workload models the Netflix video recommendation benchmark [105] over a

5 Terabyte dataset using parallel matrix factorization. The algorithm iteratively

refines two matrices so their product can best summarize the ratings matrix.

The large matrices are distributed across the servers main memory. Each iter-

ation has four phases, two of them are compute-heavy matrix operations while

47

in the other interleaving phases. The servers update their local copies of input

matrices using personalized broadcast messages. The implementation requires

large main memory to host the matrices and compute/communication balance.

For our simulations, we use a MATLAB compiled winner of the Netflix challenge

from 2008.

• Search: The search benchmark models text search across a 128 Terabyte data

set, using an in-memory index to achieve sub-second response times. The work-

load is read-only and stresses random access patterns. Similar to popularly-used

in-memory index-based text searches (e.g., Google), the entire index is parti-

tioned and stored in-memory in a large-scale distributed cluster. Each server

searches its local index in the map phase, and sends the top-matching docu-

ment list to the front-end server in the reduce phase. In addition to search

query throughput, this benchmark models a quality of service (QoS) require-

ment that average query latency should be less than 500ms. For our simulations,

we use the lucene benchmark for the map phase.

3.3.3 Proposed evaluation methodology

Two-level simulation with design optimizer

The evaluation methodology that we use is summarized in Figure 3.5. Specifically,

our approach has three main components: (1) a high-level distributed system model,

(2) a lower-level microarchitecture-based model, and (3) a design space optimizer.

Our high-level distributed system simulation captures the applications system-level

behavior and allows exploration of compute-network-datastore balance. Our imple-

mentation is inspired by approaches currently used for MapReduce/Hadoop simu-

lation (e.g., [106]) and query optimizers in databases (e.g., [107]). Similar to these

approaches, our high-level model uses an application-level execution template that

48

9

throughput, this benchmark models a quality of service (QoS) requirement that average query latency should

be less than 500ms. For our simulations, we use the lucene benchmark for the map phase.

3.3 Proposed evaluation methodology

3.3.1 Two-level simulation with design optimizer

The evaluation methodology that we use is summarized in Figure 2. Specifically, our approach has three main

components: (1) a high-level distributed system model, (2) a lower-level microarchitecture-based model, and

(3) a design space optimizer.

Our high-level distributed system simulation captures the applications’ system-level behavior and allows

exploration of broader datacenter issues like topology and

compute-network-datastore balance. Our implementation

is inspired by approaches currently used for

mapreduce/Hadoop simulation (e.g., [36]) and query

optimizers in databases (e.g., [35]). Similar to these

approaches, our high-level model uses an application-

level execution template that breaks down execution time

into key compute, communicate, and I/O subsystem

phases coupled with models for performance and power

for each subsystem. Given the per-node focus of the

nanostore in this paper, we use high-level models for the

network and I/O subsystems, but use the input from a

detailed microarchitectural simulator to model the

compute subsystem. This lower-level microarchitecture-

based model captures the applications’ instruction-level

behavior and allows exploration of architecture choices

like ILP and cache hierarchies. The compute data

throughput and memory bandwidth results from this

model feed into the higher-level simulation. A final design

space optimizer iterates between various compute,

storage, and network options to choose the optimal

balanced design for a given objective function (energy-

delay product, energy efficiency, or performance). Figure 3 presents the execution template and the high-level

models for the sort benchmark as an illustrative example.

Our evaluation methodology is unique in addressing the challenges discussed earlier in evaluating a new

architectural model, with forward-looking technology and workload assumptions, on large-scale distributed

Figure 2: Two-level simulation with design optimizer

R R R R

Co
nc

ur
re

nt
 a

ct
iv

iti
es

Transmit Blocks
Receive Blocks

S
W
S

W
S

W
S

W

Read

Sort
Write

Phase 1 Phase 2

Time

t_Write1 = (data_size) / (data store write bandwidth)

t_Read1 = (data_size) / (data store read bandwidth)

t_Net1 = (data_size) / (one-way network bandwidth)

t_Phase1 = MAX(t_Read1, t_Net1, t_Sort1, t_Write1)

t_Sort1 = (data_size) / (in-memory local Sort bandwidth)

t_W2 = size / (Wr BW)

t_S2 = size / (merge BW)

t_R2 = size / (Rd BW)

t_Phase2 =
MAX(t_R2, t_S2, t_W2)

Utilization

UW (%)

US (%)

UN (%)

UR (%)

TOTAL POWER = Power_Datastore(UW, UR) + Power_Network(UN)
+ Power_Core+Mem(US)

Figure 3: Illustration of sort execution template

Figure 3.5: Two-level simulation with design optimizer

breaks down execution time into key compute, communicate, and I/O subsystem

phases coupled with models for performance and power for each subsystem. We use

high-level models for the network and I/O subsystems, but use the input from a

detailed microarchitectural simulator to model the compute subsystem (nanostore).

This lower-level microarchitecture-based model captures the applications instruction-

level behavior and allows exploration of architecture choices like issue width and

cache size. The CPU data processing throughput and memory bandwidth results

from this model feed into the higher-level simulation. A final design space optimizer

iterates through all of the compute, storage, and network parameters while filtering

out invalid configurations (that exceed thermal limits, for example). Sorting the

remaining valid configurations by the objective function (maximum performance,

energy efficiency or energy-delay product (EDP)) gives the optimal balanced design.

Figures 3.6 to 3.13 present the execution templates and the high-level models for

each of the benchmarks. Apart from the in-memory workloads (Recommender and

49

Search) which already assume unified data storage and main memory in DRAM,

there are two execution plans for each workload. The first represents the steps in-

volved for a conventional system with separate data store and main memory. Loads

and saves of persistent data to/from main memory are necessary because the entire

data set is too large to fit in memory. Although these same transfers could be used

when the data store (DS) and main memory are physically combined, the file loads/-

stores are redundant. They are eliminated from the “unified” execution plans, which

represent software optimized for Nanostore-like designs.SORT

(a) Separate DS, Memory (b) Unified DS, Memory

The basic algorithm (a) proceeds as follows;

1. Phase 1 (Shuffle)
a. Read data buckets (partitioned by key value) from DS.
b. One thread transmits data buckets to destination node over network as they become available
c. One thread receives data buckets from network and writes them to DS.
d. One thread sorts received data buckets.

2. Phase 2 (Local sort)
a. One thread reads buckets from local DS
b. One thread sorts the buckets
c. One thread writes sorted buckets to DS

The optimized algorithm (b) eliminates the need to copy files from storage to a working main memory region during
phase 2. The first phase retains the file reads and writes because it is not guaranteed that there will be enough network
bandwidth to immediately transmit sort data buckets, or enough compute bandwidth to immediately sort incoming data
buckets in-cache. Further, the cache may not have a mechanism to be treated as a scratchpad memory for this purpose.

!
"#
$%
&&
'#
()*
$(
+,
+(+
'-

!
"#
$%
&&
'#
()*
$(
+,
+(+
'-

Figure 3.6: Sort: Separate Data Store and Main Memory

50

SORT

(a) Separate DS, Memory (b) Unified DS, Memory

The basic algorithm (a) proceeds as follows;

1. Phase 1 (Shuffle)
a. Read data buckets (partitioned by key value) from DS.
b. One thread transmits data buckets to destination node over network as they become available
c. One thread receives data buckets from network and writes them to DS.
d. One thread sorts received data buckets.

2. Phase 2 (Local sort)
a. One thread reads buckets from local DS
b. One thread sorts the buckets
c. One thread writes sorted buckets to DS

The optimized algorithm (b) eliminates the need to copy files from storage to a working main memory region during
phase 2. The first phase retains the file reads and writes because it is not guaranteed that there will be enough network
bandwidth to immediately transmit sort data buckets, or enough compute bandwidth to immediately sort incoming data
buckets in-cache. Further, the cache may not have a mechanism to be treated as a scratchpad memory for this purpose.

!
"#
$%
&&
'#
()*
$(
+,
+(+
'-

!
"#
$%
&&
'#
()*
$(
+,
+(+
'-

Figure 3.7: Sort: Unified Data Store and Main Memory

Here we describe the execution plans and how they model the high-level behaviour

of the data center workloads (see Section 3.3.2). The sort benchmark (Figures 3.6

and 3.7) is shown with time on the x-axis, illustrating the two basic phases (network

shuffle and local merge sort). There are two separate execution plans, one for the

non-unified baseline memory/storage system (Figure 3.6), and another for the com-

bined single-level memory/data store (Figure 3.7). During the first phase, blocks of

unsorted data are read from the data store, bucketed into ranges of keys (one for each

destination node), then transmitted to those destinations. Concurrently, incoming

51

blocks in the range allocated to the current node are received and placed in the data

store. The received blocks are then fully sorted, as they are received. This makes

good use of any idle CPU time during the communication process. During the second

phase, there is only local computation and no network transfers occur. The sorted

blocks are read from the data store, merge-sorted on each node, then written back to

the data store, resulting in totally ordered data across all of the data center nodes.

There are some small differences in the unified execution plan. First, the memory

bandwidth generated during data sorting is added to the file transfer bandwidths

caused by transferring blocks on the network. This is because the 3D-stacked mem-

ory and data store channel is now shared. Secondly, during the local merge phase,

reading and writing data to/from main memory are not required, as the cores read

data directly from the Nanostore, and the final in-memory sorted data represents

the sorted file. For combined main memory and data stores, it is envisaged that

the system software will provide a mechanism to nominate regions of memory as

permanent data files for later reference by other processes.

Underneath each execution plan block diagram are the high-level equations used to

calculate execution time. For Figure 3.7, the overall memory bandwidth utilization is

determined by three potential bottlenecks. The first is the data store (yellow), whose

channel is shared with main memory in the unified case. To find the utilization (and

thus minimum execution time when bandwidth-constrained) we add together the

minimum read, write and memory transfer times given the full network bandwidth

(t Read1 + t Write1 + t Mem1). Second, we have limited block sorting throughput

depending on the core performance (obtained during micro-architecture simulation

in the low-level model). Finally, the minimum network transfer time is calculated as

the amount of outgoing sorted data divided by the outgoing bandwidth (we receive

an equivalent amount from the other nodes, in parallel). The maximum of these

52

three times provides the minimum execution time for phase 1;

(3.3) t Phase1 = MAX((t Read1 + t Write1 + t Mem1), t Net1, t Sort1)

During the second phase, we only need to deal with the in-place merge-sort of

the data blocks. Therefore there are no network traffic or file transfers, only the

compute throughput and network bandwidth limit. Therefore the execution time of

the second phase can be approximated as;

(3.4) t Phase2 = MAX(t Sort2, t Mem2)

This first-order model for sharing the memory channel assumes that if more mem-

ory bandwidth is required for computation than is available, performance decreases

proportionally to the amount that demand exceeds bandwidth supply. In the case of

phase 1, this can be interpreted as the sorting task being paused until a data block

transfer has finished, then resuming. Although this ignores micro-architectural ef-

fects such as cache pollution due to file access, careful use of DMA transfers to/from

the network interface and non-cacheable memory regions can help to mitigate these

effects.

Similar reasoning is applied to the other benchmarks regarding the separate and

unified execution plans. Note that the search and recommender baselines store their

data in DRAM, therefore there is only a unified execution plan. All of the benchmarks

are subject to a per-socket thermal constraint, which is nominally 32 Watts per

100mm2, but is varied for sensitivity analysis. Search has an additional constraint

in that each search must complete within a response time of 0.6 seconds. System

configurations which violate any of the constraints are removed from the list of

53

candidates by the optimizer, before finding the remaining valid design with the best

performance metric.

The utilization factors of each resource (active time / total time) are fed into the

power models to scale the active power consumption depending on utilization.CKSUM

(a) Separate DS, Memory (b) Unified DS, Memory

The basic algorithm (a) proceeds as follows;

1. Read files from DS
2. Compute SHA1 checksum

The optimized algorithm (b) eliminates the need to copy files from storage to a working main memory region. Also,
there are no active network transfers, so the network only consumes idle power.

Figure 3.8: cksum: Separate Data Store and Main Memory

Our evaluation methodology is unique in addressing the challenges discussed ear-

lier in evaluating a new architectural model, with forward-looking technology and

workload assumptions, on large-scale distributed systems. It also addresses all the

compute, I/O, and network components of the system, and provides a powerful way

to systematically explore the rich design space at practical simulation times. How-

ever, a few caveats need to be noted. Our high-level application execution models

assume that computation and network communication can overlap and are purely

bandwidth based (i.e. no queuing models are used). These assumptions are ac-

ceptable for the distinct phases and coarse-grained communication behavior of the

representative benchmarks we consider in this study, but care needs to be exercised

in extrapolating the model to other workload classes. Data is also assumed to be

54

CKSUM

(a) Separate DS, Memory (b) Unified DS, Memory

The basic algorithm (a) proceeds as follows;

1. Read files from DS
2. Compute SHA1 checksum

The optimized algorithm (b) eliminates the need to copy files from storage to a working main memory region. Also,
there are no active network transfers, so the network only consumes idle power.

Figure 3.9: cksum: Unified Data Store and Main Memory

distributed uniformly, and load-balancing effects are ignored. For the purposes of

our study, these assumptions allow an adequate comparison of hardware architec-

tures under reasonable software conditions. However, issues around optimizing the

operating systems and middleware for load-balancing and scheduling need to be ad-

dressed in future work. Finally, in the absence of actual prototypes (which is difficult

given that many of the technologies we study are still lab samples), it is hard to val-

idate the model for futuristic design configurations. However, for simple near-term

design alternatives, we have tried to make sure that our results match prior pub-

lished trends. For example, we studied the performance of a simple MPI-based sort

implementation on small cluster sizes (4 to 64 cores) and found the results tracked

the model well (see Section 3.4.7).

Performance and power models

The data store and network subsystem performance models calculate the execu-

tion time for storage access and communication activities based on the provisioned

55
VIDEO

(a) Separate DS, Memory (b) Unified DS, Memory

The basic algorithm (a) proceeds as follows and is identical to the cksum execution plan;

1. Read files from DS
2. Transcode video

The optimized algorithm (b) eliminates the need to copy files from storage to a working main memory region. Also,
there are no active network transfers, so the network only consumes idle power.

Figure 3.10: video: Separate Data Store and Main Memory

bandwidths of the subsystems and the amount of data transferred to and from the

subsystem for the workload execution. For the data store bandwidth, we model the

combined bandwidth needs of both file and memory accesses in our proposed designs.

For the compute subsystem, we use the publicly-available benchmarks discussed ear-

lier for each of our workloads and proceed in two steps. We execute the benchmark on

an existing Xeon-based server with the baseline processor and DRAM. The server is

configured with minimal storage and network overhead (e.g., in-memory search and

processing cached data files). This experiment allows us to measure a “compute data

processing throughput” baseline. For different specific processor configurations, we

run the benchmark through a detailed publicly-available microarchitectural simulator

(COTSon [108]) and use the simulated IPC values to normalize the data through-

put rate. For our results, we focus mainly on average power consumption. (We

also study peak power consumption, but use it primarily to verify compliance with

cooling constraints.) We use the execution time models to compute the utilization

for the processors, memory, data store and network ports. Active power is assumed

56
VIDEO

(a) Separate DS, Memory (b) Unified DS, Memory

The basic algorithm (a) proceeds as follows and is identical to the cksum execution plan;

1. Read files from DS
2. Transcode video

The optimized algorithm (b) eliminates the need to copy files from storage to a working main memory region. Also,
there are no active network transfers, so the network only consumes idle power.

Figure 3.11: video: Unified Data Store and Main Memory

to scale linearly up to peak power as utilization increases. Several components also

have a non-zero idle power (such as DRAM refresh or CPU leakage power). During

phases where the CPU cores are active, we use the memory bandwidths (read and

write) simulated in COTSon to calculate the memory utilization.

Network power: Since network packets traverse multiple switches in the datacen-

ter, we scale our NIC-level power model with a network layer multiplier (the effective

levels in a fat tree switch network) to calculate the total network power. We calculate

the number of network layers required based on a rearrangeably non-blocking [36]

fat-tree network [37]. Rearrangeably means that given any pair of nodes that wish

to communicate, it is possible to reconfigure the already-established connections to

satisfy the new communication. The most basic network consists of two physical

layers of switches, with nanostores as the leaves acting as senders and receivers. Us-

ing the equations in [37] we derived Table 3.1 which relates the number of network

nodes to the number of network layers required. By having a non-blocking network,

we assume in the models that any pair of communicating nodes can make use of the

57

RECOMMENDER

The basic algorithm proceeds as follows and is similar to the sort execution plan. There is no compute during the first
phase, however.

1. Phase 1 (Matrix broadcast)
a. Read matrix slice from DS.
b. Broadcast matrix slice to all other nodes while receiving a matrix slice from all other nodes. That is,

an entire matrix worth of data is sent and received.
c. Write received matrix to DS.

2. Phase 2 (Matrix multiply)
a. Multiply local matrix data with received (updated) matrix.

Since the baseline design is DRAM-based, there is only a unified DS/Memory algorithm.

Figure 3.12: Recommender

full bandwidth available from their network interface. In the high-level model, we

impose a limit on the per-node network bandwidth between the baseline (conven-

tional) design and the Nanostore design. This has the effect of limiting the scale-out

of the number of network nodes, a side-effect of using smaller data stores.

CPU power: The CPU peak power is determined as a function of issue width,

frequency and cache size using the McPAT modelling tool [109]. CPU configurations

ports/switch 64 64 64 64

height (including leaves) 2 3 4 5

maximum nodes 64 2048 65536 2097152

switches 1 96 5120 229376

Table 3.1: Network layer scaling

58
SEARCH

The search performance model is latency based. The basic algorithm proceeds as follows;

1. Phase 1 (Network search request)
a. Wait for search query to arrive

2. Phase 2 (In-memory search)
a. Execute local search algorithm, assuming average-case execution time.

Since the baseline design is DRAM-based, there is only a unified DS/Memory algorithm.

!
""
#$
%&
'()
%*
(+
,'-
'.
/0
1

Figure 3.13: Search

at each frequency also factor in the power benefits from voltage and frequency scaling

using the models specified in [109]. CPU idle power is scaled based on the number

of cores and caches on each parameterized nanostore chip.

3.3.4 Choice of parameters and baselines

As discussed earlier, we examined ITRS roadmaps and prior publications and

talked to industry sources to determine forward-looking parameters for our studies,

but in most cases also study sensitivity to a range of values for each parameter.

Also, we have generally tried to choose parameters that favored more conservative

projections for the benefits of our design.

Figure 3.14 summarizes our system parameter assumptions. The different com-

pute configurations (varying number of thin/fat cores with different cache sizes),

nanostore memory configurations (memristor/PCM), and data/network bandwidth

assumptions are listed. For DRAM, we ignore any potential end-of-life scaling limita-

tions at our projected time frame and extrapolate historical scaling trends in capacity

and bandwidth. We assume configurations of 16GB per DRAM DIMM module and

59

!"#$%&&#" '(&%)*+% ,(+#&-#"% .(*+/.%0#"1 '(&%)*+% ,(+#&-#"%
!"#$%&"'() *+ ,-,+. /$01%2345(6)%78249: +;<= *+
>#$?'$(&@%78AB: + C<,-+<C !0D0&6)@45(6)%782: ,= +;E%F;

G99'$%H6I)J K +E%K /$01%/"H$#45(6)%73: K<= ;<CE%C<=
/$#-&"#$%L,%&0&J$ =KMN=KM =KMN=KM GIO$%/"H$#45(6)%73: + C<CE%C<C

/$#-&"#$%L+%&0&J$,P ;,+ME%,P

/$01%/"H$#4!"#$%73: ,<.* 7Q"I$O: 2("3/4*&56774 244 774
GIO$%/"H$#4!"#$%73: C<CK 7Q"I$O: /$01%234R#6S$%78249: C<; K<;

!0D0&6)@4R#6S$%7T2: = ,<+

,%-8#"5 '(&%)*+% ,(+#&-#"% /$01%/"H$#4R#6S$%73: ,C ,C
/$01%234/"#)%78U6)49: KC KC GIO$%/"H$#4R#6S$%73: . ,

/$01%/"H$#4/"#)%73: ,C ,C
GIO$%/"H$#4/"#)%73: + +

Figure 3.14: System parameters

25.6 GB/s bandwidth for the DRAM channel, with each DIMM consuming 2.6W of

active power and 2W at idle [110]. For persistent storage, we assume HDDs at 6TB

capacity, 500 MB/s bandwidth, and total power consumption varying between 8W to

10W from idle to peak. We also study SSDs at lower capacity per drive (1.2TB), but

higher bandwidth (ranging up to 4.5GB/s) with inherently better energy efficiency

(see Table 2.1). For the networking subsystem, we assume peak and idle power for

a 40 Gbps Ethernet NIC of 10W and 2W respectively, closely matching the assump-

tions in [35]. The changes to the network topology corresponding to the increase in

the number of leaf nodes with the relatively small capacity networked nanostores is

modelled as an increase in the number of layers of switches, as described.

11

!"#$%&&#" '(&%)*+% ,(+#&-#"% .(*+.%/#"0 '(&%)*+% ,(+#&-#"%
!"#$ %"&'()* + +*, -$./ 0123'4(560278 *9:;)*
<#$=&$'%> 56?@8 * A:+ *:A !.B.%4(>23'4(5608 +; *9C D9

E77&$ F4G(H I *C I -$./ -"F$#23'4(518 +A A:;C A:)
-$# %"#$ J+ %.%H$;IKL;IK ;IKL;IK EGM$ -"F$#23'4(518 * A:AC A:A

-$# %"#$ J* %.%H$ +N 9+*KC +N

-$./ -"F$#2!"#$ 518 +:,) 5O"G$M8 1("2 3*&45663 133 663
EGM$ -"F$#2!"#$ 518 A:AI 5O"G$M8 -$./ 012P#4Q$ 560278 A:9 I:9

!.B.%4(>2P#4Q$ 5R08 ; +:*

,%-7#"4 '(&%)*+% ,(+#&-#"% -$./ -"F$#2P#4Q$ 518 +A +A
-$./ 012-"#(56S4(278 IA IA EGM$ -"F$#2P#4Q$ 518 , +

-$./ -"F$#2-"#(518 +A +A
EGM$ -"F$#2-"#(518 * *

Table 4: System parameters

Fat Tree
Network

Memory
Controller I/O

Core Core Core

L1$
(I+D)
L2$

L1$
(I+D)
L2$

L1$
(I+D)
L2$

I/O
chipset

Network
Interface

DRAM DIMM

HDD/
SSD

HDD/
SSD

HDD/
SSD

Fat Tree
Network

Memory
Controller I/O

Core Core Core

L1$
(I+D)
L2$

L1$
(I+D)
L2$

L1$
(I+D)
L2$

I/O
chipset

Network
Interface

DRAM DIMM

DRAM DIMM

DRAM DIMM

DRAM DIMM

(a) Sort, cksum, video (b) search, recommender

Figure 4: Baseline architectures

Since network packets traverse multiple hops in the datacenter, we scale our NIC-level power model with a

network layer multiplier (the effective levels in a fat tree switch network) to calculate the total network power.

The CPU peak power is determined as a function of issue width, frequency and cache size using [20]. CPU

configurations at each frequency also factor in the power benefits from voltage and frequency scaling using

the models specified in [20]. CPU idle power is scaled based on the number of cores and caches on the

nanostore.

3.4 Choice of parameters and baselines

As discussed earlier, we examined ITRS roadmaps and prior publications and talked to industry sources to

determine forward-looking parameters for our studies, but in most cases also study sensitivity to a range of

values for each parameter. Also, we have generally tried to choose parameters that favored more conservative

projections for the benefits of our proposal.

Table 4 summarizes our system parameter assumptions. The different compute configurations (varying number

of thin/fat cores with different cache sizes), nanostore memory configurations (memristor/PCM), and

data/network bandwidth assumptions that we already discussed in Section 2 are listed. For DRAM, we ignore

any potential end-of-life scaling limitations at our

projected time frame and extrapolate historical scaling

trends in capacity and bandwidth. We assume

configurations of 16GB per DRAM DIMM module and

25.6 GB/s bandwidth, with each DIMM consuming

10W at peak and 2W at idle. For persistent storage, we

assume HDDs at 6TB capacity, 500 MB/s bandwidth,

and active power consumption varying between 8W to

10W from idle to peak. We also study SSDs at lower

capacity per drive (1.2TB), but higher bandwidth

(4.5GB/s) and improved energy efficiency (10W peak

power and 1W idle power). For the networking

subsystem, we assume peak and idle power for a 40Gig

Ethernet NIC of 10W and 2W respectively. The

changes to the network topology corresponding to the

increase in the number of leaf nodes with the relatively

small capacity networked nanostores is modeled as an increase in the number of layers in the topology.

Figure 4 summarizes the baseline system architectures we study for each workload. To provide a fair

comparison to the baseline, we recognize that different sweet spot design configurations have evolved for

different workloads (in terms of emphasis on compute, storage, and networking, and organization), and

Figure 3.15: Baseline architectures

60

Figure 3.15 summarizes the baseline system architectures we study for each work-

load. To provide a fair comparison to the baseline, we recognize that different sweet

spot design configurations have evolved for different workloads (in terms of emphasis

on compute, storage, and networking, and organization), and correspondingly choose

a baseline known to be best-suited for each workload. Specifically, sort, cksum and

video benchmarks keep their data on disks and are each allocated a single DRAM

DIMM. Search and Netflix are in-memory workloads so do not have a hard disk

component, but have multiple DIMMs. To ensure the most appropriate balanced

baseline, other than the choice of an enterprise-class processor, other design param-

eters in the baseline are determined through the iterative design space search of our

simulator.

3.4 Evaluation Results

3.4.1 Baseline benefits

12

correspondingly choose a baseline known to be best-suited for each workload. Specifically, sort, cksum and

video benchmarks keep their data on disks and are each allocated a single DRAM DIMM. Search and Netflix

are in-memory workloads so do not have a hard disk component, but have multiple DIMMs. To ensure the

most appropriate balanced baseline, other than the choice of an enterprise-class processor, other design

parameters in the baseline are determined through the iterative design space search of our simulator.

4. EVALUATION RESULTS
4.1 Baseline benefits

Figure 5 presents the improvements in performance and energy efficiency from our nanostore designs relative

to the baselines discussed above. Results for both the PCM- and Memristor-based nanostore designs are

presented for the five benchmarks. For these results, consistent with the data-centric focus of this paper, we

assume that the baseline and nanostore systems both operate on the same dataset size and keep the amount of

permanent persistent storage the same. (The data size and device capacity together determine the number of

sockets in the nanostore designs; all other parameters are based on Section 4.) Also, as discussed earlier, each

point represents the results of a design space search by the optimizer across a range of configuration

parameters, for both the baseline and nanostore designs, but with caps on the thermal density and aggregate

network bandwidth as discussed in Section 2.2. This ensures that the individual designs are locally balanced

for their objective function while meeting the design constraints. We focus on energy-delay-product as the

primary objective function (since we want to optimize both energy efficiency and performance) but discuss

other objective functions briefly in Section 4.3.

The results in Figure 5 show that for all our benchmarks, the nanostore solutions achieve higher performance

at better energy efficiency. For the three I/O intensive benchmarks – sort, cksum, video – the nanostore

designs achieve one to three orders of magnitude higher performance improvement with 3X-16X improved

energy efficiency. For the in-memory benchmarks with DRAM baselines – recom, search – nanostores

achieve 2X-6X better performance with 2X-4X improved energy efficiency.

Comparing the two different NVRAM technologies we consider, the PCM-based nanostores generally

outperform the memristor-based designs, but at reduced energy efficiencies. However, it should be noted that

our constant dataset size constraint presents the memristor-based design at a disadvantage. While, as the

results indicate, a pre-packaged 1 petabyte PCM-based design would have more performance (and cores) than

!

"

#

$

!%

&"

'()* +,-./ 0123(4356 738(/ '35)89 4356

:+4 47;

<=> 16*36-1?3 <6 /3/()@

!"#$%& !''()(#")&A58*()-(B1/
C)(?3/
36*

A58*()-(B1/
C)(?3/
36*

!

!D

!DD

!DDD

!DDDD

'()* +,-./ 0123(4356 738(/ '35)89 4356

:+4 47;

<=> 16*36-1?3 <6 /3/()@

*#$'+$,-")#

Figure 5: Performance and energy efficiency improvements over 2015 baselines (EDP-optimized)

Figure 3.16: Performance and energy efficiency improvements relative to 2015 baselines (EDP-

optimized).

Figure 3.16 presents the improvements in performance and energy efficiency from

our nanostore designs relative to the baselines discussed above. Results for both the

PCM- and Memristor-based nanostore designs are presented for the five benchmarks.

For these results, consistent with the data-centric focus of this work, we assume that

the baseline and nanostore systems both operate on the same dataset size and keep

61

the amount of permanent persistent storage the same. The data size and device

capacity together determine the number of sockets in the nanostore designs; all

other parameters are based on Section 3.3.4. Also, as discussed earlier, each point

represents the results of a design space search by the optimizer across a range of

configuration parameters, for both the baseline and nanostore designs, but with caps

on the thermal density and aggregate network bandwidth as discussed in Sections

3.2.2 and 3.3.3. This ensures that the individual designs are locally balanced for their

objective function while meeting the design constraints. We focus on energy-delay-

product as the primary objective function (since we want to optimize both energy

efficiency and performance) but discuss other objective functions briefly in Section

3.4.3.

The results in Figure 3.16 show that for all our benchmarks, the nanostore so-

lutions achieve higher performance at better energy efficiency. For the three I/O

intensive benchmarks sort, cksum, video the nanostore designs achieve one to

three orders of magnitude higher performance improvement with 3X-16X improved

energy efficiency. For the in-memory benchmarks with DRAM baselines recom,

search nanostores achieve 2X-6X better performance with 2X-4X improved energy

efficiency. Comparing the two different NVRAM technologies we consider, the PCM-

based nanostores generally outperform the memristor-based designs, but at reduced

energy efficiencies. However, it should be noted that our constant dataset size con-

straint presents the memristor-based design at a disadvantage. While, as the results

indicate, a pre-packaged 1 petabyte PCM-based design would have more performance

(and cores) than a pre-packaged 1 petabyte memristor-based design, the PCM-based

design also has more individual nanostore sockets (and correspondingly more vol-

ume). If an alternate comparison considered performance for the same number of

sockets (or equivalently the same amount of silicon), the Memristor-based design

62

would have higher performance than PCM (by a factor corresponding to the Node

multiplier discussed later).

3.4.2 Analysis of performance benefits

13

a pre-packaged 1 petabyte memristor-based design, the PCM-based design also has more individual nanostore

sockets (and correspondingly more volume). If an alternate comparison considered performance for the same

number of sockets (or equivalently the same amount of silicon), the memristor-based design would have

higher performance than PCM (by a factor corresponding to the Node multiplier discussed later).

4.2 Analysis of performance benefits

Table 5 presents additional data to provide further insight into these results (we focus on the non-shaded rows

in this section). Columns 3, 4, and 5 provide the factor of improvement in the energy delay product,

performance, and energy efficiency respectively. Column 6 summarizes the attributes of the best configuration

chosen by the optimizer, and the last four columns present statistics on the multipliers of improvement in

various system attributes. Specifically, Node, OPS, DS, and Net refer to the factor of increase in the number of

processor sockets, and the total provisioned raw compute bandwidth, datastore bandwidth, and network

bandwidth respectively.

The results in Table 5 show that the greatest improvement in resources occurs for the data store bandwidth,

resulting from the combination of both the higher per-nanostore 3D-stacked bandwidth and lower per-device

capacity. For example, with more than 5000 times higher bandwidth, the three I/O-intensive benchmarks no

longer have any data store access bottleneck. With co-located compute, nanostores also allow significantly

higher compute and network bandwidths to match the increased data store bandwidth, regaining the balance

across system resources to improve performance. By breaking the bandwidth wall in the conventional

architecture, processor power density and network aggregate bandwidth now become the new, important

system design constraints. (This also illustrates the reason why we capped these variables for a fair

comparison with the baseline; Section 4.6 considers relaxing these constraints further.)

!"#$% &$%"'" ()*+, ,"-. ** /0#.123-4510#
!"#$ %&' %&' %&' ()*$+,-./*$0+,&'.1##2$+3.4,+%',35.67+8'''9!.:67+,.67;!<+'&=9!#.>$?;!<+'&=''9!# % % % %
776 3@&, %=&A A&% ()*$+%,-./*$0+,&'.1##2$+,.4,+%',35.67+%,-'9!.:67+,.67;!<+3&=9!#.>$?;!<+%&,='9!# = %% 3, %,
6BCD ,'&E ,'&= %&' ()*$+%,-./*$0+'&=.1##2$+,.4,+=%,5.67+%89!.:67+%8.67;!<+%&89!#.>$?;!<+'&%,=9!# 3@ ,@ %%E- %,
F(D %,3&- %@&A @&, ()*$+,,./*$0+'&%.1##2$+,.4,+=%,5.67+,=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&'%A9!# 3@E E %=A,E %,
DBG %@'&- ,A&% @&3 ()*$+--./*$0+'&%.1##2$+,.4,+=%,5.67+@=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&'='9!# %8' %A =%%' %8
!"#$ %&' %&' %&' ()*$+3'./*$0+,&'.1##2$+3.4,+%',35.67+8'''9!.:67+%3.67;!<+'&=9!#.>$?;!<+'&''%9!# % % % %
776 A%8 3, @&= ()*$+%'3./*$0+'&=.1##2$+3.4,+=%,5.67+%,-'9!.:67+,.67;!<+3&=9!#.>$?;!<+'&''%9!# AA ,% 3, %
6BCD A8E= =-A 8&A ()*$+%,-./*$0+%&'.1##2$+,.4,+%',35.67+%89!.:67+%8.67;!<+%&89!#.>$?;!<+'&''%9!# A,8 ,8A %%E- %
F(D =%A=A A,A= %=&E ()*$+%,-./*$0+'&=.1##2$+,.4,+=%,5.67+,=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&''%9!# AAAA %A33 %=A,E %
DBG %@3A, %'@- %8&, ()*$+%,-./*$0+'&=.1##2$+,.4,+=%,5.67+@=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&''%9!# %%%% 33- =%%' %
!"#$ %&' %&' %&' ()*$+3'./*$0+,&'.1##2$+3.4,+%',35.67+8'''9!.:67+,.67;!<+'&=9!#.>$?;!<+'&''%9!# % % % %
776 %=&A @&- ,&' ()*$+--./*$0+,&'.1##2$+,.4,+%',35.67+%,-'9!.:67+,.67;!<+3&=9!#.>$?;!<+'&''%9!# = = 3, %
6BCD %%A&% @-&% %&3 ()*$+--./*$0+,&'.1##2$+,.4,+%',35.67+%89!.:67+%8.67;!<+%&89!#.>$?;!<+'&''%9!# 3@ =, %%E- %
F(D %'EA AA@ A&, ()*$+%,-./*$0+'&=.1##2$+,.4,+%',35.67+,=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&''%9!# 3@E %E, %=A,E %
DBG A8- %%, A&A ()*$+%,-./*$0+'&=.1##2$+,.4,+%',35.67+@=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&''%9!# %8' 83 =%%' %
!"#$ %&' %&' %&' ()*$+=8./*$0+,&'.1##2$+3.4,+%',35.67+%89!.:67+%8.67;!<+%&89!#.>$?;!<+'&=''9!# % % % %
6BCD A&' %&@ %&@ ()*$+%%,./*$0+,&'.1##2$+,.4,+%',35.67+%89!.:67+%8.67;!<+%&89!#.>$?;!<+%&,='9!# %&' %&' %&' ,&=
F(D 8&, A&3 %&- ()*$+%,-./*$0+,&'.1##2$+,.4,+%',35.67+,=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&=''9!# %'&, %%&@ %,&- %'&,
DBG =&= ,&3 ,&A ()*$+%,'./*$0+'&=.1##2$+3.4,+%',35.67+@=9!.:67+%.67;!<+A,&'9!#.>$?;!<+%&,='9!# A&3 %&- 3&A -&=
!"#$ %&' %&' %&' ()*$+-'./*$0+,&'.1##2$+3.4,+%',35.67+%89!.:67+%8.67;!<+%&89!#.>$?;!<+'&''%9!# % % % %
6BCD ,&3 %&3 %&@ ()*$+%,-./*$0+,&'.1##2$+,.4,+=%,5.67+%89!.:67+%8.67;!<+%&89!#.>$?;!<+'&''%9!# %&' '&- %&' %&'
F(D ,=&3 8&, 3&% ()*$+%,-./*$0+'&=.1##2$+,.4,+=%,5.67+,=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&''%9!# %'&, ,&' %,&- %'&,
DBG -&= ,&% 3&% ()*$+%,-./*$0+'&=.1##2$+,.4,+=%,5.67+@=9!.:67+%.67;!<+A,&'9!#.>$?;!<+'&''%9!# A&3 '&@ 3&A A&3

7$"*HI

7)*?

(5#2J

KLM$)

B$H)J

&$46"7 890:");,&)+&)9"5<

Table 5: Configurations and scale multipliers of the baseline and SSD/DRAM/nanostores designs

Figure 3.17: Configurations and scale multipliers of the baseline and SSD/DRAM/nanostore de-

signs. ScaleX refers to the system-level scale factors relative to the baselines, as follows:

Node (networked node count) OPS (peak compute throughput (Operations/second))

DS (Data store bandwidth) Net (Network bandwidth)

Table 3.17 presents additional data to provide further insight into these results (we

focus on the non-shaded rows in this section). Columns 3, 4, and 5 provide the factor

of improvement in the energy delay product, performance, and energy efficiency re-

spectively. Column 6 summarizes the attributes of the best configuration chosen by

the optimizer, and the last four columns present statistics on the multipliers of im-

provement in various system attributes. Specifically, Node, OPS, DS, and Net refer

to the factor of increase in the number of processor sockets, and the total provisioned

raw compute bandwidth, datastore bandwidth, and network bandwidth respectively.

The results in Table 3.17 show that the greatest improvement in resources occurs for

63

the data store bandwidth, resulting from the combination of both the higher per-

nanostore 3D-stacked bandwidth and lower per-device capacity. For example, with

more than 5000 times higher bandwidth, the three I/O-intensive benchmarks no

longer have any data store access bottleneck. With their small data store capacities,

nanostores also allow significantly higher compute core and network bandwidths to

match the increased data store bandwidth, regaining the balance across system re-

sources to improve performance. By breaking the bandwidth wall in the conventional

architecture, processor power density and network aggregate bandwidth now become

the new, important system design constraints. (This also illustrates the reason why

we capped these variables for a fair comparison with the baseline; Section 3.4.6 con-

siders relaxing these constraints further.) Focusing on performance improvement,

the biggest benefits stem from the increased parallelism of the nanostore solution

that allows greater amounts of compute and network to be provisioned for smaller

slices of data capacity. Using cksum as an illustrative example, the best PCM-based

nanostore design (as determined by the design space search) uses 128 simple cores

running at 500MHz in conjunction with the 25GB datastore. The design uses the

lowest network bandwidth because this benchmark does not generate network traffic.

The raw compute bandwidth increases by a factor of more than 1000 to match the

15000X increase in data store bandwidth, and these two resource improvement to-

gether provides three orders of magnitude better performance. (The OPS multiplier

is lower than the Node multiplier due to processor power density constraint, that

bounds the performance improvement).

Although cksum is an extreme example because of its low processing complexity,

video illustrates the same performance benefits from higher data store bandwidth and

matching, co-located, compute capability. To address the higher compute require-

ment over cksum, the optimal baseline node for video now has more cores and less

64

storage capacity. This leads to a lower Node multiplier and a lower OPS multiplier

due to the power density constraint, explaining the lower performance improvement

relative to cksum.

Sort is a benchmark with balanced compute, data access and network bandwidth

requirements. In this case, the network bandwidth becomes the new bottleneck once

the datastore bandwidth bottleneck is addressed, limiting the Net multiplier and

subsequently, the performance improvement. For PCM-based nanostores, only 22

cores are required to match the limited network bandwidth; the Memristor-based

nanostore has higher per-device capacity and correspondingly higher per-node net-

work bandwidth for a given aggregate network bandwidth constraint, explaining its

higher performance improvement.

For the two in-memory benchmarks, a similar analysis can be applied. The rela-

tively smaller performance improvements compared to the IO-intensive benchmarks

stem from a smaller DS multiplier over the high-bandwidth DRAM interface, and

subsequently lower OPS and Net multipliers due to the power density and network

bandwidth caps.

Our detailed analysis also identified (surprisingly) that the significant bandwidth

improvements enabled by the 3D-stacked architecture were not being fully leveraged.

One reason, as discussed above, is that the constraints on power density and network

bandwidth can affect how well the bandwidth is used. Indeed, our additional exper-

iments show significantly higher performance improvements when these constraints

are relaxed (see Figure 3.21(c) in Section 3.4.6). Furthermore, our performance model

and the COTSon-generated per-core memory bandwidth numbers used as input to

the model are both conservative about the effect of improved memory bandwidth

on performance, likely contributing further to these conservative results. Finally,

the nanostore designs memory-like datastore latency has huge performance potential

65

for workloads that are random-access dominant and latency sensitive. However, the

benchmarks we study are throughput-oriented and our performance model is mainly

bandwidth based; therefore our results do not demonstrate this potential benefit.

3.4.3 Analysis of energy efficiency benefits

Besides significant performance gains, nanostores also achieve 2X to 16X improve-

ment in energy efficiency. Below we discuss the three main contributors to nanostores

better performance-per-watt. First, the NVRAM-based data stores are significantly

more efficient than the hard drives or DRAM modules used in the baselines due to

their better proportionality (no idle power) and lower access energy. For I/O heavy

benchmarks, the hard drive access energy can be orders of magnitude higher than

nanostore; while for in-memory workloads, the large DRAM capacity adds large idle

power. The relative contribution of device power for sort for each hardware config-

uration is shown in Figure 3.18. In the unoptimized baselines (2 GHz 4-way issue

cores) with either HDD or SSD (bHDD1 and bSSDx), CPU active power consump-

tion is dominant. For the HDD baseline, almost 50% of total power is spent on the

hard disk. Optimizing the processor and network bandwidth parameters reduces the

impact of the CPU (configuration oHDD1), leaving the hard disk as the dominant

power consumer. Similarly, optimizing the SSD-based designs cuts down on CPU

power as more efficient cores are selected. For the RAM-based data stores (baseline

bRAM4 and optimized oRAM4), memory idle power is the dominant component.

Storing the entire 1 Petabyte dataset entirely in DRAM incurs an idle power penalty

in the same way as the HDD-based system, but active power is much reduced. Fi-

nally, the PCM and Memristor-based optimized nanostore designs all have a similar

power breakdown. The most notable difference is the slightly higher memory active

power of PCM over Memristor. Core active power now makes up a third of the total

66

power, followed by a significant amount of chip leakage power. This is due to the

use of low-frequency cores (active power less dominant) and necessary scale-up in the

amount of processor dies in the system because of the much lower nanostore capacity

than the HDD, SSD or off-chip DRAM configurations. The network power is the

next highest contributor due to the larger network size (more nodes) and increased

efficiency of other components which no longer dominate the power profile.

!"#$%$&'()*

+&,- ./01 /02 ..01 30* 2104 504+&,- ./01 /02 ..01 30* 2104 504

(6789 121:03 .*04 ;/:0; 220. 1/5/ .2

<=>?& 11/0: 102 /204 :03 1;202 202

!?@&9 10: .03 504 20; 10* .02

+?A,@B ;02 :0. 203 * 30. 20/

!?78C-

DEF?@-=G? HI' HH '?,J HI' HH '?,J

'?,J&,9AK@? HH

+&,- ./01 ..01 2104 /02 30* 504

(6789 121:03 ;/:0; 1/5;0; .*04 220. .205

<=>?& 11/0: /204 1;202 102 :03 202

!?@&9 10: 504 10* .03 20; .02

+?A,@B ;02 203 30. :0. *05 20/

'?,J HI' HH '?,J

+&,- /02 30* 504+&,- /02 30* 504

(6789 .*04 220. .2

<=>?& 102 :03 202

!?@&9 .03 20; .02

+?A,@B :0. * 20/

35055

.55055

.25055

L?-M

I+M

5055

25055

:5055

;5055
)?9M

(&,?M

L?-"

I+"

)?9"

!"#$%&#'%&(#%)*+,#-*%(#(./#0122/&/)(#0/314)3#-%5/&/780%5)3#(%#1**93(&7(/#%-(1:1;/&
'?,J HH (&,?)?9 I+ L?- (&,?")?9"

ENII. .055 .055(&,?O23PQ,?RO205PM778?O:PS2O.52:6PI+O;555TUPKI+O2PI+VU#O50*TU7PL?-VU#O50*55TU7 *: 1 14 101 *104* .

5055
(&,?"

ENII. .055 .055(&,?O23PQ,?RO205PM778?O:PS2O.52:6PI+O;555TUPKI+O2PI+VU#O50*TU7PL?-VU#O50*55TU7 *: 1 14 101 *104* .

&NII. .055 .0/:(&,?O35PQ,?RO50*PM778?O2PS2O*.26PI+O;555TUPKI+O2PI+VU#O50*TU7PL?-VU#O50*55TU7 .4 * ;3 *0/ .401: .

E++I. *0*4 .0*;(&,?O:5PQ,?RO205PM778?O:PS2O.52:6PI+O.235TUPKI+O2PI+VU#O503TU7PL?-VU#O50*55TU7 3: : ; :03 3:0.1 .

E++I; /0:1 .03:(&,?O:5PQ,?RO205PM778?O:PS2O.52:6PI+O.235TUPKI+O2PI+VU#O:0*TU7PL?-VU#O5055.TU7 41 1 1 505 4204; .

&++I. *022 :025(&,?O.23PQ,?RO50*PM778?O2PS2O.52:6PI+O.235TUPKI+O2PI+VU#O503TU7PL?-VU#O5055.TU7 /* .5 3 505 /:0;* .

&++I; 30.3 :03.(&,?O.23PQ,?RO50*PM778?O2PS2O*.26PI+O.235TUPKI+O2PI+VU#O:0*TU7PL?-VU#O.02*5TU7 *1 4 .* ./04 *1014 1

E!"): 2.045 50/1(&,?O4;PQ,?RO205PM778?O:PS2O.52:6PI+O.;TUPKI+O.;PI+VU#O.0;TU7PL?-VU#O50.2*TU7 14 ** 5 205 140.3 .

&!"): 250*5 .052 (&,?O.23P .. 32 5 204 ..011 .&!"): 250*5 .052 (&,?O.23P .. 32 5 204 ..011 .

&'(). ..011 30*.(&,?O3PQ,?RO50.PM778?O2PS2O*.26PI+O2*TUPKI+O.PI+VU#O;0:TU7PL?-VU#O505.1TU7 :. : 5 2301 :.053 :

&'()* ..011 30*.(&,?O3PQ,?RO50.PM778?O2PS2O*.26PI+O2*TUPKI+O.PI+VU#O1205TU7PL?-VU#O505.1TU7 :. : 5 2301 :.053 :

&)!W. .*0.5 30/3(&,?O12PQ,?RO50.PM778?O2PS2O*.26PI+O/*TUPKI+O.PI+VU#O;0:TU7PL?-VU#O505*5TU7 :2 . 5 2402 :2013 .

&)!W* .*0.5 30/3(&,?O12PQ,?RO50.PM778?O2PS2O*.26PI+O/*TUPKI+O.PI+VU#O1205TU7PL?-VU#O505*5TU7 :2 . 5 2402 :2013 .

Figure 3.18: Power breakdown (% of total) for sort hardware configurations (energy-optimized).

Net, DS, Mem and Core refer to network, data store, main memory and core power,

respectively. A suffix of I refers to Idle (background) power, and A refers to Active

power.

Second, compute co-location with lower per-nanostore capacity leads to the use of

low-power, more energy-efficient processor cores to attain the same total throughput

as the baseline. As shown in Table 3.17, nanostores often choose lower frequency,

simpler cores, that are much more energy-efficient due to lower frequency and voltage.

Finally, having a single-level data store also provides the opportunity to avoid

data movement between the logically separate segments of memory and persistent

storage. Reducing the number of copy operations can improve performance due

to reduced traffic and less energy for the same task, both leading to better energy

67

efficiency. These effects are hard to isolate with the integrated model we consider,

but we performed separate experiments to study the elimination of redundant file

load and save operations. Our results show significant traffic reduction in cksum

and sort. This translates to about 10% efficiency improvement; the relatively low

improvement stems from the efficient data stores in our designs. The benefits are

more pronounced when the data access bandwidth is limited, as we cut down the

amount of data movement. For example, cksum gets more than 30% better EDP

from collapsing the main memory and storage layers, when per-nanostore bandwidth

is 6.4GB/s. The memristor-based design achieves higher energy efficiency by virtue

of having more energy-efficient data accesses than PCM, but as discussed earlier,

has lower performance compared to the PCM-based nanostore because its higher

capacity leads to a smaller Node multiplier.

3.4.4 Applicability of nanostore techniques in other system architectures

As discussed so far, the nanostore design achieves its benefits from a combina-

tion of several inter-related factors including high bandwidth per gigabyte, matching

compute/network bandwidths, and co-location. Of these factors, the nanostore de-

signs improvements to the system-wide data access bandwidth are fairly unique in

comparison with traditional system architectures. First, cost-sensitive hard drives

usually have a floor price (e.g., $30 for a mobile 2.5-inch drive) to amortize non-media

costs. This effectively determines the hard drives minimum capacity, and sets it to a

level much larger than for a single nanostore socket. Combined with the inherent low

bandwidth of disks, it is not easy to apply nanostores compute/storage co-location

principle that needs small storage chunks. Second, SSDs using current NAND flash

technologies also have limited pins per package, having a higher, yet still limited,

bound on bandwidth per device. Finally, DRAM and PCIe based SSDs can have

68

much higher bandwidth by exploiting device-level parallelism; however, compared

to nanostores, they are still limited by the relatively narrow channels between the

compute and the datastore.

To better illustrate the benefits from the nanostore design and the applicabil-

ity of individual techniques to traditional architectures, Table 3.17 presents some

additional data (shaded rows) listing the best SSD and DRAM-based systems. As

before these points represent the outcome of the design space search optimized for

the balanced design with the best energy delay product.

The results show that while the new DRAM and SSD-based designs show benefits,

the nanostore designs still achieve higher performance at better energy efficiencies.

The SSD designs share some of the energy efficiency advantages of lower idle power

for the data store but suffer from lower bandwidth per GB; consequently, they have

lower performance but higher energy-efficiency relative to the DRAM designs. Note

that the best SSD-based designs also choose more efficient processor cores, as sug-

gested by prior work using low-power processors with NAND flash [22, 23], but their

scaling-down of the processors is much less aggressive than that of the nanostore

designs. Interestingly, DRAM-based solutions often pick more powerful cores even if

they are allowed to use more efficient, low-power cores. This is because the optimizer

chooses to use faster, more powerful cores and hence more processor-power dominat-

ing solutions to offset the energy non-proportionality caused by DRAM idle power.

In other words, more efficient and higher performance data stores can motivate the

selection of more energy efficient processor cores, leading to additive efficiency ben-

efits.

69

16

that needs small storage chunks. Second, SSDs using current NAND flash technologies also have limited pins

per package (typically shared by 4 dies), having a higher, yet still limited, bound on bandwidth per device.

Finally, DRAM and PCIe based SSDs can have much higher bandwidth by exploiting device-level

parallelism; however, compared to nanostores, they are still limited by the relatively narrow channels between

the compute and the datastore.

To better illustrate the benefits from the nanostore design and the applicability of individual techniques to

traditional architectures, Table 5 presents some additional data (shaded rows) listing the best SSD and DRAM-

based systems. As before these points represent the outcome of the design space search optimized for the

balanced design with the best energy delay product.

The results show that while the new DRAM and SSD-based designs show benefits, the nanostore designs still

achieve higher performance at better energy efficiencies. The SSD designs share some of the energy efficiency

advantages of lower idle power for the data store but suffer from lower bandwidth per GB; consequently, they

have lower performance but higher energy-efficiency relative to the DRAM designs. Note that the best SSD-

based designs also choose more efficient processor cores, as suggested by prior work using low-power

processors with NAND flash [5][8], but their scaling-down of the processors is much less aggressive than that

of the nanostore designs. Interestingly, DRAM-based solutions often pick more powerful cores even if they

are allowed to use more efficient, low-power cores. This is because the optimizer chooses to use faster, more

powerful cores and hence more processor-power dominating solutions to offset the energy non-proportionality

caused by DRAM idle power. In other words, more efficient and higher performance data stores can motivate

the selection of more energy efficient processor cores, leading to additive efficiency benefits.

4.5 Other objective functions

Table 6 summarizes the results for the PCM-based

nanostore when the optimizer uses other objective

functions, under the same thermal and network

constraints. For each benchmark, we normalize the

performance and efficiency numbers over the same

configuration (EDP-optimized baseline). The optimizer clearly chooses different configurations to reach

different objectives. EDP is a good objective because EDP-optimized solutions usually have close-to-optimal

performance and EE results across the entire table.

4.6 Impact of relaxed power density and network constraints

Table 7 visualizes the effect of relaxing the socket power density (32, 50, and 100 W/ cm2) and network

constraints (X1, X4, X16 aggregate network bandwidth) for our benchmarks. All results are normalized to the

PCM nanostore design from Section 4.1 (X1 network bandwidth and 32W/cm2). Darker shades illustrate

improved benefits. Allowing higher power density has a positive performance effect for all workloads,

!"#$%&
'()"*&+," -./ -- /"01 -./ -- /"01

230& 4567 4467 8769 568 :6; <69
=>#$? 787@6: A5@6A 75<A6A 4;69 8864 486<
B+C"3 7756@ 5869 7A868 768 @6: 868
!"*3? 76@ <69 76; 46: 86A 468
2"D0*E A68 86: :64 @64 ;6< 865

/"0130?DF*" --

Table 6: Impact of the optimizer’s objective function
Figure 3.19: Impact of the optimizers objective function

3.4.5 Other objective functions

Figure 3.19 summarizes the results for the PCM-based nanostore when the op-

timizer uses other objective functions, under the same thermal and network con-

straints. For each benchmark, we normalize the performance and efficiency numbers

over the same configuration (EDP-optimized baseline). The optimizer clearly chooses

different configurations to reach different objectives. EDP is a good objective be-

cause EDP-optimized solutions usually have close-to-optimal performance and EE

results across the entire table.

3.4.6 Impact of relaxed power density and network constraints

17

matching our analysis in Section 4.2. Raising the

network bandwidth cap only affects the two

network-heavy benchmarks (sort and recom),

especially sort where the network is the first

bottleneck for performance scaling. Power

density is the first bottleneck for recom, which

has to trade core count with higher network bandwidth within the power envelope to get better performance.

4.7 Discussion

Endurance is an important issue to consider. For the peak memory bandwidth we consider, in theory, storage

wear out can occur in 2 years for PCM or 11 years for Memristor based on nanostore capacity and endurance.

However, in practice, not all applications sustain rates at that level and the average across the application is

much lower, leading to much longer lifetimes across the array. Wear-leveling schemes must still be used to

spread writes across the entire memory to prevent early failure of hot data blocks. Assuming a previously

proposed approach – start-gap wear leveling – at an efficiency of 90% of optimal wear-leveling (shown to be

realistic for OLTP/database workloads [26]), and using the memory write bandwidths from our simulations,

we estimate per-socket lifetimes of 7-18 years for our benchmarks on the PCM-based design. Nevertheless,

techniques that carefully manage wear-out warrant further study.

Another important issue is around scaling of workloads. The performance improvements from nanostores stem

from the larger distributed scale of the workloads, with scaling factors ranging from 100 to 500. Even with the

workloads we consider that are targeted at large-scale distributed implementations, such scaling is likely to

pose challenges. Our idealistic assumptions around scaling are not meant to gloss over the challenges of

scaling, but rather to provide an upper bound on the potential benefits. However, it is worth noting that over

the decade from 1998 to 2009, Google’s infrastructure is reported to have scaled performance (queries

processed/day) by 1000X while scaling the infrastructure by 1000X [24].

In this paper, we focus primarily on architectural and technology implications for best future designs, but cost

is another issue that also needs to be considered. Current flash memories are about an order of magnitude

higher cost on a $/byte basis compared to disk. The NVRAM memories we consider in this paper have the

potential to lower these costs by more aggressive stacking and simpler fabrication processes. The improved

energy efficiency of our design can also further lower total costs of ownership. Based on these observations,

we expect the nanostore design to be competitive in costs compared to traditional designs, but this needs to be

validated with further study. We are working with vendors to determine costs projections for PCM/Memristor

technologies and expect to have more discussion on costs in the final paper.

!"#$%&
'(&&)*+,
-"&./' 01 02 013 01 02 013 01 02 013 01 02 013 01 02 013 01 02 013
456& 1 2 ,, 1 2 ,, 1 2 ,, 178 178 879 178 178 879 178 178 879

:;#$+ 1 1 1 , , , , , , 178 178 178 879 879 879 879 879 879
<=>"5 1 1 1 , , , ? ? ? 178 178 178 87@ 87@ 87@ 873 873 873
!"*5+ 1 , , 1 ? ? 1 ? 3 178 178 178 178 178 178 178 178 87A
4"(6*B 1 1 1 , , , , , , 178 178 178 873 873 873 873 873 873

?, 188C8
DD

?, C8 188
E"6F56+(G*"

Table 7: Impact of thermal/network constraints
Figure 3.20: Impact of thermal/network constraints

Figure 3.20 visualizes the effect of relaxing the socket power density (32, 50, and

100 W/cm2) and network constraints (X1, X4, X16 aggregate network bandwidth)

70

bHDD1 Hard Disk (6.0 GB @ 0.5 GB/s), CPU (2.0 GHz, 4-way issue)

oHDD1 Hard Disk (6.0 GB @ 0.5 GB/s), CPU (optimized)

bSSD1 SSD (1.2 GB @ 0.8 GB/s), CPU (2.0 GHz, 4-way issue)

bSSD6 SSD (1.2 GB @ 4.5 GB/s), CPU (2.0 GHz, 4-way issue)

oSSD1 SSD (1.2 GB @ 0.8 GB/s), CPU (optimized)

oSSD6 SSD (1.2 GB @ 4.5 GB/s), CPU (optimized)

bRAM4 off-chip DRAM (256 GB @ 25.6 GB/s), CPU (2.0 GHz, 4-way issue)

oRAM4 off-chip DRAM (256 GB @ 25.6 GB/s), CPU (optimized)

oPCM1 3d-stacked PCM (25 GB @ 6.4 GB/s), CPU (optimized)

oPCM5 3d-stacked PCM (25 GB @ 32 GB/s), CPU (optimized)

oMRT1 3d-stacked Memristor (75 GB @ 6.4 GB/s), CPU (optimized)

oMRT5 3d-stacked Memristor (75 GB @ 32 GB/s), CPU (optimized)

Table 3.2: Hardware configurations. Optimized CPUs have their frequency, issue width and number

of cores per socket adjusted for optimal system performance (throughput, energy or

EDP)

for our benchmarks. All results are normalized to the PCM nanostore design from

Section 3.4.1 (X1 network bandwidth and 32W/cm2). Darker shades illustrate im-

proved benefits. Allowing higher power density has a positive performance effect for

all workloads, matching our analysis in Section 3.4.2. Raising the network bandwidth

cap only affects the two network-heavy benchmarks (sort and recom), especially sort

where the network is the first bottleneck for performance scaling. Power density is

the first bottleneck for recom, which has to trade core count with higher network

bandwidth within the power envelope to get better performance.

Figure 3.21 compares energy-efficiency optimized designs and helps to illustrate

the differing effects of the thermal and network constraints, as well as the effects of

data store bandwidth provisioning. The hardware settings for each data point are

listed in Table 3.2. In Figure 3.21(a), results are normalized to the hard-disk based

baseline. The optimizer is able to use more efficient core parameters for oHDD1,

71

slightly improving energy efficiency, as with the optimized SSD designs. The SSDs

have higher per-drive bandwidth (SSD1 has 1.0 GB/s and SSD2 has 4.5 GB/s peak

bandwidth), and can correspondingly increase performance by removing the storage

bandwidth bottleneck. Energy efficiency also increases with performance, as the core

and network idle energy consumption is reduced during a shorter run. PCM and

Memristor designs are not bottlenecked on the data store bandwidth, hence oPCM1

and oPCM5, as well as oMRT1 and oMRT5 have the same results. However, the

larger socket count of PCM than Memristor to contain all the data, as well as its less

efficient memory accesses slightly reduce overall efficiency. Finally, for the DRAM-

based configurations, it is hard to improve on the baseline due to the high power

of the DRAM-only data store. However, the high bandwidth and low latency of

DRAM relative to SSD affords a large performance boost (much better EDP than

the baseline).

Relaxing the network bandwidth constraint has a significant effect on the PCM,

Memristor and DRAM designs (Figure 3.21(b)). First, all three designs can reach a

higher performance point because they were bottlenecked on the network bandwidth.

Second, by running faster, the DRAM-based design reaches mich higher energy effi-

ciency by mitigating the large idle power. Third, the performance of the PCM-based

design (with a third of the density and 3x as many chips as the Memristor design)

increases significantly (along with an increase in 100 MHz cores per chip from 8 to

88 to saturate the bandwidth).

Finally, Figure 3.21(c) shows the recommender benchmark under a tight network

bandwidth constraint (10 Gbps/node) but a relaxed thermal constraint (100W/-

socket). By allowing higher socket power, the Memristor-based design is able to

exploit the increased data store bandwidth (32 GB/s vs 6.4 GB/s) to reach a higher

performance and efficiency point.

72

!"##

$#"##

%"##

&"##

'"##

!"##

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

01234
01235

03!64
03!65

("##

)"##

*"##

%"##

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

07784

07789

#"##

$"##

+"##

#"## *"## $#"## $*"## +#"## +*"##

:;884

0;884
:7784

:7789

0!<3= :!<3=

,(+-$#

./01) $"## $"##
2/01) $"## $"##

#"## *"## $#"## $*"## +#"## +*"##

!"#$%&'"(1"+.0+>$*/"

2/01) $"## $"##
2341$ $"$$ $"##
2341* $"+(#"!%
21/,$ $")) $"$$
21/,* +"#* $"'%

/56278,$##-$#895:;829<=7=>5? $"##
$"+#
$")#
$"%#
$"'#
+"##

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

01234

03!64:!<3=

03!65

/56278,$##-$#895:;829<=7=>5?

#"##
#"+#
#")#
#"%#
#"'#

#"## #"*# $"## $"*# +"## +"*#

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

!"#$%&'"(1"+.0+>$*/"

03!64
0!<3=
:!<3=

01235

!"#$%&'"(1"+.0+>$*/"

(a) Sort (energy-optimized, T=32W, N=10Gbps)

!"##
!"##
$"$%%"##

!#"##

$"$%
&"'(
$"))
"!

&("!$
*!"&$

!))")+
!))")+

+"##

&"##

*"##

%"##

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

01234
01235

03!64
03!65

!))")+
'#"&$
'#"&$

("##

'"##

$"##

+"##

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

07784

07789

#"##

!"##

)"##

#"##)#"## '#"## +#"## *#"## !##"## !)#"## !'#"##

:;884

0;884
:7784

:7789 0!<3=

:!<3=

,()-*#
!"##
!"##
&"#(

#"##)#"## '#"## +#"## *#"## !##"## !)#"## !'#"##

!"#$%&'"(1"+.0+>$*/"

&"#(
)("&+
$"))
"!

')"'#
(+"'(
))"++))"++
))"++
'#"&$
'#"&$

(b) Sort (energy-optimized, T=32W, N=80Gbps)

!"##

$#"##

%"##

&"##

'"##

!"##

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

01234
01235

03!64
03!65

("##

)"##

*"##

%"##

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

07784

07789

#"##

$"##

+"##

#"## *"## $#"## $*"## +#"## +*"##

:;884

0;884
:7784

:7789

0!<3= :!<3=

,(+-$#

./01) $"## $"##
2/01) $"## $"##

#"## *"## $#"## $*"## +#"## +*"##

!"#$%&'"(1"+.0+>$*/"

2/01) $"## $"##
2341$ $"$$ $"##
2341* $"+(#"!%
21/,$ $")) $"$$
21/,* +"#* $"'%

/56278,$##-$#895:;829<=7=>5? $"##
$"+#
$")#
$"%#
$"'#
+"##

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

01234

03!64:!<3=

03!65

/56278,$##-$#895:;829<=7=>5?

#"##
#"+#
#")#
#"%#
#"'#

#"## #"*# $"## $"*# +"## +"*#

!"
#$
%&
'"
()
*"

+,
-(
).
.&/
&"
*/
-

!"#$%&'"(1"+.0+>$*/"

03!64
0!<3=
:!<3=

01235

!"#$%&'"(1"+.0+>$*/"

(c) Recommender (energy-optimized,

T=100W, N=10Gbps)

Figure 3.21: Energy-efficiency and performance relative to baseline designs under different Thermal

and Network bandwidth limits.

3.4.7 Model Validation

We performed experiments using a real implementation of our sort benchmark to

validate the models used in Nanostore evaluation. Although validating every work-

load model is beyond the scope of this work, the sort benchmark has one of the most

complex communication phases (with simultaneous computation) and establishes the

general validity of our approach.

Phase 1: Shuffle

Because sort consists of two non-overlapping time phases, we measure each one

separately. The first phase is by far the most complex and requires simultaneous

73

36 36

36

University of Michigan 36

Model Validation – Phase 1
! MPI program runs on 16 servers, 4 cores each
!  Two threads per core

!  Sorter: sort 4 KB buffers of 32-bit keys -> send queue
!  Communicator: receive sorted blocks, send from queue

SORTER COMMUNICATOR

Queue

Sorted
block

Send
block

Other cores
(same-chip or via network)

Receive
block

DRAM

Figure 3.22: Block diagram of MPI-based shuffle phase software used in model validation

computation (sorting data buffers) and communication (sending and receiving data

buffers to/from other nodes). By overlapping computation and communication we

make more effective use of the idle compute power available while network packets

are in transit. The communication code was implemented using MPI 1.3, a well-

established message-passing communications library. This implementation of in-

memory sorting is practically identical to that of the execution plan in Figure 3.7.

The code was run on up to 16 networked servers (representing Nanostores), each with

a 1Gbit/s full-duplex Ethernet interface. This corresponds to theoretical upstream

and downstream bandwidths of 128 MB/s for a total of 256 MB/s. Each server has 4-

cores in total, consisting of two dual-core AMD Opteron 2216 HE processors running

at 2.4 GHz. Therefore, we can evaluate sorting performance for different numbers

of cores and networked nodes. Further, by throttling the available bandwidth on

each link using the wondershaper utility [111], we can simulate the effects of having

different (reduced) bandwidths available to the Nanostores.

We assume that during data storage transactions prior to the start of sorting,

the data records have been separated into files of N contiguous data ranges (one

for each node in the system). Hence the data in each block already falls within the

range of keys appropriate for any one destination node. The software creates one

74

process per CPU core, and creates two threads per process as illustrated in Figure

3.22. The first thread sorts 4 KB blocks of 32-bit random keys in memory buffers

and adds them the the “ready queue”. Meanwhile, the communication thread listens

for incoming blocks, while monitoring the ready queue for sorted outgoing blocks.

Whenever blocks become ready, they are sent by the communication thread. When

the sends complete, their send buffers are freed so that they can be re-used to send

more blocks of sorted data. In our experiments, each core is allocated 60 concurrent

send buffers, and one concurrent receive buffer for every node in the system. That

way, communication parallelism should be maximized. The performance results for

phase 1 are as follows. Figure 3.23(a) shows the per-node external network band-

width. Blocks are not sorted before they are transmitted, so these tests represent the

performance of just the communication code. As the number of nodes increases from

2 to 16, there is a decrease in achieved bandwidth of approximately 25%. With 2

nodes, a peak bandwidth of 200 MB/s is achieved, close to the theoretical maximum

of 256 MB/s. Increasing the number of cores from 1 to 2 per socket slightly improves

throughput, but the workload is clearly network-bound as expected.

For a 2-node configuration with one core per node, when buffers are sorted before

sending, the sorting throughput is approximately 80 MB/s. With a single core in use

per node, it is clear that when sorting is enabled, the system should become compute-

bound instead of network bound. To validate this, Figure 3.23(b) shows the same

experiment, this time with buffer sorting before sending. There is a significant drop

in bandwidth from the network-only experiment. As the number of nodes in the

system increases from 2 to 8, the network bandwidth also increases, and flattens

off at around 8 nodes. It should be noted that for small numbers of nodes (N), a

fraction 1
N

of data blocks remain on the same chip (for example, with 2 nodes, half

of the blocks remain on the same node). Because many of the blocks do not traverse

75

the network, it makes sense that external network bandwidth is lower in these cases

because we are compute-bound. For a Nanostore-like system, our conclusions should

be drawn at higher node counts. As the number of cores is increased, there is a

large step in throughput from 1 to 2 cores, and a much smaller step from 2 to 4

cores per node. Intuitively, this is because the compute-bound sorting bandwidth

with 2 cores (2 cores ∗ 80MB/s = 160MB/s) is relatively close to the outbound

bandwidth limit of 128 MB/s, while beyond 2 cores, we become even more network

bound. We validate this in Figure 3.23(c) where we throttle the network bandwidth

in each direction to 50 MB/s. For all core counts, the bandwidth collapses to that

of the single-core configuration while network-bound.

We validate the Nanostore model in Figure 3.24, which shows the measured and

predicted aggregate sorting throughput of the system. This plot does not limit the

network bandwidth, and there is almost a linear increase in sorting throughput with

number of nodes. It can be seen how the step up to 4 cores causes throughput to

saturate on the network bandwidth. The plotted lines show performance as pre-

dicted by the Nanostore model. We use a per-node network bandwidth limit of

150 MB/s (estimated at 16 nodes from 3.23(a)), which is approximately 75% of the

peak throughput we saw. With the 80 MB/s/core compute bandwidth, the per-node

bandwidth is calculated as

(3.5) Nnodes.MIN(Ncores.80, 150) (nodes.(MB/s/node))

There is a larger divergence between the real and modelled throughput for the two-

core configurations. By using a sorting throughput of 80 MB/s, the model predicts

that network bandwidth will be saturated using two cores. In reality, there appear

to be additional overheads from increasing the core count that reduce the sorting

76

!" #$%& '()*+,(-
."/0"" 12%&

3"" 4566+75%6'8
"9:";3<! ='>+'44?)?'=)-
:"9;3<! 4566+75%6'8+&)(6'7+2-+'44

)@A'&B=@7'
< .
3 <

39! ;
39:! ;9!
39C:! ;9:!

DEEFGHIJ+KLM+GD##NKIGOMIDK

)@A'&B=@7'
< . DJMI#OP

<""9. <"!9. <!0
<"<9! 3/! <!0
30!9!! 3:.9; <!0

3..9/;:! 3:;90<! <!0

)@A'&B=@7'
< . DJMI#OP

/"93 3"09. <!0
33;9: 3;:9: <!0
3<C9.! 3!"9C! <!0
3<C90<! 3./90<! <!0

#$JQ+%'A+=@7'+='>,@A1+@=6-+R#OST$UV
)@A'&B=@7'

< . DJMI#OP
.!9. ;0 <!0
!C9< !390 <!0
0C9<! !/9C! <!0

:!93C:! 0/ <!0

"

!"

3""

3!"

<""

<!"

" < . 0 C 3" 3< 3. 30

!
"#

$

%&'()

3

<

.

(a) Maximum (communication only)
!"#$%&'(%)*+'%,-./%$*(.%0!123"45

6

76

866

876

966

976

6 9 : ; < 86 89 8: 8;

!
"#

$

%&'()

8

9

:

6

76

866

876

966

976

6 9 : ; < 86 89 8: 8;

!
"#

$

%&'()

8

9

:

(b) Normal (with sorting)!"#$%&'(%)*+'%,-./%$*(.%0!123"45

6

76

866

876

966

976

6 9 : ; < 86 89 8: 8;

!
"#

$

%&'()

8

9

:

6

76

866

876

966

976

6 9 : ; < 86 89 8: 8;

!
"#

$

%&'()

8

9

:

(c) Network throttled (with sorting)

Figure 3.23: Per-node network bandwidths. The three points in the legend represent the number

of cores per networked node.

throughput. These could stem from operating system or library code, or contention

in the memory system. When the modelled sorting throughput is changed to 60

MB/s, the model fits the measurements more precisely (Figure 3.25).

We perform the same experiment after throttling the bandwidth (Figure 3.24(b)).

The Nanostore model uses the same equation but with a reduced aggregate network

bandwidth of 75 MB/s (peak bandwidth throttled to 50+50 = 100MB/s and scaled

again by the 75% factor representing loss of efficiency at 16 cores). Again, the model

closely tracks the way the 2- and 4-core configurations become network-bound.

These experiments serve to illustrate the general applicability of our bandwidth-

77

based performance model to real code.

!""#$"%&$'()*+',-&.'/0#&'1(!23)45

6
78689:;
:8<:9;;
:=::96;
:=:=9=;
:>?@9:;
77:?96;
:7?>9?;
:@?=9;;
:<??96;
::;=9;;

A%B06
6

@8>98@
8<<9:;

;'

<;;'

7;;;'

7<;;'

:;;;'

:<;;'

;' :' 6' ?' =' 7;' 7:' 76' 7?'

!
"#

$%

&'()*%

7'

:'

6'

A%B07'

A%B0:'

A%B06'

C-B$%#1A%B075'

C-B$%#1A%B0:5'

C-B$%#1A%B065'

;'

<;;'

7;;;'

7<;;'

:;;;'

:<;;'

;' :' 6' ?' =' 7;' 7:' 76' 7?'

!
"#

$%

&'()*%

7'

:'

6'

A%B07'

A%B0:'

A%B06'

C-B$%#1A%B075'

C-B$%#1A%B0:5'

C-B$%#1A%B065'

;9;;'

<;;9;;'

7;;;9;;'

7<;;9;;'

:;;;9;;'

:<;;9;;'

@;;;9;;'

;' ;9<' 7' 79<' :' :9<' @'

!
"#

$%

7'

:'

6'

A%B07'

A%B0:'

A%B06'

(a) Normal (with sorting)

!""#$"%&$'()*+',-&.'/0#&'1(!23)45

6

766

8666

8766

9666

9766

6 9 : ; < 86 89 8: 8;

!
"#

$

%&'()

8

9

:

=%>08

=%>09

=%>0:

?->$%#'1=%>085

?->$%#'1=%>095

?->$%#'1=%>0:5

6

766

8666

8766

9666

9766

6 9 : ; < 86 89 8: 8;

!
"#

$

%&'()

8

9

:

=%>08

=%>09

=%>0:

?->$%#'1=%>085

?->$%#'1=%>095

?->$%#'1=%>0:5

(b) Network throttled (with sorting)

Figure 3.24: Aggregate data sorting bandwidths. The first three legend items represent measured

results for different numbers of cores. The points labelled NanoX represent the theo-

retical Nanostore performance model for each core count (modelled assuming 80 MB/s

local sorting throughput), and their best-fit lines are also shown.

!""#$"%&$'()*+',-&.'/0#&'1(!23)45

6
78689:;
:8<:9;;
:=::96;
:=:=9=;
:>?@9:;
77:?96;
:7?>9?;
:@?=9;;
:<??96;
::;=9;;

A%B06
6

:=69=;
<??96;

;'

<;;'

7;;;'

7<;;'

:;;;'

:<;;'

;' :' 6' ?' =' 7;' 7:' 76' 7?'

!
"#

$%

&'()*%

7'

:'

6'

A%B07'

A%B0:'

A%B06'

C-B$%#1A%B075'

C-B$%#1A%B0:5'

C-B$%#1A%B065'

;'

<;;'

7;;;'

7<;;'

:;;;'

:<;;'

;' :' 6' ?' =' 7;' 7:' 76' 7?'

!
"#

$%

&'()*%

7'

:'

6'

A%B07'

A%B0:'

A%B06'

C-B$%#1A%B075'

C-B$%#1A%B0:5'

C-B$%#1A%B065'

;9;;'

<;;9;;'

7;;;9;;'

7<;;9;;'

:;;;9;;'

:<;;9;;'

@;;;9;;'

;' ;9<' 7' 79<' :' :9<' @'

!
"#

$%

7'

:'

6'

A%B07'

A%B0:'

A%B06'

Figure 3.25: Aggregate data sorting bandwidths (Nanostore models assume 60 MB/s local sorting

throughput).

Phase 2: Merge sort

For the second phase (local merge-sort) we ran the nsort [112] workload on the

same server to estimate data throughput. It input consisted of different numbers of

10 MB files containing random 32-bit keys. The sort (single-threaded) is run mul-

tiple times to ensure that the files have been cached in RAM before being merged.

78

The results are shown in Figure 3.26. As the number of files being merged increases,

there is a slight performance degradation before leveling off at a rate of 13 MB/s.

To check that the simulated and real memory bandwidths were similar, we used the

oprofile utility [113] to sample the CPU hardware performance counters. By record-

ing the number of cache writebacks and misses and assuming a 64-byte cache line

size, per-core DRAM write and read bandwidths were 58.1 and 70.6 MB/s respec-

tively. Comparing this with the simulated results (using a 2.0 GHz 4-way issue core

with 1MB L2 cache), we obtained 62 and 76 MB/s bandwidths. These are both

within 10% of the measured results.

!"#$ $%$&'()*+,-.
/0122034 51544033
/6176623 51506727
/6153348 51546/92
/61/057 51508233
/2185898 51509524
/21802/8 51503044
/21309/6 51509898
/2194/0/ 51504396
/2198528 51503270
/2133728 51503232

!"#$%&'$()*+'#,
51572 !: ;<(&2&=>?&*-(<
51537 !@

72 !"#$&:
37 !"#$&@

$AB-&-;*-.+(-C&DD<E<.+FGHIJGKLJIM>NKOPQR/55555R5S55R/R/&DD<E<.+FK2JGNG>PJ!TUUR455R5S3R/R/&DD<E<.+FK2JGNG>PJVTKKJ@:TOP"NGLR455R5S52R/R/
$AB-&-;*-.+(-C&DD$+)(+W.$-(+&DX<+Y-BFX<(Z<&D;(-*<$$<$F/&D'-(X)+F$,?<R0&#[-(\#$-(+JX<(Z<#$<+5#]&D-&#B<E#.ACCW$AB-&-;*-.+(-C&DD$YA+B-[.

5

2

0

7

9

/5

/2

/0

/7

5 /5 25 65 05 45 75 35 95 85 /55

-
./
&

!')0&

Figure 3.26: Measured nsort merge throughput

3.4.8 Discussion

Endurance is an important issue to consider. For the peak memory bandwidth

we consider, in theory, storage wear out can occur in 2 years for PCM or 11 years for

Memristor based on nanostore capacity and endurance. However, in practice, not all

applications sustain rates at that level and the average across the application is much

lower, leading to much longer lifetimes across the array. Wear-leveling schemes must

still be used to spread writes across the entire memory to prevent early failure of hot

data blocks. In Section 4.2 we estimate the lifetime of a Nanostore system using a

79

recent wear-leveling scheme. In Section 4.3 we also go further and look at how wear-

leveling can be performed between nodes as well as within them. Another important

issue is around scaling of workloads. The performance improvements from nanostores

stem from the larger distributed scale of the workloads, with scaling factors ranging

from 100 to 500. Even with the workloads we consider that are targeted at large-

scale distributed implementations, such scaling is likely to pose challenges. Our

idealistic assumptions around scaling are not meant to gloss over the challenges of

scaling, but rather to provide an upper bound on the potential benefits. However,

it is worth noting that over the decade from 1998 to 2009, Google’s infrastructure is

reported to have scaled performance (queries processed/day) by 1000X while scaling

the infrastructure by 1000X [26]. In this work, we focus primarily on architectural

and technology implications for best future designs, but cost is another issue that

also needs to be considered. Current flash memories are about an order of magnitude

higher cost on a $/byte basis compared to disk. The NVRAM memories we consider

have the potential to lower these costs by more aggressive stacking and simpler

fabrication processes. The improved energy efficiency of our design can also further

lower total costs of ownership. Based on these observations, we expect the nanostore

design to be competitive in costs compared to traditional designs, but this needs to

be validated with further study.

3.5 Conclusions

With data volumes and data-centric applications on the rise, there is an emerg-

ing market for new system designs targeted at these workloads. At the same time,

emerging technologies like 3D-stacked non-volatile memories are likely to disrupt tra-

ditional assumptions around storage latency and bandwidth. We argue that the best

(and most intuitive) way to leverage the confluence of these application and technol-

80

ogy trends is a radical approach that co-locates processors with non-volatile storage

eliminating intervening levels of the storage hierarchy. Our primary contributions

are in developing the design of such an architecture and evaluating its potential ben-

efits and implications. Specifically, we present nanostores, a new building block for

data-centric system design. A nanostore is a single-chip computer that includes 3D-

stacked layers of dense silicon non-volatile memory with a layer of compute cores and

a network interface. A large number of individual nanostores communicate over a

simple interconnect and run a data-parallel execution environment like MapReduce

to support large-scale distributed data-centric workloads. The key aspects of our

approach are large-scale distributed parallelism and balanced energy-efficient com-

pute in close proximity to the data. Together, these allow nanostores to potentially

achieve significantly higher performance at lower energy. Using an evaluation model

and a benchmark suite that we newly designed for this study, we demonstrate orders

of magnitude improvements in performance at significantly better energy efficiency

for key classes of data-centric workloads. We also point out key challenges that need

to be addressed to leverage this potential including scalable software design and im-

proved network subsystem design. While our results are promising, we believe we

have only scratched the surface of what is possible. We are currently examining the

rich architectural space enabled by nanostores, including heterogeneous designs and

integrated optics. There are also interesting opportunities for software optimizations

including new interfaces and management of persistent data stores. Looking further

out, the large scale and low latency of our designs will likely enable new previously

impossible applications for more sophisticated insight generation across larger di-

verse multiple data sources; the corresponding hardware-software codesign provides

rich opportunities for future research.

CHAPTER IV

Non-Volatile Memory Reliability for Data Center and

Server Applications

4.1 Wear-out mitigation techniques

The possible approaches to wear-out mitigation are well summarized by [102], as

follows;

• Wear-leveling algorithms

• Mechanisms to reduce the number of writes to non-volatile memory when pos-

sible

• Mechanisms to gracefully handle cells that fail permanently while programs are

running

In an effort to address the lifetime limitations of non-volatile data center storage,

we propose improved methods of applying some of the above points. In Section 4.2

we first estimate the lifetime of the Memristor and PCRAM Nanostores proposed in

Section III, and propose a novel whole-system distributed wear-leveling scheme in

Section 4.3 [13]. In Section 4.4 we propose improvements to increase the lifetime of

NAND Flash based disk caches by gracefully handling run-time bit cell failures [4].

81

82

4.2 Estimating storage device wear-out in the Nanostore architecture

In this section, we estimate device lifetimes based on the workload write band-

widths observed in Chapter III. Wear-out in non-volatile memory technologies

(Chapter 2.3) can limit the useful lifetime of our system. Assuming that a cer-

tain number of writes can be sustained per memory location before failure, and a

wear-leveling algorithm that results in first block failure within some fraction of opti-

mal (uniform writes), it is possible to estimate time before the first block failure. We

assumed Start-Gap wear leveling with an efficiency of 90% of optimal wear-leveling,

which was shown to be realistic for OLTP and database workloads [51]. Combin-

ing this with the memory write bandwidth results for the 32x 500 MHz 2-way issue

core configuration, we estimate a per-socket lifetime of at least 7 years for PCRAM

using a 512 KB L2 cache or at least 18 years using a 1 MB L2 cache (Figure 4.1).

The larger cache reduces write bandwidth for these benchmarks. This estimation

indicates that Nanostore systems will have acceptable device lifetimes.

pap230s1 9

bandwidth increases wasted idle power. Search is dominated
by core power and network demand for requests is fixed, so
increasing available bandwidth only increases network idle
power. This leads to a slow decline in efficiency. Video
shows a rapid drop in efficiency as network bandwidth is
increased. This is because of the fixed request rate being
served by both the baseline and Microdisk, and the large 10
PB total capacity. The very large number of Microdisks
means that even with a single 100 MHz core per chip, there is
a very small compute power per socket. Therefore, a small
increase in per-socket network provisioning causes network
power to dominate, with no corresponding performance
improvement.

!"!#

!"#

#

#!

#!!

#! #!! #!!!

$%
&'
()
*%
+,
%-
./
0

1)2-34)56+5(3-'7%+2'8'2)(9+:;<=

53-(

4%4>8

*)4%3

?%(.&)@

5%'-2A

(a)

!"!#

!"#

#

#!

#!!

!"!!# !"!# !"# # #! #!!

$%
&'
()
*%
+,
%-
./
0

,%-BC326%(+D%(E3-6+<'?4E)4(A+:;</5=

53-(

4%4>8

*)4%3

?%(.&)@

5%'-2A

(b)

FG

#!!

#F!

H!!

I!!

G!!

H I J #G KH GI #H
J

HF
G

F#
H

#!
HI

H!
IJ

$%'4+L?%-79/M)(+:8N=

!BH HBI IBG

O'
(%
?2
9+
:?
5=

FG

#!!

#F!

H!!

I!!

G!!

H I J #G KH GI #H
J

HF
G

F#
H

#!
HI

H!
IJ

$%'4+L?%-79/M)(+:8N=
!BH HBI IBG GBJ JB#!

#!B#H #HB#I #IB#G #GB#J

O'
(%
?2
9+
:?
5=

(c) Sort (d) Dedup

FG

#!!

#F!

H!!

I!!

G!!

H I J #G KH GI #H
J

HF
G

F#
H

#!
HI

H!
IJ

$%'4+L?%-79/M)(+:8N=

!B!"F !"FB# #B#"F

O'
(%
?2
9+
:?
5=

!"

#$$

#!$

%$$

&$$

"$$

% & ' #" (% "& #%
'

%!
"

!#
%

#$
%&

%$
&'

$%'4+L?%-79/M)(+:8N=

$)% %)&

O'
(%
?2
9
:>
5=

(e) Video (f) Netflix

Fig. 13. Sensitivity analysis. Values shown are Perf/W relative to baseline.

Data store access energy and latency effects vary between
benchmarks depending on how effective the caches are and
the rate of system requests (e.g. video uploads). Figures
13(c,d,e,f,g) show sensitivity of relative energy efficiency to

data store read energy and latency, using 32 2-way issue 500
MHz with 512KB L2 cache, assuming 2pJ/bit write energy to
a 20 GB data store. It should be noted that at this fixed CPU
design point with low write energy, some of the optimal
efficiencies listed in Table II are different to the maximum
values in these plots. Since dedup has a very high L2 cache
miss rate as it streams through the file data computing an
SHA1 checksum, system efficiency is highly dependent on
both variables. Video is less sensitive because its CPUs are
initially under-utilized, and performance does not suffer until
the quality of service (10 second upload and decode limit) is
reached.

E ndurance: We assumed Start-Gap wear leveling [44]
with an efficiency of 90% of optimal wear-leveling,
which was shown to be a realistic assumption.
Combining this with the memory write bandwidth results
for the 32x 500 MHz 2-way issue core configuration, we
estimate a per-socket lifetime of at least 7 years for
PCRAM using a 512 KB L2 cache or at least 18 years
using a 1 MB L2 cache (Figure 14). The larger cache
reduces write bandwidth for all benchmarks. This
demonstrates acceptable device lifetimes for the
Microdisk system.

FG

#!!

#F!

H!!

I!!

G!!

H I J #G KH GI #H
J

HF
G

F#
H

#!
HI

H!
IJ

$%'4+L?%-79/M)(+:8N=

!BH HBI IBG GBJ

O'
(%
?2
9+
:?
5=

!
#!
H!
K!
I!
F!
G!
P!
J!
Q!

#!!

!"
F1 #1

!"
F1 #1

!"
F1 #1

!"
F1 #1

!"
F1 #1

C3-(R%4>8 S)4%3 D%(.&)@ C%'-2A

T%
'-
5

Fig. 13(g). Search sensitivity analysis Fig. 14. Microdisk lifetime

VI. RELATED WORK
Several previous studies have discussed existing and

emerging nonvolatile memories e.g. Flash [17] [18] [4] [31]
[32], PCRAM [60] [35] [62] [45] [60], and Memristors [52]
[55] [46]. While Flash memories have been shown to be
effective as storage, disk replacement, or disk cache [18] [4]
[31] [32], their latency and endurance limitations make them
inapplicable for our work. Phase change memory (PCRAM)
has been demonstrated to have better characteristics including
low latencies, good scalability, and better energy efficiency.
Consequently, recent work has examined using PCRAM, both
as flash replacement or as memory replacement (including in
3D-stacked configurations [60]). However, unlike our work,
only one study that we are aware of [34] focuses on compute-
datastore proximity and corresponding simplification of
hierarchy, but provides no details on applicability to data-
intensive workloads. Several studies have proposed
optimizations to improve endurance for PCRAM [35] [62]
[45] [60] and others have identified potential improvements
in the future [9]. Such optimizations would improve the
benefits of PCRAM for our design. Memristors, originally
proposed by Chua [39] and recently prototyped and evaluated

Figure 4.1: Estimated lifetime in years for PCRAM based system. Cache sizes in MB are shown

below each column

83

4.3 Distributed Wear Leveling

Non-volatile (NV) memories such as flash and phase-change have recently emerged

as promising memory/storage technologies for future computing systems. Wear lev-

eling is widely used for these devices to improve lifetime by evenly spreading writes

across memory cells that only have limited endurance cycles. Existing wear-leveling

techniques are implemented at the individual device or server level, although the use

of NV memories in the datacenter often involves an ensemble of devices or servers. To

simplify system management tasks, it is desirable to improve the ensembles lifetime

by increasing its time to first failure (TTFF). In this section we propose distributed

wear-leveling (DWL) [13] techniques applied at runtime to increase TTFF in a dat-

acenter, reaping additional benefits on top of existing local wear-leveling policies.

We predict 3.9x longer TTFF for a collection of NAND Flash SSDs over a baseline

using local wear-leveling only. In addition, our predictions point towards a low per-

formance impact. To the best of our knowledge, this thesis is the first publication

to propose coordinating memory wear-out across independent, distributed storage

drives.

4.3.1 Introduction

Solid state disks are finding applications in servers due to their higher supported

I/O operations per second (IOPS) relative to mechanical hard disks (HDDs). They

can be attached to servers via conventional disk interfaces such as SATA or via higher

bandwidth interfaces such as PCI-express [29]. As well as their performance benefits,

they use considerably less idle and active energy. Despite hard disk drives being able

to spin down into a low power state, subsequent accesses take some time to start up

again. These aspects present SSDs as an attractive alternative or addition to HDDs.

84

Because all current non-volatile memories have limited write endurance, several ap-

proaches have been taken that effectively increase the lifetime of an SSD as a whole,

namely wear-leveling and fault tolerance techniques. At a high level, wear-leveling

seeks to spread writes evenly across every cell of the SSDs. In doing so, information

must be maintained to map the datas logical addresses to their physical locations,

and is typically handled by software or firmware (for example, in a Flash Translation

Layer or FTL). The multiple-page erase-block structure of NAND Flash is partic-

ularly demanding in terms of extra information (metadata) needed to track the

wear-out state and address mappings. Additional writes are often needed to relocate

valid data (write amplification) during operation, adding to the overall wear-out. De-

pending on the device technology and physical structure of the device, wear-leveling

policies of different complexities can be used. There are three key motivations behind

this work, which are (1) reducing management costs for an ensemble of SSDs, (2)

addressing future lifetime challenges for emerging multi-level cell (MLC) memories

and (3) handling non-uniformity in workloads. Regarding management costs (point

1), because SSDs are still not as cost-effective as HDDs, they can be used as a caching

layer above HDDs for the most heavily accessed data [74, 80]. Shared NAND Flash

based caches have also been considered to cater for multiple hard disk drives in a

networked system [81]. When used as a cache, the overall system performance can be

greatly increased as well as potentially reducing energy consumption for the under-

lying HDDs. However, an aspect of large-scale non-volatile storage integration that

has been overlooked is ensemble-level management of SSDs and wear-out balance

between multiple drives. Black Box data centers have been proposed as a more mod-

ular and efficient design than ad-hoc data centers built from the ground up. Google

patented the data center in a shipping container, [114], Suns Modular Datacenter

[115] and HPs POD [116] combine compute, storage and networking into a portable

85

unit. In this trend towards modularity and reducing management costs, reducing

the frequency of unpredictable hard disk failures becomes more important and is the

focus of our paper. Regarding future lifetime challenges (point 2), emerging data

center workloads involve deep analysis of increasingly larger quantities of data with

complex relationships. For example, Google Squared [19] infers important aspects

of a topic from massive volumes of data, going beyond the conventional web search

applications of the past. This is putting greater pressure on the storage subsystem.

Modern SSDs are specified to last for several years under typical usage using their

built-in wear-leveling policies. However, the move towards MLC and lower costs are

reducing endurance. As an example, a heavily loaded 256 GB SSD at 100 MB/s

write bandwidth and 105 write endurance per bit gives up to 8.1 years of lifetime.

However, predictions for higher density 4-bit MLC available in 2012 may only have

an endurance of 104 [3] reducing that lifetime to 0.81 years (for the same capacity).

This shows a fundamental limitation of local wear-leveling in a single SSD, so we

consider the possibilities for distributed wear-leveling across non-volatile memories

in larger systems (point 3). Non-uniformity between SSD write bandwidths arises

from heterogeneous workloads, skew in the distribution of data, and at a higher

level, heterogeneous SSD technologies (e.g. SLC/MLC/Flash/PCRAM) and device

process variations. The contributions of this work are as follows;

• Analysis of data center storage characteristics, revealing inherent write band-

width imbalance between drives and predictability between data block re-writes,

enabling simple distributed wear-leveling.

• A novel system architecture for monitoring and communicating wear-out statis-

tics in distributed systems. This includes block access monitoring behind all

volatile caches, as well as specialized Monitoring Nodes that are given the task

86

of managing SSD lifetime across servers.

• Novel on-line algorithms to perform distributed wear-leveling. They increase

system-wide time to first failure (TTFF) with low write bandwidth overhead

and low performance impact.

4.3.2 Background and Motivation

Non-volatile memories and Solid-State Disks

3

workloads, skew in the distribution of data, and at a higher level, heterogeneous SSD technologies (e.g.

SLC/MLC/Flash/PCRAM) and device process variations.

The contributions of this paper are as follows;

• Analysis of data center storage characteristics, revealing inherent write bandwidth imbalance

between drives and predictability between data block re-writes, enabling simple distributed wear-

leveling.

• A novel system architecture for monitoring and communicating wear-out statistics in distributed

systems. This includes block access monitoring behind all volatile caches, as well as specialized

‘Monitoring Nodes’ that are given the task of managing SSD lifetime across servers.

• Novel on-line algorithms to perform distributed wear-leveling. They increase system-wide time

to first failure (TTFF) with low write bandwidth overhead and negligible performance impact.

Further, they synergistically enhance the efficiency of local wear-leveling schemes.

2. BACKGROUND AND MOTIVATION

2.1. Non-volatile memories and Solid-State Disks

Figure 1: NVM and SSD internal architectures

!!!!!!!!!!!!!!! !
(a) NAND Flash plane (b) NAND Flash SSD

2048 64

1 block = 64 SLC/128 MLC pages

2048 64SLC page

MLC pages 2048 64

2112 / 4224 bytes

P
LA

N
E

P
LA

N
E

DIE

P
LA

N
E

P
LA

N
E

DIE

PACKAGE

P
LA

N
E

P
LA

N
E

DIE

P
LA

N
E

P
LA

N
E

DIE

PACKAGE

CONTROLLER
VOLATILE

CACHE

EXTERNAL BUS E.G. SATA

INTERNAL CHANNELS

Figure 4.2: NAND Flash plane

3

workloads, skew in the distribution of data, and at a higher level, heterogeneous SSD technologies (e.g.

SLC/MLC/Flash/PCRAM) and device process variations.

The contributions of this paper are as follows;

• Analysis of data center storage characteristics, revealing inherent write bandwidth imbalance

between drives and predictability between data block re-writes, enabling simple distributed wear-

leveling.

• A novel system architecture for monitoring and communicating wear-out statistics in distributed

systems. This includes block access monitoring behind all volatile caches, as well as specialized

‘Monitoring Nodes’ that are given the task of managing SSD lifetime across servers.

• Novel on-line algorithms to perform distributed wear-leveling. They increase system-wide time

to first failure (TTFF) with low write bandwidth overhead and negligible performance impact.

Further, they synergistically enhance the efficiency of local wear-leveling schemes.

2. BACKGROUND AND MOTIVATION

2.1. Non-volatile memories and Solid-State Disks

Figure 1: NVM and SSD internal architectures

!!!!!!!!!!!!!!! !
(a) NAND Flash plane (b) NAND Flash SSD

2048 64

1 block = 64 SLC/128 MLC pages

2048 64SLC page

MLC pages 2048 64

2112 / 4224 bytes

P
LA

N
E

P
LA

N
E

DIE

P
LA

N
E

P
LA

N
E

DIE

PACKAGE

P
LA

N
E

P
LA

N
E

DIE

P
LA

N
E

P
LA

N
E

DIE

PACKAGE

CONTROLLER
VOLATILE

CACHE

EXTERNAL BUS E.G. SATA

INTERNAL CHANNELS

Figure 4.3: NAND Flash SSD

Several memory technologies have been employed in SSDs. DRAM based SSDs

[117] have the advantage of very high performance and practically infinite write

endurance, but suffer from relatively high power consumption. Further, they are

volatile and lose their contents in the case of power loss, so backup power supplies

87

have to be available. This limits the utility of DRAM as a permanent data store.

Considering charge-based non-volatile memories, Flash memory is a well-established

technology for SSDs and comes in two main variants. NOR Flash has similar read

latency characteristics as DRAM, but very high erase latency. For this reason, ap-

plication as a hard disk replacement is not feasible if the sustained write bandwidths

are to be matched. NAND Flash is the current technology of choice for SSDs. NAND

Flash read latency is higher than that of NOR Flash, but erase latency is much lower.

Further, they offer superior device density, even more so when using multi-level cells

that store more than one bit per physical location (MLC). Write endurance per bit

is currently limited to between 104 and 105, however, limiting the life span. More

recently, resistance-based devices such as phase-change memory (PCRAM) are be-

ing produced and potentially improve on some of the limitations of Flash memory.

Although expensive and still in its infancy, PCRAM has potential to scale to higher

densities than Flash, with no erase requirement and higher write endurance. Our

techniques apply equally to these emerging technologies, and can even enhance wear-

leveling policies proposed for them as we will demonstrate. The non-volatile memory

that we consider is NAND Flash. We assume that the chips are physically packaged

into SSDs that provide a communication interface and management firmware. SSDs

take advantage of multiple parallel chips to provide a high level of concurrency, sup-

porting high bandwidth and IOPS. Agrawal et al. [79] provide a good introduction

on internal NAND Flash chip and SSD structure. Flash chips are organized into

pages of typically 2KB-8KB. The pages are organized into blocks that are erased

as a single unit, before being written to. Page writes within a block must proceed

sequentially. Figure 4.2 shows pages composed of single-level cells (SLC) or 2-bit

multi-level cells (MLC) arranged into erase blocks. Every page has 64 bytes of spare

area that are often used for storing metadata or ECC bits. At a higher level (Figure

88

4.3), each Flash package contains a number of die that share an I/O bus. Commands

can operate concurrently between the die, and commands can also operate concur-

rently on a number of internal planes of erase blocks. Externally, the Flash packages

share a number of buses to an SSD controller that performs management functions

and interfaces with the host server.

Wear-leveling

Please refer to Section 2.3.1 for background information on wear-leveling.

4.3.3 Experimental Methodology

Hardware Configuration

7

virtualized file system tailored for non-volatile memory such as DFS [11] would be effective for this

purpose, providing a large virtual address space that has a backwards-compatible software interface.

Figure 2: High-Level System Configuration, This figure shows the physical organization of the
baseline system. All 13 servers are connected via a Gigabit Ethernet switch, supporting 1 Gbit/s
(128 MB/s) of bandwidth for each one. Every volume is replaced with a 1 TB SSD drive.

3.2. Workloads

To explore the potential for distributed wear leveling, we used traces from the Microsoft Research

Cambridge data center. They consist of 1 week of block-level read/write access data for 13 servers each

serving a different function, with a total of 36 storage volumes. Summary information about the traces

are provided in Table 1, reproduced from [20].

Table 1: List of traces

Key Description Volumes
Usr User home dirs 3
Proj Project dirs 5
Prn Print server 2
Hm Hardware monitor 2
Rsrch Research projects 3
Prxy Web proxy 2
Src1 Source control 3
Src2 Source control 3
Stg Web staging 2
Ts Terminal server 1
Web Web/SQL server 4
Mds Media server 2
Wdev Test web server 4

S
S
D

S
S
D

SERVER

File I/O

 Block I/O

File system
volumes

Network Switch
1 Gbit/s per port

FILESYSTEM

S
S
D

S
S
D

SERVER

File I/O

FILESYSTEM

Figure 4.4: High-Level System Configuration, This figure shows the physical organization of the

baseline system. All 13 servers are connected via a Gigabit Ethernet switch, supporting

1 Gbit/s (128 MB/s) of bandwidth for each one. Every volume is replaced with a 1 TB

SSD drive.

Figure 4.4 shows an abstraction of the data center infrastructure. Servers with

different purposes access a number of physical volumes via the filesystem. It is

89

Key Description Volumes

Usr User home dirs 3

Proj Project dirs 5

Prn Print server 2

Hm Hardware monitor 2

Rsrch Research projects 3

Prxy Web proxy 2

Src1 Source control 3

Src2 Source control 3

Stg Web staging 2

Ts Terminal server 1

Web Web/SQL server 4

Mds Media server 2

Wdev Test web server 4

Table 4.1: List of traces

assumed that the filesystem is distributed and any server can access any physical

volume for reading and writing (via local or network interfaces). Existing high-level

filesystems such as the Network File System (NFS) [118] could handle cross-server

accesses. On each server, a virtualized file system tailored for non-volatile memory

such as the Direct File System DFS [119] would provide high performance and a

large virtual address space that has a backwards-compatible software interface.

Workloads

To explore the potential for distributed wear leveling, we used traces from the

Microsoft Research Cambridge data center. They consist of 1 week of block-level

read/write access data for 13 servers each serving a different function, with a total

of 36 storage volumes. Summary information about the traces are provided in Table

4.1, reproduced from [81].

Previous system architecture papers [84, 81] made use of these traces and analyzed

90

8

Previous system architecture papers [17] [20] made use of these traces and analyzed them for different

purposes. In particular, they found that the workload is very bursty and the server producing the top 1%

of accesses changed significantly over time. This motivates an adaptive mechanism for handing wear-

leveling. We believe that these workloads are representative of data center workloads and sufficient to

illustrate the principles of distributed wear leveling. Because we are most concerned with writes rather

than reads, we examined the total data written to each volume over the entire 7-day period (Figure 3).

The figure confirms our assertion that distributed workloads can have very large write imbalance between

the installed storage devices. We identify servers prxy_1 and src1_0 as the dominant source of writes.

These two require closer examination since the distribution of their blocks across volumes will have the

greatest overall impact on wear-out.

Figure 3: Total data written (GB) per volume over the 7-day tracing period

To process the traces and proposed algorithms using a reasonable amount of system RAM, we opted to

record accesses for sequential regions of 128 LBA blocks (64 KB in size) to restrict memory usage during

analysis. The breakdown of block and access characteristics are shown in Figure 4. Figure 4(a) shows

that most data blocks either read-only or write-only (also true for the prxy_1 volume), a situation also

observed in [28]. Because we want to satisfy as many read accesses as possible from the local device for

performance, this is potentially useful because few of the written blocks are re-read and can be off-loaded

to other SSDs. However, for the heavily written src1_0 volume, most blocks are read-write. This causes

a potential problem if we want to distribute blocks across servers for wear-leveling, because there may be

!"!!#

!"!#

!"#

#

#!

#!!

#!!!

$%
&!

$%
&#

%
'(
&!

%
'(
&#

)*
+&

!
)*
+&

#
)*
,-
&!

)*
,-
&#

)*
,-
&.

)*
,-
&/

)*
,-
&0

)*
12
&!

)*
12
&#

*(
*3
$&

!
*(
*3
$&

#
*(
*3
$&

.
(*
3#
&!

(*
3#
&#

(*
3#
&.

(*
3.
&!

(*
3.
&#

(*
3.
&.

(4
5&
!

(4
5&
#

4(
&!

6(
*&
!

6(
*&
#

6(
*&
.

7
'8

9&
!

7
'8

9&
#

7
'8

9&
.

7
'8

9&
/

7
8:

&!
7
8:

&#
7
8:

&.
7
8:

&/

;
<5
=:
24
8(

>,?6%8

Figure 4.5: Total data written (GB) per volume over the 7-day tracing period

them for different purposes. In particular, they found that the workload is very bursty

and the server producing the top 1% of accesses changed significantly over time. This

motivates an adaptive mechanism for handing wear-leveling. We believe that these

workloads are representative of data center workloads and sufficient to illustrate the

principles of distributed wear leveling. Because we are most concerned with writes

rather than reads, we examined the total data written to each volume over the

entire 7-day period (Figure 4.5). The figure confirms our assertion that distributed

workloads can have very large write imbalance between the installed storage devices.

We identify servers prxy 1 and src1 0 as the dominant source of writes. These two

require closer examination since the distribution of their blocks across volumes will

have the greatest overall impact on wear-out.

To process the traces and proposed algorithms using a reasonable amount of

system RAM, we opted to record accesses for sequential regions of 128 LBA blocks

(64 KB in size) to restrict memory usage during analysis. The breakdown of block

and access characteristics are shown in Figure 4.6. Figure 4.6(a) shows that most data

blocks either read-only or write-only (also true for the prxy 1 volume), a situation

also observed in [86]. Because we want to satisfy as many read accesses as possible

from the local device for performance, this is potentially useful because few of the

91

9

many remote read accesses. Any block re-distribution algorithm we devise should try to maximize the

number of read accesses satisfied by the local SSD by keeping the blocks with the highest read/write ratio

local. Figure 4(b) indicates that although there are few read-write blocks in prxy_1, the majority of

accesses are made to that small subset of read-write blocks.

Figure 4: Block and access classification. Data are for 7-day traces.

(a) Classification of blocks into Read-Only, Write-Only and Read-Write

(b) Classification of all accesses to each type of block; reads to read-only blocks, writes to write-only
blocks, reads to read-write blocks and writes to read-write blocks

Because the wear-leveling scheme needs to adapt to changing access patterns, we next examine the time

behavior of the volumes that generate the most writes. Ideally, we want to predict the number of writes to

each block for the next time interval, so we can balance those writes across all SSDs by moving them

there before the writes arrive. The time behaviors of the write-heavy volumes are significantly different

(Figure 5). We also include proj_2 as the third highest contributor of write accesses. While prxy_1

appears to have a consistent rate of writing, src1_0 is periodic, with 24 hours between bursts. This is a

feature that our block placement algorithm should take into account when predicting the total amount of

!"

#!"

$!"

%!"

&!"

'!!"

()
*!

()
*'

)
+,
*!

)
+,
*'

-.
/*

!
-.
/*

'
-.
01
*!

-.
01
*'

-.
01
*#

-.
01
*2

-.
01
*$

-.
34
*!

-.
34
*'

.,
.5
(*

!
.,
.5
(*

'
.,
.5
(*

#
,.
5'
*!

,.
5'
*'

,.
5'
*#

,.
5#
*!

,.
5#
*'

,.
5#
*#

,6
7*
!

,6
7*
'

6,
*!

8,
.*
!

8,
.*
'

8,
.*
#

9
+:

;*
!

9
+:

;*
'

9
+:

;*
#

9
+:

;*
2

9
:<

*!
9
:<

*'
9
:<

*#
9
:<

*2

=.
>5
6?
0/

@0
A@
<B
05
C,

D0B8):

<B05C,*EF <B05C,*GF <B05C,*EG

!"

#!"

$!"

%!"

&!"

'!!"

()
*!

()
*'

)
+,
*!

)
+,
*'

-.
/*

!
-.
/*

'
-.
01
*!

-.
01
*'

-.
01
*#

-.
01
*2

-.
01
*$

-.
34
*!

-.
34
*'

.,
.5
(*

!
.,
.5
(*

'
.,
.5
(*

#
,.
5'
*!

,.
5'
*'

,.
5'
*#

,.
5#
*!

,.
5#
*'

,.
5#
*#

,6
7*
!

,6
7*
'

6,
*!

8,
.*
!

8,
.*
'

8,
.*
#

9
+:

;*
!

9
+:

;*
'

9
+:

;*
#

9
+:

;*
2

9
:<

*!
9
:<

*'
9
:<

*#
9
:<

*2

=.
>5
6?
0/

@0
A@
>5
5:
,,
:,

D0B8):

.:>+,*EF 9.?6:,*GF .:>+,*EG 9.?6:,*EG

(a) Classification of blocks into Read-Only, Write-Only and Read-Write

9

many remote read accesses. Any block re-distribution algorithm we devise should try to maximize the

number of read accesses satisfied by the local SSD by keeping the blocks with the highest read/write ratio

local. Figure 4(b) indicates that although there are few read-write blocks in prxy_1, the majority of

accesses are made to that small subset of read-write blocks.

Figure 4: Block and access classification. Data are for 7-day traces.

(a) Classification of blocks into Read-Only, Write-Only and Read-Write

(b) Classification of all accesses to each type of block; reads to read-only blocks, writes to write-only
blocks, reads to read-write blocks and writes to read-write blocks

Because the wear-leveling scheme needs to adapt to changing access patterns, we next examine the time

behavior of the volumes that generate the most writes. Ideally, we want to predict the number of writes to

each block for the next time interval, so we can balance those writes across all SSDs by moving them

there before the writes arrive. The time behaviors of the write-heavy volumes are significantly different

(Figure 5). We also include proj_2 as the third highest contributor of write accesses. While prxy_1

appears to have a consistent rate of writing, src1_0 is periodic, with 24 hours between bursts. This is a

feature that our block placement algorithm should take into account when predicting the total amount of

!"

#!"

$!"

%!"

&!"

'!!"

()
*!

()
*'

)
+,
*!

)
+,
*'

-.
/*

!
-.
/*

'
-.
01
*!

-.
01
*'

-.
01
*#

-.
01
*2

-.
01
*$

-.
34
*!

-.
34
*'

.,
.5
(*

!
.,
.5
(*

'
.,
.5
(*

#
,.
5'
*!

,.
5'
*'

,.
5'
*#

,.
5#
*!

,.
5#
*'

,.
5#
*#

,6
7*
!

,6
7*
'

6,
*!

8,
.*
!

8,
.*
'

8,
.*
#

9
+:

;*
!

9
+:

;*
'

9
+:

;*
#

9
+:

;*
2

9
:<

*!
9
:<

*'
9
:<

*#
9
:<

*2

=.
>5
6?
0/

@0
A@
<B
05
C,

D0B8):

<B05C,*EF <B05C,*GF <B05C,*EG

!"

#!"

$!"

%!"

&!"

'!!"

()
*!

()
*'

)
+,
*!

)
+,
*'

-.
/*

!
-.
/*

'
-.
01
*!

-.
01
*'

-.
01
*#

-.
01
*2

-.
01
*$

-.
34
*!

-.
34
*'

.,
.5
(*

!
.,
.5
(*

'
.,
.5
(*

#
,.
5'
*!

,.
5'
*'

,.
5'
*#

,.
5#
*!

,.
5#
*'

,.
5#
*#

,6
7*
!

,6
7*
'

6,
*!

8,
.*
!

8,
.*
'

8,
.*
#

9
+:

;*
!

9
+:

;*
'

9
+:

;*
#

9
+:

;*
2

9
:<

*!
9
:<

*'
9
:<

*#
9
:<

*2

=.
>5
6?
0/

@0
A@
>5
5:
,,
:,

D0B8):

.:>+,*EF 9.?6:,*GF .:>+,*EG 9.?6:,*EG

(b) Classification of all accesses to each type of block; reads to read-only blocks, writes to

write-only blocks, reads to read-write blocks and writes to read-write blocks

Figure 4.6: Block and access classification. Data are for 7-day traces.

written blocks are re-read and can be off-loaded to other SSDs. However, for the

heavily written src1 0 volume, most blocks are read-write. This causes a potential

problem if we want to distribute blocks across servers for wear-leveling, because there

may be many remote read accesses. Any block re-distribution algorithm we devise

should try to maximize the number of read accesses satisfied by the local SSD by

keeping the blocks with the highest read/write ratio local. Figure 4.6(b) indicates

that although there are few read-write blocks in prxy 1, the majority of accesses are

made to that small subset of read-write blocks.

Because the wear-leveling scheme needs to adapt to changing access patterns, we

next examine the time behavior of the volumes that generate the most writes. 75%

of all writes are generated by only three disks, so we study those in more detail.

92

10

data that is going to be written in a time interval. That way, we can estimate how many writes ought to go

to the local drive (an equal fraction of the total, for each SSD).

Figure 5: Time behavior of writes. Each data point is recorded for a 3-hour interval.

To assess the predictability of accesses in the next period from the current one, we compare the write

counts of each block in the current and earlier intervals (Figure 6). In this plot, the x-axis represents the

write counts in the earlier interval and the y-axis represents write counts in the current interval. Each

point represents a unique block address. A diagonal line in the plot would indicate perfect correlation

with the same access count per block at each time. Points on the x-axis indicate blocks not written at all

in the current interval, and points on the y-axis indicate new blocks being written.

Figure 6: Correlation between time intervals. Outlier block 48128 has been removed. Each point
represents a 64KB block accessed in either (or both) of successive 3-hour intervals. The x-axis

represents write count to the block during the first, and y-axis the second interval.

(a) prxy_1, x=19, y=20 (b) src1_0, x=13, y=14 (c) src1_0, x=16, y=17

For the correlation plots, there was an outlier block at 64K-address 48128. To better examine the trend

for the majority of data points, this block was removed. We suspect that it is drive metadata, and could be

!"!#$!!

%"!#$!&

'"!#$!&

("!#$!&

!"% !") !"* !"+ %"% %") %"* %"+ '"% '") '"* '"+ ("% (") ("* ("+)"%)"))"*)"+ ,"% ,") ,"* ,"+ *"% *") *"* *"+
-
./
01
23
4
5
6
0

789:21;8<:1=

<.>9?% :.3%?! <.4@?'

Figure 4.7: Time behavior of writes. Each data point is recorded for a 3-hour interval.

Ideally, we want to predict the number of writes to each block for the next time

interval, so we can balance those writes across all SSDs by moving them there before

the writes arrive. The time behaviors of the write-heavy volumes are significantly

different (Figure 4.7). We also include proj 2 as the third highest contributor of

write accesses. While prxy 1 appears to have a consistent rate of writing, src1 0 is

periodic, with 24 hours between bursts. This is a feature that our block placement

algorithm should take into account when predicting the total amount of data that is

going to be written in a time interval. That way, we can estimate how many writes

ought to go to the local drive (an equal fraction of the total, for each SSD).

To assess the predictability of accesses in the next period from the current one,

we compare the write counts of each block in the current and earlier intervals (Figure

4.8). In this plot, the x-axis represents the write counts in the earlier interval and

the y-axis represents write counts in the current interval. Each point represents a

unique block address. A diagonal line in the plot would indicate perfect correlation

with the same access count per block at each time. Points on the x-axis indicate

blocks not written at all in the current interval, and points on the y-axis indicate

new blocks being written.

For the correlation plots, there was an outlier block at 64K-address 48128. To

better examine the trend for the majority of data points, this block was removed.

93

10

data that is going to be written in a time interval. That way, we can estimate how many writes ought to go

to the local drive (an equal fraction of the total, for each SSD).

Figure 5: Time behavior of writes. Each data point is recorded for a 3-hour interval.

To assess the predictability of accesses in the next period from the current one, we compare the write

counts of each block in the current and earlier intervals (Figure 6). In this plot, the x-axis represents the

write counts in the earlier interval and the y-axis represents write counts in the current interval. Each

point represents a unique block address. A diagonal line in the plot would indicate perfect correlation

with the same access count per block at each time. Points on the x-axis indicate blocks not written at all

in the current interval, and points on the y-axis indicate new blocks being written.

Figure 6: Correlation between time intervals. Outlier block 48128 has been removed. Each point
represents a 64KB block accessed in either (or both) of successive 3-hour intervals. The x-axis

represents write count to the block during the first, and y-axis the second interval.

(a) prxy_1, x=19, y=20 (b) src1_0, x=13, y=14 (c) src1_0, x=16, y=17

For the correlation plots, there was an outlier block at 64K-address 48128. To better examine the trend

for the majority of data points, this block was removed. We suspect that it is drive metadata, and could be

!"!#$!!

%"!#$!&

'"!#$!&

("!#$!&

!"% !") !"* !"+ %"% %") %"* %"+ '"% '") '"* '"+ ("% (") ("* ("+)"%)"))"*)"+ ,"% ,") ,"* ,"+ *"% *") *"* *"+

-
./
01
23
4
5
6
0

789:21;8<:1=

<.>9?% :.3%?! <.4@?'

(a) prxy 1, x=19, y=20

10

data that is going to be written in a time interval. That way, we can estimate how many writes ought to go

to the local drive (an equal fraction of the total, for each SSD).

Figure 5: Time behavior of writes. Each data point is recorded for a 3-hour interval.

To assess the predictability of accesses in the next period from the current one, we compare the write

counts of each block in the current and earlier intervals (Figure 6). In this plot, the x-axis represents the

write counts in the earlier interval and the y-axis represents write counts in the current interval. Each

point represents a unique block address. A diagonal line in the plot would indicate perfect correlation

with the same access count per block at each time. Points on the x-axis indicate blocks not written at all

in the current interval, and points on the y-axis indicate new blocks being written.

Figure 6: Correlation between time intervals. Outlier block 48128 has been removed. Each point
represents a 64KB block accessed in either (or both) of successive 3-hour intervals. The x-axis

represents write count to the block during the first, and y-axis the second interval.

(a) prxy_1, x=19, y=20 (b) src1_0, x=13, y=14 (c) src1_0, x=16, y=17

For the correlation plots, there was an outlier block at 64K-address 48128. To better examine the trend

for the majority of data points, this block was removed. We suspect that it is drive metadata, and could be

!"!#$!!

%"!#$!&

'"!#$!&

("!#$!&

!"% !") !"* !"+ %"% %") %"* %"+ '"% '") '"* '"+ ("% (") ("* ("+)"%)"))"*)"+ ,"% ,") ,"* ,"+ *"% *") *"* *"+

-
./
01
23
4
5
6
0

789:21;8<:1=

<.>9?% :.3%?! <.4@?'

(b) src1 0, x=13, y=14

10

data that is going to be written in a time interval. That way, we can estimate how many writes ought to go

to the local drive (an equal fraction of the total, for each SSD).

Figure 5: Time behavior of writes. Each data point is recorded for a 3-hour interval.

To assess the predictability of accesses in the next period from the current one, we compare the write

counts of each block in the current and earlier intervals (Figure 6). In this plot, the x-axis represents the

write counts in the earlier interval and the y-axis represents write counts in the current interval. Each

point represents a unique block address. A diagonal line in the plot would indicate perfect correlation

with the same access count per block at each time. Points on the x-axis indicate blocks not written at all

in the current interval, and points on the y-axis indicate new blocks being written.

Figure 6: Correlation between time intervals. Outlier block 48128 has been removed. Each point
represents a 64KB block accessed in either (or both) of successive 3-hour intervals. The x-axis

represents write count to the block during the first, and y-axis the second interval.

(a) prxy_1, x=19, y=20 (b) src1_0, x=13, y=14 (c) src1_0, x=16, y=17

For the correlation plots, there was an outlier block at 64K-address 48128. To better examine the trend

for the majority of data points, this block was removed. We suspect that it is drive metadata, and could be

!"!#$!!

%"!#$!&

'"!#$!&

("!#$!&

!"% !") !"* !"+ %"% %") %"* %"+ '"% '") '"* '"+ ("% (") ("* ("+)"%)"))"*)"+ ,"% ,") ,"* ,"+ *"% *") *"* *"+

-
./
01
23
4
5
6
0

789:21;8<:1=

<.>9?% :.3%?! <.4@?'

(c) src1 0, x=16, y=17

Figure 4.8: Correlation between time intervals. Outlier block 48128 has been removed. Each point

represents a 64KB block accessed in either (or both) of successive 3-hour intervals. The

x-axis represents write count to the block during the first, and y-axis the second interval.

We suspect that it is drive metadata, and could be moved to a battery-backed RAM

to reduce its wear-out effects. Figure 4.8(a) indicates a good predictability from the

prior interval for prxy 1. We confirmed this behavior is consistent for all successive

time intervals. For 30 out of the 36 traces, we consistently see this type of correlation.

For src 2, we examined the idle and active periods in Figures 4.8(b) and 4.8(c).

There is little correlation during the idle period and a burst of addresses being written

at the start of the busy period that werent written last period. In Figure 4.9(a) we

show the correlation between successive busy periods, which is more significant. It

appears that the majority of blocks are re-written and correlate to some degree.

94

11

moved to a battery-backed RAM to reduce its wear-out effects. Figure 6(a) indicates a good

predictability from the prior interval for prxy_1. We confirmed this behavior is consistent for all

successive time intervals. For src_2, we examined the idle and active periods in Figure 6(b,c). There is

little correlation during the idle period and a burst of addresses being written at the start of the busy

period that weren’t written last period. In Figure 7(a) we show the correlation between successive busy

periods, which is more significant. It appears that the majority of blocks are re-written and correlate to

some degree. Soundarajan et Al. [24] also observed that many writes to block devices are in fact

overwrites of popular blocks. This is useful because if we decide to move any blocks away from this

volume, the write distribution will remain fairly consistent during future bursts. Unfortunately, there is

not as much correlation for the first two bursts of proj_2 (Figure 7(b)).

Figure 7: Correlation between the earliest write bursts. Note that for proj_2, blocks with low write

counts were omitted for faster plotting

(a) src1_0 (b) proj_2

3.3. Figures of merit

We use three main metrics for comparison of the distributed wear leveling approaches.

• Time to first failure (TTFF) improvement factor. This represents the factor by which the time of

the first SSD to fail exceeds the first failure time in the baseline (non-wear-leveled) system.

Based on the workload write bandwidth data from the previous section, we can put a theoretical

(a) src1 0

11

moved to a battery-backed RAM to reduce its wear-out effects. Figure 6(a) indicates a good

predictability from the prior interval for prxy_1. We confirmed this behavior is consistent for all

successive time intervals. For src_2, we examined the idle and active periods in Figure 6(b,c). There is

little correlation during the idle period and a burst of addresses being written at the start of the busy

period that weren’t written last period. In Figure 7(a) we show the correlation between successive busy

periods, which is more significant. It appears that the majority of blocks are re-written and correlate to

some degree. Soundarajan et Al. [24] also observed that many writes to block devices are in fact

overwrites of popular blocks. This is useful because if we decide to move any blocks away from this

volume, the write distribution will remain fairly consistent during future bursts. Unfortunately, there is

not as much correlation for the first two bursts of proj_2 (Figure 7(b)).

Figure 7: Correlation between the earliest write bursts. Note that for proj_2, blocks with low write

counts were omitted for faster plotting

(a) src1_0 (b) proj_2

3.3. Figures of merit

We use three main metrics for comparison of the distributed wear leveling approaches.

• Time to first failure (TTFF) improvement factor. This represents the factor by which the time of

the first SSD to fail exceeds the first failure time in the baseline (non-wear-leveled) system.

Based on the workload write bandwidth data from the previous section, we can put a theoretical

(b) proj 2

Figure 4.9: Correlation between the earliest write bursts. Note that for proj 2, blocks with low

write counts were omitted for faster plotting.

Soundarajan et Al. [83] also observed that many writes to block devices are in fact

overwrites of popular blocks. This is useful because if we decide to move any blocks

away from this volume, the write distribution will remain fairly consistent during

future bursts. Unfortunately, there is not as much correlation for the first two bursts

of proj 2 (Figure 4.9(b)).

Figures of merit

We use three main metrics for comparison of the distributed wear leveling ap-

proaches.

• Time to first failure (TTFF) improvement factor. This represents the factor

by which the time of the first SSD to fail exceeds the first failure time in the

baseline (non-wear-leveled) system. Based on the workload write bandwidth

data from the previous section, we can put a theoretical upper bound on the

TTFF factor. In an ideal system with no writes caused by data migration,

all writes are spread evenly across all SSDs. That way, the TTFF factor =

(Maximum volume write BW)/(Average write BW across all volumes). For the

95

hardware system and benchmarks described in this section, the factor is 12.54.

• Average wear-leveling efficiency. This represents the ratio of number of blocks

written to an SSD at the point where the first block fails, to the theoretical

maximum number of writes (assuming perfect wear-leveling and equal writes to

each location).

• Average access latency. This represents the average response time of an SSD to

requests.

• Network slowdown. If remote accesses and migrations ever saturate a network

link, the additional delay is accounted for as a slowdown.

Baseline Configuration

The baseline system consists of the 13 servers and 36 volumes (Figure 4.4) covered

by the MSR-Cambridge traces. Each volume is represented by a single SSD with 1

TB capacity to accommodate the full address range from each individual trace, as

well as from multiple traces after re-mapping. We chose reasonable device parameters

for the internal organization of the NAND Flash SSD (Table 4.2).

To evaluate the average response time we use the DiskSim 4.0 simulator [120] with

Microsofts add-on SSD module and associated page-mapping FTL [79]. As per their

paper, each SSD initially reserves 15% of its pages as unused and invokes garbage

collection when capacity falls below 5%.

Performance Assumptions

Because the traces were collected from a hard disk based system, the access times

reflect the inherent disk latencies as well as application demand. Because it is hard

to evaluate the direct performance gain from replacing HDD with SSD using these

traces, and since significant prior work exists [84, 80, 121], we focus on lifetime

96

Parameter Value

Technology NAND Flash

Simulated endurance (writes/block) 104

Read/Write/Erase latency (µs) 25/200/1500

Addressable disk block size (LBA) (B) 512

Migration/monitoring block size (KB) 64

Page Size (KB) 8

Pages per Erase block 128

Chips per SSD 16

Planes per Chip 8

Blocks per Plane 8192

Total Capacity (GB) 1024

Table 4.2: Baseline SSD parameters

results. However, because our scheme relies on the network between servers for

remote data access, we model any delay due to periods of network activity that

exceed the bandwidth of a 1 Gbit/s interface for each server using timestamps from

the original traces. We also record the average response time across SSDs to show

how distributed wear leveling changes drive latency. We do not add any additional

latency for network delay as this is small (microseconds) relative to SSD latency

(milliseconds).

4.3.4 Distributed Wear Leveling

Our distributed wear-leveling system leverages (1) a system architecture that mon-

itors physical non-volatile memory activity and (2) algorithms that carefully select

a set of data blocks to migrate to other volumes based on write access history and

current state of wear-out. The workload analysis was promising in that the majority

of future data block writes correlate well with prior intervals, so any block migrated

to another drive is likely to exhibit a consistent write frequency for good write bal-

97

13

3.5. Performance Assumptions

Because the traces were collected from a hard disk based system, the access times reflect the inherent disk

latencies as well as application demand. Because it is hard to evaluate the direct performance gain from

replacing HDD with SSD using these traces, and since significant prior work exists [19] [17] [18], we

focus on lifetime results. However, because our scheme relies on the network between servers for remote

data access, we model any delay due to periods of network activity that exceed the bandwidth of a 1

Gbit/s interface for each server using timestamps from the original traces. We also record the average

response time across SSDs to show how distributed wear leveling changes latency.

4. DISTRIBUTED WEAR LEVELING

Figure 8: Top-level diagram

Our distributed wear-leveling system leverages (1) a system architecture that monitors physical non-

volatile memory activity and (2) algorithms that carefully select a set of data blocks to migrate to other

volumes based on write access history and current state of wear-out. The workload analysis was

promising in that the majority of future data block writes correlate well with prior intervals, so any block

migrated to another drive is likely to exhibit a consistent write frequency for good write balancing. The

run-time migration system requires two new physical components (see Figure 8) in addition to a

S
S
D

S
S
D

SERVER

File I/O

Block I/O

File system
volumes

Network Switch
1 Gbit/s per port

FILESYSTEM

MANAGEMENT
NODE

Collect activity
data from
monitors

Execute
Migration
Algorithm

Issue Migration
Commands

MONITOR MONITOR

S
S
D

S
S
D

SERVER

File I/O

Block I/O

FILESYSTEM

MONITOR MONITOR

Figure 4.10: Top-level diagram

ancing. The run-time migration system requires two new physical components (see

Figure 4.10) in addition to a distributed filesystem. Designing a dedicated filesystem

to handle block distribution across networked nodes is beyond the scope of this work.

However, we can consider potential implementations based on current proposals. The

virtualized DFS [119] address space (which operates across multiple physical Flash

drives) could be extended to operate across distributed Flash storage and currently

supports 232 − 1 files. If each 64 KB block was stored as a small file, just over 14%

of this limit would be used by the entire 36-disk system. As a temporary solution,

the widely-used Network File System [118] in combination with DFS local to each

server could provide the distributed file handling. At the Activity Monitoring nodes,

each SSD collects the read and write counts of logical blocks at the granularity of

a migration block. In our case, these are contiguous 64 KB blocks of data. This

requires 128 MB of counters per 1 TB SSD assuming 32 bits per counter. Because

SSDs typically have a volatile cache or buffer, we need to record the logical block

access count after the cache to see the requests that reach the non-volatile memory.

The statistics are then communicated to the Management node periodically (a total

98

of 4.5 GB for a 36-SSD system). Alternatively, the SSD cache behavior could be

emulated at the block device driver layer (without actually storing data) to estimate

the miss stream. Note that we do not use any caching for our evaluation, other than

to remove the single block at location 48128 that has excessive writes for several

volumes. The Management node is responsible for two tasks. The first is using the

statistics from the Activity Monitoring nodes to form a migration plan. The migra-

tion plan schedules movement of some migrations blocks between servers to improve

wear-out balance between SSDs. The second task is to update the distributed filesys-

tem metadata to reflect migrated blocks as they are moved so that future requests

are directed to the appropriate SSDs. Evaluating the wear-leveling performance of

such a system involves summarization and replay of the workload traces subject to

re-mapping. The following sequence of steps will be performed in order;

• Split the traces into discrete time intervals. We found that 3 hours provides

enough detail to make good migration decisions.

• Obtain read and write counts for each migration block in each trace interval.

• For each interval, use the read/write count summaries to

– Calculate the quantity of data written to each volume

– Record reads and writes to each volume in current interval (re-mapped)

– Form a migration plan and save the new mapping for the next interval

• Using the sequence of recorded migration plans, play back all traces simultane-

ously, interleaving in time order.

• Determine peak server-server network bandwidths and corresponding slowdown.

• Output re-mapped traces to DiskSim to find average latency and wear-out per-

formance.

99

15

Using the sequence of recorded migration plans, play back all traces
simultaneously, interleaving in time order.

Determine peak server-server network bandwidths and corresponding slowdown.

Output re-mapped traces to DiskSim to find average latency and wear-out
performance.

Figure 9: Distributed wear leveling algorithms.

Figure 9 shows the wear-leveling algorithms executed on the management node. The basic algorithm

consists of two phases. The algorithms are triggered at a fixed time interval of 3 hours. In the first phase,

the read/write count for each migration block on each SSD is examined to decide if it should remain on

the drive (local) or be migrated. Figure 9(a) retains all read-only blocks locally and places all other

blocks into a block pool that is common for all drives. As an improved alternative (Figure 9(b)), the total

write count in the ensemble for the previous interval is scaled by the fraction of total storage capacity

provided by the current SSD (1/36 in our case). This represents the desired number of writes to the SSD

given perfect wear-leveling. We found that due to the daily burst of activity, using the write count 24

(a) Random-Split (RS) (b) Local First Prioritized split (LFPS) (c) Block Pool (POOL)

BLOCK IS
READ-O NLY?

ALLO CATE TO
LOC AL SSD

START

B

TAKE NEXT
BLO CK FRO M

L IST

ALLOC ATE TO
BLO CK PO OL

LAST BLOC K?

yes

no

no

yes

END OF E POC H N

LO CAL SSD AT AVG
W RITE CO UNT?

ALLO CATE TO
LOC AL SSD

START

B

TAKE N EXT
BLOC K FRO M

LOC AL SSD

ALLO CATE TO
BLO CK POO L

LAST BLO CK?

EN D O F EPO CH N

FO R EA CH S SD, SO RT
LOC AL BLO CKS IN

D ESCEN DING
R/W RA TIO

FOR PREV IOU S EPO CH,
CALCU LATE AVG W RITE S

PER RU FOR ALL R U BEING
W EAR -LEVELLED

no

yes

no

yes

EN D

SO RT BLO CK PO OL BY
DESC END ING
W RITE CO UNT

TAKE NEXT
BLO CK FR OM

POO L

ALLO C ATE TO
SSD W ITH

FEW ES T W RITES

LAST BLOC K?

no

yes

B

Figure 4.11: Distributed wear leveling algorithms

Figure 4.11 shows the wear-leveling algorithms executed on the management node.

The basic algorithm consists of two phases. The algorithms are triggered at a fixed

time interval of 3 hours. In the first phase, the read/write count for each migration

block on each SSD is examined to decide if it should remain on the drive (local) or

be migrated. The left-hand flowchart retains all read-only blocks locally and places

all other blocks into a block pool that is common for all drives. As an improved

alternative (centre flowchart), the total write count in the ensemble for the previous

interval is scaled by the fraction of total storage capacity provided by the current SSD

(1/36 in our case). This represents the desired number of writes to the SSD given

perfect wear-leveling. We found that due to the daily burst of activity, using the

write count 24 hours previously (after the first day) gives a better estimate of total

writes than the previous interval, and this is used for our results. These are typical

data center characteristics from real large-scale traces, and it is a simple extension

100

to dynamically detect and exploit a different periodicity, if present. As with any

application, more data-intensive workloads could saturate the network, forcing us to

consider a faster network or data replication to remove bottlenecks. This was not

necessary for the Microsoft data center considered. Next, the blocks are ordered in

descending read/write ratio, then allocated in sequence to the originating drive until

the target write count is met. That way, the number of reads performed locally

is maximized, reducing network read traffic. After that, the remaining blocks are

recorded in a common block pool. In the final step for both algorithms, the block

pool is sorted by descending write count. The blocks are then allocated in sequence

to the volume that had the fewest writes so far, updating the anticipated write

counts as every block is allocated (including one write for a migration). The sorting

potentially results in a better balance of writes because as the pool runs out of

blocks, it is easier to fill in the gaps with blocks having fewer anticipated writes. In

summary, the following policies for these two stages of the migration algorithm will

be evaluated;

• Local/Pool split: either Random split (RS) where all written blocks are placed

in a pool for allocation to SSDs, or Local-First R/W prioritized split (LFPS)

where blocks are ordered in descending R/W ratio, then remain on the local

SSD up to some maximum write threshold.

• Pool allocation (POOL) Migration blocks are allocated in order of descending

write count.

We could have taken same-server locality into account in our algorithm, preferring

to make local disk transfers. Our network traffic accounting does consider that some

disk transfers do not go off-server. However, we get good performance despite not

explicitly considering this locality. The primary operation if the allocation algorithm

101

algorithm is to sort 32 million records per SSD (requiring less than a second for a

modern multi-core processor) which can be easily parallelized. Therefore algorithm

performance should be negligible relative to the long re-evaluation interval of three

hours.

4.3.5 Results

Distributed wear-leveling

Figures 4.12 and 4.13 compare the performance metrics of distributed wear level-

ing against the baseline system. The two lines plotted against the left-hand Y-axis

are the running average time to first failure for an ideal system with equal write

counts sent to each SSD, and the actual time to first failure under each policy. Val-

ues are normalized to the TTFF of the baseline system. The actual TTFF value

factors in the extra writes due to migration, which are plotted separately against

the right Y-axis. The random split (RS) policy is largely ineffective due to the large

number of migrations performed at each interval. LFPS performs relatively well,

reaching a TTFF that is 4.2 times that of the baseline using past observations alone.

In addition, the extra writes due to migrations account for 11% of total writes. The

optimal TTFF is not reached because of remaining unevenness in the write counts

to each SSD at the end of the 7-day period. The algorithm cannot achieve optimal

wear-leveling because of more unpredictable, less correlated bursts of writes (for ex-

ample, from proj 2 in Figure 4.9(b)). Further, writes to blocks that are never written

again may be selected for migration, wasting an additional write.

Local SSD wear-leveling

In this section we estimate the impact of the FTL on writes. Due to time con-

straints, we replay 2 TB worth of writes, or 2x the total SSD capacity, so cold block

102

17

is not reached because of remaining unevenness in the write counts to each SSD at the end of the 7-day

period. The algorithm cannot achieve optimal wear-leveling because of more unpredictable, less

correlated bursts of writes (for example, from proj_2 in Figure 5). Further, writes to blocks that are never

written again may be selected for migration, wasting an additional write.

Figure 10: Run-time wear-leveling behavior of policies.

(a) (RS+POOL) (b) (LFPS+POOL)

5.2. Local SSD wear-leveling

In this section we estimate the impact of the FTL on writes. Due to time constraints, we replay 2 TB

worth of writes, or 2x the total SSD capacity, so cold block migration (swapping some written blocks

with cold blocks [4]) was never invoked. This means that garbage collection is the only cause of block

erases. Writing this much data required multiple replays of the 7-day traces. The result we present in

Figure 11(a) for write efficiency are similar to the fraction of non-migration writes from Figure 10. This

factor is actually the inverse of the write amplification factor, which is the factor by which the writes to

the physical SSD exceeds the requested writes. We calculated it by dividing the expected average

number of writes per block for optimal wear-leveling i.e. 2, by the actual average number of erases per

block. More heavily written SSDs from the baseline such as src1_0 and proj_0 see a slight decrease in

write efficiency, but the originally less-heavily written drives such as wdev_1 and wdev_3 have much

improved efficiency after receiving migrated blocks. On average, distributed wear-leveling improves the

write efficiency by 20%, which is also much more uniform between SSDs. Because every SSD sees the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

0 10 20 30 40 50 60

F
ra

ct
io

n
of

 n
o

n-
m

ig
ra

ti
on

 w
ri

te
s

R
el

at
iv

e
to

 B
as

el
in

e

Epoch (3-hour)

Optimal Time to First Fail

Actual Time to First Fail

Fraction Non-Migration Writes (right axis)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

0 10 20 30 40 50 60

F
ra

ct
io

n
of

 n
o

n-
m

ig
ra

ti
on

 w
ri

te
s

R
el

at
iv

e
to

 B
as

el
in

e

Epoch (3-hour)

Optimal Time to First Fail

Actual Time to First Fail

Fraction Non-Migration Writes (right axis)

Figure 4.12: (RS+POOL) run-time wear-leveling policy. The x-axis represents elapsed time in 3-

hour intervals. The y-axis shows improvement over baseline.

migration (swapping some written blocks with cold blocks [79]) was never invoked.

This means that garbage collection is the only cause of block erases. Writing this

much data required multiple replays of the 7-day traces, and took a long time to

simulate. A larger number of replays that truly stress the FTL are necessary to

estimate long-term lifetime, but this experiment indicates some potential lifetime

improvements. The result we present in Figure 4.14 for write efficiency are similar

to the fraction of non-migration writes from Figures 4.12 and 4.13. This factor is

actually the inverse of the write amplification factor, which is the factor by which the

writes to the physical SSD exceeds the requested writes. We calculated it by divid-

ing the expected average number of writes per block for optimal wear-leveling i.e. 2,

by the actual average number of erases per block. More heavily written SSDs from

the baseline such as src1 0 and proj 0 see a slight decrease in write efficiency, but

the originally less-heavily written drives such as wdev 1 and wdev 3 have improved

103

17

is not reached because of remaining unevenness in the write counts to each SSD at the end of the 7-day

period. The algorithm cannot achieve optimal wear-leveling because of more unpredictable, less

correlated bursts of writes (for example, from proj_2 in Figure 5). Further, writes to blocks that are never

written again may be selected for migration, wasting an additional write.

Figure 10: Run-time wear-leveling behavior of policies.

(a) (RS+POOL) (b) (LFPS+POOL)

5.2. Local SSD wear-leveling

In this section we estimate the impact of the FTL on writes. Due to time constraints, we replay 2 TB

worth of writes, or 2x the total SSD capacity, so cold block migration (swapping some written blocks

with cold blocks [4]) was never invoked. This means that garbage collection is the only cause of block

erases. Writing this much data required multiple replays of the 7-day traces. The result we present in

Figure 11(a) for write efficiency are similar to the fraction of non-migration writes from Figure 10. This

factor is actually the inverse of the write amplification factor, which is the factor by which the writes to

the physical SSD exceeds the requested writes. We calculated it by dividing the expected average

number of writes per block for optimal wear-leveling i.e. 2, by the actual average number of erases per

block. More heavily written SSDs from the baseline such as src1_0 and proj_0 see a slight decrease in

write efficiency, but the originally less-heavily written drives such as wdev_1 and wdev_3 have much

improved efficiency after receiving migrated blocks. On average, distributed wear-leveling improves the

write efficiency by 20%, which is also much more uniform between SSDs. Because every SSD sees the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

0 10 20 30 40 50 60

F
ra

ct
io

n
of

 n
o

n-
m

ig
ra

ti
on

 w
ri

te
s

R
el

at
iv

e
to

 B
as

el
in

e

Epoch (3-hour)

Optimal Time to First Fail

Actual Time to First Fail

Fraction Non-Migration Writes (right axis)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

0 10 20 30 40 50 60

F
ra

ct
io

n
of

 n
o

n-
m

ig
ra

ti
on

 w
ri

te
s

R
el

at
iv

e
to

 B
as

el
in

e

Epoch (3-hour)

Optimal Time to First Fail

Actual Time to First Fail

Fraction Non-Migration Writes (right axis)

Figure 4.13: (LFPS+POOL) run-time wear-leveling policy. The x-axis represents elapsed time in

3-hour intervals. The y-axis shows improvement over baseline.

efficiency after receiving migrated blocks. On average, distributed wear-leveling im-

proves the write efficiency by 20%, which is also much more uniform between SSDs.

Because every SSD sees the same amount of written data, this average represents the

true average improvement across all drives. However, because the efficiency of the

most write-heavy volume after re-mapping is proj 2 and its write efficiency decreases,

the overall TTFF improvement decreases to 3.9x from 4.2x with Flash.

As an experiment, we also examined how a possible PCRAM or other byte-

addressable SSD using Start-Gap wear leveling [51] might perform, and show poten-

tial synergistic benefits from applying distributed wear-leveling as a first re-mapping

step. This analysis is presented in Appendix A.

104

18

same amount of written data, this average represents the true average improvement across all drives.

However, because the efficiency of the most write-heavy volume after re-mapping is proj_2 and its write

efficiency decreases, the overall TTFF improvement decreases to 3.9x from 4.2x with Flash.

As an experiment, we also examined how a possible PCRAM based SSD using Start-Gap wear leveling

[21] would perform. Start-Gap wear leveling is a simple scheme devised for PCRAM where a ‘gap’ or

empty block is moved one place to the right every N writes, by copying the block to the right of the gap

one place to the left. To break up incoming block references that may be sequential and improve

endurance, the incoming logical addresses are re-mapped randomly using a Feistel network.

Figure 11: Local SSD wear-leveling

(a) NAND Flash FTL Write Efficiency

(b) Start-Gap Normalized Endurance

Figure 11(b) shows the normalized endurance of each SSD under Start-Gap wear leveling using a 64KB

block granularity and gap movements every 50 writes, where block endurance is 108 writes. Normalized

endurance represents the fraction of actual writes achievable before the first block fails, relative to perfect

!

!"#

!"$

!"%

!"&

'

()
*!

()
*'

)
+,
*!

)
+,
*'

-.
/*

!
-.
/*

'
-.
01
*!

-.
01
*'

-.
01
*#

-.
01
*2

-.
01
*$

-.
34
*!

-.
34
*'

.,
.5
(*

!
.,
.5
(*

'
.,
.5
(*

#
,.
5'
*!

,.
5'
*'

,.
5'
*#

,.
5#
*!

,.
5#
*'

,.
5#
*#

,6
7*
!

,6
7*
'

6,
*!

8,
.*
!

8,
.*
'

8,
.*
#

9
+:

;*
!

9
+:

;*
'

9
+:

;*
#

9
+:

;*
2

9
:<

*!
9
:<

*'
9
:<

*#
9
:<

*2
)
:=
/

'>
?@

.A
6:
B=
)
-C
ADA
5=
6A
0/

BD
=5
60
.E

F0C8):

G:D0.:B+A,6.A<86:+BC:;:CA/7 HD6:.B+A,6.A<86:+BC:;:CA/7

!

!"#

!"$

!"%

!"&

'

()
*!

()
*'

)
+,
*!

)
+,
*'

-.
/*

!
-.
/*

'
-.
01
*!

-.
01
*'

-.
01
*#

-.
01
*2

-.
01
*$

-.
34
*!

-.
34
*'

.,
.5
(*

!
.,
.5
(*

'
.,
.5
(*

#
,.
5'
*!

,.
5'
*'

,.
5'
*#

,.
5#
*!

,.
5#
*'

,.
5#
*#

,6
7*
!

,6
7*
'

6,
*!

8,
.*
!

8,
.*
'

8,
.*
#

9
+:

;*
!

9
+:

;*
'

9
+:

;*
#

9
+:

;*
2

9
:<

*!
9
:<

*'
9
:<

*#
9
:<

*2
)
:=

/I
0.
)
=C
AJ
:+

BK
/+

8.
=/
5:

F0C8):

G:D0.:B+A,6.A<86:+BC:;:CA/7 HD6:.B+A,6.A<86:+BC:;:CA/7

Figure 4.14: Local SSD wear-leveling write efficiency.

19

wear-leveling. Although real implementations would probably use smaller blocks, this is sufficient to

illustrate the benefit of data re-organization to improve local wear-leveling. This large granularity

introduces wear imbalance inside the blocks, in the case where only a few addressable LBAs are written

to. Other proposed schemes such as line-level writes and fine-grained wear-leveling [22] could be used to

address this. As for Flash, we assume that the access pattern form the 7-day traces remains the same and

can be repeated until the SSDs fail. The bars for ‘before leveling’ represent Normalized Endurance for

the baseline. For distributed wear leveling, the incoming local requests are first randomized using Feistel

re-mapping. The logical addresses remapped blocks from other volumes are randomly picked from the

unoccupied block locations (the file system would have made these address allocations earlier, under

direction of the Management Node). Overall, global wear leveling increases the average normalized

endurance from 0.48 to 0.82, an improvement of 70%. Without global wear leveling, some SSDs have a

relatively small fraction of heavily accessed blocks. By the time a single gap rotation has completed,

those blocks have exceeded 108 writes and therefore the normalized endurance is almost zero. A side-

effect of the global wear leveling is to spread the blocks more evenly across volumes, reducing the

standard deviation of block write counts on a drive by 38% on average. A lower standard deviation

indicates more effective wear leveling [21].

5.3. Performance impact

Figure 12: Peak network bandwidth

!

In this section we examine the average latency as reported by DiskSim and peak network bandwidth, to

determine any slowdown due to a network bottleneck. For the SSDs of the baseline system, the average

0

20

40

60

80

100

120

0 10 20 30 40 50

M
B

/s

3-hour interval

hm mds prn proj prxy rsrch src1 src2 stg ts usr wdev web

Figure 4.15: Peak network bandwidth

Performance impact

In this section we examine the average latency as reported by DiskSim and peak

network bandwidth, to determine any slowdown due to a network bottleneck. For

the SSDs of the baseline system, the average latency varied from 0.21 to 2.63 ms

with a mean of 0.52 ms. After distributed wear-leveling, this changes to 0.20 to 0.52

ms with an average of 0.30 ms. The decreased range of latencies is indicative of the

greater spread of requested addresses and less address contention on individual SSDs.

Figure 4.15 shows the peak network bandwidth reached during each 3-hour interval.

105

Using the (LFPS+POOL) policy the bandwidth in any 1-second interval never ex-

ceeds 1 Gbit/s on any servers Ethernet connection. This implies that there will be

little slowdown introduced due to a bandwidth bottleneck. The high peak values for

src1 indicate the periodic daily burst of activity causing remote accesses. There is a

smaller daily fluctuation in the other servers due to the fact that accesses originating

from several servers are now spread across remote drives that were previously under-

utilized. Overall however, the average SSD utilization is very low for these traces (see

Figure 4.5). More intensive workloads may suffer from a loss of data locality, as files

are broken into 64 KB chunks and separated across the network. Sequential accesses

can provide better performance as they can maximize pipelined bus bandwidth and

easily interleave across internal Flash banks, based on their low-order address bits.

However, this may be mitigated by using larger contiguous migration block sizes, or

more advanced algorithms that retain sequentially-accessed blocks or entire files on

the same SSD or on the same server.

4.3.6 Conclusion

This work has motivated the consideration of access patterns across solid-state

disks as well as within them, when trying to improve overall lifetime. This should

reduce management costs and increase predictability of wear-out failure, reducing the

need for replication and data migration. Our distributed block re-mapping scheme

achieved a 3.9x improvement in TTFF with a Flash SSD for a small migration

overhead. Initial FTL simulations involving write counts equal to twice the SSD

capacity indicated a further decrease internal Flash SSD erases by 20%, although

identifying the cause will require longer simulations to fully evaluate. It is clear

that the distributed wear-leveling policies to use are highly workload and system-

dependent. For example, our system did not have the flexibility of a MapReduce

106

infrastructure where small units of data and the code can be migrated quickly to

arbitrary server locations. The “traditional” data center we examined could have

benefited from say, a web proxy distributed across multiple servers, which could

reduce network traffic relative to our centralized server. In conclusion, as industry is

pushing towards cheaper, more energy efficient, high-performance cloud computing

infrastructures, non-volatile memories will become indispensible system elements.

With the more cost-effective multi-level cell devices suffering decreased endurance,

lifetime management and fault tolerance must be addressed system-wide.

4.4 NAND Flash based Disk Cache Reliability

Flash based disk caches have been proposed as a means to improve performance

and reduce energy consumption of hard-disk based systems [7]. Here we propose ex-

tensions to this work to improve the reliability of NAND Flash [4, 2] and PCRAM [8]

based disk caching. The techniques were evaluated against Web server and database

workloads with significant energy efficiency improvements. 1

The first technique proposed is variable-strength ECC. Conventionally, a random

error correcting code such as BCH would be used to correct faulty bits in a block of

Flash data. We observed that because emerging errors usually occur one at a time,

and that BCH decode latency is roughly proportional to number of corrected bits

(Figure 4.17), the best latency can be obtained by using the minimum strength code.

The code strength has to be one greater than the current number of errors.

The second technique switches between SLC and MLC modes for Flash in order to

either minimize latency or in response to emerging errors, to increase lifetime. Figure

4.18 illustrates that as more area is allocated to the Flash cache, the latency-optimal

1The author of this thesis contributed the concepts of variable strength BCH coding and dynamic MLC to SLC

switching in [4], and performed the evaluation for PCRAM [8]. Taeho Kgil developed the system-level simulation

infrastructure and evaluation for NAND Flash, as well as simulating BCH decode latency (Figure 4.17).

107

Processor

1GB DRAM

Hard Disk Drive

System Memory

HDD ctrl

(a) before

Processor

256MB DRAM

Hard Disk Drive

1GB Flash

System Memory

HDD ctrl

METADATA TO

SUPPORT FLASH

(b) after

Figure 4.16: NAND Flash based disk cache block diagram

ratio of SLC to MLC pages varies.

When both techniques are applied in the system with appropriate heuristics to

choose when to apply them, we obtained up to 20x in improved Flash lifetime (Figure

4.19(b)).

Because of the inherent scalability limits of Flash-based storage, we compared the

performance of a PCRAM-based secondary disk cache with SLC and MLC NAND

Flash [8]. Our intention was to see the effects of PCRAMs lower latency and removing

the need to erase blocks of pages. We applied similar setups to those used for our

Flash studies. It should be noted that these preliminary simulations were again

scaled down relative to the capacity of real servers because of resource limitations

on the host system. However, the simulations are sufficient to highlight the trade-

offs between the different memory technologies. Figure 4.20 compares the relative

network bandwidth achieved in servers using Flash or PCRAM as a secondary disk

cache. We examined dbt2, the most disk intensive benchmark. This is not an in-

memory database so there are significant numbers of file accesses at run-time to stress

108

!!"#$!%!$"&#$'" !!"#$!%!$'"#$'"

!!"
(&#$'"$)$
*"#$'"

+%&',
*"&'-./
!$&.0$%

121*$+%&',

+3(4$"&.0/

(5."0&&%
6&."07&#"6)8$-&."07&#"

+%&',$&''0"''
9$'&.&$:;0-."'<

30$)&==&>%"$+%&',$="=$0/$#$&.0$%%"0

!%!
(&#$'"$)
*"#$'"

!-.$(00$0$:?"'$)1<

+%&',$'&.&$:0"&''<

@"&"0&."
(/&'0$="'

!"0*%"*&=+
2%)$0-.,=

!,-"&
("&0#,

@"&"0&."
3&0-./$!-.'

!%!AB
!%!AB ,

!%!$"00$0$)$
!%!$&$$"00$0

Figure 5. High-level block diagram of a pro-
grammable Flash memory controller.

troller that addresses this need. It is composed of 2 main
components;

• An encoder and decoder for error correction and detec-
tion. Unlike conventional Flash logic, we use a vari-
able error correction strength.

• A density controller for SLC/MLC mode selection.
This dynamically trades block storage capacity for re-
liability as the Flash ages, or lower latency for fre-
quently accessed pages.

We use a typical device driver interface to access the Flash
memory controller. The device driver reads the error correc-
tion code (ECC) strength and SLC/MLC mode fields from
the FPST and generates a descriptor (control messages) to
access a page in Flash. We describe the details of our Flash
memory controller in the following subsections.

4.1 Hardware assisted error correction
code support

A common way to recover from errors in Flash is to use
an error correction code (ECC). This section describes the
error correction and detection scheme in our Flash memory
controller. We also show how error correction can extend
Flash lifetime, and that the time penalty for the correction
process need not impact performance.

ECCs are widely employed in digital storage devices
to mitigate the effects of hard (permanent) and soft (tran-
sient) errors. Flash typically uses linear block codes like
the Bose, Ray-Chaudhuri, Hocquenghem (BCH) code due
to its strength and acceptable decode/encode latency. To
reduce the false positives that can occur with BCH codes,
CRC codes are also employed.

Our architecture shown in Figure 5 uses a BCH encoder
and decoder to perform error correction and a 32 bit CRC

0

40

80

120

160

200

2 3 4 5 6 7 8 9 10 11

number of correctable errors
de

co
de

 la
te

nc
y

- u
s

syndrome chien

(a)

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

0 1 2 3 4 5 6 7 8 9 10
number of correctable errors

m
ax

. t
ol

er
ab

le
 W

/E
 c

yc
le

s

stdev = 0 stdev = 5% of mean
stdev = 10% of mean stdev = 20% of mean

1.E+05

(b)

Figure 6. (a) BCH decode latency (b) Maxi-
mum tolerable Flash write/erase (W/E) cycles
for varying code strength.

checker to perform error detection. The BCH check bit stor-
age overhead is small considering the high capacity of to-
day’s Flash. Devices typically include 64 bytes per page for
ECC support bits. The CRC32 code needs 4 bytes, leaving
60 bytes for BCH. Because we limited the number of cor-
rectable errors to 12, a maximum of 23 bytes are needed for
check bits, per page.

4.1.1 BCH encoder and decoder

Given a message of k bits, we can construct a t-error-
correcting BCH code with block length of n bits, such that
the number of parity check bits is given by n − k ≥ mt.
Furthermore, the block length n should satisfy n = 2m− 1.
We need to append approximately log(n) bits for each er-
ror we wish to correct, and the number of parity check bits
increase linearly with the number of correctable errors for a
fixed code length.

Figure 5 shows an implementation of our BCH encoder
and decoder. The Berlekamp and Chien search algorithms
in the decoder are widely used due to their simplicity, and
they have been proven to be an effective iterative technique
in decoding BCH codes [21]. In addition to that, Chien
search can be parallelized in a straightforward manner.

We implemented the BCH encoder and decoder in C and
measured the amount of time spent encoding and decod-
ing BCH code on a 3.4 GHz Pentium 4 system. Laten-
cies ranging from a tenth of a second to nearly a second,
were observed for correcting 2-10 errors. Clearly an ac-
celerator is necessary. In response, we designed one based
on ideas in [22]. A Berlekamp acceleration engine and a
highly parallelized Chien search engine improve the modu-
lar arithmetic and memory alignment found in BCH codes
and takes advantage of the parallelism inherent in BCH de-
coders. The resulting decode latencies are shown in Figure
6(a). These latencies are obtained using a 100 MHz in-order
embedded processor with parallelized modular arithmetic

332332

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 7, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

Figure 4.17: BCH decoding latency for varying numbers of correctable bits. Source: Taeho Kgil [4]

support. Berlekamp algorithm overhead is insignificant and
was omitted from the figure.

We developed a design to estimate the cost in area. Our
implementation used a 215 entry finite field lookup table as
well as 16 finite field adders and multipliers as accelerators
to implement the Berlekamp and Chien search algorithm
(16 instances of the Chien search engines). BCH codes use
finite field operators, which are sufficiently different from
standard arithmetic operators to cause a bottleneck in a gen-
eral purpose CPU without an accelerator. We limit the pro-
grammability to a fixed block size (2KB) to avoid memory
alignment with different block sizes and limit the maximum
number of correctable errors to 12. Our design required
about 1 mm2.

4.1.2 CRC checksum

One of the drawbacks of BCH codes is that they cannot al-
ways detect when more errors occur than they have been
designed to correct. In some cases the Chien search can
find no roots, indicating that more errors occurred. In other
cases roots are found creating a false positive. The usual so-
lution to this is to augment them with CRC codes to improve
error detection. CRC codes are capable of covering a wide
range of error patterns. We used an optimized hardware
implementation of a CRC32 functional block. Our design
compiler results showed it occupied a negligible amount of
die area and added negligible performance overhead (tens
of nanoseconds). This agrees with other implementations
such as [13].

4.1.3 Impact of BCH code strength on Flash lifetime

Flash cell lifetime displays an exponential relationship with
oxide thickness [24]. In this exponential model Flash cell
lifetime W can be defined as:

W = 10C1·tox

where C1 is a constant. Most Flash specifications refer to
the probability of a cell failing after 100,000 write/erase
(W/E) cycles. This probability is usually of the order of
10−4, and allows us to calculate the constant in the cell life-
time formula above. We further assume, in common with
other studies, that oxide thickness is normally distributed
with three standard deviations equal to 15% of the mean ox-
ide thickness. Combining these facts with number of cells
in a page and the code strength (the number of errors that
can be corrected) allows us to derive a distribution for the
lifetime in W/E cycles. An exponential analytical model is
employed. We assume Flash page size to be 2KB and first
point of failure to occur at 100,000 W/E cycles. See [15]
for details of the derivation.

Using the exponential model, we plotted the Flash W/E
cycles versus ECC code strength in Figure 6(b). As can

Financial2: working set size 443.8MB

0

1,000

2,000

3,000

0 50 100

Flash die area (mm^2)

0%

20%

40%

60%

80%

100%

S
LC

 p
er

ce
nt

ag
e

Latency (us) Optimal SLC fraction

(a) Financial2

Websearch1: working set size 5116.7MB

0

1,000

2,000

3,000

4,000

0 500 1,000

Flash die area (mm^2)

0%

20%

40%

60%

80%

100%

S
LC

 p
er

ce
nt

ag
e

Latency (us) Optimal SLC fraction

(b) Websearch1

Figure 7. Optimal access latency and
SLC/MLC partition for various multimode
MLC Flash sizes.

be seen, ECC code strength extends lifetime. We also note
that we see diminishing return from increasing ECC code
strength for both models. Spatial variation negatively im-
pacts code strength because our assumptions in plotting Fig-
ure 6(b) assumed all Flash pages had to be recoverable for
a certain ECC code. As bad Flash cells display a higher
spatial correlation, bad cells cluster in groups on a page re-
sulting in an increasing number of pages that cannot recover
using a particular ECC.

4.2 Hardware assisted density control

MLC Flash cells take longer to read and write. Multiple
levels imply a narrower gap between different logical values
and this is the main cause of reduced endurance. To reduce
this drawback, there has been work on enabling MLC to
operate in SLC mode to improve Flash endurance and la-
tency [11, 19]. Samsung has recently also announced One-
FlexNAND that dynamically controls the SLC to MLC mul-
timode operation. Our programmable Flash memory con-
troller assumes that one can dynamically control the den-
sity of a Flash at the page level by slightly modifying the
sense amplifier circuitry found in a MLC [11, 19]. There-
fore, the primary role of a density controller is to indicate
the mode of the requested page. The density configuration
of the requested page can be found in the density descrip-
tor generated from the SLC/MLC mode field in the FPST.
Density control benefits Flash performance and endurance,
because we are able to reduce access latency for frequently
accessed pages and possibly improve endurance for aging
Flash pages by changing MLC pages into SLC pages as
needed.

To show the potential improvement of Flash perfor-
mance by controlling density, we present a study using real
disk traces. Using disk activity traces from [8] for financial
and web search applications, we analyzed the average ac-
cess latency for different SLC/MLC partitions, for several
Flash sizes.

333333

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 7, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

(a) Financial2

support. Berlekamp algorithm overhead is insignificant and
was omitted from the figure.

We developed a design to estimate the cost in area. Our
implementation used a 215 entry finite field lookup table as
well as 16 finite field adders and multipliers as accelerators
to implement the Berlekamp and Chien search algorithm
(16 instances of the Chien search engines). BCH codes use
finite field operators, which are sufficiently different from
standard arithmetic operators to cause a bottleneck in a gen-
eral purpose CPU without an accelerator. We limit the pro-
grammability to a fixed block size (2KB) to avoid memory
alignment with different block sizes and limit the maximum
number of correctable errors to 12. Our design required
about 1 mm2.

4.1.2 CRC checksum

One of the drawbacks of BCH codes is that they cannot al-
ways detect when more errors occur than they have been
designed to correct. In some cases the Chien search can
find no roots, indicating that more errors occurred. In other
cases roots are found creating a false positive. The usual so-
lution to this is to augment them with CRC codes to improve
error detection. CRC codes are capable of covering a wide
range of error patterns. We used an optimized hardware
implementation of a CRC32 functional block. Our design
compiler results showed it occupied a negligible amount of
die area and added negligible performance overhead (tens
of nanoseconds). This agrees with other implementations
such as [13].

4.1.3 Impact of BCH code strength on Flash lifetime

Flash cell lifetime displays an exponential relationship with
oxide thickness [24]. In this exponential model Flash cell
lifetime W can be defined as:

W = 10C1·tox

where C1 is a constant. Most Flash specifications refer to
the probability of a cell failing after 100,000 write/erase
(W/E) cycles. This probability is usually of the order of
10−4, and allows us to calculate the constant in the cell life-
time formula above. We further assume, in common with
other studies, that oxide thickness is normally distributed
with three standard deviations equal to 15% of the mean ox-
ide thickness. Combining these facts with number of cells
in a page and the code strength (the number of errors that
can be corrected) allows us to derive a distribution for the
lifetime in W/E cycles. An exponential analytical model is
employed. We assume Flash page size to be 2KB and first
point of failure to occur at 100,000 W/E cycles. See [15]
for details of the derivation.

Using the exponential model, we plotted the Flash W/E
cycles versus ECC code strength in Figure 6(b). As can

Financial2: working set size 443.8MB

0

1,000

2,000

3,000

0 50 100

Flash die area (mm^2)

0%

20%

40%

60%

80%

100%
S

LC
 p

er
ce

nt
ag

e
Latency (us) Optimal SLC fraction

(a) Financial2

Websearch1: working set size 5116.7MB

0

1,000

2,000

3,000

4,000

0 500 1,000

Flash die area (mm^2)

0%

20%

40%

60%

80%

100%

S
LC

 p
er

ce
nt

ag
e

Latency (us) Optimal SLC fraction

(b) Websearch1

Figure 7. Optimal access latency and
SLC/MLC partition for various multimode
MLC Flash sizes.

be seen, ECC code strength extends lifetime. We also note
that we see diminishing return from increasing ECC code
strength for both models. Spatial variation negatively im-
pacts code strength because our assumptions in plotting Fig-
ure 6(b) assumed all Flash pages had to be recoverable for
a certain ECC code. As bad Flash cells display a higher
spatial correlation, bad cells cluster in groups on a page re-
sulting in an increasing number of pages that cannot recover
using a particular ECC.

4.2 Hardware assisted density control

MLC Flash cells take longer to read and write. Multiple
levels imply a narrower gap between different logical values
and this is the main cause of reduced endurance. To reduce
this drawback, there has been work on enabling MLC to
operate in SLC mode to improve Flash endurance and la-
tency [11, 19]. Samsung has recently also announced One-
FlexNAND that dynamically controls the SLC to MLC mul-
timode operation. Our programmable Flash memory con-
troller assumes that one can dynamically control the den-
sity of a Flash at the page level by slightly modifying the
sense amplifier circuitry found in a MLC [11, 19]. There-
fore, the primary role of a density controller is to indicate
the mode of the requested page. The density configuration
of the requested page can be found in the density descrip-
tor generated from the SLC/MLC mode field in the FPST.
Density control benefits Flash performance and endurance,
because we are able to reduce access latency for frequently
accessed pages and possibly improve endurance for aging
Flash pages by changing MLC pages into SLC pages as
needed.

To show the potential improvement of Flash perfor-
mance by controlling density, we present a study using real
disk traces. Using disk activity traces from [8] for financial
and web search applications, we analyzed the average ac-
cess latency for different SLC/MLC partitions, for several
Flash sizes.

333333

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 7, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

(b) WebSearch1

Figure 4.18: Optimal access latency and SLC/MLC partition for various multimode MLC Flash

sizes

the storage subsystem. Doubling the DRAM capacity (which includes the primary

page cache) increases performance by around 35% when combined with an SLC

Flash secondary cache. At any particular size of main memory, MLC Flash performs

slightly worse than SLC Flash as expected, and PCRAM performs up to 65% better

than SLC Flash. The increased performance due to PCRAM also translates to a

very significant total energy saving. Assuming that the server is in a low power state

during idle periods, completing the work faster means that less energy is consumed

109

0%

20%

40%

60%

80%

100%

uni
fo

rm

alp
ha1

alp
ha2

alp
ha3

ex
p1

ex
p2

W
eb

Sea
rc

h1

W
eb

Sea
rc

h2

Fin
an

cia
l1

Fin
an

cia
l2

%
 o

f t
ot

al
 d

es
cr

ip
to

r
up

da
te

s

code strength density

Figure 11. Breakdown of page reconfigura-
tion events.

lated the performance of the SPECWeb99 and dbt2 bench-
marks to observe the effect of increasing code strength that
would occur as Flash wears out. It is assumed that all Flash
blocks have the same error correction code (ECC) strength
applied. We also measured performance for code strengths
(more than 12 bits per page) that are beyond our Flash mem-
ory controller’s capabilities to fully capture the performance
trends.

From Figure 10 we can see that throughput degrades
slowly with ECC strength. dbt2 suffers a greater perfor-
mance loss than SPECWeb99 after 15 bits per page. The
disk bound property of dbt2 makes it more sensitive to ECC
strength.

7.3 Flash memory controller sensitivity
analysis

Figure 11 shows the breakdown of page reconfigura-
tion events. This can either be a decision to increase ECC
strength or switch the block from MLC to SLC mode. The
objective is to minimize the latency cost function explained
in section 5. The size of Flash was set to half the working
set size of the application. These simulations were mea-
sured near the point where the Flash cells start to fail due
to programs and erases. The results confirm the benefits
of a programmable Flash memory controller, because the
response to each benchmark is significantly different. The
figure also suggests that as the tail length of a workload in-
creases, we see fewer transitions from MLC to SLC, be-
cause Flash based disk cache capacity is more important
for long tailed distributions. In fact, for a uniform distri-
bution which is an extreme case of a long tailed distribution
(α = 0), we found almost all descriptor updates are changes
in ECC strength and not transitions from MLC to SLC.
For exponential distributions, which are an extreme case of
short tailed distributions, we see that density (MLC to SLC)
changes dominate, because the increased miss rate due to a
reduction in density is small. For the macro-benchmarks,

0.00001

0.0001

0.001

0.01

0.1

1

unifo
rm

alp
ha1

alp
ha2

alp
ha3

ex
p1

W
eb

Sea
rc

h1

W
eb

Sea
rc

h2

Finan
cia

l1

Finan
cia

l2

N
or

m
al

iz
ed

 li
fe

tim
e

programmable Flash memory controller BCH1 error correcting controller

Figure 12. Normalized expected lifetime for a
given access rate and the point of total Flash
failure.

we see a behavior that is fairly high variance, like the micro-
benchmarks.

7.4 Improved Flash lifetime with relia-
bility support in Flash memory con-
troller

Figure 12 shows a comparison of the normalized num-
ber of accesses required to reach the point of total Flash
failure where none of the Flash pages can be recovered. We
compare our programmable Flash memory controller with a
BCH 1 error correcting controller. Our studies show that for
typical workloads, our programmable Flash memory con-
troller extends lifetime by a factor of 20 on average. For
a workload that would previously limit Flash lifetime to 6
months, we show it can now operate for more than 10 years
using our programmable Flash memory controller. This
was accompanied by a graceful increase in overall access
latency as Flash wore out.

8 Conclusions

This paper presents an architecture that integrates Flash
into a server platform. Flash is an attractive candidate for
integration because it reduces power consumption in sys-
tem memories and disk drives. This in turn can reduce the
operating cost of a server platform. By carefully manag-
ing the Flash and using it as a secondary disk cache and
by also splitting the disk cache into a separate read cache
and write cache, we observed a dramatic improvement in
power consumption and performance. We also showed that
a Flash memory controller with reliability support greatly
improves Flash lifetime. We found that the best configura-
tion of a Flash memory controller is largely dependent upon
the access patterns resulting from the application. For ex-
ample, we found that the typical workload with Zipf access
behavior was best served by a Flash configured such that the

337337

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 7, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

(a) Breakdown of page reconfiguration events

0%

20%

40%

60%

80%

100%

uni
fo

rm

alp
ha1

alp
ha2

alp
ha3

ex
p1

ex
p2

W
eb

Sea
rc

h1

W
eb

Sea
rc

h2

Fin
an

cia
l1

Fin
an

cia
l2

%
 o

f t
ot

al
 d

es
cr

ip
to

r
up

da
te

s

code strength density

Figure 11. Breakdown of page reconfigura-
tion events.

lated the performance of the SPECWeb99 and dbt2 bench-
marks to observe the effect of increasing code strength that
would occur as Flash wears out. It is assumed that all Flash
blocks have the same error correction code (ECC) strength
applied. We also measured performance for code strengths
(more than 12 bits per page) that are beyond our Flash mem-
ory controller’s capabilities to fully capture the performance
trends.

From Figure 10 we can see that throughput degrades
slowly with ECC strength. dbt2 suffers a greater perfor-
mance loss than SPECWeb99 after 15 bits per page. The
disk bound property of dbt2 makes it more sensitive to ECC
strength.

7.3 Flash memory controller sensitivity
analysis

Figure 11 shows the breakdown of page reconfigura-
tion events. This can either be a decision to increase ECC
strength or switch the block from MLC to SLC mode. The
objective is to minimize the latency cost function explained
in section 5. The size of Flash was set to half the working
set size of the application. These simulations were mea-
sured near the point where the Flash cells start to fail due
to programs and erases. The results confirm the benefits
of a programmable Flash memory controller, because the
response to each benchmark is significantly different. The
figure also suggests that as the tail length of a workload in-
creases, we see fewer transitions from MLC to SLC, be-
cause Flash based disk cache capacity is more important
for long tailed distributions. In fact, for a uniform distri-
bution which is an extreme case of a long tailed distribution
(α = 0), we found almost all descriptor updates are changes
in ECC strength and not transitions from MLC to SLC.
For exponential distributions, which are an extreme case of
short tailed distributions, we see that density (MLC to SLC)
changes dominate, because the increased miss rate due to a
reduction in density is small. For the macro-benchmarks,

0.00001

0.0001

0.001

0.01

0.1

1

unifo
rm

alp
ha1

alp
ha2

alp
ha3

ex
p1

W
eb

Sea
rc

h1

W
eb

Sea
rc

h2

Finan
cia

l1

Finan
cia

l2

N
or

m
al

iz
ed

 li
fe

tim
e

programmable Flash memory controller BCH1 error correcting controller

Figure 12. Normalized expected lifetime for a
given access rate and the point of total Flash
failure.

we see a behavior that is fairly high variance, like the micro-
benchmarks.

7.4 Improved Flash lifetime with relia-
bility support in Flash memory con-
troller

Figure 12 shows a comparison of the normalized num-
ber of accesses required to reach the point of total Flash
failure where none of the Flash pages can be recovered. We
compare our programmable Flash memory controller with a
BCH 1 error correcting controller. Our studies show that for
typical workloads, our programmable Flash memory con-
troller extends lifetime by a factor of 20 on average. For
a workload that would previously limit Flash lifetime to 6
months, we show it can now operate for more than 10 years
using our programmable Flash memory controller. This
was accompanied by a graceful increase in overall access
latency as Flash wore out.

8 Conclusions

This paper presents an architecture that integrates Flash
into a server platform. Flash is an attractive candidate for
integration because it reduces power consumption in sys-
tem memories and disk drives. This in turn can reduce the
operating cost of a server platform. By carefully manag-
ing the Flash and using it as a secondary disk cache and
by also splitting the disk cache into a separate read cache
and write cache, we observed a dramatic improvement in
power consumption and performance. We also showed that
a Flash memory controller with reliability support greatly
improves Flash lifetime. We found that the best configura-
tion of a Flash memory controller is largely dependent upon
the access patterns resulting from the application. For ex-
ample, we found that the typical workload with Zipf access
behavior was best served by a Flash configured such that the

337337

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 7, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

(b) Normalized expected lifetime for a given access rate and the point

of total Flash failure

Figure 4.19: Relative frequency of lifetime mitigation events and the corresponding improvements

in lifetime. Source: Taeho Kgil [4]

by the power supply, processors, memory and disk drives in the system. It could be

argued from this data that simply increasing the amount of system DRAM is a way

to increase performance. This would be true if cost, density and power consumption

were not constraints. In a server requiring multiple Gigabytes of main memory, the

much lower cost per Gigabyte and greater density of NAND Flash (presently almost

4x) mean that it is cost effective and a lower power solution to construct main

memory with more Flash memory than DRAM as our studies show. Furthermore, if

PCRAM continues to scale as predicted, it will then become a candidate to replace

or supplement Flash in our disk cache usage model.

110

Fig. 4. PCRAM memory controller architecture. The disk cache device driver sends read and write requests to the hardware interface. The controller includes
logic to perform a page look-up from metadata stored in PCRAM. The driver is informed of a hit or miss. The driver is also able to invalidate (evict) pages
from the cache. In turn, the controller accesses the Flash chip after performing low latency ECC encoding for a write, or decoding for a read. The device
driver software receives any requested data along with an indication of the number of failing bits.

4. It supports error correcting codes as well as MLC/SLC
mode switching. Because of the higher endurance of PCRAM,
MLC/SLC mode switches will initially be triggered only by
workload changes to maximize cache hit rate, rather than
failing bits. Later on when cells being to wear out, heuristics
will decide if increasing ECC strength or switching to MLC
mode will provide the best performance. Reference [4] pro-
vides details of how density modes can be adaptively selected
based on the workload. To take full advantage of the lower
latency afforded by PCRAM, the controller’s ECC algorithms
must operate with extremely low latency and support higher
bandwidth. The number of correctable bits need not be as
high as for Flash because the higher endurance of PCRAM
means a lower error probability for the same number of write
cycles (see Section II-B). In earlier work [4] we determined
that decoding a 2 KB BCH coded Flash block correcting 2
errors takes around 30 µs using an ASIC. Decreasing this
latency implies a larger, more power-hungry ECC component.
To approach the raw read latency of the PCRAM device,
simpler ECC schemes may have to be used such as parity
and redundancy to avoid the overhead of a complex error-
correction circuit.

A. Improvements due to PCRAM

We also evaluated our PCRAM architecture using M5 [11].
Our intention was to see the effects of PCRAM’s lower
latency and removing the need to erase blocks of pages. We
applied similar setups to those used for our Flash studies. It
should be noted that these preliminary simulations were again
scaled down relative to the capacity of real servers because
of resource limitations on the host system. However, the
simulations are sufficient to highlight the trade-offs between
the different memory technologies.

Figure 5 compares the relative network bandwidth achieved
in servers using Flash or PCRAM as a secondary disk cache.
We examined dbt2, the most disk intensive benchmark. This
is not an in-memory database so there are significant numbers

Fig. 5. Network bandwidth as a function of DRAM size (including primary
disk cache) and secondary disk cache technology. The system was provisioned
with 1GB of secondary disk cache.

of file accesses at run-time to stress the storage subsystem.
Doubling the DRAM capacity (which includes the primary
page cache) increases performance by around 35% when com-
bined with an SLC Flash secondary cache. At any particular
size of main memory, MLC Flash performs slightly worse
than SLC Flash as expected, and PCRAM performs up to
65% better than SLC Flash. The increased performance due
to PCRAM also translates to a very significant total energy
saving. Assuming that the server is in a low power state during
idle periods, completing the work faster means that less energy
is consumed by the power supply, processors, memory and
disk drives in the system.

It could be argued from this data that simply increasing the
amount of system DRAM is a way to increase performance.
This would be true if cost, density and power consumption
were not constraints. In a server requiring multiple Gigabytes
of main memory, the much lower cost per Gigabyte and greater
density of NAND Flash (presently almost 4x) mean that it is
cost effective and a lower power solution to construct main
memory with more Flash memory than DRAM as our studies
show. Furthermore, if PCRAM continues to scale as predicted,

Figure 4.20: Network bandwidth as a function of DRAM size (including primary disk cache) and

secondary disk cache technology. The system was provisioned with 1GB of secondary

disk cache.

CHAPTER V

On-Chip Cache Memory Reliability for Energy Reduction

The CPU has been shown to be a major power contributor in data centers (Section

3.4). Improving the energy efficiency of this component is therefore important, but

voltage reduction is limited by certain outlying logic and memory element charac-

teristics due to process variation. Timing fault-tolerance such as Razor [9] addresses

logic errors. In this section, we address the on-chip SRAM cache errors which occur

during aggressive CPU voltage scaling. Being able to reduce the voltage down to

a level tolerable by logic circuits has proven difficult because of process variation-

induced SRAM cell failures [10]. We approach this problem by comparing different

cache fault-tolerance techniques to determine which will be most effective under volt-

age scaling, or when on-chip memory cell defect probabilities exceed those of current

technologies due to process scaling. Our most significant finding from this study is

that the devices in on-chip memory cells cannot be scaled at the same rate as devices

in logic circuits due to the increasing number of erroneous memory cells with voltage

scaling, requiring strong fault-tolerance techniques. Second, we propose a technique

[14, 15, 16] to maximize the available cache capacity at a given voltage, minimizing

performance impacts. Our scheme, called Block Grouping, works by merging non-

faulty segments from a number of faulty cache lines to form a single working cache

111

112

line. The scheme performs better than triple-modular redundancy (TMR) at high

error rates. We also estimate up to 28% energy savings at low voltage, relative to a

contemporary fault-tolerance scheme [92].1

5.1 Introduction

As microarchitects demand larger on-chip caches for higher performance, con-

tinuous device scaling has provided improved memory density for multi-megabyte

upper-level on-chip caches at a reasonable die cost. However, the device scaling

comes at a price. The reduced device feature size causes exponentially increasing

subthreshold and gate-leakage power problems in on- chip caches fabricated with

sub-90 nm process technology resulting in more static power consumption [122].

Furthermore, process parameter variations, e.g. random dopant fluctuations caus-

ing threshold voltage variations or mismatches across the devices used in a on-chip

memory cell and more oxide defects in devices during the manufacturing process have

worsened yield problems in on-chip caches manufactured with sub-90 nm technology

[123]. To overcome low yield problems caused by scaling device sizes and integrating

more on-chip memory cells, there have been several proposed techniques. One is to

implement redundant memory columns; there are one or two redundant columns per

memory sub-bank or sub-array. If a defective cell is found during the manufacturing

test, the entire column containing the defective cell is replaced with a redundant

column. This wastes many memory cells to fix one defective cell and requires fuses

to replace the column containing the defective cell with the redundant column. The

second technique is to use error correction codes (ECC). Currently, a single error

correction (SEC) and double error detection (DED) technique is used. Even though

this can fix one defective cell per sub-array row, the memory array is made more

1This work was performed at the University of Michigan and funded by ARM Ltd.

113

vulnerable to soft errors since the correction capability of the code has been used

up by fixing defective memory cells. The third technique is to disable a part of the

on-chip cache memory array resulting in a smaller size. An example is the Intel

Celeron processor. It is very similar to the Pentium processor, but it has the entire

or half of the L2 cache disabled as a result of memory sub-arrays containing defec-

tive cells that could not be fixed using the redundant columns in the disabled part of

the on-chip cache memory block. All these techniques are only effective when there

are a small number of defective cells in the on-chip cache. However, the number of

defective cells in large on-chip caches will rise if we want to continue scaling memory

cell size along with technology scaling. Hard-wired redundancy is becoming a less

attractive option due to limited area available for spare memory cells. In addition,

it will no longer be possible to find a single set of cache blocks which consistently

fail at each operating point [123]. Prior work suggests that avoiding defective cache

memory cells at the block level can be very cost-effective in terms of both area and

performance overheads. However, these studies were performed with either outdated

cache hierarchies and benchmarks [87] or for direct-mapped caches only [92]. Under

aggressive voltage scaling and on-chip memory cell sizing, we show that higher defect

rates with existing fault-tolerance schemes result in significant processor performance

degradation. A dynamic voltage scaling (DVS) environment adds to the complexity

of working with on-chip caches containing unpredictable defective memory cells; as

the operating voltage changes, so does the number of defective cells. In this paper we

begin with an analysis of L2 cache activity in a modern processor architecture based

on the Intel Pentium 4. Emphasis is placed on L2 caches because of their widespread

use and relatively large area compared to L1 (L1 caches are also relevant, and the

error analysis within this paper can also be applied to other levels besides L2). We

show the impacts of defective cache blocks on performance and compare ways of

114

addressing this problem. The major contributions of this paper are;

• Trade-off analysis between performance and area for different cell sizes and

fault-tolerance techniques.

• A novel cache block grouping scheme for good performance at higher fault prob-

abilities.

The rest of the section is organized as follows. Section 5.2 explains in detail the

basic fault-tolerance scheme upon which this work is based. Section 5.3 explains

the problems encountered with on-chip cache memory reliability in new processes

and its impact on performance of set-associative caches when defects are present.

Based upon this analysis, we show existing and proposed techniques of reducing

performance impacts in the presence of defects in on-chip caches in Section 5.4. The

techniques are compared in Section 5.5, and concluding remarks are presented in

Section 5.6.

5.2 Background

In this section, we explain the baseline fault-tolerance scheme. For related work,

please see Section 2.3.2.

Figure 5.1 is the same figure as Figure 7 in [92] and illustrates the fault tolerance

scheme presented in that work. It is based on a direct-mapped cache consisting of

lines organized in rows and columns. Rows are addressed as usual using part of the

incoming address. However, the column address may be re-mapped to avoid a known

faulty block. This is achieved by performing a look-up in the “config storage” which

contains a map of defective block locations. In this instance, there is one bit per

block (hence one bit implementation, or OBI) which is set to 1 if the corresponding

block is defective. When the cache is accessed, the controller uses the OBI to select

115

fault-tolerance schemes result in significant processor perfor-
mance degradation. A dynamic voltage scaling (DVS) environment
adds to the complexity of working with on-chip caches containing
unpredictable defective memory cells; as the operating voltage
changes, so does the number of defective cells.

In this paper we begin with an analysis of L2 cache activity in a
modern processor architecture based on the Intel Pentium 4.
Emphasis is placed on L2 caches because of their widespread use
and relatively large area compared to L1 (L1 caches are also rele-
vant, and the error analysis within this paper can also be applied
to other levels besides L2). We show the impacts of defective cache
blocks on performance and compare ways of addressing this prob-
lem. The major contributions of this paper are;

! Trade-off analysis between performance and area for different
cell sizes and fault-tolerance techniques.

! A novel cache block grouping scheme for good performance at
higher fault probabilities.

The rest of the paper is organized as follows. Section 2 presents
related work and explains in detail the basic fault-tolerance
scheme upon which this work is based. Section 3 explains the
problems encountered with on-chip cache memory reliability in
new processes and its impact on performance of set-associative ca-
ches when defects are present. Based upon this analysis, we show
existing and proposed techniques of reducing performance im-
pacts in the presence of defects in on-chip caches in Section 4.
The techniques are compared in Section 5, and concluding remarks
are presented in Section 6.

2. Related work

Pour and Hill [4] derive an analytical model of the performance
loss of a set-associative cache given a set of defective blocks. They
employ an extra ‘‘valid” bit per cache block to identify whether or
not it is defective. Their key findings for caches of size up to 32 kB
are that miss ratio increase is negligible unless a set is completely
disabled by faults.

In [5] they present a model to estimate memory-failure proba-
bility using combined row and column redundancy. The Power4
architecture [6] employs parity on L1 caches and Hamming codes
on L2. In addition, L1 and L2 have spare bits, while L3 has redun-
dant cache lines. If correctable error thresholds are exceeded, a
cache line delete function allows up to 2 deletions per L3 cache.
For defects detected at power-on BIST that cannot be handled,
the L3 cache is disabled.

The Nanobox [7] applies redundancy and other ECC codes to lo-
gic functions built using lookup tables.

A technique for memory self-repair at high defect densities is
presented in [8]. It relies upon prior knowledge of the polarity of
the error (i.e. faults are always stuck at 0 or 1). In our cache appli-
cation, the scheme will not work because the value read from
faulty bits is unpredictable and can change with operating point
(e.g. voltage or temperature).

Agarwal et al. [1] noted that the number of defective cells and
their location changes depending on operating voltage. In addi-
tion, they proposed a cache block re-mapping technique for di-
rect-mapped caches. The technique relies on a defective block
mapping table determined prior to execution using BIST. They
consider the use of block re-mapping in conjunction with ECC
and row redundancy. Because we often refer to this scheme in
the paper, it is explained in more detail as follows. Fig. 1 is the
same figure as Fig. 7 in [1] and illustrates the fault tolerance
scheme presented in that work. It is based on a direct-mapped
cache consisting of lines organized in rows and columns. Rows

are addressed as usual using part of the incoming address. How-
ever, the column address may be re-mapped to avoid a known
faulty block. This is achieved by performing a look-up in the
‘‘config storage” which contains a map of defective block loca-
tions. In this instance, there is one bit per block (hence one bit
implementation, or OBI) which is set to 1 if the corresponding
block is defective. When the cache is accessed, the controller
uses the OBI to select a non-defective column to store data to,
using a fixed mapping. Additional bits are required in the tag
to indicate the column in which data is stored. This prevents
faulty blocks from being read.

3. Impact of on-chip cache failure rate on processor
performance

3.1. On-chip cache device scaling and failure rate

Currently, the feature sizes (e.g. 45 nm) are so small that it is
very difficult to control the uniformity of device parameters across
dies and wafers. In particular, smaller devices that are extensively
used in on-chip cache memory cells are increasingly sensitive to
parameter variations. Furthermore, dynamic voltage scaling is very
commonly used to reduce power consumption of the processors
and their on-chip caches should be able to operate at the same
voltage as the processor core, to avoid adding overhead to allow
separate voltage domains. However, as the supply voltage of on-
chip cache memory cells decreases, we find more memory cells
failing due to increased sensitivity to process variation at lower
supply voltage. Failure types are read failures (flipping of the
stored state during read operations), write failures (inability to
write a state during write operations), access time failures (an in-
crease in the access time of the cell resulting in the violation of the
delay requirement), and/or retention failure (losing the stored
state in standby mode) [10,11]. As a result, the lowest operating
voltage (called Vccmin) of processors employing DVS is usually
determined by the lowest supply voltage that keeps all on-chip
memory cells functional. However, lower Vccmin is desirable if sta-
tic and dynamic power consumption are to be reduced. The best
way to improve Vccmin is to increase memory cell size to reduce
the process variation sensitivity of the memory cells. However, a
larger memory cell size increases the area occupied by on-chip ca-
ches resulting in increasing die cost or decreasing the on-chip
cache size at a given die size (e.g. 12 MB instead of 16 MB for a

Fig. 1. The one bit implementation (OBI) technique.

D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253 245

Figure 5.1: The one bit implementation (OBI) technique

a non-defective column to store data to, using a fixed mapping. Additional bits are

required in the tag to indicate the column in which data is stored. This prevents

faulty blocks from being read.

5.3 Impact of on-chip cache failure rate on processor performance

5.3.1 On-chip cache device scaling and failure rate

Currently, the feature sizes (e.g. 45 nm) are so small that it is very difficult to

control the uniformity of device parameters across dies and wafers. In particular,

smaller devices that are extensively used in on-chip cache memory cells are increas-

ingly sensitive to parameter variations. Furthermore, dynamic voltage scaling is

very commonly used to reduce power consumption of the processors and their on-

chip caches should be able to operate at the same voltage as the processor core, to

avoid adding overhead to allow separate voltage domains. However, as the supply

voltage of on- chip cache memory cells decreases, we find more memory cells failing

due to increased sensitivity to process variation at lower supply voltage. Failure types

116

are read failures (flipping of the stored state during read operations), write failures

(inability to write a state during write operations), access time failures (an in- crease

in the access time of the cell resulting in the violation of the delay requirement),

and/or retention failure (losing the stored state in standby mode) [124, 125]. As a

result, the lowest operating voltage (called Vccmin) of processors employing DVS is

usually determined by the lowest supply voltage that keeps all on-chip memory cells

functional. However, lower Vccmin is desirable if static and dynamic power con-

sumption are to be reduced. The best way to improve Vccmin is to increase memory

cell size to reduce the process variation sensitivity of the memory cells. However,

a larger memory cell size increases the area occupied by on-chip caches resulting in

increasing die cost or decreasing the on-chip cache size at a given die size (e.g. 12

MB instead of 16 MB for a L3 cache). Hence, the memory cell size must be balanced

to give proper Vccmin, yield, and on-chip cache capacity.

L3 cache). Hence, the memory cell size must be balanced to give
proper Vccmin, yield, and on-chip cache capacity.

Fig. 2 shows normalized on-chip memory cell failure rates for 3
different memory cell sizes (A, B and C with relative areas of 1,
1.25, and 1.5, respectively) as a function of memory cell supply
voltage. Note that depending on how we tune the sizes of the six
transistors in the memory cell, the result varies significantly. They
are obtained using Monte-Carlo simulations on memory cells de-
signed with a 45 nm technology and process parameter variations
corresponding to the technology. The failure rate we assume is sig-
nificantly higher than the data presented in other work [1], how-
ever the increased failure rates can be expected in future smaller
semiconductor process technology (e.g., 32 nm technology). As
shown in Fig. 2, as either voltage or cell size decreases, the failure
rate starts to increase exponentially. In other words, a larger cell
can achieve a much lower Vccmin at the same failure rate. Finally,
defect rate is proportional to die size. Hence, when we integrate
more on-chip memory cells on a die along with device scaling,
there will be a much greater chance that some memory cells con-
tain defects and fail during post-manufacturing tests resulting in
poor yield. The next section examines the relationship between
on-chip cache memory cell failure and performance impact to
determine the number of tolerable, non-corrected faults.

3.2. Performance impact of set-associative cache defects

The performance impact of on-chip cache memory cell failure
partly depends upon the fault-tolerance technique employed.
While some impact arises from increased miss rates as faulty re-
gions are disabled, others incur a performance penalty when er-
ror-correcting codes are decoded.

Weperformananalysis ofblock level fault-toleranceschemes.All
data was obtained using the M5 simulator [12]. The simulator was
configured to represent amodern out-of-order pipelinewith similar
specifications to a Pentium 4 (Table 1). The memory latency is rela-
tively low, although this will not significantly affect L2 miss rates.

Fig. 3a and b present the impact of defective blocks in L2 (each
containing 1 or more defective cells) on miss rate and instructions
per cycle (IPC), respectively. We use the SPLASH-2 benchmark suite
[13] as a workload representative of both memory and compute-
intensive applications. In these graphs, defective block locations
are allocated randomly, but consistently between benchmarks.
The LRU scheme was modified so that defective (non-correctable)

blocks are not considered for replacement. If all ways in a set are
defective, accesses to that set bypass the cache and are forwarded
to the next level of the memory hierarchy. This has the effect of
reducing the number of available ways in a cache set, while using
the standard tag matching mechanism to determine hits or misses
within the remaining good blocks, which is identical to [14]. The
data in Fig. 3a and b confirm the previous study [4] in that high
block failure rates are required before there is any significant per-
formance penalty. With this in mind, the next section compares
existing and our fault-tolerance techniques for their performance
and area at significant failure rates.

4. Comparison of fault-tolerance techniques

The one bit implementation (OBI) mapping table model [1] is
effective for low failure rates, but for higher rates we show that
it rapidly becomes ineffective. We aim to allow more faults with
stronger error correction, and observe the trade-off with area cost.
In this section we derive an analytical model representing the frac-
tion of good blocks remaining in the cache at different cell failure
probabilities (and sizes). We consider tag bits as additional bits
contained in each block.

We compared several cache fault-tolerance schemes in order
to determine their area efficiency at different error rates (volt-
ages and cell sizes). The model used represents the fraction of
fault-free blocks available in the cache, denoted by Favail. As a
minimum, we decided to first apply the OBI scheme, followed
by other error correction. From a storage standpoint, OBI pro-
vides the minimum data needed to identify where faulty blocks
are, for avoidance. Since it has already been proven superior to
redundant rows and SECDED ECC, all of our models build on
the OBI baseline. OBI does not affect the cache access time and
has minimum effect on processor performance [1]. Throughout
the paper we refer to pfault as the probability of failure of a single
on-chip memory cell. Cell failures are assumed to be indepen-
dent. As a first approximation this assumption is valid and has
been widely used in other published cache-error related work
([1,5,8]).

To improve the effectiveness of schemes requiring an additional
storage table (e.g. OBI) which must contain correct bits, we intro-
duce a factor OBIff. This factor reduces the bit failure probability,
representing larger size or higher voltage on-chip cache memory
cells (see Fig. 2) used specifically for that table. We refer to this
as ‘‘guaranteed correct” storage because one fault in this table
could lead to bad cells being accessed. Using large cells is viable
as long as the table does not contain too much data. In addition, de-
lay does not vary significantly with cell size. ‘‘Basic storage” refers
to the cells used in the cache itself.

The fault-tolerance schemes (Table 2) were chosen from a range
of candidates, most of which are widely used today. We only model
storage-related reliability while logic reliability is beyond the

1

10

100

1000

10000

100000

1000000

10000000

100000000

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Vcc (V)

No
rm

al
iz

ed
 fa

ilu
re

 ra
te

A (1.00) B (1.25) C (1.50)

Fig. 2. Normalized cell failure rates as a function of voltage for three different
memory cells.

Table 1
M5 CPU configuration (2 GHz clock)

Parameter Value

Pipeline width 4
Branch prediction/BTB Hybrid 4-way, 2 K entries
ROB/LSQ size 196/32 entries
INT ALUs/multi-divs/mem ports 6/2/4
FP ALUs/multi-divs 4/2
Functional unit latencies INT: mul 3, div 20, all others 1

FP: adder 2, mul 4, div 12, sqrt 24
IL1 cache 16 kB, 2-way, 64B blocks, 1-cycle lat.
DL1 cache 16 kB, 2-way, 64B blocks, 3-cycle lat.
L2 cache 1MB, 8-way,64B blocks, 19-cycle lat.
Memory bus/latency 16 bytes with 6-cycle lat./100 cycles

246 D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253

Figure 5.2: Normalized cell failure rates as a function of voltage for three different memory cells

Figure 5.2 shows normalized on-chip memory cell failure rates for 3 different mem-

ory cell sizes (A, B and C with relative areas of 1, 1.25, and 1.5, respectively) as a

117

function of memory cell supply voltage. Note that depending on how we tune the

sizes of the six transistors in the memory cell, the result varies significantly. They

are obtained using Monte-Carlo simulations on memory cells designed with a 45 nm

technology and process parameter variations corresponding to the technology. The

failure rate we assume is significantly higher than the data presented in other work

[92], however the increased failure rates can be expected in future smaller semicon-

ductor process technology (e.g., 32 nm technology). As shown in Figure 5.2, as

either voltage or cell size decreases, the failure rate starts to increase exponentially.

In other words, a larger cell can achieve a much lower Vccmin at the same failure

rate. Finally, defect rate is proportional to die size. Hence, when we integrate more

on-chip memory cells on a die along with device scaling, there will be a much greater

chance that some memory cells contain defects and fail during post-manufacturing

tests resulting in poor yield. The next section examines the relationship between

on-chip cache memory cell failure and performance impact to determine the number

of tolerable, non-corrected faults.

5.3.2 Performance impact of set-associative cache defects

The performance impact of on-chip cache memory cell failure partly depends

upon the fault-tolerance technique employed. While some impact arises from in-

creased miss rates as faulty regions are disabled, others incur a performance penalty

when error-correcting codes are decoded. We perform an analysis of block level

fault-tolerance schemes. All data was obtained using the M5 simulator [126]. The

simulator was configured to represent a modern out-of-order pipeline with similar

specifications to a Pentium 4 (Table 5.1). The memory latency is relatively low,

although this will not significantly affect L2 miss rates.

Figures 5.3(a) and 5.3(b) present the impact of defective blocks in L2 (each con-

118

Parameter Value

Clock frequency 2 GHz

Pipeline width 4

Branch prediction/BTB Hybrid 4-way, 2K entries

ROB/LSQ size 196/32 entries

INT ALUs/multi-divs/mem ports 6/2/4

FP ALUs/multi-divs 4/2

Functional unit latencies INT: mul 3, div 20, all others 1, FP:

adder 2, mul 4, div 12, sqrt 24

IL1 cache 16 kB, 2-way, 64B blocks, 1-cycle lat.

DL1 cache 16 kB, 2-way, 64B blocks, 3-cycle lat.

L2 cache 1 MB, 8-way, 64B blocks, 19-cycle lat.

Memory bus/latency 16 bytes with 6-cycle lat./100 cycles

Table 5.1: M5 CPU Configuration

taining 1 or more defective cells) on miss rate and instructions per cycle (IPC),

respectively. We use the SPLASH-2 benchmark suite [127] as a workload representa-

tive of both memory and compute-intensive applications. In these graphs, defective

block locations are allocated randomly, but consistently between benchmarks. The

LRU scheme was modified so that defective (non-correctable) blocks are not consid-

ered for replacement. If all ways in a set are defective, accesses to that set bypass

the cache and are forwarded to the next level of the memory hierarchy. This has

the effect of reducing the number of available ways in a cache set, while using the

standard tag matching mechanism to determine hits or misses within the remain-

ing good blocks, which is identical to [128]. The data in Figure 5.3(a) and 5.3(b)

confirm the previous study [87] in that high block failure rates are required before

there is any significant performance penalty. With this in mind, the next section

compares existing and our fault-tolerance techniques for their performance and area

at significant failure rates.

119

scope of this paper. The following sections explain the fault model
and storage overhead of each scheme.

Each cache consists of M sets and N ways where each block con-
tains B bits (including tag bits).

We also derive an area efficiency Earea which takes into account
the probability of failure of the ‘‘guaranteed correct” storage which
includes the OBI table and any additional bits added by a scheme
which must be correct for the cache to operate reliably. The frac-
tion of available blocks is divided by die area consumed by all
SRAM cells, then scaled by the probability of the guaranteed cor-
rect storage containing no faults Eq. (1).

Earea ¼
Favail

area
" pnon faulty GC ð1Þ

The pnon_faulty_GC value is the probability that the guaranteed correct
cells are fault-free, as a function of the probability of the large-size
cell failure pfault_GC and the number of guaranteed correct bits
(GC_bits).

pnon faulty GC ¼ 1% pfault GCð ÞGC bits ð2Þ

In all of these schemes,

pfault GC ¼ OBIff " pfault ¼ 10%5 " pfault

4.1. Existing fault-tolerance schemes

4.1.1. OBI
The ‘‘one bit implementation” consists of a table of bits, one per

block, indicating whether or not each block contains 1 or more
faulty bits. All of our schemes incur this storage overhead, because
we use an OBI to indicate whether a block can be corrected or is
unusable and cannot be accessed.

4.1.1.1. Storage overhead

GC bits ¼ M " N bits ðguaranteed correct storageÞ:

4.1.1.2. Fault model. The probability of a faulty bit is pfault. The prob-
ability of a non-faulty block is the likelihood of every bit being
fault-free in that block. We assume that this probability represents
the fraction of non-faulty cache blocks, as follows;

Favail ¼ ð1% pfaultÞ
B ð3Þ

4.1.2. SEC
Single error-correcting (SEC) codes were included due to their

widespread use in existing devices.

4.1.2.1. Storage overhead

b ¼ dlog2ðBÞe ð4Þ

where b is the number of added ECC bits per cache block (basic
storage).

4.1.2.2. Fault model. The model is modified to account for the in-
creased block size (for check bit storage) and the ability to correct
0 or 1 bits.

Favail ¼ ð1% pfaultÞ
Bþb þ

Bþ b
1

! "
" pfault " ð1% pfaultÞ

Bþb%1 ð5Þ

4.1.3. BCH double error correction (DEC)
The Bose-Chaudhuri-Hocquenghem (BCH) error-correcting

code was selected as a candidate DEC scheme. Alternatives such
as Reed-Solomon and Golay codes are mentioned in [15]. BCH
was chosen because of its low storage overhead. However, in

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 1000 20 40 60 80 100
% of disabled blocks

IP
C

A B C D E F G H I J K

0%

20%

40%

60%

80%

100%

% of disabled blocks

L2
 m

is
s

ra
te

A B C D E F G H I J K

(a) L2 miss rate (b) IPC

Fig. 3. L2 miss rate in (a) and IPC in (b) as a function of number of randomly disabled blocks. A-Cholesky, B-FFT, C-LUContig, D-LUNoncontig, E-Radix, F-Barnes, G-FMM, H-
OceanContig, I-OceanNoncontig, J-Raytrace, and KWaterNSquared, respectively.

Table 2
Candidate cache fault-tolerance schemes and their storage overheads for an 1MB
cache

Schemes Storage Description

OBI 1.002 One bit implementation from [1] indicates a
faulty block with a single bit

Hamming SEC 1.020 Single error-correcting (SEC) hamming code
BCH DEC 1.037 Double error-correcting (DEC) Bose-Chaudhury-

Hocquenghem
log(B) 1.022 Bad block table contains index of one bad bit and

a spare cell to store the value of that faulty bit. If
there is more than one defective bit, the block is
disabled

Triple modular
redundancy
(TMR)

1.002 Faulty blocks are combined in groups of 3 inside
the 1MB cache with a majority vote on each bit

Block grouping
(GRP2)

Up to
1.528

Pairs of faulty blocks are combined to form single
good blocks. A paired block is ‘good’ if there is
only one faulty bit for each corresponding pair of
2 bits

D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253 247

(a)

scope of this paper. The following sections explain the fault model
and storage overhead of each scheme.

Each cache consists of M sets and N ways where each block con-
tains B bits (including tag bits).

We also derive an area efficiency Earea which takes into account
the probability of failure of the ‘‘guaranteed correct” storage which
includes the OBI table and any additional bits added by a scheme
which must be correct for the cache to operate reliably. The frac-
tion of available blocks is divided by die area consumed by all
SRAM cells, then scaled by the probability of the guaranteed cor-
rect storage containing no faults Eq. (1).

Earea ¼
Favail

area
" pnon faulty GC ð1Þ

The pnon_faulty_GC value is the probability that the guaranteed correct
cells are fault-free, as a function of the probability of the large-size
cell failure pfault_GC and the number of guaranteed correct bits
(GC_bits).

pnon faulty GC ¼ 1% pfault GCð ÞGC bits ð2Þ

In all of these schemes,

pfault GC ¼ OBIff " pfault ¼ 10%5 " pfault

4.1. Existing fault-tolerance schemes

4.1.1. OBI
The ‘‘one bit implementation” consists of a table of bits, one per

block, indicating whether or not each block contains 1 or more
faulty bits. All of our schemes incur this storage overhead, because
we use an OBI to indicate whether a block can be corrected or is
unusable and cannot be accessed.

4.1.1.1. Storage overhead

GC bits ¼ M " N bits ðguaranteed correct storageÞ:

4.1.1.2. Fault model. The probability of a faulty bit is pfault. The prob-
ability of a non-faulty block is the likelihood of every bit being
fault-free in that block. We assume that this probability represents
the fraction of non-faulty cache blocks, as follows;

Favail ¼ ð1% pfaultÞ
B ð3Þ

4.1.2. SEC
Single error-correcting (SEC) codes were included due to their

widespread use in existing devices.

4.1.2.1. Storage overhead

b ¼ dlog2ðBÞe ð4Þ

where b is the number of added ECC bits per cache block (basic
storage).

4.1.2.2. Fault model. The model is modified to account for the in-
creased block size (for check bit storage) and the ability to correct
0 or 1 bits.

Favail ¼ ð1% pfaultÞ
Bþb þ

Bþ b
1

! "
" pfault " ð1% pfaultÞ

Bþb%1 ð5Þ

4.1.3. BCH double error correction (DEC)
The Bose-Chaudhuri-Hocquenghem (BCH) error-correcting

code was selected as a candidate DEC scheme. Alternatives such
as Reed-Solomon and Golay codes are mentioned in [15]. BCH
was chosen because of its low storage overhead. However, in

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 1000 20 40 60 80 100
% of disabled blocks

IP
C

A B C D E F G H I J K

0%

20%

40%

60%

80%

100%

% of disabled blocks

L2
 m

is
s

ra
te

A B C D E F G H I J K

(a) L2 miss rate (b) IPC

Fig. 3. L2 miss rate in (a) and IPC in (b) as a function of number of randomly disabled blocks. A-Cholesky, B-FFT, C-LUContig, D-LUNoncontig, E-Radix, F-Barnes, G-FMM, H-
OceanContig, I-OceanNoncontig, J-Raytrace, and KWaterNSquared, respectively.

Table 2
Candidate cache fault-tolerance schemes and their storage overheads for an 1MB
cache

Schemes Storage Description

OBI 1.002 One bit implementation from [1] indicates a
faulty block with a single bit

Hamming SEC 1.020 Single error-correcting (SEC) hamming code
BCH DEC 1.037 Double error-correcting (DEC) Bose-Chaudhury-

Hocquenghem
log(B) 1.022 Bad block table contains index of one bad bit and

a spare cell to store the value of that faulty bit. If
there is more than one defective bit, the block is
disabled

Triple modular
redundancy
(TMR)

1.002 Faulty blocks are combined in groups of 3 inside
the 1MB cache with a majority vote on each bit

Block grouping
(GRP2)

Up to
1.528

Pairs of faulty blocks are combined to form single
good blocks. A paired block is ‘good’ if there is
only one faulty bit for each corresponding pair of
2 bits

D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253 247

(b)

Figure 5.3: L2 miss rate in (a) and IPC in (b) as a function of number of randomly disabled blocks.

A-Cholesky, B-FFT, C-LUContig, D-LUNoncontig, E-Radix, F-Barnes, G-FMM, H-

OceanContig, I-OceanNoncontig, J-Raytrace, and KWaterNSquared, respectively.

5.4 Comparison of fault-tolerance techniques

The one bit implementation (OBI) mapping table model [92] is effective for low

failure rates, but for higher rates we show that it rapidly becomes ineffective. We aim

to allow more faults with stronger error correction, and observe the trade-off with

area cost. In this section we derive an analytical model representing the fraction of

good blocks remaining in the cache at different cell failure probabilities (and sizes).

We consider tag bits as additional bits contained in each block. We compared several

cache fault-tolerance schemes in order to determine their area efficiency at different

error rates (voltages and cell sizes). The model used represents the fraction of fault-

free blocks available in the cache, denoted by Favail. As a minimum, we decided

to first apply the OBI scheme, followed by other error correction. From a storage

standpoint, OBI provides the minimum data needed to identify where faulty blocks

are, for avoidance. Since it has already been proven superior to redundant rows

and SECDED ECC, all of our models build on the OBI baseline. OBI does not

affect the cache access time and has minimum effect on processor performance [92].

120

Throughout the paper we refer to pfault as the probability of failure of a single on-chip

memory cell. Cell failures are assumed to be independent. As a first approximation

this assumption is valid and has been widely used in other published cache-error

related work ([1,5,8]). To improve the effectiveness of schemes requiring an additional

storage table (e.g. OBI) which must contain correct bits, we introduce a factor

OBIff. This factor reduces the bit failure probability, representing larger size or

higher voltage on-chip cache memory cells (see Figure 5.2) used specifically for that

table. We refer to this as “guaranteed correct” storage because one fault in this table

could lead to bad cells being accessed. Using large cells is viable as long as the table

does not contain too much data. In addition, de- lay does not vary significantly with

cell size. Basic storage refers to the cells used in the cache itself. The fault-tolerance

schemes (Table 5.2) were chosen from a range of candidates, most of which are widely

used today. We only model storage-related reliability while logic reliability is beyond

the scope of this paper. The following sections explain the fault model and storage

overhead of each scheme.

Each cache consists of M sets and N ways where each block contains B bits

(including tag bits). We also derive an area efficiency Earea which takes into account

the probability of failure of the guaranteed correct storage which includes the OBI

table and any additional bits added by a scheme which must be correct for the cache

to operate reliably. The fraction of available blocks is divided by die area consumed

by all SRAM cells, then scaled by the probability of the guaranteed correct storage

containing no faults Eq. (1).

(5.1) Earea =
Favail

area
.pnon faulty GC

The pnon faulty GC value is the probability that the guaranteed correct cells are

121

Scheme Storage (MB) Description

OBI 1.002 One bit implementation [92] indicates a faulty block

with a single bit

Hamming SEC 1.020 Single-error correcting (SEC) hamming code

BCH DEC 1.037 Double-error correcting (DEC) Bose-Chaudhury-

Hocquenghem

log(B) 1.022 Bad block table contains index of one bad bit and a

spare cell to store the value of that faulty bit. If there

is more than one defective bit, the block is disabled

Triple-modular re-

dundancy (TMR)

1.002 Faulty blocks are combined in groups of 3 inside the

1 MB cache, with a majority vote on each bit

Block Grouping

(GRP2)

Up to 1.528 Pairs of faulty blocks are combined to form single

good blocks. A paired block is ’good’ if there is only

one faulty block segment for each corresponding pair

of segments.

Table 5.2: Candidate cache fault-tolerance schemes and their storage overheads for an 1MB cache

fault-free, as a function of the probability of the large-size cell failure pfault GC and

the number of guaranteed correct bits (GC bits).

(5.2) pnon faulty GC = (1− pfault GC)GC bits

In all of these schemes,

(5.3) pfault GC = OBIff .pfault = 10−5.pfault

5.4.1 Existing fault-tolerance schemes

OBI

The “one bit implementation” consists of a table of bits, one per block, indicating

whether or not each block contains 1 or more faulty bits. All of our schemes incur

122

this storage overhead, because we use an OBI to indicate whether a block can be

corrected or is unusable and cannot be accessed.

Storage overhead

GC bits = M.N bits (guaranteed correct storage).

Fault model

The probability of a faulty bit is pfault. The probability of a non-faulty block

is the likelihood of every bit being fault-free in that block. We assume that this

probability represents the fraction of non-faulty cache blocks, as follows;

(5.4) Favail = (1− pfault)
B

SEC

Single error-correcting (SEC) codes were included due to their low overhead and

widespread use in existing devices.

Storage Overhead

(5.5) b = dlog2(B)e

where b is the number of added ECC bits per cache block (basic storage).

Fault model

The model is modified to account for the increased block size (for check bit storage)

and the ability to correct 0 or 1 bits.

(5.6) Favail = (1− pfault)
B+b +

(
B + b

1

)
.pfault. (1− pfault)

B+b−1

123

BCH double error correction (DEC)

The Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code was selected as

a candidate DEC scheme. Alternatives such as Reed-Solomon and Golay codes are

mentioned in [129]. BCH was chosen because of its low storage overhead. However,

in practise a less compute-intensive code can be used depending on the sensitivity of

performance on L2 latency. We modeled a DEC BCH code storage overhead (with

minimum distance dmin = 5) based upon the equations in [130].

Storage overhead

(5.7) b = 2.dlog2(B)e

where b is the number of added ECC bits per cache block (basic storage).

Fault model

The probability of a faulty block is modified to account for the extra check bit

storage and the ability to correct 2 bits.

Favail = (1− pfault)
B+b +

(
B + b

1

)
.pfault. (1− pfault)

B+b−1

+

(
B + b

2

)
.p2

fault.(1− pfault)
B+b−2

Log(B)

The log(B) scheme is an alternative single error-correcting scheme. A table stores

the index of one faulty cell location per block, along with an additional bit to hold

the correct state of that cell. This is equivalent to the distant repair scheme of [131]

using one spare unit.

Storage overhead

124

(5.8) b = dlog2(B)e+ 1

These b bits per block are held in guaranteed correct storage.

Fault model

The fraction of available blocks is identical to that of SEC except that the addi-

tional bits are in guaranteed correct storage.

(5.9) Favail = (1− pfault)
B +

(
B

1

)
.pfault.(1− pfault)

B−1

Triple-modular redundancy (TMR)

Our triple modular redundancy implementation assigns faulty blocks to groups of

three blocks with a majority vote on every bit (0 or 1 errors can be corrected per bit

position). At most, 1/3 of logical bits can be recovered from the physical bits which

are combined for a majority vote. In a hardware implementation, the bit comparison

for the majority vote is performed at the final cache output stage. Therefore logic

overhead will be small.

Storage overhead

No additional storage is allocated to identify which blocks are combined for TMR.

For this typical case analysis, we assume that faulty blocks are combined with other

arbitrarily located faulty blocks.

Fault model. We first consider each bit index as 3 bits which must have 0 or 1

faults to be corrected. This applies for all B bit indexes. However, because we only

combine known faulty blocks after determining fault-free blocks, none of the three

blocks are ever error-free and this probability (pgood) is subtracted from the main

expression. The probability of a non-faulty block is pnfb = (1− pfault)
B.

125

pgood =

(
3

1

)
.pnfb.

[
(1− p2

fault) +

(
2

1

)
.(1− pfault).pfault

]B

−3.(1− pnfb).(pnfb)
2 − 2.(pnfb)

3

(5.10)

fraction repairedTMR =
1

3
.

(((
3

1

)
.pfault.(1− pfault)

2 + (1− p3
fault)

)B

− pgood

)

(5.11) Favail = pnfb + (1− pnfb).fraction repairedTMR

5.4.2 Proposed fault-tolerance scheme

Block grouping

For high error rates, we propose a new scheme (Figure 5.4). Faulty physical blocks

are grouped together (in groups of size G) to form a new, fully working logical block.

In the rest of our analysis, we assume pairs (G = 2). Using larger groups is beneficial

at extremely high error rates, but the analysis is beyond the scope of this paper. The

concept is a similar to [8] except that knowledge of failure polarities is not required.

Compatible blocks have up to one faulty bit between them, at every corresponding

bit index. This means that an additional selector bit, which is known to be correct,

can specify which bit contains a good value when reading data. A grouping table

is accessed as an additional step before a cache access, to identify the paired block.

To read a grouped block, all blocks in the group are read. The selector bits then

indicate which block in the pair contains good data, at each bit index. A single

logical block is then returned to the processor. To write a grouped block, the same

value is written to every component block.

126

Figure 5.4: The proposed block grouping scheme

Grouping table

This table is used to look-up the location of the other block in a group. If there

is more freedom to combine faulty blocks that are compatible, more blocks can be

recovered. They can be physically adjacent, in the same set or in any location inside

the cache (depending on the desired complexity of block selection hardware). Each

alternative has performance tradeoffs, discussed later.

Selector bit table

Selection of the block which the data bit is read from is performed using a table of

selector bits. These are stored in guaranteed correct cells, and can either cover every

bit index in the block or a number of adjacent bits (e.g. two data bits per selector

in Figure 5.5). In this example, each selector bit indicates which block should be

127

Figure 5.5: Example of selector usage (2 bits/selector).

accessed for every pair of adjacent bits. Using few- er selector bits reduces the number

of defects which can be tolerated but reduces storage overhead. For example, a single

selector bit covering two adjacent data bits cannot handle the case where there is a

fault in both blocks at that position. Later, we discuss off-chip caching of selector

bits to reduce the die area of on-chip SRAM.

Table configuration

The tables are programmed during system start-up. Self-test routines determine

whether cache cells are operating reliably at each voltage and frequency point, and

the map is stored in main memory or on disk. When performance settings change,

the cache is flushed and a new selector table loaded. These tables could also be

hard-wired at manufacturing test.

Storage overhead

We call the first block to be accessed the “primary” block, and its paired com-

patible block the secondary block. For the grouping table, we first consider the most

storage- intensive scenario where blocks are paired anywhere in the cache.

The grouping table has a number of entries equal to the number of blocks in the

cache. Each entry stores the set and way index of a compatible block, to be looked

up on a read access. The equation below assumes that there is an entry pointing to

128

another block for every block position in the cache.

(5.12) group table size = M.N.log2(M.N)

As a lower-cost alternative, the storage requirement for pairs limited to the same

set is given below. When implemented as an asso- ciative look-up, half of the blocks

in a set have a pointer to another block in the same set.

(5.13) group table size =
N

2
.log2(N).M

Instead of using a grouping table, one could use the existing tag matching mech-

anism to simultaneously hit multiple blocks of the same group since their address

tags are identical. It requires that the group resides in a single set so that address

indexes are identical for each block. A banked cache design where ways are in differ-

ent banks would allow fast parallel access to a group of blocks. A sequential access

model is still feasible however, because an extra cycle to look-up a secondary block

does not significantly impact performance for low-level caches (e.g. L2). Another,

less effective zero-overhead alternative is to use a fixed grouping, for example, pairing

together adjacent blocks.

The error-correcting ability of each variant is shown in Figure 5.6. The results

were derived from simulation, and pairs were formed using a greedy algorithm that

allocates each faulty block with the next free compatible faulty block in sequential or-

der. An optimal grouping will be even more effective. In paper [102] they determined

that the optimal block grouping algorithm is an instance of the maximum matching

problem, which can be solved in polynomial time with optimal algorithms. However,

they went on to use the same greedy algorithm that we propose and demonstrate that

129

4.2.2. Selector bit caching for block grouping
Compared with the other schemes, block grouping has strong

fault tolerance characteristics but a potentially large storage over-
head. By caching the working set of selector bits in on-chip SRAM
and keeping less frequently used bits off-chip, area overheads can
be reduced without significant performance impact. Although this
appears only to move the reliability problem elsewhere, there are
several benefits;

! Write accesses to the off-chip storage are infrequent (for exam-
ple, at manufacturing test, or if BIST is re-run when there is a sig-
nificant temperature change). Therefore the table could be
stored in FLASHmemory, for example. Off-chip DRAM is another
possibility and in both cases there will be a reduction in total
area and energy consumption. Although off-chip bus traffic
when retrieving cached selector bits requires more energy than
an on-chip access, this is an infrequent event.

! Moving the storage off-chip decouples most of the guaranteed
correct storage from the CPUmanufacturing process. This allows
for a larger proportion of on-chip SRAM cells to be scaled down
with the process technology. A different technology can be used
off-chip.

We ran an initial study to see what performance and storage
impact selector bit caching would have. The design in Fig. 4 was
extended to have the working set of selector bit pages (stored in
a parallel structure to the TLB) on-chip. On a TLB miss, we assume
that the page table is accessed from main memory, so access
latency to a small off-chip DRAM holding pages of selector bits is
already accounted for. It is possible to use a small, standard cache

rather than page-based method of finding the working set. This re-
quires the use of tags, but makes more efficient use of storage
space.

Using the same M5 configuration as before, we recorded TLB
miss rates for varying numbers of TLB entries, then derived the
performance hit for off-chip selector bit loading. For more realism
and to support virtual memory, the simulator was run in full-sys-
tem mode and benchmarks were run to completion under Linux.
The results are given in Table 3. By keeping just the working set
of cache pages in on-chip SRAM we have reduced the on-die
storage overhead from 50% to less than 10%. Note that we used
one selector bit per logical bit (see Fig. 6c). We opted to use 24
TLB entries because the performance data indicated much smaller

0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

 100

% faulty blocks

pfault*100 (%)

Ways0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

100

% faulty blocks

pfault*100 (%)

Ways

0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

100

% faulty blocks

pfault*100 (%)

Ways 0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

 100

% faulty blocks

pfault*100 (%)

Ways

(a) Pairs must be physically adjacent in a set (b) Paired blocks located anywhere in the cache

(c) Pairs must be in same set, 1 logical bit per selector bit (d) Pairs must be in same set, 2 logical bits per selector bit

Fig. 6. Percentage of faulty blocks using block pairing (G = 2) for different group restrictions. Block size = 32 bytes.

Table 3
Selector bit caching parameters and results

Parameters Value

Cache size 1024 kB
Linux page size 8 kB
Logical bits per selector bit 1
Selector page size 4 kB
Full grouping table size/OBI table size 4 kB/2 kB
Set-restricted grouping table size 3 kB
On-chip SRAM selector bit storage 96 kB
Off-chip DRAM selector bit storage 512 kB
ITLB/DTLB entries 8/16
Selector bit table DRAM throughput 32 bytes/cycle
Total storage overhead of full group table 12.3%
Total storage overhead of set-limited group table 9.9%
Total storage overhead of tag-based grouping table 9.6%

250 D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253

(a) Pairs must be physically adjacent in a set

4.2.2. Selector bit caching for block grouping
Compared with the other schemes, block grouping has strong

fault tolerance characteristics but a potentially large storage over-
head. By caching the working set of selector bits in on-chip SRAM
and keeping less frequently used bits off-chip, area overheads can
be reduced without significant performance impact. Although this
appears only to move the reliability problem elsewhere, there are
several benefits;

! Write accesses to the off-chip storage are infrequent (for exam-
ple, at manufacturing test, or if BIST is re-run when there is a sig-
nificant temperature change). Therefore the table could be
stored in FLASHmemory, for example. Off-chip DRAM is another
possibility and in both cases there will be a reduction in total
area and energy consumption. Although off-chip bus traffic
when retrieving cached selector bits requires more energy than
an on-chip access, this is an infrequent event.

! Moving the storage off-chip decouples most of the guaranteed
correct storage from the CPUmanufacturing process. This allows
for a larger proportion of on-chip SRAM cells to be scaled down
with the process technology. A different technology can be used
off-chip.

We ran an initial study to see what performance and storage
impact selector bit caching would have. The design in Fig. 4 was
extended to have the working set of selector bit pages (stored in
a parallel structure to the TLB) on-chip. On a TLB miss, we assume
that the page table is accessed from main memory, so access
latency to a small off-chip DRAM holding pages of selector bits is
already accounted for. It is possible to use a small, standard cache

rather than page-based method of finding the working set. This re-
quires the use of tags, but makes more efficient use of storage
space.

Using the same M5 configuration as before, we recorded TLB
miss rates for varying numbers of TLB entries, then derived the
performance hit for off-chip selector bit loading. For more realism
and to support virtual memory, the simulator was run in full-sys-
tem mode and benchmarks were run to completion under Linux.
The results are given in Table 3. By keeping just the working set
of cache pages in on-chip SRAM we have reduced the on-die
storage overhead from 50% to less than 10%. Note that we used
one selector bit per logical bit (see Fig. 6c). We opted to use 24
TLB entries because the performance data indicated much smaller

0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

 100

% faulty blocks

pfault*100 (%)

Ways0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

100

% faulty blocks

pfault*100 (%)

Ways

0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

100

% faulty blocks

pfault*100 (%)

Ways 0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

 100

% faulty blocks

pfault*100 (%)

Ways

(a) Pairs must be physically adjacent in a set (b) Paired blocks located anywhere in the cache

(c) Pairs must be in same set, 1 logical bit per selector bit (d) Pairs must be in same set, 2 logical bits per selector bit

Fig. 6. Percentage of faulty blocks using block pairing (G = 2) for different group restrictions. Block size = 32 bytes.

Table 3
Selector bit caching parameters and results

Parameters Value

Cache size 1024 kB
Linux page size 8 kB
Logical bits per selector bit 1
Selector page size 4 kB
Full grouping table size/OBI table size 4 kB/2 kB
Set-restricted grouping table size 3 kB
On-chip SRAM selector bit storage 96 kB
Off-chip DRAM selector bit storage 512 kB
ITLB/DTLB entries 8/16
Selector bit table DRAM throughput 32 bytes/cycle
Total storage overhead of full group table 12.3%
Total storage overhead of set-limited group table 9.9%
Total storage overhead of tag-based grouping table 9.6%

250 D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253

(b) Paired blocks located anywhere in the cache

4.2.2. Selector bit caching for block grouping
Compared with the other schemes, block grouping has strong

fault tolerance characteristics but a potentially large storage over-
head. By caching the working set of selector bits in on-chip SRAM
and keeping less frequently used bits off-chip, area overheads can
be reduced without significant performance impact. Although this
appears only to move the reliability problem elsewhere, there are
several benefits;

! Write accesses to the off-chip storage are infrequent (for exam-
ple, at manufacturing test, or if BIST is re-run when there is a sig-
nificant temperature change). Therefore the table could be
stored in FLASHmemory, for example. Off-chip DRAM is another
possibility and in both cases there will be a reduction in total
area and energy consumption. Although off-chip bus traffic
when retrieving cached selector bits requires more energy than
an on-chip access, this is an infrequent event.

! Moving the storage off-chip decouples most of the guaranteed
correct storage from the CPUmanufacturing process. This allows
for a larger proportion of on-chip SRAM cells to be scaled down
with the process technology. A different technology can be used
off-chip.

We ran an initial study to see what performance and storage
impact selector bit caching would have. The design in Fig. 4 was
extended to have the working set of selector bit pages (stored in
a parallel structure to the TLB) on-chip. On a TLB miss, we assume
that the page table is accessed from main memory, so access
latency to a small off-chip DRAM holding pages of selector bits is
already accounted for. It is possible to use a small, standard cache

rather than page-based method of finding the working set. This re-
quires the use of tags, but makes more efficient use of storage
space.

Using the same M5 configuration as before, we recorded TLB
miss rates for varying numbers of TLB entries, then derived the
performance hit for off-chip selector bit loading. For more realism
and to support virtual memory, the simulator was run in full-sys-
tem mode and benchmarks were run to completion under Linux.
The results are given in Table 3. By keeping just the working set
of cache pages in on-chip SRAM we have reduced the on-die
storage overhead from 50% to less than 10%. Note that we used
one selector bit per logical bit (see Fig. 6c). We opted to use 24
TLB entries because the performance data indicated much smaller

0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

 100

% faulty blocks

pfault*100 (%)

Ways0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

100

% faulty blocks

pfault*100 (%)

Ways

0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

100

% faulty blocks

pfault*100 (%)

Ways 0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

 100

% faulty blocks

pfault*100 (%)

Ways

(a) Pairs must be physically adjacent in a set (b) Paired blocks located anywhere in the cache

(c) Pairs must be in same set, 1 logical bit per selector bit (d) Pairs must be in same set, 2 logical bits per selector bit

Fig. 6. Percentage of faulty blocks using block pairing (G = 2) for different group restrictions. Block size = 32 bytes.

Table 3
Selector bit caching parameters and results

Parameters Value

Cache size 1024 kB
Linux page size 8 kB
Logical bits per selector bit 1
Selector page size 4 kB
Full grouping table size/OBI table size 4 kB/2 kB
Set-restricted grouping table size 3 kB
On-chip SRAM selector bit storage 96 kB
Off-chip DRAM selector bit storage 512 kB
ITLB/DTLB entries 8/16
Selector bit table DRAM throughput 32 bytes/cycle
Total storage overhead of full group table 12.3%
Total storage overhead of set-limited group table 9.9%
Total storage overhead of tag-based grouping table 9.6%

250 D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253

(c) Pairs must be in same set, 1 logical bit per selector

bit

4.2.2. Selector bit caching for block grouping
Compared with the other schemes, block grouping has strong

fault tolerance characteristics but a potentially large storage over-
head. By caching the working set of selector bits in on-chip SRAM
and keeping less frequently used bits off-chip, area overheads can
be reduced without significant performance impact. Although this
appears only to move the reliability problem elsewhere, there are
several benefits;

! Write accesses to the off-chip storage are infrequent (for exam-
ple, at manufacturing test, or if BIST is re-run when there is a sig-
nificant temperature change). Therefore the table could be
stored in FLASHmemory, for example. Off-chip DRAM is another
possibility and in both cases there will be a reduction in total
area and energy consumption. Although off-chip bus traffic
when retrieving cached selector bits requires more energy than
an on-chip access, this is an infrequent event.

! Moving the storage off-chip decouples most of the guaranteed
correct storage from the CPUmanufacturing process. This allows
for a larger proportion of on-chip SRAM cells to be scaled down
with the process technology. A different technology can be used
off-chip.

We ran an initial study to see what performance and storage
impact selector bit caching would have. The design in Fig. 4 was
extended to have the working set of selector bit pages (stored in
a parallel structure to the TLB) on-chip. On a TLB miss, we assume
that the page table is accessed from main memory, so access
latency to a small off-chip DRAM holding pages of selector bits is
already accounted for. It is possible to use a small, standard cache

rather than page-based method of finding the working set. This re-
quires the use of tags, but makes more efficient use of storage
space.

Using the same M5 configuration as before, we recorded TLB
miss rates for varying numbers of TLB entries, then derived the
performance hit for off-chip selector bit loading. For more realism
and to support virtual memory, the simulator was run in full-sys-
tem mode and benchmarks were run to completion under Linux.
The results are given in Table 3. By keeping just the working set
of cache pages in on-chip SRAM we have reduced the on-die
storage overhead from 50% to less than 10%. Note that we used
one selector bit per logical bit (see Fig. 6c). We opted to use 24
TLB entries because the performance data indicated much smaller

0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

 100

% faulty blocks

pfault*100 (%)

Ways0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

100

% faulty blocks

pfault*100 (%)

Ways

0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

100

% faulty blocks

pfault*100 (%)

Ways 0
2

4
6

8
 10

 60 52 44 36 28 20 12 4

0

 20

 40

 60

 80

 100

% faulty blocks

pfault*100 (%)

Ways

(a) Pairs must be physically adjacent in a set (b) Paired blocks located anywhere in the cache

(c) Pairs must be in same set, 1 logical bit per selector bit (d) Pairs must be in same set, 2 logical bits per selector bit

Fig. 6. Percentage of faulty blocks using block pairing (G = 2) for different group restrictions. Block size = 32 bytes.

Table 3
Selector bit caching parameters and results

Parameters Value

Cache size 1024 kB
Linux page size 8 kB
Logical bits per selector bit 1
Selector page size 4 kB
Full grouping table size/OBI table size 4 kB/2 kB
Set-restricted grouping table size 3 kB
On-chip SRAM selector bit storage 96 kB
Off-chip DRAM selector bit storage 512 kB
ITLB/DTLB entries 8/16
Selector bit table DRAM throughput 32 bytes/cycle
Total storage overhead of full group table 12.3%
Total storage overhead of set-limited group table 9.9%
Total storage overhead of tag-based grouping table 9.6%

250 D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253

(d) Pairs must be in same set, 2 logical bits per selector

bit

Figure 5.6: Percentage of faulty blocks using block pairing (G = 2) for different group restrictions.

Block size = 32 bytes.

it gives a near-optimal number of pairings, dropping off shortly before the optimal

algorithm as failed bit count increases. Adjacent pairing is least effective and is not

improved with associativity (Figure 5.6(a)). It is clear that arbitrary pairing (Figure

5.6(b)) is most effective at high error rates, although the per-set limitation (Figure

5.6(c)) can be almost as effective. Increased associativity helps in this case by pro-

viding more pairing alternatives and can be seen in processors such as Niagara, with

a 12-way L2 cache [132]. The final plot (Figure 5.6(d)) represents blocks restricted

to a set, and one selector bit is used for every two bits in the block. Fault tolerance

is obviously reduced but there are now half as many selector bits. The number of

selector bits (used to choose one good bit from a group of G bits at each bit index)

130

is the logarithm of the number of bits in the group. There are B selectors per cache

block, and (MN)/ G logical blocks after grouping.

(5.14) selector bits =
M.N

G
.(log2(G).B)

where G is the number of blocks in each group.

(5.15)

GC bits = M.N + group table size+ selector bits(guaranteed correct storage)

Fault model

The parameter G can be varied, but all analysis in this work uses block pairs (G

= 2).

(5.16) pgood = p2
nfb +

(
2

1

)
.pnfb.(1− pnfb)

(5.17) fraction repairedGRP2 =
1

2
.((1− p2

fault)
B − pgood)

(5.18) Favail = pnfb + (1− pnfb).fraction repairedGRP2

Each logical bit is formed from two bits. A set of two faulty physical blocks are

compatible and can be recovered into a single logical block when;

• At most one of the grouped bits at each index are faulty, and

• This is true at every bit index in the block of B bits.

Note that we make an adjustment pgood to remove the impossible cases where any

block contains no faults, as per TMR.

131

Selector bit caching for block grouping

Compared with the other schemes, block grouping has strong fault tolerance char-

acteristics but a potentially large storage overhead. By caching the working set of

selector bits in on-chip SRAM and keeping less frequently used bits off-chip, area

overheads can be reduced without significant performance impact. Although this

appears only to move the reliability problem elsewhere, there are several benefits;

• Write accesses to the off-chip storage are infrequent (for example, at manufac-

turing test, or if BIST is re-run when there is a significant temperature change).

Therefore the table could be stored in FLASH memory, for example. Off-chip

DRAM is another possibility and in both cases there will be a reduction in

total area and energy consumption. Although off-chip bus traffic when retriev-

ing cached selector bits requires more energy than an on-chip access, this is an

infrequent event.

• Moving the storage off-chip decouples most of the guaranteed correct storage

from the CPU manufacturing process. This allows for a larger proportion of

on-chip SRAM cells to be scaled down with the process technology. A different

technology can be used off-chip.

We ran an initial study to see what performance and storage impact selector bit

caching would have. The design in Figure 5.4 was extended to have the working set

of selector bit pages (stored in a parallel structure to the TLB) on-chip. On a TLB

miss, we assume that the page table is accessed from main memory, so access latency

to a small off-chip DRAM holding pages of selector bits is already accounted for. It

is possible to use a small, standard cache rather than page-based method of finding

the working set. This requires the use of tags, but makes more efficient use of storage

space. Using the same M5 configuration as before, we recorded TLB miss rates for

132

Parameter Value

Cache size 1024 kB

Linux page size 8 kB

Logical bits per selector bit 1

Selector page size 4 kB

Full grouping table size/OBI table size 4 kB/2 kB

Set-restricted grouping table size 3 kB

On-chip SRAM selector bit storage 96 kB

Off-chip DRAM selector bit storage 512 kB

ITLB/DTLB entries 8/16

Selector bit table DRAM throughput 32 bytes/cycle

Total storage overhead of full group table 12.3%

Total storage overhead of set-limited group table 9.9%

Total storage overhead of tag-based grouping table 9.6%

Table 5.3: Selector bit caching parameters and results

varying numbers of TLB entries, then derived the performance hit for off-chip selector

bit loading. For more realism and to support virtual memory, the simulator was run

in full-system mode and benchmarks were run to completion under Linux. The

results are given in Table 5.3. By keeping just the working set of cache pages in on-

chip SRAM we have reduced the on-die storage overhead from 50% to less than 10%.

Note that we used one selector bit per logical bit (see Figure 5.6(c)). We opted to

use 24 TLB entries because the performance data indicated much smaller slowdowns

of 2% and 8% respectively for the Cholesky and Ocean-NonContig benchmarks. Due

to the larger working set of Ocean-NonContig, increasing the number of data TLB

entries does not significantly reduce miss rate.

133

5.5 Results

5.5.1 Performance and area under voltage scaling

We performed performance and power simulations using cell type C (1.5x the

area of the smallest cell we considered) and a rotating voltage schedule for the CPU.

Every 20 ms (4.107 cycles @ 2 GHz), the voltage was changed to the next level in

a in sequence from 0.7, 0.8, 0.9, 1.0 and 1.1V. In reality, voltage changes will be

less frequent in a DVS system. Because a large number of identical voltage changes

occurred over the duration of each benchmark, a first-order approximation of en-

ergy con- sumption can be obtained by comparing overall execution times (assuming

equivalent average power in each benchmark). It is envisioned that each performance

change will require the following additional steps;

• Invalidate dirty blocks and write back to the next level of the memory hierarchy

(or high-speed local storage), if they are known to contain un-correctable faults.

• Enable the appropriate bad block map for the new performance level.

• Reinstate saved blocks, or allow to be fetched when next accessed, as usual.

(a) L2 miss rate

slowdowns of 2% and 8% respectively for the Cholesky and Ocean-
NonContig benchmarks. Due to the larger working set of Ocean-
NonContig, increasing the number of data TLB entries does not
significantly reduce miss rate.

5. Results

5.1. Performance and area under voltage scaling

We performed performance and power simulations using cell
type C (1.5! the area of the smallest cell we considered in Fig. 2)
and a rotating voltage schedule for the CPU. Every 20 ms (4 ! 107

cycles @ 2 GHz), the voltage was changed to the next level in a in
sequence from 0.7, 0.8, 0.9, 1.0 and 1.1 V. In reality, voltage
changes will be less frequent in a DVS system. Because a large
number of identical voltage changes occurred over the duration
of each benchmark, a first-order approximation of energy con-
sumption can be obtained by comparing overall execution times
(assuming equivalent average power in each benchmark).

It is envisioned that each performance change will require the
following additional steps;

" Invalidate dirty blocks and write back to the next level of the
memory hierarchy (or high-speed local storage), if they are
known to contain un-correctable faults.

" Enable the appropriate bad block map for the new performance
level.

" Reinstate saved blocks, or allow to be fetched when next
accessed, as usual.

Fig. 7a compares the L2 miss rate for each benchmark with the
same voltage schedule using different fault-tolerance schemes.
PAIR ADJ and PAIR ARB refer to 2-block grouping schemes where
ADJ means only physically adjacent bad blocks are paired, and
ARB means that blocks are paired arbitrarily throughout the cache
using the same greedy algorithm used for Fig. 6. 5MOD and 7MOD
implement 5- and 7-modular redundancy for each cell (represent-
ing 5 MB and 7 MB of physical storage), and NO FAULT refers to an
ordinary error-free cache.

It is clear that execution time (and IPC) are relatively insensitive
to L2 miss rates (see Fig. 7b). Note that arbitrary pairing generally
performs better than 5-modular redundancy in most cases, with-

out the large, fixed area overhead. Relative to OBI, PAIR ARB
achieves an average 48% reduction in L2 miss rate and 13% reduc-
tion in execution time.

5.2. Performance under cell scaling

The Earea metric is shown in Fig. 8a. The most area efficient
scheme is to use an OBI with TMR, as long as a cell is not scaled be-
low size 1.4. This can be seen in the figure as the point of greatest
Earea value. In fact, there is only a marginal improvement over using
an OBI alone. Therefore, the area overhead of stronger error correc-
tion offsets the benefit of cell shrinking. The off-chip caching and
arbitrary pairing variant was used for the grouping (GRP2) scheme.
Therefore it initially has the worst Earea value due to the on-chip
selector and grouping tables, but outperforms the others at smaller
cell sizes due to superior fault-tolerance.

In Fig. 9 we examine Earea and as voltage is varied. This shows
the same trends as Fig. 8. This means that cache performance will
drop significantly depending on the fault-tolerance scheme and
how far voltage is scaled in low-power (or low activity) modes.
CPUs using DVS should dynamically select a fault-tolerance
scheme with the highest Favail at the operating voltage. For exam-
ple, Fig. 9b indicates that DEC should be used down to 0.86 V
and GRP2 below that.

5.3. Energy saving using block grouping at low V

An example of the energy benefits of block grouping is as fol-
lows. In an ultra-low voltage mode of 0.76 V (Fig. 9b) conventional
SEC code has an Favail of around 0.02 while GRP2 is approximately
0.45. This means that GRP2 provides much more L2 cache at that
voltage, reducing miss rate and improving IPC. Considering the
Barnes benchmark in Fig. 3b, IPC for 86% disabled blocks is at most
1.14 while for grouping the IPC is 1.76 (55% disabled blocks). This
means that execution using grouping completes at least (1 # 1.14/
1.76) = 35% sooner.

Energy savings are offset by the overhead of the selector bits
and grouping table. If these are on-chip with one selector bit per
data bit position, they will consume approximately 512 kB (or
half the cache size). Despite this overhead, there will be a net en-
ergy saving. Using the power consumption of a 512 kB, 130 nm
cache to represent the overhead of grouping [18], and that of a

0.0

0.5

1.0

1.5

2.0

A B C D E F

Benchmark

No
rm

al
iz

ed
 IP

C

OBI SEC DEC PAIR ADJ PAIR ARB 5MOD 7MOD NO FAULT

0.0

0.2

0.4

0.6

0.8

1.0

A B C D E F

Benchmark

L2
 m

is
s

ra
te

 (%
)

OBI SEC DEC PAIR ADJ PAIR ARB 5MOD 7MOD NO FAULT

CPIdezilamroN)b(etarssim2L)a(

Fig. 7. L2 miss rate in (a) and normalized IPC in (b) for each technique. A-Cholesky, B-FFT, C-LUContig, D-Radix, E-OceanContig, and F-OceanNoncontig, respectively.

D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253 251

(b) Normalized IPC

Figure 5.7: L2 miss rate in (a) and normalized IPC in (b) for each technique. A-Cholesky, B-FFT,

C-LUContig, D-Radix, E-OceanContig, and F-OceanNoncontig, respectively.

134

Figure 5.7 compares the L2 miss rate for each benchmark with the same voltage

schedule using different fault-tolerance schemes. PAIR ADJ and PAIR ARB refer

to 2-block grouping schemes where ADJ means only physically adjacent bad blocks

are paired, and ARB means that blocks are paired arbitrarily throughout the cache

using the same greedy algorithm used for Figure 5.6. 5MOD and 7MOD implement

5- and 7-modular redundancy for each cell (representing 5 MB and 7 MB of physical

storage), and NO FAULT refers to an ordinary error-free cache. It is clear that exe-

cution time (and IPC) are relatively insensitive to L2 miss rates (see Figure 5.7(b)).

Note that arbitrary pairing generally performs better than 5-modular redundancy in

most cases, with-out the large, fixed area overhead. Relative to OBI, PAIR ARB

achieves an average 48% reduction in L2 miss rate and 13% reduction in execution

time.

Pentium M running at around the same frequency [19] we esti-
mate power consumption for the SEC and grouping schemes (Ta-
ble 4). We use the thermal design power of the processor which
implies the CPU is 100% utilised by the workload. In addition, we
assume that the processor uses SEC fault-tolerance. Even though
we theoretically scale voltage down to 0.76 V, both the processor
and selector table have their voltages scaled by the same factor,
so the power consumption ratio between the two is approxi-
mately the same.

6. Conclusions

The analysis in the first part of this paper compared several
ways of maximizing the number of usable cache lines in the pres-
ence of faults. These faults can be a combination of permanent
manufacturing faults as well as ineffective operation at low volt-
ages. Increasing the size of an SRAM cell increases this reliability
at the cost of extra area.

Next, we proposed a novel fault-tolerance scheme that takes
advantage of a region of larger or higher voltage SRAM cells to at-
tain high reliability. The scheme works by grouping two or more
cache lines divided into smaller regions. Selector bits in the high
reliability memory cells are used to specify where the faulty bits
are in the grouped blocks.

It was determined that the previously published OBI-based fault
tolerance is the most area efficient scheme for fault-tolerance at a
single voltage. However, as voltage is scaled down, maximum per-
formance and energy savings are obtained by switching from DEC
to our GRP2 scheme.

Instead of taking advantage of future scaling to reduce SRAM
cell size, scaling should not go beyond a certain point. This is be-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Relativecell size

F a
va

il

OBI GRP2 SEC Log(B) TMR DEC

(a) Earea (b) Favail

0

1

2

3

4

5

6

7

8

9

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Relative cell size

E a
re

a
(×

10
-8

)

OBI GRP2 SEC Log(B) TMR DEC

Fig. 8. Earea in (a) and Favail in (b) with device scaling at 1.1 V (64-byte block size). Cell size is relative to the smallest considered size from Fig. 2.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.6 0.7 0.8 0.9 1.0 1.1
Voltage

F a
va

il

OBI GRP2 SEC Log(B) TMR DEC

(b) Favail(a) Earea

0

1

2

3

4

5

6

7

8

9

0.6 0.7 0.8 0.9 1.0 1.1
Voltage

E a
re

a
(×

10
-8

)

OBI GRP2 SEC Log(B) TMR DEC

Fig. 9. Earea in (a) and Favail in (b) with voltage scaling (64-byte block size, cell size C from Fig. 2).

Table 4
Block grouping energy saving example

Parameters Value

Pentium M thermal design power 24.5 W
Selector table overhead power 2.6 W
Speedup of grouping relative to SEC 35%
Power with SEC 24.5 W
Power with grouping table 24.5 + 2.6 = 27.1 W
Average power with grouping 27.1!(1 " 0.35) = 17.6 W
Energy savings with grouping 28%

252 D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253

(a) Earea with cell scaling at 1.1V (64 byte block) (b) Favail with cell scaling at 1.1V (64 byte block)

Figure 5.8: Comparison of schemes when scaling cell size. Cell size is relative to the smallest

considered size from Figure 5.2

5.5.2 Performance under cell scaling

The Earea metric is shown in Figure 5.8(a). The most area efficient scheme is

to use an OBI with TMR, as long as a cell is not scaled below size 1.4. This can

135

Pentium M running at around the same frequency [19] we esti-
mate power consumption for the SEC and grouping schemes (Ta-
ble 4). We use the thermal design power of the processor which
implies the CPU is 100% utilised by the workload. In addition, we
assume that the processor uses SEC fault-tolerance. Even though
we theoretically scale voltage down to 0.76 V, both the processor
and selector table have their voltages scaled by the same factor,
so the power consumption ratio between the two is approxi-
mately the same.

6. Conclusions

The analysis in the first part of this paper compared several
ways of maximizing the number of usable cache lines in the pres-
ence of faults. These faults can be a combination of permanent
manufacturing faults as well as ineffective operation at low volt-
ages. Increasing the size of an SRAM cell increases this reliability
at the cost of extra area.

Next, we proposed a novel fault-tolerance scheme that takes
advantage of a region of larger or higher voltage SRAM cells to at-
tain high reliability. The scheme works by grouping two or more
cache lines divided into smaller regions. Selector bits in the high
reliability memory cells are used to specify where the faulty bits
are in the grouped blocks.

It was determined that the previously published OBI-based fault
tolerance is the most area efficient scheme for fault-tolerance at a
single voltage. However, as voltage is scaled down, maximum per-
formance and energy savings are obtained by switching from DEC
to our GRP2 scheme.

Instead of taking advantage of future scaling to reduce SRAM
cell size, scaling should not go beyond a certain point. This is be-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Relativecell size

F a
va

il

OBI GRP2 SEC Log(B) TMR DEC

(a) Earea (b) Favail

0

1

2

3

4

5

6

7

8

9

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Relative cell size

E a
re

a
(×

10
-8

)

OBI GRP2 SEC Log(B) TMR DEC

Fig. 8. Earea in (a) and Favail in (b) with device scaling at 1.1 V (64-byte block size). Cell size is relative to the smallest considered size from Fig. 2.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.6 0.7 0.8 0.9 1.0 1.1
Voltage

F a
va

il

OBI GRP2 SEC Log(B) TMR DEC

(b) Favail(a) Earea

0

1

2

3

4

5

6

7

8

9

0.6 0.7 0.8 0.9 1.0 1.1
Voltage

E a
re

a
(×

10
-8

)

OBI GRP2 SEC Log(B) TMR DEC

Fig. 9. Earea in (a) and Favail in (b) with voltage scaling (64-byte block size, cell size C from Fig. 2).

Table 4
Block grouping energy saving example

Parameters Value

Pentium M thermal design power 24.5 W
Selector table overhead power 2.6 W
Speedup of grouping relative to SEC 35%
Power with SEC 24.5 W
Power with grouping table 24.5 + 2.6 = 27.1 W
Average power with grouping 27.1!(1 " 0.35) = 17.6 W
Energy savings with grouping 28%

252 D. Roberts et al. /Microprocessors and Microsystems 32 (2008) 244–253

(a) Earea with voltage scaling (64 byte block, cell size

C).

(b) Favail with voltage scaling (64 byte block, cell size

C).

Figure 5.9: Comparison of schemes when scaling voltage

be seen in the figure as the point of greatest Earea value. In fact, there is only a

marginal improvement over using an OBI alone. Therefore, the area overhead of

stronger error correction offsets the benefit of cell shrinking. The off-chip caching

and arbitrary pairing variant was used for the grouping (GRP2) scheme. Therefore

it initially has the worst Earea value due to the on-chip selector and grouping tables,

but outperforms the others at smaller cell sizes due to superior fault-tolerance. In

Figure 5.5.1 we examine Earea and Favail as voltage is varied. This shows the same

trends as Figure 5.5.1. This means that cache performance will drop significantly

depending on the fault-tolerance scheme and how far voltage is scaled in low-power

(or low activity) modes. CPUs using DVS should dynamically select a fault-tolerance

scheme with the highest Favail at the operating voltage. For example, Figure 5.9(b)

indicates that DEC should be used down to 0.86 V and GRP2 below that.

5.5.3 Energy saving using block grouping at low voltage

An example of the energy benefits of block grouping is as follows. In an ultra-low

voltage mode of 0.76 V (Figure 5.9(b)) conventional SEC code has an Favail of around

0.02 while GRP2 is approximately 0.45. This means that GRP2 provides much more

136

Parameter Value

Pentium M thermal design power 24.5 W

Selector table overhead power 2.6 W

Speedup of grouping relative to SEC 35%

Power with SEC 24.5 W

Power with grouping table 24.5 + 2.6 = 27.1 W

Average power with grouping 27.1 ∗ (1− 0.35) = 17.6W

Energy savings with grouping 28%

Table 5.4: Block grouping energy saving example

L2 cache at that voltage, reducing miss rate and improving IPC. Considering the

Barnes benchmark in Figure 5.3(b), IPC for 86% disabled blocks is at most 1.14

while for grouping the IPC is 1.76 (55% disabled blocks). This means that execution

using grouping completes at least (1 − 1.14/1.76) = 35% sooner. Energy savings

are offset by the overhead of the selector bits and grouping table. If these are on-

chip with one selector bit per data bit position, they will consume approximately

512 kB (or half the cache size). Despite this overhead, there will be a net energy

saving. Using the power consumption of a 512 kB, 130 nm cache to represent the

overhead of grouping [133], and that of a Pentium M running at around the same

frequency [134] we estimate power consumption for the SEC and grouping schemes

(Table 5.4). We use the thermal design power of the processor which implies the

CPU is 100% utilised by the workload. In addition, we assume that the processor

uses SEC fault-tolerance. Even though we theoretically scale voltage down to 0.76 V,

both the processor and selector table have their voltages scaled by the same factor,

so the power consumption ratio between the two is approximately the same.

137

5.6 Conclusions

The analysis in the first part of this paper compared several ways of maximizing

the number of usable cache lines in the presence of faults. These faults can be a

combination of permanent manufacturing faults as well as ineffective operation at low

voltages. Increasing the size of an SRAM cell increases this reliability at the cost of

extra area. Next, we proposed a novel fault-tolerance scheme that takes advantage of

a region of larger or higher voltage SRAM cells to attain high reliability. The scheme

works by grouping two or more cache lines divided into smaller regions. Selector

bits in the high reliability memory cells are used to specify where the faulty bits are

in the grouped blocks. It was determined that the previously published OBI-based

fault tolerance is the most area efficient scheme for fault-tolerance at a single voltage.

However, as voltage is scaled down, maximum performance and energy savings are

obtained by switching from DEC to our GRP2 scheme. Instead of taking advantage

of future scaling to reduce SRAM cell size, scaling should not go beyond a certain

point. This is because the area overhead of trying to protect the smaller, but much

less reliable cells is greater than that of not scaling the cells at all. However, error

correction still has a place in cache design for low voltage performance and soft error

tolerance. The strength of this error correction will be a function of expected soft

error rates and how aggressively DVS is applied.

CHAPTER VI

Conclusions and Future Work

Data-center energy optimization clearly requires innovation at all levels of the

component hierarchy from the network down to the individual processor sockets.

Further, when taking advantage of emerging technologies to attain the most bene-

fits, the new and inherent drawbacks of those devices must be dealt with efficiently.

Specifically, emerging memories that suffer from wear-out require mechanisms for

lifetime extension, and process technology scaling in nanometre regimes, while en-

abling low-power processors, require mechanisms for hiding process variation-induced

faults. This thesis has demonstrated solutions across this design space, successfully

leveraging emerging non-volatile memories through system-level optimization, and

extending wear-leveling to the data center to improve lifetimes. With 2x to 10x im-

proved data center energy efficiency, 3.9x improvement in TTFF for an SSD-based

data center and more than 30% energy savings obtained for the CPU via cache fault-

tolerance, the ensemble-level energy efficiency has been significantly improved. It is

difficult to estimate the overall energy savings of cache fault tolerance applied to

the Nanostores study. Because our models were tailored to 22nm technology in the

2015 timeframe, and the cache studies were evaluated at 45nm, the voltage-scaling

limits of the two technologies differ significantly. However, we have estimated the

138

139

impact of cache fault-tolerance as applied to contemporary servers. From recent

data [110], over 30% of server power is allocated to the CPU, which is the dominant

power consumer. The majority of remaining power is attributed to main memory,

power supply efficiency loss and PCI slots. A contemporary implementation of block

grouping caches [10] states an approximate 50% decrease in energy per instruction

(EPI) when operating with the L1 cache using block pairing and the L2 cache with

another scheme called bit-fix. Since both schemes provide approximately the same

performance (IPC) and voltage reduction (down to 500mV), a conservative estimate

for server power reduction is 30% ∗ 0.5 = 15%, not including the extra savings in the

reduced cooling infrastructure.

Despite addressing some of the biggest limitations and sources of inefficiency in

the data center, there is scope for improvement of our designs as well as other sys-

tem components which can be enhanced or re-designed. For Nanostores, the software

infrastructure needs special consideration. The relatively small capacity of each net-

worked node requires an efficient task distribution and load balancing mechanism to

handle over an order of magnitude scale-out factor. Infrastructures such as MapRe-

duce currently address this need, but they are geared towards hard disks where

sequential accesses are preferred. Taking advantage of the extreme random-access

performance of individual nodes remains a compelling research direction. Combining

multiple types of NV memory (e.g. STT-RAM or multi-level cells) may yield differ-

ent optimal design points. Network topologies other than fat-tree could be applied to

the system, as well as non-uniform systems with high performance board-level net-

working and alternative off-board interconnects, including optical networks. Another

direction is investigating how applications, file systems and operating systems should

be written for a single-level memory/data store. For example, many file copy oper-

ations can be eliminated. An NV memory-based file system could assign filenames

140

or handles to output data in memory regions after an algorithm has finished, avoid-

ing a redundant copy operation to a “permanent” file. We modified our benchmark

execution plans with this in mind when executing on the Nanostore vs a disk-based

system.

Regarding wear-out mitigation, there have been many proposed policies for block

(Flash) and byte-addressable (e.g. PCM) memories, but most have not been con-

sidered at the data-center (distributed) level. We suggested that existing networked

and virtualized file systems could be used to handle our proposed data distribution

scheme. However, there are potential performance gains to be had from designing a

dedicated NV-storage oriented network filesystem. Although we took the first steps

towards ensemble-level wear-leveling, existing and novel wear-leveling mechanisms

should be re-examined in the distributed context. Hybrid Flash+hard disk drives as

well as PCM+Flash drives have been proposed in prior work, and may need special

consideration the the context of our proposed schemes.

On the theme of fault-tolerance, there has been recent interest in the use of large,

dense embedded DRAM caches to augment lower-capacity SRAM caches. One pro-

posed fault-tolerance technique was used to reduce the frequency of refreshing the

storage cells, rather than for SRAM cache voltage scaling [68]. Meanwhile, near-

optimal error-correction schemes for PCM [103] serve to extend the lifetime of resis-

tive memories as far as possible. Designing memory systems to fit lifetime, power and

performance targets and integrating them into our optimization framework, given

technology-specific fault tolerance, opens up new dimensions for system co-design.

APPENDICES

141

142

APPENDIX A

Implications of Global Wear-Leveling on Local (Start-Gap)

Wear-Leveling

As an experiment, we examined how a possible PCRAM based SSD using dis-

tributed wear leveling (Section 4.3) before local Start-Gap wear leveling [51] would

perform. In doing so, we highlight the potential for improved endurance. It should

be noted that the principle of flattening the write count distribution (used in dis-

tributed wear-leveling) can also be applied to other levels of the hierarchy e.g. main

memory or caches. Start-Gap wear-leveling is a simple scheme devised for PCRAM

where a gap or empty block is moved one place to the right every N writes, by copy-

ing the block to the right of the gap one place to the left. To break up incoming

block references that may be sequential and improve endurance, the incoming log-

ical addresses are re-mapped randomly using a Feistel network. Figure 7.1 shows

the normalized endurance of each SSD under Start-Gap wear leveling using a 64KB

block granularity and gap movements every 50 writes, where block endurance is

108 writes. Normalized endurance represents the fraction of actual writes achievable

before the first block fails, relative to perfect wear-leveling. Although real implemen-

tations would probably use smaller blocks, this is sufficient to illustrate the benefit of

data re-organization to improve local wear-leveling. This large granularity introduces

wear imbalance inside the blocks, in the case where only a few addressable LBAs are

143

written to. Other proposed schemes such as line-level writes and fine-grained wear-

leveling [33] could be used to address this. As for Flash, we assume that the access

pattern form the 7-day traces remains the same and can be repeated until the SSDs

fail. The bars for before leveling represent Normalized Endurance for the baseline.

For distributed wear leveling, the incoming local requests are first randomized using

Feistel re-mapping. The logical addresses remapped blocks from other volumes are

randomly picked from the unoccupied block locations (the file system would have

made these address allocations earlier, under direction of the Management Node).

Overall, distributed wear leveling increases the average normalized endurance from

0.48 to 0.82, an improvement of 70%. Without distributed wear leveling, some SSDs

have a relatively small fraction of heavily accessed blocks. By the time a single gap

rotation has completed, those blocks have exceeded 108 writes and therefore the nor-

malized endurance is almost zero. A side-effect of the distributed wear leveling is

to spread the blocks more evenly across volumes, reducing the standard deviation

of block write counts on a drive by 38% on average. A lower standard deviation

indicates more effective wear leveling [51].

18

same amount of written data, this average represents the true average improvement across all drives.

However, because the efficiency of the most write-heavy volume after re-mapping is proj_2 and its write

efficiency decreases, the overall TTFF improvement decreases to 3.9x from 4.2x with Flash.

As an experiment, we also examined how a possible PCRAM based SSD using Start-Gap wear leveling

[21] would perform. Start-Gap wear leveling is a simple scheme devised for PCRAM where a ‘gap’ or

empty block is moved one place to the right every N writes, by copying the block to the right of the gap

one place to the left. To break up incoming block references that may be sequential and improve

endurance, the incoming logical addresses are re-mapped randomly using a Feistel network.

Figure 11: Local SSD wear-leveling

(a) NAND Flash FTL Write Efficiency

(b) Start-Gap Normalized Endurance

Figure 11(b) shows the normalized endurance of each SSD under Start-Gap wear leveling using a 64KB

block granularity and gap movements every 50 writes, where block endurance is 108 writes. Normalized

endurance represents the fraction of actual writes achievable before the first block fails, relative to perfect

!

!"#

!"$

!"%

!"&

'

()
*!

()
*'

)
+,
*!

)
+,
*'

-.
/*

!
-.
/*

'
-.
01
*!

-.
01
*'

-.
01
*#

-.
01
*2

-.
01
*$

-.
34
*!

-.
34
*'

.,
.5
(*

!
.,
.5
(*

'
.,
.5
(*

#
,.
5'
*!

,.
5'
*'

,.
5'
*#

,.
5#
*!

,.
5#
*'

,.
5#
*#

,6
7*
!

,6
7*
'

6,
*!

8,
.*
!

8,
.*
'

8,
.*
#

9
+:

;*
!

9
+:

;*
'

9
+:

;*
#

9
+:

;*
2

9
:<

*!
9
:<

*'
9
:<

*#
9
:<

*2
)
:=
/

'>
?@

.A
6:
B=
)
-C
ADA
5=
6A
0/

BD
=5
60
.E

F0C8):

G:D0.:B+A,6.A<86:+BC:;:CA/7 HD6:.B+A,6.A<86:+BC:;:CA/7

!

!"#

!"$

!"%

!"&

'

()
*!

()
*'

)
+,
*!

)
+,
*'

-.
/*

!
-.
/*

'
-.
01
*!

-.
01
*'

-.
01
*#

-.
01
*2

-.
01
*$

-.
34
*!

-.
34
*'

.,
.5
(*

!
.,
.5
(*

'
.,
.5
(*

#
,.
5'
*!

,.
5'
*'

,.
5'
*#

,.
5#
*!

,.
5#
*'

,.
5#
*#

,6
7*
!

,6
7*
'

6,
*!

8,
.*
!

8,
.*
'

8,
.*
#

9
+:

;*
!

9
+:

;*
'

9
+:

;*
#

9
+:

;*
2

9
:<

*!
9
:<

*'
9
:<

*#
9
:<

*2
)
:=

/I
0.
)
=C
AJ
:+

BK
/+

8.
=/
5:

F0C8):

G:D0.:B+A,6.A<86:+BC:;:CA/7 HD6:.B+A,6.A<86:+BC:;:CA/7

Figure 7.1: Start-Gap Normalized Endurance

It is challenging to quickly evaluate normalized endurance under wear-leveling

144

due to the large number of writes required to an SSD to reach the point of wear-

out. Since writes are evenly distributed, every block needs to be written almost 108

times before the first block fails. Using brute-force trace replay until failure would

take months of simulation time. Therefore we applied the following algorithm to

quickly estimate the normalized endurance1. The algorithm description uses C-like

pseudo-code.

1. Let A be floating-point vectors with one element per block in the storage device,

where entries at a block index i are denoted by Ai.

2. Let nblocks be the number of blocks in the storage device.

3. Let nwrites be the total number of writes performed in the trace.

4. Let interval be the gap movement interval (number of writes to the device

before the gap is moved by one position).

5. Let endurance be the number of writes that one block can sustain before failure.

6. After applying an address randomization function (e.g. using a Feistel network

[51]), store the number of writes to each re-mapped block i of the trace in Ai.

7. Normalize the array A to represent the number of writes that would have oc-

curred to each block in a single gap rotation interval (including one write per

block for each gap movement).

∀i : Ai = 1.0 + Ai ∗
(
interval ∗ nblocks

nwrites

)
8. Define a function check() which returns false if no element exceeds endurance,

otherwise return true.

9. If check(A) == true, a block has failed before a single gap rotation has occurred.

1We acknowledge Moinuddin Qureshi for the idea of combining multiple gap rotations together

145

10. Let B = A

11. Let shifts = sqrt(endurance)

12. Define a function rotate(X, j) that returns vectorX rotated by j block positions.

13. Combine shifts number of gap rotations together in vector B. Having completed

this step, it is possible to advance wear-out in steps of shifts gap rotations by

combining shifted copies of vector B. After each rotation, check to see if any

block exceeds endurance. If so, this is the maximum number of sustainable gap

rotations.

f o r (j = 1 ; j <= s h i f t s ; j=j +1) {

B = B + r o t a t e (A, j) ;

i f (check (B) == true) maximum rotations = j −1;

}

14. Let C = B

15. As above, rotate and add the B vector to C until a block exceeds maximum

endurance. This results in an approximate endurance within an error margin of

sqrt(endurance) writes.

f o r (k = 1 ; k <= s h i f t s ; k=k+1) {

C = C + r o t a t e (B, k∗ s h i f t s) ;

i f (check (C) == true) maximum rotations = (k−1)∗ s h i f t s ;

}

16. If more accuracy is required, backtrack by one iteration (shifts number of

gap rotations) once endurance has been exceeded (by subtracting rotate(B, k ∗

shifts) from C). Then proceed to add vector A to C in single-shift steps until

a block fails, to determine maximum rotations to the nearest gap rotation.

146

17. Calculate normalized endurance;

normalized endurance =
maximum rotations ∗ interval

endurance

BIBLIOGRAPHY

147

148

BIBLIOGRAPHY

[1] J Scaramella. Enabling technologies for power and cooling. In http: // h71028. www7. hp.

com/ enterprise/ downloads/ thermal_ logic. pdf .

[2] David Roberts, Taeho Kgil, and Trevor Mudge. Integrating nand flash devices onto servers.
Commun. ACM, 52(4):98–103, 2009.

[3] Itrs roadmap. In http://www.itrs.net/, 2009.

[4] T. Kgil, D. Roberts, and T. Mudge. Improving NAND Flash based Disk Caches. In Proc.
Int’l Symp. on Computer Architecture (ISCA), 2008.

[5] Vladimir Stojanovic. Silicon photonics and memories. In Hot Chips, Optical Interconnect
tutorial, 2010.

[6] Ed Doller. Forging a future in memory - new technologies, new markets, new applications.
In Hot Chips tutorial, 2010.

[7] T. Kgil and T. Mudge. FlashCache: a NAND flash memory file cache for low power web
servers. In Proc. Int’l Conf. on Compilers, Architecture and Synthesis for Embedded Systems,
2006.

[8] David Roberts, Taeho Kgil, and Trevor N. Mudge. Using non-volatile memory to save energy
in servers. In DATE, pages 743–748, 2009.

[9] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on circuit-
level timing speculation. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, pages 7–18, Dec. 2003.

[10] Chris Wilkerson, Hongliang Gao, Alaa R. Alameldeen, Zeshan Chishti, Muhammad Khellah,
and Shih-Lien Lu. Trading off cache capacity for reliability to enable low voltage operation.
In ISCA ’08: Proceedings of the 35th International Symposium on Computer Architecture,
pages 203–214, 2008.

[11] David Roberts, Jichuan Chang, and Parthasarathy Ranganathan. Apparatus Having a
Flattened-Level Data Storage Hierarchy and methods for its use. In US Patent application
61/3111744.

[12] Mehul Shah, Parthasarathy Ranganathan, Jichuan Chang, Niraj Tolia, David Roberts, and
Trevor Mudge. Data dwarfs: Motivating a coverage set for future large data center workloads.
In Architectural Concerns in Large Datacenters (ACLD) Workshop, ISCA, 2010.

[13] David Roberts, Jichuan Chang, and Parthasarathy Ranganathan. Managing Wear on Inde-
pendent Storage Devices. In US Patent application 12/813772.

[14] David Roberts, Ganesh Dasika, and Trevor Mudge. Storage of data in Data Stores having
some faulty storage locations. In US Patent application 20080077824.

149

[15] David Roberts, Nam Sung Kim, and Trevor Mudge. On-chip cache device scaling limits and
effective fault repair techniques in future nanoscale technology. In DSD ’07: Proceedings of
the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools,
pages 570–578, 2007.

[16] David Roberts, Nam Sung Kim, and Trevor Mudge. On-chip cache device scaling limits
and effective fault repair techniques in future nanoscale technology. Microprocessors and
Microsystems, 2008.

[17] M.K. Patterson. The effect of data center temperature on energy efficiency. pages 1167 –1174,
may. 2008.

[18] Yahoo opens energy efficient ’chicken coop’ data center in n.y. In http: // www. pcmag. com/

article2/ 0,2817,2369466,00. asp .

[19] Google squared. In http://www.google.com/squared/.

[20] James Hamilton. Internet-scale service infrastructure efficiency. In Keynote, ISCA, 2009.

[21] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos Kozyrakis.
Joulesort: a balanced energy-efficiency benchmark. In SIGMOD ’07: Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pages 365–376, 2007.

[22] David Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and
Vijay Vasudevan. Fawn: A fast array of wimpy nodes. In Proc. SOSP, 2009.

[23] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: An improved architec-
ture for data-intensive applications. Micro, IEEE, 30(1):121 –130, jan.-feb. 2010.

[24] John Ousterhout et. al. The case for ramclouds: Scalable high-performance storage entirely
in dram.

[25] Richard Winter. Why are data warehouses growing so fast? In http://www.b-eye-
network.com/view/7188, 2008.

[26] Marissa Mayer. The physics of data. In Talk at Xerox PARC, August 2009.

[27] Peter Lyman and Hal R. Varian. How much information. In
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/, 2003.

[28] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
OSDI, 2004.

[29] Fusionio. In http://www.fusionio.com.

[30] MetaRAM. http://www.metaram.com.

[31] Adam Leventhal. Flash storage memory. Commun. ACM, 51(7):47–51, 2008.

[32] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable dram alternative. In ISCA ’09: Proceedings of the 36th annual inter-
national symposium on Computer architecture, pages 2–13, 2009.

[33] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high per-
formance main memory system using phase-change memory technology. In ISCA ’09: Pro-
ceedings of the 36th annual international symposium on Computer architecture, pages 24–33,
2009.

[34] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main
memory using phase change memory technology. In ISCA ’09: Proceedings of the 36th annual
international symposium on Computer architecture, pages 14–23, 2009.

150

[35] Dennis Abts, Michael Marty, Philip Wells, Peter Klausler, and Hong Liu. Energy proportional
datacenter networks. 2010.

[36] Xin Yuan. On nonblocking folded-clos networks in computer communication environments.
2010.

[37] Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang. A multiple lid routing scheme for fat-tree-
based infiniband networks. Parallel and Distributed Processing Symposium, International, 1,
2004.

[38] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N.P. Jouppi, M. Fiorentino, A. Davis,
N. Binkert, R.G. Beausoleil, and J.H. Ahn. Corona: System implications of emerging
nanophotonic technology. In Computer Architecture, 2008. ISCA ’08. 35th International
Symposium on, pages 153–164, June 2008.

[39] David Roberts, Jichuan Chang, and Parthasarathy Ranganathan. Optical Data Path Sys-
tems. In US Patent application 12/898798.

[40] T. Kgil et Al. PicoServer: Using 3D Stacking Technology To Enable A Compact Energy
Efficient Chip Multiprocessor. In ASPLOS, 2006.

[41] Marco Facchini, Trevor Carlson, Anselme Vignon, Martin Palkovic, Francky Catthoor, Wim
Dehaene, Luca Benini, and Paul Marchal. System-level power/performance evaluation of 3d
stacked drams for mobile applications. In DATE, pages 923–928.

[42] N. Madan, Li Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian, R. Iyer, S. Makineni,
and D. Newell. Optimizing communication and capacity in a 3d stacked reconfigurable cache
hierarchy. pages 262–274, March 2009.

[43] Dean Lewis and Hsien-Hsin Lee. Architectural evaluation of 3d stacked rram caches. IEEE
3D System Integration Conference, 2009.

[44] Wangyuan Zhang and Tao Li. Exploring phase change memory and 3d die-stacking for
power/thermal friendly, fast and durable memory architectures. Parallel Architectures and
Compilation Techniques, International Conference on, 0:101–112, 2009.

[45] Chung Lam. Cell design considerations for phase change memory as a universal memory. In
VLSI Technology, Systems and Applications, 2008. VLSI-TSA 2008. International Sympo-
sium on, pages 132 –133, april 2008.

[46] David Lammers. Resistive ram gains ground. Sept 2010.

[47] D.B. Stukov, G.S. Snider, D.R. Steward, and R.S. Williams. The missing memristor found.
In Nature, volume 453, pages 80–83, 2008.

[48] T. Raja and S. Mourad. Digital logic implementation in memristor-based crossbars. In
Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on,
pages 939–943, July 2009.

[49] Xiangyu Dong, Naveen Muralimanohar, Norm Jouppi, Richard Kaufmann, and Yuan Xie.
Leveraging 3d pcram technologies to reduce checkpoint overhead for future exascale systems.
In SC ’09: Proceedings of the Conference on High Performance Computing Networking, Stor-
age and Analysis, pages 1–12, 2009.

[50] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Improving flash wear-leveling by proac-
tively moving static data. IEEE Trans. Comput., 59(1):53–65, 2010.

[51] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srinivasan, Luis
Lastras, and Bulent Abali. Enhancing lifetime and security of pcm-based main memory
with start-gap wear leveling. In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 14–23, 2009.

151

[52] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and T. Mudge. A self-
tuning dvs processor using delay-error detection and correction. IEEE Journal of Solid-State
Circuits, 41:792–804, 2006.

[53] D. Roberts, T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Error analysis for the support
of robust voltage scaling. ISQED, 2005.

[54] D. Roberts, R. G. Dreslinski, E. Karl, T. Mudge, D. Sylvester, and D. Blaauw. When
homogeneous becomes heterogeneous. OSHMA Workshop, PACT, 2007.

[55] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the terasys massively parallel
pim array. Computer, 28(4):23–31, Apr 1995.

[56] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton,
Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A Case for Intelligent RAM:
IRAM. IEEE Micro, 17(2), Apr 1997.

[57] E. Riedel, C. Faloutsos, G.A. Gibson, and D. Nagle. Active disks for large-scale data pro-
cessing. In IEEE Computer, volume 34, pages 68 –74, jun 2001.

[58] Adrian Cockcroft. Millicomputing: The future in your pocket and your datacenter. In
USENIX Conference, invited talk, 2008.

[59] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant Patel, Trevor Mudge,
and Steven Reinhardt. Understanding and designing new server architectures for emerging
warehouse-computing environments. Computer Architecture, International Symposium on,
0:315–326, 2008.

[60] Vijay Reddi, Benjamin Lee, Trishul Chilimbi, and Kushagra Vaid. Web Search Using Small
Cores: Quantifying the Price of Efficiency. In Microsoft Tech Report MSR-TR-2009-105,
August 2009.

[61] Bo Zhai, Ronald G. Dreslinski, David Blaauw, Trevor Mudge, and Dennis Sylvester. En-
ergy efficient near-threshold chip multi-processing. In ISLPED ’07: Proceedings of the 2007
international symposium on Low power electronics and design, pages 32–37, 2007.

[62] Wenjing Ma and Gagan Agrawal. A translation system for enabling data mining applications
on gpus. In ICS ’09: Proceedings of the 23rd international conference on Supercomputing,
pages 400–409, 2009.

[63] Netezza. In http://www.netezza.com.

[64] Shinsuke Azuma, Takao Sakuma, Takashi Nakano, Takaaki Ando, and Kenji Shirai. High-
performance sort chip. 1999.

[65] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the memory wall in
monetdb. Commun. ACM, 51(12):77–85, 2008.

[66] Asit Mishra, Joseph Hellerstein, and Walfredo Cirne. Towards characterizing cloud backend
workloads: Insights from google compute clusters. 2009.

[67] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie. Hybrid
cache architecture with disparate memory technologies. In ISCA ’09: Proceedings of the 36th
annual international symposium on Computer architecture, pages 34–45, 2009.

[68] Chris Wilkerson, Alaa R. Alameldeen, Zeshan Chishti, Wei Wu, Dinesh Somasekhar, and
Shih-lien Lu. Reducing cache power with low-cost, multi-bit error-correcting codes. In ISCA
’10: Proceedings of the 37th annual international symposium on Computer architecture, pages
83–93, 2010.

152

[69] In ITRS Roadmap, 2007.

[70] G.C. Han, J.J. Qiu, L. Wang, W.K. Yeo, and C.C. Wang. Perspectives of read head technology
for 10 tb/in recording. volume 46, 2010.

[71] Personal discussions with memristor engineers. 2009.

[72] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. A novel architecture of
the 3d stacked mram l2 cache for cmps. pages 239 –249, feb. 2009.

[73] Xiaochen Guo, Engin Ipek, and Tolga Soyata. Resistive computation: avoiding the power
wall with low-leakage, stt-mram based computing. In ISCA ’10: Proceedings of the 37th
annual international symposium on Computer architecture, pages 371–382, 2010.

[74] Taeho Kgil and Trevor Mudge. Flashcache: a nand flash memory file cache for low power
web servers. International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, 2006.

[75] W. Robinett, G.S. Snider, P.J. Kuekes, and R. S. Williams. Computing with a trillion crummy
components. In Communications of the ACM, volume 50, pages 35–39, 2007.

[76] Sung Hyun Jo, Kuk-Hwan Kim, and Wei Lu. High-density crossbar arrays based on a si
memristive system. volume 9, pages 870–874, 2009.

[77] Dong Hyuk Woo, Nak Hee Seong, D.L. Lewis, and H.-H.S. Lee. An optimized 3d-stacked
memory architecture by exploiting excessive, high-density tsv bandwidth. pages 1 –12, jan.
2010.

[78] Simona Boboila and Peter Desnoyers. Write endurance in flash drives: Measurements and
analysis. In FAST’10, 2010.

[79] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina
Panigrahy. Design tradeoffs for ssd performance. In ATC’08: USENIX 2008 Annual Technical
Conference on Annual Technical Conference, pages 57–70, 2008.

[80] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and Antony Row-
stron. Migrating server storage to ssds: analysis of tradeoffs. In EuroSys ’09: Proceedings of
the 4th ACM European conference on Computer systems, pages 145–158, 2009.

[81] Timothy Pritchett and Mithuna Thottethodi. Sievestore: A highly-selective, ensemble-level
disk cache for cost-performance. In ISCA’10, to appear, 2010.

[82] Asim Kadav, Mahesh Balakrishnan, Vijayan Prabhakaran, and Dahlia Malkhi. Differential
raid: rethinking raid for ssd reliability. In HotStorage ’09, 2009.

[83] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber. Ex-
tending ssd lifetimes with disk-based write caches. FAST’10, 2010.

[84] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading: Practical
power management for enterprise storage. Trans. Storage, 4(3):1–23, 2008.

[85] Tao Xie. Sea: A striping-based energy-aware strategy for data placement in raid-structured
storage systems. IEEE Trans. Comput., 57(6):748–761, 2008.

[86] Tao Xie and Yao Sun. Dynamic data reallocation in hybrid disk arrays. IEEE Transactions
on Parallel and Distributed Systems, 99, 2009.

[87] A. Pour and M. Hill. Performance implications of tolerating cache faults. In IEEE Trans.
Comput. 42 (3) 257267, 1993.

153

[88] S. Mukhopadhyay et al. Modeling of failure probability and statistical design of SRAM array
for yield enhancement in nanoscaled CMOS. In IEEE Trans. CAD 24 (12), 2005.

[89] D. Bossen, J. Tendler, and K. Reick. Power4 system design for high reliability. In IEEE
Micro. 22 (2) 1624, 2002.

[90] A. KleinOsowski and D. Lilja. The NanoBox project: exploring fabrics of self- correcting
logic blocks for high defect rate molecular device technologies. In IEEE Computer Society
Annual Symposium on VLSI, 2004.

[91] M. Nicolaidis, N. Achouri, and L. Anghel. A memory built-in self-repair for high defect
densities based on error polarities. 18th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pages 459–466, 2003.

[92] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy. A process-tolerant cache
architecture for improved yield in nanoscale technologies. IEEE Trans. Very Large Scale
Integr. Syst., 13(1):27–38, 2005.

[93] Avesta Sasan, Houman Homayoun, Ahmed Eltawil, and Fadi Kurdahi. A fault tolerant
cache architecture for sub 500mv operation: resizable data composer cache (rdc-cache). In
CASES ’09: Proceedings of the 2009 international conference on Compilers, architecture, and
synthesis for embedded systems, pages 251–260, 2009.

[94] M.A. Makhzan, A Khajeh, A Eltawil, and F Kurdahi. Limits on voltage scaling for caches
utilizing fault tolerant techniques. In ICCD, Oct 2007.

[95] C. Wilkerson, Hongliang Gao, A.R. Alameldeen, Z. Chishti, M. Khellah, and Shih-Lien Lu.
Trading off cache capacity for low-voltage operation. Micro (Top Picks), IEEE, 29(1):96 –103,
jan. 2009.

[96] Jaume Abella, Javier Carretero, Pedro Chaparro, Xavier Vera, and Antonio Gonzalez. Low
Vccmin Fault-Tolerant Cache with Highly Predictable Performance. In MICRO, December
2009.

[97] Cheng-Kok Koh, Weng-Fai Wong, Yiran Chen, and Hai Li. Tolerating process variations in
large, set-associative caches: The buddy cache. ACM Trans. Archit. Code Optim., 6(2), 2009.

[98] Cheng-Kok Koh, Weng-Fai Wong, Yiran Chen, and Hai Li. The salvage cache: a fault-tolerant
cache architecture for next-generation memory technologies. In ICCD’09: Proceedings of the
2009 IEEE international conference on Computer design, 2009.

[99] Amin Ansari, Shuguang Feng, Shantanu Gupta, and Scott Mahlke. Enabling ultra low voltage
system operation by tolerating on-chip cache failures. In ISLPED ’09: Proceedings of the 14th
ACM/IEEE international symposium on Low power electronics and design, 2009.

[100] Amin Ansari, Shantanu Gupta, Shuguang Feng, and Scott Mahlke. Zerehcache: armoring
cache architectures in high defect density technologies. In MICRO 42: Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, 2009.

[101] Zeshan Chishti, Alaa R. Alameldeen, Chris Wilkerson, Wei Wu, and Shih-Lien Lu. Improving
cache lifetime reliability at ultra-low voltages. In MICRO 42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2009.

[102] Engin Ipek, Jeremy Condit, Edmund B Nightingale, Doug Burger, and Thomas Moscibroda.
Dynamically Replicated Memory: Building Reliable Systems from Nanoscale Resistive Mem-
ories. In ASPLOS, 2010.

[103] Stuart Schechter, Gabriel H. Loh, Karin Strauss, and Doug Burger. Use ecp, not ecc, for
hard failures in memories. In ISCA, 2010.

154

[104] Robert T. Greenway, Kwangok Jeong, Andrew B. Kahng, Chul-Hong Park, and John S.
Petersen. 32nm 1-d regular pitch sram bitcell design for interference-assisted lithography.
Photomask Technology, 2008.

[105] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale Parallel
Collaborative Filtering for the Netflix Prize. In Algorithmic Aspects in Information and
Management, 2008.

[106] Fan Yang, Wen Su, Huibiao Zhu, and Qin Li. Formalizing mapreduce with csp. 2010.

[107] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Exploring power-performance tradeoffs in
database systems. 2010.

[108] Cotson: Infrastructure for system-level simulation. In MICRO 41, 2008.

[109] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Nor-
man P. Jouppi. Mcpat: An integrated power, area and timing modeling framework for
multicore and manycore architectures. In MICRO ’09, to appear, 2009.

[110] Lauri Minas and Brad Ellison. The problem of power consumption in servers. In http:

// www. drdobbs. com/ 215800830 , 2009.

[111] Bert Hubert. Wondershaper. In http: // lartc. org/ wondershaper/ , 2002.

[112] Nsort. In http://www.ordinal.com/.

[113] oprofile. In http: // oprofile. sourceforge. net/ .

[114] William Whitted and Gerald Aigner. Modular data center. In United States Patent 7,278,273,
2007.

[115] Sun Microsystems. Sun’s modular data center. In http://www.sun.com/service/sunmd/.

[116] HP. Pod. In http://h20338.www2.hp.com/enterprise/cache/595887-0-0-0-121.html.

[117] Texas Memory Systems. Ramsan-300. In http://www.ramsan.com/.

[118] Nfs. In http: // en. wikipedia. org/ wiki/ Network_ File_ System_ %28protocol% 29 .

[119] William K. Josephson, Lars A. Bongo, David Flynn, and Kai Li. Dfs: A file system for
virtualized flash storage. FAST’10, 2010.

[120] Jiri Schindler, Steven W. Schlosser, and Gregory R. Ganger. The disksim simulation en-
vironment version 4.0 reference manual. In University Parallel Data Lab Technical Report
CMU-PDL-08-101, 2008.

[121] Stan Park and Kai Shen. A performance evaluation of scientific i/o workloads on flash-based
ssds. In In IASDS at CLUSTER, 2009.

[122] N. Kim et al. Leakage current Moores law meets static power. In IEEE Comput. 36 (12)
6875, 2003.

[123] M. Agostinelli et al. Erratic fluctuations of sram cache vmin at the 90nm process technology
node. IEEE Electron Devices Meeting (IEDM), December 2005.

[124] D. Burnett et al. Implementations of fundamental threshold voltage variations for high-
density SRAM and logic circuits. In IEEE International Symposium on VLSI Technology,
1994.

[125] S. Mukhopadhyay et al. Modeling and estimation of failure probability due to parameter
variation in nano-scale SRAMs for yield enhancement. In IEEE International Symposium on
VLSI Circuits, 2004.

155

[126] Nathan L. Binkert, Erik G. Hallnor, and Steve K. Reinhardt. Network-oriented full-system
simulation using m5, February 2003.

[127] S. Woo et al. The SPLASH-2 programs: characterization and methodological considerations.
In International Symposium on Computer Architecture (ISCA), 1995.

[128] D. Lamet and J. Frenzel. Defect-tolerant cache memory design. In IEEE VLSI Test Sympo-
sium, 1993.

[129] D. Lamet and J. Frenzel. Design of a fault-tolerant three-dimensional dynamic random- access
memory with on-chip error-correcting circuit. In IEEE Trans. Comput 42 (12) 14531468,
1993.

[130] L. Joiner and J. Komo. Decoding binary BCH codes. In IEEE SoutheastCon (March) 6773,
1995.

[131] M. Nicolaidis, N. Achouri, and S. Boutobza. Dynamic data-bit memory built-in self-repair.
In International Conference on Computer Aided Design (ICCAD), 2003.

[132] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded Sparc pro-
cessor. In IEEE Micro. 25 (2) 2129, 2005.

[133] J. Shin et al. Design and implementation of an embedded 512-kB level-2 cache subsystem.
In IEEE J. Solid-State Circuits (JSSC), 2005.

[134] Intel Corp. Pentium M Power Data, 1.6 GHz, Technology, 1 MB L2 Cache. In http:

// www. intel. com/ design/ intarch/ pentiumm/ pentiumm. htm/ , 2007.

