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Abstract

The state-of-the-art in micromechanical modeling of the mechanical response of
HPFRCC is reviewed. Much advances in modeling has been made over the last decade
to the point that certain properties of composites can be carefully designed using the
models as analytic tools. As a result, a new generation of FRC with high performance
and economical viability, is in sight. However, utilization of micromechanical models
for a more comprehensive set of important HPFRCC properties awaits further
investigations into fundamental mechanisms governing composite properties, as well as
integrative efforts across responses to different load types. Further, micromechanical
models for HPFRCC behavior under complex loading histories, including those in
fracture, fatigue and multiaxial loading are urgently needed in order to optimize
HPFRCC microstructures and enable predictions of such material in structures under
realistic loading conditions.

Keywords: composites, fiber, design, micromechanics, model, high performance.

High Performance Fiber Reinforced Cement Composites 2. Edited by A.E. Naaman and H.W. Reinhardt.
Published in 1996 by E & FN Spon, 2-6 Boundary Row, London SE1 8HN, UK. ISBN 0 419 21180 2.



44  Micromechanical models of mechanical response of HPFRCC

Contents
1 Introduction
2 Uniaxial tensile response

oo ~J

2.1 Introduction

2.2 Behavior before first cracking

2.3 The steady state cracking criterion

2.4 Condition for further cracking

2.5 Multiple cracking regime

1.6 Effect of interfacial dual slip on multiple cracking
2.7 Tensile behavior of HPFRCC with main reinforcements
2.8 Effect of fiber weaving structure on tensile behavior of HPFRCC
2.9 Conclusions

Uniaxial compressive response

3.1 Introduction

3.2 A micromechanical model

3.3 Combined strengthening and weakening effect of fiber addition
3.4 Further discussions and conclusions

Flexural response

4.1 Introduction

4.2 Flexural strength of quasi-brittle FRCC

4.3 Flexural strength of strain-hardening FRCC

4.4 Conclusion

Fracture response

5.1 Introduction

5.2 Discontinuous-aligned-fiber composites

5.3 Discontinuous-randomly-distributed-fiber composites
5.4 Strain hardening cementitious composites

5.5 Conclusions

Elastic modulus

6.1 Introduction

6.2 Pseudo three phase model

6.3 Homogenization based model

6.4 Conclusions

Discussions and conclusions

References

1 INTRODUCTION

44
45

59

66

75

85

93
96

This chapter reviews the latest advances in micromechanical modeling of high
performance fiber reinforced cementitious composites (HPFRCC). It pertains to

models o

f material mechanical response on the composite level. Some work on models

on the structural level can be found in Chapters 4, 7 and 8. Investigations of models on
the fiber/matrix interface level can be found in Chapter 5.
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Micromechanical models described in this chapter attempt to relate microstructural
parameters to composite propertics. For HPFRCC, microstructural parameters are
generally associated with fiber, matrix, fiber/matrix interface, and flaw size. The most
important utilities of micromechanical models are: (a) provide physical insight into how
composite properties are controlled by material microstructures, and (b) provide
guidelines for optimal design of composites. The current state-of-the-art of most
micromechanical models are far from these ideals, but are clearly making progress
continuously. Micromechanical models are expected to play an increasingly important
role in systematic engineering of HPFRCC, reducing the amount of empiricism in
materials engineering, and making possible targets of microstructure tailoring for
composite property optimization. As a result, micromechanical models can make the
difference between an ordinary FRC and a HPFRCC. It is expected that
micromechanical models will provide the driving force for critical selection of mineral
admixtures, aggregate selection, and fiber design in truly high performance FRCC.

The basic ingredients of micromechanical models include: 1) isolating the important
micromechanism(s) responsible for a particular composite response, and 2) isolating
the important microstructures associated with these micromechanisms. A good
micromechanical model should include just enough details of micromechanisms and
microstructural parameters to describe the composite behavior, but not too much to
overwhelm the analyses with 'noise’. The most useful models are characterized by
parameters which are physically measurable (although not always 'easy' to measure).
This is particularly important if the models are used for composite microstructure
tailoring.

This chapter is organized according to models of the most important mechanical
properties, including tension, compression, flexure, fracture toughness, and elastic
stiffness. The discussion and concluding section provides a combined overview of
these various sections and properties, evaluates the current state of affairs in
micromechanical model development, and projects the most urgently needed
micromechanics research in HPFRCC.

2 UNIAXIAL TENSILE RESPONSE
2.1 Introduction

When unreinforced cementitious materials fail under tension, the brittle failure is
accompanied by the formation of a single crack (Fig.la). For fiber reinforced
cementitious composites, depending on the effectiveness of fibers in providing crack
bridging stresses, different failure modes can be resulted [1,2]. If the fibers cannot
carry further load after the formation of the first through crack, the first cracking
strength is the ultimate strength and further deformation is accompanied by material
softening with the opening of a single crack (Fig.1b). If the fibers can support further
loading after first cracking, multiple cracking occurs (Fig.1c). The stress-strain
behavior then exhibit pseudo strain hardening (Fig.2) before the ultimate strength is
reached at a very high strain (up to 8% in Fig.2, tens to hundreds of times the strain
capacity of the unreinforced matrix material). This is a fundamental material
characteristic of HPFRCC.

In order to achieve the desirable pseudo-strain hardening behavior, two criteria have to
be satisfied: (i) steady state cracking criterion, that is, a crack can propagate at a
constant (or steady state) stress as the fiber bridging stress in the middle of the crack
becomes equal to the applied tensile stress, and (ii) the further cracking criterion, which
requires the inherent crack size to be large enough for the first cracking stress to be
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lower than the maximum bridging stress. Additional cracks can then form on further
loading.

(@ (b) ©

Figure 1. Computer Scanned Images of (a) Plain Cement Showing Brittle Failure, (b)
FRC Showing Single Crack Opening and (c) ECC Showing Multiple Cracking [3].
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Figure 2. Tensile Stress-Strain Curve of Polyethylene Fiber Reinforced Cement Paste
(Vi=2%) [4].

2.2 Behavior before First Cracking

Before the first through crack is formed, the tensile stress strain curve is usually very
linear. However, with the use of optical microscopy and laser holographic
interferometry, Stang et al [5] and Mobasher et al [6] show that the propagation of
microcracks starts at stress levels well below the first cracking strength. Theoretical
analysis of microcrack propagation and interface debonding processes before first
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cracking has been carried out by Yang et al [7]. By modelling both cracks and fibers as
inclusions in an elastic body, several possible damage development stages before first
cracking can be identified. The analysis shows that if the fiber volume fraction is
higher than a critical value, fiber debonding will not occur before first cracking. While
the first cracking strength increases with increasing fiber volume fraction, the energy
absorption up to the occurrence of first cracking reaches a maximum.

2.3 The Steady State Cracking Criterion
In HPFRCC, the Griffith type crack in brittle material is replaced by flat steady state
crack [1]. This mode of cracking is necessary for pseudo strain-hardening in

HPFRCC. In the following, the criterion for steady state cracking to occur are derived
based on an energy balance argument [2].

A

c
cu‘

S8

Crack Bridging Stress

Y >
dp
Crack Opening
Figure 3. A Typical 0-8 Relation for Fiber Composites [2].

Fig.3 shows the ¢-0 relation for an arbitrary fiber composite. G, is the maximum
bridging stress while 3, is the crack opening at which the maximum crack bridging
stress is reached. Fig.4 shows a through crack lying along the x-axis under uniaxial
tensile stress in the y-direction. For the crack to extend by an amount Aa on each side
(Fig.4b), the additional work done on the system (dW) must be equal to the sum of the

strain energy change of the system (dU) and the energy for forming the new crack
surface (dEg). If steady state cracking occurs, the applied stress remains constant at

Oss as a small crack increases in size to form a through crack with part of the crack

profile remaining flat at a constant crack opening 8 [1, 8, 9]. By definition, G is the
first cracking strength. Then, by comparing Fig.4a and 4b for the configurations
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before and after crack extension, it is obvious that the strain energy change dU of the

system is equal to two times the energy difference between a strip of material Aa in
length perpendicular to the flat part of the crack profile (A-A in Fig.4b) and a strip of
the same size in the un-cracked material far away from the crack tip (B-B in Fig.4b).
The additional work done on the system is due to a displacement 8¢ of the applied

stress over the newly formed crack surface of length 2Aa. The change in surface
energy is equal to Gy (the crack tip critical energy release rate of the composite) times
the newly formed crack area. For a unit thickness of the specimen:

dW = (2 Aa) 6, 8 M
B
dU=Q2Aa)[ [o(8)dd ] @
0
dE, = (2 Aa) Gyp 3
(a) Oge
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Figure 4. Crack Extension under Steady State Condition [2].
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The condition of energy balance, dW = dU + dE; gives:

8SS
Oy O - JO(8)d8 = Giip 4)
0

The left hand side of eqn(4) represents the complementary energy of the -8 curve
shown by the shaded area in Fig.3. If the 6-8 relation for a given composite is known,

the first cracking stress Ggg can be readily obtained. For steady state cracking to be
possible, the complementary energy has to reach the energy for crack propagation,

Gip. Since the complementary energy reaches its maximum value when o equals o,
(see Fig.3), the condition that makes steady state cracking possible is given by:

8

P
Gy S, - (j] o(8)d8 = Gy;p (5)

Eqn(4) and eqn(5) are first derived respectively by Marshall and Cox [10] and Li [11].
Since the analyses in Marshall & Cox and Li are based on the J integral, the crack tip
fracture resistance term is denoted by Jy, rather than Gyp. Eqns (4) and (5) are
generalized equations, and their applications to various fiber composite systems with

known ¢-6 relations can be found in Marshall and Cox [10], Li [11] and Leung [2].

The 06— relation in FRC can be written in general form:

o = o(3; fiber, interface, and matrix characteristics) (6)

A simple form of eqn (6) is available [12} based on micromechanical model of the
bridging mechanism of randomly oriented short straight and flexible fibers:

0| 2(5/8,)" ~(518,)] for3 <3,
0(8) = { Gey(1-28/ L ) for8, <8<Lg/2 ™)

0 forL;/2<3

where Sp =1L¢2/[Eeds (1+m)] is the crack opening corresponding to the maximum
bridging stress (Fig.3).

1 L
G, = =gtV —L 8
cu 2g f df ( )
In Egs. (7), Vg, Ly, df, and Ef are the fiber volume fraction, length, diameter and
Young's Modulus, respectively. 7 is the fiber/matrix frictional bond strength. The
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snubbing factor g = 2{1+ e™?2)/(4+£2) raises the bridging stress of fibers bridgin
ging

at an angle inclined to the matrix crack plane, appropriate for flexible fibers exiting the
matrix analogous to a rope passing over a friction pulley. The snubbing coefficient f
must be determined experimentally for a given fiber/matrix system [13]. Finally,n =
(V¢Ef)/(VmEnm), where V, and E;, are the matrix volume fraction and Young's
Modulus, respectively.

More sophisticated 0-8 relation which accounts for fiber rupture can be found in [14].
The effect of fiber length variation on the 6-6 relation is discussed in [15].

Based on eqn (7), the critical fiber volume fraction was shown to be [11]:

123,

vV, > Vcrit =___"uw
f f gT(Lf / df)sp

®)

Eqn (9) expresses the condition for steady state cracking necessary for pseudo strain-
hardening in the form of a critical fiber volume fraction which must be exceeded to
create a composite with high strain capacity. Such condition has been successfully
used in the design of pseudo strain-hardening mortars [16]. In Fig. 5, the matrix
toughness is plotted against the interface bond strength for a fixed critical fiber volume
fraction of 2%, based on Eqn (9). This curve demarcates the boundary between strain-
hardening and quasi-brittle failure modes for composites with Vi=2%. All combination

of (1, Jgp) to the left of this curve correspond to composites expected to show quasi-

brittle behavior. On the other hand, all combinations of (7, Jyp) to the right of the curve
correspond to composites expected to show pseudo strain-hardening. It has been

confirmed from uniaxial tensile tests that Mix I, IHla, and IIIb, which (1, I;p) values lie
to the right of the theoretical boundary line, do show pseudo strain-hardening, whereas
Mix II does not, as predicted by the theory [16]. The different composites have

different values of Jp and T controlled by matrix mix design via sand content and w/c
ratio. Partial verification of the multiple cracking condition was also reported by
Krenchel [17] with matrix and interface properties modified by clay addition. Although
some of the microparameters (such as snubbing factor and interface bond strength)
were estimated, reasonable agreement between predictions and experimental results was
found.

In using (9) to calculate V{™, it should be pointed out that the crack tip fracture energy
Jiip, interpretable as the energy consumed per unit advance of the matrix crack (by
breaking the matrix material (but not the fiber) at the crack tip region), can only be
treated (approximately) as a constant when the fiber volume fraction is small.
Otherwise the full form of Jy, involving the (1-Vg) term given in (1.16) should be

used. Obviously, the only meaningful solution for V™ is between 0 and 1. For some
combinations of micromechanical parameters such as small fiber aspect ratio Lg¢/ds or

bond property T, eqn. (9) will not give any meaningful solution. This should be
expected since for such micromechanical parameters, the energy condition for steady
state cracking condition expressed in (5) cannot be satisfied. This means that pseudo
strain-hardening cannot occur when the fiber is too short or when the interfacial bond
strength is too low. In such circumstances, composites with even a large amount of
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fiber (hypothetically approaching 100%) should still not be expected to undergo strain-
hardening.

2.4 Condition for Further Cracking

In order for additional cracks to form after first cracking, the first cracking strength oy,

should be lower than the peak bridging stress 6,. This condition is supplementary to
eqn (9) for multiple cracking [1]. In general, the first cracking strength for a given
inherent crack size can only be computed after the exact crack profile is obtained

through an iterative procedure. An approximate value of ¢ can be obtained, however,
by assuming a parabolic crack profile.

8(x) =401~ v})Kg,c"2(1-x2 7 c?)/ (E.n'?) (10
Let c=cme When Of=0y,. Since o decreases with ¢, the condition for further cracking
(O£c<Ocy) can be given in terms of crack size as:

C>Crne an
with ¢y given by the solution of the following equation:

1/2

1/2 1/2°me
Oou(Meme) = 2eme /)" | of8(x)]/(che —x*) dx =K, (12)
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Figure 5. Effect of Matrix Fracture Toughness and Interface Bond Strength on Critical
Fiber Volume Fraction (E=117 GPa, Li=12.7 mm, d;=0.038 mm, g=2, E,,=25 GPa)
[16].
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Once the composite 6-8 relation is known, the substitution of (10) into (12) would
allow ¢y to be determined. With the approximate profile, the first cracking strength vs
crack size curve is shifted upwards, giving an apparent ¢ higher than the actual value
(Fig.6). By overestimating cy,., the approximate analysis provides a conservative
criterion for further cracking to occur. Since it is very difficult to precisely measure the
inherent crack size in the composite, the use of an approximate but conservative
criterion is actually advantageous.

Ofc-¢
Shifted Upwards with

approximate Crack Profile

ch

O, -C
Exact Crack Profile

Stress

(Cmel) (cmc2)
Inherent Crack Size

Figure 6. Overestimation of ¢y with an Approximate Crack Profile [2].

The pair of equations (9) and (11) together form the complementary conditions for
pseudo strain-hardening to occur in random fiber reinforced cementitious composites.
If only (9) is satisfied but not (11), the load to initiate the first crack can be much higher
than bridging load capacity of the fiber after the matrix crack propagates through the
specimen cross-section. This leads to a loss of equilibrium (unless ambient load drops
immediately after first crack initiation) and immediate failure of the specimen. No
strain-hardening can result. If only (11) is satisfied but not (9), the load to initiate the
first crack may be low relative to the maximum bridging stress. However, as the first
crack propagates in a (crack-tip modified) Griffith crack mode, the increasing opening
of the (modified) ellipsoidal crack faces as the crack length extends will eventually

exceed Op (Figure 3), resulting in fiber pull-out and softening in the bridging curve.
When the first crack completely traverse the whole specimen width (implying results
are specimen size dependent), the remaining load carrying capacity of the fibers still
bridging the crack can be much lower than the ambient load. Again, an instability will
set in and no further multiple crack or pseudo strain-hardening can occur.

2.5 Multiple Cracking Regime

In the original ACK model [18] and several other subsequent models (e.g. [1], [8]),
uniform distribution of identical flaw size in the matrix is implicitly assumed.
Consequently, a deterministic single-valued composite strength during multiple
cracking is predicted resulting in a "yield plateau” in the stress-strain curve, and usually
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does not agree with experimental findings. As shown in Fig. 2, a rising load carrying
capacity beyond the first cracking strength is often observed during multiple cracking
stage. Multiple cracks develop over a wide range of load levels in a sequential manner.
Wu and Li [19] have proposed a stochastic treatment of multiple cracking. In their
analysis, the flaw size distribution of the matrix is simulated by a Monte Carlo process,
and the crack growth criteria is determined by a fracture mechanics approach. The
larger cracks propagate at the first cracking strength, whereas the smallest crack can
only be activated at the maximum bridging strength which also marks the end of
multiple cracking. For those cracks ranging in between the two extremes, propagation
takes place during multiple cracking stage. Good agreement between simulation results
and experimental data on crack evolution was found, as shown in Fig. 7.

In a somewhat different approach, Alwan [20] discretized the composite into a number
of finite composite elements whose stiffnesses and mechanical properties are updated
based on the local deformation of each element using a finite element program. This
model identifies various stages and key points characterizing a composite stress-strain
curve, such as the composite stress and corresponding strain at first cracking, during
multiple cracking, at end of multiple cracking and up to failure of the composite. Fiber
bridging stresses, both in the elastic debonding and frictional pull-out stages, are
incorporated in the stiffness computation of cracked composite elements using a
rotating crack model. Further discussion on this computer model is included in Chapter
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Figure 7. Comparison of Crack Frequency vs Composite Strength (Normalized by the
Steady State Strength) between Experimental Data and Simulation Results, m=2 and

A=300 (Both Are Constants Used in the Flaw Size Distribution Function) [19].

2.6. Effect of Interfacial Dual Slip on Multiple Cracking

In the original model of Aveston, Cooper and Kelly who deal with continuous aligned
fiber and other models discussed in the above sections, fibers were considered
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monolithic and debonding only allowed at the fiber/matrix interface. However, in
addition to single fibers (monofilament), fibers are often used in a bundle form (strand)
or in the shape of fibrillated film. For such fiber composites, slip occurs both within
the strand and at the fiber/cement interface. Ohno and Hannant [21] modeled this
phenomenon by permitting dual slip of fibers either inside the bundle (core fiber) or at
the interface (sleeve fiber). Figure 8 shows strain distribution near a crack face just
after the matrix has cracked. Since strain and stress in the matrix at the crack face
become zero, all load is sustained by the fiber. Once the slip between core fibers and
sleeve fibers occurs, the core fibers and the sleeve fibers carry different loads and
deform according to their individual stress transfer capacity. The characteristic point of
this model is that the interface of the sleeve fibers and matrix has the ability to transfer
further higher stress after the saturation of multiple cracks under a lower stress transfer
within the core fibers. Therefore, a secondary multiple cracking region exists after
Point A in Figure 9. Much better agreements between experimental data and theoretical
predictions of the tensile stress/strain curves are found when the dual slip phenomenon
is considered, especially a reduced V¢is used in the secondary multiple cracking region
[21], as shown in Figure 10.
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Figure 8. Strain Distribution just after First Cracking [21].
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Figure 9. Schematic Diagram of Tensile Stress Strain Curve [21].
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Curves [21].

2.7 Tensile Behavior of HPFRCC with Main Reinforcements

The tensile behavior of HPFRCC with main steel reinforcements has been measured by
Al-Shannaq [22] and modelled by Brincker [23]. Some typical tensile response for
various volume fractions of main steel and steel reinforcements are shown in Fig.11.
Note that for this fiber and matrix system, pseudo-strain hardening cannot be achieved
in these composites with the fiber reinforcement alone (Fig.12). That is, the condition
given in eqn (9) is not satisfied, probably due to the low fiber aspect ratio despite the
high interface bond property [22]. The addition of main reinforcements, however, lead
to a pseudo-ductile behavior. The composites containing both main and fiber
reinforcements are hence considered HPFRCC in this section.

After first cracking, the matrix stress at the cracked section decreases as the main
reinforcement carries more load. By assuming uniform friction along the main

reinforcement/matrix interface, and by decoupling the & from & in the FRC, the stress
to be carried by the matrix at the cracked section was calculated approximately
[23] and is shown schematically as a function of crack opening w in Fig.13, for both
light reinforcement and heavy reinforcement. The material softening behavior (referred
to as the crack opening relation in the figure) is also shown. As long as the stress to be
carried is less than the material resistance given by the softening relationship, the crack
opening remains controlled. It is clear from the figure that the use of heavy
reinforcement can help control the stability of crack opening. For a parabolic softening
relation, which is representative of matrix with relatively high steel fiber volume
fractions, the stability of cracks can be assessed with a brittleness number By, given by:

_lEc(l—(p)f

B LB 13
"6 1E@* ° (13)
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2
with B, =

being the traditional brittleness number for homogeneous materials.
m™~'f

In the above expressions, fi is the matrix strength, Ey, is the matrix stiffness, E, is the
composite stiffness, E; is the reinforcement stiffness, G¢ the composite fracture energy,
r the radius of the main reinforcement, T the constant shear stress at the
reinforcement/concrete interface and ¢ the main reinforcement ratio.
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Figure 13. Model Solutions for Light and Strong Main Reinforcement Compared to
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If B, is well below one, cracks will grow stably, resulting in a well distributed crack
pattern. On the other hand, if B, is well above one, unstable cracks are expected to
form, resulting in larger discrete cracks.

For matrix with low or moderate volume of steel fibers, the load carrying capacity of
the fibers alone are lower than that of the reinforced matrix at first cracking. As a

result, the softening relation shows a sudden drop Af; right after first cracking. Then,
the strain of the composite will increase at constant stress by an amount Ag, given by:

Ae =129 A,
2E,0

(14)
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A sudden increase in strain at roughly constant stress can be observed in Fig.11 for the
case with Vi=3%.

Based on the concepts described above, and assuming elastic steel behavior and plastic
matrix behavior, the stress strain relationships for composites with both main and fiber
reinforcements are derived and shown (Fig.14). With slight adjustments in model
parameters, the derived tensile response shows good qualitative agreement with
experimental data (Fig.11).

A more complete solution for tensile response of HPFRCC with both fiber and main
reinforcements is given by Stang and Aarre [24]. In their analysis, the main
reinforcement is assumed to remain elastic. Shear lag analysis are first carried out to
obtain the crack openings for two separate cases: (i) load acting on the main
reinforcement, and (ii) load acting only on the matrix, with main reinforcement
displacement restrained to be zero at the crack. Solutions of the two separate cases are

then superposed to ensure that the 6-6 relation of the fiber reinforced matrix is satisfied
at the crack. With this approach, for different fiber reinforced matrices (i.e., different

o-0 relations), the crack width can be obtained as a function of main reinforcement ratio
and fiber volume fraction for any given imposed far field strain. When fibers are
added, the reduction in amount of main reinforcement for crack opening control can be
quantified.
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Figure 15. Weaving Structure of Carbon Fiber Mesh [26].

2.8 Effect of Fiber Weaving Structure on Tensile Behavior of
HPFRCC

In addition to single filament and fiber bundle, fiber mesh is also being explored to
reinforce brittle concrete [25, 26]. Different weaving patterns of carbon fiber mesh, as
shown in Figure 15, were used by Mihashi et al [26] to examine reinforcement
efficiency in mortar. A significant influence of the weaving structure on the flexural
response was discovered. Type A mesh (see Fig 15) exhibited the largest ductility. On
the other hand, Type B mesh demonstrated the highest strength but the behavior after
the peak load was most brittle. It is expected that similar conclusions may be drawn
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when the specimens are tested under direct tensile tests, since the flexural response of
fiber reinforced mortar is controlled by its tensile failure. Stress analysis of these mesh
reinforcements are described by Mihashi et al, and shown in Figure 16. In the case of
Type A mesh arranged in H direction, the splitting stress due to the tortuosity of strings
are eliminated by the coupling strings and gradual debonding was controlled by
microcracks accumulated along the strings. It may be the reason why Type A mesh
gave such a large ductility. In the case of Type B mesh, strings with crossing points
might work just like wedges to split the cover mortar. Detailed stress analysis is
needed to quantify the effect of mesh weaving structure on the tensile response of
HPFRCC, thus providing rationals for composite design.
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Figure 16. Schematic Description of Stress Analysis of Mesh Reinforcement [26].

2.9 Conclusion

The tensile behavior of HPFRCC is shown to be highly sensitive to micromechanical
parameters via the composite ¢-0 relation. With appropriate choice of fiber, matrix and

interface parameters, it is possible to develop HPFRCC with the proper ¢-6 relation
such that the brittle cementitious material fundamentally changes into a pseudo strain-
hardening composite. Analytic micromechanical models provide explicit conditions and
composite design tools for transition from quasi-brittle softening response of typical
FRC to significantly more ductile hardening response characteristic of HPFRCC.
Uniaxial and mesh reinforcements aid in this transition and provide additional resistance
to crack opening.

3 UNIAXIAL COMPRESSIVE RESPONSE
3.1 Introduction

Early experimental studies of compressive strength of fiber reinforced cementitious
composites using steel, glass and polypropylene fibers (e.g., [27], [28]) suggested that
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the influence of fibers on the compressive strength was insignificant at low volume
fractions. Both increase and decrease of compressive strength with different fiber types
have been experimentally observed (e.g., [29], [30], [31]). Even for the same
material, there is mounting evidence that compressive strength may first rise followed
by a drop with increasing fiber volume fraction. These observations suggest that the
addition of fibers in a cement composite using conventional mixing procedure leads to a
competing process of strength improvement as well as degradation. Some recent
research, however, suggests that compressive strength can be enhanced substantially
even at high fiber volume fraction, when special processing techniques, presumably
leading to reduced matrix defects, are employed [32, 33]. Special mix design with high
packing density [34] also appears successful in combating defect introduction by fibers.
Li and Mishra [35, 36] proposed a simplified micromechanics model to explain the
effects of strengthening and weakening of compressive strength of FRC. It is
suggested that fibers can lead to higher compressive strengths in HPFRCC in which
defects introduction is limited.
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Figure 17. Compressive Strength of Various Fiber Reinforced
Cementitious Composites Relative to the Matrix Compressive Strength,
as a Function of Fiber Volume Fraction [35].

The proposed model by Li and Mishra is fundamentally based on well known
micromechanical models of compressive failure in brittle solids [37, 38, 39]. The
influence of fibers on microcrack sliding and extension is based on crack bridging
studies carried out in recent years [11, 12]. The model is kept to be as simple as
possible in order to obtain close form solutions which elucidate the micromechanical
parameters controlling the strengthening and the weakening mechanisms. It is found
that depending on the effectiveness and amount of fiber bridging, and the degree to
which fibers introduce defects to the composite, both increase and decrease of
compressive strength can be derived from increasing fiber content. A summary of
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compressive strength change with fiber volume fraction is presented in Fig.17, the
details of which can be found in Li [35].

3.2 A Micromechanical Model

Unstable propagation of a critical tensile crack accounts for the failure of brittle solids
under tension. However, under compressive loading the microcracks in the solid come
under a local tensile field at their tips causing initiation of "wing-cracks" (see Fig.18).
The extension of wing-cracks under such a local tension has been demonstrated to be
unstable initially and becomes stable as the crack length increases [36, 37]. However
presence of other microcracks and the interaction between them induces instability
resulting in final failure. When fibers are present in such a body, they affect the crack
propagation by increasing the resistance to sliding of the initial microcracks and
opening of the wing cracks by crack-bridging. Further, fibers can introduce additional
defects, hence high crack density leading to high intensity of crack interaction. These
issues will be discussed in the following sections.

3.2.1 Fiber strengthening effect

Resistance to crack-sliding

Based on frictional resistance to the pull out of randomly oriented fibers bridging across
a crack (eqn. (7)), Li [35] developed the following equation for reduction in shear
stress acting on a sliding crack.

1 2
Tg = ESVf[l— Lioé: (l—u)(l—V)) (15)

where G and v are the composite shear moduli and Poisson's ratio respectively, a is the

half crack length, and W is a coefficient of friction against shear sliding of the crack
faces. The reinforcement index s is defined as

s= gfc(%) (16)
f

where d; is the diameter of the fiber and 1 is the interfacial shear strength. For typical
values of the snubbing coefficient f (associated with inclined fiber pull-out, [13])
ranging from 0 to 1, the snubbing factor g ranges from 1 to 2.3.

The net shear stress acting on the sliding microcrack is therefore given by

17
1:=%<5(1—u)-—1:B a7

where the first term on the right hand side represents the shear stress for the most
critical sliding crack (oriented at 459 to the loading axis, see [36]).
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Figure 18. Wing-Crack Growth Induced by Sliding of Microcrack as the Basic
Mechanism of Compressive Failure in Brittle Solids [35].

Resistance to wing-crack growth

The wing-crack, like the sliding microcrack, will also be bridged by fibers. As the
wing-crack grows, increasing amount of bridging fibers will lead to an increase in
crack closing pressure in an enlarging ‘process zone'. Based on an R-curve concept

associated with fiber bridging, Li [35] developed an expression for the total toughness
against which the wing-cracks have to propagate against:

l 18) -
KIC = Km + —*EGO

o

where K, is the fracture toughness of the cementitious material without fibers, E and
G, are the composite Young's moduli and the composite fracture energy, respectively
and / *defines the wing-crack length extension at which the linearized R-curve reaches

the plateau value for the bridging fracture energy [35]. In the case of FRC, Li [12]
found that G, can be related to the fiber and interfacial properties:

1 (19)
G, =—sL;V
0 125 £Vf
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Assuming that linear elastic fracture mechanics holds on the scale of micro-defects, we
can obtain an expression relating the normalized compressive load o, required to

maintain the normalized wing-crack length /,:

ovma _{B[lo,u,vf,c] 1
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3.2.2 Fiber weakening effect

As mentioned before, the addition of fibers beyond a certain optimal level may
adversely affect the compressive strength due to introduction of additional defects and
difficulties in processing. To account for this effect Li [35] suggested a simple
modification in the initial flaw density or damage index parameter D, following
experimental observations. By introducing the fiber induced damage index k, we
redefine Do as given by the following equation.

Dy =(N,ma?) Ve 1)

where N, is defined as the number of cracks per unit area. The parameter k is probably
dependent upon the fiber type and processing techniques and has to be evaluated by
experimental investigation for particular fiber-matrix systems.

Glavind [40] has accounted for fiber induced démage effect in a different manner.
Instead of assuming an increase in initial flaw density, the initial flaw size, a, is
assumed to change due to the addition of fibers. The proposed damage rule is as
follows:
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a'= a[exp[an %H (22)
f

where o stands for the damage coefficient to be determined empirically. With properly

adjusted o, the composite strength prediction can agree well with experimental data
[40]. However, the lack of physical meaning of this parameter has some drawback.

3.3 Combined Strengthening and Weakening Effect of Fiber Addition

Eqns. (20) and (21) may be used to study the effect of fiber on compressive strength in
FRCs, when microcrack sliding resistance, wing-crack growth resistance, and damage
introduction are operational simultaneously, as is suggested by experimental data such
as that shown in Fig.17. Fig.19a shows the normalized compression load required to
drive a wing-crack of length [ ,for various fiber volume fractions. In Fig.19b, we
show that the compressive strength may continue to rise even beyond 4% when the
fiber damage index is small (e.g. £ = 25), but rapidly drops beyond 0.4% when the
fiber damage index is large (e.g. k = 100). In between these extremes, compressive
strength is seen to rise initially with fiber volume fraction, and then decreases with
additional amount of fibers. These predictions of fiber induced compressive strength
changes are in qualitative agreement with the experimental data shown in Fig.17.
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Figure 19a. Combined Strengthening and Damage Effect of Fibers: Normalized
Compression Load Required to Drive a Wing-Crack of Length /, for Five Different
Fiber Volume Fractions. Parametric Values Used are lo* =20;D,=0.0005; =0.1;
¢ = 800; K, = 0.0002; 5, = 0.01, and k=100 [36].
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Figure 19b. Combined Strengthening and Damage Effect of Fibers: Predicted
Compressive Strength Change with Fiber Volume Fractions, for Different Fiber
Induced Damage Index k. Parametric Values Used are lo* =20; D, =0.0005; 7 =0.1;
¢ = 800; K, = 0.0002; s,= 0.01 [36].
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Fig.20 shows model predictions for the Krenit (a polypropylene) fiber reinforced
concrete data (also shown in Fig.17). Common parametric values chosen for both sets
of data were discussed by Li and Mishra [36]. Reasonable comparisons can be found
between experimental data and theoretical predictions (Fig.20). However, it should be
mentioned that there is plenty of uncertainty in the exact parametric values (since they
are not measured), although the numbers used should not be too far off.

3.4 Further Discussions and Conclusions

Although the microcrack sliding model of compressive strength in brittle material has
been discussed in the context of uniaxial loading in the present treatment, extensive
studies [36, 37, 38] have shown that the compressive strength is very sensitive to
confining stresses. This can be seen in the sensitivity of the stress intensity factor of
the wing-cracks to normal compressive load. This notion is in accord with experience
in cementitious materials, for which confinements are general prescriptions to derive
higher compressive load bearing capacity. The present model of compressive strength
for FRC shows that fibers can be exploited to increase the compressive strength and
may therefore act as a passive confining pressure. This passive confinement idea was
first proposed by Yin et al [41], who discovered this beneficial effect of fiber in a series
of biaxial steel FRC tests.

The present work represents a preliminary look at how fibers in FRC contributes or
degrades composite mechanical properties. The results based on the present model
appear to capture much of what has been experimentally observed in compressive
strength change due to fiber addition. These modelling results (particularly Fig.19)
indicate that fibers can significantly improve compressive strength of HPFRCC if the
weakening effect of fiber is controlled via novel processing routes. Hence
micromechanical models can provide rationale for selection of materials constituents
(properties of fiber, matrix, and interface) in design of compressive strength of
HPFRCC. Compressive strength itself is not only an important parameter, but also
strongly influence the flexural behavior of HPFRCC. More detailed discussed on
flexural strength will follow in Section 4. A difficulty in applying the current model,
however, lies in the lack of knowledge in some micromechanisms and micromechanical
parameters. These include, for example, the detail micromechanisms in the way fiber
resist microcrack sliding, and the general unavailability of parametric values of a, D,
and k. Additional research is required to tackle these issues. The present work
provides a framework for which these future research should be organized.

4 FLEXURAL RESPONSE

4.1 Introduction

The flexural strength of unreinforced cement-based materials and their fiber composites
is important for many current applications such as road slabs, airfield runways, roofing
tiles, sewage pipes, and architectural wall panels. In addition, using a simple flexure
test, an important property of cement-based materials, namely their tensile strength, can
be deduced from their flexural strength if the latter can be related to the former through
an analytical or numerical model.

The flexural strength of cement-based materials is known to depend on their tensile
failure mode. Hillerborg et al. [42] and Zhu [43] showed that the flexural strength of
concrete depends on a parameter called the brittleness ratio which is a function of
material properties and specimen geometry. In particular, they showed that the flexural
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strength of concrete depends on the material fracture resistance described by the

tension-softening relation (6—8) (see e.g. eqn (7)). Babut and Brandt [80] have
attempted to account for the effect of adding steel fiber on the flexural behavior of
concrete beam. They developed a semi-empirical method based on the classical
reinforced beam theory and experimental data. They discovered that the MOR values of
steel fiber reinforced concrete (Vi=2%) can be 2-3 times higher than that of plain
concrete.

In an un-notched beam specimen made of a quasi-brittle FRCC, first cracking is
accompanied by the development of a localized fracture process zone. In this process
zone, the bridging fibers can partially transfer the stress across the crack, however, the
magnitude of the transferred stress decreases as the crack enlarges. Therefore, no
additional cracks will form beyond this first crack. During this process, energy due to
fiber frictional pull-out is being consumed. Because of this energy absorption, the
flexural strength of regular FRCC is higher than their tensile strength [44]. In contrast,
in an un-notched beam specimen made of a strain hardening HPFRCC material, first
cracking is accompanied by a strain concentration at the mouth of the crack. Because of
the stress transfer capability of the reinforcing fibers in a strain hardening material,
stress redistribution will occur so that localized fracture will be delayed. Consequently,
an expanded zone of matrix cracking (parallel to the first crack near the tensile face of
the beam) must develop prior to localized fracture. Such an extensive volumetric
cracking process involves considerable energy absorption which give rise to a high
flexural strength (MOR) to tensile (first cracking) strength ratio.

4.2 Flexural Strength of Quasi-brittle FRCC

Maalej and Li [45] studied the flexural strength of quasi-brittle FRCC. In their study,
they adopted the fictitious crack model (FCM) concept to relate the flexural strength of
these composites to the material's tension softening property and specimen geometry.
In prior studies [12, 14], the tension softening relationships for these composites have
been related to the material's micromechanical parameters (such as fiber length, fiber
diameter, fiber tensile strength, fiber/matrix interfacial bond strength, fiber and matrix
elastic moduli) through explicit analytical expressions taking into account the effect of
fiber rupture.

Fig.21 shows the distribution of normal stresses in the critical beam section as assumed
by Maalej and Li [45]. A fictitious crack of length a and mouth opening w was
assumed to form on the beam tensile face. Within the fracture process zone, the stress

G at any point x, was related to the width 8 of the fictitious crack at that point by the
following tension softening relationship:

2
o(8) = Tb{l - 2k(i) + p(i] :| (23)
We We

Eqn (23) describes the stress-crack width relationship for fiber reinforced composites
assuming frictional interfacial bond and modifies eqn (7) by taking into account the
effect of fiber rupture [14]. In Eqn (23), w¢ represents the crack width at which the
bridging stress vanishes, Tp represents the post-cracking strength of the composite, k
describes the magnitude of the initial slope of the tension softening curve, and p
describes the rate at which the slope of the tension softening curve decreases as a
function of crack width. For the simple case of only fiber pull-out in the composite eqn
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(23) is reduced to eqn (7) where 8, < 8 < L/2. The parameters w¢, Tp, k, and p depend
on the composite micromechanical parameters as defined in the original papers [12,
14].
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Figure 21. Distribution of Normal Stresses in the Critical Beam Section [45].

The crack was assumed to have a linear profile such that the crack width & at any
location x within the fracture process zone can be related to the crack mouth opening w
as follows:

5= w(l - 5) 24)
a

The hypothesis of the FCM, that the crack propagates as soon as the stress at the crack
tip exceeds the tensile strength of the material, was adopted. Furthermore, a linear

stress distribution 62(x) outside the fracture process zone with a maximum tensile
stress T at the crack tip and a compressive stress C at the beam compressive face was
assumed (see Fig.21).

By adopting the above assumptions, Maalej and Li derived an analytical expression for
the moment M as a function of the composite micromechanical parameters, specimen
geometry, and crack length. It was shown that the moment M reaches a maximum
value My, when the fracture process zone is only partially developed (i.e. 0 < a < d).
The composite flexural strength was computed by the use following equation:

6M,

MOR = MOR(, Te.Ee, Vr. Ly dy.0py 7.0 = -~

(25)

Maalej and Li [45] showed that the ratio of flexural strength to tensile strength varies as
a function of the brittleness ratio B defined in their study as (Tpd)/(Ecwc), where E is
the elastic modulus of the composite. It was shown that the ratio of flexural strength to
tensile strength decreases with increasing brittleness ratio. In the limiting case when B
is infinite, corresponding to linear elastic brittle behavior of the material, the flexural
strength is equal to the tensile strength as predicted by the linear elastic brittle theory.




Flexural response 69

In the other limiting case, B — 0, the ratio of flexural strength to tensile strength is
equal to 3, as predicted by elastic perfectly plastic theory.

Fig.22 shows the variation of the flexural strength to tensile strength ratio qy as a
function of fiber length for a typical fiber reinforced composite. This figure indicates
that gy increases initially as a function of fiber length, reaches an optimum value, and
then starts to decrease as the fiber length continues to increase. The drop in qy is due to
fiber rupture which reduces the stress acting across the fracture process zone.
Alternatively, the energy consumed due to fiber frictional pull-out is known to diminish
with fiber length when fiber rupture occurs. Therefore, it is deduced that an optimum
fiber length exists at which the ratio of flexural strength to tensile strength is optimum.

Fig. 22 may also be useful to interpret time-dependence of MOR observed in some
FRC. For example, Bentur and Katz [46] found that CFRC reach a peak in qy,

afterwhich the MOR drops. In this case, Ly is fixed, but T and therefore L¢/2L.. is
expected to be a increasing function of time.

The model proposed by Maalej and Li [45] can be used to predict the flexural strength
of any quasi-brittle fiber reinforced cementitious composite based on the knowledge of
either its micromechanical parameters or its tension softening relationship. In addition,
the model can be used to perform a parametric study on the flexural strength of any
fiber reinforced composite. This allows an understanding of how the flexural strength
of fiber reinforced composites depends on the different micromechanical parameters, so
that the flexural strength can be controlled by the micromechanical parameters.
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Figure 22.Variation of Flexural Strength to Tensile Strength Ratio as a Function of
Fiber Length [45].

Fig.23 shows the variation of flexural strength as a function of beam depth, as
predicted by the above model and experimentally measured by Ward and Li [44] for a
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6.4 mm aramid fiber reinforced mortar. The fiber volume fraction was 1.5 percent, and
the beam depths were 63.5, 114, 171, and 228 mm. The critical fiber length for this
composite is 3.6 mm. This indicates that the composite must have failed with a large
fraction of ruptured fibers within the beam fracture process zone. Fig.23 shows that
there is a reasonable agreement between the experimental data and the theoretical
prediction for the composite flexural strength. The model and experimental data
suggest that the flexural strength decreases as the depth of the beam increases. This
size effect of decreasing flexural strength with increasing beam depth has also been
experimentally recorded for plain concrete (e.g. [42], [47)) and fiber reinforced
concrete (e.g. [48]). Thus even though MOR is often regarded as a material property,
element size-effect must be accounted for in safe design of structures. Due to fiber
reinforcement, however, size effect is less severe in FRCC than in plain concrete
structural elements.
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Figure 23. Effect of Beam Depth on Flexural Strength of Aramid Fiber Reinforced

Mortar (Lt = 6.4 mm, d¢ = 0.012 mm, Gg, = 2800 MPa, 1 =4.5 MPa, f =0.95, T, =
4.6 MPa, E; = 20 GPa) [45].

4.3 Flexural Strength of Strain-Hardening FRCC

Maalej and Li [49] studied the flexural behavior of strain hardening FRCC (hereafter
referred to as HPFRCC) where the reinforcing fibers are discontinuous and randomly
distributed in the matrix. These composites have been designed according to
micromechanical models (Eqn (9)) which are constructed on the basis of micro-
mechanics of defect growth in a brittle matrix composite whereby crack bridging is
provided by fibers to achieve steady state cracking [1, 10]. This design principle is
detailed in sections 2.3 and 2.4. The flexural behavior of HPFRCC was related to their
uniaxial compressive and tensile stress-strain behavior. The HPFRCC material was
assumed to exhibit a strain hardening behavior characterized by the stress-strain curves
shown in Fig.24a and 24b for uniaxial tension and compression, respectively. To
simplify the analysis, it was assumed that the stress-strain behavior of the HPFRCC
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material in uniaxial tension and compression can be described by bilinear stress-strain
curves as shown in solid line in Fig.24a and 24b, respectively. In a rectangular beam,
having a width b and depth d, the strain was assumed to vary linearly along the beam's
depth. This results in the stress distribution shown in Fig.25 for the portion of the
beam subjected to the highest bending moment M. It was assumed that prior to
reaching the ultimate bending moment My, an inelastic microcracking zone of size a
expands from the extreme tensile fiber towards the extreme compressive fiber.
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Figure 24. Stress-Strain Behavior of HPFRCC (a) Uniaxial Tension (b) Uniaxial
Compression [49].
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Figure 25. Strain and Stress Distribution along the Beam Depth [49].

Maalej and Li [49] derived an analytic expression for the external bending moment M as
functions of the known material parameters, specimen dimensions, and the size of the
microcracking zone:

26
M=M[ch’efc’ch’gcu’ccp’gcp’a’b’d] ( )

where Of, is the tensile first cracking strength, ¢ is the tensile first cracking strain, Gcy
is the ultimate tensile strength, €¢y is the ultimate tensile strain, Gcp is the compressive
strength, €cp is the compressive strain at peak stress, and a is the depth of inelastic

microcracking zone. Material properties such as Ofc , Efc, Ocu» Ecu, and Ocp have
already been related to the composite micromechanical parameters through explicit
analytical expressions [1, 12, 14, 34].

It was assumed that the beam fails when the applied moment M is equal to the ultimate
moment capacity of the beam My,. Furthermore, it was assumed that the beam fails by

exhausting the strain-capacity of the material either at the tensile face (g > £cy) or at the
compressive face (g¢ > €¢p).

The flexural stress corresponding to M and the modulus of rupture (MOR)
corresponding to My, are given by:

oM
bd?

@7

Cf = = 0¢[Oc, €, OcurEcus OeprEcp-T]

(28)

6M
MOR = bdzu = 6¢[O¢c.EcrOcurEcuOcp-Ecp>Tul

where r = a/d, and r, correspond to the size of the microcracking zone when the
ultimate moment capacity of the beam is reached.
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Based on geometrical considerations, the beam curvature was computed as the ratio of

strain in the extreme tensile fiber (g,) to the distance from the extreme tensile fiber to the
neutral axis (c):

1_ & (29)

For a constant curvature, the maximum deflection for a beam having a span L is given
by:

L2

u=—

8p

Maalej and Li [49] showed that the moment-curvature (or flexural stress-curvature)

diagram of a beam can be computed by using Equations (26) and (29) {or (27) and
(29)] and allowing r to vary between 0 and ry,.

(30)
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Figure 26. Comparison Between Predicted and Experimentally
Measured Flexural Stress-Deflection Curves for the 2% Polyethylene HPFRCC

(Ot = 2.5 MPa, &g, = 0.00021, Gcy = 4.6 MPa, £¢, = 0.056,
Gcp = 60 MPa, £cp = 0.01, d = 101.6 mm) [49].

Fig.26 shows a comparison between a predicted flexural stress-deflection curve and
that experimentally measured for a third-point bending specimen made of an HPFRCC
material. The depth of the specimen and the tensile and compressive properties of the
HPFRCC material used in the computation are also shown in Fig.26. In computing the



74  Micromechanical models of mechanical response of HPFRCC

model predicted beam deflection, it was assumed that the curvature is approximately
constant along the length of the beam and equal to the curvature at the middle span.
Interpretation of the computations which led to Fig.26 indicates that first cracking
occurs when the flexural stress in the beam is equal to 2.5 MPa. Then the
microcracking zone (of size a) starts to move up from the extreme tensile fiber toward
the extreme compressive fiber. At the same time the position of the neutral axis is
moving away from the centroid of the beam cross-section toward the extreme
compressive fiber. This is accompanied by a continuous decrease in the stiffness of the
beam. Initially, the compressive stress distribution within the beam is linear. After a
certain propagation of the microcracking zone, the compressive stress distribution
becomes bilinear. The maximum moment is reached when the tensile strain in the
extreme tensile fiber reaches the ultimate tensile strain of the HPFRCC material. At that
moment, the size of the microcracking zone (a) is about 90 % of the beam depth. As
shown in Fig.27 this result is consistent with the experimentally observed
microcracking zone size around the peak load.

Figure 27. Cracking Pattern in the Beam Middle Span Around the Peak Load [49].

The above model suggests that the flexural strength of HPFRCC materials can be
increased by increasing the strain capacity, the tensile first cracking strength, and/or the
ultimate tensile strength of the material. The results of this model can be used in
conjunction with micromechanical models of tensile properties of HPFRCC materials to
optimize their flexural strength. Li et al. [50] showed that the tensile first cracking
strength, the ultimate tensile strength, and the ultimate tensile strain can be increased
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while maintaining a low fiber volume fraction by proper tailoring of the
micromechanical parameters (fiber, matrix, and fiber/matrix interface properties)
according to micromechanical models constructed on the basis of fracture mechanics
and deformation mechanisms.

Maalej and Li [49] showed that the MOR/o¢ ratio in HPFRCC is greater than three and
can be as large as five as demonstrated in the 2% polyethylene HPFRCC. In contrast,
for quasi-brittle materials, the ratio of flexural strength to tensile strength has an upper
bound of three. This results shows the importance of achieving strain hardening
behavior in FRCC. To further clarify this point, let's assume that a 2% FRCC shows a
quasi-brittle behavior such that the first crack strength is equal to the ultimate strength
and equal to 3 MPa. A typical MOR value for this fiber composite can range between 5
and 8 MPa depending the tension softening curve of the material but no more than 9

MPa. Further, let's assume that the micromechanical parameters (Lg, dg, Ef, o1y, T, f;
Vg remains 2%) were tailored such that this fiber composite achieved strain hardening
behavior with a first crack strength of still 3 MPa, and an ultimate strength of 5 MPa.
In this case it is expected that the MOR of this material would be at least 9 MPa, but it
could be as high as 15 MPa depending on its ultimate strain capacity. Therefore, by
modifying the failure mode of the fiber composite (from quasi-brittle to strain-
hardening) an improvement in the tensile strength capacity as well as the MOR would
be achieved.

4.4 Conclusions

Fiber reinforcements can be effective in improving flexural strength and flexural
ductility in cementitious materials. In FRCC, MOR enhancement is achieved by
stabilization of matrix macroscopic crack, basically by the tension-softening branch of

the 6—0 curve. This results in MOR to tensile strength ratio of typically 2-3. In
HPFRCC, MOR enhancement is achieved by delocalization of damage initiated on the
tensile side of the beam, with fibers contributing to this effect via the rising branch of

the 6-8 curve. This results in MOR to tensile strength ratio of typically more than 3.
In both cases, the size effect of MOR can be drastically reduced. This section
highlights the dependencies of bending response on fiber, matrix and interface
parameters via micromechanical models. It illustrates that MOR beam size effect, and
possibly time-dependency of MOR can be predicted.

5 FRACTURE RESPONSE
5.1 Introduction

One way of overcoming the brittleness of unreinforced cementitious materials is by
introducing fibers in the matrix. It has been convincingly demonstrated that significant
toughness enhancement can be obtained by proper fiber reinforcement of the
cementitious matrix. However, the increased toughness is generally associated with an
increase in the overall cost of the material due mainly to the added cost of the fibers and
further material processing. To use the minimum amount of fibers and achieve
maximum toughness improvement, researches have been developing analytical tools to
optimize the design of these fiber composites. The fracture energy due to bridging of
discontinuous aligned fibers in brittle matrix composites was studied by Cottrell [51],
Cooper and Kelly [52], and Kelly and Macmillan [53], and that of discontinuous
randomly distributed fibers was studied by Visalvanish and Naaman [54], Li [12], and
Maalej et al [14]. An overview of the above research work is presented in this section.
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5.2 Discontinuous-Aligned-Fiber Composites

Assuming a purely frictional fiber/matrix interface, where the shear stress is maintained
through-out the fiber pull-out process, Cooper [52] and Kelly and Macmillan [53]
derived analytical expressions for the fracture energy G due to the bridging of aligned,
rigid, and discontinuous fibers in brittle matrix composites. Cooper [52] identified the
existence of a critical fiber length I beyond which fiber rupture can take place in the
composite. He showed that when the fiber length is less than [, all fibers will be
pulled-out and the fracture energy increases as the square of the fiber length. However,
when the fiber length is greater than /¢, some fibers will be ruptured and do not
contribute to the fracture energy. In the latter case, Kelly and Macmillan {53] showed
that the fracture energy is inversely proportional to the fiber length.

€1y

3

6 o2 Ls2  forLg<2L
3Lyt forLg22L,

where G, = G,/G,, G, = V4L2/d;, L, = 0,ds /4t =1./2, and L; = L; /2L

In the above equation, and Gy, is the tensile rupture strength of the fiber.

According to Cotterell [51], the fracture energy can be maximized by increasing the
critical fiber length /; and keeping the fiber length closely equal to /.. When Ly is equal
to I, the fracture energy G is at an optimum value given by the following equation:

g_ Vf"CLC2 - _1_ Vfcfuzdf
3 d; 24 1

G oM = (32)

Therefore G can be maximized by increasing the strength of the fiber, increasing the
diameter of the fiber, and/or decreasing the fiber/matrix interfacial bond strength. All of
these effects amount to increasing the critical fiber length /.

5.3 Discontinuous-Randomly-Distributed-Fiber Composites

The fracture energy due to bridging of discontinuous randomly distributed fibers in
brittle matrix composites can be computed by integrating the area under the composite
bridging stress-displacement (6-8) curve [12, 54] (see eqns. (7) and (23)). The area
under the pre-peak 6-6 curve represents the fracture energy absorbed during the fiber

debonding process, and the area under the post-peak 6-0 curve represents the fracture
energy absorbed during the fiber pull-out process.

3.3.1 Pull-out Fracture Energy

Assuming a purely frictional fiber/matrix interface and complete fiber pull-out,
Visalvanich and Naaman [54] derived a semi-empirical model for the tension softening

curve (0-0) in discontinuous randomly distributed steel fiber reinforced mortar. From
the derived o-6 relationship, and assuming a parabolic crack profile, Visalvanish and

Naaman [54] derived an expression for the apparent critical fracture energy G, of the
material:
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where o is the efficiency factor of discontinuous fibers which depends on fiber

orientation and average pull-out length of the fiber after matrix cracking, § and n are
parameters that define the crack profile, c is a crack extension beyond an initial crack
length ay, and G is the steady state fracture energy which can be obtained by

integrating the area under the -8 curve or by substituting Lg/2 for fc? in eqn (33). In
this case the fracture energy would be equal to

2 3
G, =0.171otV, Izi—f = Go[0.6840L¢?| (34)
f

For a linear crack profile n would be equal to 1 and B would be equal to the tangent of
the critical crack opening angle CCOA (opening angle of a crack at the onset of its
propagation).

Li [12] derived an expression for the composite fracture energy G by integrating the

area under the post-peak G- curve given by eqn (7). This led to the following
expression:

L¢? 1 -,
Ge == gtVi——=G,| gLy (35)
f

Note that when there is no snubbing effect (i.e. g = 1 corresponding to f = 0), the
fracture energy as given by eqn (35) is equal to half the fracture energy as given by eqn
(31). This means that the random distribution of fibers reduces the fracture energy by a
factor of 2. For some fiber composites, however, this reduction in fracture energy due
to the fiber random distribution is offset by the snubbing effect. For instance,
polypropylene and nylon fibers in mortar show snubbing factors (g) of 1.8 and 2.3,
respectively [13].

The model derived by Li [12] would be identical to the one derived by Visalvanich and
Naaman [54] if we set the snubbing factor g equal to approximately 20.

In eqgns (33)-(35), it was assumed that stresses in loaded fibers never reach their tensile

rupture strength ory. However, it is reasonable to assume that for certain fiber/matrix
systems, the combination of fiber embedment length, diameter, inclined angle,
interfacial bond, and snubbing friction may lead to stresses in a number of loaded fibers
exceeding their tensile strength. In this case, those fibers are expected to break. Li et
al. [55] studied the fracture energy associated with fiber bridging in short random fiber
reinforced brittle matrix composites taking into account the effect of fiber tensile
rupture. They showed that the composite bridging fracture energy can be computed by
summing the energy contributions of the individual fibers which bridge the matrix crack
plane. This method was later adopted by Maalej et al [14] to drive an analytical
expression for G¢ that accounts for fiber tensile rupture. Maalej et al [ 14] assumed that
in a composite where potential fiber rupture can occur, all fibers are identical and have
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uniform tensile strength along their length. In this case, when fiber rupture occurs, it
would be at the matrix crack plane. Therefore, when a fiber breaks, it no longer
contributes to the composite fracture energy. Maalej et al [14] identified the existence
of a critical fiber length Ly = 2L.e-f™2 beyond which fiber rupture starts to 0ccur in the
composite. The composite bridging fracture energy derived by Maalej et al [14] is
given by

6 oL {g(d)b)ifZ +h(@y)L¢!  forLp <Lg<2Llc

3 |goly! for Ly 2 2L (36)
where
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The parameter ®p is a critical fiber inclination angle 0 < ®p < 7/2) that separates two
groups of fibers. Those oriented at an angle less than ®@p (i.e. 0 < ® < Dp) pull-out
subsequent to complete debonding, and those oriented at an angle greater than dy (.e.

P, <D< 1/2) could rupture after incomplete debonding if their embedment length is

greater than a critical value (I = Le ef®). Note that the expression for Gc derived by Li
[12] for the case of complete fiber pull-out in the composite is retrieved from eqn (36)

by setting ®p = 7/2. In addition, for Lg¢ = 2L¢ and when there is no snubbing effect
Ge.g2=1 corresponding to f = 0), the fracture energy as given by eqn (36) is equal to
half the fracture energy as given by eqn (31). Once again we verify that the random
distribution of fibers reduces the fracture energy by a factor of 2.

As it has been reported for the case of discontinuous aligned fiber composites, eqns
(35)-(36) indicate that when the reinforcing fibers are short (Lf < Ly) the composite
fracture energy is proportional to the square of fiber length, however, when the
reinforcing fibers are long (Lg > 2L¢) the composite fracture energy is inversely
proportional to the length of the fiber. This dependence 18 depicted in Fig.28 which
shows that the fracture energy increases initially as a function of fiber length, reaches a
maximum value, and then starts to decrease. Therefore, there exists an optimum length
of the fiber at which the fracture energy is maximum. The optimum fiber length and
fracture energy are given by the following equations:

Lo =L o-0.56sin(in/3) @37
- [o}

Ggpt = 0.3281 10532 (38)
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Figure 28. Effect of Fiber Length on Composite Fracture Energy [14].

Eqgn (38) indicates that the composite fracture energy can be enhanced by increasing the
fiber diameter, decreasing the bond strength, increasing the fiber strength, and/or
reducing the snubbing effect. In either case, the optimum fiber length will be
increased. However, if the optimum fiber length is to be used in a composite, material
processing can become laborious as longer fibers are generally more difficult to
process. When there is no snubbing effect (i.e. f = 0), the optimum fiber length would
be equal to 2L as for the case of discontinuous aligned fiber composites. However,

G would be equal to half the optimum fracture energy for discontinuous aligned
fiber composites.

Fig.29 shows a comparison between model predicted and experimentally measured
composite fracture energy for eight different fiber cement composites. The normalizing
micromechanical parameters are listed in Table 1. The data for the steel, polyethylene,
and Kevlar fiber composites have been reported by Visalvanich and Naaman [56],
Wang et al [57], and Maalej et al [14], respectively. As indicated there is a good
agreement between the model predictions and the experimental measurements. Note
that for the steel and polyethylene fiber composites no fiber rupture has been reported.
However, for the Kevlar fiber composite, fiber rupture has been experimentally
observed. This is consistent with the model prediction as shown in Fig.29.

For any conventional fiber reinforced composite, it is possible to alter the
micromechanical parameters such that the composite can show a better performance in
terms of fracture energy. Whether the composite can be made to achieve its optimum
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properties depends on the feasible range of the micromechanical parameters, given the
state of technology. For instance, fiber length can be easily customized and controlled.
However, material processing can become a problem when long fibers are required for
optimum performance. Furthermore, the fiber/matrix interfacial bond strength can be
adjusted through, for instance, surface finish modification and/or mechanical crimping
[58, 59].

Table 1. Micromechanical Parameters of the Different Fiber Composites.

Fiber Vf Lf df Lf/df Gfu T f
(mm) | (mm) (MPa) [(MPa)|

Steel 0.01 6.35 0.150 42 2500 4 1

Steel 0.005 6.35 0.150 42 2500 4 1

Steel 0.02 6.35 0.150 42 2500 4 1

Steel 0.01 12.7 0.150 85 2500 4 1

Steel 0.01 19.05 0.400 48 2500 4 1
Polyethylene | 0.01 12.7 0.038 334 2700 1 0.55
Polyethylene 10.006 6.35 0.038 167 2700 1 0.55
Kevlar 0.02 12.7 0.012 1058 3310 4.5 0.6

—— Model Prediction (f = 1.0)
— — - Model Prediction (f = 0.6)

T '/'\' "T71 O Experiment (Steel Fiber)
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Figure 29. Variation of Composite Fracture Energy as a Function of Fiber Length:
Model Prediction vs. Experimental Measurement [14].
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5.3.2 Debonding Fracture Energy

Li [12] showed that the fracture energy absorbed during the debonding of
discontinuous randomly distributed fibers from the matrix can be estimated by

integrating the area under the pre-peak G¢-8 curve. The result is given by the following
equation:

2
_5 gvetLyd 39
" 12 df%E¢(1+1)

Note that the above equation assumes no fiber rupture in the composite. Comparison
between eqns (39) and (35) indicates that the debonding fracture energy is negligibly
small with respect to the pull-out fracture energy. Nevertheless, the debonding fracture
energy is an important material property that governs the presence or absence of steady
state cracking in the composite. Li and Leung [1] showed that to achieve steady state
cracking in a composite, it is necessary that the debonding fracture energy is greater
than ten time the crack tip fracture energy. For that it is interesting to note that Gy is
proportional to the cubic power of fiber length and square power of bond strength,
and inversely proportional to the square power of fiber diameter. Therefore, steady
state cracking can be effectively promoted by increasing the fiber length, increasing the
bond strength, and/or reducing the fiber diameter.

The dependence of Gy on the micromechanical parameters (particularly Ly, 1, and dy) is
altered as fiber rupture starts to occur in the composite (L¢ > Ly). When fiber rupture
occurs in the composite Gy would be equal to:

3 4
G oL gVl L) (Le
" T12d2Ec(1+m)| \L¢ L¢ (40)

It can be shown that the debonding fracture energy in the case of fiber rupture can be
increased by increasing the length of the fiber, increasing the strength of the fiber,
increasing the diameter of the fiber, reducing the interfacial bond strength, reducing the
elastic modulus of the fiber, and/or reducing the snubbing factor.

5.4 Strain Hardening Cementitious Composites

A ductile fracture mode has been recently reported by Li and Hashida [60] in a double
cantilever beam fracture specimens fabricated from a cement paste matrix reinforced
with 2% by volume of polyethylene fibers. The recorded fracture behavior was
characterized by the development of an off-crack-plane microcracked zone in addition to
the bridging process zone observed in quasi-brittle fracture mode. The areal dimension
of this inelastic damage zone was observed to be more than 500 cm? leading to an
extensive off-crack-plane inelastic energy absorption. The total fracture energy
consumed in the fiber bridging fracture process zone, and in the inelastically deformed
material off the crack plane, was measured to be 24 kJ/m2. This ductile fracture
phenomenon was made possible by the strain hardening behavior of the composite
material. Kabele and Horii [61] proposed a simple analytical model for fracture analysis
of strain hardening FRCC (hereafter referred to as HPFRCC). The model was used to
predict the fracture energy of the composite based on the knowledge of the uniaxial
tensile behavior of the material. In this model, the composite undergoing multiple
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cracking was treated as a homogeneous continuous material with additional strain,
called inelastic cracking strain, which represents the crack density and opening. The
strain-hardening theory of plasticity was used to model the multiple cracking in
HPFRCC. The authors used the associated flow rule and a yield function where the
yield surface in 2-D stress state is defined by the following function:

* * * * \2 * * \2
Gxx+6yy + Gxx_cyy ny'_oyx

F +
2 2 2

-0 =0 (41)

k% * L .
where Gyy, Oyy, Oxy,and Gy, are initially equal to the in-plane components of the

stress tensor and Gy is the first cracking strength (see section 2.3 and 2.4). Note that
this model accounts for the fact that multiple cracking is initiated on planes normal to
the direction of the maximum principle stress. This implies that at any point of the

material, multiple cracking can evolve in any direction according to the local stress
field.

Pseudo-strain hardening during multiple cracking was represented by the following
kinematic hardening rule:

*
Ojj = Ojj — jj 42)

where ij equals to xx, yy, Xy, and yx; ojj are components of the stress tensor; and oj
are defined by:

daij = thf] (43)

where deicj are components of the incremental cracking strain tensor and h is a material

parameter associated with the tangent of the 6—¢ relation in the strain-hardening regime.

In the model above for multiple cracking, the cracking strain characterize the crack
openings smeared over the material volume. Thus, the direction of the maximum
principle cracking strain is normal to the direction of the most developed cracks.
Consequently, the condition for crack localization is defined as follows: a localized
crack is formed on the plane normal to the maximum principle cracking strain when its

magnitude reaches certain critical value g¢y*.

Localized cracks are modeled as discrete discontinuities in the displacement field and
the effect of fiber bridging is represented by a traction applied to the crack surfaces.
The magnitude of this traction decreases with increasing normal COD according to the
tension softening relationship:

dt, =s o, (44)
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where dt, is the incremental normal traction, s is the slope of the tension softening

curve, and d8,, is the incremental normal COD. The material parameters G, h, ¢y,
and s are determined from the uniaxial tensile test.

Kabele and Horii [61] implemented the above model into a FEM code, and attempted to
reproduce the results of experiments conducted on HPFRCC by Li and Hashida [60]
and Maalej et al [14]. In the former study, Li and Hashida [60] used the J-based
technique to measure the fracture energy of a strain hardening polyethylene fiber
reinforced cement paste where the fiber volume fraction was 2%. The bridging fracture
energy was measured by integrating the area under the post-peak stress-displacement
curve obtained from a uniaxial tensile test. The total fracture energy was measured
using load displacement curves of two DCB specimens which differ only in the original
notch length.

Kabele and Horii [61] determined the material parameters for the model from the
uniaxial tensile stress-strain curve as shown in Fig.30. Using these parameters, they
analyzed the DCB specimens. The FEM mesh used consisted of 2530 isoparametric
quadrilateral 4-node elements. During the computation some of these elements were
changed into cracked elements due to the localized crack propagation.

T .
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T X 1
— — — Approximation
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Multiple
Cracking |
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Figure 30. Experimental [62] and approximated uniaxial
stress-strain curve for 2% Polyethylene HPFRCC

(I =207 mm, E = 22 GPa, o, = 2.2 MPa, 6., =4.32 MPa, £.,* = 5.78 %,
8o = 6.62 mm, h = [Ccy-Ctcl/Ecy”, S = Gcu/Bo).

Fig.31 shows the analytical and experimental load displacement curves for a DCB
specimen. As indicated, the model is able to reproduce the significant pre-peak
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nonlinear behavior, the displacement at peak, and the post-peak branch. However, the
model predicts higher load at peak. A possible reason for this could be that the model
response reflects the ideal case of material homogeneity.

The model simulation indicated that prior to the bend-over point, both multiple and
localized cracks concentrate near the original notch tip. However, during the hardening

portion of the P-8 curve, multiple cracks spread rapidly around the notch tip while the
localized crack propagates slowly. The distribution of cracking strain and evolution of
the localized crack at the peak load is shown in Fig.32. As indicated in Fig.32(a), the
multiple cracking zone has an onion like shape and extends almost to the specimen
boundaries. This observation is consistent with the experimental results as reported by
Li and Hashida [60].

As a further step Kabele and Horii [61] attempted to reproduce the experimental results
of Maalej et al. [62] on the effect of fiber volume fraction on the fracture energy of
strain hardening polyethylene fiber reinforced cement paste. The fiber volume fractions
considered in the analysis were 0.8%, 1%, 2%, and 3%. the Material parameters for
the model were determined from the respective uniaxial tensile stress-strain curves.
Fig.33 shows a comparison between the model results and the experimental results.
We can see that the model can predict the general trend that with increasing fiber
volume fraction, the fracture energy initially increases and then becomes saturated.
However, the model predicts higher magnitudes of total fracture energy which can be

related to the overpredicted peak load of the P-8 curve.
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Figure 31. Experimental [60] and Predicted Load-Displacement Curves for DCB
specimen (H=30cm, W =31 cm, a = 14.8 cm).
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5.5 Conclusions

Significant enhancement in fracture toughness can be achieved with the use of fibers.
In FRCC, toughening is attained by frictional pull-out of fibers bridging a matrix crack.

The 6-8 curve provides a means of calculating the composite fracture toughness due to
this effect. This section demonstrates that when the influence of fiber rupture is taken
into account, the micromechanical model predicts an optimal composite toughness
associated with specific combinations of fiber, matrix and interface parameters. Orders
of magnitude toughness improvement has been observed and predicted based on the
fiber friction pull-out mechanism. Toughness improvement can be even higher in
HPFRCC in which damage tolerance is greatly enhanced by the blunting effect of
multiple cracking. Damage evolution surrounding a notch tip can be modelled based on
the uniaxial tensile pseudo strain hardening response.
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Figure 32. Distribution of Cracking Strain and Evolution of Localized Crack at Peak
Load (a) Contour Lines of Maximum Principle Cracking Strain (%); (b) Principle
Cracking Strains and Localized Crack Near the Original Notch Tip [61].

6. ELASTIC MODULUS
6.1 Introduction

The elastic response of fiber reinforced cement based composites was modeled by
Alwan and Naaman [63] and Alwan [20] using two different approaches. The first
approach, based on composite mechanics principles, yielded a mathematical model that
predicts the modulus of elasticity of brittle-matrix composites reinforced with ductile
discontinuous fibers [63]. The second approach, however, based on energy principles
and the homogenization theory, lead to a numerical scheme that is built on a finite
element procedure and that predicts the elastic constants of any homogenized fiber
reinforced composite [20]. In what follows, a brief summary is introduced on each
approach and the resulting model.
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Figure 33. Experimental [62] and Predicted Variation of Fracture Energy as Function of
Fiber Volume Fraction.

6.2 Pseudo Three Phase Model

Generally, the elastic modulus of a two-phase composite is predicted from the
mechanical properties and proportions of the two components. Here a new approach is
introduced in which the interfacial layer surrounding the fiber, viewed as a third phase
with zero volume, is modeled as an imperfect bond with mechanical properties similar
to or different from the surrounding matrix (Fig. 34). Based on this assumption, new
upper (Eqn. 45), and lower bound (Eqn. 46) solutions for the elastic modulus of
aligned short fiber composites are analytically derived assuming either a uniform
applied strain or a uniform applied stress.

tanh(AL)
Ec'lluniform strain = Vr Ef [1— )\'L ] +VmEm (45)
E
- uniform stress = Q tazh(lL) (46) '
[@b+="=]
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Where, L = half fiber length.
f43
and A = '\/ ]23:2: (1 + %Lf::?’“)
in which r, = fiber radius,
and X = interfacial bond modulus.

Matrix

Fiber

Imperfect Bond Layer
(Zero Volume)

Cross-Section of the unit cell

A 3-D view of the unit cell

Figure 34. Typical unit cell illustrating the Pseudo-Three-Phase model [63].

The two solutions are then combined linearly (Egn. 47) to achieve an average modulus
of aligned short fiber composite.

+ (1-a)E_,

uniform strain

47)

= oE
c-Haverage ©/lyniform stress

The usual lower bound solution for the modulus of elasticity of a fiber composite with
the fiber normal to the axis of loading is then modified to account for matrix porosity as
affected by the presence of fibers (Eqn. 48).

1-
(1—_1‘% 3EmEf

(48)

¢ |_modified 1-D 3
EV_+ 1—_&) E,V,
where, p = porosity of matrix with presence of fibers,
and Po = porosity of matrix with no fibers.

It is finally suggested that the elastic modulus of random short fiber composites (Eqn.
49) be taken as a linear average of the values obtained for the aligned (Eqn.47) and
normal (Eqn. 48) fiber values.
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E, = H Ec-lla,\,mge + (-E.. | paiiea (49)
Comparing the model output with experimental results [57, 58] lead to averaging
coefticients of 0.5 in Eqns. (47) and (49), (Fig. 35). This is acceptable because the
aligned fiber solution is basically an averaged solution of an upper and a lower bound
solution.
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Figure 35 . Comparison of model with experimentally measured data [20].

6.3 Homogenization Based Model

The homogenization theory covers the relations between the microsccpic and
macroscopic scales through which a heterogeneous material is replaced by an
"equivalent” homogeneous one. In the homogenization method, it is usually assumed
that a composite is locally formed by the spatial repetition of a micro structure or
"microscopic” cells which are small enough when compared to the overall macroscopic
dimensions. The composite homogenized elastic constants "Lpn,," are then
formulated based on the characteristic response of the unit cell,

mn  pq
Linnpq = %J{ Lijk1 () Xi,iXk.1 } dy (50)

Whel‘eaLilm ) Elastic constants of constituents as a function of space.
m Pq

Xi.jXx.1 = characteristic deformations due to unit deformations in the
mn and pq directions respectively.
Y = volume of the unit cell.
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Such response can be predicted either analytically or numerically, depending on the
complexity of the unit cell geometry. Examples on numerical approaches in
Homogenization include the implementation of finite element based procedures with
homogenization theory [66, 67, 68].

The implementation of the finite element method in computing the homogenized elastic
constants of composites can be presented in two steps. First, by examining (Eqn. 50),
it can be concluded that the characteristic deformations in the unit cell are to be
evaluated over the whole volume of the unit cell. The finite element method allows for
the evaluation of the displacement field at discritized nodes in the unit cell as the unit
cell is subjected to different boundary conditions. Second, by assembling the global
unconstrained stiffness matrix of the modeled unit cell, one would have defined
discretely the term related to Lij in (Egn. 50). Therefore, by discretizing the unit cell
into smaller elements, and defining the material properties for each discritized element
in the unit cell, (Eqn. 50) can be written in the following numerical form

1 mn T pq
Lmnpq = [UI"[K][U] (51
Zvei
i=1
where, [K] = unconstrained stiffness matrix of the unit cell.
Pq
U = nodal displacement vector due to a unit strain
deformation in the p-q direction.
[U] = nodaldisplacement vector due to a unit strain
deformation in the m-n direction.
Vei = volume of a discretized element of the base unit cell.

when values of the composite modulus obtained from different unit cells are compared
in (Fig. 36), the difference is significant even at low fiber volume fractions. The
reason for this difference is that one type of unit cells is symmetrical in the longitudinal
and transverse direction (solid dots), while the other type is not. All the fibers in the
latter type are aligned in the longitudinal direction, therefore, the homogenized
composite is stiffer in that direction than an equivalent composite with only 50% of its
fibers aligned in that direction. And while both types of unit cells account for fiber
interaction, the first type of unit cell models a quasi-isotropic composite, while the
second type models an orthotropic composite.

Since the homogenization-numerical procedure provides the values of the elastic
constants of the unit cell. The effective modulus of the fiber composite in any
orientation angle for the load application can be easily derived from the computed elastic
constants. Thus one can study the effect of fiber orientation on the elastic modulus for
various unit cells. Two types of unit cells were used in this comparison. Type [1]
unit cells of the quasi-isotropic composite, and type [3] unit cells of the aligned case
with fiber interaction. Figs. 37 and 38 are non-dimensional plots of the composite
elastic modulus. The plots show the variation of the elastic modulus as a function of

the orientation angle 6. 8 is the angle between the major axis of fiber alignment and the
direction of load application. It may be noted in (Fig. 37) that for the cement based

composite system chosen, Ex does not monotonically decrease from Ep_ at 6 = 0° to Bt
at 8=90°. E, is less than both E; and Et for values of 8 between 30° and 70°. The
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curves shown can be changed considerably by relatively small variations in the
properties of the fiber matrix combination. It should be observed from these curves
that the extreme values of material properties do not necessarily occur in principal
material directions, which is actually the case for E,, in the cement based composite
system.

m

1]

~ 1.6

" [ l I Quaslg Isotropic]
2 1.5 [ Fibers Type : Steel 30/50 punit Cell
% * Fiber length = 30 mm (1.2 in)

(o] Fiber Diam. = 0.5 mm (0.02 in)

= 1.4 :___,E' =3E7psi

o L £ =3E6 psi /

= [ " ; ; :

c =] S

o) 1.2 | : :

o : '

5 1.1 —— Quasi Isotropic

o =—O=— Orthotropic, EL
s 1 '

c 0 2 4 6 8 10

Fiber Volume Fraction, Vf (%)

Figure 36 . Comparison between types of unit cells [30/50 steel fibers] [20].
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Figure 38 . Variation in the elastic modulus of a balanced short fiber cement composite
[20].

Another important factor that affects the composite elastic modulus is the porosity or
void content of the matrix. This effect is very critical in cement based composites due
to the nature of processing the composite material. (Fig. 39) shows a non-dimensional
plot of the composite longitudinal and transverse modulus as a function of the void
content by volume. Both moduli decrease at a constant rate and with the same slope as
the void content increases. Therefore, the homogenization-numerical procedure has
shown flexibility and versatility in the computation of the elastic modulus of
composites. It allows for including the effect of void content in the matrix as it allows
for the study of other effects such as fiber orientation, fiber packing, and size effect of
unit cell.

Finally, the composite elastic modulus was computed by the homogenization model for
three different packing orders or proportionality constants of 20, 30, and 50
respectively. The proportionality constant is defined as the ratio of the relative edges of
a unit cell. The results are shown in Fig. 40, along with the prediction model from the
pseudo-three-phase model. Results obtained by the homogenization model are in good
agreement with experimentally measured data. Moreover, the homogenization model
shows the effect of the packing order, translated in the proportionality constant, on
changing the mechanical properties of composites with similar fiber contents. Thus,
providing an analytical tool that can be used in optimizing the elastic response of
composites in general by controlling the packing order of the constituents.
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Figure 39 . Effect of void content on the elastic modulus of a random short fiber
composite [20].
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6.4 Conclusions

Composite modulus can be modelled in terms of fiber parameters. It has been observed
that a porous transition zone exists around fibers in cementitious composites (see e.g.
Chapter 5). As discussed in Section 3, microdefects can also be introduced into the
matrix in the presence of fibers. The present model takes these features into account via
a third phase of possibly lower stiffness and via porosity of zero stiffness. This
analytic model and a homogenization model more suitable for computation FEM
analysis, is shown to predict composite modulus as a function of fiber volume fraction
for a HPFRCC well.

7 DISCUSSIONS AND CONCLUSIONS

Over the last decade, micromechanical models have gradually increased in
sophistication. The most important advancements may be the enhanced ability to deal
with the more complicated short random distribution of fibers more realistic of
HPFRCC, as opposed to the simpler continuous aligned fiber arrangement. Additional
realism deals with the possibility of fiber rupture, and inclined fiber mechanical
interactions with the cementitious matrix. Further, earlier micromechanical models
often confined to simulate elastic behavior, are giving way to the modern
micromechanical models which addresses important non-linear post-cracking behavior.
These behaviors are particularly important in HPFRCC in which fiber efficiencies are
often best activated after matrix cracking. At this stage, the classical composite model
in which strain compatibility between fiber and matrix is assumed can no longer
suffice.

The various micromechanical models collected in this chapter suggest that it is possible
to relate composite mechanical properties to micromechanical parameters associated
with fiber, cementitious matrix, and interface. That is,

Mechanical property = fen (fiber, matrix, and interface) (52)

with fiber parameters including fiber length, diameter, modulus and strength, matrix
parameters including the matrix modulus, toughness, porosity, flaw size and
density/distribution, interface parameters including bond strength and modulus, and
snubbing coefficient. These parameters, over ten of them, play different roles and
importance to different properties. For example, matrix toughness plays no role in the
composite Young's modulus, but is critical to the first crack strength and tensile strain-
hardening behavior (and hence the uitimate tensile strain capacity). Other parameters,
like the fiber diameter, seems to play important roles in many composite properties.
The micromechanical models clarify the governing constituents for each composite
property.

The magnitude of improvement derived from fiber reinforcement varies significantly for
different composite properties. Table 2 summarizes the % improvement observed in
the HPFRCC:s discussed in this chapter. Naturally, these values change with different
fiber types, volume fraction and other fiber parameters, and also depend on details of
processing routes. Even so, it can be observed that fibers can be extremely effective in
providing orders of magnitude improvement in composite ductility as measured by
tensile strain capacity, and in composite fracture toughness. Moderate improvements
can be achieved in composite tensile, compressive or flexural strengths, typically on the
order of several times the corresponding matrix strength, but seldom exceeding an
order of magnitude. Composite properties such as elastic modulus cannot be improved
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by much more than a factor of two. The micromechanical models highlight the
reasoning behind these magnitude changes.

In reviewing the various composite properties discussed in this chapter, the
micromechanical models reveal a common feature underpinning all (except the elastic
modulus) composite properties. This common feature, a more fundamental composite

property, is the 69 relation. This is not surprising since properties governed by the
propagation of cracks can be expected to be influenced by the fiber bridging effect

across matrix cracks. The fiber bridging effect is best described by the -3 relation,
which represents the spring-like ‘cohesive' force resisting crack opening. Latest

development in 6—8 modeling can be found in [69, 70}.

For HPFRCC best characterized by the pseudo strain-hardening response in tension

(Chapter 1), the rising branch of the 63 relation is more important than the descending
branch. This feature is amply brought out in the discussion in this chapter in relation to
the condition for pseudo strain-hardening (section 2.3). This rising branch is
insignificant and is usually ignored in ordinary FRC. '

There is a general trend in recent years in increasing use of microfibers with small fiber
diameter in HPFRCC. Because of the small diameter close to or even smaller than the
cement grain size, the interfacial bond strength is usually enhanced due to elimination of
the weak transition zone (Chapter 5). Reduction in fiber diameter and increase in bond

strength leads to improvements in the fiber bridging effectiveness via the 66 relation,
according to micromechanical models (eqn. 7). Thus, it is not surprising that
microfibers can lead to better mechanical performance, if it is not limited by workability
problem in the mixing process. As a general rule, smaller fiber diameter usually
associates with higher fiber strength (due to molecular alignment in polymer fibers,
work-hardening in steel fiber drawing, microflaw elimination in carbon fibers).

It should be clear by now that micromechanical models can provide good physical
understanding as well as good basis for microstructure tailoring of composite
properties. This is best demonstrated by the pseudo strain-hardening properties.
Micromechanics quantifies the critical combination of fiber, matrix and interface
properties needed for achieving pseudo strain-hardening,

While the micromechanical models have been shown to predict various important
mechanical properties of HPFRCC well, there are still plenty of shortcomings in the
present generation of these models. Some of these are pointed out below:

a) Some micromechanical parameters can become inter-dependent, creating a more
complex situation for model description. For example, some experiments have
indicated that fiber/matrix interface bond strength can deteriorate with fiber content.
The rate of deterioration may depend on fiber type and processing details. Another
example is illustrated by the micromechanical model described in this chapter for
compressive strength. It suggests that matrix defects can be introduced by fibers.

b) Some micromechanical parameters, although physically reasonable, are none-the-
less difficult to quantitatively measured. These include pre-existing microcrack size and
population, or flaw density. Also measurement of isolated parameters through model
composite such as bond strength measurement in a single fiber pull-out test, may not
represent the same parameter in a true composite.

¢) Some micromechanisms, while reasonably assumed, are not yet directly verified,
and may be dependent on the particular matrix, fiber or even processing conditions. In
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other situations, certain micromechanisms are observed, but is found to be too complex
to implement in a mathematically tractable micromechanical model.

Table 2. HPFRCC properties improvement over plain matrix.

HPFRCC Improve Example fiber Reference
Properties -ment system
(%) _
Tensile first 10 to 40 2% PE fiber [4]
crack strength 100 4% PV A fiber [72]
80 3% Carbon fiber [73]
Tensile 20 to 200 2% PE fiber [4]
ultimate 500 12% Steel fiber [74]
strength 400 12% Steel fiber [75]
Tensile first 40 2% PE fiber [71]
crack strain 60 3% Carbon fiber (73]
Tensile 20000 2% PE fiber [4]
ultimate strain 2900 12% Steel fiber [74]
7900 4% PV A fiber [72]
10000 7% PP fiber [76]
1750 6% Steel fiber 77}
Compressive 10 to 50 12% Steel fiber 74]
modulus
Compressive 50 2% PE fiber [16]
strength 100 1% Aramid fiber [29]
150 to 300 12% Steel fiber [78]
Compressive 40 to 100 2% PE fiber [16] [71]
strain 300 12% Steel fiber 78]
Fracture 150000 3% PE fiber 62]
toughness 600000* 12% Steel fiber [78]
170000* 6% Steel fiber [79]
Flexural 500 2% PE fiber [49]
strength 150 to 950 14% Steel fiber [78]
40 to 160 5 to 20% Steel fiber [34]
2000 8% Carbon+cont mesh [23]
350 6% Steel fiber [79]

*From area under load deflection curves.

The shortcomings of the present generation of micromechanical models point to
challenges for the research community. In addition, there are urgent needs for
investigations in the following areas:

a) Composite microstructure tailoring: More concerted effort at bringing
micromechanical models to bear on composite property design via microstructure
tailoring. With further micromechanical model refinements, composite microstructure
tailoring represents an immense opportunity for creating greatly enhanced properties in
the next generation HPFRCC.

b) Integrated studies of composite properties using a consistent set of micromechanical
parameters. This is in contrast to current investigations where only one property is
investigated at one time.

c¢) Expand the coverage of mechanical properties to include more complex loading
histories, such as fatigue properties, or mechanical responses under multi-axial loading
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conditions, and to include time-dependency of composite property via time-dependency
of certain micromechanical parameters.

d) Linking microstructure via composite properties to structural performance.
Ultimately, HPFRCC are desired for their ability to enhance the performance of
structural elements or systems. It would be most desirable if HPFRCC can be
designed according to specific structural performance or functional needs.
Micromechanical models can serve to achieve this objective.
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