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Istroduction

The study of elastic deformation fields in plane-layered
media due to localized elastic disturbance (e.g., cracks) is re.le-
vant to several areas of app!ied mechanics. Theseg areas in-
dude the study of deformations near fault zones in layered
arh models and the study of the structural strength and
micromechanics of layered composites. When studying such
problems it is often important to determine the elastic
response due to disturbances locathd at a point (e.g., point
forces, dilatation sources, and nuclei of strain, hereafter refer-
red to as point sources) or along a line (e.g., line forces and
dislocations, hereafter referred to as line sources). These pc_)im
source and line source solutions often lead to an appropriate
theoretical formulation of a variety of problems in the layered
media under consideration, which could then be efficiently
solved either analytically or numerically.

This paper describes a new general algorithm for obtaining
the elastic response to point and line source disturbances in
either of two mediums. The first medium consists of two
bonded elastic half spaces having different elastic moduli (Fig.
la)) and the second medium consists of an elastic layer
perfectly bonded to two elastic half spaces of different moduli
{Fig. 1(0)) hereafter referred to as mediums A and B, respec-
tively. When the elastic response due to an antiplane line
source disturbance (e.g., a screw dislocation) is required, the
algorithm is seen to correspond to the scalar image method.
Hence, the present algorithm for obtaining the elastic fields
due to point and line sources will be referred to as the
generalized image method.

The image method for antiplane and plane strain problems
has been applied to obtain the screw dislocation solution
{Chou, 1966) in mediums A and B, the edge dislocation solu-
ton (Head, 1953) in medium A and (Stagni and Lizzio, 1987)
n medium B. Various other researchers have studied the edge
dislocation problem in special cases of medium B, where either
one or both of the interfaces are either traction-free or fric-
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tionless (e.g., Lee and Dundurs, 1973; Nabarro and Kostlan,
1978; Moss and Hoover, 1978; Stagni and Lizzio, 1986).

Other known point and line source elastic fields include the
line force parallel to a free surface (special case of medium A
(Mellan, 1932)), point force in an elastic half space with a free
surface (special case of medium A (Mindlin, 1936)), and point
force in medium A (Rongved, 1955).

A systematic formulation for the derivation of point sources
in a multilayered medium (medium B being a special case) was
presented by Ben-Menahem and Singh (1968a,b) and later
refined by Singh (1970) and independently by Sato (1971).
Sato and Matsu’ura (1973) and Jovanovich et al. (1974a,b)
made use of the Sato and Singh formulations respectively to
calculate surface deformations for a variety of nuclei of strain
disturbances and a variety of layered media having a free sur-
face. The Ben-Menahem and Singh and the Sato formulations
determine the required elastic fields in terms of inverse integral
transforms which have to be numerically inverted for specific
numerical parameters. Rundle and Jackson (1977) presented
an approximate solution (as the sum of an infinite series) cor-
responding to a shearing nucleus of strain where the shearing
plane is parallel to the interfaces in a special case of medium B
and where a free surface is substituted for one of the half
spaces. It is to be noted that the nuclei of strain elastic fields in
medium A (or any elastic medium) can be obtained from the
corresponding point force solution by means of differentia-
tions and simple algebraic operations (e.g., Maruyama, 1964).

The scalar image method can be described as follows.
Assume that the solution field due to a localized line or point
source disturbance is known in an infinite homogeneous
medium, and call that solution the fundamental field. The
scalar image method (e.g., when dealing with Laplace’s equa-
tion) applied to plane-layered mediums determines the solu-
tion field to a line or point surface disturbance separately for
each layer. The solution field in the layer containing the
disturbance is equal to the fundamental field plus one (with a
single interface) or an infinite series (with multiple interfaces)
of some constant factors multiplying fundamental fields
located at shifted positions. The shifted positions correspond
to (direct or indirect) reflections of the actual position of
disturbance source with respect to the interfaces (an analogy is
the reflections of an object placed between parallel partially
refracting mirrors). The factors multiplying the image fun-
damental fields are determined from satisfying boundary con-
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ditions at the plane interfaces. The solution field in the layers
not containing the disturbance is equal to one (with a single in-
terface) or an infinite series (with multiple interfaces) of some
constant factors multiplying fundamental fields located at
shifted positions. The shifted positions correspond to (direct
or indirect) transmission of the actual position of the distur-
bance source with respect to the interfaces. Figure 2 is a
graphical interpretation of the reflection-transmission of the
fundamental field.

Stagni and Lizzio (1987) presented a two-dimensional image
method in medium B. Since the field equations of two-
dimensional elasticity are not scalar, boundary conditions at
the interfaces cannot be satisfied by assuming the reflected
and transmitted fields are constant factors multiplying shifted
fundamental fields. Using Muskhelishvili potentials
(Muskhelishvili, 1975), Stagni and Lizzio assumed that there
does exist image fields whose potentials are then expanded in a
general Laurent’s series plus a logarithmic term. By matching
boundary conditions at the two interfaces, a recursion relation
is obtained which determines the image fields. Finally,
Aderogba (1977) presents a three-dimensional method in
medium A in terms of Papkovich-Neuber potentials (hereafter
referred to as P-N potentials). Although the extension of
Aderogba’s algorithm to a medium B is in principle possible,
the calculation of image P-N potentials involve evaluating
multiple indefinite integrals whose multiplicity increases
(linearly) with the number of reflections. In general, these in-
definite integrals may not be obtained in closed form. The
algorithm to be presented is in terms of Hansen potentials
(used by Ben-Menahem and Singh, 1968a,b) whose relations
to the P-N potentials are described in the next section. The
general image algorithm presented in terms of the Hansen
potentials does not require the evaluation of indefinite in-
tegrals, although multiple partial differentiations with respect
to the coordinate perpendicular to the interface are required.
The need for multiple partial differentiations (with respect to
all coordinates) is required when the image method involves
the P-N potentials. The Hansen potentials can be viewed as a
linear operation (involving differentiation and integration) on
the P-N potentials which obviates the need for indefinite in-
tegration when specifying an image algorithm.

In this paper the algorithm of the generalized image method
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is presented for mediums A and B. Application of this
algorithm to a point dilatation source is then illustrated (other
examples can be found in Fares, 1987). The present algorithy
is suitable for generalization to viscoelastic mediums.

The Algorithm

Any elastic field can be represented in terms of Hansen
potentials (Ben-Menahem and Singh, 1968a,b). The Hansen
potentials are three harmonic (in the case of no body forces)
scalar functions (¢,, ¢, ¢;) defined in the region of interest
such that the elastic displacement field (1) is given as:

.0 ]
u=ve¢, + (Zeza_z¢z -V, _zazva—zd’z) + Vx(é,0) (D

where V is the gradient operator, Vx is the curl operator
and 6= 1/(3 — 4») (v is Poisson’s ratio, u is the shear modulus).
The P-N potentials (Q and ¥) are defined as:

u=(1/2p)+(V~

1
3 V+revV¥) @

The Hansen potentials are therefore related to the P-N
potentials as:

¢ =(1/2p)-Q

3? 1

az2 2= —4—#6v-g (3’
7  1+8 V¥
az2 3= 2“6 EZ -

In order to derive a general image method for a multilayered
medium, it is sufficient to describe an algorithm which derives
the reflected and transmitted field of an arbitrary point or lin¢
source in a medium with a single interface. The procedure 0
obtain the elastic field in a multilayered medium would thes
be formally similar to Chou’s method (1966) with image fields
obtained by repeated use of the single interface general imag®
algorithm (instead of factors multiplied by the original fus-
damental field). .

Consider the single interface of Fig. 1(a) (medium A) withs
point or line source located at x=y=0 and z=~h. Let
Hansen potentials of the point or line source (located 3
x=y=2z=0) in the absence of region 2 with an infinite ext¢%
sion of region 1 be given by (¢,°, ¢,°, ¢,°). Assuming the
Hansen potentials of the reflected and transmitted €last®
fields are scalar multiplies of (¢,°, ¢,°, ¢,°), (3/82)(¢,° 92
$5°) and (9*/322)($,°, 6,° ¢,°), the algorithm is obtall
(after a lot of algebra) by satisfying displacement and tractiof
boundary conditions along the interface z = 0 (see Fares, 198."
for an alternate derivation). Define the reflected and transmit”
ted potentials by (¢,%, ¢,%, ¢,%) and (¢,7, 6,7, :7): respe™
tively. The reflected and transmitted potentials are then gived
by:
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The Hansen potentials for regions 1 and 2 are then given by

(¢
(X|y’

ox,y,2 - h) + 0, R(x,y,2+h), &,°(x,9,2-h)+¢,%
2+h), 0:°(x.y,2-h)+ 638 (x,y,2+h)) and (¢,7

ag2—h), & 7(p,2— 1), &37(x.p,z—h), respectively. Note
«at R and T are matrix operators dependent on §y, 4,, v, and

..The single interface image algorithm can now be used to ob-
uin an image algorithm for multiple interfaces (Rice, 1985,
.vate communications). Consider medium B (refer to Fig.
1(b)) with a point or line source located in region 1 at x=y =0
z=h (the case of the source lying in region 2 is given in
Fares, 1987). Let the single interface reflection matrix
rator related to the upper and lower interfaces be denoted

as R* (k) and R~ (— H + h), respectively (H is the thickness of

region 1), and define ¥* =p3/u, and v~ =p,/p,. An image
field reflected by the upper interface will have to be reflected
again by the lower interface and vice versa as depicted in Fig.
2. These repeated reflections (in two directions) with the
sssociated transmission of fields will lead to Hansen potentials
defined as an infinite series of potentials in each of regions 1,
2, and 3 (in a manner analogous to Chou’s results). The
Hansen potentials in region 1 (potentials for region 2 are given

in Fares, 1987) are then given by:

0=0%x,y,z2 - h)+ E [omxy,2+2(m—-DH + h)

m=1
+ G (X,1,2 = 2mH = h) + ¢ 3 (X, 9,2 — 2mH + h)

+ O pa(X,¥, 2+ 2mH — h)]
where:

b0 = bgy = ¢°
Om (X,3,2)=R* ((2m=2)s H+ h)+j,_1)5(x,7,2)
Oma(x,3,2) =R~ ((—2m+ 1) H-h)+¢7,,(x,y,2)

bm3(X,,2) =R~ ((=2m+ 1)e H+ h)e gl _ 114 (x,7,2)
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Fig. 2
bma(%.9,2) = R* QmH — h)+¢73(x,y,2) (10)

The ¢; potentials are given by (9) with ¢ =¢, and R* and
R~ replaced by (1-v*)/(1+v*) and (1-y")/(1+v"),
respectively in equation (10). When ¢, = ¢, =0 the scalar im-
age method used by Chou is obtained, and hence, ¢, can be
associated with the antiplane component of an elastic
deformation.

The convergence of the displacements or stresses corre-
sponding to the series of potentials given by (9) depends on
both the material contrasts between regions 1, 2, and 3 and on
the singularity of the point or line source being considered.
Given a fixed type of line or point source, the contribution of
the farther images (images with higher ‘‘m’’ in equation (9))
decreases to zero as the medium approaches a homogeneous
or bimaterial state. In addition, given fixed material properties
in regions 1, 2, and 3, the contribution of the farther images
decreases algebraically with the location of those images.
Limited convergence studies on antiplane line sources (Fares,
1987) suggest that if the singularity of the line source is at least
as strong as that corresponding to a dislocation, then the series
giving the displacements and stresses converge for a wide
range of material contrasts between regions 1, 2, and 3.
Specifically, the series corresponding to the displacements due
to a screw dislocation converges to the analytic closed form
solution given by Tse and Rice (1986).

Example

In this section the elastic field of a dilatation source in a half
space with a traction-free surface (special case of medium A),
and the elastic field of a dilatation source in an elastic plate
with two traction-free surfaces (special case of medium B) will
be derived using the general image method. (Examples of
several point and line source disturbances in a medium A, and
nuclei of strain in a medium B are derived using the general
image method in Fares, 1987.)

The P-N potentials for a dilatation source of expansion of
net volume ““V** are given by:

wV 1
Q: L
2z r

€
=]

X (11)
where 72 =x2 + 2 + 22.

Therefore, by using (3), the Hansen potentials can be ob-
tained as:
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$r=¢3=0 (12)

Using the general image method relations (4) and (6) with

v =0 for a traction-free half space, the reflected image poten-

tials due to a dilatation source located at x=y=0and z=h are
then given by:

o)

Vv 1 1
R= L] ——
2 4x ( 6 r

¢§=0 (13)

Using both (12) and (13) and relation (1), the displacement
field for a dilatation source in a half space is obtained:

X xo(z+h) x
u/(V/dm)=e,¢ -73—+6.h.T+_5-—r§_
(z+h)*] y yez+h) y
—6oxe <l +e".[73_+6.h.-_r§—_+ 5]
(z+h)*7 (z-h) 1
6oy | +e |5 ~2eher 6o
(z+h)? 1\ (z+h) (z+h)3]
r +(2—-6_) 3 -6 r (14)
where:
rr=x*+y*+(z-hy?
r?=x+y + @ +h) (15)
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The Hansen potentials representations for a dilatatiog
source in a plate with two free surfaces has an infinite seriey
representation. The displacement field obtained from these
series for points located at finite distances from the dilatation
source converges. The convergence is assured because the syc.
cessive image displacement fields are located successively far.
ther from the plate (with distance growing algebraically as
“m’’ defined in (9) increases) while having functional varia.
tions which vary as 1/7* (where *‘r”’ is the distance from the
image source location to a point in the plate). In practice,
however, the infinite series representations of the Hansen
potentials have to be truncated. Since the calculation of image
Hansen potentials with successively higher ‘‘m’’ in (9) and (10
is time consuming, an extrapolation (using Richardson’s ex.
trapolation, e.g., Bender and Orszag, 1978) is used to ac.
celerate the convergence. By extrapolating and using Hansen
potentials up to m=4 in (9) and (10), very accurate elastic
fields can be obtained at distances within three plate
thicknesses from the source disturbance as evidenced by
numerical studies based on antiplane deformation fields
(Fares, 1987). Figure 3 shows the displacement in the -
direction at z=0 when a dilatation source is located in a plate
at x=y=0and z/H=0.1, 0.3, 0.5, 0.7, and 0.9, (solid line).
The corresponding displacement in the z-direction when a
dilatation source is located in a half space is also shown (dash-
ed line). Since the displacement field is radially symmetric, on-
ly displacements with y = 0 and a range of x values (taken to be
0<x<H since the displacement field falls off rapidly with
distance) need to be shown.

Referring to Fig. 3, the displacement magnitude above the
dilatation source decreases with the depth of the source. Also,
the dilatation source is more effective at causing surface uplift
when the supporting foundation is more rigid, which explains
the higher uplift values in the half space as compared to the
plate. Finally, the surface deformations at z=0 in a plate cas
be negative when the dilatation source is very close to the
lower free surface (z=H). This can be explained as follows:
The dilatation source in the lower portion of the plate causes
local compressive stresses which have to be compensated by
tensile stresses in the upper portion of the plate. This stress
distribution is equivalent to a bending moment in the P{‘"
which produces negative surface uplift when the dilatatios
source is at a depth lower than 0.5H. In addition t0 the
bending moment effect of the dilatation source, expansiof’
the dilatation source produces displacements which are pois-
ting away from the source producing positive surface upli
The net surface deformation is a resultant of these two effect-

Conclusions

A general image method used to obtain elastostatic fields ¥ -
plane-layered media has been presented. The image met
relies on using potentials to represent elastic fields. fOf
case of a single interface, the image method gives the dl?P“"
ment fields in closed form, and can be applied to antip
plane, and three-dimensional problems. For the case of m
ple interfaces, the image method gives the displacement
in terms of infinite series. The convergence of the seri€s can
accelerated which improves the efficiency of the method-
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