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A constitutive model is derived for the pre-peak non-linear
stress—strain relation for concrete based on analysis of the internal
structure and local deformation mechanisms. Inelastic deformation is
accounted for by considering the opening of stably propagating
interfacial cracks at’cement matrix/aggregate interfaces. Analytical
expressions for inelastic deformation and composite tensile strength
are derived as functions of maximum aggregate size, aggregate
volume fraction and cement matrix toughness. Limited comparisons
between model predictions and experimental data are presented.
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Concrete is a very brittle material with low tensite ioad
bearing capacity. Compared to structural steel,
concrete has only 0.1 to 1% of its tensile strength, and
only 0.2 to 4% of its fracture toughness. For this
reason, while concrete structures are often reinforced
and/or pre-stressed, tensile failure can often occur.
Tensile failures have been observed under
compressive, shear, flexural and torsional ambient
loading, especially when the concrete is lightly
confined.

The internal structure of concrete is made up of cement
paste, fine aggregate, large or coarse aggregates and
voids in the paste. Although cracking may start from
voids in the paste, it is generally accepted that in
normal concrete, the cement/aggregate interface
provides a weak link which limits the strength of the
material. This is because of the existence of bond
cracks caused by bleeding, usually on the lower side of
the aggregate in concrete placements.' In addition,
Slate and Matheus? foupd that cement shrinkage during
setting and hardening can induce bond cracks. In
normal concrete, the bond strength is.only 33 to 67% of
the mortar tensile strength.® These bond cracks provide
natural flaw sites to initiate interfacial cracks which
may subsequently branch into the cement matrix;

observations of interfacial cracks have been made by
many researchers. * Although bond cracks can limit
the strength of the material, they can also provide
mechanisms of crack deflection, arrest, blunting and
branching when matrix cracks run into the interface
between cement and coarse aggregates.' This is
reflected in the tortuosity of the fracture plane in
concrete resulting in a toughness higher than that of
pure cement. These notions suggest that the aggregate
volume fractions and size, and the aggregate/cement
interfacial strength must contribute significantly to the
material tensile properties.

The present paper is a preliminary effort in relating
analytically the internal structure and mechanisms of
concrete to its macroscopic tensile behaviour. In
particular, the model assumes that the nucleation and
propagation of interfacial cracks from flaw sites at
cement/aggregate interfaces is responsible for the
reduced material stiffness and non-linearity after the
limit of proportionality is reached in a concrete
stress—strain curve. The concrete strength is assumed to
be associated with the branching of the most critical
interfacial crack into the matrix. The post-peak
tension-softening behaviour is related to the
propagation of this crack and its interaction with other
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interfacial cracks and aggregates. The analysis on the
internal material structural scale is based on
linear—elastic fracture mechanics and a probabilistic
description of aggregate size and interfacial cracks. The
paper consists of two parts. In part I, the modelling of
the pre-peak stress—strain relation is presented,
followed by part II, the modelling of post-peak
tension-softening behaviour. Important internal
material parameters are identified and their effects on
tensile behaviour discussed. Model predictions based
on typical ranges of such internal material parameters
are compared to available experimental data.

Previous modelling of the stress—strain relation

The pre-peak stress—strain relation of concrete in
tension has been studied by many researchers.”'® The
theoretical modelling of the stress—strain relation in
tension is apProached usin§ different methods. Lorrain
and Loland'' and Mazars'“ studied the progressive
deterioration of concrete under monotonic or repeated
loading based on damage mechanics. Based on the
weakest link concept originated by Weibull,'” and by
assuming a probability density function of flaws,
Mihashi'® and Hu et al'* related the probability of
failure to a given stress level for a brittle material.
Zielinski'? studied the tensile behaviour of concrete by
considering the processes of crack initiation and growth
in connection with the state of stress in concrete with
inherent microcracks, focusing especially upon effects
associated with high rates of loading. In addition,
Ortiz"’ established constitutive relations for cement
paste and aggregate, and then predicted the composite
nature of concrete by means of mixture theory. Finally,
Zaitsev'® ' and Hu et al'® began investigating the
formation and extension of a single crack, either at the
cement/aggregate interface or within the cement
matrix, and then using computer simulation to model
the behaviour of concrete with randomly distributed
aggregates.

These works generally recognize the brittle nature of
concrete and include some form of fracture mechanics
in the model. The random nature of material defects
are also taken into account either analytically or
numerically. Some of the models have quite
successfully simulated concrete behaviour under
various loading conditions (static, dynamic, fatigue,
etc) and even environmental conditions (eg
temperature). Apart from Refs 16, 18 and 10, however,
most models do not explicitly relate the internal
material structures and mechanisms of deformation to
the macroscopic properties. Such connections are
necessary for the purpose of engineering the internal
structure for desirable material properties.

BASIC ASSUMPTIONS OF THE MODEL

Asin Refs 18, 22 and 25, the aggregates are modelled
as circular discs with a random size distribution. In the
analysis of the pre-peak stress—strain relation, two
assumptions are made. First, for normal concrete, the
magnitudes of toughness are assumed to be

Ki. < Kt < ki (1)

where Ki;. is the interface toughness, K} is the cement
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matrix toughness, and Ki#® is the aggregate toughness.
This assumption is supported by experimental
studies® ** on normal concrete. It is also consistent
with observations®*?? that cracking in mortar or
concrete begins in the cement/aggregate interfacial
region and that crack paths generally run through
interfacial zones.

The second assumption concerns the neglecting of
mechanical interaction between aggregates. In this
preliminary study, these interactions are neglected.
The assumption can be justified only if the aggregate
volume fraction is small (which unfortunately is usually
not the case in real concrete). (These issues will be
addressed in a further investigation). The effect of the
interaction between interfacial cracks on the tensile
strength is accounted for.

Since the interaction between aggregates is not
considered, each inclusion (coarse aggregate) is
assumed to experience the same stress field. The
problem can be simplified as follows: first, the problem
of an infinite plate with only one aggregate in it is
investigated, focusing on the nucleation and growth of
the interfacial crack under far field tensile stress. This
solution is then generalized to the case of a body with
multiple aggregates (and multiple but non-interacting
interfacial cracks).

PRE-PEAK STRESS—STRAIN RELATION
Single aggregate problem

'The problem of crack propagation in an elastic plate of
unit thickness, containing one circular inclusion of
radius R was solved by Cherepanov and reported by
Zaitsev,"® under the assumption expressed in Equation
(1). The relation between the applied tensile load ¢ and
the angle 6, which defines the crack size (see inset of
Fig. 1), is given by the following equations:

o = K F(0)//R
K@) =
4(3 — cos 0)//n
ysin® (44 + 12¢cos 0 + 12cos?0 — 4 cos48 + sin*0)

2

where o is the far field tensile stress and R is aggregate
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Fig.1 Relation between normalized ambient uniaxial tensile
stress and interfacial crack angle 6, from Ref. 19
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radius. Line 1 in Fig. 1 shows this relationship; the
y-axis gives values of the normalized load

o = (oy2R/m )/KE 3)

In the normalization, the value of K is taken as Kif/0.6
(consistent with the experimental results of Refs 23 and
24). (In the light of the mixed mode nature of
interfacial crack propagation, and that the crack occurs
at the interface of two dissimilar materials, a more
rigorous analysis would prefer the use of interfacial
fracture energy).

As the crack angle 8 approaches zero, the stress
reaches infinity. This phenomenon indicates that the
stress required to initiate a crack from a perfect
bonding is extremely large. In practice, however, the
cracks probably initiate from flaw sites between the
aggregate and matrix. For flaws with 6<8, (68, = n/4),
the crack propagates in an unstable manner (the
descending part of line 1 in Fig. 1). This corresponds to
a crack pop-in, and may be regarded as an interfacial
crack nucleation process from an initial interfacial flaw.
The crack can subsequently propagate in a stable
manner until the applied load reaches a certain critical
value, corresponding to the appearance of the crack
branching into the matrix, illustrated in the inset of Fig.
1. The crack propagation within the matrix is an
unstable process. Line 2 gives the value of the
normalized stress versus the crack length for the crack
propagation inside the matrix. This relationship is
determined by approximating the interfacial and
branch crack as a straight one with effective length 2(L
+ R), so that

on(L + R) = KIl 4)

where L is the length of crack in the cement matrix.
The intersection of line 1 and line 2, labelled 0,
indicates the moment when the crack at the cement/
aggregate interface begins to branch into the matrix.
For KiY/KP = 0.6, 6, ~ n/2.'%

Multiple aggregates problem

To solve the multiple aggregates problem, the relation
between the far field stress o and the crack dimension 6
at each cement/aggregate interface is assumed to be
governed by the same curves shown in Fig. 1.
According to Cherepanov’s result, and if initial flaw
sizes are similar at all aggregates, the interfacial cracks
will first nucleate at the larger aggregates (Fig. 2).
Nucleation at the largest aggregate interface is assumed
to be associated with the point when the o—¢ curve
deviates from a straight line. As o increases, this
interfacial crack continues to propagate stably around
the interface, while other interfacial cracks nucleate
and extend at other cement/aggregate interfaces. The
enlargement of all interfacial cracks contributes to the
inelastic deformation of the concrete.

A commonly used method for the calculation of the
total strain of cracked solids is to superpose the two
strain components, ie

£ =¢ +¢ (5)
where g’ is the elastic contribution of the unfractured

material and €” is an additional inelastic component due
to the opening of all interfacial cracks.
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Fig.2 Relation between normalized ambient uniaxial tensile
stress and interfacial crack angle 8 plotted for a family of
aggregate sizes

The component €’ is simply equal to o/E, where E is the
Young’s modulus of concrete without crack extension.
The component €” can be found if it is assumed that the
elongation caused by the displacement of the crack
faces is ‘smeared’ over the volume of the sample. Thus,
for a body containing # cracks

n
g = Z Siwh (6)

i=1

where §; is the opening area of crack i around the
cement/aggregate interface, and w and 4 are the width
and height of the uniaxially loaded specimen,
respectively.

At a certain stress level o, only some of the aggregates
have cracks nucleated at their interfaces. These
aggregates will have radii between a critical value R,
and the maximum value R, .. R Is the radius of the
smallest aggregate for which stable extension of the
interfacial crack has begun and is therefore dependent
on o, Fig. 2. For continuous aggregate size distribution,
the summation operation in Equation (6) may be
replaced by an integration over R from R.,;, to R

max

R...
1 max
"ro_ _T S
€= — (0, R)p(R) dR ()
where p(R) is the aggregate number density, ie p(R)dR
gives the number of aggregates with radii between R
and R+dR.

An assumption has to be made for the distribution of
aggregate size in the mixture. For this distribution, a
Fuller curve is adopted. This curve results in a
gradation of aggregate particles which leads to an
optimum density and strength®® and, therefore, is often

used in concrete mix design. Other distributions are
possible.
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The Fuller distribution gives the relation
1
R = —
f( ) 2\.“/‘RRmax

in which f(R) dR is the percentage of total weight of
aggregates with radii R to R + dR. The number density
turns out to be

p(R) = v

(8)

1
R*/R

agg
va Rmax

Substituting Equation (9) into (7), and using the ratio
Vage/Wh as the volume fraction of aggregate in the 2-D
case, represented by Vi, the total inelastic strain can be
expressed as

©)

Vi Rimax 1
g = — J S(O, R) = dR (10)
27[v°/ Riax R it R \/R
To calculate S(o,R), the opening area of a curved crack
around the cement/aggregate interface, the opening
area of a straight crack with the same length 24 as an
approximation is used. Therefore, a = RO. The error
induced by approximating the opening area of a curved
crack by that of a straight one can be estimated, and is
found to be negligible (within 6%).

For a straight crack with half length a = RO under
remote load o

2no 2

where v is Poisson’s ratio. Since the opening area
contributing to the inelastic strain is the additional area
after the interfacial crack pop-in, the opening area of
the pre-existing bond crack, Sy, should be subtracted.
So is related to the properties of the pre-existing flaws
at the cement/aggregate interfaces, such as the
interface bonding and surface roughness. For
simplicity, it is assumed that each of the inclusions has a
bond crack of dimension 8, = n/4, which corresponds
to the beginning of the stable interfactal crack
propagation stage. Therefore,

S = 2%" (1 — V) R (6% — 63) (12)
Substituting Equation (12) into (10) gives
V 1 — 32 Rmax 1
g = VL= V) f S (8- 6% dR (13)
V/Rmax Rt E V‘JR

For a given stress o, either R or 0 is used as the
integration variable, since the crack dimension 0 is
related to the aggregate size by Equation (2). After
integrating Equation (13) and adding the inelastic
strain to the elastic strain, the total stress—strain
relation is obtained

o _ F(®)

Ogl - F(Gl)

e _ o (1 -v% 2 o2
el {1 +2 Vi e @~ 0D (o)

0
—2 | Ef(® dE]}

0,

364

JR—
. 0’f:l\/Iemax GT
with ———"™% = F(0 d B -

K (61) an ra F(0) (14)

where 8 varies from 0, = 7/4 to 6, =~ n/2. In Equation
(14) o, and g, are the stress and strain corresponding
to the limit of proportionality, respectively.

The stress—strain curves predicted by the present model
are plotted for indicated values of the aggregate volume
fraction Vyin Fig. 3. With increasing aggregate volume
fraction, the inelastic deformation of concrete
increases, and the slope of the curve in the inelastic
region gradually decreases. This phenomenon can be
explained as follows: the inelastic deformation is
associated with the deformation of interfacial cracks in
the material. As more aggregates are put into the
matrix, there will be an increase in the number of
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Fig.3 The pre-peak stress—strain curve for different aggregate
volume fractions, and for fixed R .y
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Fig.4 The pre-peak stress—strain curve for different maximum
aggregate sizes, and for fixed V;
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interfacial cracks, so that the material exhibits a
stronger inelastic behaviour.

The effect of maximum aggregate size (for the same
aggregate size distribution as defined in Equation (8))
on the degree of non-linearity of concrete is shown in
Fig. 4. The result shows that using larger aggregates
would lead to stronger nonlinear behaviour. Moreover,
the deviation of the stress—strain curve from the linear
stage occurs earlier.

Determination of tensile strength

Interfacial cracks can propagate stably until one of
them starts to branch into the matrix. The crack
propagation inside the matrix is unstable and is
governed by line 2 in Fig. 1. It is generally accepted that
the longest crack dominates the tensile failure of brittle
materials. In the model, the peak load is predicted by
assuming that the unstable propagation of one
dominant crack leads to softening of the entire
specimen. Because the branching of interfacial cracks
into the matrix occurs first around the maximum-sized
aggregate, with the largest initial interfacial crack (Fig.
2), it therefore becomes the dominant crack.

As the dominant crack expands into the matrix, it
experiences the composite toughness due to the
presence of all aggregates The effective toughness of
the composite, K., is expected to be higher than that
of the matrix because the dominant crack will deflect
around the cement/aggregate interface as it intercepts
an aggregate and the distributed interfacial cracks in
front of the dominant crack will provide a shielding
effect. Detailed development of the enhanced
toughness due to distributed interfacial cracks as well as
crack deflection is presented in Part II of this paper.
For the present it is noted that Ki; in Equation (4) has
to be replaced by K§f, so the tensile strength of the
composite is given by
chf
fo= e (15)

anax

KK = J1.0 + 0.87 V; \/

(n2/16) Vil — v?)
(16)

Forv =0.20, and V; =0.1,0.3,0.5and 0.7, K{{/K[2 =
1.07,1.24, 1.43 and 1.66, respectively.

Crack interactions

One of the basic assumptions made in the present
model so far is that the interaction between interfacial
cracks is negligible. This assumption can be justified
only if the distances between interfacial cracks are
large. For large aggregate volume fractions, the
aggregates are packed closely and the interaction
between interfacial cracks is expected to be strong,
especially at the stage near the peak load. In the
following, the effect of crack interaction on the peak
load is investigated, resulting in a modified tensile
strength.
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Crack A

Fig.5 -A simplified model of crack interaction

Because the tensile strength is assumed to be controlled
by branching of the largest interfacial crack into the
matrix, the interaction of this largest crack with other
cracks is being focused on. The interaction problem is
simplified as a dominant straight crack of length 2R«
with all the other cracks of the average length 2R,,,, as
shown in Fig. 5. For the Fuller distribution

Rey = | " RIR) AR = (13) Ry (17)
0

The total stress intensity at the tip of the largest crack,
Ki3', is the sum of two components

Ki' = Kii + Kia (18)

where Kf, is the contribution from the applied load,
and K7, is the additional contribution from the stress
field induced by other cracks. Denoting the average
additional stress at the crack A plane by gy, then,

Ki. = op/na (19)

The detail of the calculation of gy is presented in the
Appendix. Substituting Equation (19) into (18), the
increase of the stress intensity at the tip of crack A is
obtained:

Kid/Kia = [1+f(a, B)I/[1—f(a, b)f(b,a)] = X (20)
and

fa, b) = (12a) [{(r + a)> — b2

— J(r — a)* = b* - 2d] 1)
for (in the present case) @ = Rpx, b = Ryygandr =
Rimax + 8 + Ry (22)

where s is the average spacing (edge to edge) between
aggregates. In the 2-D case, s is related to the aggregate
volume fraction V; (Fig. 6) by

Vi = nRA, /N (23)
and
I = s+ 2R, (24)
Thus
4
S = < Vf - 2) Ravg (25)
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Fig.6 A schematic diagram of the calculation of the average
aggregate spacing
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Fig. 7 Theincrease of stress intensity in the dominant crack tip
due to crack interaction as a function of aggregate volume
fractions

The increasing ratio of stress intensity at the largest
crack tip, Equation (20), as a function of the aggregate
volume fraction is plotted in Fig. 7. Generally, the
interaction between interfacial cracks increases the
stress intensity at the dominant crack tip, which is
equivalent to a decrease in the material’s toughness,
Ki:. Effectively, the material’s loading capacity is
reduced. Including the effect of crack interaction, the
tensile strength in Equation (15) can be expressed as

AKS!

\““ﬂ:Rmax

fo = (26)
where A (<1) is a function of V; and was defined in
Equation (20). The results indicate that the interaction
effect is not substantial until V; = 0.4. Therefore, the
assumption of neglecting crack interactions at the
pre-peak stage is acceptable for small aggregate volume
fractions. For V; = 0.7, however, the interaction
decreases the peak load by approximately 16%.

It should be noted that there is an upper limit to the
aggregate volume fraction, given by V{ = n/4 =~ 0.785
for this method to work. Up to this limit, the value in
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the square root of the second term in Equation (21)
becomes negative, which means that the interaction is
so strong that the approach used in deriving Equation
(20) breaks down.

Comparison of theoretical with experimental
results

The effect of aggregate volume fraction on the
properties of concrete has received relatively little
attention as a specific research topic. Stock ez al/*®
reported a study of the influence of aggregate content
on strength of concrete. The graded aggregate of

19 mm maximum size (diameter) was used. The
comparison of results obtained here with the
experimental data given by Ref. 29 is illustrated in Fig.
8. For aggregate volume fractions between 20 and 80%,
both experimental and predicted results show an
increasing trend in tensile strength. For V;<20%,
however, the experimental data shows a gradual
decrease in strength, in contrast to the predicted
results. Stock et al suggested that this decreasing trend
may be associated with the uncertainty of the cement
paste test results. On the other hand, the introduction
of aggregates simultaneously introduces strength-
limiting interfacial defects not present in the pure
cement paste so that the experimental trend for
V#<20% could be real. This effect is not accounted for
in the present modelling (which assumes a dominant
crack emanating from a cement/aggregate interface for
any Vy).

The effect of maximum aggregate size on tensile
strength is plotted in Fig. 9, for a fixed aggregate
volume fraction, V; = 0.7. The presence of coarse
aggregates generally reduces strength. If the maximum
aggregate size is larger than 5 mm, the model predicts
the tensile strength to be equal to 1.5-3.5 MPa, which
is very close to the typical value of concrete tensile
strength given in the literature.”” % As aggregate size
becomes smaller and smaller, however, the predicted
tensile strength reaches infinity. This result is due to the
limitation of the model, in which the microcrack size in
the matrix is assumed to be negligible compared with
the interfacial crack lengths. However, when the
aggregate size reduces to a very small value, matrix

6
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Fig.8 Comparison of model predicted and measured relation
between tensile strength and aggregate volume fraction. The
experimental data is from Ref. 29
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Fig.9 Dependency of model predicted tensile strength on
maximum aggregate size and typical range of f, for normal
concrete

crack propagation may be expected to dominate over
interfacial crack propagation. The upper horizontal line
in Fig. 9 indicates the tensile strength of the mortar
matrix, which sets the upper limit of conventional
concrete tensile strength. The combination of these two
curves represents a complete relationship between
tensile strength f; and maximum aggregate size R .

Results of investigations concerning the influence of
maximum aggregate/sand size on the concrete/mortar
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tensile strength have been reported.® 8 31-32.33

Kaplan®>' observed that the presence of coarse
aggregate generally reduces the flexural strength of
concrete to below that of mortar. Hughes and
Chapman® reported a decrease of tensile strength with
increasing maximum aggregate size in a uniaxial tensile
test, especially for round shaped aggregate. However,
contradictory experimental results can also be found.
Wolinski e al’? concluded from the test results that
there is no monotonic influence of aggregate particle
size on fracture mechanics parameters, including the
tensile strength.

The predicted stress—strain relations are compared with
the experimental data ® in Fig. 10(a). The maximum
aggregate size is not reported so a typical value is used
in the calculation. The cement matrix toughness K1y,
also not given, has assumed values extrapolated from
data given by Ref. 30, Fig. 11, where K{; was measured
as a function of the water/cement ratio. For a
water/cement ratio=0.45 and 0.60, KTt = 0.32 and 0.24,
respectively. The generated curves seem to
underestimate the inelastic deformation. Using slightly
smaller K7} values (but still in the reasonable range)
provides a good agreement between the model
prediction and experimental stress—strain
measurements, as shown in Fig. 10(b).

Theoretical model

| Experiment Ref. 9

/ (2)

o (MPa)
~,

// Mix (1)
- / 1:1:2
/ ) w/c = 0.45
£ = 18000 MPa
1= V=06
KR =0.26 MPam'/?
| Rmax = 10 mm

Mix (2)

1:2:4

w/c = 0.60
- £ =16 000 MPa
Vi=0.7
K2 =021MPam'/?
Rmax = 10 mm

0 100 200 300 400

b ¢ (+ 109)

Fig. 10 Comparison of model predicted and measured stress—strain curve. The aggregate and sand specific density is assumed
to be 2.6, and cement specific density 3.15, approximately, in the calculation of V;. The experimental data is from Ref. 9
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Fig. 11 Experimental measurements of cement matrix

toughness K7 versus water/cement ratio, given by Ref. 30

CONCLUSIONS

A simple theoretical model of the tensile behaviour of
concrete in the pre-peak stage was established,
considering concrete as a composite of two phases,
cement matrix and aggregates. The model relates the
internal structures and local deformation mechanisms
to the macroscopic tensile behaviour of concrete. The
effects of maximum aggregate size, aggregate volume
fraction and cement matrix toughness on the degree of
inelastic deformation as well as the tensile strength are
analysed. The amount of inelastic deformation prior to
peak load increases with Vi and R,,,«. The tensile
strength increases with increasing V for fixed Ry,,«, and
with decreasing R .« for fixed V;. The predicted
stress—strain relation compares reasonably well with
limited experimental data. However, it should be
emphasized that contradictory experimental results can
be found. Apart from the model simplifications already
pointed out, it may be expected that the 3-D nature of
internal structure and deformation mechanisms, and
the irregular geometry of the aggregates must have an
effect on the composite tensile behaviour.
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APPENDIX. Calculation of crack interactions

Consider first an isolated crack of length 2a (crack A)

in an infinite medium under ambient tensile stress g*.
The stress intensity at the tip of this crack simply takes
the form

K = 0”,a (AD)
Now consider the interaction between cracks. Adding
one more crack ot length 2b (crack B) into the body

would generate an additional elastic field, which gives
an additional contribution, K, at the tip of crack A, /e

= Ki + K, (A2)

where K" is the total stress intensity at the tip of crack
A. Crack A now experiences a K7 from the applied
stress and a K, from the induced field of crack B. Its
magnitude is

Kila = O'O\E ' (A3)

where o, is the additional stress induced by crack B.
The value of o, remains to be evaluated. It obviously
varies with the position of crack A with respect to crack
B. For simplicity, the worst case where crack A and B
are colinear is considered. Thus, the stress distribution
in the crack A plane is

K X
o) = —= (——— -1 (A4)
vab \ yx° — b?
where
K = o*, b (A3)

and x is the horizontal distance measured from the
centre of crack B.
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Averaging o,(x) over crack A yields

K
0y = ——— f(a, b) (A6)
‘nth

A

where ris the distance between the centres of two
cracks and

fla b) = 51; [V/CTEF“:,;:‘
N s ?_aJ )

Substituting Equations (A7), (A6) and (A3)into (A2)
gives

K@t = Ki + Kio f(a, b), (a'b) (A8)

Notice that crack B also experiences the elastic field
induced by crack A. Hence, K7 in Equation (A8)
should be replaced by K{p". Equation (AS) thus
becomes

ia = Kii + Ki8'f(a, b) |/ (alb) (A9)

Similarly, the same method can be applied to crack B
and a similar equation results

Kig' = Kiy + KU f(b, a){ (bla) (A10)

Solving Equations (A9) and (A 10) simultaneously for

two unknowns, Ki3' and K3 gives

Kt 1+ fla, b
Rl W fla, b) (AlD)
Ko 1 = f(a, b)f(b, a)
or
f(a, BY[1 + f(b, a)]
tot _ °° 2
Ky K {l + L= fa, B)f(b @) (A12)
The second term inside the brackets describes the
interaction.
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