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Traditional fibre debonding theories which consider debonding only from
the loaded end of the fibre are only applicable to composites with low fibre
volume fraction, low fibre/matrix moduli ratio and high interfacial strength/
interfacial friction ratio. A two-way debonding theory, which is applicable to
all general cases, has recently been developed. In this paper, major findings
from the new two-way theory are first summarized. The new theory is
compared with traditional theories with respect to the prediction of compos-

ite properties. For the fibre pull-out test specimen, where fibre volume
fraction is very low, a new method of deriving interfacial bond properties
based on one-way debonding theory is presented. For practical composite
systems, the significance of employing the new two-way debonding theory

is discussed.
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There are two undesirable properties of brittle materi-
als that greatly limit thetr applications in structural
components. Since brittle materials usually fail by the
sudden unstable propagation of pre-existing cracks, no
warning is provided before failure occurs. Moreover,
the size of pre-existing cracks (which may form during
processing, handling or service) is difficult to control
and usually varies significantly from one component to
another. As a result, the strength of components made
with the same brittle material under similar processes
can be very different. Brittle materials are thus also
materials of low reliability.

The introduction of fibres into a brittle matrix can
greatly improve its properties. The first-cracking
strength (i.e., the applied tensile stress at which a crack
is formed across a complete section of the material) of
the composite can be increased significantly above that
of the matrix itself.!? The presence of fibres also
greatly reduces the sensitivity of first-cracking strength
to pre-existing flaw size.>= Reliability is therefore
highly improved. After first-cracking, provided the
fibres are strong enough, the material can take further
load (by the fibres themselves) until ultimate failure
occurs (Fig. 1). With increased loading beyond the
first-cracking strength, multiple cracks will be formed,
giving rise to pseudo-ductility of the material.'® This
pseudo-ductility provides warning before final failure
and also allows for stress redistribution to less severely
loaded parts.

The desirable properties of composites described above
are usually attainable in composite systems with
sufficiently weak interfaces. In such systems, when a
growing crack meets a fibre, debonding at the interface
will occur. After the crack tip moves past the debonded
fibres, bridging stress due to extension of the debonded
fibres tends to close the crack and reduce the stress
intensity at the crack tip (Fig. 2). Composite behaviour
is then governed by the bridging stress vs crack opening
relation for the fibres. As discussed by Marshall et al.*
and Majumdar et al.,” the bridging stress vs half-crack
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Fig. 1 Pseudo-ductility due to multiple cracking in fibre com-
posites
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opening (p—u) relation is associated with the stress vs
displacement (displacement of loaded fibre end relative
to matrix surface) relation (o,—u relation) for a fibre
pulled from the matrix through p=V;0,, where V;is the
volume fraction of fibre. Hence, in order to predict
composite behaviour, a model for the debonding of
fibres pulled from the matrix is required. The debond-
ing of continuous fibres has already been considered by
Budiansky et al.® In this paper, we will concentrate on
the debonding of fibres in short-fibre composites. In
practice, both continuous and short fibres have been
widely used in the reinforcement of brittle materials.
Continuous fibre composites usually possess higher
strength and modulus, while short-fibre composites
offer the advantage of easy processing. In applications
where a simple process is required to produce large
volume of composite (e.g., fibre-reinforced concrete)
or where components are of complex shapes (e.g.,
engine parts made of whisker-reinforced ceramics),
short fibres are usually employed.

Theories for the debonding of discontinuous fibres
have been developed by Greszczuk,” Takaku and
Arridge,' Lawrence'! and Gopalaratnam and Shah.!?
These are all one-way debonding theories, which
consider debonding only from the loaded end of the
fibre and neglect the possibility of fibre debonding from
the embedded end. Such theories are only applicable to
composites with low fibre volume fraction, low fibre/
matrix moduli ratio and high interfacial strength/
interfacial friction ratio. A two-way debonding theory,
which is applicable to all general cases, has recently
been developed by Leung and Li."? In the following
sections, major findings from the new two-way theory
are first summarized. The difference between compos-
ite behaviours, predicted by one-way and two-way
debonding theories will be considered. For the fibre
pull-out specimen, where fibre volume fraction is very
low, a new method to derive interfacial properties
based on a one-way debonding theory will be pre-
sented. For practical composite systems, the implica-
tions of the new two-way debonding theory to compos-
ite analysis and design will be discussed.

MAJOR FINDINGS FROM THE TWO-WAY
DEBONDING THEORY

In this section, major findings from the two-wa;/
debonding theory developed by Leung and Li'*® will be
described. A thorough discussion of the limitations of
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Fig. 2 Debonded fibres bridging a crack in the composite
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existing one-way debonding theories and the details of
derivation of expressions for the two-way debonding
theory can be found in Reference 13.

Physical explanation for the two-way debonding
phenomenon

Before findings of the two-way debonding theory are
summarized, physical reasons for the two-way debond-
ing phenomenon will be considered first. While it is
well accepted that debonding can occur at the loaded
end of the fibre, the possibility of debonding from the
embedded end can be most easily explained by consid-
ering a very long fibre loaded at one end (Fig. 3). Stress
transfer between fibre and matrix leads to continued
decrease in fibre strain and increase in matrix strain.
On continuing stress transfer along the interface, a
point will eventually be reached where the longitudinal
displacement in the matrix is higher than that in the
fibre, which is physically impossible (Fig. 3(a)). What
really happens is shown in Figs 3(b) and 3(c). When the
fibre and matrix reach the same strain, the transfer of
stress from one to the other is essentially terminated.
The rest of the composite is under an applied constant
strain (Fig. 3(c)). In a continuous fibre system, this
constant strain will be sustained until the surface of the
specimen is approached. In a discontinuous fibre
composite with very little bond or anchorage at its
embedded end, the stress at that end is zero. Hence,
stress has to be transferred back into the fibre from the
matrix. If the applied strain in Fig. 3(c) is high enough,
debonding at the embedded end will take place.

Two additional points should be noted.

1) There is negligible stress transfer between fibre and
matrix when they reach the same strain only if the
fibre is very long, so the stress conditions at the two
ends of the fibre can essentially be uncoupled and
considered separately as in Figs 3(b) and 3(c). For
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Fig.3 lllustration of the physical reason for two-way debond-
ing to occur




shorter fibres, the interfacial shear stress will simply
reach a minimum when the fibre and matrix attain
the same strain. The shear stress rises again towards
the embedded end as stress is transferred from the
matrix back to the fibre.

2) In the above discussion, the transfer of stress from
fibre to matrix (Fig. 3(a)) can be elastic or frictional.
Therefore, debonding from the embedded end can
start either before or after the loaded end debonds.

When the applied load on an embedded fibre is
increased, the scenerio is as shown in Fig. 4. When the
applied load is low, debonding has not yet occurred and
the stress distribution is elastic. This is referred to as
the elastic stage (Fig. 4(a)). Further load increment
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Fig.4 Three different cases considered in the analysis: (a)
elastic stage; (b) debonding from the loaded fibre end; (c)
debonding from the embedded fibre end; and (d) debonding
from both fibre ends

leads to debonding from either the loaded end (Fig.
4(b)) or the embedded end (Fig. 4(c)), depending on
the volume fraction and fibre/matrix moduli ratio. This
is the one-way debonding stage. Continued debonding
from one end of the fibre is accompanied by the
increase of shear stress at the other end. When the
shear stress at the other end also reaches the interfacial
shear strength, two-way debonding will start to occur
(Fig. 4(d)). Stress distributions for the various cases are
given in the following. The derivation of the o,-u curve
will also be described. Some useful expressions
(obtained from the two-way debonding theory) for the
derivation of o,~u relations are included in Appendix I.

Elastic stage
of = A; — B, sinh(pz/r;) + C; cosh (pz/ry) 1)
T = (p/2) B, cosh(pz/re) — (p/2) Csinh (pz/ry))  (2)
where

z = distance from the loaded end of the fibre

A, = a0,
B = 0, [(1~«) cosh (pL/rg)+«]/sinh (pL/ry)
C, = o,(1-a)

0° = 2G nEJ[VmEnE¢log(R*Ir))]

log(R*/ry) = —[2logV; + V(3= V(4 Vi)

o= V,EJ/E,

E . =VE;+ V,E,
with E_ and E; being the Young’s moduli of matrix and
fibre, G, being the matrix shear moduius and V; and
V.. being the volume fractions of fibre and matrix,

respectively. Also, L is the total fibre length and 7, is
the fibre radius.

To determine which fibre end debonding will occur at
first, we can look at the shear stresses (Equation (2)) at
z=0and z=L respectively. From Equation (2}, putting
z=0and z=L respectively, we have

1{(0) = (p/2)0, [ (1-«)coth(pL/ry)

+ a/sinh(pL/ry)] 3)
1(L) = (p/2)o, [ acoth(pL/ry)
+ (1-«)/sinh(pL/re) | 4)

By comparing Equations (3) and (4), it can be shown
that if o is less than 0.5, 1,(0) will be greater than t(L).
Then, debonding will start at the loaded end. If «is
greater than 0.5, 1{(L) will be greater than t0) and
debonding will start at the embedded end. These two
cases are considered separately in the following.

One-way debonding stage
1. «<0.5 (debonding starts from the loaded end)
Let /; be the length of the debonded zone (Fig. 4(b)).
For z<;:
=T

O = Op - 2‘l7i (Z/rf) (5)
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Forl, <z <L:
0:=A, — Bysinh[p(z - 1,)/r;] + Cycosh[p(z-I,)/r]] (6)
T = (p/2) B cosh[p(z—1,)/r¢]
— (p/2)Cosinh[p(z—1;)/r{] M
where A,(a,0,), By(t,,p) and Cx(,,p,L, 1,7, ®,0,) are
given in Equation (27) of Appendix I.

From Equations (5) and (6), o, may be expressed in
terms of /; (Equation (28) in Appendix I) by requiring
the continuity of axial stress at z = /,.

2. «>0.5 (debonding starts from the embedded
end)

Let [, be the length of the debonded zone (Fig. 4(c)).
For z>1,:
=T (8)
o; = 2v,(L-z)/r;
For z<(L-1,):
0¢ = A3 — Basinh[pz/ry] + Cscosh[pz/ry] 9)
¢ = (p/2) Bscosh[pz/ry] - (p/2) Cssinh[pz/r(] (10)

where A;(«,0,), Bsy(t,.p,L,0,71,4,0, ) and C3(«,0,) are
given in Equation (29) of Appendix .

From Equations (9) and (10), o, may be expressed in
terms of /, (Equation (30) in Appendix I) by requiring
the continuity of axial stress at z=1L,.

Two-way debonding stage

After debonding is initiated at one of the fibre ends,
further debonding is accompanied by continued
increase of shear stress at the other fibre end. Eventu-
ally, when the shear stress at the other end also reaches
the interfacial shear strength, the situation is as shown
in Fig. 4(d).

In the debonded region near the loaded end (0<z<l,),
the fibre and interfacial stresses are given by Equation
(5). In the debonded region near the embedded end
(L-I,<z<L), the stresses are given by Equation (8).

In the undebonded region, I, <z<<L-I,:
= [t/ + e—pla/rf)] [e—p(Z~11)/rf + e-p(lx+13—2)/rf] (11)

0¢ = 0, — 2ti(Ly/r;) - (2/p) [t/(1 + )]
[1- e PEhYT 4 o —plh+i-2)ir_ e_pl3/rf] (12)

where l;= L[~ is the length of the remaining
undebonded zone.

l; and [, can be expressed in terms of o, and /; (Equa-
tions (31) and (32) ). An expression between ¢, and the
total debonded length /, +/, can also be derived
(Equation (33)).

It should be noted that, if x=0.5, debonding will start
simultaneously at both ends and the analysis for
two-way debonding in this sub-section holds once
debonding occurs. Otherwise, two-way debonding will
always be preceded by debonding from one end of the
fibre.
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Derivation of fibre stress—displacement fo,~u)
relation

It should be noted that u is not sensitive to debonding
at the embedded end of the fibre. Before the fibre
debonds at its loaded end, the relative displacement
can be obtained from:

= 14(0) [rdog(R*/r)) G, (13)

After debonding starts at the loaded end, u can be
computed from the length of debonded zone /:

ulry = tlog(R*/r))/G,, + (o/Eyp) (L/re)
~E, (I/rp)? ! (EeVimErm) (14)

u=|ug—tg-

To obtain the o,—u relation, it is convenient to use the
length of debonded zone as an intermediate parameter.
The procedure for the computation of the o,—u relation
is shown in the form of a flow chart in Fig. 5. For each
point on the o,-u curve, a total debonded length /; is
first assumed. Then, depending on whether « is greater
or less than 0.5, one-way debonding is assumed to be
taking place with /, being the length of debonded zone
from one or the other end. A temporary stress o, is
first computed. The shear stress at the undeboné)ed end
is then checked to see if T, is reached. If 1, has not been
exceeded, the assumption of one-way debonding is
correct and o, is equal to o,,,. u can then be computed
using the expressions for one-way debonding with /; or
[, equal to /. On the other hand, if t, is exceeded on
the other end as well, two-way debonding is taking
place. Then, o, is computed from Iy(=/,+1,) with the
expression for two-way debonding. /; is then obtained
from o, and u can be computed once /; is known.

o,~u relations predicted from one-way and
two-way debonding theories

The derivation of o-u relations with the two-way
debonding theory has been described above. In the
traditional one-way debonding theories, it is assumed
that debonding always occurs at the loaded end of the
fibre. The traditional one-way debonding theory can
then be considered a simplified version of the above
two-way debonding theory in which /, is always zero
and Equation (28) in Appendix I is always used to
compute o, from the debonded zone length.

o,~u relations obtained with one-way and two-way
debonding theories for various values of fibre length, o
and 1 /v; have been compared in Reference 13. Two
major conclusions can be made.

1) In general, if two-way debonding initiates before or
at the point of maximum stress on the o,~u curve,
two-way debonding theory has to be employed. For
cases with short fibre length, low « and high t/t,,
maximum stress occurs before two-way debonding
initiates and traditional one-way debonding
approaches are appropriate. The transition value
L"/r¢ beyond which two-way debonding has to be
considered is given by:

pL"/re = cosh™(tJv;) + [(1-2)/«]
[(v/5-1) (o)) / [(tyw)* - 11" (15)
for «<0.5; and
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for «>0.5.

pL/r¢is plotted as a function of t/1; for various
values of o in Fig. 6. For o = x and « = 1-x, the
same line results. For each «, two-way debonding
has to be considered if a point lies in the region to
the left of the transition line. For «>0.5, debonding
starts from the embedded end of the fibre and
traditional one-way debonding theories (in which
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Fig.5 Flow chart for the computation of o,—u relation with two-way debonding theory

debonding always occurs from the loaded end) are
never applicable. In general, the two-way debond-
ing theory has to be employed. For very large «,
however, a new one-way debonding theory, derived
as a simplified form of the general two-way debond-
ing theory to consider only debonding from the
embedded end, may be used.

o,—u relations obtained from the one-way debond-
ing theory always give a higher maximum stress.
This is as expected because the neglecting of
debonding from the embedded end leads to an
overestimation of the stress carried by the
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Fig.7 o,-u relations predicted by one-way and two-way
debonding theories

undebonded part of the interface. However, predic-
tions from the two theories are usually very close to
cach other before the maximum stress obtained
from the two-way debonding theory is reached (Fig.
7). The use of one-way debonding theory will
therefore erroneously ‘extend’ the o,—u relations to
a higher maximum stress. The implications of this
result on macroscopic behaviour will be discussed in
the following section.

MACROSCOPIC BEHAVIOUR PREDICTED FROM
ONE-WAY AND TWO-WAY DEBONDING
THEORIES

In this section, the relation between first-cracking
strength and the o,-u relation will be discussed with a
fracture mechanics approach. The problems with
traditional one-way debonding theories in the predic-
tion of first-cracking as well as post-first-cracking
behaviour of composites will be considered.

A fracture mechanics approach has been used by
Marshall et al*® and Leung and Li® to study first-
cracking behaviour of composites. In this approach, the
propagation of a crack bridged by fibres embedded in
an infinite matrix is considered. The stress intensity K
at the crack tip is given by:

K = K ppi + Koriag (17)

app
where K, is the stress intensity due to the applied
load and ;?bridg is the stress intensity due to the bridging
stresses in the fibre.
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If a penny-shaped crack is assumed:
Koppr = 2 (c/m) "0 (18)
Kinag = 2 (c/m)* o plu(X)] X dX /1 V (1-X%)  (19)

where o is the applied stress, c is the size of the pre-
existing crack and p[U(X)] is the fibre bridging stress as
a function of half-crack opening displacement along the
crack profile.

When K reaches a critical value K¢, the crack will
propagate unstably across the whole section of the
material. The applied stress oy, at this moment is then
by definition the first-cracking strength of the compos-
ite.

From Equations (17)—(19), o, is given by:

O = 0.5 (/c) Ky + [ plu(X)] X dX/ V (1-X?)
(20)

The second term in the right-hand side of Equation
(20) shows the contribution of bridging fibres to the
first-cracking stress. The p vs. u relation is associated
with the o,-u relation described in the above section
through p=Vic,,. In Fig. 7, only the o,—u relation
during debonding is given. After debonding is com-
pleted, the fibre will be pulled out against the friction at
the interface. If constant friction is assumed during the
pull-out process, the pull-out branch of the Op—U
relation will be a straight line with 6,=0 at u=half of
the fibre length corresponding to the maximum
embedded length. It can be observed from Fig. 7 that
debonding becomes unstable soon after the maximum
stress is reached. In practice, the unstable branch
cannot be obtained. Once instability commences, the
stress simply drops to a point corresponding to the
same value of « on the pull-out branch (Fig. 8(a)).
Since the instability point and the point of maximum
stress are very close, they are taken to be the same
point. Because the fibre length is much larger than the
value of 1 at maximum stress, the pull-out branch is
very flat compared with the debonding branch of the
o,—u curve. Hence, one can assume that while one-way
and two-way debonding theories predict different
maximum stresses, the pull-out branch of their Op—u
relation is the same (Fig. 8(a)).

To obtain the p—u relation for the composite, one has
to know the distribution of fibres in the composite. If a
uniform distribution of aligned fibres is assumed, the
composite p—u relation is approximately of the form
shown in Fig. 8(b). The calculation of actual p-u
relations involves the computation of average stress
carried at each u for fibres of different embedded
lengths. For the purpose of discussion here, it suffices
to know the qualitative difference between p—u curves
predicted by one-way and two-way debonding theories.
Similar to the case of a single fibre, one-way debonding
theory overestimates the stress at a certain range of u.
The distribution of bridging stresses along the crack
profile predicted by the two debonding theories is
shown qualitatively in Fig. 8(c) with the assumption
that the difference in p—u relations shown in Fig. 8(b)
will not give rise to significantly different crack profiles.
It is suggested in Fig. 8(c) that the contribution of
bridging fibres to resist crack propagation (i.e., the
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Fig.8 (a) p—u relation for a single fibre; (b) p-u relation for all
fibres; and (c) distribution of bridging stress along the crack,
predicted by one-way and two-way debonding theories

integral in Equation (20)) and hence the first-cracking
strength of the composite are overestimated if one-way
debonding theory is employed.

Besides the overestimation of first-cracking stress, the
use of one-way debonding theory can also overestimate
the reliability of composites and indicate erroneously
the presence of multiple cracking. As discussed by
Marshall et al.* and Leung and Li,” when the crack
opens due to applied load, if the bridging stress in the
most heavily loaded fibres (i.e., the fibres furthest
away from the crack tip) becomes equal to the applied
stress, the increase in K, with further increase in
crack size is exactly balanced by the increase in Ky,iq,

Steady-state cracking

/(high reliability )

Brittle failure
(low reliability )

First-cracking stress

Crack size

Fig.9 Steady-state cracking with uniform first-cracking
strength for a range of crack sizes

associated with the enlargement of the bridging zone.
At this steady-state cracking, the crack propagates
under constant stress (Fig. 9). If the inherent flaw size
of a material happens to lie close to the range of
constant stress, the first-cracking strength will be
almost independent of flaw size, thus implying a very
high reliability. Moreover, if the first-cracking stress is
lower than the maximum stress on the p—u curve, the
composite can take further load (by the fibres alone)
before ultimate strength is reached. Multiple cracking
will then occur, giving rise to pseudo-ductility. Steady-
state cracking and multiple cracking are clearly more
likely to occur if the maximum stress on the p—u curve
is increased (while keeping the shape of the curve
unchanged). Therefore, the overestimation of
maximum p due to the use of one-way debonding
theories may lead to the erroneous impression that a
certain composite is highly reliable and will give
warning before ultimate failure. Assumptions of such
desirable behaviours, as well as an overestimated
strength, may lead to non-conservative designs and
unexpected sudden failure of structural components.
Unrestrained applications of traditional one-way
debonding theories can lead to unsafe designs and
should therefore be avoided. For general applications,
the two-way debonding theory should be employed.

INTERPRETATION OF FIBRE PULL-OUT TEST
RESULTS

Before composite behaviour can be predicted, the two
interfacial parameters, T, and T;, have to be obtained.
The fibre pull-out test is a very common test to deter-
mine fibre/matrix interfacial properties. In Gopalarat-
nam and Shah,"? t, and t; were obtained by trial and
error to determine the combination of t, and T that
would give load—displacement curves closest to experi-
mental pull-out test results. In Bartos,'* a method
which involved graphical fitting was used to determine
T, and v; from the pull-out test results. Such techniques
involve a lot of subjective judgement and are relatively
time consuming. In this section, we will describe a
simple technique for the deduction of t, and T; from
fibre pull-out test results.

A typical result from a fibre pull-out test is shown in
Fig. 10. The load vs. displacement curve shown in the
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Fig. 10 Pull-out test result with linear pull-out branch

figure shows a straight pull-out branch. This is consis-
tent with the debonding theory described above and is
for the idealized case where there is no Poisson’s effect
or slip stren%thening or weakening at the interface
(Wang et al;® Li et al'®). Means to extend our theory to
those other cases will be discussed later in this section.
The determination of t; from the pull-out curve is
relatively straightforward. The slope of the pull-out
branch is equal to —(2nrs1;). However, the slope from
the test results cannot be used directly because unload-
ing of the loading fixture and the free (unembedded)
part of the fibre have to be considered. Correction for
unloading is very important because a flexible chain of
loading fixture is usually employed in a pull-out test to
ensure good alignment and deformation of this flexible
chain cannot be neglected. A simple way of correction
is shown in Fig. 10. The unloading is assumed to follow
the initial slope of the loading part of the curve. Hence,
for a load drop from point A to point C, the fibre slips
by a distance not equal to BC but equal to DC, where
AD is parallel to the initial loading slope OQ. t; is then
equal to (AB/DC)/2ntr;.

After 1; is determined, T, can be obtained from the
peak load. One important point to be noticed is that
the volume fraction of fibre in a pull-out test is usually
very small, estimated to be about 10°to 107™. As a
result, «cis very small and for reasonable fibre
embedded lengths (usually less than 1007; but greater
than about 20r;), the use of one-way debonding theory
(with debonding starting from the loaded end) is a good
approximation. To obtain 1, one recalls that the
applied stress in terms of debonded length /; is given by
Equation (28) in Appendix I as follows:

0, = [2(/y/rpvicoshX; + 2(1/p) sinhX|]
/[(1-a) coshX; + «]

where X, = p (L -1,)/rs.

The maximum stress can then be obtained by differen-
tiating Equation (28) and setting the result to zero. For
a<<1, the debonding zone length /; at maximum stress
is given by:

cosh [p(L-L)/r] = V (/1) (21)

Substituting into Equation (28), again taking «=0, the
peak stress, O, IS given by:
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0peak/[z(l’/rf)‘ci] =1+ { \/[ (ts/Ti)z_ (TS/Ti)]
—cosh™ V (1J1,) M/ (pLiry)
= Ppeax/ 2nreLy) (22)

where P, is the peak load on the pull-out load-
displacement curve.

For the pull-out specimen, L/r;is the embedded fibre
length. p cannot usually be determined precisely
because the pull-out specimen is normally not of
cylindrical shape and, strictly speaking, our theory does
not hold. An approximation of p can be obtained by
assuming that the fibre is surrounded by a cylindrical
volume of matrix with the same volume of matrix
material as in the pull-out specimen. Then, as before, p
can be deduced from Vi, E;, E,, and G,,.

Also, our debonding theory is developed for the
boundary condition of zero stress at the free matrix
surface and is applicable to the pull-out specimen
shown in Fig. 11(a). However, specimens with load
applied onto the matrix surface (Fig. 11(b)) are also
very common. The difference between the stress
distribution in these two cases can be obtained by
solving the problem with the boundary conditions
shown in Fig. 11(c). This is done in Appendix II and
the result is:

0¢ = a0, { 1 —cosh(pz/ry)

—[1=cosh (pL/r;) sinh(pz/r) / sinh(pL/rs) } (23)
T = (p/2) a0, { sinh(pz/ry)

+ [1—cosh(pL/r;)] cosh(pz/rs) / sinh(pL/rs) } (24)

For the pull-out specimen, o is very small. As a result,
the axial and shear stresses given by Equations (23) and
(24) are both very small. The difference in stress
distributions between the pulled-out specimens shown
in Fig. 11(a) and 11(b) are therefore negligible.

For practical brittle matrix systems (such as synthetic
fibre- or steel fibre-reinforced concrete, glass fibre-
reinforced resin and carbon fibre-reinforced glass), p
ranges from about 0.075 to 1.1. Since the embedded
length usually varies from about 20r; to 100r;, the value
of pL/r; varies from 1.5 to 110. In Fig. 12, Pocax !
(2nrLT,) is plotted against (t/t;) for various values of
PL/r;. Once 1, is known, one can compute P, /
(2mreLt;). After computing pL/r for the particular
specimen, T, can be obtained from Fig. 12 (or by
numerically solving Equation (22)). Of course, Fig. 12
is shown here for the purpose of illustration. To obtain
the best results, a curve corresponding to the specific
value of pL/r¢ for the pull-out specimen employed
should be plotted with Equation (22).

In the above, only the case with a linear pull-out branch
has been considered. In some cases, the pull-out branch
can either concave upwards (Fig. 13(a)) or downwards
(Fig. 13(b)). These two types of pull-out behaviour are
due to different reasons and will be discussed in the
following. (Note: results showing increasing stress with
pull-out have been reported by Wang ef al.> In such
cases, abrasion between fibre and matrix leads to a
significant increase in interfacial friction. Then, 1, and
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Fig. 13 Pull-out test data with non-linear pull-out branch

(a) and (b) Two different types of pull-out specimen configuration; and (¢} model to compute the difference in stress

the initial t; are no longer important parameters. A
stress increment vs fibre slip relation is more appropri-
ate to characterize the interface.)

Pull-out test results with a shape shown by Fig. 13(a)
(concavin% upwards) have been obtained by Naaman
and Shah."” This kind of behaviour can be explained by
the fact that the matrix is being abraded by the fibre
during pull-out. Abrasion leads to an increase in the
size of the ‘tunnel’ containing the fibre. Hence, the
resistance to further pull-out is decreased. Wang et al*>
have suggested the use of a stress—slip (t—s) relation at
the interface to model the decrease of interfacial
resistance with increasing relative slip between the fibre
and matrix. However, since the abrasion effect is
significant only when relative slip between fibre and
matrix is high, the effect can be neglected during the
debonding stage. Therefore, once we identify the point

Load

b Displacement
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on the pull-out branch where the load drop is arrested
(point B in Fig. 13(a)), the interfacial friction t; before
abrasion damage can be obtained from the slope of a
line joining point B and the point at which stress has
decreased to zero. The interfacial strength t, can then
be obtained from Fig. 12 as described above. In cases
where significant abrasion leads to a steep drop of the
pull-out curve, the determination of point B from the
plotted data may not be easy. However, the drop of
stress to point B is a sudden event and during the
performing of pull-out experiments, one should note
the stress just after the unstable drop and take this as
the stress value at point B. It should also be noted that
it is not correct to compute T; from the initial slope of
the pull-out branch (i.e., slope of the data curve at
point B) because this slope is dependent on T, as well as
the initial slope of the 1—s curve.

Test results with a pull-out branch concaving down-
wards (Fig. 13(b)) have been obtained by Takaku and
Arridge'’ for steel in epoxy resin. As explained by
Takaku and Arridge, this shape is due to Poisson’s
effect on the interfacial compressive stress. When the
fibre is pulled, it shrinks away from the matrix, leading
to a reduction in interfacial compression and thus a
reduction in the interfacial friction. The reduction of
interfacial friction depends on the applied load which
decreases when the fibre is pulled out. In other words,
when the fibre is pulled out, the interfacial friction
increases, thus leading to the observed shape of the
pull-out curve. In Reference 10, a method is suggested
to fit a curve to the data to obtain both the initial
compressive stress 6, and the interfacial friction
coefficient u. In this case, debonding of the fibre and
hence the peak load are both affected by Poisson’s
effect. For example, for «<0.5, (Fig. 4(b)), in the
debonded zone (0<<z<;), the stress can be obtained by
solving

do/dz = (2/r) u (09— koy) (25)

with the boundary condition o;=0,, at z=0. The
solution is given by:

o¢ = (Vk) [og— (0y — ko) exp (2kuz/rg)] (26)

where k = E_ v/[E{1+v,,)] as shown in Reference 10
with v; and v, being the Poisson’s ratios of the fibre
and matrix.

The peak strength can then be obtained by first com-
bining Equations (6) and (25) to obtain a relation
between o, and /;. By differentiation, the value of /; at
maximum stress can be obtained. The maximum stress
can then be expressed as a function of the other vari-
ables. The approach is very similar to the case with
constant interfacial friction though the resulting
expressions will be more complicated.

Poisson’s effect decreases t; and increases 1./t;. As
discussed in Reference 13 and shown by Piggott,'® the
validity of strength-based debonding theories (i.e.,
theories with the reaching of interfacial strength as the
debonding criterion) is questionable for large t/;.
However, at present, there are no better debonding
theories available and the value of t/t; marking the
limit of validity for strength-based theories has not
been determined. Therefore, it suffices to suggest that
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whenever Poisson’s effect is significant, one should
check the minimum value of t; that results. If t; is much
smaller than t,, results should be interpreted with care.

IMPLICATIONS OF NEW THEORY TO PRACTICAL
COMPOSITE SYSTEMS

The limits of applications for the one-way debonding
theory have already been discussed above. In this
section, several practical composite systems will be
considered to see whether such limits are reached and
hence whether two-way debonding theory has to be
employed. Composite systems considered below
include steel fibre-reinforced concrete, glass fibre-
reinforced polyester resin and graphite fibre-reinforced
borosilicate glass.

For steel fibre-reinforced concrete, Gopalaratnam and
Shah'? obtained values for 7, and v, of 4.134 MPa (600
psi) and 1.895 MPa (275 psi) respectively. In their
work, although the pull-out curve is concaving
upwards, a constant t; was assumed. However, since
curve fitting has been carried out for several fibre
lengths and good agreement has been obtained
between experimental and predicted peak load, their
estimates for t, and 1; are considered reasonable. For
these values of t, and t;, T/7; is about 2. Normally, the
volume fraction of steel fibre used in concrete is from
0.5 t0 2%, corresponding to values of « ranging from
0.034 t0 0.125 and p from 0.243 to 0.314 (E;=210 MPa,
E,=30 MPa and v,=0.3). The fibre aspect ratio
(L/rp** for the transition from one-way to two-way
debonding for the two volume fractions are respectively
135.7 and 26.3. Common aspect ratios for steel fibre
used in concrete range from about 40 to 100. (Note:
this aspect ratio is usually defined as the ratio of fibre
length to fibre diameter, which is the same as the ratio
of maximum fibre embedded length to fibre radius.)
Therefore, for V;=0.5%, one-way debonding theory is
appropriate. However, for V;=2.0%, two-way debond-
ing theory has to be employed.

Pull-out test results for glass fibre-reinforced polyester
resin can be found in Chua and Piggott'® and are shown
in Fig. 14. Piggott'® has shown that strength-based
theories cannot explain the variation of maximum

1.0~

Force (N)
o
o
!

|
o] 0.5 1.0
Pulled-out distance (mm)

Fig. 14 Typical pull-out curve for glass fibre in polyester (from
Reference 19)



pull-out load with embedded length. This is probably
due to the Poisson’s contraction that greatly reduces
the interfacial friction at the onset of debonding. From
Fig. 14, the pull-out branch of the experimental curve
appears to be very straight, showing that Poisson’s
effect is not significant. However, since Poisson’s
contraction is directly proportional to the applied
stress, while it may not be important at low applied
stress (such as at the pull-out branch), it may be impor-
tant during debonding. At the peak load of 1 N (Fig.
14), the fibre is under a stress of 2.63 GPa, giving a
Poisson’s contraction of about 0.75%. In the following,
for discussion purposes, it is assumed that Poisson’s
effect can be neglected and strength-based theories can
be used. For this material system, 7;=11 um, E;=70
GPa, E,,=2.5 GPa and v,,=0.2. The size of specimen is
not known exactly and will be assumed to be cylindrical
with a radius of 5 mm, thus giving a volume fraction of
4.84 x 107°. The value of 1/, for this system can then
be obtained from the experimental data. From Fig. 14,
Ppeai/(2nrL1;)=2.5. The embedded length of the fibre
is 0.7 mm, giving a value of pL/r; equal to 4.74. t/t; is
then approximately equal to 10. For practical short
fibre composites with glass fibre in polyester resin, the
volume fraction of fibre ranges from about 15 to 30%.
The corresponding values of « and p are from 0.832 to
0.923 and 0.61 to 1.21, respectively. Also, in practical
composites, the glass fibres are in bundles which are
bonded together and act as individual reinforcing
members. The size of the bundle depends on the
degree of dispersion and it is assumed here that each
bundle consists of 400 fibres and thus has an effective
radius of 20 X 0.011=0.22 mm. For V;=15%,
(L/rg)"=63.5 while for V;=30%, (L/r;)'""=84.6. The
fibre length employed in short fibre composites is
usually around 25.4 mm, giving a maximum embedded
length of 12.7 mm and aspect ratio of 57.7. Hence,
one-way debonding theory is sufficient to model the
behaviour of the glass fibre/polyester composite system
described above. However, since «>0.5 for all practical
volume fractions, traditional one-way debonding
theory cannot be used. A new one-way debonding
theory for debonding from the embedded end has to be
employed.

Graphite fibre-reinforced borosilicate %lass has been
processed and studied by Sambell et al.? Pull-out test
results for this system are not available, probably due
to the difficulties in specimen preparation as well as
testing when the fibre is of such a small size (4 um
radius). However, it was reported in Reference 20 that
graphite fibres pulled out from the failure surface of the
borosilicate composite are relatively clean, with thin
films of glass attaching to the fibre only in some cases.
In contrast, in other systems such as graphite-
reinforced magnesia, crystals of the matrix material are
found adhering to the fibre. It is therefore evident that
the bond between borosilicate and graphite is not very
strong. T/7; is thus expected to be low and is assumed to
be in the range from 2 to 5. For this system, E;=380
GPa, E,,=70 GPa, v,=0.3. V;ranges from 10-30%.
For V;=10%, «=0.376 and p=0.607, giving (L/ry)"
=3.42 and 8.21 for t/t;=2 and 5, respectively. For
Vi=30%, x=0.699 and p=1.3356, giving (L/r;)"

=2.13 and 5.76 for 1/1;=2 and 5, respectively. In the

composite, the mean fibre length is about 200 um, that
is, the mean aspect ratio is about 25. This is much
higher than the value of (L/r;)" for all practical volume
fractions and hence two-way debonding theory must be
employed for this system.

CONCLUSIONS

Traditional one-way debonding theories are only
applicable to composites with low volume fraction, low
fibre length and/or high interfacial shear strength/
friction ratio. The application of one-way debonding
theories to more general cases leads to overestimation
of strength and reliability of composites, thus leading to
unconservative designs. With 1, and t; determined from
fibre pull-out test results, the significance of applying
two-way debonding theory to the design and analysis of
practical composite systems can be assessed.
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Appendix |

SOME USEFUL EXPRESSIONS DERIVED BY THE
TWO-WAY DEBONDING THEORY

In this appendix, some expressions required for the
derivation of o,—u relations are given. For the deriva-
tion of such expressions, one should refer to a compan-
ion paper!® by the authors.

a<0.5 (debonding starts from the loaded end, Fig.
4(a))

The constants A,, B, and C, for fibre axial stress
(Equation (6)) and interfacial shear stress (Equation
(7)) are given by:

A, = ao,

B, =2(t/p) (27)

C, = {2 (v/p) sinh [p(L-1,)/r¢] - o, }
Icosh[p(L—1,)/r{]

Using Equations (5) and (6) the continuity of stress at
z=I, provides a relation between /; and o,

o, = [ 2(li/re)v; coshX; + 2(ty/p) sinhX|]
/{(1-a) coshX; + «] (28)
where X; = p(L-l,)/r;.

o>0.5 (debonding starts from the embedded end,
Fig. 4(b))

The constants A, B; and C;, for fibre stress (Equation
(9)) and interfacial shear (Equation (10)) are given by:

Aj = a0y
B; = { 2(vJ/p) + (1-a)o, sinh[p(L~1,)/r] }

{ cosh[p(L—~1,)/r¢] (29)
C; = (1-a)o,
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Using Equations (8) and (9) as well as the continuity of ~
stress at z=1,, o, can be expressed in terms of /, as:

0, = [ 2(Ly/ry)T; coshX, + 2(t/p) sinhX;)
! [a cosh X, + (1-a)] (30)
where X, = p(L-L,)/r;.

Two-way debonding (Fig. 4(c))

Expressions for the fibre axial stress and interfacial
shear stress are already given in the text (Equations

(5), (8), (11) and (12)).
In Equations (11) and (12) (with l;=L-/,-1,),l; and ,
can be related to o, by:
2vi(li/rg) = (1-a)o, - (2/p)T 1 - e i)
/(1 + i) 31)
2vi(Lfry) = wo,— (2/p)T[1 - e/ (1 + ey (32)
By adding Equations (31) and (32) together, the

applied stress o, can be expressed in terms of the total
debonded zone length (I, + 1,) as:

o, = 2n(ly +1)/re + (4lp)t[1 - e PN
/(1 + e‘P(L—ll—lz)/ff) (33)

Appendix Il

DERIVATION OF STRESS DISTRIBUTION FOR
THE SPECIMEN SHOWN IN FIG. 11(c) OF THE
TEXT

In this appendix, a differential equation for the fibre
axial stress will be derived for the specimen shown in
Fig. 11(c) in the text. It is assumed that the axial load
carrying capacity of the matrix concentrates in a ring of
distance R* from the fibre centre. The matrix from r; to
R* carries shear stresses only.

With the coordinate axes defined as in Fig. 11(c), in the
matrix, from r¢ to R*,

Ot for + 1,/r=0 (34)
T, = G, OW/or (335)

where G, is the shear modulus of the matrix and w is
the displacement in the z direction.

Putting w = ug. at r=R* and w=u, at r=r,, and inte-
mng R f f
grating from r; to R*, we have:

= G, (ur~—uy) / [rdog(R*/rg)] (36)

Equilibrium of fibre stress and interfacial shear stress
requires that:

3043z + (2lrpt =0 37)

=T

rz l r=r;

Global equilibrium requires that:

Vfof + Vmom = m(Vfop/Vm) = Vfop (38)

where o; and o, are the fibre and matrix stresses
respectively and (V0,/V,,) is the applied stress at the
surface of the matrix. :

Also, from strain—displacement relations:
Ouddz = o/Ey; dug-ldz = 0, /E,, (39)



"Combining Equations (36)~(39), we have:

3%0432° - (plre)*or = — (plry) oo,
p and « have been defined in the text.
The boundary conditions are:
0=0,z=0

or=0,z=1L

On solving, we have

40
(40) 0¢ = a0, { 1 —cosh(pz/ry)
—[1-cosh(pL/rg)] sinh(pz/ry) / sinh(pL/ry) (42)
1 = (p/2) a0, { sinh(pz/ry)
(41) + [1—cosh(pL/rg)] cosh(pz/ry) / sinh(pL/ry)} (43)

COMPOSITES . JULY 1990 317



