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1. Introduction

The J-integral introduced by Professor James R. Rice (Rice, 1968) has found extensive
applications in a broad variety of engineering materials. In the last decade, fracture
characterization of concrete and deliberate tailoring of fiber reinforced cementitious
composites have made great strides. The J-integral has played an important role in these
advances. This article reviews the contributions of the J-integral in three distinct but
related areas: (a) Characterization of the fracture process of cementitious materials, (b)
Testing methodology for the tension-softening constitutive relation in cementitious
materials, and (c) Design of cementitious composites with ultra high ductility.

Cementitious materials include a broad variety of engineering materials mostly
used in civil engineering applications. These include the ubiquitous concrete made of a
composition of aggregates with cement as binder. When the stone aggregates are
replaced by sand particles, the composite is referred to as a mortar. Fiber reinforced
concrete (FRC) is concrete containing a small amount of fiber, typically less than a few
percent by volume, and usually in discontinuous form. In recent years, the trend in high
performance cementitious composites has been in the use of mortar as the matrix
reinforced with an increasingly broad choice of fiber types. In the early days, high
performance cementitious composites are synonymous with high fiber content
composites. With improved understanding of the micromechanisms responsible for
multiple cracking and pseudo strain-hardening, some of these high performance
cementitious composites can now be engineered with only two percent or less of fibers,
making them viable economically and processing-wise for use in large scale structural
applications. In all of these cementitious materials, a common theme is that the
aggregates, sand particles or fibers serve as bridging elements when cracks traverse the
cement matrix. The fracture process and mode of failure are strongly influenced by the
properties of the bridging tractions working against crack opening and extension.

The non-linear fracture process in concrete is widely accepted in the engineering
community, and more accurate prediction of fracture load in concrete elements is now
possible. There is a gradually expanding, although still somewhat limited, adoption of
fracture based safe design of concrete structural elements. The application of high
performance fiber reinforced cementitious composites in load carrying structures is
emerging. A rapid growth in this area is expected in the next few years, especially in
Japan.
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A detailed account of the fracture processes in cementitious materials can be found
in Li and Maalej (1996a,b). The early use of the J-integral for toughness characterization
of concrete was proposed by Halvorsen (1980) and Mindess et al (1977).

This article is written in honor of Professor James R. Rice, on the occasion of
celebrating his 60 birthday.

2. Fracture Models for Concrete and Fiber Reinforced Cementitious
Composites

Hillerborg (1976, 1983) was one of the first to recognize the importance of aggregate
bridging in concrete and fiber bridging in FRC in the fracture processes of these
material. By including the often large scale process zone as an extension of the traction
free crack, the word “fictitious crack” was coined. In order to predict or simulate crack
propagation in these materials, fracture models are needed.

Whatever the source of crack face traction is, it is convenient to consider the
process zone as the near tip crack segment containing a line of “springs” tying the crack
faces. While any spring will invariably resist crack opening, the amount of energy
absorption and many macroscopic fracture behavior will depend on the detail behavior
of these springs. In general, the springs can be linear or non-linear, hardening or
softening. In the case of softening, it can be a result of the same physical process
leading to crack tip extension and therefore the presence of the process zone implies
cancellation of the crack tip singularity. We refer to such process zone as having
‘cohesive’ behavior. It is also possible to have the springs and crack tip extension as a
result of distinctly different physical processes, as in the case of a fiber reinforced
cement. In this case, the spring actions are associated with fiber bridging, whereas the
crack tip extension is a result of breaking down of the cement material. We refer to such
process zone as having ‘bridging’ behavior. For a bridged crack, the presence of the
bridging zone can co-exist with a crack tip singularity. Such distinction between a
cohesive crack and a bridged crack was first recognized by Cox and Marshall (1994).

Cohesive crack models have been considered in a variety of contexts. Barenblatt
(1962) assumed the cohesion on the crack faces to be provided by the forces resisting
the separation of the layers of atoms in metals. Rice (1980) studied rock break down at
ends of earthquake shear faults. Hillerborg (1933) considered aggregate and Yigament
bridging in cracked concrete producing a tension-softening behavior. The bridged crack
model appears most appropriate for fiber reinforced cementitious materials.

Consider a crack with a process zone of arbitrary size (Fig. 1). Traction in the
process zone takes a general relationship between crack face traction versus crack

opening o(8). The spring law can exhibit hardening and softening, with spring force
falling to zero at a critical crack opening 8;*. A relationship between such a general

spring law and the crack driving force J can be derived by adopting the contours shown
in Figure 2, and invoking the path independent property of the J-integral.
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Figure 1. Line-Spring Concept of Process Zone Governing Crack Growth

Figure 2. J-integral Contours Chosen for Process Zone Analyses

The result for Mode I is
2 96
I, =J, ~ [o—dx M
0 _I[ ox

where 3 is the relative crack opening displacement.
We consider three crack models corresponding to different crack tip and spring
behavior.

2.1 COHESIVE CRACK MODEL
When the presence of the cohesive zone is a direct result of the crack tip break down

process, as is often assumed to be the case in concrete, the crack tip singularity must
vanish, i.e.

lim J, =0 @)

Tp—tip

Equation (1) then implies
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Figure 3 illustrates the tension-softening stress profile o (x) in the process zone. Note
that the stress profile is continuous as it makes the transition from intact material ahead

of the fictitious crack tip (8 = 0) to the tension-softening material behind the crack tip.

6] o

Figure 3. (a) Stress Profile 6(x) in Cohesive Crack Model and (b) Corresponding 6(8) Relationship. Note
Crack Opening §, at Physical Crack Tip

The integral above can be re-written as

8o

8
Jrp = J'cdé = jcd& @)
0 0

if Q is taken outside the process zone, since for 8 > 8¢, o = 0 so that the integration for
8 > 8 can be truncated. Because the traction free crack must propagate when the crack

mouth opening exceeds 8*, Eqn. (4) affords a definition of the critical J value, or

5

1

J = jcda )

Equation (5) denotes an upper limit of J with no restriction on the size of the cohesive
zone. It corresponds to the critical value of non-linear fracture parameter J when
traction free crack extension initiates. Hence

J=1, ®)
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with J_ defined in (5) can be considered a crack initiation condition in large scale
cohesive zone crack model.

For the special case of small scale ‘yielding’, i.e. if the process zone is small
compared to all other characteristic dimensions in the problem, then JFQ —> G, the

standard energy release rate crack driving force parameter. Further, at imminent

propagation (8 —> 8;*), G —> G. This affords a physical interpretation of G in terms
of the inelastic behavior of the process zone material, i.e.,

s
G, = [ods ™
0

or graphically, G represents the area under the 6—3 spring law (Fig. 3b).

2.2 BRIDGED CRACK MODEL

For the bridged crack model, the presence of the process zone does not cancel the crack
tip singularity. This is the case of fiber reinforced cementitious composites, in which
the crack tip singularity can be associated with the fracture toughness of the cement,
while fiber bridging provides the spring tractions on the crack wake. Figure 4 illustrates
the bridging stress profile o(x) in the process zone. Note that the stress profile is
discontinuous as it makes the transition from intact material ahead of the fictitious crack
tip to the bridging material behind the crack tip.
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Figure 4. (a) Stress Profile 6 (x) in Bridged Crack Model and (b) Corresponding ¢ (8) Relationship.

Assuming small scale yielding of the material ahead of the bridging zone, the contour T,
can be shrunk onto the crack tip (but remains in the K-dominant zone, assuming that it

exists), and we have J rp—> Gc“", where Gf" denotes the toughness of the crack tip

material independent of the bridging zone processes. Equation (1) then becomes
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5
Jro =GP+ [0ds @®)
0

Again, since ¢ becomes zero when 8 exceeds 5", a critical value of J can be defined for
extension of the traction free crack:

*

5,
J =G"+ jodé )
For large scale bridging then, crack ext(;nsion initiates when
J=1J, 10)
with J_ defined as in (9).

In the case of small bridging length compared to all other length scales in the
problem (small scale ‘bridging’), J_ and G, coincides and

8
G, =GP + [ods (11)
0

2.3 EMBEDDED PROCESS ZONE MODEL

The Bridged Crack Model discussed above assumes small scale ‘yielding’ for the crack
tip material. However, this does not have to be the case. The recently developed highly
ductile Engineered Cementitious Composites (Li and Hashida, 1993) is a good example.
In such materials, the fiber bridging zone is embedded inside a volume of material
undergoing inelastic deformation (See also Figure 11 in Section 4). This suggests an
Embedded Process Zone Model shown schematically in Figure S together with a non-
linear stress-strain curve depicting the behavior of the inelastic zone (shaded area)
embedding the process zone.

(a) (b)

Figure 5. (a) Embedded Process Zone Model, with Inelastic Behavior in Shaded Volume of Material
Represented by Non-Linear 6-€ Curve in (b).

Equation (1) then gives
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5,
Jo,=J,+ _[odé (12)
0

where J represents the inelastic energy absorption inside the volumetrically distributed
inelastic zone. When both the off-crack-plane inelastic zone and the on-crack-plane
(cohesive) process zones are fully dev:eloped, the maximum value of J is reached. Thus

J=J + _[cd& (13)
0

For most materials best described by the Bridged Crack Model, the crack tip toughness
is usually much smaller than the energy consumed in the bridging zone. For materials
that can be described by the Embedded Process Zone Model, experimental
measurements have indicated a J comparable in magnitude to the energy absorbed in
the process zone (second term on the right hand side of (13)) (Maalej et al, 1995a).

Again, for large scale process zone embedded inside an inelastic zone, the fracture
criterion in terms of J will be

J=J, (14)

with J_defined as in (13).

In the case of small process zone length and small inelastic off-crack-plane zone
compared to all other length scales in the problem, J_and G, coincides and

G.=G"+ [oud (15)
h]

identical to the energy release rate of (11). In this limit, J_ = G_*.

[

3. J-Based Fracture Testing in Tension-Softening Material

It can be seen from the above discussion on fracture process characterization that the
o(8) curve plays an important role as constitutive relation of the line-springs in the
fracture process zone. It is therefore important to have experimental methodology or
micromechanics based modeling to determine 6(8). In the following, an experimental
technique (Li et al, 1987; Leung and Li, 1989; Hashida et al, 1993; Li et al, 1994) for
the determination of o©(J)taking advantage of the J-integral is briefly reviewed.
Micromechanics based modeling of o(8) for various fiber reinforced cementitious
materials can be found in Li and co-workers (1992, 1995, 1996, 1997).

The experimental technique to be discussed is based on the Compliance Test, first
used by Landes and Begley (1972) for elastic-plastic metallic materials, and utilizes the
interpretation of J as the difference in potential energy for a differential change in crack
length:

1 Jd(PE)

J=
B da

(16)



392 V.C.1LI

where B is the specimen thickness. Because crack length change is often difficult to
measure, we use a pair of specimens identical in every respect except for a small
difference in crack length. The test can be carried out with any specimen geometry, and
the resulting value of J_ should in principle be the same. The compact tension specimen
can be a convenient choice.

Suppose the two specimens have initial crack lengths of a and a, where a, is
slightly larger than a. For a valid test, a-a  should be smaller than all other dimensions
in the specimen, including the thickness B.

The load P and load point displacement A are measured for each specimen (Fig.
6a). Due to process zone growth, the P — A curve can be nonlinear. Obviously the
specimen with longer crack will have larger displacement value for a given load level
(more compliant). For any fixed A, the area between these two curves may be
interpreted as

Area(A)=J(a,— a,)B (17a)
so that A
J= Area(d) (17b)
(a,—a)B

Since a,, a, and B are known a priori , ] can be calculated for each value of A. This is
shown in Fig. 6b as a J — A curve. The plateau value of J is interpreted as the J¢ value
associated with the full development of the process zone.

During specimen loading, the crack tip opening displacement is also monitored.
Thus a triplet of Load P, Load-point displacement A, and crack tip displacement & is
recorded during the test, and the specimens are loaded to beyond the peak load into the
softening regime. Figure 6c shows a A versus § correlation curve.

Load P (N)
g s
54
L] P
//

Crack length = §7.15 mq]

Cragk length = 63.5 fnm

500 \\
\"\
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Figure 6a. P — A Record for an FRC Specimen (after Li and Ward, 1989)
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The correlation between A and 8; were used by Li and co-workers to deduce the -6

curve. By using the relationship between J and o(d) (Equation (4)) for tension-softening
materials, the 6—8 curve (Fig. 7) can be obtained by differentiation. That is,

dJ
o(8,)= 23 (18)
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Figure 7. Deduced Tension-Softening Curve

Figure 7 also shows the tension-softening curve of the same FRC material obtained from
a uniaxial direct tension test. The good comparison of the two 6—8 curves suggests the
accuracy of the J-based testing technique. The J-based method is particularly suitable
for brittle materials with sharp dropping 6—8 curves for which the direct tension test
may be difficult to carry out due to load instability beyond peak. The J-based testing
technique was originally developed for mortar and concrete (Li et al, 1987; Teramura et
al, 1990), but has since been applied to fiber reinforced composites (Leung and Li,
1989; Rokugo et al, 1989; Li et al, 1994; Hashida et al, 1994), and rocks (Chong et al,
1989; Hashida, 1990). The J-based technique has been extended to 66 relationship
determination for materials in which the crack tip singularity is not canceled (Li et al,
1994).

4. Steady State Cracking and Strain-Hardening Design

Although most cementitious materials are considered brittle (e.g. cement), or quasi-
brittle (e.g. concrete and FRC), it is possible to design cementitious composites with
extremely ductile behavior. One such material, known as Engineered Cementitious
Composite (ECC for short), exhibits tensile strain capacity up to 7.5% (Li et al, 1996).
The design of such materials is based on the J-integral analyses of steady state cracking
and the micromechanics of fiber bridging.

In order to achieve the desirable pseudo-strain hardening behavior, two criteria
must be satisfied (Li and Leung, 1992; Li et al, 1996): (i) steady state cracking criterion,
and (ii) first crack criterion, which requires the first cracking stress to be lower than the
maximum fiber bridging stress. Additional cracks (multiple cracking) can then form on
further loading.

The steady state criterion has been studied by a number of researchers, (see, e.g.
Marshall and Cox (1988); Li and Wu, (1992); and Li and Leung, (1992)). In fiber
composites, the extension of a matrix crack is accompanied by fiber bridging across the



J-INTEGRAL FOR CEMENTITIOUS MATERIALS 395

crack flanks. As the matrix crack extends, the bridging zone increases in length. During
crack opening, the bridging stress increases as fiber/matrix interfaces debond and the
debonded segments of fibers stretch (hardening spring behavior). When the bridging
stress increases to the magnitude of the applied load, the crack flanks flatten to maintain
the constant applied stress level (Li and Wu, 1992). This load level is termed the steady
state cracking stress Ogg.

Based on a J-integral analysis of a steady state crack, Marshall and Cox (1998)
showed that

p

5.\'.\'
Jyy =0,08,— [0(8)ad (19)
0

where J,,-p refers to the crack tip toughness. In most fiber reinforced cementitious
composites with less than 5% fiber volume fraction, J,,-p can be approximated as the
cementitious matrix toughness. The steady state stress Ogs and the flattened crack
opening &gy are related via the bridging law o(8). The right hand side of (19) is known
as the complementary energy of fiber bridging, and corresponds to the shaded area

above the (6 ) curve in Fig. 8. For steady state cracking to occur at all, the steady state
cracking stress must be less than the maximum bridging stress o, in the bridging law.

That is,

o, <0, (20)
Equation (19) and (20) together imply
5,
J,y $0,8,- [0(5)ds @1
0
o
4
[+ <&
0
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Figure 8. Complementary Energy Concept of Fiber Bridging
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Equation (21) provides a general condition for transition from quasi-brittle to strain-
hardening failure mode, and highlights the importance of the total complementary
energy (right hand side of (21)) in composite design.

For Eqn. (21) to be useful in fiber, matrix and interface tailoring, it will be
necessary to determine the bridging law o(8) specific for a given composite system. In
fiber reinforced cementitious composites in which the fibers are randomly oriented and
in which pull-out (rather than fiber rupture) are expected, the bridging laws developed
by Li and Leung (1992) can be summarized in the following form:

(0,6 15,)"~(815,)] fors<s,
o(8)={0,(1-25/L,) for 8, <6<L,/2 22)
lO forL;/2<0

where &, = TLfZ/[Ejdf (1+n)] is the crack opening corresponding to the maximum
bridging stress

1 L
o =—giV.—L 23

Corresponding equations for cases where fibers can rupture and for cases where fibers
are of variable diameters can be found in Maalej et al (1995b), and Li and Obla (1996).
In Egs. (22) and (23), Vy, Ly, df, and Ef are the fiber volume fraction, length, diameter

and Young's Modulus, respectively. 7 is the fiber/matrix interface friction, and the
snubbing factor

__2 2
g= (4+f2)(1+e ) 4)

where f is a snubbing coefficient which must be determined experimentally for a given
fiber/matrix system (Li et al, 1990). The snubbing coefficient raises the bridging stress
of fibers bridging at an angle inclined to the matrix crack plane, appropriate for flexible
fibers exiting the matrix analogous to a rope passing over a friction pulley. Finally, n =
(VIEEPAVmEm), where Vy and Eyy, are the matrix volume fraction and Young's Modulus,
respectively.

The condition for steady state cracking expressed in Eqn. (21) can now be
interpreted as a critical fiber volume fraction above which the composite will show
pseudo strain-hardening. Using (22) in (21), this critical fiber volume fraction can be
defined in terms of the fiber, matrix and interface parameters (Li and Wu, 1992):
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crit = tp (25)
Equation (25) is important for composite design. It provides guidelines for tailoring the

microparameters such that V;mis minimized (Li, 1998). Strain-hardening composites

can then be designed with the minimum fiber content.
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Figure 9. Uniaxial Tensile Stress-Strain Curve of an ECC with CO, gas plasma treated PE fibers

In what follows, we describe the mechanical properties for an ECC. Unless otherwise
stated, the ECC referred to contains two volume percent of polyethylene fibers. Using
Eq. (25) and appropriate parametric values (see Li, 1998), the critical fiber volume
fraction is estimated to range between 0.5% and 1%. Hence a composite with 2% fiber
should satisfy the condition of pseudo strain-hardening, and exhibit high strain capacity
after first cracking.

Figure 9 shows the stress-strain curves from uniaxial tension tests. The ECC strain
hardens to an average strain at peak stress £, approximately equal to 5.6 % (about 560
times the strain capacity of the unreinforced matrix). For this composite, real-time
observation showed that multiple cracking occurred with many sub-parallel cracks
across the specimen during strain-hardening. Beyond peak stress, localized crack
extension occurred accompanied by fiber bridging. The multiple cracking pattern of a
specimen is shown in Figure 10.
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Figure 10. Multiple Crack Pattern of an ECC at About 4.2% Tensile Strain

The total fracture energy of ECC was determined (Li and Hashida, 1993; Maalej et
al, 1995) by means of the J-based technique (Eqn. 17b) and using a set of DCB
specimens with different notch lengths. Concurrently with the tests, damage evolution
on the specimen surface was recorded using a camera.

Figure 11 presents the damage evolution recorded at various loading stages. It is
particularly noted that an extensive microcrack damage zone spreads around the notch
tip before the localized crack starts to grow. Significant energy absorption is therefore
expected from the off-crack-plane volumetric inelastic deformation process. The total

fracture energy measured for this ECC was 27 kJ/m2, . with approximately over half of
this energy consumed in the inelastic damage process occupying an area of 1150 cm?
around the crack tip, and the rest coming from the pull-out of fibers on the crack wake.
For the ECC, the Embedded Process Zone Model discussed in Section 2.3 is most
appropriate in describing its fracture process.
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Figure 11. DCB Specimen Showing Evolution of Notch Tip Inelastic Zone at Four Loading Stages.

The notch-sensitivity of ECC has been examined with double edge notched specimens.
Test results are shown in Figure 12, which plots the peak load as a function of the
reduced section of the notched specimens. The data of the notched specimen lying near
(and actually slightly above) the linear line suggests that these composites are notch-
insensitive. The surface of the notched specimen (Fig. 13) shows multiple cracks
typical of strain hardening fiber reinforced composites. Although the ultimate localized
fracture is in the reduced section, multiple cracking spreads along the full length of the
specimens prior to final failure. These results suggest that highly damage tolerant
structural behavior can be achieved.
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Figure 12. Nominal Failure Load of Double Edged Notch Specimen

Figure 13. Damage Pattern of DEN Specimen

The ability of ECC to deform non-linearly with strain-hardening in tension combined
with high damage tolerance suggests its use in concrete elements which require bolt
jointing. An experimental study (Li and Kanda, 1998) was carried out to determine the
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response of an ECC slab under circular indentor load (Fig. 14). For this ECC material,
1.25% of PVA fiber was employed. In uniaxial tension the strain capacity was 5%. As
control, a similar slab with plain mortar was tested under the same load configuration.
Three different size indentors were used. Figure 15 shows the load-deformation
(indentor deflection) curves for the ECC and the mortar specimens (used as control).
Each specimen type was loaded with three bearing sizes expressed as a percentage of
slab surface area. While the load capacity in each case is comparable, it is clear that the
deformation capacity of the ECC slab is about one order of magnitude higher than that
of the mortar slab at failure.

Figure 16 shows the failure pattern of a mortar specimen, which fractures brittlely
into several pieces as expected. The corresponding failure of the ECC specimen is
much more ductile. Even as the indentor penetrates the surface of the slab, the
surrounding material undergoes inelastic damage with no fractures (Figure 17a). Figure
17b gives an enlarged view of the indentor punch.

The results of this test confirms the notion that the strain-hardening and damage
tolerance of ECC can be very effective in alleviating the high stress concentrations
experienced by structural elements whenever steel and concrete materials come into
contact with each other. Such elements may include concrete embedded steel anchors,
and connections in hybrid concrete/steel structural members.

l 300 rm l

Figure 14. Geometry of indentor and ECC/Mortar Slab
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Figure 15. Load -Deformation Curves for (a) Mortar, and (b) ECC Slab
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Figure 16. Fracture Failure Pattern of A Mortar Specimen

(@ (b)
Figure 17. (a) Ductile Indented Pattern of A ECC Specimen, and (b) Enlarged View

ECC is now being investigated for structural applications (Li and Kanda, 1998;
Fukuyama et al, 1999; Parra-Montesinos and Wight, 2000). A recent study (Fischer and
Li, 2000) on exploiting the strain-hardening and multiple cracking behavior of ECC in
highly earthquake resistant building systems involves fully reversed cyclically loaded
flexural members. These flexural members are made of ECC reinforced with
longitudinal steel or FRP rods. Figure 18 shows the deformed shape of an ECC/aramid-
FRP element at 10% interstory drift. Microcracks less than 200pum are formed along the
full length of the element. The corresponding hysteretic loops indicating large
deformation capacity but with low residual deformation (especially for drift less than
5%) are also shown. In contrast to typical concrete/steel element behavior, no spalling
of the ECC matrix or buckling of the axial reinforcements are observed. Corresponding
tests with ECC/steel elements show extremely high energy absorption behavior (Fischer
and Li, 2000). These characteristics can be used to design building systems with high
safety as well as minimal post-earthquake repair needs.
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Figure 18. (a) FRP Reinforced ECC Flexural Element at 10% drift and (b) load deformation behavior
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5. Conclusions and Further Discussions

The J-integral has played an important role in the understanding of the mechanics and
the engineering of the composites of cementitious materials. This article reviews the use
of the J-integral in fracture process characterization, tension-softening curve
determination, and microstructural tailoring of cementitious materials. Advancements
in these areas provide important tools for failure analyses of structures of cementitious
materials, as well as tools for cementitious composite design for safe structures.

Before closing, we note an often misdirected criticism of the application of the J-
integral to tension-softening materials. The criticism is directed at the fact that since the
J-integral rests on the assumption of non-linear elasticity, and since the process zone
material softens inelastically, the application of the J-integral to tension-softening
materials cannot be valid. The apparent paradox is resolved if it is understood that the J-
integral contour (see, e.g. the contours I'y,, and Iy, in Fig. 2) is placed in the elastic
material adjacent to a line of springs (representing the softening material) which can
unload. Then the unloading of the springs (softening branch of the 6—9 curve) during
crack opening causes a corresponding elastic unloading of the material in which the
contour is placed. This can be better envisioned with a tensile specimen of a quasi-
brittle material. Once a localized fracture zone is formed, the material in the fracture
zone unloads (inelastically), while to maintain equilibrium, the material outside the
fracture zone, which remains elastic also unloads, but unloads elastically. This
phenomenon was nicely illustrated with concrete specimens in uniaxial tensile
experiments carried out by Petersson (1981). The strain/displacement gage across the
fracture zone shows inelastic unloading (stress drop with increase in crack opening), but
the gages outside the fracture zone unloads elastically (decreasing stress with decreasing
strain deformation retracing the elastic loading). Hence for the application of the J-
integral to tension-softening materials, there is no violation of the requirement of the J-
integral as long as the unloading of the material outside the line-spring is elastic.
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