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Biologists and ecologists have traditionally turned to the differential

equation as the means of formulating hypotheses about the operation of the
natural world. Indeed, this mathematical tool has helped to express quanti-
tatively such key relationships as are involved in, for example, fhe allo-
metric growth of organisms, the genetic adaptation of populations, the
biochemical activities of cells, and the energy transfers among species
linked in an ecological web. And there is little doubt that the differential
equation will continue to play a significant role in the arsenal of the
biological and ecological modeller in the future.

However the very success and prominence of the differential equation
has also worked against the development and application of other formalisms
for model description - formalisms which have a more recent origin and which
could open up new possibilities for our understanding of natural phenomena.

Roughly, a formalism is a vigorous means, mathematical in appearance,
of specifying a model. The differential equation invented by Newton 1is
one such formalism, so is the difference equation, which is its discrete -
time counterpart. It is important to understand the use of modelling
formalisms since each carries with it a "world view', i.e. makes certain
hypotheses about the real world easily and naturally expressible, while
making other concepts difficult or impossible to capture. The world view
of the differential equation is that of ''rates of change" - all activities
are formulated through laws governing the rates at which their state
variables are altered. In this paper, we shall discuss formalisms, and
their world views, of more recent origin.

Alternatives to the differential equation have been suggested for
biological phenomena for some time, at least since the 1940's. That

period saw the birth of the relational biology concepts of Rachevsky, the



cellular automaton description of self reproduction by von Neumann and the
logical modelling of neuron behavior of McCulioch. However, despite
continued development, the descriptive formalisms underlying these models
have not yet entered the mainstream of biological thinking, and certainly
have had little impact on ecology.

Recently there have been some signs of change. Most conspicuously,
the use of formal grammars to model the develgpmént of form in plants and
animals has seen a dramatic surge of interest, chiefly due to the initiative
of the biologist Aristid Lindenmeyer.

It is the underlying belief of this paper that such developments will
become increésingly significant in the near future. The reason for this,
we think, lies in the explosive use of the digital computer. Thé simulation
capabilities of the computer have made possibleithe contemplation of models
of scales and forms previously undreamt of. Our conception of what models
are has been radically altered in the process.

In this paper, we shall briefly discuss two classes of model description
formalisms which we, as computer scientists, have recently become interested
in. The formalisms are varieties of the "discrete event'" modelling approach
first developed in connection with industrial process simulation, and the
"uniform cellular space', originally due to von Neumann. We shall provide
evidence of biological and ecqlogical applicability, but the early stage
of development allows us only to hope to be suggestive rather than definitive.

A general discussion of the nature of model description in the context
of computer simulation will be found in Zeigler (1975). For now, it suffices
to say that we regard a model as Basically a set of instructions for generating
dynamical behavior, i.e., input-output time-segment pairs, which can be

matched with real system observations similar in form. These instructions



may be expressed via differential equation, automata theoretic, discrete
event, or other constructs. But the essential thing to realize is that the
model structure, i.e., its set of instructions, has a life of its own;
independent of any particular program realizatioﬁ of the model. Formally
speaking, a model is a means for specifying a dynamical system. A model
description formalism provides the standardized means with which a specific
system from a larger class can be so specifieﬁ (e.g., a particular differen-

tial equation specifies a particular member of the class of smooth dynamical

systems.)

Discrete Event Motivation

An illustrative use of discrete event modelling in ecology is given
by Sigal and Pritsher (1974). Their model consists of two parts (Fig. 1).
The first part is a lake ecosystem, classically formulated, i.e., employing
Holling predator-prey relationships to express the rates of energy transfer
via differential equations. The second part models ecosystem control
policies. It is formulated in discrete event terms to realize such events
as stocking the lake with a designated species periodically, replenishing
the lake with a species when the level of another species surpasses a
designated level, and spraying a species at éreset times. Each of these
activities occurs instantaneously at its scheduled time and causes an
immediate resetting of appropriate state variables in the ecosystem model.

The example illustrates the potential use of simulation for trying
out ecosystem control policies before actual implementation. It also
illustrates the use of hybrid models employing both differential equation
and discrete event components. Both of these implications are likely to
become increasingly significant in the future. However, the example does not
go very far in illustrating the use of discrete event concepts in modelling

biological and ecological phenomena per se.



True, one might infer from the example that regularly recurring
natural phenomena such as seasonal and diurnal climatic changes might be
conveniently scheduled in a discrete event model. But the potential
of the discrete event philosophy for capturing intrinsic and important
eco- and bio-system relationships goes much deeper than this. We refer here
to the programming of activities, their timing, release and inhibition, and
the subtle phasic interrelations among activity cycles which can be found
at all levels of the biosphere from the biochemical factory of a cell
to the life cycles of plants and animals.

We shall provide an illustration of this potential in a moment after

we review the discrete event philosophy which comes next.

Discrete Event Philosophy

We shall provide an informal view of the nature of discrete event
modelling. The constructs given correspond to standard simulation language
(Simscript, Simula, GPSS) features and have been formalized (Zeigler (1975)).

A model consists of a set of interacting components. In a discrete
event model, each component can be thought of as consisting of a set of
processes. We can think of a process as akin to a computer program - it
lays down a sequence of activities to be carried out. The execution of
activities, however, is not automatic, as time and external conditions
may intervene to space out, inhibit, or change the course of the activations.

An activity can schedule a succeeding activity to occur at a definite

time in the future. In this case, which we call unconditional scheduling,

the successor activity will not take place until the designated time is

reached and then it will be executed instantaneously at that time. Or an

activity can schedule a succeeding activity to occur after some definite

time, and as soon as the appropriate conditions subsequently arise in the



model. In this case, of conditional scheduling, the successor activity

will not take place until the designated time is reached. At that time,
and at subsequent times at which "events' occur in the model, the activating
conditions will be tested. When these conditions are finally satisfied,
the activity will be executed instantaneously. The term event above
refers to a change in the state of the model either brought about by some
external agency, the input to the model, or as a result of the execution
of an activity of some process in the model.

Notice that a process embodies a EEEE& of cause and effect in that
one activity can set up a second, which sefs ﬁp a third, eté. Often such
a chain loops back on itself forming a cycle. In fact, such cyclic processes
would seem ideally suited to modelling the many and varied cycles of nature,
as we shall soon illustrate.

The processes of a model may interact in a number of interesting ways.

The most fundamental way is through the medium of the activating conditions.

A process operates in the environment created by its own activities as
well as those of other processes, and as it tracks through its chain or
cycle of activities, its progress may be governed by the prevailing conditions

due to other processes.

A second way is that a process can actively intervene to bring to

life or to kill another process. A process is brought to life by scheduling
one of its activities where previously none was scheduled. Conversely,

a process is killed by descheduling its current activity and so making it
impossible for an activation to occur. Also, a process may create another
process by causing a template for that process (which recall is like a

computer program text) to be copied and then brought to life.

The five constructs - scheduling (conditional and unconditional)



of events, bringing-to-life, killing and creating of processes - constitute
the primitives of the discrete event modelling formalism. In the same

sense, the notion of derivative is a primitive of the differential equation

formalism.

A Generic Example

We shall now discuss a model component called ORGANISM consisting of
three processes - LIFE, FbOD-ACQUISITION, and INTERNAL-DEATH. ORGANISM
is intended to represent in a sketchy way the life cycle of either an
organism or a population of like organisms, depending on the level of
resolution desired of the model. By fleshing in the relevant particulars
of a set of ORGANISMS and interlinking them with a shared environment, one
could arrive at a model of an interacting population (Fig. 2).

The processes are described as follows:

LIFE Process
dormant Hold for time DORMANCY PERIOD
Wait until CONDITIONS FOR DEVELOPMENT are satisfied

development  Activate FOOD-ACQUISITION process to start from stage?

Set CHARACTERLSTIC1 =X
: :
Set CHARACTERISTICn =X,

Hold for time DEVELOPMENT-TIME
maturityl Activate DEATH process to start from begin
Set CHAR%CTERISTYCI =Y
Set CHAR&CTERLSTICn = ;n
Wait until CONDITIONS FOR SOCIALIZATION are satisfied

A
n

]

socialization Set CHARACTERISTICl

Set CHARACZ’ERISTICn

Wait until CONDITIONS FOR MATING~FERTILIZATION are
satisfied



mating—
fertilization

reproduction

inter-season

stage?

passive
acguisition

receipt

active

acguisition
eating

begin

strike

Hold for time MATING~FERTILIZATION-TIME
Hold for time REPRODUCTION-PERIOD
Create copy {or copies) of ORGANISM

Activate its (their) LIFE process(es) to start from dormant
Hold for time INTER-SEASON-PERIOD

Go to socialization

FOOD-ACQUISITION process

If LIFE process is in development go to passive acquisition
otherwise go to active acquisition

Wait until CONDITIONS FOR RECEIPT are satisfied

it

1° Y

Set CMRACTERISTICH

Set CHARACTERISTIC

u
n
Hold for time INTER-RECEIPT-PERIOD

Go to stage?

Wait until CONDITIONS FOR EATING are satisfied
Set CHARACTERLSTICl =Wy
Set CHARACTERISTICn =W

Hold for time intermeal-period

INTERNAL-DEATH Process
Hold for time LIFE-TIME
Destroy LIFE process
Destroy FOOD-ACQUISITION process

Destroy INTERNAL-DEATH process



In the description, underlined phrases are activity names. ITALICIZED
PHRASES represent aspects of the description which would have to be
particularized tomodel a particular organism, or species. All other phrases
are standard instructions which constitute the activities.

To set ORGANISM in motion the LIFE process would be started in dormant.
It would then track through a life cycle which might include bring-to-1life
the FOOD-ACQUISITION process, the DEATH-process, and the creation of

offspring ORGANISMS. The activity names (dormant, development, etc.)

represent successive stages of the life cycle. Each stage sets up the
succeeding stage by either unconditional or conditional scheduling. Thus

- the process will remain in the dormant stage for at least a time period
DORMANCY PERIOD whose actual duration may be a fixed constant or deterhined
by a deterministic or stochastic function of the prevailing wvalues of a
certain designated set of environmental variables. After this period, the
dormant stage will be maintained until the CONDITIONS FOR DEVELOPMENT

are satisfied. These conditions may, for example, specify that the values
of a designated set of environmental variables be within specified ranges.
If, and when, the development stage is activated, the FOOD-ACQUISITION
process is activated and the values of specified variables - internal
characteristics such as biomass, size, etc. and possibly also environmental
ones - are set to specified values. These actions, as well as the scheduling
of the next stage, are conceptually instantaneously executed. The reader

may now decipher the remaining parts of the model.

Discrete Event Modelling of Bio- and Eco-System Interactions

The scheme established in ORGANISM may be fleshed in, and perhaps
elaborated or simplified, to model a particular organism or species. For
example, a flowering plant beginning as a seed may remain dormant a fixed

period or a period determined by the water content of the soil. Germination



(corresponding to socialization) may not occur unless certain conditions

of light and temperature are met. Pollination (corresponding to mating-

fertilization) may depend on environmental conditions such as the presence

of wind and/or on the presence of other organisms such as bees. The latter,
of course, would be modelied by specialized versions of ORGANISM and enter
the model as model components.

We can begin to see how ecological interactions might arise among
ORGANISM components in discrete event model. For example, co-operative
linkage would be illustrated by the well known plant bee relation. Pollin-
ation activity would be released by the presence of bees. Bee reproduction,
on the other hand, would be rejleased by the presence of flowers on the

plant to provide the pollen for nest construction.

Discrete Event Vs. Differential Equation

Now it may well be that at some lumped level such interactions as
above can be modelled, as are classical predator-prey relationships, via
net energy transfer rates and differential equations. But it is equally
clear that at a more micro level the discrete event philosophy provides by
far the more naturally expressive and conceptually stimulating formalism.

One might argue that differential equations can (sometimes at least)
be solved analytically while discrete event formalisms appear not to have
this feature. In response, we note that realistic differential equation
models are usually analytically intractable and require computer simulation.
Only in special cases are solutions of equations obtainable after simpli-
fications are made and symmetries enforced. These cases are nonetheless
important for the establishment of ''matural laws" and the discernment of
trends. Given the embrionic state of discrete event modelling, however,

it is not all clear that similar developments will not occur.



In any case, there is nothing to prevent the construction of models
at various levels employing various modelling formalisms. Interesting
questions arise concerning the interrelation and systematization of these
models. The answers will be increasingly significant in dealing with

complex eco- and bio-systems in the future.

Modelling Distributed Systems

The rest of this paper deals with the uniform cellular space formalism
as an alternative to the partial differential equation (PDE) approach for
modelling distributed systems. We illustrate that sometimes it is
possible to abandon a traditional formalism and its accompanying world view
and yet retain some important mathematical results. At the end of the
paper, we briefly describe a computer simulation system which combines the
speed and graphic capabilities of computer simulation with the usefulness
of a traditional analytical technique.

Many systems that occur in nature are traditionally viewed as very large
collections of components distributed in space with interaction occuring
between components that are near each other. Each component is usually
considered to be essentially the same as every other and is often well
understood when behaving in isolation. The usual way of modeling these
kinds of systems is through partial differential equations (PDEs). Intuitively,
this kind of model might be viewed as a network of an uncountably infinite
number of components each interacting with infinitesimally close neighbors.
When the components and their interactions are simple enough, many of these
equations can be solved analytically using powerful results from functional
analysis. However, for most equations one settlés for computer generated
approximations to specific solutions.

Models within this tradition are ubiquitous in the physical sciences

10



and have been very successful in accounting for a wide variety of phenomeua:
wave motion, diffusion, etc. More recently, this modeling approach is
being applied to such cases as the intriguing reaction-diffusion systems
described by Zabotinsky and Zaikin (1973) and to population dynamics where
the possibility of spatially inhomogeneous populations allows the examination
of migratory tendencies or the effects of diffusion on aquatic species. It
has also been suggested that processes akin to these might underlie aspects
of morphogenetic development.

A less well known way of modelling distributed systems is to view them
as cellular automata (also called tessellation automata or homogeneous
structures). This approach began with John von Neumann's design for a self-re-
plicating machine. Although he planned to consider a model based on non-linear
PDEs, only the conceptually simpler cellular model was completed (von Neumann
(1966)). This modelling framework begins with a view of the components as
actually separated in space and operating in discrete time. In fact, each
component can be viewed as a computer - either a simple one as in Conway's
Game of Life which',produces a 1 or 0 depending on how many neighbors are
emitting 1ls or Os (Gardner (1970)), or a very complex one as in the computing
elements of the ILLIAC IV computer.

More generally, a cellular automaton is an array of uniformly inter-
connected identical finite state automata. Operating sequentially in
discrete time, each automaton at each time step receives input from a finite
number of neighboring automata and computes a new state for itself.
Usually a cellular automaton is described as associated with a finitely
generated abelian group - in particular with Zd (Z denotes the integers).
In this case d becomes the dimension of the integral lattice that represents
the discretized space occupied by the cellular automaton - a cell, that is,

. . . . . d . .
an automaton, is associated with each point in Z~ as in Figure 3.

11



Uniformity of interconnection means that one can design a template
specifying how a single cell is connected to its neighbors and then
determine all the connections by translating this template.

This kind of framework has been elaborated and generalized and has
provided a framework for modelling many kinds of systems (see Burks (1970),
or the recent survey by Aladyev (1974)), There is increasing interest in
cellular automata as models of biological systems that exhibit a degree
of spatial homogeneity such as certain areas of brain tissue, sections of
heart muscle tissue or colonies of bacteria. Interest has also been generated
from pure fascination with the interplay of local and global properties and
the remarkable degree of behavioral complexity that can be implied by such
simple structural specification.

An important thing to notice is that while one may hope for a closed
form solution with the PDE formulation, a cellular formulation is rarely
expected to yield a "solution" in this classical sense. Computer simulation
is usually the only means possible for gaining insight into a cellular
automaton's behavior, and the simulation model is considered not as an
approximation but as a realization of the cellular model. In fact, the
formalism of a cellular automaton allows us to abandon the idea that modelling
with discrete time and space necessarily represents an unfortunate and

inaccurate discretization of ''real" time and space. It is not necessary
to feel that, all else being the same, a finer: '"mesh" would be better.
Although many important things are lost when potions of continuous time
and space are abandoned, other things are gained. We feel that inz§ggg
modelling situations the use of PDEs presents unnecessary mathematical
complications. This is especially true since often discrete approximations

to the PDEs must be considered anyway. For some applications it may even
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be true that the great care taken in numerical approximation introduces an
empty kind of precision into the problem since considerable abstraction may
have been involved in the initial continuous formulation.

Thus, there are at least two approaches one can take in modelling
what we have called distributed systems: the PDE approach and the cellular
automaton approach. In some applications it is quite clear which kind of
model is more appropriate. When processes appear to be continuous in space
and time, the PDE formulation might be more natural along with the accompanying
numerical approximation philosophy. When things do not seem
to be "really" continuous, a cellular automaton conceptualization might be
more valuable. However, in many cases the choice is not clear and is
usually decided by the researcher's background or by the tradition prevalent
within a discipline. In particular, we feel that PDE's are often chosen
because the modeller is unaware of or unfamiliar with other modelling
technidues.

On the other hand, discrete formulations often appear to be disconnected
from any rich body of lore such as that which exists for PDEs. They seem
to be ad hoc constructions that neither benefit from well developed theory
nor seem likely to contribute to it. This impression is only partly true.
Cellular automata are related to a body of knowledge, but one that is oriented
toward questions regarding computational power, formal grammars, and computer
design. These sorts of questions have little direct relevance to
issues which are important in the context of modelling natural systems. PDEs,
on the other hand, can provide extremely useful formulation since enough

structure is present to allow useful specification of behavioral questions.
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In this paper we discuss systems that carl be related to both the PDE
and the cellular automaton traditions. It is hoped that in doing this we
can combine the conceptual simplicity of a cellular model with some of the
behavioral analysis techniques available in the continuous theory. In parti-
cular, we will discuss the separation of variables technique as it appears
in a discrete situation. While this view is commonly used imn the stability
analysis of some numerical methods for PDEs, we do not consider the discrete
model to be the approximation of any underlying continuous representation.
It is thus possible for someone who has no background in the theory of PDEs
or in numerical approximation methods to formulate models of distributed
systems and to gain an understanding of their behavior comparable to that
possible with more traditional approaches.

In order to do this, however, it is necessary to have help from a computer
At the end of this paper we briefly discuss an interactive computer system
designed for experimentation with these kinds of systems. Hypotheses can
be rapidly tested and the models structure can be changed easily so that
cycles of trials and model refinement can be accomplished relatively painlessly
The models capable of being simulated this way are simple enough so as not
to be completely overwhelming but rich enough to provide useful insight into
natural phenomena. In addition, we feel that interactive experimentation
can help one begin to understand '"why'" a particular sort of behavior is

produced by a particular model.

A Subclass of Cellular Automata

The systems we will be discussing can be thought of as  special kinds
of cellular automata. The state at any time of each of the identical cells
can be characterized by a real number or by a finite set of real numbers.

In other words, the cell state set is Rk, where R denotes the reals and k

14



is a positive integer (the cells are thus not finite state automata). Each
cell receives information from certain neighboring cells which do not have
to be immediately adjacent. We make an important restriction on the kind
of information about the states of neighboring cells that a cell can use to
compute its new state: it must use only a weighted sum of the states of
its neighbors. What weight is attached to information from a cell depends
on its position relative to the receiving cell. This idea will be made more
clear below. Finally, using only this information from its neighbors, a cell
computes its new state using any kind of function that can be computed by a
computer. Call this function F. All the cells perform this computation
(each using different data) at the same time so that a configuration of cell
states changes synchronously to a new configuration.

Figure 4 shows a section of a cellular automaton associated with Z,
i.e. it is one dimensional. The circles represent cells each with state
set R, and the pattern of interconnections shown for cell 0 should be under-
stood to be repeated for every cell in the array. If we let qn indicate

)

the state of cell n at time t, then the diagram is intended to mean the fol-

lowing: for each neZ, qn,t+1 = F(w-lqn—l,t + qun,t + wlqnfl)' More

generally, we can write A te1 = F( ) noting that a weight wj
H

87Y5%45 ¢

for a connection not shown in the figure can be considered to be 0. Notice

that a cell can be considered as a neighbor to itself in cases when W £ 0.
We'll continue by giving examples of these systems and describe

theoretical results as they apply just to these systems. The general ideas

will become apparent without the need for complicated formalisms. The

first example is particularly simple in that F is a linear operator. In

such cases the systems are essentially the same as multidimensional linear

difference equations that are often used to approximate linear PDEs.
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Again, however, we don't need to think of any PDE in order to study their

behavior. The first example can be viewed as an attempt to present well known

techniques within the cellular automaton framework.

A Linear Example

This example is a discrete analog of the diffusion process in one
dimension. In fact, it is identical to a standard finite difference approx-
imation method for the diffusion equation %% =~§E% restricted to periodic
initial conditions. Figure 5a shows a section o§ a cellular automaton, but
this time is is associated with Z/N, the inteéers mod N, instead of Z.

In other words, it is a loop containing N cells instead of a string of

an infinite number of cells. Let the function F be given just by F(s) = s,
i.e. it does nothing: the new state of a cell is the weighted sum of its
neighbors. We indicate this in Figure 5 by not writing F in the cells,

Under these conditions it is always possiblé to find an isomorphic
system of the simple form shown in Figure 5b. Two automata M and M' with
state sets S ans S' and state transition functions ¢ and §' respectively
(and no input) are isomorphic when there is a one-one, onto map T:S - §'
such that for all seS, T(8(s)) = &' (T(s)). In other words, if Sy changes to
Se4l in M, then T(St) changes tO‘T(St+1) in M'.

In our case a state s of cellular automaton M is a sequence of cell
states: qgfq,-.-Qy_q- The isomorphism T is the Discrete Fourier Transform
(DFT) on N data points which transforms a sequence of length N of cell
states into another sequence of length N which we interpret as giving the
states of the components of system M'. It can be seen from Figure 3b that

these conponents change state very simply: the next state of component n is

Wn times the old state.
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A discussion of the DFT is beyond the.scope of this paper, but we will
state some facts about it. It is analogous to the Fourier series represen-
tation of a function and mathematically related to it, but can be under-
stood completely without reference to any continuous theory. Its extensive
literature is mostly in the field of digital signal processing (e.g. IEEE
(1967) and (1969)), but applications are arising in many areas since a very
fast algorithm is available for its computation - the Fast Fourier Transform
(FFT). The most important fact for our purposes is that the DFT does not
have to be considered as an approximation to anything.

The DFT not only relates the states of the two systems, but also
directly relates their structure. Consider the weights W and Wn in Figure 5
to be values of weighting functions named w and W respectively. We should
point out here that these are functions of a discrete variable, i.e. they
are sequences. We'll talk about them in language usually reserved for func-
tions of a real variable, but they need not be thought of as related in any
way to usual continuous functions. In particular they are not discontinuous
functions of R. With this in mind, if we let w be the function with values

W
n

W for n in Z/N (-n is the mod N inverse of N), then W is the DFT

of w. Figure 6 shows how the structure of the two systems are related for
specific weights and for N = 16. Graphs of w and W are shown. Remember
that they are functions of Z/N and not of R.

The function w in this example is identical to w since the latter is
symmetric. In general w is different than w and has the interpretation of
a spatial impulse response: 1if the cellular automaton's initial state is
1 at cell 0 and 0 at every other cell, then after one transition its state
will be w. In the theory of PDEs this would be called the Green's function

and one would look at the response after some arbitrary time T since nothing
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analogous to a single transition exists.

Note that system M' in Figure 5b is not a cellular automaton since
each component can be different (they are all the same only if the céllular
automaton M is already uncoupled). System M' has N independent components
each of which is a simple one-dimensional lineir sequential machine. The
behavior of component n of M' is given by éh(WA)t = cr»lei*u)’nwn):C for
t = 0,1, ... where W is the nth Fourier coefficient of w and < is the
nth Fourier coefficient of the initial configuration of M. In other words,
the components of M' keep track of the spatial frequencies of configurations
of M. M' has its "variables separated" or, in automata theoretic terms,
is a parallel composition of simple automata.

The system with the impulse response shown in Figure 6 is the same as
a stable finite difference scheme for the diffusion equation. Stability
is easily checked by looking at the isomorphic system M'. It is stable
because all the weights Wn in Figure 6 are < 1 so that all the spatial
frequencies either stay the same (W0=1) or exponentially decay in amplitude.
More generaliy, the Wn's will be complex numbers (e.g. when w is not an
even function), and stability results when they all lie within or on the
unit circle in the complex plane.

What we have done here works in more general situations but two crucial
restrictions remain: the function F performed by each cell must be linear,
and there must be a uniform interconnection of a finite number of cells.
This last restriction turns out to mean that the spaces must be looped in
every dimension just as our example is looped in one. Alternatively, one
can think of configurations of cell states that are infinite in extent
but restricted to being periodic along every dimension. This is the view

that would correspond to mentally "unrolling" all of the loops. Although
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there are other ways of circumventing this periodicity requirement, it
often suffices to make the spatial periods large enough so that evolving
patterns can be contained within them for the timeé span ofrinterest.

We again emphasize that no notion of approximation has been used thus
far: M and M' as described above are exactly isomorphic, their behaviors
will never diverge, and we have not ignored anything about integrability,
convergence, or roundoff error. Roundoff error re-appears when these
systems are actually simulated, but the other kinds of problems arise only
when these systems are regarded as approximations to continuous time and/or
space systems or as approximations of non-toroidal structures.

Finally, we note that although the example above only deals with a
situation in which each cell has state set R, essentially the same techniques
apply when Rk is the cell state set. In general, cell interaction can be
specified by k2 weighting functions since we need to know how each state
component i of a cell, 1 < i < k, depends on each state component j,

1 < j <k, of the other cells. The DFT is performed on each of these
weighting functions to find the isomorphic system M'. Each iﬁdependent
component of M', however, will have state set Rk: each one will be a k-dimen-
sional linear sequential machine or, more traditionally, a fealization of

a system if k linear difference equations.*

Thus far, all the systems discussed have been linear systems since
the function F did very little. The second example is non-linear. We
hasten to point out that no general results like those described above

are possible in this case. However, by combining the results developed

The situation is formally the same as that in linear systems theory (e.g.
Chen (1970)). Time invariant linear systems can be specified by the

impulse response matrix, a matrix of functions of time. Here, the uniformity
of a cellular automaton is spatial invariance, and a matrix of functions of
space specifies the interconnections. The spatial analog of causality

is not required since cells can depend on neighbors all around them.
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above with the use of the high-speed algorithm for performing the DFT on a

computer, we can describe a useful and rapid simulation technique.

A Nonlinear Example

This example is based on a model proposed by Dev (1974) and Burt (1974)
for the segmentation of visual information into distinct features by the
human visual system. Its interesting behaﬁior, however, might usefully
model” phenomena observed in other research areas. The system is a cellular
automaton like that shown in Figure 5a except that the function F computed
by all the cells in nonlinear. Figure 7 shows the shape of F for arguments
between 0 and 1.

One method of analysis, both for systems like this and for similar
PDEs is to try to linearize around‘the equilibrium points and then separate

variables . If the weighting function is like the one in Figure 4 (i.e..w0 = 1/2

Wy =W, o= 1/4, and the rest = 0), then there are three obviousxequilibrium

confiéurations: when every cell is in state 0, every cell is in state 1/2,

or every cell is in state 1. These are the fixed points of F (in the

linear case of Example 1 every uniform configuration is an equilibrium

configuration as can be seen since W0 = 1 in Figure 6). Looking at the

slope of F at these points, one would find that the uniform configurations

at these values would be stable, unstable, and stable equilibria respectively.
However, in this case, the above kind of analysis misses all of the

interesting aspects of the system's behavior. Burt (1974) says that if you

think of cells with states near 1 as '"on'" cells and those with states near

0 as "off" cells, then equilibrium patterns will develop as regions of mostly

"on" cells consolidate into completely 'on' regions, and mostly "off'" regions

become completely "off'". In other words, stable patterns will be achieved

in which regions of "on'" and "off" are each larger than some critical size.
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Thus, even in a case as slightly nonlinear as this one, the facts
described for Example 1 concerning the isomorphism via the DFT seem of little
help. With the help of a computer, however, and a very fast algorithm
for computing the DFT known as the Fast Fourier Transform (FFT), it is
possible to simulate these systems in a way that relates them to the linear
case, but not through local linear approximation. In many cases this method
is even very much faster than a straightforward simulation .* Figure 8
is a kind of flowchart illustrating the method. The essential idea is to
compute just the linear past of a system's transition function by using
DFT. The nonlinear function F is then computed for each cell in a straight-
forward manner. This amounts to performing the weighted summatioﬂ involved
in a traﬁsition by a high-speed convolution algorithm (see, for example,
Stockham (1966)); but, in combination with a visual display at each stage
of the computation, it can be interpreted as providing a connection with an
underlying linear system.

The numbers 1 - 4 in Figure 8 indicate various stages in the computation
at which information can be displayed (we are thinking in terms of useful
graphic representation on a CRT). A transition of the cellular automaton
proceeds as follows: 1) the current configuration (display point 1) is
transformed by the FFT into its spatial frequency representation (display
point 2). ii) The spatial frequency representation is point-wise multiplied
by the function W (the DFT of the reflection oﬁ fhe weighting function w) as
indicated in box b of Figure 8. The result can be displayed at point 3.

iii) The inverse FFT is applied to find what would be the new configuration

if F were the identity function. This could be displayed at point 4.

= -
As the networks become larger and more densely interconnected the use of

the FFT becomes more advantageous. See Barto (1974) for.a more detailed
discussion of this point.
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iv) Finally, F is applied in a point-wise manner as shown in box b.
The result is the cellular automaton's new configuration which is again
displayed at point 1.

It is thus possible, at each time step, to see what a related linear
system would do in the same situation. The one-step behavior of this related
linear system is seen by looking only at display points 1 and 4. The
one-step behavior of the isomorphic '"variables-separated" version can be
seen by looking at points 2 and 3. In other words, the weighted sum can be
calculated and observed before F is applied at each cell. If the simulation
is observed only at display point 2, one would sée the behavior of the
non-linear system in the spatial frequency representation. This view will
not necessarily be more simple to understand (as it is in the linear case)
since the components may depend upon one another. We feel, however, that
an intuitive understanding of the DFT together with all four views of each
transition can lead to substantial insight into the workings of many cellular
automata.

The central idea can be summed up as follows: The method makes use

of two complementary state representations so that operations performed
in their natural representations (i.e. simple point-wise operations).
Part of the problem in understanding a distributed system of the sort des-

cribed here is that part of its operation will be complex no matter what

single representation is used: the spatial representation makes the com-

putation of F by each cell easy to understand but, at the same time, makes
the cell interaction difficult to understand; on the other hand, the

spatial frequency representation makes cell interaction easy to follow but
the operation of F very obscure. The existence of the FFT, however, makes

it unnecessary to choose one representation over another.
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An Interactive Simulation System

We have taken this idea of complementary state representations one
step further in the design of an interactive computer simulation! system.
In addition to displaying several representations of a model's behavior,
it is possible to allow the structure of the model to be specified and
altered by using several representations. All of the weighting functions
which, in effect, determine exactly what the interactions among the cells
is to be, can be entered into the simulation system by giving either repre-
sentation. The FFT or its inverse automatically determines the other
representation. Refering back to Figure 6, this means that the diffusion
example can be specified by entering either the sequence w or W.

In our system, implementated to simulate‘only one-dimensional cellular
automata, all functions are specified by literally drawing their graphs
with a light pen on a graphic display screen. After a function is drawn,
the system is told what role it is to play in a simulation and what represen-
tation of it the graph is intended to be. A user can enter a function
very quickly in this way. Moreover, by alternately viewing and adjusting the
various representations of a function, it is possible to achieve accuracy
sufficient for most qualitative experiments.

Since the shape of a weighting function can be so crucial in determining
the behavior of a model, and since a function can be changed so quickly
and easily, interactive sessions with the simulation system can help build
an understanding of '"why'" a model behaves in a particular way. This is
especially true since it is possible to integrate information from two
representations of the model's behavior each of which is, in some sense,

natural.
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~Conclusion

We have presented the ''discrete-event' and the 'cellular auotmata'
formalisms as alternatives to the more traditional differential equation
modelling techniques. The latter have tome to be accepted by many bio-
and eco-system modellers as being necessary for thinking about the world.
It's imporvtant to realize, however, that each modelling formalism is
natural for only particular classes of real world phenomena - those easily
expressible within its world view. Whether or not all phenomené can
ultimately be accounted for by a particular kind of model is not at issue
here, but rather that certain kinds of models may help us to better under-
stand certain kinds of behavior. We have shown here that the discrete-event
and cellular automata formalisms may prove to be fruitful for expressing

important bio- and eco-system dynamic relationships.
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