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Preliminary Notation. Definitions. and Theorems

e shall be concerned with transition systems (hereafter called

nachines) of the form

T= <5, QW

]

where S = input alphabet set

internal state set

Q

M: Qx S—>Q = the transition function
$* = set of all words on S, typically x,y € S*. 2(x) = length of x.
¢ = <ﬁ¢x}, °y ®>> is the monoia (hereafter loosely called '"semi-~
group') associated with T where

¢x(q) dgf M(q,x) for all g e Q,
(with M extended to S* via M(q,xs) = M(M(q,x),s))
and A is the null word, so that
o) = M(q,A) = q.
E is an equivalence relation on S* where
xky iff Va(¢ (q) = ¢Y(Q))=
E is a congruence relation, i.e..
[x]-[y] = [xy]
where [ ] denotes a class of E, and » denotes concatenation.
The monoid S*/E = <1[x]}s o [ 1> is isomorphic to ¢, symbolically
s*/E 139
Rq is a right invariant (equivalence) relation on S where
quiy iff ¢ (q;) = ¢Y(qi)n
Clearly
xpy ittt (Vq € Q)(xk‘y),

The following are relations on the set of all right invariant

relations over S*



10.

il.

13.

14.

a. Ra refines Rb iff Ra < Rb

iff xRay==$»xRby for all x,y e S*,
b. R, comp. (comparable) Ry iff Ra SRV R < R

c. Ra inc. (incomparable) Rb iff '\:(Ra comp., Rb)

iff @x,y) (xR y A xR y)

Gx'yy") (x'Ry' A w'Ry').

A (accessibility) is a reflexive, transitive relation on Q where

q A q, iff 32)(M(qy,2) = q,).
Qi is set of states accessible from G i.e.,
Q; = {q/qi A ql.
Clearly
qlqu—-_—)Ql =2 Q2~
C (communication) is an equivalence relation on Q where

q, C q, iff q, A 9, A q, A 9

C, denotes the equivalence class of 9,

K{a) is the cardinality of set a.

The order of a monoid 8 = (B, *, e
0(B) = K(B).

T is assumed to have n states, i.e.,

K(Q) = n.

A transition system T = <S, Q, M, q1> with initial state a, is

connected iff Q1 = Q.



We quote the following well-known ideas from Nelson's [7] develop-
ment of the Hartmanis decomposition theory:

P 0 0
Definition 3.5.7. Let Ti = <S9 Qig Cp Mi> and Tj = <§, ng qjg Mj>

be two connected transition systems., The mapping h : Qi~—% Qj is a tran-

sition homomorphism if and only if

) h(ay) = qf.

2) h(Mi(qi,s)) = Mj(h(qi)ps) for all s ¢ S, q; € Qi’

Furthermore, if h is one-one, onto, it is a transition isomorphism.

Corollary 3.5.8. The followings are properties of h:

a) Clause 2) of Definition 3.5.7 may be replaced by
-h(Mi(qux)) = Mi(h(qi)gx) for all x e S*,

b) There is at most one onto homomorphism between Ti and T, .

¢) There is a decision procedure for determining whether any

map h is a transition homomorphism.



Introduction

This report investigates some relationships involving the order of
the semigroup of an automaton and a class of automata for which this
order takes on its smallest value, relative to the number of states,

This class, called degenerate automata in Definition 1.1, has
the property that the order 0(%¢) s n (where n is the number of states)}
In fact we shall show (Theorems 1,9 and 1010)2 that for any connected
machine 0(¢) = n if it is degenerate, and 0(¢) > n if it is not degenerate,
Hence the connected degenerate automata are precisely those automata whose
semigroup order achieves its smallest value. Further, we show by counter-
example that this result does not necessarily hold for disconnected
machines even when they are reduced (in the sense of Definition 1.3),
Theorem 1.12 strengthens the lower bound for strongly connected automata,

The class of degenerate automata properly includes a variety of

automata by Trauth [2] is such that ¢ is isomorphic to a group of auto-

morphisms (i.e., isomorphisms from the machine onto itself) which charac-

terize the automaton. Trauth defines the class of quasi-perfect automata

as those group-type automata which are connected. Perfect automata turn
out to be quasi-perfect automata with abelian groups. It is the perfect
automata which are investigated by Fleck [3] and Weeg [4] and which
appear as strongly connected commutative machines in Laing [5].

The group-type automata in turn belong to a class of state-independent

1All symbols are defined in the preliminary definitions.

2These results provide a converse for a theorem of Oehmke [1] which
showed that the order of the semigroup of endomorphisms (see above)
of a connected machine never exceeds n.



automata investigated by Beatty [6]1 Finally, the connected degenerate
automata turn out to be those automata for which ¢ is isomorphic to a semi-
goup vf endomorphisms (i.e., homomorphisms of the machine into itself)
(Theorem 2) and includes the state independent machines as a proper sub-

class.

In sum, the following inclusion relations may be established.

degenerate

N\

state independent abelian (connected)

)

group-type

\
quasi-perfect
\'\.\ s
y
\\\\

p;rfect

1See also recent work by R. Bayer, "Automorphism Groups and Quotients
of Strongly Connected Automat: and Monadic Algebras," IEEE 1966
Symposium on Switching and Autcnata Theory.



0. Some Relationships Involving Semi-group
Order and Regular Events

Before further investigating the degenerate automata, we pause to
consider the relationship of semi-group order to the behavior of an auto-
maton viewed as an acceptor., We consider a notion of "fineness of dis-
crimination' and relate this to the lengths of the minimum representatives
of the congruence classes S*/E, We tentatively identify the longest of
these as measuring the "effective memory span" of the machine. The argu-
ments presented are not complete and are meant only to suggest the rele-
vance of these notions to the understanding of automata behavior.

In regard to the "fineness of discrimination" and refering to the pre-

liminary definitions we note that

xby &==3 (Vq,) (qu_y)
i
To interprete this statement we think of our machine T = <<Ss Q3h4>
as an acceptor automaton with initial state q; i.e., Tq = <Sg Q, M, qi>
i

(with final states unspecified). The statement then says that if two
words x,y are not distinguished by the congruence E, i.e,, xEy, then it

is impossible that they are distinguished by any acceptor qu (since for
any right congruence qug it must be that XRq1Y)U Conversel;a noting that

“xEy == (dq;) (’vaqiy)
we have that if two words are distinguished by E, then there exists
an acceptor which will also distinguish them. In other words, a bound on
the fineness of discrimination of T viewed as an acceptor is imposed by
the fineness of the partition S*/E. Now, one measure of the fineness of
a partition is the number of classes in it. (In fact, an ordering of
partitions based on this number preserves the order induced by a partial

ordering based on class inclusion.) Further the cardinality of S*/E is



just the order of the semi-group, 0(¢) and for a machine with n states,

1 <0(8) <n",

Notice, then, that an ordering based on 0(¢) over machines with the
same number of states may provide additional information to that obtained
from the partial ordering induced by homomorphism which relates machines
with different numbers of statesa3

We see the semi-group order determmines the number of classes belong-
ing to S*/E which, when united, form classes of S*/Rql for some q, We
interpret the '"fineness of discrimination' as related to the number of such
sub-classes comprising any acceptor class.. We now argue that such discri-

mination involves the length of words.

Definition 0,1, X is a minimum representative of [x], a class induced

by E, iff x is among the shortest of all words in [x], i.e.,

2(X) = min 2(x)
[x] .
Definition 0:;2. T has effectiye memory span, JL(;E)B iff x is among

the longest of the minimum representatives of all classes of S*/E, i.e.,

L(X) = max 2(x).
S*/E

The designation "effective memory span™ is introduced here only as
a suggestive name for L(§)u Whether this concept fares well as a measure
of memory must await further investigation.

The following theorem establishes bounds placed on the effective
memory span by the order of the semigroup.

Theoremmgéi; For T = <S, Q, Mj> and ¢ the semi-group of T, let
K(Q) = n, K(S) = m.

3Consider for example, set of all compositions obtained by interconnecting
a fixed number of machines. Each of these compositions has the same
number of states but the orders of the transition semigroups may differ
markedly. The relation of the semigroup order to the connection pattern
might then be explored.




Then

2()&) < 0(9) <m1n{m-==cmm n}

or equivalently

log  0'(8) s 2(X) < 0(9)

0(¢)(m=1) + 1

where 0'(9) = - = 0(¢) for m sufficiently large.
Proof. Let X = S1Spc 08, & We shall show that the z(i) + 1

classes associated with heads
= 1 = ¥ =
X, = 51550008, (1=0,1, ... 2(X), X, =A)
are distinct. Suppose to the contrary xiEXjﬁ i < j. Then since E is

a congruence we may add the tail, sj+100csg(§) corresponding to the head

xj to both X5 ij thus obtaining

X. I:xJ =) X. sJ+lccnsz(§) Exjsj+1cocsl(§)
%
== X153+1 (;) Ex

But also 2(x.) < z(x ) == &(x,s l(i)) < 2(X) so that X is not

itje1s
a minimum representative contrary to hypothesis. This establishes that
R(x) < K(S*/E) = 0(¢). The upper bound on 0(¢) is obtained by assuming
that all words of length less than or equal to Q(ﬁ) are non-equivalent
minimum representatives.

Q.E.D.

We conclude that the semigroup order brackets the effective memory
span of a machine. Thus, for example, flip-flops (degenerate) and delays
(non-degenerate) are types of 2-state, 2-symbol connected machines with
effective memory span of 1. That of a 3-state (2=symbol, connected)

degenerate machine is always less than that of a 3-state machine with

0(¢) 2 15- Notice that the effective memory span may be less than



the degree of definiteness [10]. Thus, while a flip-flop has indefinite
storage (degree of definiteness = «) its effective memory span is only 1.

Continuing our attempt to relate the relations E, Rq we observe that
E-induced subclasses of S*/Rq are those satisfying left as well as right
invariance, hence the well-known

Theorem 0.2. Let Tq be connected, Then
1

XEy & (Vq) M(q,x) = M(q,y))
& (Vz) MM(q,,2))x) = MM(q,2),y)

<:g>(Vz)(szq zy)

1

The E-induced subclasses of Rq then appear as those which are preserved
1

under prefixing of any word. Alternately these classes are invariant
under time translation (with £(z) the shift interval).

Clearly one and only one of the classes of S*/Rq contains the sub-
1

class associated with the longest minimum representative, [x]. If S*/Rq
19

has more than one class, T is therefore able to define a set of words
1
containing a time invariant class of words at least £(X) long.

For degenerate automata, Definition 1,1 states that the classes of
S*/Rq are just those of S*/E. It follows that all classes of S*/R  are

1 9
time invariant; i.e.,

XR ¥y &= (Vz)(zxR_ zy).
q; q
Further, since 0(¢) < n, it follows that the longest minimum representa-

tive of these classes can be no longer than n symbols in length,



1.0. Qggenerate Machines

Definition 1.1. A machine T = <§, Q,I@> is degenerate iff there

is a state q; € Q such that

XR  y&= xEy
4
for all X,y ¢ S* (universal quantification will be assumed whenever

X,Y e S* appear unquantified).

Since in general K(S*/Rq.) = K(Ql) < n we have immediately from

Definition 1,1 that '

0(®) = K(S*/E) = K(S*/qu) £n,
We shall presently return to the converse of this statement, i.e., to
the question of whether degenerate machines are the only ones for which
0(®) s n,

Let us refer to a state q, appearing in Definition 1.1 as a critical
state, the motivation being that equivalence of words under the right
invariance relation of a critical state is necessary and sufficient for
equivalence under the congruence E.

Since from preliminary Definition 6 we have xEywé=$(Vq)(quy) we

have the following equivalent but useful definition of degeneracy.

Definition 1.1', A machine T = <$9 Q, M> is degenerate iff there

is a critical state in Q, i.e., a state qq- such that
R <R for all q € Qfl
q, q
Models of degenerate machines are generated by Caley representations
of monoids.

Let <5» o, f> be a monoid; the corresponding Caley machine is

defined as

1 B o
Note that there may be more than one critical state. If all states are
critical, T is state independent, i.e. R = Rq for all q4;-9; € ¢

q; ; ]

10



11

T(S) = <5, S, M)
where M(s,s') = ses' for all s,s' € S.
It has been established (Myhill [8]) that T(S) is well defined and
that its transition monoid is isomorphic to S. Moreover, we can show that

T(S) is degenerate with critical state 1. This is so since

M(1,x) = M(l,y) &> 1x = ly

n

= ax

==y Ma,x) = M(a,y)

ay

for all state g e 8.
Now consider the set of submachines of T generated by members of Q
considered as initial states.

Definition 1.2. For each q; e Q we can define an initial state

machine T, = <8, Qjs 94» Mi> where

o
i

{a/q; A q}

L
b
]

initial state of Ti
M. is M restricted to Qi°
it is easy to check that Ti is a well defined connected machine,

Note too that Rq is the right invariance relation corresponding to Tio
i ]
We now apply preliminary Theorem 3.5.1.8, to a pair 91094 of

a degenerate machines. Rq S Rq iff there is a homomorphism from T1
1 i
Ti’ i.e., a map hqi ; Ql———> Qi such that

onto

hqi(ql) = 9

and

M(h, (q),s) = h ~(M(qy,s))
ql ’ ql 1’
for all s € S and q € Qla Since the domain of hq is Q1 and not necessarily
i
the total set Q, hq is not a proper endomorphism, but what we shall refer
i
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the 1nitial and

to as a sub-endomorphism. Clearly if T is connected with q

¢ritical state, then h  is indeea an endomorphism. ke thus have proved the

Theorem 1.1. T is degenerate with q, a critical state iff ' r each
e -

T 7

ontg . ; . _
>(% such that hqi(ql) =q;-

q; € Q there is a sub=-endomorphism h”, IR
The following statements are immédiate nronerties of sub-endomorphisms.
.emma 1.1.0. 1. hqi(M(q,y)) = M(hqi(q),y) for all y ¢ S* (from

Cor. 3.5.8.a).

2. A sub-endomorphism defined on Q1 is uniquely speci-
fied by the q, image, i.e.,
(4 = hylap) => by = by

3. For the sub-endomorphisms of Theorem 1.1 we have

further

. =q.&h  =h
9 = 4 0.

1 a

j

Proof of 2: h.(q) = hj (q,) == M(h;(q;),x) = M(hj (a;),x)
=3 hi(M(ql,x)) = hi(M(qlsx)), for all x ¢ S*
Q.E.D
We note that functional composition of sub-endomorphisms is not
generally possible because of the restriction of the domain. Such compo-
sition is possible however for the subset {hq /qi € Ql} since
q; € Q1 = Qi c Ql so that hq may be taken to map Q, into Qy» we shall

refer to such a set of sub-endomorphisms as a critical set. A critical

set with critical state q, can be written in the form

H = {hM(qfx)th(qfx) M(q,y)) = M(hM(ai,x)(ql)*’Y)}

Theorem 1.2, A critical set of endomorphisms forms a monoid under
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functional composition, i.e., l; = <}H5 oy hq > is a monoid.
1
Proof. Clearly hq is an identity and functional composition is
' 1
associative. For the rule of composition we have

Mucayx) Mg,y @) = Mg ™M gy (9002

= hM(q}ﬁx)OM(ql°yz)

= M(hw (qlnx) (ql) Dyz))

1]

M (qlsx)’z)

MM(ay,xy),2)

= hM(qngY)(M(qlpz))

[

which demonstrates closure,
0.E.D.

We are now ready to establish the equivalence between degenerate
machines and those for which the transition monoid ¢ is isomorphic to
a monoid of sub-endomorphisms. As noted in the Introduction a variety of
machines studied in the literature satisfy the latter description.

Theorem 1.3. T is degenerate iff there is a monoid of sub-endomor-
phisms defined on a connected subset of states which is isomorphic to
the monoid of transitions, ¢.

Proof. In the forward direction assume T is degenerate with critical
state q, . According to Theorem 1.2 we have the existence of a monoid
kH'= <EhM(qlgx) s hq1£>b We shall show that g : ¢ —> Hl such that

g(¢x) N hM(chfx)
is an isomorphism.

Clearly g is onto; it is moreover, one-one since



1h

hM(qlsx) ) hM(ql,y) == M(q;,x) = M(q;,y)

= xR _y
4
== xEy (degeneracy)
% ¢x = ¢y
Finally to show commutivity, we have g(¢xe¢y) = g(¢xy)
" Mg, ,xy)

= TMA 1&25
M(a,x) M ) ¢ )
= 8(8) 8(s,)
Hence g is an isomorphism.
For the converse let H = <ﬁhi}, N h1>> be a monoid of sub-endomor-
phisms whose domain and range are Ql’ the set of states accessible from
a state, q - By assumption ¢ is isomorphic to H. Let us first show that
for every state q; € Q1 there is an hi € H such that hi(ql) = Q55 in other
words that {h,(q,)} = Q-
First note that since there are at least as many transition maps in
¢ as there are distinct q; images,
0(9) 2 K{o, (q)} = K(Q,) (1)
Because of isomorphism between H and ¢ we have using (1) that
0(H) 2 K(Q)) (2)
From Lemma 1.1.0 we have that for
hence that K({hi(ql)}) > 0(H) and from (2)
K({h,(q;)}) 2 K(@Q).
But since the range of every hi is Ql’ any assumption other than

{hi(ql)} = Q1 involves a contradiction.
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Now consider the submachine
T = <5 M.
Since for each q; there is a sub-endomorphism hi such that hi(ql) = q
we have that from Theorem 1.1 that Tl is degenerate with q, a critical
state.

Let ¢1 be the transition monoid for Tlc From the first part of the

present theorem, ¢. is isomorphic to H and hence ¢, is isomorphic to ¢.

1

Since in general

1

XEy = xEly
(where El is the congruence relation for Tl) @1—i59>¢ implies that

XEy &= xEly (3)

But since T1 is degenerate

xRy &> xEly
1
hence from (3)

XR 'y &= xEy,
4

i.e., the original machine T is degenerate.
Q-E.D.

Corollary 1.3.1. For a connected machine T, T is degenerate iff

there is a monoid of endomorphisms which is isomorphic to the monoid of
transitions, ¢.

Theorem 1.4. A connected machine having an abelian semigroup is

T R R T R S ST S 2 T

degenerate.

Proof. Let q, be an initial state such that Ql = Q. We shall show

B s T

that q, is a critical state.

Using the right invariant property of Rq , we have
1

XR 'y == (Vz) (xzR yz)
ql (ﬁl
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Further, it follows easily from the fact that ¢ is abelian that
XzR zx

9
and

zZR  zy 3
y q y (3)
Since Rq is an equivalence relation (3) and (4) yield

1

XR 'y == (Vz) (zxR_ zy)
4 4]
= xEy
(using Theorem 0.2). Since the converse implication always holds, Defini-
tion 1.0 is satisfied, hence the associated machine is degenerate.
Theorem 1.5, For connected machines

H= ¢ with hM(qfx) = @x iff ¢ is abelian.

Proof. Corollary 1.2,0 statement 4 states that

® = ¢
hM(ql»X) y(q) th(qIQX)(q)
which holds for all g ¢ Q since T is connected.
Now if hM(qlaX) = ¢x then
P9 =2¢9¢
X'y y X
so that ¢ is abelian
Conversely, if ¢ is abelian, then by Theorem 1.4 a set of endomor-

phisms exists,

Let q = M(quy), then

M(q19XY)

H

M(q;,yx)

MG, ,¥) %)

¢
x(q)
QGEcDi\
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1.1. ﬁ Definition"gi Machine Reduction

We have shown that for a degenerate machine 0(¢) < n. We are now
interested in the subclass of degenerate machines for which 0(¢) = n.
To do this we develop a method of reducing the number of states of
a machine while keeping its transition semigroup invariant.

Definition 1.3. A machine is reduced iff for every q;:9, € Q

qu < Rq? NC #Cy ==(q £C)@QAq,).

In words, for any two non-communicating states 4549, if qu refines Rqﬁ
then q, is accessible from some state not in its communicating class,“

Our definition differs from the standard one in that we do not assume
that T is connected and we allow the possibility that every state has
a distinct output. As seen from Theorem 1.7, the nresent definition
coincides with the standard one for connected minimal machines.

The sum of any machine with an isomorphic copy of itself is an example

of an unreduced machine.”

< I £ L] L] 7 A
bemma Ly 5 Ry == Uy s Q)G € Q0 K ).

)
-

Proof. q) ¢ Q, == there is a z such that

M(ay,2) = a5
Take qi = M(ql,z) € Qi‘
t N 0 = #
Now quly > M(qp.x) = M(qy,y)
= M(qlazx) = M(qlaz}’)

=5 zxR _ zy
1

= M(q,,2x) = M(d,,2y)
=7 M(a},%x) = M(qS.y)
”"—.T.\) XR' y

RY)
Q.E.D.

1 Figure 1, page 19 is an example of a mzchine which is reduced but
not connected,
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Theorem 1.6. If a machine T is not reduced there is a machine T'

with fewer states such that

hence

¢ 23% ¢ and 0(8) = 0(9").

Proof. Let T = <§, Q, M>> not be reduced. Then there are q;.9,

such that
1. R s R
q; q2
2, C1 # C2
3. ~(dq £ Cz)(q A q2) (Definition 3)

The idea behind the proof is that 1) qu refines qu and by Lemma 1,
all states in q2's communicating class C2@; Qz) and 2) C2 is inaccessible
to all states external to it, hence the whole class C2 may be eliminated
without affecting the word semigroup of the machine.

Formally we shall show that

XxEy iff xE'y
where T' = <<S» Q - C25 M'>> where M' is M restricted to Q - Cza

Note that Q # C2 since if Q = C2 then q, C Qg s i.e., C_ = C, violating

1 2
condition 2 above.
Furthermore M(chz,x) ¢ Q- CZF since by condition 3 no state in
Q - C2 can access C2 (for if q A qé A q% C q, then q A qz)° Thus T' is
well defined.
Now
XEy == (Vq) (¢, () = o, (a))
—> (V4 € (QC)) (6, (@) = ¢,(a))
—>xE'y

Now note that Q1 €Q- 02 since if q; A q and also q ¢ C2 then by



2 violating Condition 2.

Since C2€; Q29 and ng; Q - C25 Lemma 1 tells us that if qu refines
qu then every state in C2 is refined by some state in Q - sz Thus if
quy for every q € Q - ng then quy for every q ¢ sz

Condition 3 q; € C2 but then Cl = C

Thus
xE'y = (Vq ¢ (Q ~ Cz))(XRqY)
== (Vq ¢ (Q - Cz))(xRQY) A (Vg e Cz)(quy)
=== (Yq € Q) (xR_y)
== XEy
Q-E.D.
Noting that at least q, € CZ’ T! contains at least one fewer state
than T.
Finally isomorphism clearly follows from equality of the congruence
relation.
Theorem 1.7. If a machine is connected then it is reduced.

Ef99f; Assume T is not reduced. Then C, # C, and Rq « R but

1 1 d,

(3q ¢ Cz)(q A d,). In particular, q, £ C, (since Cl # C,)  So q, A g,
QED

Theorem 1.8, A degenerate machine is reduced iff it is connected.

Proof. Let T be degenerate with qu < Rq for all q. Assume T is
reduced. Clearly d; A qq- Let q, # q- if q, C 94 then the theorem 1is
proved. If not, then by Condition 3 of Definition 1.3 there is a qs
which accesses q, but is not accessible from SPE Now either q4 C q; in
which case the theorem is proved, otherwise by Condition 3 again, there
is a a4 such that q, A q4 A G A Ay Now it cannot be that , A A

(since then q, A qg) thus q, £ (Q, ' Q) or since Q; = Q, (the inclusion
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is proper since q, A q3) a4 £ QSA Evidently this process must stop

since at every stage j: qj",1 £ Qj whlle Qj D Qj-l seo D QZ: So that
at most Q = Q. Thus for some, j, qj = q and furthermore
q, A qJ ] A qJ L A qJ g vec Az A g, = q A q,.

The converse follows from Theorem 1.7.
Q.E,D.

1.2. Semigroup Order and Degenerate Machines

Theorem 1.9. A degenerate machine T has 0(¢) = n if
1. it is connected.
or 2. it is reduced.
Otherwise 0(¢) < n.

Proof, Coﬁnectednesslézé reduced by Theorem 1.6. If T is connected
then K(Ql) = n and by Theorem 1,3 b(H) = 0(¢) = n. If T is not reduced
then by Theorem 1.6, there is a machine T', with fewer states such that
0(¢i = 0(9"'). But T' is also degenerate since for all states q € Q - C

2

it is still true that Rq < R,. Therefore 0(%') < n-1,
1o Q. E.D.

In regard to the converse of Theorem 1.7 it might be conjectured
that for a reduced non-degenerate machine, 0(¢) > n+l. Since reduction
does not necessarily imply connectedness for non-degenerate machines it

may happen in fact that 0(¢) < n as the following example shows.

a ,a,
f\al,bl,az,bz,c 19blgazﬂbz,c

2)

LY
dl,blfaz,

bz,c al°b1’a2’b2’c

al9b1’a2’b2’c al,bl,a bzsc

Figure 1.
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The machine of Figure 1 is composed of two separate reduced degene-
rate components which do not enter into any homomorphic relation since

a.R b, A waK.-n. and ~a,R a, while a,k
l1q, 1 - lq 1

1 L PR 1 “ 1
i 4
while having 8 states and beinz non-degenerate and reduced. the semigroup

a5, It is easy to verify that
of the machine has only 6 distinct functions. The dead states
qz,qs,q4,q§,qé,q5 are of course to blame for the small order. Regarding

the machine as ar acceptor and applying the appropriate reduction would
remove many of these states with the concomitant effect of altering the word
semigroup.

Theorem 1,10, A connected non-degenerate machine has 0(¢) > n+l.

Proof. Assume q, is the initial state. Then there are n distinct

functions, ¢x differing at least in the ql-imagesn Because R cannot
1
refine all Rq’ q € Q, (otherwise T would be degenerate), there is a q,s say

1 9, 2 1 9, 2

¢x (qz) # ¢x (qz)u Thus there are n-1 distinct functions differing at
1 2

such that xR x, while x_.R_ x_,. In other words ¢x (ql) = ¢x (ql) while
1 2

least in the ql-images, and at least 2 functions distinct from the n-1
others having identical qleimages but different qzaimageso Hence there
are n+l distinct functions.
Q.E.D.
Figure 2 displays a connected non-degenerate machine of 3 states

having 0(¢) = 4.

Figure 2.
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Thecrem 1.10 can be strengthened for strongly connected machines.
First we have the following lemmas.

* -
Lemma 2. K(S /qu) = le

Lemma 3. 1f R, inc. R, and K(S*/Rl) < K(S*/Rz) then there are at

least 2 classes in S*/Rl which are split in S*/Rzﬂ
Proof, Since R1 and R2 are incomparable at least one class in S*/Rl
is split in S*/ch If only one class is split, then since

K(S*/Rl) < K(S*/Rz), it follows that R, <R But this contradicts the

2 1°

hypothesis that R, inc. R

1 2°
We develop the following lemmas by using the fact that
2, ql A qz A '\qz A qléK(Ql) > K(Qz)

Lemma 4, Rq compo.Rq N q Ag,=>R_ <R .

1 2 9 9

Lemma 5a, R comp. R C => R = R .
( q, < q2) A4, Caq, q, " q,

Lemma 5b. qu = Rq2===9)(q1 A qzé::;(h.c qz),
Since 9 C q, iff q A 4, 4, A q;s apply Lemma 4 twice, obtaining 5u.

Theorem 1.11. If T is strongly connected and for every pair 95595,

qu comp . qu, then T is degenerate.

Proof . Lemma 5a applies to all pairs of states, hence

e e i

R, =Rq = .., = Rg . But then by Theorem 1.1, T is degenerate, in fact
q 4, n

state independent.
Q.E.D.

Theorem 1.12. A strongly connected non-degenerate machine T, has

0(2) > n+2,
Proof. Theorem 1.11 is contradicted unless there are q;,49, such

that Rq inc. quc Noting that K(Ql) = K(Qz) and applying Lemmas 2 and 3,
1
there are at least 2 classes in S*/Rq which are split in S*/Rq .
1 2
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The argument of Theorem 1,10 goes through except that now there are n-2
distinct functions differing at least in there qlsimages, at least 2 func-
tions distinct from then n-2 others having identical qlaimages but differ-
ent qz-images, and at least 2 functions distinct from the others having
the same ql-images but different q, images.

Q.E.D,



6.

10.

REFERENCES
Oehmhke, R. H., '"On the Structures of an Automata and Its Input Semi=
group," J. ACM 10 (Oct, 1963), pp. 521-525.

Trauth, Jr., C. H., "Group-Type Automata," J. ACM 13- (1966) pp. 170~
175,

Fleck, A. C., "Isomorphism Groups of Automata," J. AOMM 9 (October
1962), pp. 469-476.

Weeg, G. P., "The Automorphism Groups of the Direct Product of Strong-
ly Related Automata," J. ACM 12 (April 1965), pp. 187-195,

Laing, R. and J. B. Wright, "Commutative Machines," The University of
Michigan Technical Report, December 1962.

Beatty, J. C., "On Some Properties of the Semigroup of a Machine
Preserved Under State Minimization," IBM Research Paper RC1199,
May 1964.

Nelson, R. J., Introduction to Automata, Case Institute of Technology.

Myhill, J., "Finite Automata, Semigroups and Simulation," paper
delivered at University of Michigan Summer Conference on Automata
Theory, 1966. Reference to McNaughton, page 5.

Bavel, Z.; '"On the Structure and Automorphisms of Finite Automata,"
Department of Computer Science, University of Illinois, October 1965.

Perles, M., 0. M. Rabin and E. Shamir, "The Theory of Definite Auto-
mata," Hebrew University of Jerusalem Technical Report No. 6.

2} l{.



DISTRIBUTION LIST

(One copy unless otherwise noted)

Technical Library

Director Defense Res. & Eng.
Room 3C-128, The Pentagon
Washington, D.C. 20301

Defense Documentation Center 20
Cameron Station
Alexandria, Virginia 2231k4

Chief of Naval Research 2
Department of the Navy
Washington 25, D.C.
Attn: Code 437, Information
Systems Branch

Director, Naval Research Laboratory 6
Technical Information Officer
Washington 25, D.C.

Attention: Code 2000

Commanding Officer 10
Office of Naval Research

Navy 100, Fleet Post Office Box 39
New York, New York 09599

Commanding Officer
ONR Branch Office

207 West 24th Street
New York 11, New York

Office of Naval Research Branch
Office

495 Summer Street

Boston, Massachusetts 02110

Naval Ordnance Laboratory
White Oaks, Silver Spring 19
Maryland

Attn: Technieal Library

David Taylor Model Basin
Washington,D.C. 20007
Attn: Code 042, Technical Library

Naval Electronics Laboratory
San Diego 52, California
Attnt Technical Library

Dr. Daniel Alpert, Director
Coordinated Science Laboratory
University of Illinois

Urbana, Illinois

Alr Force Cambridge Research Labs
Laurence C. Hanscom Field
Bedford, Massachusetts

Attn: Research Library, CRMXL R

U. S. Naval Weapons Laboratory

Dahlgren, Virginia 22448

Attn: G. H. Gleissner, Code Kk
Asst. Dir. for Computation

National Bureau of Standards
Data Processing Systems Division
Room 239, Building 10

Washington 25, D.C.

Attn: A. K. Smilow

George C. Francis
Computing Laboratory, BRL
Aberdeen Proving Ground, Maryland

Office of Naval Research
Branch Office, Chicago

230 North Michigan Avenue
Chicago, Illinois 60601

Commanding Officer
ONR Branch Office
1030 E. Green Street
Pasadena, California

Commanding Officer

ONR Branch Office

1076 Mission Street

San Francisco, California 94103



DISTRIBUTION LIST (Concluded)

The University of Michigan
Department of Philosophy
Attn: Professor A. W. Burks

National Physical Laboratory

Teddington, Middlesex, England

Attn: Dr. A. M. Uttley, Supt.
Autonomies Division

Commanding Officer

Harry Diamond Laboratories
Washington, D.C. 20438
Attn: Library

Commanding Officer and Director

U. S. Naval Training Device Center
Port Washington

Long Island, New York

Attn: Technical Library

Department of the Army

Office of the Chief of Research
and Development

Pentagon, Room 3D4k2

Washington 25, D.C.

Attn: Mr. L. H. Geiger

National Security Agency
Fort George G. Meade, Maryland
Attn: Librarian, C-332

Lincoln Laboratory

Massachusetts Institute of Technology
Lexington T3, Massachusetts

Attn: Library

Office of Naval Research
Washington 25, D.C.
Attn: Code 432

Dr. Kenneth Krohn

Krohn Rhodes Research Institute, Inc.
328 Pennsylvania Avenue, S. E.
Washington 13, D. C.

Dr. Larry Fogel
Decision Science, Inc.
6508 Pacific Highway
San Diego, Californisa

National Bureau of Standards
Applications Engineering Section
Washington 25, D. C.

Attn: Miss Mary E. Stevens



UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation muet be entered when the overall report ia classilied)

1. ORIGINATIN G ACTIVITY (Corporate author) 2a. REPORT SECURITY C LASSIFICATION
Logic of Computers Group Unclassified
The University of Michigan 26 GrouP
Ann Arbor, Michigan 48104

3. REPORT TITLE

DEGENERATE AUTOMATA: SOME RELATIONSHIPS INVOLVING
SEMIGROUP ORDER AND REGULAR EVENTS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Report

5. AUTHORC(S) (Last name, first name, initial)

Zeigler, Bernard

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
December 1966 25 10
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
Nonr 1224 (21
4 (21) 03105-45-T
b. PROJECT NO.
c. 0bh. OTHER REPORT NO(S) (Any other numbers thet may be assigned
thie nporJ
d.

10. AVAILABILITY/LIMITATION NOTICES
Distribution of this document is unlimited.
Qualified requesters may obtain copies of this report from DDC.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Office of Naval Research

Department of the Navy
Washington, D.C.

13. ABSTRACT

This report investigates some relationships involving the order of the semi-
group of an automaton and a class of automata for which this order takes on its
smallest value relative to the number of states. (U)

This class, called degenerate, is a limiting class in the sense that the semi-
group order of any connected machine equals the number of states if it is de-
generate, and is strictly greater than the state cardinality otherwise. Further,
we show by counter-example that this result does not necessarily hold for dis-
connected machines even when they are reduced in appropriately defined manner.
The lower bound on semi-group order is strengthened in the case of strongly con-
nected automata. It is also shown that the class of degenerate automata, as
herein defined, properly includes a variety of semi-group and group type auto-
mata studied in the literature. (U)

The relevance of semi-group order to the acceptance properties of automata is
suggested. In particular, the number of subclasses and the minimum lengths of
strings in an acceptor class are related to the semi-group order. (U)

DD .72, 1473 UNCLASSTFED

Security Classification



UNCLASSIFIED

Security Classification

KEY WORDS

LINK A LINK B LINK C

ROLE ROLE ROLE wT

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECUNTY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
‘‘Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete repost title in all
capital letters, Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4, DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial,
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication,

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity, This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other repcrt numbers (either by the originatar
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) ‘‘Qualified requesters may obtain copies of this
report from DDC.’’

(2) “Foreign announcement and dissemination of this
report by DDC is not authorized.”’

(3) ‘““U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

"

(4) ‘‘U. S. military agencies may obtain copies of this
report directly from DDC, Other qualified users
shall request through

”

(5) ‘“All distribution of this report is controlled. Qual-

ified DDC users shall request through

”
»

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall’
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C). or (U).

There is no limitation on the length of the abstract. How-

ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

UNCLASSIFIED

Security Classification






i

|



