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ABSTRACT

In a foundational paper on the theory of automata A. W. Burks
and H. Wang (1957) conjectured that a certain complexity measure
involving the size of the strong components of a logical net formed
a hierarchy for net behavior. A:strengthened version of this conjecture
is proved by establishing that any logical net can be interpreted
as a series parallel composition of nets associated with its strong
components. Some properties of the periodic behavior of machines,.
shown to be preserved under simulation and composition operationms,
are used to complete the proof. The relationship of this approach

to algebraic proofs of series parallel irreducibility is discussed.
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I. Introduction

In this paper I establish a conjecture made by Burks and Wang
(1957) concerning the strong components of digraphs representing logical
nets. These strong components were called cycles and the degree of a
cycle was defined as the number of points (hence delays) contained in it.
A net was said to be of degree d if it had at least one cycle of degree
d and no cycles of higher degree.

Burks and Wang made the conjecture: For any degree d, there is some
transformation not realized by any net of degree d.

In our current terminology ''transformation' means transition
function and the realization in question is isomorphic state behavior
realization (e.g., Hartmanis and Stearns, 1968).

The conjecture is true and moreover turns out to hold even when
the word '"'realized" is replaced by '"simulated'" in its statement. In
other words, I shall show that there is no upper bound on the highest
degree needed so that all nets of this or lower degree can simulate any
finite transition function. That this is the case is indeed surprising
since arbitrary memory expansion and slowing of computation rate is
allowed by the simulation concept. It is also notable that.this "in-

variance" under memory and time scale expansion is not characteristic
of other interesting measures of feedback complexity (Zeigler, 1969).
The proof consists, in the first place, in establishing a correspondence

between the strong components of a net and the component machines of a



series parallel (cascade) composition. Once this is done, one alternative

is to invoke certain little stressed results of the decomposition theorems

of Krohn and Rhodes (1965) to complete the proof. In this alternative,

one relies essentially on the irreducibility of simple groups. Instead,

I shall present a direct proof of the main result which uses entirely

machine (rather than semigroup) concepts. In this respect, there is a

similarity with the proof of irreducibility given by Ginzburg (1968).

However, even though his proof is machine oriented, it still maKes heavy

use of basic group theory ideas. The present proof is of additional in-

terest because of the attention given to the properties of state cycles

in the transition diagram and their behavior under simulation and composition

operations. Studies of the relation between net structure and the cyclic

properties of net behavior have been initiated in connection with neural

and genetic network models (e.g., Kaufman, 1969; Walker and Ashby, 1966).
From the semigroup point of view, I shall be concerned in effect with the cyclic
(singly generated) subgroups of the machine semigroup and the irreducibility

of the cyclic groups of prime order. The restriction to this subclass

may explain the ability to carry through fully machine oriented proofs.

II. Basic Concepts

A machine (automaton, transducer) is a quintuple A = <§,Q,0,M,N>

where S(input symbols), Q(states), O(oufput symbols) are finite sets,
M: Q x S + Q is the transition function and N: Q +0 is the output function.

Given a transition function M we are interested in machines which can



simulate M via their input-output relations. To do this we need only

consider the semiautomaton A = <SA’QA’MA>'

A= <8,,QysM, > simulates M: Q x § +Q if there exists U e Q, and
maps g: S *-SX (the free semigroup generated by SA), h: Q' +Q (onto)

such that Q' is closed under g(S) and for all q € Q', s ¢ S,

h(MA(q,g(s)) = M(h(q);sk(MA: Q, x S} +-QA is the usual extension to SK of MA)'

Here g represents the input encoding and h the output map of the sim-

ulation. When g: S + S, we say that A homomorphically realizes M, and

A

further when h is one-one A isomorphically realizes M.

Definition 1

A composition over a finite set of machines {Aa = <Sa,Qa,Ma>|aeD}
is specified by a set S, a family of subsets {I & D|aeD} and a family of
7 .
maps {ualaeD} where Z : ﬁelaQB x 8§ +8 .
This structural description uniquely defines a machine A = <S,Q,M>

where Q = X Q. , and for all qeQ, seS, aeD
aeD "o a

proj, M(q,s)) = M, (proj (a),Z, (proj; (a),s)).

Here projD,(q) is the projection of q on the co?ogdinate subset D'C D.
Interpretively, Ia is the set of machines directly influencing Aa and
Za is the connecting map specifying the next input to Aa in terms of the
next external input S and the present states of the machines indexed by
Ia' In particular, a logical net (digital network, sequential machine
realization) is a composition over a set of 2-state delay elements
(c.f., Hartmanis and Stearns, 1966).

The digraph (directed graph) D(A) representing a composition A has

as points the set D, and there is a line from point a to point B just in



case BeIa. (The graph theory terminology and concepts used here are taken
from Harary, Norman and Cartwright, 1966).

A composition over {MalaeD} is said to be series-parallel if there

exists a linear order on D 150550, «os such that Ia = ¢ and for each

1
integer n, I“n o {“1’“2’ ...,an_l}.

The digraph of a series-parallel composition then, assumes a simple
one dimensional form in which any line directed to o must come from some
point a_, m<n, for n>1and oy has no incident lines.

For any point aeD(A), let Ca denote the strong component containing a

i.e., Ca = {B] these is a path (of possibly 0 length) from a to 8 and back
in D(A)}. It is well-known that the set of strong components {CalaeD}

is a partition of the points of D(A). The condensation of D(A) is the digraph

*
D{A) with points {Ca]aeD} and there is a line from Ca to C, iff (if and

B
only if) this is the case for some points a'sCa,B'eCB (and Ca # CB)'

A digraph D has an (ascending) level assignment if to each a € D there

is an integer n, (called its level) such that for each line (a,B) in D

Theorem 10.2 of Harary et al states in effect, that the following is
a level assignment for an acyclic graph D: Let U be the set of transmitters
of D and assign the integer 0 to each point in U. To every point a not in

U assign n, where n, is the length of the longest path to o from any point

in U, We call this the longest path length assignment.

ITI. Logical Nets and Series-Parallel Compositions

The proof of the Burks-Wang conjecture begins by showing how a logical
net A can be considered to be a series parallel composition of component

nets associated with the strong components of D(A).



Let A be any logical net and D(A) its representing digraph. It is
well known that the condensation of D(A) is acyclic and therefore has an
ascending level assignment, which we take to be the longest path length
level assignment.

For any digraph D with level assignment 1¢t Lm by the subset of points
of D having level m. Clearly, {LmID.s m < m} (where m is the highest level)
is a partition of D. |

We shall employ the following

Lemma 1
Let D be an acyclic digraph with level assigned according the longest
path iength assignment. For any level m > 0,
a) there are no lines joining any two points in Lm’
b) no point in Lm has any incoming lines from points in Lm"
m' >m+ 1, and
c¢) every point in Lm+1 has at least one incoming line from some
point in Lm'

Proof:

a) and b) follow directly from the definition of level assignment.
To prove c) let L be the longest path from the transmitters to a

point P in Lm+ We show that point Q immediately preceding P in L has

1
level m. Since Q is in L there is a path of length at least m from the
transmitters to Q. The level of Q is then at least m. Suppose it exceeds
m. Then there is a path from the transmitters to P (running through Q)
with length exceeding m + 1. This contradicts the fact that the level of
P is m+1 and thus Q has exactly level m. Q.E.D.
Corollary 1

Every finite acyclic digraph can be put in the form of a digraph of

5



a series parallel composition.

Proof:

For each of the sets Lm of lemma 1, let P(m,l)’P(m,Z)’p(m,S)’ ces p(m,nm)
be an enumeration of its points (where n. is the cardinality of Lm).
The digraph represents a series parallel composition for according to the
lemma, the ordering of the points
Pa,1°Pa,2y P(1,n1)'f’(z,1)"’(z,2)’ "'P(m,nﬁl)

‘is such that if there is a line from (i,j) to (k,&) and k > 1, then i <k,
in fact i = k-1, and by definition of LO no lines are incident on any point with k

We need to show that a logical net can be interpreted as a composition
over ldgical nets associatel with its strong components. This demonstration,
while conceptually straightforward involves a degree of notational difficulty.
It consists of 1) defining the logical net A(Ca) associated with a strong
component Ca of D(A), 2) defining a composition A* over the
{a(c)) |aeD(A)} whose digraph is D*(A), and 3) verifying that A and A*

are isomorphic.

1) A(Cu) will be a composition over the 2-state delay elements in Ca.
The external input to an element a in C, will consist of the external input
to A together with all delay wires incident on C& not originating within it.

In other words, let I¥ = {CBI there is a line from Cq to C, in D*(A)}and
a

let (IE ) denote the union of the sets C
a .

in I% .,
B Ca

Then the external input, SCa = ée(lé )QB x S.
o

The set of elements within Ca directly influencing o is I& = Ialﬁ Ca.
The new connecting map Z& is the old connecting map Za reinterpreted
accordingly, i.e.,

Z&(Projx. @), (proj (I* )(q),s)) = Za(ProjI (q),s).
a Ca o

6



This defines a machine A(Ca) = <Sca’QCa'MCa> where Qca = §€CGQB

and MC determined according to Definition 1.
a

2) The composition A* over {A(C )} will have external input S. The set

component machines influencing A(Ca) is given by Ié . The connecting map
o

ZE P é eI* QC xS +S; is just the identity mapping.
o g~°C 8 o
o
Note that the digraph D(A*) is isomorphic with the condensation D* (A)

since it is generated by the sets Ié .
o

3) It is now routine to verify that the transition function defined by
the composition A* is isomorphic with that of A.

In sum, we have shown that a logical net A can be interpreted as a
composition over the nets associated with the strong components. The digraph
of this composition of D(A) is just the condensation of the original digraph
and so is acyclic. Corollary 1 then allows us to conclude that this composition
is a series parallel composition. Thus, we have proved
Theorem 1 A logical net A is (isomorphic to) a series parallel composition

over the set of logical nets associated with the strong components of D(A).

IV. State Cycles and Series Parallel Compositions

n
Let M: Q x S -+ Q be any transition function and M: Q x S§* +Q its
extension to S*. M contains a cycle if there is a q ¢ Q such that

q = qx (=M(q,x)) 1)

for some x ¢ S* and positive integer k. Let k be the least positive integer
for which (1) is true. Let the sequence

Z)s Zys Zga oee Zg )

be the sequence of initial substrings of xk, where Z, is the first symbol

1
7



(Here 2(x) denotes the length of x).

k _ .k
of x and Zkz(x) = X .

The sequence of states

qzln qzzx qZS' seey qzkl(x)

is called the cycle of x and consists of the states encountered in
journey from q back to q in the order of encounter. The number of states
in the sequence is its period, T. Clearly, T = k&(x). The x-period,
Tx is the number of states in the subsequence
1 2 3 k
qx, X, qX, ..., X .
We note that each of these states must be distinct (since k was the least
integer for which (1) held), so that
Tx = k ces2)
and hence
T = Txg(x) vee3)
(2(x) may be referred to as the input period).
We remark that the cycle of x need not form a cycle in the state
diagram of M in the graph theoretic sense i.e., not all qu need by distinct

(although all" x' are distinct).
g q

We say that M contains a string cycle of string period, p if it

" contains a cycle of x for some x € S* which has x-period, Tx = p.
The following theorem is proved in (Zeigler, 1968).

Theorem 2

Let Mi: Qi X Si + Qi be finite transition functions such that M

1
simulates MZ’ with maps h: Qi 4-Q2, and g: 52 > S;. If for some xeS;,

qi: qé’ sery Q$z(§(x)) =q' e Qi
is a g(x)-cycle of Ml with E(x)-period m, then

ha}), h(a}), ++v» h(q")

8



is an x-cycle of M, with x-period k dividing m. (Here g: S} + 8] is the
unique extension of g to a homomorphism.)

Conversely, if

Qp» 90 00 Qppqx) T 4

is an x-cycle of M2 with x-period k then there exists a E(x)-cycle in

h ) U ntap oo U i) nmy

with E(x)-period m a positive miltiple of k.

Since homomorphism is a special case of simulation we can state:

Corollary 2

For finite transition functions, Ml’ MZ’ if M2 is a homomorphic

image of M, then the string period of any string cycle in M, is a

1 1

nonzero multiple of the string period of its homomorphic image. Every

string cycle in M, is the homomorphic image of a string cycle in M

2 1’

We shall be considering a series parallel composition A, of arbitrary

finite machines A , A,. Let M: Q X Q; X S+ Q  x Q, be the transition

8"
function of A and Ma: Qa xS +-Qa, MB: QB X (Qa x S) a-QB its components.

Except for possibly a relabelling of the input alphabet these are the

transition functions of Aa and A, respectively and we need not make any

8
distinction between them.

Theorem 3

Let A be a series parallel composition of finite machines Aa,A Let

Bl
M contain a cycle of x € S* with x-period m. Let the homomorphic projection

of the cycle of x on M“ have x-period k. Then there is a string cycle in

MB with string period m/k.



Proof:

We must first justify the assumptions made in the statement of the
theorem.

It is well known that the projection proja:Q »;Qa is a homomorphism
from M to Ma. Moreover, the corresponding partition n& on Q has S.P.
(substitution property) i.e., for all q,q' € Q, s € S,
qnaq' implies M(q,s)ILM(q',s).

Thus there is indeed a homomorphic image of the cycle of X lying
in Ma which by assumption has x-period k. By Corollary 2, there is a

nk.

positive integer n such that m

Let the sequence Z., Z be the initial substrings of x™

12 722 "2 Zml(x)
m

. e m _
where Z, is the initial symbol of x and Zmz(x) =X .

1
Let the cycle of x in M be qu, qu, ceey quzcx) = q.
The homomorphic image in Ma is then

1) ' 1 = !
q Z].’ q 22) ceey q Zkl(x) =q

ok
ke(x) - X

Every state q € Q has the form q = ([q]a, [q]B) where [q]a is the

where q' is the image of q under the homomorphism and Z

block of Da containing q. Since~ﬂa has SP and since qurkq we have
qunanjkg(x)+i for all 0 s j <nand 0 < i < k&(x). We denote
[i]a = [qzi]a. Also since the Zi are initial substrings of xk we have
_ _ Jjk
Lixa+i - X 4

for all 0 < j <n, 0 ¢ i < k&(x). The sequence

AZ1s Zps <o Ay 0yo1 i) Yop(x)er’

10



then becomes

(g [a2y1g), (2], [aZ,1g), -

(ee()-11,, (02, (411 (01, [ax1 ), (1], ax*2)), ...

(q,s)

Let Zi =a, 3, ... 2, 0 <i < ka(x). Using the notation 9 P

for MB (ql, (q,s)) = q, we obtain the following transition sequence in M

B
starting at [q]B
([0],, a;) (111, ay)
[Q]B‘—‘_—-'—[qzl]B ﬁ»[qzz]s-—-—-» XY
([k2(x)-1] ,a ) ([0]_, a;)
[aZyp (x)-1 B [qu]B e 1 l'--[quZI]B e

This sequence is a cycle in M, of the string y € (Ql Ha x S)* where

B

y = (01 ap) (111, 3p) + ([KEGN-1100 3y, ()

Now quk, 0 £ j <n are all distinct states and recalling that
K -
ax* = ([0], [ax?"],)

(i.e., these states all have the same o component) it must be that
[quk]B,O < j < n are all distinct. Thus the existence of the subsequence
of the y-cycle

2k]

(@1, 1™, ..n, 0™, = ("], = [a],

11



having n distinct states proves that there is a y-cycle of y-period
n = m/k in MB' Note that 2(y) = k&(x) and Ty = n implies T = nke(x) =
m&(x) which agrees with the period of the x-cycle in M,

The basic theorem enabling us to prove the Burks-Wang extended

conjecture can be stated:

Theorem 4

Let M': Q' x S' =+ Q' contain a ¢ycle of x € S* with x-period p,
a prime number. Assume that M' can be simulated by a series parallel

composition of Aa’A ‘Then at least one of Ma,M contains a string cycle

B.
of string period a non-zero multiple of p.

B

Proof:

Let M be the transition function of the composition. Since M' can
be simulated by M and given the x-cycle in M', we know.by Theorem 2 that
there is a string cycle in M of string period m a multiple of p, m = np,
n > 0.. By Theorem 3, Ma has a projection of this cycle with string period

k 21 and M, has a string cycle with string period m/k. But since p is

B

a prime either k divides n, in which case M, has a string cycle of period

8
a non-zero multiple of p, or k is a non-zero multiple of p, in which case

Ma has a string cycle a non-zero multiple of p.
Corollary 3

Let M': Q' x S' + Q' contain a cycle of x ¢ S* x-period p a prime
number. Assume that M' can be simulated by a series parallel composition,
A of Ah , Ah s ceey Ad with transition functions

1 2 n

Mt &, % Hj<i Quj xS~ Qal )

i i i

12



Then at least one of Ma has a string cycle with string period a non-zero
i
multiple of p.

The proof proceeds by induction. The series parallel composition A
may be regarded as a series parallel composition of A, and
a series parallel composition of the Aa.’ i>1. Applyi;g Theorem 3 to
i

this situation, the induction may now proceed. Q.E.D.

For series parallel composition A of Aa , Au s seey Au we define
i 2 n
size (A) to be the number of states in the largest component machine i.e.,

size (A) = max|Q, |

Q. 1
1

where Q, is the state set of A, -
i i

Theorem 5

For any integer n, there is a finite transition function which cannot

be simulated by a series-parallel composition A, with size (A) < n.

Proof:

Consider the set of primes which as is known has no greatest member.
For any prime p, there is a mod p-counter, namely a machine which counts
modulo p occurrences of a symbol e.g., "a" in an input string. Th» tran-
sition function of this machine has an a-cycle of a-period p. By Coiollary 3

any series parallel composition which can simulate this transition function

13



must have at least one component Aa whose transition function has a string
cycle of string period a non-zero multiple of p. But this means that

IQaI 2 p since there are at least p distinct states in such a cycle.

Thus size (A) > p for any series parallel composition which can simulate

a mod p counter. For any integer n, we can choose a prime p > n and so
for each n there is a finite transition function which cannot be simulated
by a series parallel composition A with size (A) < n.

We note that in particular, for each integer n, there is a finite
transition function which cannot be isomorphically realized by any series
parallel composition A with size (A) < s. (Thus true because any
isomorphic realization is in particular a simulation.)

We have seen (Theorem 1) that a logical net‘A is a series parallel
composition of the logical nets associated with the.strong components
of D(A). The degree of a logical net is the number of delays in the
largest component i.e., degree (A) = maxlCal. A net of degree d has at

oeD

. . +1
least one component having 2d states and no strong component having 2d 1

states where i > 0.
Thus size (A) < zdegree (A). The strengthened version of the
Burks-Wang conjecture follows:

Theorem 6

For every integer d, there is a transition function which cannot be

simulated by any logical net of degree d.

1L



CONCLUSION

A strengthened version of the Burks-Wang conjecture was shown
to be true. The proof relied heavily on the properties of state
transition cycles exhibited in Theorems 2,3 and 4.

These theorems can be readily interpreted as constituting a
proof of the irreducibility of prime cyclic groups which uses only

machine (rather than semigroup) ideas.

15
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