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Abstract 
Dzud is a natural disaster endemic to parts of Central Asia and fairly unknown outside of the region. 

During spells of severe winter weather, livestock population suffers debilitating death from starvation 

and cold, which exacts enormous economic losses to nomadic herders and the society at large. Focusing 

on dzud outbreaks between 1993 and 2004 in Mongolia, I explored environmental and anthropogenic 

factors that contribute to geographic distribution of dzud impact and evaluate success of classical and 

spatial regression models to predict dzud mortality. Four regression methods were tested including 

ordinary least squares regression, spatial autoregressive models, geographically weighted regression, 

and recursive partitioning.  

Regional heterogeneity in patterns of livestock mortality and contributing factors, as well as low 

efficiency of regression models, suggest that a single-model framework of analysis and non-normalized 

explanatory variables tend to perform poorly. The recursive-partitioning results demonstrate that the 

presence of several distinct ecological biomes within the territory of Mongolia create non-stationary and 

non-linear relationships between factors and livestock mortality. Diversity of ecological conditions drives 

regional predisposition for different types of dzud, most notably white dzud in mountainous and 

northern parts of Mongolia and black dzud in the Gobi desert.  

The comparison of dzud episodes of 1993 and 2000-2003 revealed that an additional contributing factor 

unaccounted in previous modeling exercises of dzud is the long-distance mobility of herders as a main 

strategy for risk mitigation. While it is a necessary adaptation for livestock management in arid 

grasslands, under contemporary conditions of high livestock density it has an unexpected effect of 

spreading dzud vulnerability into unaffected areas, which may have contributed to development of 

multi-annual dzud episodes such as the one that occurred in 2000-2003. Since the transition of Mongolia 

to free-market economy, the vulnerability of herders to dzud has increased against a backdrop of 

exploding livestock population, a dysfunctional system of rangeland management, and withdrawal of 

government-run disaster preparedness programs.  
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Introduction  
Human societies have always been in a process of perpetual adaptation to their surrounding 

environments, which provides the natural resource base available to people for preservation of life and 

sustaining economic activity. Natural hazards, as extreme manifestations of climate variability, put the 

quality of that adaptation to the test and highlight vulnerabilities inherent in the capacity of human 

systems to manage environmental risk. When the resilience of an affected population cannot withstand 

the impact of a natural hazard, a disaster occurs with a catastrophic economic, environmental, and 

human losses (Singh 2006). Owing to their disruption of human life, natural disasters attract a fair share 

of scientific research with the purpose of developing a body of knowledge that can guide disaster 

management efforts. Despite the attention of the scientific community to these phenomena, the 

interactions between natural phenomena and human societies that produce some natural disasters are 

poorly understood. Mongolia has been known to suffer from a natural disaster, termed dzud, which is 

endemic to Central Asia and has been poorly understood outside of the region.   

Dzud is a meteorological disaster that causes mass mortality and debilitation of livestock due to 

starvation and prolonged exposure to extreme winter weather. It can be caused by one or a 

combination of the following environmental factors: heavy snowfall, extremely low temperatures, wind 

and low productivity of pasture (Morinaga, Tian et al. 2003; Shinoda 2005).  Often called an evolving 

disaster, this natural phenomenon dynamically progresses simultaneously on several different spatial 

and temporal scales.  As the disaster unfolds over the course of a season, livestock resilience is 

undermined from the early onset of winter by spells of bitter cold accompanied by snowfalls that can 

blanket pasture for weeks and make it inaccessible to grazers.  While thousands of animals can perish 

overnight in a spell of a severe blizzard, the overall impact culminates in peak mortality in the early 

spring when animals are at their weakest. In addition to physical stress, survivability of animals depends 

directly on the quality of pasture available for grazing; therefore, the disaster’s intensity can be 

influenced by drought conditions from a preceding summer.   

Livestock is the backbone of rural Mongolian economy and often the only means of income, food and 

fuel for a rural household.  Animal raw products provide food, fuel for cooking and heating, clothing, 

transportation, and currency for paying for services and education.  Currently one third of the 

Mongolian population resides in the countryside and is either directly involved in a pastoral semi-

nomadic lifestyle or employed in processing or trade of animal products (Bedunah and Schmidt 2004).  

The livestock sector accounts for 20 % of economic output in the Mongolian economy and translates 

directly into a source of employment and livelihood for at least 40% of the population. To fully 

appreciate the extent of dzud consequences on the Mongolian society, it is necessary to consider, in 

addition to meteorological factors, the role of livestock production in shaping the demographic and 

economic structure of the country. 

Key studies by Shinoda et al  (2005) and Tachiiri et al (2008) have described the complexity of the dzud 

phenomenon and our fragmented understanding of it. The two distinct dzud episodes of 1993 and 2000 

– 2003 represent an important set of natural disaster events to analyze, and form the cases for this 

study. I hypothesize that the contributing factors to dzud have changed over the course of 7 years, 
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reflecting changes in the socio-economic system and in herding practices. Therefore, the overall goal of 

the study is to improve our understanding of dzud causality and find an appropriate methodology to 

analyze its spatial and temporal dynamics. There seems to be strong evidence to believe that there is 

regional variation in dzud causation that can be teased out at the finer spatial scale of analysis. Building 

on Taichirii’s methodology and findings, I will evaluate the ability of spatial regression models and 

recursive partitioning to explain geographic variation in dzud. The results of this study will contribute to 

advancing our knowledge of appropriate methods for dzud forecasting and development of an 

integrated early warning system. Understanding of spatial and temporal dynamics of dzud will facilitate 

crafting informed and effective policy measures aimed at improving livelihood and reducing long-term 

vulnerabilities of the rural population of Mongolia as well as enhancing the efficiency of disaster relief 

interventions undertaken by international donor organizations.  

The following sections of this paper include a review of dzud and its effect on the Mongolian people, 

description of the study area, data acquisition and processing methods, and methods of analysis. The 

second half is dedicated to the discussion of the results and limitations of the analysis with the 

directions for future research.    

Background 
Characteristics of Dzud Events 

Depending on its environmental causes, several types of dzud are currently recognized.  White dzud is 

the most devastating and common type, which is characterized by deep snowdrifts that prevent 

livestock from accessing pasture.  Black dzud denotes lack of drinkable water for both livestock and 

people.  The latter condition may occur when the absence of snow and subzero temperatures make all 

surface water resources unavailable by freezing.  Black dzud is not very common and is usually highly 

localized.  Storm dzud consists of prolonged blizzard condition during which animals are driven by the 

wind for many miles and die of exhaustion (Suttie 2005).  Extremely low temperatures and freezing 

winds constitute cold dzud, which prevents livestock from free grazing.  Iron dzud happens when 

fluctuating temperatures turn snow cover into an ice sheet.  It is possible that different types of dzud 

can follow each other or happen simultaneously in different parts of the country (Tachiiri, Shinoda et al. 

2008). Landscape heterogeneity and the presence of several biomes within the territory of Mongolia 

underlie the diverse nature of the phenomenon and are thought to explain regional predispositions to 

certain types of dzud. For example, black dzud is thought to occur mostly in the desert while white and 

cold dzuds are more common in mountainous regions and the north (Tachiiri, Shinoda et al. 2008).   

The role of drought in dzud occurrence deserves a special mention.  Several instances in scientific 

literature define dzud as a combined effect of a summer drought and a severe winter (Tachiiri, Shinoda 

et al. 2008), but it should be noted that drought is not a prerequisite for dzud. Sternberg’s (2009) 

research in the South Gobi province demonstrated that drought and dzud are not coincidental and work 

independently of each other. Occasionally they occur in tandem and create interactions that can 

exacerbate both events.  In the last decade, summer droughts have affected a general condition of 

vegetation over a large part of Mongolia and thus controlled the amount of forage available to livestock 
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yearlong.  Droughts increase livestock vulnerability to dzud by reducing the amount of fodder available 

to attain a necessary body weight for winter survival, and thus contribute to dzud incidence and 

intensity. Dzud and drought independently can inflict significant mortality of livestock and control stock 

numbers (Suttie 2005).  Mortality due to drought is usually lower than to dzud; however, when drought 

and dzud follow in sequence, the results can be more than additive.   

Vulnerability of Mongolian Herders to Dzud  

While dzud is triggered by meteorological conditions, it is defined for the purpose of planning relief 

efforts by the magnitude of livestock losses incurred by the Mongolian herders who continue practicing 

a traditional semi-nomadic pastoral lifestyle in a climate that offers practically no other opportunities for 

agricultural production (Suttie 2005).  Such an open-grazing system requires minimal external inputs but 

demands hard labor and extensive mobility of herders and their animals due to variability and 

unpredictability of forage conditions in any particular place. Dzud represents an inherent risk of the 

socio-ecological system predicated on a unique geography, the cold arid climate, and a transhumant 

pastoral lifestyle, and herders’ work revolves around minimizing and avoiding that risk. The tradition of 

nomadic herding has persisted for centuries, testifying to the success of this livelihood, but severe 

economic and social ramifications of recent outbreaks of dzud force us to take a closer look at 

vulnerability of modern pastoral livestock production in Mongolia.     

When in 1990 Mongolia chose to transition to a market economy, it followed a “shock therapy” style of 

economic reform, a principal component of which was privatization of state-owned assets and services. 

This included a transfer of livestock and livestock-related assets to private ownership (Nixson and 

Walters 2006). Prior to the 1990s, animal husbandry was organized around negdels, a collective 

management unit for livestock production that geographically coincided with a soum (an administrative 

unit equivalent to a county). The negdels were responsible for output of predetermined quotas of 

livestock products and provision of grazing management, supply of inputs, consumer goods and services 

to its members. The collective farms relied heavily on government subsidies and support services, such 

as the State Emergency Fodder Fund whose responsibility was to prepare and distribute emergency 

fodder supplies during the time of disaster (Suttie, 2005). The first phase of privatization of the livestock 

sector took place between 1991 and 1993, when negdels were disbanded and their livestock and assets, 

such as water wells and animal shelters, were transferred to their members and supporting staff in 

soum centers. The responsibility for emergency preparedness passed on to herders, and the fodder 

production under the State Emergency program was ceased.  Privatization coincided with a big rise in 

unemployment in government-subsidized sectors. These newly unemployed were absorbed largely by a 

livestock sector (Mearns, 2004). Influx of new herders, who lacked experience in grazing management 

and marketing, together with stagnant levels of economic activity in the countryside resulted in 

unbridled growth of livestock numbers and by 2000 the national herd had reached 33 million animals.  

Following a net migration from urban centers to the countryside, the number of herders had doubled by 

1997 (Mearns 2004) but the productivity of rangelands remained the same or even diminished due to 

increased informal gold mining and desertification (Murray 2003). A herd size is one of the indicators of 

economic security and households with a herd size of 100 animals or fewer are officially considered to 
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be below poverty level.  It is estimated that in 1998, 36% of the population was classified as poor and 

20% as extremely poor (Mongolia 2001). Of these groups, 43% resided in the countryside. By 2000, 30% 

of all herder households in the country had fewer than 50 animals (Mearns 2004) and this demographic 

group proved to be the most vulnerable. During the disaster events of 1999-2001, approximately 9400 

herder households (Mongolia 2001; Finch 2002) lost their entire herds and were forced to migrate to 

provincial centers or Ulaanbaatar and become urban poor.  A massive migration of newly impoverished 

herders to urban centers created a “dzud” imprint on demographic structure of the nation, with a 

ballooning urban population against contracting rural population. Already strained and limited urban 

infrastructure was not capable of accommodating the population influx and migrating herders ended up 

living in spontaneous ger (a Mongolian name for yurt) districts in abject poverty.   

One of the worst dzud episodes in Mongolian recent history happened in winter 2000. The confluence of 

bad winter conditions and summer droughts plagued the country for three years in a row and resulted 

in an unprecedented occurrence of four consecutive dzuds from 2000 – 2003. During this period, 12 

million head of livestock perished, which reduced the size of a national herd from 33.6 mil in 1999 to 

25.4 mil. in 2003 (Mongolia 2008). Severe losses in the livestock sector slashed economic growth to a 

mere 1.0 %  in 2001 and a moderate 3.9 % in 2002, but in the absence of dzud impact the gross 

domestic product (GDP) was estimated to amount to 8% growth over the period of 1999 – 2002 (Mearns 

2004).  

The environmental and economic insecurities that grew during the previous two decades suggest the 

possibility that the dzud events of 2000 – 2003 resulted from a combination of natural and 

anthropogenic causes. It is unclear whether the extent of damage of the dzud of 2000-2002 was due to 

unpreparedness of herders and the collapse of the government subsidized emergency preparedness 

programs, to the severity of climatic conditions, or both (Suttie 2005). Understanding causes, dynamics 

and consequences of dzud is of enormous importance to Mongolian society and to the international 

development community. Studies to date have only probed the surface of dzud dynamics, and more 

research is needed to investigate the contributions of environmental drivers and socio-economic 

vulnerabilities to dzud mortality.  

The chain of disaster events in 2000 – 2003 has attracted attention of the global scientific community to 

the dzud phenomenon and several multi-disciplinary studies had followed in its wake. Morinaga et al 

(2003) investigated the role of atmospheric circulation patterns in development of snow anomalies in 

Mongolia. His study showed that if snow anomalies are present in the early winter, they tend to persist 

through the entire winter season until March. The 4-5 year cycle of interannual anomaly in snow depth 

is related to El Nino Southern Oscillation (ENSO), which governs the precipitation patterns in the 

southern central Siberia north of Mongolia. Superimposed on that is the influence of All-Indian Monsoon 

Rainfall, which affects dzud cycle on a decadal time scale (Morinaga, Tian et al. 2003). Taichirii (2008) 

compared provincial stock mortality over the period of 2000-2003 with vegetation condition, snow 

water equivalent, livestock population and its mortality. His findings suggest that poor vegetation 

conditions at the end of summer and high snowfall in December determined the high rate of mortality in 

the following year. In addition, high previous year mortality and high previous year’s livestock 

population were also related to dzud losses. Bergzuren (2004) and Sternberg (2009) investigated 
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livestock mortality induced by environmental risk factors in Gurvan Saikhan National Park in South Gobi 

Province.  Bergzuren (2004) showed that in the desert, dzud occurs once every two or three years and 

associates stronger with severe winter conditions than with drought. Sternberg (2009) investigated a 

coupled relationship between dzud and drought in the South Gobi province and found no evidence that 

drought in summer 1999 affected livestock mortality in the following winter. Bedunah (2004), Mearns 

(2004), and Nixson (2006) investigated the current trends in methods of livestock production and the 

effect of political and economic changes on herders’ livelihood and vulnerability to natural hazards. 

Their conclusions agree that since transition of Mongolia to a free-market economy, rising poverty, 

neglect of livestock industry in the governmental development programs, and competition for rangeland 

has increased vulnerability of Mongolian herders to drought and dzud.  

Study Area and Data 
Mongolia is a landlocked country in the Northern Asia, bordered by Russia and China. It occupies 

approximately 1.56 million km2, and much of the country is underlain by the vast Mongolian Plateau that 

positions most of its territory higher than 1500 meters above sea level.  The elevation ranges from 800 

to over 4000 meters with marked differences between the east and west, and climate and topography 

organize the terrain into three pronounced longitudinal zones: eastern, central and western. Eastern 

Mongolia is composed of flat or undulating plains and central and western Mongolia is comprised of a 

number of mountain ranges - the Altai-Sayan, Khangai, Khentii and Khuvsgul, interspersed with 

depressions or basins. The inter-mountain depression between Khangai and Altai mountains contains 

most of the Mongolia’s salt and fresh water lakes. Major rivers occur in the north with the largest river 

system formed by Selenga, which flows north into Lake Baikal in southern Siberia (Fig. 1) (Gunin 1999).   

 
Figure 1: Topographic Map of Mongolia. 
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Most ecological zones are aligned latitudinally, with altitudinal variation superimposed.  In the west, the 

organization of ecosystems turns almost longitudinal, with desert-steppe belt extending all the way to Uvs 

province. Several distinct biomes gradually transition from north to south and five distinct bio-geographic zones 

are observed: high mountains, taiga, forest-steppe and steppe, dry steppe grassland, and the Gobi desert (Fig. 2).   

 

 
Figure 2: Ecological Zones of Mongolia (NGIC NAMHEM). 

Five landscape-ecological zones were delineated (Gunin 1999) based on similar landscape forming 

processes, water availability, and structure of vegetation and soil: Altai-Sayan, Transbaikal, Daguria-East 

Mongolia, Central Mongolia, Central Asian, and Khyangan (Fig. 3). Most of Mongolia falls into a 

transition belt between the forest and desert biomes.  Eighty percent of its territory is occupied by 

temperate grasslands and used for extensive herding in semi-nomadic pastoral fashion. The country is 

split into five major zones with different livestock production capacities (Suttie 2005): Khangai-Khuvsgul 

(mixed grazing with yaks replacing cattle at higher altitudes), Selenge-Onon (mostly agricultural 

production), Altai (main types of livestock and yaks), Central & Eastern steppes (horse, cattle, sheep, 

goats, and camels), and Gobi (camel, horses, cattle and goats) (Fig. 4). 
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Figure 3: An approximate aggregation of soums into landscape-ecological zones based on descriptions by Gunin 

(1999). 

 
Figure 4: Livestock production zones based on description by Suttie (2005). 

Because Mongolia is situated in the central part of Eurasia, it is isolated by its natural topographic 

features from the rest of the continent.  The western and north-western mountain ranges intercept 

moisture carried by atmospheric flows from the Atlantic, and the Pacific monsoons dissipate from east 

to west between 110-120° E.  As a result, the climate is markedly continental, cold and semi-arid with 

large daily and seasonal temperature amplitudes, low precipitation and intensive solar radiation.  Cold, 

long winters last about six months, and summers are short and hot.  Fall and spring are very short 

transitional seasons.   January is the coldest month of the year, with average air temperatures of -15°C 

to - 35°C depending on the location (Fig. 4). July is the warmest month with average air temperatures 

ranging between 15°C in the mountains to 25°C in the Gobi desert. Most precipitation falls during the 
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summer months of June through September, with an annual mean ranging from 300-400 mm in the 

northern taiga to less than 50 -100 mm in the Gobi desert (Batima 2005).  

 

Figure 5: A map of January long-term mean air temperature (Source: National Geo-Information Center (NGIC) 

Database of National Agency of Meteorology, Hydrology and Environmental Management of Mongolia 

(NAMHEM)). 

Winter weather is dominated by the Siberian anti-cyclone, which brings freezing temperatures and low 

precipitation. On average, snow amounts to less than 20% of total annual precipitation, but the time of 

its onset and melt-out, as well as snow depth and density, play crucial roles in livestock herding. The 

timing of formation of snow cover varies geographically and mountains experience the longest duration 

of stable snow (120-150 days), followed by eastern steppes (70-120) and the Gobi desert (30-60). The 

average snow depth can range from 0.5 to 25 cm with the maximum accumulation of snow falling on 

February and March (Batima 2005).  

Mongolia is subject to various extreme weather events and natural hazards including fires, dust storms, 

droughts and dzud, with the last two most prominently controlling physical survival of livestock. Snow 

cover starts building up in November and persists through March (Morinaga, Tian et al. 2003). According 

to Morinaga et al. (2003), interannual anomalies in winter snow that lead to dzud formation are 

controlled by large-scale atmospheric circulation patterns, North Atlantic Oscillation (NAO) and 

Scandinavian pattern (SCA, previously known as EU1). SCA in its positive phase intensifies the Siberian 

high north of Mongolia in December and upon its temporary weakening, the accumulated cold-air mass 

flows southward bringing spells of severe winter weather, such as that which occurred as a record-

breaking blizzard and cold wave in January 2001 (Bueh and Nakamura 2007). Geographically, the largest 

snow-cover anomalies concentrate in the west where low temperatures contribute to a fast increase in 

snow depth during the first two months of the winter. Morinaga (2003) cautions that negative 

correlation between temperature and snow depth varies and depends on a range of temperature, i.e. 

low temperatures are not necessarily accompanied by deep snow whereas high temperatures may be 
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accompanied by shallow snow depths. This non-linear relationship between the two most important 

climatic drivers explains differentiation of dzud into distinct types.     

Data Used  

I investigated livestock mortality over Mongolia using the administrative division of soums (equivalent to 

a county) as a spatial unit of analysis. Response and predictor variables were compiled from a variety of 

sources (Table 1). Soum-level maps of all variables were created to visualize their spatial patterns (See 

Appendices 1-7).  

Table 1: Source datasets. 

Dataset Name Source Dates Resolution References 

Annual Livestock 

Mortality 

NSO of Mongolia 1991 – 2008 Soum (Mongolia 2008) 

Global Inventory 

Modeling and Mapping 

Studies – biweekly time 

series of AVHRR NDVI 

GLCF 1981 - 2006 8 km (Tucker 2004) 

Vegetation Continuous 

Fields MOD44B 

Global Land 

Cover Facility 

2001 500 m (Hansen 2003) 

Global Monthly EASE-

Grid Snow Water 

Equivalent  

NSIDC 1978 - 2007 25 km (Armstrong 2007) 

Terrestrial Air 

Temperature: 1900-

2008 gridded Monthly 

Time Series 

Center for Climatic 

Research, University 

of Delaware. 

1900-2008 51 km (Matsuura 2009) 

ASTER DEM METI and NASA - 30 m (METI/NASA 

2010) 

 

 

Livestock Statistics 

Statistics of livestock population and mortality for all soums were obtained from the National Statistical 

Office, Ulaanbaatar, Mongolia.  Livestock records span the period of 1991 through 2008 and the 

statistics are compiled annually in December. The dataset contains the following variables: population 
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counts for 5 types of domestic stock including camel, horse, cattle, sheep and goat; total population 

count; mortality counts for each type of stock, and total mortality count.  It should be noted that the 

name for a livestock mortality count variable is translated from Mongolian as “mortality due to 

unnatural causes” which includes mortality from dzud and other natural hazards such as floods, 

droughts and hail. Mongolian law requires every herder household to be registered in a soum of his 

residence so that he has access to various public services provided by the administration of the soum as 

well as performs his tax duties. If a herder moves to a different soum, he is responsible to update his 

residential status and the associated demographics. Therefore, we can assume that the mobility of 

herders and their livestock is accurately reflected in this dataset (Saizen, Maekawa et al. 2010).   

NDVI 

A seasonal normalized difference vegetation index (NDVI) variable was derived from the Global 

Inventory Modeling and Mapping Studies dataset (GIMMS) to reflect a state of vegetation 

photosynthetic capacity and serves as a proxy for drought conditions (Tucker 2004).  It is calculated from 

AVHRR spectral reflectance measurements of near-infrared (NIR) and visible red (VIS) channels: 

NDVI = 
         

         
 

The GIMMS NDVI product covers the 25-year period from 1981 to 2006 and this study focused on NDVI 

from 1992-2003. GIMMS dataset has an advantage of providing an uninterrupted series of remote 

sensing data obtained from the NOAA AVHRR satellite platform for a period that coincides with the 

statistical dataset. In addition, its processing methodology is consistent and uses an improved 

algorithms making it superior to other AVHRR-derived NDVI products (M. Brown and E. Vermote, 

personal communication, April 2010).  The spatial resolution of the NDVI product is 0.073° by 0.073° or 8 

x 8 km in Mongolia.  Each tile was composited over 15-day periods throughout a year in order to 

construct cloud-free coverage of the Earth at multiple times for each year.  Each NDVI pixel value 

represents the maximum NDVI recorded at that location over the compositing period, selected based on 

the maximum value composite (MVC) method (Tucker 2004).  

SWE 

A snow-related variable was derived from the dataset developed by the National Snow and Ice Data 

Center (NSIDC).  The Global Monthly EASE-Grid Snow Water Equivalent (SWE) climatology data set was 

used directly to derive a SWE variable which serves as a proxy for snow depth in our analysis. This 

product is derived from Scanning Multichannel Microwave Radiometer (SMMR) and enhanced with 

snow cover frequencies derived from the Northern hemisphere EASE-Grid Weekly Snow cover and Sea 

Ice Extent (v. 2).  The dataset is organized as 25 km Equal-Area Scalable Earth Grids and covers the time 

period of interest (Armstrong 2007).  

Temperature 

Temperature is an important environmental factor in dzud formation and therefore, was included in the 

analysis. The variable was derived from the Terrestrial Air Temperature: 1900-2008 gridded Monthly 
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Time Series, produced by Kenji Matsuura and Cort J. Willmott at the Center for Climatic Research, Dept. 

of Geography, University of Delaware.  The dataset used station data from several sources world-wide 

to interpolate monthly averages of air temperature to a 0.5° by 0.5° latitude/longitude grid, which is 

equivalent to 51 x 51 km (Matsuura 2009).  

Digital Elevation Model 

The elevation variable was derived from the ASTER Global Digital Elevation Model at a spatial resolution 

of 30 meters produced by the Ministry of Economy, Trade and Industry of Japan (METI) and the National 

Aeronautics and Space Administration (METI/NASA 2010).   

GIS Data 

GIS layers of soum boundaries and provincial centers were developed and provided by the Information 

and Computer Center at the National Agency for Meteorology, Hydrology and Environment Monitoring 

of Mongolia.  

 

Methods 
Structure of the Dataset and Derivation of Variables 

Previous research indicates that dzud disasters are characterized by snow or ice cover, stormy weather, 

and lack of pasture (Morinaga and Shinoda 2005). Each type of dzud has key characteristics that define 

its hazardous impact on livestock: for white dzud it is the depth and persistence of snow cover; for black 

dzud it is the absence of snow cover and low temperatures that freeze surface water; cold dzud is 

characterized by extremely low temperatures and possibly high winds; and the formation of iron dzud 

requires a combination of snow cover and fluctuating temperatures that produce an ice sheet or frozen 

soil.  In addition, vegetation productivity from a previous summer season determines the amount of 

fodder available to livestock in winter season. Therefore, the direct environmental factors that create 

dzud conditions are winter temperature, precipitation, and wind, while summer vegetation productivity 

influences the intensity of dzud. In addition to the climatic and vegetation productivity factors 

mentioned above, I included an elevation variable, which may explain geographic incidence of dzud or 

locational predisposition to a particular combination of meteorological conditions.  

The temporal aggregation of environmental independent variables was designed around the availability 

of livestock statistics which consisted of annual counts of livestock population for 308 counties in 

Mongolia.  Livestock statistics are compiled in December of each year, and the recorded mortality of 

livestock represents a number of animals that perished within a calendar year, which is assumed to 

reflect conditions from two growing seasons of vegetation and two winter seasons. However, because 

the peak mortality happens in the early spring, it is reasonable to assume that the preceding summer 

season and the present year’s winter season most directly affect the observed mortality.  Based on this 

assumption, all climate-related predictors were calculated seasonally for each county: 
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SINDVIyear – seasonally integrated normalized difference vegetation index (unitless) calculated over the 

growing season from the middle of April until the middle of October of the calendar prior to the year of 

measured mortality. SINDVI is a vegetation index derived from remote sensing measurements which 

indicates “greenness” of the land cover (Tucker 2004).  In this study it is used as a proxy for the amount 

of new-growth vegetation available to grazers.  Because vegetation growth happens during the short 

summer season, the vegetation variable was calculated as a seasonally integrated NDVI using a 

methodology outlined by Stow (Stow 2003).  This method defines SINDVI as the sum of NDVI values for 

each pixel and all time intervals of multiple value composites (MVCs) where the NDVI exceeds a critical 

value of 0.1.  Resulting SINDVI composites were also corrected for woody vegetation in the northern and 

mountainous regions of Mongolia by using the MODIS Vegetation Continuous Fields (Hansen 2003) and 

removing the percentage of SINDVI due to woody vegetation cover.  This was done to focus on NDVI 

associated with pasture conditions, which are more likely to affect grazing. The mean of the corrected 

SINDVI was calculated for each county. The amount of vegetation available for grazing most directly 

influences animals’ body weight and thus their ability to survive harsh winter conditions. Therefore, we 

logically expect that high SINDVI is associated with low mortality.  

 

SASWEyear – seasonally averaged snow-water equivalent (measured in mm) was calculated over the 

winter season from the first detection of snow cover in November through March of each year, ending 

in the calendar year in which mortality was measured. An average of the final SASWE was calculated for 

each county. This variable can have both positive and negative relationships with livestock mortality 

depending on the type of dzud and geographic location.  

SATMPyear – seasonally averaged monthly temperatures in °C calculated over the winter season from 

November through March of each year. SATMP was calculated similarly to SASWE.  A grid of a mean 

seasonal temperature was converted to a raster and a mean was calculated for each county. The 

expectations of performance and explanatory power of this variable in our study may have limitations 

because of the coarse spatial and temporal resolution of monthly time-series of the Terrestrial Air 

Temperature dataset (Matsuura 2009).   

The expected relationship of SATMP with mortality is the most complicated of all variables. It can act 

alone or in conjunction with SASWE to create dzud conditions. Four types of interaction of SATMP and 

SASWE can theoretically elicit high mortality of livestock: very low SATMP in the absence of SASWE 

characteristic of cold dzud, low SATMP with high SASWE which precipitate white dzud, fluctuating 

SATMP with SASWE which cause formation of iron dzud, and SATMP below 0°C and no snow create 

black dzud.  Localized incidence of inversions in mountain valleys in the western and central parts of 

Mongolia is very possible, which adds finer scale variability in behavior of the temperature variable.  

ELEV – average elevation in every county, measured in meters. The overall expected relationship of ELEV 

with stock mortality is positive because mountainous regions have lower temperatures and higher 

precipitation and thus meteorologically are more prone to dzud conditions.  

Ideally, the variables should capture deviation of environmental conditions from normal, not only 

because an underlying assumption of the study is that anomalous weather precipitates the disasters but 
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also because averaged variables ignore variability of observations and thus lose information that may 

explain higher mortality in any given year.  The temporal and spatial aggregation of the above 

mentioned predictors resulted in significant smoothing of variability within each variable, but seasonal 

averages of NDVI, SWE and temperature were the best available options and focused the analysis on 

geographic and inter-annual variability.   

The analysis would be incomplete if we only attempted to explain abnormal livestock mortality with 

hazardous environmental conditions as it is well established that disasters arise when natural hazards 

meet human vulnerability (Singh 2006). The data on disaster preparedness or other socio-economic 

indicators of herders’ vulnerability to natural disasters were not available at the level of soums. 

However, from the statistical dataset it was possible to derive variables describing total density of 

livestock and the proportion of each type of livestock in a county herd, which are the only factors in this 

study that can be controlled by humans. Every livestock has differentiated resilience to dzud and 

drought based on its morphological characteristics and various geographic ranges of prevalence dictated 

by ecological zones that support its grazing patterns (Tuvaansuren 1986). Whether or not herders 

actively manage the size and composition of their herds in response to environmental or economic 

stimuli, these two variables implicitly and partially reflect on vulnerability of the human system to dzud. 

Therefore, the following livestock variables were derived and included into this study:  

LMRyear  – livestock mortality rate expressed as percentage. This is used as the response variable and is 

calculated as livestock losses of the present year divided by the livestock population at the end of the 

previous year for each county.  Because livestock statistics are compiled in December, it is reasonable to 

assume that livestock population at the beginning of the following year is the same as recorded in 

December of the previous year.  The rate was converted into percent to compare livestock mortality to 

the background rate.   

LMRLGyear  - natural log of livestock mortality rate. Because LMR had a highly skewed distribution, the 

percentage rate was natural-log transformed for regression analysis.  

PR_LMRyear – previous-year livestock mortality rate expressed as percentage. This variable is included 

into the analysis to examine the effect of previous dzud on livestock losses in the next year. We expect 

that locations that have experienced increased mortality a year prior to dzud will sustain higher LMR in 

the present because of the weakened physical condition of livestock from previous dzud.  

LDyear – livestock density, in animals/km2. LD was calculated as the total livestock population of the 

previous year divided by the area of a county. I posit that high LD reduces the amount of vegetation 

available to each individual animal and thus positively interacts with LMR.  

CMLPyear – percent camel of the total herd. 

CTLPyear – percent cattle of the total herd.  It should be noted that yaks are not differentiated from cattle 

and count as one in the statistical dataset.  

GTPyear – percent goat of the total herd. 
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HRSPyear – percent horses of the total herd. 

SHPPyear – percent sheep of the total herd. 

CMLP, CTLP, GTP, HRSP, SHPP variables describe herd composition and were calculated for each county 

(soum) as percent of each species of the total livestock population. Species resilience to dzud depends 

on several factors. Livestock composition partially reflects differences in regional distribution of species 

governed by their selective adaptation to different ecological and climatic conditions. Morphological 

features such as fur coat and proportion of fat in body weight also contribute to stock survival. Finally, 

snow depth and density play a key role in animal’s ability to access pasture. Badarch (1992) states that 

small ruminants in steppes and Gobi desert experience difficulty grazing on pasture covered with 8 cm 

of snow at density of 0.22 kg/cm3 and stop foraging when the snow depth exceeds 13 cm. For big 

animals, such as horse and cattle, the limiting range of snow depth constitutes 18 - 40 cm above which 

they cannot graze. Therefore, the relationship of herd composition variables with LMR in this study 

depends on type of species, geographic location, and SASWE.  

Time Series 

The statistics of livestock mortality at the soum level were available from 1991 through 2008. We 

selected a subset of years for analysis based on the following criteria. Livestock mortality was plotted 

against time (i.e. for each year 1991-2008) to distinguish disaster events of a regional and national scale 

from localized outbreaks of dzud, which happen every year (Fig. 5). Mongolian herders annually sustain 

minor losses of animals due to predation, disease, and other causes, and the local scientists estimate 

this background rate of stock mortality at 7.9% (Begzsuren, et al. 2004). The mortality above 8-10% 

signifies the onset of dzud and signals national governmental and non-governmental institutions to 

initiate disaster relief operations (Boldbaatar Shadgar, personal communication, August 2009). For this 

study, I used 7.9% mortality as the threshold above which we deemed dzud event to have occurred. 

The time-series plot shows that dzuds that affected a large part of Mongolia occurred in 1993, 2000, 

2001, 2002, and 2003. These events differ in that the dzud of 1993 was not preceded or followed by 

another dzud year, but years 2000 – 2003 represent a string of consecutive dzuds that allowed us to 

examine the effect of previous events and adaptations to them on subsequent mortality. In addition to 

dzud years, two non-dzud years, 1996 and 2004, were selected for the analysis to compare the behavior 

of the predictor variables at the background mortality level.   
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Figure 6: The time-series plot of livestock mortality rate. Each line represents an annual LMR value for a county 

and the red line delineates the 7.9% threshold (STIS 2010). 

Regression Analysis 

The research question focuses on understanding the relationships between environmental precursors to 

dzud (factors) and livestock mortality (response), and regression analysis was deemed a suitable method 

for modeling such relationships. Because of the spatially dependent nature of the variables and the 

possibility that relationships may vary in space, both aspatial and spatial regression methods were used.  

Both global and local regression models were tested and the analysis was done using ArcGIS Spatial 

Statistics extension (ESRI 2009), GeoDa (Anselin 2006), and JMP (JMP 1989-2011).  

Global Models – OLS and SAR 

I first used Ordinary Least Square Regression (OLS) to evaluate the relationships between the factors and 

the response.  OLS fits a model using a single linear equation that best describes the dependent variable 

as a function of the predictors: 

0 1 1 2 2
...

n n
y x x x         

          (1)
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where y is the response variable and x are the predictors, β are regression coefficients that denote 

positive or negative relationships between the response and a predictor as well as the strength of those 

relationships, and ε is the random error term (residuals) that stands for variability in the dependent 

variable not explained by the model.  The magnitude of residuals indicates the explanatory power of a 

model (Mitchell 1999).  As a linear regression method, OLS assumes normally distributed and 

independent errors.  If these assumptions are violated, the results of the model are invalid. OLS is a 

global model meaning that each coefficient in the equation represents a single averaged value that best 

fits all observations in the dataset.  Global models derived from the OLS are only valid if there is little 

spatial variation in the relationships, i.e., the model is stationary (Fotheringham, Brunsdon et al. 2002).  

For the OLS analysis, I undertook an extensive process of calibrating the best model for each year based 

on indicators of performance and explanatory power of different combinations of the predictors as 

measured by R2 and adjusted R2, coefficients, probability statistics and the Akaike Information Criterion 

(AIC). In addition, Joint F-Statistic and Joint Wald Statistic were used to diagnose the effectiveness of 

explanatory variables in conjunction with Koenker (BP) test, which determines the consistency of 

relationships between the factors and the response in space. The Jarque-Bera statistic and Moran’s I test 

diagnosed violations of normality and independence of residuals and the presence of spatial 

autocorrelation, respectively.  The significance of the last two tests indicates whether or not the OLS 

model is misspecified and its results cannot be trusted. Results of the Lagrange Multiplier (LM) test were 

used to suggest an appropriate type of a spatial econometric model.   

Spatial Autoregressive Models (SAR) are mixed regression models that accommodate spatial 

autocorrelation and heterogeneity observed within the dataset and use maximum likelihood (ML) 

estimation method.  These models relax the assumption of independence of residuals that must hold 

true for OLS regression and conceptualize a dependent variable as a process operating in space.  Under 

this assumption, autocorrelated residuals indicate that the process at a location is influenced by its 

neighbors or its errors have an inherent spatial structure (Anselin 1998).  These two types of spatial 

dependency are represented as spatial lag or spatial error models, both of which depend on specifying 

spatial relationships between observations in the form of a spatial weights matrix (W).  

The spatial lag model incorporates a spatial lag operator that consists of a weighted average of the 

values at neighboring locations.  The model can be expressed by the equation:  

y Wy X    
          (2)

 

where y is a N by 1 vector of observations on the dependent variable, Wy is the corresponding spatially 

lagged dependent variable using weights matrix W, X is a N by K matrix of observations on the 

explanatory (exogenous) variables, ε is a N by 1 vector of error terms, ρ is the spatial autoregressive 

parameter, and β is a K by 1 vector of regression coefficients.  The presence of the Wy term becomes an 

exogenous variable and introduces nonzero correlations between response values.  

By contrast, a spatial error model incorporates the spatial weights matrix into the error term:  



 

26 

( )y X W     
          (3)

 

where the error term in parenthesis consists of λ, the spatial autoregressive coefficient for the error lag 

Wε, and ξ, a homoscedastic error term.  Spatial dependency of error can be interpreted as unresolved 

spatial correlation in measurement errors or in variables that are poor predictors of the process.  This 

model deals with poor specification and inefficiency of a regression model rather than a real underlying 

spatial process.  

SAR models are considered mixed local models: while taking into account spatial dependence and 

structure of a process, they produce global statistics that reflect a constant behavior of each predictor 

across the study area.  Spatial regression models are sensitive to specification of the weights matrix and 

assume stationarity and simultaneity of spatial processes at work (Anselin 1998). The performance of 

SAR models is evaluated against the OLS diagnostic tests mentioned above and additionally, by the 

Likelihood Ratio test (LR), whose statistics should order as follows: Wald > LR > LM. If the test results are 

incompatible with the expected order, misspecifications in the SAR models invalidate the asymptotic 

properties of ML estimates and test statistics (Anselin 2006).  

Local Model – GWR 

Geographically Weighted Regression (GWR) is a regression model that assumes linear relationship 

between the response and factors but accommodates variation of model parameters in space 

(Fotheringham, Brunsdon et al. 2002).  If in OLS every data point contributes equally to the estimation of 

a parameter value, GWR calculates a set of unique parameters for each regression point based on a 

distance-delimited neighborhood of influence around each point.  The main premise of this approach 

lies in recognition that observations located closer to the regression point x are more similar to it than 

observations further off.  Furthermore, the weight of an observation towards parameter estimation 

depends on its proximity to x and is a function of distance decay. While GWR is rather insensitive to the 

type of weighting function used, it is very sensitive to the selection of bandwidth, which delineates a 

spatial kernel.  By estimating parameters locally, GWR relaxes the assumption of stationarity in the OLS 

and provides a way to measure and investigate spatially varying relationships.  In addition, GWR 

produces several useful statistics to diagnose the significance and robustness of regression results 

(Fotheringham, Brunsdon et al. 2002).  

A foundation of GWR is a weighted least square function that is very similar to a global regression model 

except that each parameter is assigned to a specific location in space:  

0( , ) ( , )i i i k k i i ik iy u v u v x    
          (4)

 

where ( , )i iu v denotes the coordinates of the ith point in space and ( , )k i iu v is a realization of the 

continuous function of a regression coefficient k at point i.  Given below in matrix notation, the spatial 

weights matrix is incorporated into derivation of k estimate:  
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1ˆ( , ) ( ( , ) ) ( , )T T

i i i i i iu v X W u v X X W u v y 
          (5)

 

where ̂ represents an estimate of  , and ( , )i iW u v is an n  by n matrix whose off-diagonal elements 

are zero and whose diagonal elements denote the geographical weighting of each of the n observed 

data for regression point i (Fotheringham, Brunsdon et al. 2002).   

If the best OLS model displays spatial behavior and spatially varying relationships, the GWR method can 

be used to accommodate those spatial relationships.  In addition to measures of classic model 

performance, GWR has its own diagnostic tools to check the validity of its statistical results: condition 

number and coefficient standard error, both of which evaluate local multicollinearity. Moran’s I test is 

also performed on the GWR residuals to determine if the model was able to resolve problems with 

autocorrelation.  

Classification and Regression Tree Analysis (CART) 

CART is a regression modeling technique that was introduced with the advent of increased 

computational power critical for the field of data mining (Breiman et al. 1984). Recursive partitioning 

provides an alternative statistical technique to explore and model relationships in complex multivariate 

datasets whose structure violates assumptions of classical regression methods. Usually, recursive 

partitioning is used to explore relationships in the absence of a good a priori regression model. In this 

study, I used CART because I suspected that the relationships between variables were non-linear and 

exhibited regional differentiation and high-order interactions that cannot be captured by linear models. 

For example, a regression tree can identify and easily represent interactions between SASWE and 

SATMP attributable to different types of dzud, but a linear regression model would require additional 

manipulation of variables to fit such hierarchical relationships into a functional model. Because the 

continuous response variable has a threshold of 7.9% that separates dzud from the background 

mortality, the behavior of LMR above and below the cut off value may be different and poorly estimated 

with the same linear function (Michaelsen, Schimel et al. 1994). Recursive partitioning was also 

employed by Tachiiri et al. (2008) to represent non-linear relationships between variables and 

accommodate non-normality of errors in their analysis of provincial rates of dzud mortality. The 

advantages of CART and its previous successful application to a similar research topic made it an 

appealing solution for this analysis.  

Regression trees are built in a step-wise manner by examining all possible interactions between the 

response and the predictors with a goal to maximize the homogeneity within subsets of the response 

variable. All interactions between the response and every explanatory variable receive a rank and the 

split is made on the single highest ranking predictor, dividing the response variable into two mutually 

exclusive groups. Thus, partitioning identifies groupings of factor values (X) that predict best the 

response (Y) and creates a decision tree where each leaf represents a category in X that identifies a 

category in Y.  Partitioning of a continuous response variable happens by fitting the mean to each leaf by 

examining the sums of squares due to mean differences. Recursive partitioning was performed with JMP 

software using the “maximize-significance” criterion, a method unique to the JMP partitioning platform 
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(SAS 2009). The maximize-significance method calculates significance values for each split candidate and 

uses them, rather than the raw values of sum of squares to make the best split. This significance is 

represented by LogWorth value:  

                                  
(6)

 

Using the maximize-significance criterion produces a partitioning tree with fewer levels and more 

conservative test statistics. Because this criterion identifies groups with small within-sample variance, it 

is a more attractive option to use on a spatial dataset as it better preserves spatial clustering in the 

partitioning process (SAS 2009).   

Splitting continues recursively until a leaf cannot be split any further, which results in a tree with too 

many branches and that needs to be pruned to the optimal size.  The desired fit of the final tree is 

achieved through a cross-validation procedure that tests the predictive accuracy of the model based on 

the estimates of error.  Cross-validation can be implemented either by resampling or K-fold cross-

validation. For resampling, the dataset is divided into training and validation subsets, where the training 

subset is used to build a tree while the validation subset calculates the prediction error. The tree with 

the smallest prediction error is chosen as the best predictive model. Resampling delivers reliable results 

when the dataset has enough observations to build good representative training and validation subsets. 

The dataset of this study consisted of 312 observations, which proved insufficient to build robust 

subsets; therefore, the K-fold cross-validation was used for pruning (De'ath and Fabricius 2000). 

K-fold validation divides the dataset into K-number mutually exclusive subsets, each of which is dropped 

in turn while the rest of the subsets are used to grow a tree. The resulting tree is used to predict the 

response of the omitted subsets and to calculate the estimated error for each subset. The sum of errors 

for all the subsets is calculated for each tree size and represents the estimate of the fit. The error is 

graphically plotted and the tree with the smallest estimated error rate is chosen as the most efficient 

tree size (De'ath and Fabricius 2000).  

Instead of the error rate, JMP plots R2 value for each tree size, which is the inverse of the sum of 

squared error rate because R2 = 1 – SSerr/SStot. In this analysis, the objective became to choose the most 

efficient tree with the highest R2 value. The fit measure of a tree increases monotonically with each split 

reaching its highest value with the maximum number of splits. Therefore, the pruning procedure 

consists of growing the maximum size of the tree using a K –fold cross validation technique and pruning 

it through interactive exploration to the size where the rate of improvement of R2 becomes negligible. 

The cross-validation was run 50 times and the most frequently occurring optimal tree size was taken as 

the best cut of the tree (De'ath and Fabricius 2000). Once an optimal tree size is determined, it is taken 

as a reference but the final tree may be grown larger to explore associative behavior of variables at the 

finer splits. The LogWorth value provides additional guidance in pruning and the splits with high 

LogWorth indicate very significant interactions of variables that merit to be retained in the final tree. 

Finally, tree branches that modeled mortality rate below the threshold were pruned for the purposes of 

efficiency.  
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In this analysis, the cross-validation K= 10 and the leaf size contained a minimum of six observations. 

The size of the leaf was set rather small because six counties constitute a large enough area to cover half 

of a province and aggregating to a larger area would defy the advantages of a finer spatial scale of the 

analysis. The decision trees themselves were visualized to examine the relationships between the 

factors and mortality, and the predictions from the decision trees were visualized in ArcMap to 

investigate spatial patterns of identified relationships. 

 

Results 
I explored four different regression methods, each of which had varied rates of success in fitting the 

relationships between mortality and the environmental and livestock factors.  Exploration of these four 

methods led to the conclusion that patterns of dzud mortality had non-linear and varying relationships 

with some factors that need to be better understood before building an effective predictive model. 

Recursive partitioning can successfully identify regions with clearly defined relationships and revealed 

locations where dzud mortality could be adequately explained with the available factor. The description 

of the results of the explorations is organized by years and focuses predominantly on regression tree 

modeling (supporting documentation of figures and tables are included in the appendices).  

Spatial Patterns in 1993  

In the time series of available data, 1993 was the first year of intensive livestock mortality (LMR; see List 

of Abbreviations). LMR93 ranged from 0.1-35.5% with a mean of 6.74% (Table 2).  Of 308 counties, 94 

experienced livestock mortality above 7.9%, most of which were located in southernmost tip of Altai 

mountains, Khangai and Khuvsgul mountain ranges, and parts of Transbaikal region. The year 1993 was 

distinguished by the heaviest snow precipitation (SASWE93) and lowest vegetation productivity 

(SINDVI92) of all years of the time series: a mean SASWE93 of 36.56 mm reaching the maximum value of 

123.46 mm in Khangai mountains and Transbaikal region with the SASWE93 sum equal to 11259.86 mm. 

An average value for SINDVI93 stood at 3.08 with an overall sum equal to 948.43. In 1993 the 

composition of the national herd recorded the highest percent sheep (SHPP92) and camel (CMLP92) and 

the lowest percent goat (GTP92) in all years (Fig. A1 and Table 2).  

Table 2: 1993 Descriptive statistics. 

Variable N Min Max Median Mean St dev Sum Skew 

LMR93 308 0.07 35.56 5.08 6.74 5.87 2074.56 1.58 

LMRLG93 308 -2.65 3.57 1.63 1.50 0.98 - -0.54 

SASWE93 308 0 123.46 25.35 36.56 33.78 11259.86 0.71 

SATMP93 308 -24.88 -5.35 -15.10 -15.08 3.98 - -0.25 

SINDVI92 308 0.00 7.34 3.14 3.08 1.78 948.43 0.06 

ELEV 308 670.88 2868.14 1482.01 1559.67 473.19 - 0.51 

LD92 308 1.29 77.89 20.25 21.87 12.78 - 0.77 

PRLMR92 308 0.05 18.12 2.74 3.73 2.95 1134.15 1.94 
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HRSP92 308 2.07 20.74 8.37 8.76 3.29 2698.92 0.57 

CTLP92 308 0.54 57.93 10.32 12.07 8.25 3718.39 1.65 

GTP92 308 0.72 69.19 16.65 20.21 13.64 6224.24 1.17 

SHPP92 308 15.52 81.11 58.70 57.26 11.54 17634.65 1.12 

CMLP92 308 0 27.68 0.65 1.70 3.37 523.79 3.94 

 

In the first step of the analysis I attempted to model LMRLG93 with OLS regression. The best OLS model, 

based on adjusted R2, AIC, coefficients, and p-value, included temperature (SATMP93) and SASWE93. 

However, a low R2 value (0.22) indicated that the model was very inefficient and the efficiency 

diagnostics tested significantly for non-normality of errors and spatial autocorrelation of residuals 

(Tables A1). Diagnostics for spatial dependence did not indicate a preference for either spatial lag or 

spatial error model and GWR was used in an attempt to accommodate the spatial structure of the data. 

GWR modeling of LMRLG93 was more efficient than OLS, but did not resolve spatial autocorrelation of 

the residuals, which indicated that both types of regression models were misspecified and missing key 

explanatory variables (Table A2).  

Accordingly, the recursive partitioning was used to describe and explore patterns and processes 

affecting livestock mortality. The cross-validation process was used to determined that the optimal tree 

had 13 splits and explanatory power of R2 = 0.469. This tree size was used as a reference, and in the 

process of interactive exploration the full tree was pruned to 14 splits and reached R2 of 0.520 (Fig. 7). 

The cross-validation for a 14-split tree size yielded lower R2 = 0.4448 (Fig. A2). 
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Figure 7: 1993 Regression tree. 

The first split of the tree root was based on SASWE93 and effectively separated Khangai, Khuvsgul, and 

Khentii mountains and parts of Transbaikal region from the rest of the country. A branch with higher 

mortality and SASWE93>78.2 mm was further divided by elevation into ELEV < and > 2170 meters where 

the highest LMR93 (µ = 20.6%) was associated with SASWE93>78.2 and ELEV>2170. Observations with 

ELEV<2170 m (LMR93, µ=10.89) were further divided by percent horse into HRPS92 < and > 6.96%. A 

leaf with HRSP92>6.96% was split by previous-year livestock mortality on PRLM92 < and > 3.21%, where 

the leaf with the higher PRLM92 was further split by livestock density on LD92 < and > 11.19.  

Counties where SASWE93<78.2 were further split on SASWE93 < and > 30.4 mm into branches modeling 

low and medium mortality levels. The branch where SASWE93>30.4 had medium mortality (µ=7.5%) and 

showed strong, positive association with SATMP93 and PRLMR92. The highest mortality (LMR93 

µ=11.78%) in this branch was associated with SASWE93>30.43, SASTMP93> -16.13, and PRLMR92>2.31. 
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Observations from this branch are adjacent to the area of the high mortality branch and occupy the 

Transbaikal region and a cluster of dzud impacted counties in Central Mongolia. 

The left branch of the tree contained observations where SASWE93<30.4. It was further divided into 

SINDVI92 < and > 0.35, which separated counties in the desert from the semi-desert ecoregion. In 

counties located in the Gobi desert where mean LMR93 = 9.75%, dzud was associated with SINDIV92 

<0.35, and SATMP93 < -7.30. The leaf where SINDVI92> = 0.35 was further split on LD92>= 38.82 and on 

SINDVI92< 3.79, which isolated a cluster of dzud- affected counties located in Central Mongolia (Fig. 7, 

Fig. A3) 

Finally, the left-most branch where SINDVI92> = 0.35, LD<38.82, HRSP92< 5.0 and SATMP93< -15.06 

separated counties with LMR93=9.73% located in Bayankhongor province at the innermost end of Altai 

Sayan mountain range. These counties were adjacent to the clusters of dzud affected counties in 

Khangai mountains (Fig. A3).  

Spatial Patterns in 1996 

The year 1996 represents one of the most favorable years in the time series, whose LMR stayed low at 

an average of 2.22% and exceeded the background threshold only in eight counties. LMR96 was not 

affected by the preceding dzud (unlike LMR04) and was distinguished by low SATMP96 (µ = -15.30), 

highest CTLP95 (µ = 13.56) and HRSP95 (µ = 10.14), and lowest SASWE96 (µ = 10.73 and Σ = 3370.15) 

among all years (Table 3, Fig. B1).  

Table 3: 1996 Descriptive statistics. 

Variable N Min Max Median Mean St dev Sum Skew 

LMR96 314 0.10 14.57 1.69 2.22 1.98 696.20 2.28 

LMRLG96 314 -2.35 2.68 0.53 0.45 0.88 - -0.34 

SASWE96 314 0 79.07 2.81 10.73 14.80 3370.15 1.80 

SATMP96 314 -24.96 -6.34 -15.09 -15.30 3.83 - -0.25 

SINDVI95 314 0.03 7.31 3.27 3.18 1.85 999.08 0.04 

ELEV 314 670.88 2868.14 1482.01 1559.67 473.19 - 0.51 

LD95 314 1.17 92.80 22.01 24.36 15.43 - 0.92 

PRLMR95 314 0.09 23.88 1.88 3.01 3.52 945.32 2.94 

HRSP95 314 1.94 31.36 9.70 10.14 4.33 3183.01 0.80 

CTLP95 314 0.62 57.06 12.23 13.56 8.82 4256.81 1.32 

GTP95 314 3.25 74.09 23.48 26.87 14.22 8436.91 0.91 

SHPP95 314 16.29 73.50 49.02 48.18 10.08 15130.03 -0.49 

CMLP95 314 0 19.99 0.64 1.25 2.20 393.24 4.28 

 

The best OLS model included a number of factors: SINDVI95, ELEV, CMLP95, CTLP95, and HRSP95. The 

explanatory power of the model was very low (R2 = 0.18) and the residuals exhibited spatial 

autocorrelation. Diagnostics for special dependence did not indicate a preference for a spatial 
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econometric model; therefore, GWR method was attempted as an alternative spatial model but failed to 

resolve autocorrelation in the residuals. These results pointed to misspecification of the regression 

models and missing key variables (Tables B1 and B2).  

Accordingly, recursive partitioning was used to investigate relationship between LMR96 and the 

predictors. Modeling livestock mortality in 1996 was equivalent to investigating the power of predictors 

to explain the background mortality rate and explore the relationship between the factors and the 

response variable in the absence of dzud. The cross-validation procedure suggested the optimal tree size 

of eight splits and through the process of interactive exploration, the final tree size achieved 12 splits 

and R2 = 0.59 (Fig. 8 and B2).  

 

Figure 8: 1996 Regression tree. 

The first split was based on PRLMR95 where PRLMR95 > 6.20% was associated with the higher mortality. 

The right branch was further divided on LD95 < and > 7.37, where higher LMR96 (µ=8.04) was associated 

with LD95 <7.37. The leaf with LD95 > 7.37 was further split into two terminal nodes of SATMP96 < and 

> -15.5, where SATMP96 < -15.60 was associated with LMR96 =5.76.  
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The middle branch of the tree was divided on PRLMR95 < and > 2.00 where PRLMR95 > 2.00 was 

associated with higher LMR96 (µ = 2.42). This leaf was further split on HRSP < and > 4.52 where higher 

LMR96 (µ=4.94)  was associated with lower HRSP95. HRSP95> 4.52 leaf was further divided on SINDVI95 

< and> 4.88. The leaf of SINDVI95> 4.88 was further split on ELEV < and > 1383, and the leaf of 

SINDVI95< 4.88 was split on HRSP95 < and> 5.93.   

The left branch of the tree with the lowest mortality (LMR96 = 1.46) originated from leaf of PRLMR95 

<2.00, which was further split on LD95 and GTP95. The leaf of GTP95> 37.76 was split on LD95 and the 

leaf of GTP<37.76 was further split on SINDVI95.  

Spatial Patterns in 2000  

The year 2000 marked the beginning of a multi-annual dzud episode that finished in 2003.  The LMR00 

ranged from 0.37% to 44.92%, with a mean of 9.17% (Table 4).  The 113 counties affected by dzud were 

spatially distributed along the northwest – southeast diagonal across the country (Fig. C1). The year was 

distinguished by the lowest PRLMR99 and CMLP99 (µ = 2.49 and µ = 1.02, respectively), second to 

lowest SASWE00 (µ = 17.14) and highest LD99 (µ = 28.93) in the time series. HRSP00 and CTLP00 

represented a very high share of the national herd, and more than half of the SINDVI00 observations 

recorded lower than average values (µ = 3.16, median = 3.12) indicating that drought conditions 

affected large area of the country  (Fig. C1). 

Table 4: 2000 Descriptive statistics. 

Variable N Min Max Median Mean St dev Sum Skew 

LMR00 312 0.37 44.92 4.55 9.17 10.31 2861.30 1.59 

LMRLG00 312 -1.00 3.80 1.52 1.59 1.16 - 0.04 

SASWE00 312 0 120.35 8.28 17.14 21.05 5347. 75 1.86 

SATMP00 312 -25.58 -5.47 -15.40 -15.45 4.06 - -0.25 

SINDVI99 312 0.04 7.59 3.12 3.16 1.89 987.33 0.10 

ELEV 312 670.88 2868.14 1482.01 1559.67 473.19 - 0.51 

LD99 312 1.08 101.63 26.83 28.93 18.10 - 0.90 

PRLMR99 312 0.05 37.64 1.55 2.49 3.23 777.55 5.40 

HRSP99 312 2.20 22.44 9.73 9.70 3.74 3026.41 0.28 

CTLP99 312 0.37 56.23 11.35 12.76 8.74 3982.25 1.40 

GTP99 312 6.10 76.81 27.68 31.09 13.53 9701.28 0.96 

SHPP99 312 14.81 64.28 46.52 45.42 9.39 14170.34 -0.60 

CMLP99 312 0 15.83 0.50 1.02 1.77 319.72 4.23 

 

The first step of the analysis attempted to model LMRLG00 with a means of OLS regression. The best 

OLS model included SINDVI99, SASWE00, LD99, HRSP99, and GTP99. However, a low R2 value (R2 = 0. 36) 

indicated that the model was inefficient; the model tested significant for non-normality of errors and 

spatial autocorrelation of residuals. Diagnostics for spatial dependence indicated a preference for a 
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spatial lag model, which was tested on the same set of factors (Table C1). Spatial lag model had higher 

efficiency than OLS (AIC=707) and resolved spatial autocorrelation in the residuals. However, the 

diagnostics of spatial lag model indicated misspecification and missing variables, which made its results 

unreliable (Table C2).  

The cross-validation procedure suggested 12 splits to be the optimal tree size, while in the process of 

interactive exploration the final tree contained 15 splits and achieved R2 = 0.673 (Fig. 9 and Fig. C2).  

 

Figure 9: 2000 Regression tree. 

The very first split was based on SINDVI99 < and > 3.42, where SINDVI99<3.42 was associated with 

higher mean LMR00 = 12.88. The split effectively separated the north-central and north-eastern parts of 

Mongolia that were not affected by drought and dzud. The right branch of the tree that contained 

observations with high LMR00 was further split on HRSP99 < and > 8.61, where higher HRSP99 is 

associated with higher LMR00 = 20.37. This split separated western, south-western and parts of the 

Gobi desert that had lower HRSP99 values and lower LMR00 = 8.32 from the area of high impact 

organized along the northwest-southeast axis (Fig. C3). The HRSP99>8.61 was split on ELEV < and > 
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1105, where higher ELEV is associated with higher LMR00=24.53. The leaf with ELEV>1105 continued 

dividing based on SINDVI99 < and > 3.24, where lower SINDVI was associated with higher LRM00 =26.53. 

The leaf with SINDVI99<3.24 was split on PRLMR99 < and > 3.81, with PRLMR99 >3.81 associated with 

higher mean LMR00 = 37.61. The leaf with lower PRLMR99 <3.81 was split based on LD99 < and > 43.68 

into terminal nodes with LMR00 equal 21.28 and 31.51.   

The middle branch of the tree that stemmed from the leaf of SINDVI99<3.42 and HRSP99<8.61 

contained counties with dzud mortality located predominantly in the northwest of Mongolia. Both splits 

were based on livestock composition variables, SHPP99 and GTP99, where the last split isolated semi-

desert ecoregion from the Gobi desert (Fig. C3). The leaf of GTP99<44.83 was further divided based on 

PRLMR99, where higher LMR00 = 15.19 was associated with PRLMR99 >1.98. 

The left branch of the tree contained mostly counties not impacted by dzud. The first split of 

SINDVI99>3.42 leaf isolated a small cluster of counties in the central Mongolia with LD99 >71.96 and 

mean LMR00 = 16.42. The leaf of LD99 <71.96 was further split on SATMP00, where SATMP00 < -21.71 

was associated with higher LMR00 = 10.54 and located in Khangai and Khuvsgul mountains. The counties 

belonging to the leaf of SATMP00> -21.71 were not affected by dzud and located in the north-central 

and north-eastern Mongolia (Fig. C3). This leaf was further divided into LD99 < and > 24.34, with the leaf 

of LD99 > 24.35 having higher LMR00 = 4.91. This leaf in turn was split based on SINDVI99 < and > 4.32, 

where the leaf with lower SINDVI99 had higher LMR00 = 7.74 and was further split based on PRLMR99 < 

and > 1.62 into terminal nodes with PRLMR99 < 1.62 having mean LMR00 = 11.77. The leaf of SIDNVI99> 

4.32 was divided on HRSP99 < and > 14.21 into two terminal nodes with higher HRSP99 associated with 

higher mean LMR00 = 6.97.  

Spatial Patterns in 2001 

The highest dzud incidence over the country occurred in 2001: 200 out of 312 counties experienced 

livestock mortality higher than 7.9% and dzud engulfed the entire country (Fig. D1). In 2001, LMR01 

ranged from 0.07% to 61.48% with a mean of 15.0% and temperatures were the coldest of all years 

(SASTMP01 µ = -16.77, median = -17.38) (Table 5).  

Table 5: 2001 Descriptive statistics. 

Variable N Min Max Median Mean St dev Sum Skew 

LMR01 312 0.07 61.48 11.81 14.97 12.31 4671.82 1.41 

LMRLG01 312 -2.73 4.12 2.47 2.30 1.07 - -1.39 

SASWE01 312 0 104.94 20.61 27.33 26.60 8526.28 0.76 

SATMP01 312 -26.02 -5.17 -17.38 -16.77 4.42 - 0.36 

SINDVI00 312 0.06 7.27 3.20 3.13 1.73 976.72 0.12 

ELEV 312 670.88 2868.14 1482.01 1559.67 473.19 - 0.51 

LD00 312 1.13 83.12 23.81 25.88 15.78 - 0.95 

PRLMR00 312 0.37 44.92 4.55 9.17 10.31 2861.30 1.59 

HRSP00 312 1.88 21.37 8.95 9.10 3.83 2839.69 0.30 
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CTLP00 312 0.26 54.39 9.35 11.25 8.86 3510.88 1.42 

GTP00 312 7.91 79.27 29.12 32.17 13.14 10036.96 1.03 

SHPP00 312 12.81 69.63 47.62 46.41 9.98 14480.91 -0.58 

CMLP00 312 0 19.05 0.48 1.06 1.99 331.55 4.85 

 

The best OLS model included SASWE01, ELEV, LD00, PRLMR00, and HRSP00. However, a low R2 value (R2 

= 0.26) indicated that the model was inefficient. It also tested significant for non-normality of errors, 

heteroscedasticity, non-stationarity and spatial autocorrelation of residuals. Diagnostics for spatial 

dependence indicated a preference for a spatial error model, which was tested on the same set of 

factors. (Table D1). The spatial error model had higher efficiency than OLS (AIC=702) and resolved 

spatial autocorrelation of the residuals. However, the diagnostics of spatial lag model indicated 

misspecification and missing variables, which made its results unreliable (Table D2).  

The results of the cross-validation procedure suggested the optimal tree size for recursive partitioning  

was 12 splits, and through the interactive exploration process, the final tree was pruned to 16 splits and 

reached R2 = 0.677 (Fig. 10 and Fig. D2).  
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Figure 10: 2001 Regression tree. 

The first split was done based on HRSP00 < and > 7.70, where HRSP00>7.70 was associated with higher 

LMR01 = 17.74. The leaf of HRSP00>7.70 was further split on ELEV < and > 1781, which separated the 

region of highest impact, Khangai and Khuvsgul mountains and its vicinities, from the rest of the country 

(Fig. D3). High LMR01 in the right branch was associated with ELEV>1781, SASWE01>72.28 and 

LD00>28.63.  

The middle branch of the tree stemmed from the leaf of ELEV<1781, which was split based on CTLP00 < 

and > 16.67 where higher LMR01 = 17.02 was associated with CTLP00<16.69. This leaf was further split 

on PRLMR00 < and > 24.57 where higher LMR01 = 18.82 was associated with PRLMR00 <24.57. The leaf 

of PRLMR00<24.57 was further split based on ELEV < and > 1289 where ELEV>1289 was associated with 

higher LMR01 = 23.41. The leaf geographically occupies Khentii range and its vicinity.  The leaf of 

ELEV<1289 covered the eastern part of Mongolia and was further split based on CTLP >11.86 (Fig. D3). 

The leaf of ELEV>1289 was further split on SINDVI00 where higher LMR01 = 31.43 was associated with 
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SINDVI00<3.6. The leaf of SINDVI00<3.60 was split on SATMP01 < and >  -15.75 and the leaf of 

SINDVI00>3.60 was divided on SASWE01 < and > 11.92.  

The left branch of the tree models LMR01 in the western and the Gobi regions of Mongolia.  The branch 

stemmed from the leaf of HRSP00<7.70, which was split on SHPP00 < and > 61.90 where SSHPP00>61.90 

was associated with mean LMR01 = 22.33. The leaf of SHPP00<61.90 was further split on SINDVI00 < and 

> 1.08  and PRLMR00 < and > 1.83 where lower LMR = 12.95 was associated with higher PRLMR00. 

Observations contained in the leaf of PRLMR00 >1.82 is located in the Gobi desert while observations 

with PRLMR00 <1.82 were adjacent to Khangai mountains (Fig. D3). The leaf with SINDVI00 >1.08 was 

split into terminal nodes based on HRSP00 < and > 5.10 where higher LMR01 = 9.85 was associated with 

HRSP00 > 5.10.  

Spatial Patterns in 2002  

In 2002, dzud occurred in 94 counties located mostly in the western and southern parts of Mongolia (Fig 

E1). While 2002 dzud did not reach the impact of the disaster in 2001, the maximum LMR02 recorded 

was 76.40% with an average of 10.3%.  2002 observed low SASWE (µ = 22.07, Σ = 6886.69), second to 

highest SINDVI (µ = 3.23, Σ = 1008.01) and was the warmest year in the time series (SATMP µ = -14.23). 

Overall, this year had mild winter conditions and good vegetation cover in the preceding summer (Table 

6).  

Table 6: 2002 Descriptive statistics. 

Variable N Min Max Median Mean St dev Sum Skew 

LMR02 312 0.02 76.40 2.67 10.31 15.57 3216.55 1.98 

LMRLG02 312 -3.70 4.34 0.98 1.25 1.55 - 0.08 

SASWE02 312 0 71.16 19.60 22.07 17.89 6886.69 0.62 

SATMP02 312 -23.88 -4.42 -14.10 -14.23 4.22 - -0.10 

SINDVI01 312 0.00 7.51 3.38 3.23 1.99 1008.01 0.03 

ELEV 312 670.88 2868.14 1482.01 1559.67 473.19 - 0.51 

LD01 312 1.18 74.88 19.95 22.60 14.21 - 0.93 

PRLMR01 312 0.07 61.48 11.81 14.97 12.31 4671.82 1.41 

HRSP01 312 0.77 20.99 8.58 8.74 3.95 2726.40 0.30 

CTLP01 312 0.10 51.63 6.29 8.92 8.24 2783.52 1.84 

GTP01 312 10.47 80.89 32.69 35.52 13.19 11082.45 1.00 

SHPP01 312 11.09 65.86 47.17 45.68 10.27 14252.75 -0.71 

CMLP01 312 0  23.90 0.48 1.14 2.25 354.88 5.31 

 

The best OLS model included SINDVI01, SATMP02, SASWE02, ELEV, LD01, PRLMR01, and SHPP01. 

However, a moderately low R2 value (R2 = 0. 47) indicated that the model had higher predictive power 

than models of previous years but it still tested significant for non-normality of errors, 

heteroscedasticity, non-stationarity and spatial autocorrelation of residuals. Diagnostics for spatial 
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dependence indicated a preference for a spatial lag model, which was tested on the same set of factors 

(Table E1). The spatial lag model had higher efficiency than OLS (AIC=812) and resolved spatial 

autocorrelation in the residuals. However, the diagnostics of the spatial lag model indicated 

misspecification and missing variables, which made its results unreliable (Table E2). 

The cross-validation procedure in the recursive partitioning process suggested the optimal tree size of 

eight splits and in the process of interactive exploration, the final tree was pruned to 11 splits and 

reached R2 = 0.748 (Fig. 11 and Fig. E2).  

 

Figure 11: 2002 Regression tree. 

The first split of the tree is based on GTP01 < and > 48.31 which separated the zone of the impact 

covering the Gobi and the western part of the country. The right branch of the tree continued to be split 

on HRSP01 < and > 6.51 where higher LMR02 = 36.34 was associated with HRSP01< 6.51. This leaf was 

further divided into LD01 < and > 27.92, where LD01<27.92 was associated with mean LMR02 = 39.13. 

The leaf of LD01<27.92 was split into two terminal nodes on SATMP02 < and >  -10.76. Most 

observations partitioned in this branch were located in the Gobi desert (Fig. E3).  
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The middle branch of the tree stemmed from the leaf of GTP01<48.31, which was split on SINDVI01 < 

and > 2.49. The leaf of SINDVI01 was further divided based on SASWE02 < and > 24.54 with higher 

LMR02 = 25.71 associated with SASWE02>24.54. The leaf of SASWE02>24.54 was further split into 

terminal nodes of SATMP02 < and > -18.01, where SATMP02>-18.10 was associated with higher LMR02 

= 35.18. The leaf of SASWE02<24.54 was split based of CTLP01 < and > 7.90 where CTLP01>7.90 was 

associated with higher LMR02 = 20.28. The leaf of CTLP01<7.90 was divided into terminal nodes based 

on ELEV<1869, where ELEV>1869 was associated with mean LMR02 = 11.56.  

The left branch of the tree stemmed from the leaf of GTP01<48.31 and SINDVI01>2.49. Geographically, 

this split separated central and northeastern parts of Mongolia from the zone of impact. The low LMR02 

in this area was associated with higher SINDVI01 and ELEV <2391. A cluster of high mortality (LMR02 = 

18.97) in this branch was associated with ELEV>2391 and HRSP01<10.04, which geographically occupied 

the westernmost end of Altai-Sayan mountain range (Fig. E3).  

Spatial Patterns in 2003 

The last year that witnessed dzud in this sequence was 2003: 72 of 309 counties experienced high 

mortality ranging from 0.03 to 41.66% with an average of 5.51%. The clusters of high mortality were 

located in the north central and southern regions (Fig. F1). This year recorded high SASWE03 (µ = 32.16) 

and the LD03 has declined to the level of LD93 (Table 7).  

Table 7: 2003 Descriptive statistics. 

Variable N Min Max Median Mean St dev Sum Skew 

LMR03 309 0.04 41.66 2.67 5.51 7.23 1703.3 2.18 

LMRLG03 309 -3.31 3.73 0.98 0.94 1.32  -0.15 

SASWE03 309 0 132.93 18.38 32.16 33.22 9937.90 0.96 

SATMP03 309 -25.47 -5.87 -16.43 -16.26 4.19 - 0.06 

SINDVI02 309 0.01 7.39 3.12 3.08 1.80 952.22 0.06 

ELEV 309 670.88 2868.14 1482.01 1559.67 473.19 - 0.51 

LD02 309 1.20 68.25 18.38 21.15 14.10 - 0.94 

PRLMR02 309 0.02 76.40 2.67 10.31 15.57 3216.55 1.98 

HRSP02 309 0.72 19.94 8.35 8.33 4.01 2573.62 0.31 

CTLP02 309 0.10 49.95 6.27 8.31 7.81 2566.70 1.95 

GTP02 309 12.82 82.55 35.19 38.80 13.62 11988.33 1.00 

SHPP02 309 8.72 65.94 45.21 43.28 10.59 13373.50 -0.77 

CMLP02 309 0 21.82 0.46 1.29 2.61 397.85 4.62 

 

The best OLS model included SINDVI02, SATMP03, SASWE03, ELEV, PRLMR02, CMLP02, CTLP02, and 

HRSP02. However, a moderately low R2 value (R2 = 0. 46) indicated that the model had poor efficiency. It 

also tested significant for heteroscedasticity, non-stationarity and spatial autocorrelation of the 

residuals. Diagnostics for spatial dependence indicated a preference for a spatial lag model, which was 
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tested on the same set of factors (Table F1). The spatial lag model had higher efficiency than OLS 

(AIC=767) and resolved spatial autocorrelation of the residuals. However, the diagnostics of spatial lag 

model indicated misspecification and missing variables, which made its results unreliable (Table F2). 

The cross-validation procedure in the recursive partitioning process suggested the optimal size of the 

tree of 18 splits but after interactive pruning process, the final tree was cut to 15 splits and reached R2 = 

0.687 (Fig. 12 and Fig. F2). 

  

Figure 12: 2003 Regression tree. 

The very first split was done on SASWE03 < and > 64.33, where SASWE03 >64.33 was associated with 

higher LMR03 = 11.62. The right branch of the tree that contained observations of higher mortality 

proceeded to be split on SINDVI02 < and > 4.46 where higher LRM03 = 19.01 was associated with 

SINDVI02 < 4.46. The leaf of SINDVI02 <4.46 was further split on SATMP03 < and > -18.60 into two 

terminal nodes with higher mean LMR03 =26.19 associated with SATMP03>-18.60. The leaf of SINDVI02 

> 4.46 was further divided into LD02 < and > 38.56 where higher LMR02 = 17.74 was associated with 

LD02 >38.56. The leaf of LD02<38.56 continued to be split on ELEV < and > 1450 with ELEV >1450 
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associating with low LMR03 = 2.70. The leaf of ELEV<1450 was divided into two terminal nodes of 

SATMP03 < and > -19.19 with higher LMR03 = 17.69 associated with SATMP03<-19.19.  

The middle branch of the tree stemmed from the leaf of SASWE03<64.33 which was split on LD02>40.42 

with higher LMR03 = 10.24 associated with LD02> 40.42. This leaf was in turn divided on ELEV < and > 

1343 where higher LMR03 = 19.13 was associated with ELEV<1342. The leaf of ELEV > 1343 was further 

split on SASWE03 < and > 4.83 into terminal nodes where SASWE03 >4.83 was associated with 

LMR03=10.32. The right and middle branches of the tree geographically separated Transbaikal and 

Khyangan regions of high impact from the rest of the country (Fig. F3). 

The left branch of the tree stemmed from the split of SASWE03<64.33 and LD02<40.42. This leaf was 

further split on SASWE03 < and > =0.09 where higher LMR03=15.88 was associated with SASWE03<0.09. 

The observations assigned to this leaf constituted a high impact mortality cluster located in the Gobi 

desert. The SASWE03>0.09 was further split on CMLP02 < and > 0.28 with CMLP02<0.28 associated with 

higher LMR03=4.55. This leaf was split into two terminal nodes of ELEV < and > 1480 with ELEV<1480 

associating with LMR03 = 10.56. The leaf of CMLP02 > 0.28 was divided on SINDVI02>0.39 where higher 

LMR03=4.10 was associated with SINDVI02 <0.39. This leaf was split into terminal nodes based on 

SHPP02 < and > 32.34 where higher SHPP02>32.34 was associated with higher LMR03 = 8.29. The leaf of 

SINDVI02>0.39 was divided on ELEV < and > 2566 into two terminal nodes where ELEV<2566 was 

associated with LMR03 = 1.54 and ELEV>2566 was associated with LMR03=5.14.  

Spatial Patterns in 2004  

The last year of the time series following a four-year dzud spell was 2004. It recorded the lowest LMR04 

of all years (µ = 1.15) and very high SASWE04. A chain of dzud events had put a clear imprint on 

composition of the national herd, with HRSP03 and CTLP03 at their lowest and GTP03 at its highest 

share in all the years (Table 8 and Fig. G1).  

Table 8: 2004 Descriptive statistics. 

Variable N Min Max Median Mean St dev Sum Skew 

LMR04 312 0 22.06 0.71 1.15 1.76 359.31 6.59 

LMRLG04 312 -6.91 3.09 -0.32 -0.47 1.23 - -0.84 

SASWE04 312 0 114.72 21.04 30.59 30.21 9544.84 0.97 

SATMP04 312 -24.47 -5.34 -15.53 -15.41 3.91 - 0. 13 

SINDVI03 312 0.05 7.12 3.49 3.22 1.65 1005.02 -0.07 

ELEV 312 670.88 2868.14 1482.01 1559.67 473.19 - 0.51 

LD03 312 1.15 63.43 19.68 21.91 13.62 - 0.78 

PRLMR03 312 0.04 41.66 2.67 5.51 7.23 1703.3 2.18 

HRSP03 312 0.78 19.39 7.73 7.99 4.03 2492.68 0.47 

CTLP03 312 0.10 51.03 5.52 7.68 7.47 2396.14 2.22 

GTP03 312 14.44 85.47 38.31 41.85 13.84 13058.52 0.97 

SHPP03 312 7.65 61.69 43.53 41.29 10.58 12883.97 -0.83 
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CMLP03 312 0 22.91 0.43 1.18 2.50 368.68 4.97 

 

The best OLS model included PRLMR03, CTLP03, and HRSP03. However, a low R2 value (R2 = 0. 24) 

indicated that the model was very inefficient. The model tested significant for non-normality of errors 

and spatial autocorrelation of residuals. Diagnostics for spatial dependence indicated a preference for a 

spatial lag model, which was tested on the same set of factors (Table G1). Spatial lag model had slightly 

higher efficiency than OLS (AIC=907) and resolved spatial autocorrelation of the residuals. However, the 

diagnostics of spatial lag model indicated misspecification and missing variables, which made its results 

unreliable (Table G2). 

The cross-validation procedure of the recursive partitioning suggested the optimal tree size of four splits 

and through the process of interactive exploration the final tree grew to five splits, reaching R2 = 0.226 

(Fig. 12 and Fig. G2).  

 

Figure 13: 2004 Regression tree. 

The first split was based on CTLP03 < and > 5.75 which separated north-central and north-eastern 

regions along with all mountain ranges except for the innermost stretches of Altai-Sayan mountain 

chain. In these parts of the country, the higher LMR04=1.78 was associated with CTLP03>5.75. This leaf 

was further split on PRLMR03 < and > 28.83 into two terminal nodes where higher LMR04=5.43 was 

associated with PRLMR03>28.83 (Fig. G3).  
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The left branch of the tree stemmed from the leaf of CTLP03 <5.75, which was divided on PRLM03 < and 

> 3.68 where the higher LMR04=1.07 was associated with PRLMR03>3.68. The leaf of PRLMR03<3.68 

was further split on PRLMR03 < and > 1.37 where higher LMR04 = 0.63 was positively associated with 

higher PRMR03. The leaf of PRLMR03>1.37 was split into two terminal nodes of HRSP03 < and > 2.31.  

 

Discussion 
The results of the analysis demonstrate that predictors of dzud intensity exhibit heterogeneous 

relationships in space and evolving dynamics over time. The direction of the associative behavior 

between the mortality and contributing factors varies according to ecological and physical 

characteristics of the affected location. This inconsistent association can be a property of a geographic 

location, true causative association, or an artifact of missing variables and model misspecification. Thus, 

the main challenge of the analysis is to discern strong predictors of livestock mortality from factors that 

describe geographic characteristics but carry no explanatory information. The success of the analysis will 

be also evaluated by the performance of selected methodology to effectively elicit true relationships. 

The discussion section will first examine the spatial dimensions of the results and then look at temporal 

dynamics in dzud evolution.   

Spatial Dynamics of Dzud Incidence 

1993 

The  most severe dzud impact in 1993 concentrated in mountainous regions with deep snow cover, large 

numbers of horses in the herd and high previous-year mortality. The region of medium level mortality 

was located in Transbaikal region, which had lower elevation but similar characteristics as in the 

mountains. The association of temperature above -16.12 °C with moderate level of mortality in this 

region points to interactions between snow cover and temperature variables in relationship to dzud 

mortality: very low temperature and deep snow do not necessarily associate linearly with livestock 

mortality. Rather, a specific range of temperature together with a significant snow amount created dzud 

conditions.  

Apart from the cluster of high mortality in Ovorkhangai province in Central Mongolia, which was 

associated with high density of livestock and lower NDVI, most of observations in the leftmost branch of 

the tree that represents counties with lower dzud mortality were located in the desert and semi-desert 

ecozones, which are defined by low NDVI, shallow snow cover, low density of livestock, especially lower 

percentage of horses in a herd. Therefore, the top levels of partitioning of the left branch may not 

necessarily represent causative factors as much as those splits highlight very distinct climatic and 

ecological characteristics based on which partitioning dissects the dataset to isolate the regions of the 

impact in the Gobi and western part of Mongolia. The likely explanatory factors appeared at the bottom 

of the tree and indicated that dzud was associated with conditions of low temperatures and low snow 

cover conducive to black dzud (Fig. A3).  
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1996 

Because the climatic conditions were favorable in 1996, partitioning allowed investigating the behavior 

of variables in relation to background level of mortality. The highest mortality was recorded in 

Transbaikal region and associated with high previous-year mortality, lower livestock density and low 

temperature. Counties located in the Gobi region were unaffected by dzud and partitioned based on 

higher previous mortality, lower percentage of horses and lower NDVI. Partitioning also separates semi-

desert and desert regions based on low livestock densities, higher proportion of goats and lower NDVI. 

The cluster of high livestock density in Central Mongolia appeared again in 1996. The regression tree of 

1996 demonstrates that variables of livestock density, vegetation cover, percentage of goats and horses 

were used to separate ecological regions based on its distinct characteristics (Fig. B3).  

2000 

The highest mortality in 2000 was associated with drought that spread along the northwest-southeast 

diagonal across Mongolia. Within the area of impact, the magnitude of losses depended on the 

proportion of horses in the herd, where larger horse population found in the southeast and smaller 

population in the northwest. In the southeast cluster, high mortality was associated with properties of 

higher elevation, high previous-year mortality and high livestock density as well as lower NDVI. The 

northwestern cluster affected by drought and the Gobi desert were partitioned based on herd 

composition variables of horses, sheep, and goats. However, their relationships do not logically 

associate with mortality but rather highlight properties of the desert and semi-desert regions; high 

mortality in these regions was associated with higher percentage of sheep, lower goat population and 

higher previous-year mortality. The climatic factor of snow cover was not included into results because 

of lower significance score but might have been associated with dzud mortality in the western Mongolia. 

It indicates that the local scale of the analysis is more appropriate for the desert and semi-desert regions 

and direct comparison of those regions with forest and steppe biomes within a single model has low 

efficiency.  

Khangai-Khuvsgul mountain ranges, Transbaikal region and Dagurian steppes, which are usually 

characterized by the most severe winter conditions but in 2000 observed lower mortality than the rest 

of the country. The persistent cluster of high livestock density and low vegetation cover in Central 

Mongolia appeared again in 2000. This hot-spot of dzud mortality has stood out due to high density of 

livestock in previous years and has been growing in size. Counties in Khangai and Khuvsgul mountains 

recorded moderate level mortality associated with very low temperature and high mortality, which 

underscores this location’s vulnerability to dzud due to its physical topography. Finally, in this region the 

higher mortality was also associated with lower previous-year mortality, which was contrary to the 

expected relationship and indicated that this variable took place of a missing factor describing patterns 

of herder migration (Fig. C3).    

2001 

In the aftermath of the 2000 dzud, the factors and patterns associated with livestock mortality show the 

lingering effect of the previous-year dzud as well as a contribution of severe winter weather conditions 
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(Fig. D3). The most important contributing factor was percent horse in herd composition, which has 

appeared in previous years suggesting that this livestock type has particularly strong and persistent 

association with dzud. The most severe impact located in Khuvsgul-Khangai mountain ranges 

characterized by deep snow and the Ovorkhangai hot-spot in Central Mongolia was associated with high  

density of livestock and deep snow. The split on previous-year mortality, which negatively associated 

with high livestock mortality was pruned due to low LogWorth, but its contradictory relationship with 

the response suggests of herders migration into less affected areas.  

Medium level mortality was recorded in Transbaikal and Dagurian steppes associated with higher 

percentage of cattle in a herd characteristic of these regions. A cluster of low mortality associated with 

high previous-year mortality was found at the hot-spot of dzud 2000, which indicated that herders 

migrated away from the zone affected by dzud 2000 to the neighboring counties located in Khentii 

mountains and counties to the east of Khangai range. The observed ripple effect that followed  dzud 

2000 makes a strong argument that migration of herders has relationship with dzud mortality.  

The counties located in the semi-desert and the Gobi were separated from the rest of the country based 

on the characteristic lower number of horses, higher number of sheep and lower NDVI. In the Gobi the 

mortality was negatively associated with previous-year mortality, which indicates migration of herders 

to less affected areas in response to dzud 2000; in the semi-desert, higher NDVI and larger horse 

population was associated with higher mortality. 

2002 

In 2002, the areas affected by dzud were limited to the Gobi and western Mongolia; therefore, the 

partitioning first isolated those ecoregions from the rest of the country (Fig. E3). The partitioning of the 

right branch demonstrates that top-level splits exploit properties of the ecological regions rather 

causative relationships to isolate the region of impact. The highest losses were observed at the 

innermost end of Altai-Sayan range, southern end of Khangai mountains, and parts of the Great Lake 

Depression and were associated with low temperature.  

Middle-level mortality was observed in the Great Lake Depression and the eastern end of the Gobi 

desert. Both regions have smaller population of goats and low NDVI. The contributing factors in the 

Depression area included deeper snow cover, low temperatures, higher number of cattle (or yaks) and 

higher elevation, while the region of low mortality located in the eastern Gobi was segregated based 

properties of the region including shallow snow, small population of cattle and low elevation. A cluster 

of high mortality located at the western end of Altai-Sayan mountains was associated with high 

elevation.  

2003 

In 2003 high mortality was observed in Transbaikal region and eastern part of the Gobi desert (Fig. F3). 

In the north, the mortality was associated with deep snow, high livestock density and a range of low 

temperatures. Usually higher mortality is endemic to mountainous regions, but in 2003, dzud was 

associated with lower elevation, which indicates that the elevation variable was a surrogate for a 
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missing variable. The mortality in the Gobi cluster was associated negatively with very low snow 

precipitation, which indicates the presence of black dzud. The herd composition and NDVI variables that 

appeared in the partitioning of the Gobi desert were suspected to carry little explanatory information 

but highlighted properties of this ecoregion.  

2004 

The 2004 results indicated that low mortality was the effect of the preceding years of dzud. While higher 

previous-year mortality associated positively with dzud mortality, areas that routinely witness higher 

dzud mortality were delineated based on percent cattle variable in the absence of extreme climatic 

conditions (Fig. G3). 

Summary of Spatial Analysis 

It is evident that some regions in Mongolia were more susceptible to dzud due to their geographic 

locations. Khangai and Khuvsgul mountain ranges and to a lesser degree Transbaikal region and Khentii 

mountains repeatedly experienced white dzud due to their locations on the path of Siberian anti-

cyclone, which brings heavy snow precipitation and cold temperatures. In addition, good vegetation 

conditions, transportation infrastructure and proximity to economic markets make these regions 

attractive for settlement and livestock rearing as reflected by livestock density numbers. The expanding 

hot-spot of high mortality covering parts of Ovorkhangai and Bayankhongor provinces is likely shaped by 

anthropogenic influences due to a favorable economic location and close proximity to three urban 

centers: Bayankhongor, Arvakheer, and Tsetserleg. Dzud mortality is less intense in the desert and semi-

desert regions west of Khangai, and the dynamics between the main drivers of dzud, snow cover and 

temperature are different. It is most apparent in the desert where very shallow snow cover and low 

temperatures create black dzud conditions. It is very likely that these ecoregions are also susceptible to 

iron dzud due to high solar irradiance and a large amplitude of diurnal temperature but the study cannot 

directly distinguish iron dzud based on the temporal and spatial scales of the analysis.  

The results of partitioning suggest that the source of misspecification and low efficiency of regression 

models lies in regional heterogeneity of dzud dynamics across Mongolia. Livestock profiles and climatic 

processes in the desert and semi-desert are so distinct from other ecoregions that they create its own 

unique dzud dynamics. These differences call either for normalization of explanatory variables to 

smooth regional variation or a separate analysis of those regions. The design of the study failed to 

accommodate regional variation, and partitioning suggests that a spatial and temporal unit of analysis 

maybe too large for the desert and semi-desert. Taking into account that livestock distribution is highly 

localized in response to vegetation conditions and available water resources, a spatial unit of a soum 

results in smoothed variability within variables due to aggregation. The presence of large national parks 

and protected areas in the Gobi that are predominantly off limits to livestock grazing also adds 

inaccuracy to the analysis of mortality by soum. In addition, infrequent and sporadic precipitation events 

in the desert determine the amount of vegetation and water available for grazers. Annually aggregated 

variables do not adequately represent temporal fluctuation in availability of food resources for livestock 

suggesting that finer temporal scale would help better resolve causative associations.  
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Finally, the analysis indicates that some variable describing a long-distance migration of herders in 

response to dzud might be a very important predictor to include into a future model. High previous-year 

mortality usually has a lingering effect on the present-year mortality, because livestock physical  

condition was undermined from surviving the previous winter. However, in 2001 many locations 

observed the opposite effect: counties that suffered from dzud of 2000, did not experienced dzud in 

2001. Especially distinct are two clusters of low mortality in Dundgovi and Ovorkhangai provinces (Fig. 

E3).   The spatial pattern may reflect the movement of herders escaping from dzud-affected counties in 

2000. In the Gobi desert, herder migration to neighboring counties in response to the previous-year 

dzud also negatively affected livestock mortality in 2001. The spatial distribution of dzud in 2002 

suggests that herders who lived along the northwest-southeast axis of severe dzud impact in 2000 and 

2001 may have migrated southwest into less affected areas of the Gobi and the western provinces, 

which may have exacerbated conditions that created the dzud of 2002. It is evident that in the event of 

a multi-annual dzud, herders mobility as a strategy of risk management plays a prominent role and has a 

clear spatial footprint.  

Temporal Evolution of Dzud Impact 

Dzud is often called an evolving disaster to highlight the delayed response of livestock mortality to 

contributing factors. The analysis shows that the contributing factors evolve on several temporal scales. 

The finest temporal scale represents intra-seasonal variations in precipitation and temperature that 

determine the type of dzud and the abrupt mortality increases in response to storm events as compared 

to gradual wasting of livestock. This temporal scale cannot be resolved because the unit of the analysis is 

annual livestock counts.  

The second temporal scale is inter-annual. The dzud episode of 2000-2003 has demonstrated that 

previous year dzud helps predict the outcome of the following year dzud. It is reflected in selective 

modification of herd composition and sub-optimal physical condition of livestock. The annual temporal 

scale of dzud becomes particularly important when herders experience two or more consecutive dzuds 

in a row. It is not absolutely known how often such a series of dzud has occurred historically outside of 

the recent multi-year dzud spell of 2000 – 2003. However, it has been said that this spell was 

unprecedented in history of Mongolia (Mongolia 2001) so this raises the question of whether this could 

be a new characteristics of a dzud phenomenon acquired after decentralization of livestock sector. The 

2001 model demonstrated that previous-year mortality can have a negative association with livestock 

mortality if a significant movement of herders happened as a result of adaptation or policy and relief 

measures taken to mitigate the impact. The ripple effect of spreading dzud is most notable in the 

Central Mongolian region, which suggests that such effect most likely occurs in the areas of high density 

of herders and livestock. Such effect is also observed in the desert region where the scarcity of good 

grazing lands and dzud forces herders to move at greater distances than in steppes and forested areas. 

Migration of herders to locations of high density of livestock may perpetuate multi-annual dzud events 

that cause enormous damages to the Mongolian society and certainly deserves a separate study.  

Finally, dramatic political and socio-economic changes that took place in the country since 1991 have 

modified the vulnerability of the Mongolian livestock sector to dzud at large (Bedunah and Schmidt 
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2004).  The time series of the analysis spans a decade between 1993 and 2003. The comparison of dzud 

events of 1993 and 2000 offers an opportunity to evaluate how changes in political and economic 

spheres altered vulnerability of the rural society to natural disasters as reflected in livestock mortality. 

The change from collective livestock management to private ownership reflects in altered contribution 

of environmental and anthropogenic factors to stock mortality induced by natural hazards. The model of 

2000 was dominated by factors related to vegetation conditions, livestock density and herd composition 

while dzud of 1993 was almost entirely driven by winter weather conditions (Fig. A3). The model of 1993 

has low explanatory power while later dzud episodes were modeled more successfully with the selected 

variables. Taking into account that livestock privatization happened in 1992 – 1993 while the State 

Emergency Fund was still in operation, the low explanatory power of factors in 1993 could be due to the 

model lacking any information on disaster preparedness of herders. By 2000, the State run 

preparedness program had ceased to exist and the variables of the analysis better represent the driving 

factors of dzud.  

Comparing descriptive statistics of variables for 1993 and 2000, we saw that winter 2000 had milder 

conditions, low NDVI  and a dramatically different distribution of livestock density. Maps of the two 

partition trees showed that white dzud in 1993 had a very different spatial footprint than drought in 

2000. The regions most impacted in 1993 were Khangai – Khuvsgul mountain ranges and the areas of 

Transbaikal region in the north, which by virtue of its geographic location and topography can develop 

the most challenging winter conditions for livestock survival. The spatial footprint of dzud in 2000 was 

organized along the northwest-southeast diagonal axis, of which Central Mongolia witnessed the highest 

mortality. It was associated with low NDVI, herd composition and high livestock density. Because Central 

Mongolia has witnessed influx of herders since privatization period, the livestock density may have 

aggravated the existing environmental conditions resulting in increased vulnerability of herders to dzud. 

Similarity of NDVI values in 1993 and 2000 suggests that the effect of low NDVI could have been less 

dramatic had the density of livestock remained the same.  

Conclusion 
The insights gained through this study reveal several characteristics of dzud phenomenon that improve 

our understanding and ability to model, predict and mitigate this natural disaster. The processes that 

govern dzud dynamics are non-stationary and vary in space due to ecological heterogeneity of the 

Mongolian landscape. The spatial analysis showed that higher losses are observed during white dzud, 

which is endemic to mountainous and northern regions, and low intensity but high frequency black dzud 

events occur in the Gobi and semi-desert regions. The driving factors that frequently show strong 

association with livestock mortality are vegetation cover, snow water equivalent, temperature, livestock 

density, and previous-year mortality. Inclusion of herd composition variables, except for the percent 

horse, did not add explanatory power to the model but rather detracted from its efficiency. An 

additional factor describing herder mobility should be incorporated into future models. Finally, on the 

decadal time scale, the analysis shows that the vulnerability of the Mongolian herders to dzud has 

increased and the contribution of different factors to dzud mortality has changed.  
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The design of the study inherently had several weaknesses related mainly to coarse temporal and spatial 

resolution of the analysis due to unavailable ground data. Field measurements at weather stations 

would be necessary to derive variables such as a drought index or indices of anomalous temperature 

and precipitation.  Some meteorological data were available from the U. S. National Climatic Data 

Center (NCDC) site, but their spatial coverage over Mongolia is sparse and temporal coverage 

inconsistent. Because reliable weather data were not available at the time of the study, information on 

grassland productivity and snow amounts relies exclusively on remote sensing datasets, in the form of 

the normalized difference vegetation index (NDVI) and estimates of snow water equivalents (SWE), 

respectively.  This approach inherits several disadvantages such as loss of information due to coarse 

spatial and temporal resolutions and future studies should develop variables based on ground 

observations of weather data augmented by remote sensing products.  

Based on the results of the study, several improvements could be introduced into future modeling 

studies. It seems reasonable to assume that equilibrium and non-equilibrium ecosystems within 

Mongolia have different dzud dynamics (Begzsuren, Ellis et al. 2004; Sternberg, Middleton et al. 2009). 

Models that incorporate both types of ecosystems into a single framework at the same spatial and 

temporal resolution have low efficiency and prone to misspecification. Normalization of explanatory 

variables against their long-term running average would make comparable such distinct ecosystem as 

the Gobi desert and forest-steppe and would improve the efficiency of modeling. The approach with 

different temporal and/or spatial scales should be also explored further.   

The non-linear and interactive relationships between snow depth and temperature could be better 

accommodated by a snow-temperature index. A simple interaction term of snow water equivalent and 

temperature in a multiplicative form was tested in GWR 1993 model and significantly improved 

explanatory power of the model, which indicates that indexation of snow and temperature should be 

explored in further research. A variable describing migration of herders also should be developed and 

included into a future predictive dzud model. An attempt to introduce such a variable based on annual 

increase and decrease of number of herder households in counties was tested on 2000-2003 datasets 

and replaced the negative associations between previous-year mortality and livestock mortality 

variables. The human population variable could be also used as a proxy for herder migration.  

The findings of the study provide valuable insights into a mechanism of dzud development which have 

far reaching implications for the national disaster management authorities, international development 

and disaster relief agencies. In order to develop effective mitigation policies, it is essential to understand 

factors that cause dzud and contribute to vulnerability of rural population. Contribution of herders 

migration in response to dzud should be better understood so that the advantage of their mobility is 

capitalized rather than become a maladaptation in a new system of decentralized livestock 

management.  
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Figure A1: Spatial distribution of variables in 1993. 

Table A1: 1993 OLS regression output. 

REGRESSION 
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION  
Data set            :   soum_stats93nonull  
Dependent Variable  :   LMRLG93      Number of Observations:  308 
Mean dependent var  :     1.50272      Number of Variables   :    3 
S.D. dependent var  :    0.981688      Degrees of Freedom    :  305    
   
R-squared           :    0.221152      F-statistic           :      43.302  
Adjusted R-squared  :    0.216045      Prob(F-statistic)     :2.79603e-017  
Sum squared residual:      231.18      Log likelihood        :     -392.85  
Sigma-square        :    0.757967      Akaike info criterion :       791.7  
S.E. of regression  :    0.870613      Schwarz criterion     :      802.89  
Sigma-square ML     :    0.750584  
S.E of regression ML:    0.866363    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     t-Statistic    Probability  
----------------------------------------------------------------------- 
    CONSTANT       1.877133       0.2514453        7.465372     0.0000000 
   SATMP93     0.04168294      0.01196027        3.485116    0.0005641 
   SASWE93     0.01638065     0.001812101        9.039592     0.0000000 
----------------------------------------------------------------------- 
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REGRESSION DIAGNOSTICS  
MULTICOLLINEARITY CONDITION NUMBER   12.52473 
 
TEST ON NORMALITY OF ERRORS 
TEST                   DF           VALUE             PROB 
Jarque-Bera            2           20.12729        0.0000426 
    
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                    DF VALUE           PROB 
Breusch-Pagan test      2            5.258427     0.0721352 
Koenker-Bassett test   2            3.971815     0.1372561 
SPECIFICATION ROBUST TEST 
TEST                    DF          VALUE            PROB 
White                    5            9.937084      0.0770377 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
FOR WEIGHT MATRIX : queen1.GAL  (row-standardized weights) 
TEST                            MI/DF       VALUE           PROB  
Moran's I (error)             0.323892      9.5045257       0.0000000 
Lagrange Multiplier (lag)     1         84.5782192       0.0000000 
Robust LM (lag)                   1          2.4227551       0.1195845 
Lagrange Multiplier (error)      1         82.8795486       0.0000000 
Robust LM (error)                 1          0.7240845       0.3948074 
Lagrange Multiplier (SARMA)      2         85.3023037       0.0000000 
========================= END OF REPORT ============================== 
 
 
Table A2: 1993 GWR model report. 

 

 
 
 

VARNAME VARIABLE DEFINITION 

Bandwidth 343910,96881300000 

 ResidualSquares 202,58677007000 

 EffectiveNumber 18,55687633290 

 Sigma 0,83661167701 

 AICc 775,45797690200 

 R2 0,31748254403 

 R2Adjusted 0,27608278847 

 Moran's Index 0.24335 

 Z Score 7.002551 

 p-value 0.00000 

 Dependent Field 0,00000000000 LMRLG93 

Explanatory Field 1,00000000000 SATMP93 

Explanatory Field 2,00000000000 SASWE93 
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Figure A2: 1993 Cross-validation results. 

 
Figure A3: Map of 1993 Regression Tree. 
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Figure B1: Spatial distribution of variables in 1996. 

 

Table B1: 1996 OLS regression output. 

REGRESSION 
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION  
Data set            : soum_stats96nonull  
Dependent Variable  :   LMRLG96     Number of Observations:  314 
Mean dependent var  :    0.445653    Number of Variables   :    6 
S.D. dependent var  :    0.877953     Degrees of Freedom    :  308    
   
R-squared           :    0.181072     F-statistic           :     13.6203  
Adjusted R-squared  :    0.167778     Prob(F-statistic)     :5.10977e-012  
Sum squared residual:     198.207     Log likelihood        :    -373.314  
Sigma-square        :    0.643528     Akaike info criterion :     758.627  
S.E. of regression  :    0.802202     Schwarz criterion     :     781.124  
Sigma-square ML     :    0.631232  
S.E of regression ML:    0.794501    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     t-Statistic    Probability  
----------------------------------------------------------------------- 
   CONSTANT       1.036109       0.2775415        3.733168     0.0002252 
   SINDVI95      0.1023565      0.04532558         2.25825     0.0246297 
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   ELEV    -0.0006124307    0.0001050841      -5.828003     0.0000000 
   CMLP95      0.8793209      0.2532806        3.471726     0.0005911 
   CTLP95     0.03099095     0.009013702        3.438205     0.0006662 
   HRSP95    -0.05546745        0.015027       -3.691186     0.0002639 
----------------------------------------------------------------------- 
   
 
REGRESSION DIAGNOSTICS  
MULTICOLLINEARITY CONDITION NUMBER   16.30604 
TEST ON NORMALITY OF ERRORS 
TEST                    DF            VALUE             PROB 
Jarque-Bera             2             5.784518         0.0554508 
    
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                    DF            VALUE             PROB 
Breusch-Pagan test      5             4.125475         0.5314959 
Koenker-Bassett test    5             3.856859         0.5702034 
SPECIFICATION ROBUST TEST 
TEST                    DF            VALUE             PROB 
White                   20             24.25621         0.2313794 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
FOR WEIGHT MATRIX : queen1.GAL  (row-standardized weights) 
TEST                            MI/DF       VALUE           PROB  
Moran's I (error)             0.175393      5.412383             0.0000000 
Lagrange Multiplier (lag)     1         25.0698663       0.0000006 
Robust LM (lag)                   1          0.5987924       0.4390392 
Lagrange Multiplier (error)      1         24.8311453       0.0000006 
Robust LM (error)                 1          0.3600714       0.5484666 
Lagrange Multiplier (SARMA)      2         25.4299377       0.0000030 
 
 
Table B2: 1996 GWR regression report. 

VARNAME VARIABLE DEFINITION 

Neighbors 182,00000000000 
 ResidualSquares 166,79458840100 
 EffectiveNumber 23,19530261780 
 Sigma 0,75733890829 
 AICc 733,38907425500 
 R2 0,31085695392 
 R2Adjusted 0,25825897806 
 Moran's I 0.186464 
 Z-score 5.412383 
 p-value 0.000000 
 Dependent Field 0,00000000000 LMRLG96 

Explanatory Field 1,00000000000 SINDVI95 

Explanatory Field 2,00000000000 ELEV 
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Explanatory Field 3,00000000000 CMLP95 

Explanatory Field 4,00000000000 CTLP95 

Explanatory Field 5,00000000000 HRSP95 

 

 

 
Figure B2: 1996 Cross-validation results. 
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Figure B3: Map of 1996 Regression Tree. 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 

Appendix C 
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Figure C1: Spatial distribution of 2000 variables. 

 

Table C1: 2000 OLS regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION  
Data set            : soum_stats00nonull  
Dependent Variable  :   LMRLG00    Number of Observations:  312 
Mean dependent var  :     1.59308    Number of Variables   :    6 
S.D. dependent var  :     1.16166    Degrees of Freedom    :  306    
   
R-squared           :    0.365411    F-statistic           :     35.2404  
Adjusted R-squared  :    0.355042    Prob(F-statistic)     : 1.9568e-028  
Sum squared residual:     267.179    Log likelihood        :    -418.516  
Sigma-square        :    0.873135    Akaike info criterion :     849.032  
S.E. of regression  :    0.934417    Schwarz criterion     :      871.49  
Sigma-square ML     :    0.856343  
S.E of regression ML:    0.925388    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     t-Statistic    Probability  
----------------------------------------------------------------------- 
CONSTANT       2.610826       0.4613509         5.65909     0.0000000 
SINDIV99    -0.4952751       0.0446629       -11.08918     0.0000000 
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SASWE00     0.01650755     0.003085461        5.350109     0.0000002 
LD99      0.02408573     0.003026766        7.957581     0.0000000 
HRSP99      0.0493197      0.02071758        2.380572     0.0178976 
GTP99     -0.02921747     0.007110266      -4.109196     0.0000510 
----------------------------------------------------------------------- 
   
 
REGRESSION DIAGNOSTICS  
MULTICOLLINEARITY CONDITION NUMBER   22.24812 
TEST ON NORMALITY OF ERRORS 
TEST                   DF           VALUE             PROB 
Jarque-Bera          2            11.48047         0.0032140 
    
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                    DF           VALUE             PROB 
Breusch-Pagan test     5            4.007609         0.5483210 
Koenker-Bassett test    5            5.073807         0.4069393 
SPECIFICATION ROBUST TEST 
TEST                    DF          VALUE             PROB 
White                   20           25.23912         0.1924355 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
FOR WEIGHT MATRIX : queen1.GAL  (row-standardized weights) 
TEST                            MI/DF       VALUE           PROB  
Moran's I (error)             0.389282     11.7330272       0.0000000 
Lagrange Multiplier (lag)        1        158.0879564       0.0000000 
Robust LM (lag)                   1         37.0890295       0.0000000 
Lagrange Multiplier (error)      1        121.1303034       0.0000000 
Robust LM (error)                 1          0.1313766       0.7170090 
Lagrange Multiplier (SARMA)      2        158.2193329       0.0000000 
 
 
Table C2: 2000 SAR regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION  
Data set            : soum_stats00nonull  
Spatial Weight      : queen1.GAL  
Dependent Variable  :   LMRLG00    Number of Observations:  312 
Mean dependent var  :     1.59308    Number of Variables   :    7 
S.D. dependent var  :     1.16166    Degrees of Freedom    :  305 
Lag coeff.   (Rho)  :     0.70853    
   
R-squared           :    0.647298    Log likelihood        :    -346.461  
Sq. Correlation     : -               Akaike info criterion :     706.922  
Sigma-square        :    0.475952    Schwarz criterion     :     733.123  
S.E of regression   :    0.689893 
    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     z-value       Probability  
----------------------------------------------------------------------- 
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W_LMRLG00     0.7085297      0.04537617        15.61458     0.0000000 
    CONSTANT      0.9635848        0.357362        2.696383     0.0070098 
    HRSP99     0.02087948      0.01543566        1.352678     0.1761587 
    GTP99    -0.01391931     0.005327085      -2.612932     0.0089770 
    LD99     0.00748316     0.002330431        3.211062     0.0013226 
    SASWE00    0.006438602     0.002341131         2.75021     0.0059558 
    SINDVI99     -0.1898349      0.03758602       -5.050678     0.0000004 
----------------------------------------------------------------------- 
   
REGRESSION DIAGNOSTICS  
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                                      DF      VALUE          PROB  
Breusch-Pagan test              5        2.972793      0.7041806 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : queen1.GAL  
TEST                                      DF      VALUE          PROB  
Likelihood Ratio Test           1          144.11     0.0000000 

   
REGRESSION DIAGNOSTICS OF MODEL PERFORMANCE 

W > LR > LM ≠ 243.36 > 144.11 > 158.08 

 

 

Figure C2: 2000 Cross-validation results. 
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Figure C3: Map of 2000 Regression Tree. 
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Appendix D 
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Figure D1: Spatial distribution of variables in 2001. 

 

Table D1: 2001 OLS regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION  
Data set            : soum_stats01nonull  
Dependent Variable  :   LMRLG01    Number of Observations:  312 
Mean dependent var  :     2.30081    Number of Variables   :    6 
S.D. dependent var  :     1.06507    Degrees of Freedom    :  306    
   
R-squared           :    0.269098    F-statistic           :     22.5321  
Adjusted R-squared  :    0.257155    Prob(F-statistic)     :3.05819e-019  
Sum squared residual:     258.686    Log likelihood        :    -413.476  
Sigma-square        :     0.84538    Akaike info criterion :     838.953  
S.E. of regression  :    0.919445    Schwarz criterion     :     861.411  
Sigma-square ML     :    0.829122  
S.E of regression ML:    0.910562    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error    t-Statistic    Probability  
----------------------------------------------------------------------- 
    CONSTANT       1.469122       0.2050858        7.163448     0.0000000 
    SASWE01    0.006592888     0.002022975        3.259007     0.0012439 
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    ELEV     0.000503184    0.0001151315      4.370515     0.0000170 
    LD00     -0.0258498     0.006397874      -4.040374     0.0000676 
    PRLMR00    -0.03012813     0.005206715       -5.786399     0.0000000 
    HRSP00      0.3486239      0.05222519        6.675397     0.0000000 
----------------------------------------------------------------------- 
   
 
REGRESSION DIAGNOSTICS  
MULTICOLLINEARITY CONDITION NUMBER   11.06256 
TEST ON NORMALITY OF ERRORS 
TEST                   DF           VALUE             PROB 
Jarque-Bera           2            44.50445         0.0000000 
    
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                    DF           VALUE             PROB 
Breusch-Pagan test      5            87.91293         0.0000000 
Koenker-Bassett test   5             51.5986         0.0000000 
SPECIFICATION ROBUST TEST 
TEST                    DF           VALUE             PROB 
White                   20            75.23035         0.0000000 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
FOR WEIGHT MATRIX : queen1.GAL  (row-standardized weights) 
TEST                            MI/DF       VALUE           PROB  
Moran's I (error)             0.447757     13.4592541       0.0000000 
Lagrange Multiplier (lag)        1        154.8145861       0.0000000 
Robust LM (lag)                   1          2.2328402       0.1351053 
Lagrange Multiplier (error)      1        160.2543865       0.0000000 
Robust LM (error)                 1          7.6726406       0.0056064 
Lagrange Multiplier (SARMA)      2        162.4872268       0.0000000 
 
 
 
Table D2: 2001 SAR regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION  
Data set            : soum_stats01nonull  
Spatial Weight      : queen1.GAL  
Dependent Variable  :   LMRLG01    Number of Observations:  312 
Mean dependent var  :    2.300813   Number of Variables   :    6 
S.D. dependent var  :    1.065074    Degree of Freedom     :  306 
Lag coeff. (Lambda) :    0.755429    
   
R-squared           :    0.593334    R-squared (BUSE)      : -   
Sq. Correlation     : -               Log likelihood        : -345.177494  
Sigma-square        :    0.461314    Akaike info criterion :     702.355  
S.E of regression   :    0.679201    Schwarz criterion     :  724.813007  
    
----------------------------------------------------------------------- 
Variable     Coefficient      Std.Error     z-value       Probability  
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----------------------------------------------------------------------- 
 CONSTANT      1.834495        0.363563        5.045879     0.0000005 
 HRSP00      0.268847       0.0689442        3.899487     0.0000964 
 LD00     -0.01989176      0.006761697       -2.941829     0.0032629 
 PRLMR00    -0.02004482      0.00698543       -2.869518     0.0041111 
 ELEV     0.0001900175      0.0001985174       0.957183     0.3384749 
 SASWE01    0.008960859      0.003309124        2.707925     0.0067706 
 LAMBDA     0.7554291      0.04339626         17.4077     0.0000000 
----------------------------------------------------------------------- 
   
REGRESSION DIAGNOSTICS  
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                                       DF      VALUE          PROB  
Breusch-Pagan test                        5        121.0037      0.0000000 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : queen1.GAL  
TEST                                       DF      VALUE          PROB  
Likelihood Ratio Test                    1        136.5977      0.0000000 
 
REGRESSION DIAGNOSTICS OF MODEL PERFORMANCE 

W > LR > LM ≠ 286 > 136 > 160 

 

 

 

Figure D2: 2001 Cross-validation results. 
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Figure D3: Map of 2001 Regression Tree. 
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Appendix E

 
 



 

72 

 

Figure E1: Spatial distribution of variables in 2002. 

 

Table E1: 2002 OLS regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION  
Data set            : soum_stats02nonull  
Dependent Variable  :   LMRLG02    Number of Observations:  312 
Mean dependent var  :     1.24973    Number of Variables   :    8 
S.D. dependent var  :     1.54398    Degrees of Freedom    :  304    
   
R-squared           :    0.473450    F-statistic           :     39.0491  
Adjusted R-squared  :    0.461326    Prob(F-statistic)     :6.31433e-039  
Sum squared residual:     391.634    Log likelihood        :    -478.171  
Sigma-square        :     1.28827    Akaike info criterion :     972.343  
S.E. of regression  :     1.13502    Schwarz criterion     :     1002.29  
Sigma-square ML     :     1.25524  
S.E of regression ML:     1.12037    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     t-Statistic    Probability  
----------------------------------------------------------------------- 
    CONSTANT       3.473925       0.4555143        7.626381     0.0000000 
    SINDVI01     -0.2813804      0.04248393        -6.62322     0.0000000 
    SASWE02      0.0207578     0.005265695        3.942082     0.0001003 
    ELEV     0.001076137    0.0001757884       6.121773     0.0000000 
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    LD01     0.01344686     0.005056446         2.65935     0.0082440 
    PRLMR01    -0.02016831     0.005565273       -3.623957     0.0003400 
    SATMP02     0.07897741      0.02732733        2.890052     0.0041290 
    SHPP01    -0.03680935     0.007416354       -4.963268     0.0000012 
----------------------------------------------------------------------- 
REGRESSION DIAGNOSTICS  
MULTICOLLINEARITY CONDITION NUMBER   28.76178 
TEST ON NORMALITY OF ERRORS 
TEST                    DF           VALUE             PROB 
Jarque-Bera             2            105.9773         0.0000000 
    
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                    DF           VALUE             PROB 
Breusch-Pagan test      7            35.86226         0.0000077 
Koenker-Bassett test    7            17.61723         0.0138217 
SPECIFICATION ROBUST TEST 
TEST                    DF           VALUE             PROB 
White                   35            61.33916         0.0038556 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
FOR WEIGHT MATRIX : queen1.GAL  (row-standardized weights) 
TEST                            MI/DF       VALUE           PROB  
Moran's I (error)             0.438804     13.4278084       0.0000000 
Lagrange Multiplier (lag)        1        177.2798852       0.0000000 
Robust LM (lag)                   1         23.3734473       0.0000013 
Lagrange Multiplier (error)      1        153.9096684       0.0000000 
Robust LM (error)                 1          0.0032306       0.9546742 
Lagrange Multiplier (SARMA)      2        177.2831157      0.0000000 
 
 
Table E2: 2002 SAR regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION  
Data set            : soum_stats02nonull  
Spatial Weight      : queen1.GAL  
Dependent Variable  :   LMRLG02    Number of Observations:  312 
Mean dependent var  :     1.24973    Number of Variables   :    9 
S.D. dependent var  :     1.54398    Degrees of Freedom    :  303 
Lag coeff.   (Rho)  :     0.76022    
   
R-squared           :    0.730508    Log likelihood        :    -397.242  
Sq. Correlation     : -               Akaike info criterion :     812.484  
Sigma-square        :     0.64244    Schwarz criterion     :     846.171  
S.E of regression   :    0.801523 
    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     z-value       Probability  
----------------------------------------------------------------------- 
 W_LMRLG02      0.7602205      0.04108348        18.50429     0.0000000 
    CONSTANT       1.017795       0.3383922        3.007738     0.0026321 
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    SINDVI01    -0.09029516       0.0327064        -2.76078     0.0057665 
    SASWE02    0.004800282     0.003782085        1.269216     0.2043643 
    ELEV    0.0001831791    0.0001312978      1.395142     0.1629732 
    LD01    0.006937734     0.003591105        1.931922     0.0533691 
    PRLMR01   -0.005273411     0.003955252       -1.333268     0.1824440 
    SATMP02     0.00751601      0.01942984       0.3868282     0.6988835 
    SHPR01      -0.016284     0.005344193      -3.047046     0.0023112 
----------------------------------------------------------------------- 
   
REGRESSION DIAGNOSTICS  
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                                       DF      VALUE          PROB  
Breusch-Pagan test                        7        12.26246      0.0922513 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : queen1.GAL  
TEST                                       DF      VALUE          PROB  
Likelihood Ratio Test                     1        161.8581      0.0000000 

 

REGRESSION DIAGNOSTICS OF MODEL PERFORMANCE 

W > LR > LM ≠ 342 > 162 > 177 

 

 

Figure E2: 2002 Cross-validation results. 
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Figure E3: Map of 2002 Regression Tree. 
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Appendix F
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Figure F1: Spatial distribution of variables in 2003. 

 

Table F1: 2003 OLS regression output. 

REGRESSION 
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION  
Data set            : soum_stats03nonull  
Dependent Variable  :   LMRLG03    Number of Observations:  309 
Mean dependent var  :    0.935701   Number of Variables   :    9 
S.D. dependent var  :     1.31962    Degrees of Freedom    :  300    
   
R-squared           :    0.460923    F-statistic           :     32.0634  
Adjusted R-squared  :    0.446548    Prob(F-statistic)     :3.28085e-036  
Sum squared residual:     290.074    Log likelihood        :    -428.687  
Sigma-square        :    0.966912    Akaike info criterion :     875.373  
S.E. of regression  :    0.983317    Schwarz criterion     :     908.973  
Sigma-square ML     :    0.938749  
S.E of regression ML:    0.968891    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     t-Statistic    Probability  
----------------------------------------------------------------------- 
    CONSTANT      0.6380564       0.4334955        1.471887     0.1421000 
    SINDVI02     -0.2325406      0.06379814       -3.644943     0.0003151 
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    SASWE03     0.03198608     0.003155341        10.13712     0.0000000 
    ELEV    0.0005119659    0.0001466316       3.491513     0.0005525 
   PRLMR02    -0.01990773     0.004629433       -4.300252     0.0000231 
   SATMP03     0.0636754       0.0190734        3.338439     0.0009488 
   CMLP02     0.09796354      0.02877931        3.403956     0.0007545 
   CTLP02      0.1098727      0.04810909        2.283824     0.0230805 
   HRSP02      0.2918961      0.05690484        5.129547     0.0000005 
----------------------------------------------------------------------- 
REGRESSION DIAGNOSTICS  
MULTICOLLINEARITY CONDITION NUMBER   25.15646 
TEST ON NORMALITY OF ERRORS 
TEST                    DF           VALUE             PROB 
Jarque-Bera             2            5.309515         0.0703159 
    
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                    DF           VALUE             PROB 
Breusch-Pagan test      8            21.54847         0.0058247 
Koenker-Bassett test    8            19.11405         0.0142615 
SPECIFICATION ROBUST TEST 
TEST                    DF          VALUE             PROB 
White                   44           70.46251         0.0068576    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
FOR WEIGHT MATRIX : queen1.GAL  (row-standardized weights) 
TEST                            MI/DF       VALUE           PROB  
Moran's I (error)             0.318036      9.8463162       0.0000000 
Lagrange Multiplier (lag)        1        128.8123280       0.0000000 
Robust LM (lag)                   1         55.6020300       0.0000000 
Lagrange Multiplier (error)      1         79.4469668       0.0000000 
Robust LM (error)                 1          6.2366688       0.0125132 
Lagrange Multiplier (SARMA)      2        135.0489968       0.0000000 
 
 
Table F2: 2003 SAR regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION  
Data set            : soum_stats03nonull  
Spatial Weight      : queen1.GAL  
Dependent Variable  :   LMRLG03    Number of Observations:  309 
Mean dependent var  :    0.935701   Number of Variables   :   10 
S.D. dependent var  :     1.31962    Degrees of Freedom    :  299 
Lag coeff.   (Rho)  :    0.634295    
   
R-squared           :    0.656980    Log likelihood        :    -373.669  
Sq. Correlation     : -               Akaike info criterion :     767.339  
Sigma-square        :    0.597336    Schwarz criterion     :     804.672  
S.E of regression   :    0.772875 
    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     z-value       Probability  
----------------------------------------------------------------------- 
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 W_LMRLG03      0.6342946      0.05093873        12.45211     0.0000000 
    CONSTANT       0.213158       0.3414079       0.6243498     0.5323978 
     SINDVI02      -0.165088      0.05053967       -3.266504     0.0010890 
     SASWE03     0.01676771     0.002692867        6.226713     0.0000000 
     ELEV    0.0003413744    0.0001161501      2.93908     0.0032920 
     PRLMR02    -0.01067302     0.003702008       -2.883035     0.0039388 
     SATMP03     0.03057958      0.01504391        2.032688     0.0420839 
     CMLP02     0.03829068      0.02269187        1.687418     0.0915229 
     CTLP02     0.06630774      0.03786562        1.751133     0.0799229 
     HRSP02      0.1182991      0.04592109        2.576138     0.0099911 
----------------------------------------------------------------------- 
   
REGRESSION DIAGNOSTICS  
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                                       DF      VALUE          PROB  
Breusch-Pagan test                        8        9.414233      0.3085650 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : queen1.GAL  
TEST                                       DF      VALUE          PROB  
Likelihood Ratio Test                     1        110.0345      0.0000000 
 
REGRESSION DIAGNOSTICS OF MODEL PERFORMANCE 

W > LR > LM ≠ 156 > 110 > 128 

 

 

 

Figure F2: 2003 Cross-validation results. 
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Figure F3: Map of 2003 Regression Tree. 
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Appendix G

 
 



 

82 

 

Figure G1: Spatial distribution of variables in 2004. 

 

Table G1: 2004 OLS regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION  
Data set            : soum_stats04nonull  
Dependent Variable  :   LMRLG04    Number of Observations:  312 
Mean dependent var  :   -0.459037   Number of Variables   :    4 
S.D. dependent var  :     1.22007    Degrees of Freedom    :  308    
   
R-squared           :    0.248959    F-statistic           :     34.0325  
Adjusted R-squared  :    0.241644    Prob(F-statistic)     :5.03162e-019  
Sum squared residual:      348.81    Log likelihood        :    -460.107  
Sigma-square        :      1.1325    Akaike info criterion :     928.214  
S.E. of regression  :     1.06419    Schwarz criterion     :     943.186  
Sigma-square ML     :     1.11798  
S.E of regression ML:     1.05735    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     t-Statistic    Probability  
----------------------------------------------------------------------- 
    CONSTANT       -1.40245       0.1344956       -10.42748     0.0000000 
    PRLMR03     0.03839838      0.00883064        4.348313     0.0000187 
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    CTLP03      0.0542125     0.009609314        5.641661     0.0000000 
    HRSP03     0.03973234      0.01864533        2.130954     0.0338848 
----------------------------------------------------------------------- 
   
 
REGRESSION DIAGNOSTICS  
MULTICOLLINEARITY CONDITION NUMBER   5.937628 
TEST ON NORMALITY OF ERRORS 
TEST                    DF           VALUE             PROB 
Jarque-Bera             2            150.0558         0.0000000 
    
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                    DF           VALUE             PROB 
Breusch-Pagan test      3            2.656981         0.4475875 
Koenker-Bassett test    3            1.091985         0.7790092 
SPECIFICATION ROBUST TEST 
TEST                    DF           VALUE             PROB 
White                    9             13.7927         0.1298927 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
FOR WEIGHT MATRIX : queen1.GAL  (row-standardized weights) 
TEST                            MI/DF       VALUE           PROB  
Moran's I (error)             0.160726      4.9257132       0.0000008 
Lagrange Multiplier (lag)        1         24.6073351       0.0000007 
Robust LM (lag)                   1          4.3023214       0.0380604 
Lagrange Multiplier (error)      1         20.6489016       0.0000055 
Robust LM (error)                 1          0.3438879       0.5575936 
Lagrange Multiplier (SARMA)      2         24.9512230       0.0000038 
========================= END OF REPORT ============================== 
   
 
Table G2: 2004 SAR regression output. 
 

REGRESSION 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION  
Data set            : soum_stats04nonull  
Spatial Weight      : queen1.GAL  
Dependent Variable  :   LMRLG04    Number of Observations:  312 
Mean dependent var  :   -0.459037   Number of Variables   :    5 
S.D. dependent var  :     1.22007    Degrees of Freedom    :  307 
Lag coeff.   (Rho)  :    0.367353    
   
R-squared           :    0.320096    Log likelihood        :    -448.922  
Sq. Correlation     : -               Akaike info criterion :     907.844  
Sigma-square        :     1.01209    Schwarz criterion     :     926.559  
S.E of regression   :     1.00603 
    
----------------------------------------------------------------------- 
    Variable     Coefficient      Std.Error     z-value       Probability  
----------------------------------------------------------------------- 
 W_LMRLG04      0.3673527      0.07166466        5.125995     0.0000003 
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    CONSTANT     -0.9391233       0.1558565       -6.025562     0.0000000 
    CTLP03     0.04039193     0.009477389        4.261925     0.0000203 
    HRSP03     0.02347182      0.01792203        1.309663     0.1903101 
    PRLMR03     0.02830944     0.008555936        3.308749     0.0009373 
----------------------------------------------------------------------- 
   
REGRESSION DIAGNOSTICS  
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                                       DF      VALUE          PROB  
Breusch-Pagan test                        3        2.999808      0.3916548 
    
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : queen1.GAL  
TEST                                       DF      VALUE          PROB  
Likelihood Ratio Test                     1        22.37001      0.0000022 
 
REGRESSION DIAGNOSTICS OF MODEL PERFORMANCE 

W > LR > LM ≠ 26 > 22 > 25 

 

 

Figure G2: 2004 Cross-validation results. 
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Figure G3: Map of 2004 Regression Tree. 
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