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Abstract. When two atoms interact in the presence of an anharmonic potential,
such as an optical lattice, the center of mass motion cannot be separated from the
relative motion. In addition to generating a confinement-induced resonance (or
shifting the position of an existing Feshbach resonance), the external potential
changes the resonance picture qualitatively by introducing new resonances
where molecular excited center of mass states cross the scattering threshold.
We demonstrate the existence of these resonances, give their quantitative
characterization in an optical superlattice and propose an experimental scheme
to detect them through controlled sweeping of the magnetic field.
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1. Introduction

In recent years there has been much progress in the study of ultracold atoms in optical lattices,
which can cleanly emulate important models in condensed matter, hold promise for quantum
computing schemes and offer the prospect of observing many interesting new phenomena [1].
The versatility of this line of research is due in no small part to the control of the atomic
interactions afforded by tuning an external magnetic field near a Feshbach resonance [2]. In
addition to a magnetic field, a confining potential can be used to tune the scattering length
via a Feshbach-type mechanism, typically referred to as a confinement-induced resonance [3]
or a trap-induced shape resonance [4], depending on the trap configuration. The trap-induced
resonance is basically caused by a shift of the free-space Feshbach resonance point by the
confining potential [5]. In an optical lattice, the possibility of decay of atomic pairs due to
anharmonic coupling to molecules in an excited center-of-mass (c.m.) state has previously been
discussed in [6]. More recently, the possibility of a controlled transfer of an atomic pair to a
molecule in an excited c.m. state was discussed in [7]. The anharmonicity of the optical lattice
potential has also been recognized as important in obtaining quantitatively accurate predictions
for the shift of the free-space Feshbach resonance position, binding energy, etc [8].

In this paper we point out a new effect whereby anharmonic confinement, e.g. from an
optical lattice, not only shifts the free-space resonance point, but also induces a series of
additional scattering resonances. (A similar effect occurs in mixed dimensions in the absence of
anharmonicity [9].) Thus, anharmonicity may give rise not only to population transfer between
atom pairs and molecules in different c.m. states, as mentioned to various extents in previous
works [6]–[8], but also to a strong modification of the effective atom–atom interaction in the
vicinity of the induced scattering resonances. In order to use the optical lattice system as
a quantum emulator, it is important to have a full understanding of the dependence of the
interaction on the experimental parameters. Even such a basic item as the form of the effective
many-body lattice Hamiltonian [11] will be affected in the vicinity of an induced resonance (for
a detailed treatment, see [10]). The presence of the additional resonances is then an important
consideration for experiment, as well as a novel tool for tuning the interaction utilizing a
resonance between atoms and excited c.m. molecules. Measuring population transfer between
c.m. states can provide a useful means to look for the resonances. Below, we characterize
these anharmonicity-induced resonances in an optical superlattice and propose an experimental
scheme to detect their consequences.

To understand the basic mechanism of anharmonicity-induced resonances, let us first
compare it to the free-space Feshbach resonance. The free-space Feshbach resonance is caused
by coupling between the scattering state of the atomic pair and a highly excited molecular level
(the Feshbach molecule), as depicted in figure 1(a). When the energy of the Feshbach molecule,
tuned by the external magnetic field, crosses the lowest scattering state, a resonance in the
scattering length is signaled [2]. In free space, c.m. and relative motions are decoupled during
the atomic scattering, and the c.m. momentum forms a continuum that is not altered by the
scattering process.

In the presence of an optical lattice, the continuum spectrum for the atomic and the
molecular c.m. motion both split into a series of energy bands. We consider scattering of
the atoms in the lowest bands, and only this lowest atomic band is shown in figure 1(b).
However, even for this lowest-band atomic scattering, the excited bands for the c.m. motion
of the Feshbach molecule still play a significant role due to the anharmonicity of the optical
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Figure 1. Sketches of the Feshbach type of resonances (a) in free space,
(b) in an optical lattice with additional anharmonicity-induced resonances and
(c) in a confining potential where the resonances are signaled by the avoided
level crossings.

lattice potential. In a harmonic potential, the c.m. motion of two colliding atoms is separated
from their relative motion, and thus remains in the lowest band during the collision and does
not couple to the Feshbach molecule in the excited bands. However, the anharmonicity of the
potential mixes the c.m. and relative motions, and the lowest band scattering state of the atoms
is coupled to the Feshbach molecule in each band, as depicted in figure 1(b). As one can see
from this figure, all the bands for the Feshbach molecule, no matter how excited, eventually
cross the atomic scattering threshold as the magnetic field is lowered. This will lead to many
resonances for the atomic scattering. In practice, the anharmonic coupling between a Feshbach
molecule in the excited band and the atomic pair state in the lowest band will decrease as the
band becomes more excited, and the resonances become progressively narrower as the magnetic
field is lowered, so only the first few of these resonances are broad enough to be experimentally
observable.

In order to quantitatively characterize the anharmonicity-induced resonances, we consider
the atoms in an optical superlattice potential. In an optical lattice, direct calculation of the
scattering length between two atoms is challenging as one cannot separate the c.m. and
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Figure 2. (a) Double-well potential (solid) for a single atom along z and an
example of a corresponding superlattice potential (dashed). The horizontal lines
are the lowest four single-atom energy levels of the double well. (b) Contour plot
of the locally isotropic 3D double well potential.

the relative motion, and solving an equation with all six degrees of freedom is numerically
demanding. Instead, here we consider the atoms in a deep superlattice potential [12], which
separates the periodic optical lattice into a series of double-well potentials. This has several
motivations. Firstly, by adding a confining trap, as illustrated in figure 1(c), the resonance in
the continuum scattering spectrum caused by the emergence of a new Feshbach molecular level
becomes an avoided level crossing in the discrete spectrum of the trapped atoms. By calculating
the width and position of the avoided level crossing, we can approximately characterize the
resonance properties for the atomic scattering. Numerically, it is more convenient to deal
with the discrete spectrum in a trap that allows the application of the specific calculation
techniques presented below. Secondly, the optical superlattice potential has been realized in
experiments [12], which allows direct detection of the consequences of the anharmonicity-
induced resonances in this kind of trap. We will propose an experimental scheme to test the
quantitative predictions from the anharmonicity-induced resonances in a superlattice. Thirdly,
the anharmonicity-induced resonances also affect the effective many-body Hamiltonian for
strongly interacting atoms in an optical lattice [10, 11]. A natural step to derive such a
Hamiltonian is to first consider the effective interaction for atoms in double-well potentials
realized with a deep optical superlattice.

2. Methods

We assume that the superlattice potential is along the axial direction z that separates the system
into a series of double wells [12]. We consider two atoms of mass m in each double-well
potential V (z), approximated by Taylor expanding V0 cos2(kLz) to 12th order in z. Here V0 sets
the barrier depth and kL sets the distance between wells and is related to the laser wavevector.
Although it is not important for our purposes to exactly fit a particular form of superlattice
potential, if one takes a superlattice of the form cos2(kz) + c sin2(kz/2), then one should choose
kL = πk/(4 arccos

√
1/2 + c/8), as shown in figure 2. (We express energy in units of a ‘recoil

energy’, ER = h̄2k2
L/2m, and plot the case V0 = 6ER.) In any case, this potential should be

quite sufficient to capture the essential physics in the limit of independent double wells. For
ease of calculation, the lattice wells in the transverse directions are approximated by harmonic
potentials, with the frequency ω chosen such that the potential is locally isotropic at the bottom
of each well.
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Due to the harmonicity of the transverse trap, the c.m. motion in the transverse direction
separates out and is thus neglected in the rest of the discussion. Also, due to the axial symmetry
of the trap, the azimuthal angular dependence of the relative motion separates out. However,
along the axis of the double well, the c.m. motion is not separable from the relative motion. The
two-atom system then has three relevant coordinates: the relative coordinates z and ρ, along
the axial and transverse directions, respectively, and Z , the axial c.m. coordinate. In terms of
these coordinates, the external potential with barrier depth V0 is V (ρ, z, Z) = V (ρ) + V (z, Z),
where

V (ρ) = V0k2
Lρ

2/2,

V (z, Z) = V0

6∑
n=0

±

(−4)n 0 (1 − 2n)

0 (1 − 4n) 0 (1 + 4n)
k2n

L

(
Z ±

z

2

)2n
,

with 0(x) being the Euler gamma function, and our summation over signs denotes that for each
value of n one must also add the two terms corresponding to the upper and lower signs.

The atoms are interacting via a short-range potential U (r) characterized by its s-wave
scattering length as. The exact form of the interaction is irrelevant as long as its effective range
is much smaller than the average interatomic distance and the trap length scale. For a broad
s-wave Feshbach resonance, the use of a zero-range pseudopotential is typically justified4, as has
also been confirmed experimentally [14]. Numerically, it is easier to use a finite-range attractive
Gaussian interaction U (r) = −U0 exp(−r 2/r 2

0 ), where we typically take r0 = 0.05
√

h̄/mω.
Finite-range effects should be negligible for such small values of r0, and we have verified this by
repeating our calculations with r0 = 0.1

√
h̄/mω. The free-space scattering length is varied by

adjusting the strength of the interaction, U0. We have used values of U0 such that the potential
supports either zero bound states (for negative scattering length) or one bound state (for positive
scattering length). The scattering length goes through resonance when the lowest eigenstate of
the interaction potential passes from being unbound to bound.

Adopting units such that kL = 1 and ER = h̄2k2
L/2m = 1, the Hamiltonian may be written

as

H = −
2

ρ

∂

∂ρ
ρ

∂

∂ρ
− 2

∂2

∂z2
−

1

2

∂

∂ Z 2
+ 2

m2
`

ρ2
+ V (ρ, z, Z) − U0 e−(z2+ρ2)/r2

0 , (1)

where m` is the relative angular momentum, which is a good quantum number due to axial
symmetry. In the following, we will consider only m` = 0, since in the limit as r0 goes to zero,
the interaction does not affect states with m` 6= 0.

We find the low-lying states of the system using a stochastic variational method [15]. In
this approach, the variational wavefunction takes the form

9(ρ, z, Z) =

N∑
i

αi exp
(
−ρ2/a2

i − z2/b2
i − Z 2/c2

i

)
, (2)

where α is a linear variational parameter, {a, b, c} are nonlinear variational parameters that
define the basis elements and N is the size of the basis set. The nonlinear parameters are
selected from stochastically generated pools of candidates to minimize the variational energy

4 See e.g. [13] for a comparison of zero-range pseudopotential results versus realistic numerical calculations in a
harmonic trap.
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〈9|H |9〉/〈9|9〉. The basic algorithm is as follows: starting with a set of N − 1 basis states,

1. a pool of (in our calculations) 25 new basis states is randomly generated, each defined by
a given value of {ai , bi , ci};

2. for each of the 25 possible N -dimensional basis sets formed by adding one basis from the
candidate pool, the energy is minimized with respect to α; and

3. the new basis set that yields the lowest energy is kept and the previous steps are repeated
until the basis size, N , increases to the desired number.

Once every few iterations, the existing basis set is optimized by the following refining
process: starting with a set of N basis states and n = 1,

(a) a pool of 25 replacement basis states is randomly generated, each defined by a given value
of {an, bn, cn};

(b) for each of the 25 possible N -dimensional basis sets formed by replacing the nth old basis
state with a new one from the candidate pool, the energy is minimized with respect to α;

(c) if the lowest of these 25 energies is lower than the current variational energy, the nth old
basis state is replaced by the new optimal one and the previous steps are repeated for
n = 1, . . . , N .

We typically achieve fairly good convergence for N ∼ 300. Although in principle the
nonlinear basis optimization must be performed for each value of as, actually the basis set does
not change too much as one sweeps across resonance except to include narrower and narrower
Gaussians for positive as where deeply bound molecules form. Apart from deeply bound states,
the change in the wavefunction is mainly due to changing the expansion coefficients, α. To
save computational time, then, we performed the nonlinear basis optimization for four different
values of as ranging from positive to negative, joined the four optimized basis sets, and simply
minimized the energy with respect to α using the resultant basis set of about 1200 elements for
all values of as.

3. Results

3.1. Spectrum

In figure 3, we show the energy spectrum of two particles interacting near a free-space Feshbach
resonance (1/kLas = 0) in the double-well potential. For clarity, we have omitted the levels
corresponding to wavefunctions of odd parity in z or Z (which have no contribution to the
anharmonicity-induced resonances) and plunging levels for −1/kLas < −10. We have explicitly
labeled the lowest few states for later reference. To understand figure 3, it is useful to use
the language of the two-channel picture of atom pairs coupled to molecules, as in figure 1.
Without coupling, there are plunging molecular levels crossing flat (i.e. noninteracting) atom
pair levels, as depicted by the dashed lines in figure 1(c). When one turns on atom–molecule
coupling only between molecules and atoms with the same c.m. motion, the crossings between
the lowest plunging molecular level and the flat atomic levels become avoided crossings and the
spectrum is similar to the well-known results for a harmonic trap [16]. The atoms and the lowest
c.m. molecules hybridize, such that as the inverse scattering length is adiabatically swept from
negative values to positive values, the lowest atomic level evolves into the lowest molecular
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Figure 3. (a) Spectrum of two strongly interacting atoms in a three-dimensional
double-well potential with V0 = 6ER. Only the first few plunging levels are
shown. (b) Close-up of the strongly interacting region. The first few states are
explicitly labeled for reference.

level and a given excited atomic level will evolve into the next lowest atomic level, sweeping
out a sigmoidal path. (For a double well, the lowest two atomic levels form a closely spaced
doublet; hence in the presence of coupling, the lowest sigmoidal level is essentially flat, as in
figure 3(a). Higher-lying doublets behave likewise.)

If we take anharmonicity into account by also allowing coupling between the atoms and
excited c.m. molecules, the crossings between the higher plunging molecular levels and the
flat atomic levels also become narrow avoided crossings. These signal the presence of a rich
set of induced resonances. The resonances are weak relative to the free-space resonance and
become progressively weaker away from 1/kLas = 0, so that only the first few are observable.
Diabatically, then, figure 3 displays three kinds of curves: plunging levels corresponding to
tightly bound molecules, flat levels corresponding to atoms in separate wells and sigmoidal
levels corresponding to atoms with overlapping wavefunctions such that they interact while
maintaining a nonvanishing pair size unlike the tightly bound molecules. Note that the many
plunging molecular levels, of which we have shown only the first few, are associated with the
various states of the trap, as sketched in figure 1(c). They are motionally excited c.m. states, not
internally excited states of the interaction potential. Also note that for an optical lattice, one will
obtain a similar spectrum except that the discrete levels of the double well shown in figure 3
(analogous to figure 1(c)) will broaden into bands (analogous to figure 1(b)).

3.2. Avoided crossing data

To characterize the anharmonicity-induced resonance, we estimate the time required to
adiabatically sweep across the avoided level crossing, transferring population between atomic
and molecular states. In the Landau–Zener approximation [17], the probability of an adiabatic
transfer at sweep rate ∂ B/∂t = v is Pad = 1 − exp(−vLZ/v), where the Landau–Zener parameter
vLZ = π12/2h̄|∂1/∂ B|; 1 is the minimum energy gap between the two levels in question, and
∂1/∂ B is the rate at which the energy gap changes with the magnetic field away from the
avoided crossing. The energy splitting 1 for the avoided level crossing should be proportional
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Table 1. Anharmonicity-induced avoided level crossing data for 6Li (40K) atoms
at V0 = 6ER. These are the avoided crossings near E = 9.3ER shown in figure 3.

−1/kLas 1/h (kHz) tmin (µs) vLZ (G s−1)

6Li 0.2 8 40 2 × 106

−0.9 8 70 3 × 105

−1.4 5 100 6 × 104

−1.9 1 200 2 × 103

−2.5 0.3 1 × 103 40
40K 0.2 1 600 800

−0.9 1 600 400
−1.4 0.8 1 × 103 100
−1.9 0.2 2 × 103 6
−2.5 0.05 1 × 104 0.1
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Figure 4. (a) Energy gap and (b) Landau–Zener parameter for the first four
avoided crossings versus well depth for 40K atoms. From the top to the bottom,
the curves correspond to the avoided crossings shown in figure 3(b) at E = 9.3ER

and −1/kLas = 0.2, −0.9, −1.4 and −1.9, respectively.

to the width of the corresponding anharmonicity-induced resonance in a periodic optical lattice.
This parameter 1 is listed in table 1 for the various avoided crossings between excited molecular
states and the lowest atomic level (near E = 9.3ER) for 6Li or 40K atoms. The numbers
quoted are of course only a rough guide to what may be expected in experiment and are not
intended to be quantitatively precise—recall that the double-well potential we have taken is
only an approximation to whatever form the actual potential may take. To connect our results
to experiment, we assume that the scattering length is related to the magnetic field via the usual
relation as = abg[1 − W/(B − B0)], where abg is the background scattering length, W is the
resonance width and B0 is the resonance point. We take kL ∼ 2π/1 µm and consider 6Li (40K)
near the free-space Feshbach resonance at 834 G [18] (202 G [19]). In table 1, we have also
listed an estimate of the minimum time, tmin, required to ramp across the avoided crossing at the
critical rate, vLZ. If the time available in the experiment to perform the ramp is of the order of
a few milliseconds, appreciable adiabatic transfer is feasible across the first five (four) avoided
crossings for 6Li (40K) atoms.

We have performed the same kind of calculations for several lattice depths. In figure 4,
we show how the energy splitting 1 and the Landau–Zener parameter vLZ for the first few
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Figure 5. Final population distribution versus ramp speed of the magnetic field
(a) from state 6 at −1/kLas = −2 to states 2–7 at −1/kLas = 2 or (b) from state 2
at −1/kLas = 2 to states 2–6 at −1/kLas = −2. Both plots are for 40K atoms
with V0 = 6ER. In (b), the probability of sweeping into state 5 at −1/kLas = −2
is essentially zero at any ramp speed.

resonances listed in table 1 change as V0 is varied for 40K. Generally, the energy splitting for
the avoided level crossing decreases for deeper wells, as one would expect due to suppression
of the anharmonicity in a deep lattice (the harmonic approximation becomes better for a deep
lattice well). For very shallow wells, however the potential apparently cannot couple the higher
c.m. states of Feshbach molecules with the lowest atomic state as efficiently, and the energy
splitting 1 actually increases with lattice depth at first for small V0. However, for very excited
c.m. states (corresponding, e.g., to the bottom curve in figure 4), the weak coupling with the
lowest atomic state evidently does not depend as strongly on the lattice depth. As the potential
wells are deepened, the resonance positions shift slightly to lower magnetic fields.

3.3. Detection

To experimentally detect the avoided level crossings associated with the anharmonicity-induced
resonances, one can take the following steps. Firstly, one loads the optical superlattice in the
weakly interacting region with two atoms in each double well [12, 20]. The inter-well barrier is
kept high so that one has a Mott state with one atom per well. Secondly, one ramps the system
to the strongly interacting region with −1/kLas = ±2 and then quickly lowers the inter-well
barrier to the desired value (with V0 = 6ER in our example), leaving the atoms still in the Mott
state (at energy E ' 9.3ER in figure 3) at this moment. The magnetic field is then adiabatically
ramped across the anharmonicity-induced resonances, and one detects the resulting population
distribution after the ramp. To perform the detection, the inter-well barrier is quickly turned
back up with a time scale that is fast compared to the inter-well dynamics, but still slow
compared to the lattice band gap (or the single-well energy gap). This freezes the system
evolution again before the magnetic field is ramped to the deep BEC side (−1/kLas � −1),
separating the molecular levels from the atomic levels. One can then selectively take absorption
images of either the atoms or the molecules [21], and measure their distribution over different
bands through a band-mapping procedure [12]. The presence of the anharmonicity-induced level
crossings can then be inferred from the final population distribution.
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As an example, in figure 5(a), we show the Landau–Zener calculation results for 40K atoms
at V0 = 6ER (b) swept from −1/kLas = −2 to −1/kLas = 2 with the atoms starting in state 6
labeled in figure 3(b). For fast sweeps, the atoms change states diabatically to remain at about
the same energy, as would be expected in the absence of anharmonicity. In the adiabatic limit, all
the atoms remain in state 6, which corresponds at −1/kLas = 2 to atoms in an excited state. At
intermediate speeds, several atomic states become populated. A sweep in the opposite direction,
from −1/kLas = 2 to −2, starting with atoms in state 2, is shown in figure 5(b). When sweeping
in this direction, population can be transferred to tightly bound molecules in several excited
c.m. states (states 2–5 at −1/kLas = −2) as well as diabatically to atoms near the initial energy
(state 6).

4. Summary

We predict the existence of several Feshbach-type resonances induced by the anharmonicity of
the optical lattice, which couples the Feshbach molecules in the excited bands and the atomic
states in the lowest band. We have characterized the corresponding set of avoided level crossings
in the calculated spectrum of two atoms interacting in a superlattice potential, and proposed an
experimental scheme to observe these avoided crossings through slow sweeps of the magnetic
field. The anharmonicity-induced resonances may prove to be a useful tool for the manipulation
of interaction between ultracold atoms in optical lattice potentials.
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