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Abstract — We have developed a generalized semi-analytic approach for efficiently computing
cyclization and looping J factors of DNA under arbitrary binding constraints. Many biological
systems involving DNA-protein interactions impose precise boundary conditions on DNA, which
necessitates a treatment beyond the Shimada-Yamakawa model for ring cyclization. Our model
allows for DNA to be treated as a heteropolymer with sequence-dependent intrinsic curvature
and stiffness, yet faithfully reproduces the results of Shimada and Yamakawa for the ring
and unconstrained loop. In this framework, we independently compute enthlapic and entropic
contributions to the J factor and show that even at small length scales (~£,) entropic effects
are significant. We propose a simple analytic formula to describe our numerical results for near
planar loops of homogenous DNA, which can be used to predict experimental cyclization and
loop formation probabilities as a function of loop size and binding geometry. We also introduce
an effective torsional persistence length that describes the coupling between twist and bending of

DNA when looped.

Copyright © EPLA, 2010

Introduction. — Calculating the probability that
contact will occur between two distant ends of a poly-
mer under prescribed orientations is a long-standing
question of considerable significance in polymer physics.
This problem was rigorously defined in the context of
polyelectrolyte condensation as the ratio of equilibrium
constants for cyclization and bimolecular association by
introduction of the Jacobson Stockmayer (J) factor [1].
Yamakawa and Stockmayer expanded on this work using
the Kratky-Porod wormlike chain model (WLC) to
compute the J factor of angle-independent DNA ring-
closure probabilities [2]. Shimada and Yamakawa then
included twist alignment of the end points [3], known as
phasing, to explain the measured oscillatory cyclization
rates by Shore and Baldwin on DNA shorter than 500
base pairs [4]. Shimada and Yamakawa calculated the J
factor for the ring and unconstrained loop, by treating
DNA as a homo-polymer with coincident end points and
parallel tangent vectors, as well as with coincident end
points with unconstrained tangent vectors, respectively,
see fig. 1. Our work generalizes this closure probability
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to include arbitrary end point locations, binding orienta-
tions, sequence-dependent curvature and elasticity while
reproducing the earlier results of Shimada and Yamakawa
for the ring and unconstrained loop [3].

We numerically calculate J factors based on a semi-
analytic continuous elastic-rod formulation that includes
as inputs specified end point locations and orientations
of the DNA. This formulation goes beyond the homoge-
neous straight elastic rod of Balaeff et al. [5-7] by allow-
ing the inclusion of intrinsic curvature and stiffness based
upon sequence-dependent effects. We also compute ther-
mal fluctuations, which contribute non-trivially to the
free-energy cost of loop formation. This aspect has some
similarities to the recent work of Zhang and Crothers [8,9]
who used a discrete model to compute thermal fluctua-
tions, although their J factors disagreed with the previous
results of Shimada and Yamakawa [3].

Previous works by Olson et al. have modeled DNA
as an elastic rod with sequence specific properties using
individual base pairs as their elements to examine normal
modes [10-17]. While Monte Carlo methods have been
successfully used to compute J factors [18,19], they are
in general computationally taxing, making it potentially
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Fig. 1: Representation of the local basis vectors along the DNA
in the open and looped states, respectively. In the looped state
we prescribe the end point locations through a set of spatial
coordinates (z,y,z) and angles (©,®, V) between end point
tangent vectors. Note the directions of 7n1, 72 are determined
by the open-state body fixed frame, rather than the looped-
state space-curve. Also note that the circular Ring corresponds
to © = & = 0. Phasing of the two end points is represented by
W, and is often due to a mismatch in the helical repeat of 10.5
base pairs.

difficult to separate out the individual effects of curvature
and stiffness, or make the distinction between enthalpic
and entropic contributions; by contrast, our computation
of the J factor based on a desired equilibrium shape takes
only minutes on a desktop computer.

Our model independently calculates enthalpic and
entropic contributions to the free energy of the DNA
loop. The numerical results show that boundary-
condition—dominated entropic contributions are impor-
tant even for very short DNA on the order a persistence
length (¢,). Within a cell, DNA is normally constrained
by histones and other binding constraints, leaving this
length scale as the typical size of locally fluctuating DNA.

Many DNA-binding proteins impose very specific
boundary conditions on DNA loop formation. Previous
results by Swigon et al., Segall et al. and Purohit et al.
have shown that boundary condition constraints on the
DNA end points play a significant role in the facilitation of
loop formation [17,20,21]. Boundary conditions have also
been suggested by Tkachenko [22] as an explanation for
the striking disagreements between the cyclization rates
measured by Du et al. [23,24] and Cloutier et al. [25,26].
Therefore, any useful model for these interactions must
accommodate such arbitrary boundary conditions. Thus,
the J factor framework gives quantitative insights into the
mechanics of protein-mediated DNA loop formation and
is important for multi-scale models of larger DNA-protein
assemblies such as chromatin and nucleosomes.

Theory. — To model the enthalpic and entropic contri-
butions to the looping J factor, we use a coarse-grained
elastic-rod model for the DNA polymer to calculate the
Hamiltonians describing thermal fluctuations about the
open (H°) and looped (H*) states. The J factor is then
calculated by comparing the probability densities of find-
ing the DNA in a configuration that corresponds to the
looped state with enforced boundary conditions for the
end points, described by three angles (©, ®, V) and three
positions (z,y,z) (see fig. 1), to that of the open state
without such constraints:

_ 8 [ldéle” P63 d(L))3(61(L))3 (02(L))3 (4 (L))

J f[dgi}efﬁm(ii)

(1)
The integration is over the amplitudes d§; of the normal
modes with eigenvalue A; of the respective Hamiltonians,
and 8=1/(kgT), the inverse product of the Boltzmann
constant kg, and temperature 7. The DNA is parameter-
ized by the arc length parameter s, where s=0 and s=1L
are taken to be the end points. The end point tangent
vectors have three angular constraints 61(L),602(L), (L)
and a relative displacement vector ¥ which are imposed
by §3(@), 6(01,2) and §(z)), respectively. The d-functions
assume rigid constraints, although when boundary condi-
tions are less rigid, such as in cases of head group or
C-terminus protein flexibility, we are able to capture
these effects by replacing the d-functions with appropri-
ate boundary potentials as in Swigon et al. [17] and in
Zhang et al. [9].

The open state is characterized by three input
local curvature components £°=(k{(s),k5(s),7°(s)),
which represent intrinsic curvature caused by sequence-
dependence. We include as inputs, two bending persistence
lengths ¢;(s), ¢2(s), corresponding to bending elasticity
along the major and minor grooves of DNA, respectively,
as well as a torsional persistence length £, (s).

The three equilibrium looped state curvature compo-
nents & = (k{(s),k5(s), 7!(s)) are found by minimizing
the strain energy of DNA under specified orientations and
positions of the end point tangent vectors, while track-
ing the DNA cross-sections, as demonstrated by Goyal
et al. [27]. This tracking allows the use of the body
fixed vectors (£(s), 71(s), na(s)) for a basis to define angu-
lar deformations (01 (s),02(s),1(s)) from the equilibrium
open and looped states. The angles 0; 2(s) are defined as
rotations about the two open-state normal vectors and
¥(s) is defined as a rotation about the tangent vector of
the open state. The computation of this equilibrium loop
does not contain electrostatics as did Balaeff et al. [6],
although it does explicitly avoid self-contact [28]. While
these interactions may affect equilibrium conformations
in which DNA segments come within 1 — 2 nm, generally
electrostatic screening under typical physiological condi-
tions makes these effects quite small.

The deformation-induced curvatures &%= (&%“(s),

75" (s), 7¢(s)) are computed separately for the open (7°)
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and looped (&‘) states, respectively. The looped-state
Hamiltonian is expressed as HY=E‘+§H(6;,02,v),
where E’ is the strain or enthalpic energetic cost of loop
formation. The open-state equilibrium is the intrinsic
curvature induced by sequence-dependence. As DNA is in
an aqueous solution, its mobility is severely overdamped
and the kinetic-energy contributions to the Hamiltonian
are neglected. The deformation Hamiltonian is then

L
ﬂHO’EZE/ ds (RO,E_EO)TB(S> (Ro,é_l—{o)_ (2)
2 Jo

In general we are capable of treating B(s) as a symmetric
matrix with 6 independent components as was suggested
by Olson et al. [12] and Towles et al. [18]. The compo-
nents of B(s) may vary with sequence along the DNA
as suggested by Colemen, Swigon and Olson [15,16].
Such non-homogeneuous parameters are necessary to
elucidate the results of Cloutier and Widom [26], who
argued sequence-dependent elasticity in nucleosome
binding sequences contributed to greater ring cyclization
probability. For the purposes of this paper we take B(s)
to be diagonal with components ¢;(s), £2(s) and £,(s)
to demonstrate that our work reproduces the previous
results of Shimada et al. [3], as well as to illustrate the
differences of our results to those of Zhang et al. [8].

The curvatures components & in eq. (2) are organized
into three groups based on their order of deformation
variables (61,02,1¢). The zeroth-order terms represent
strain energy of loop formation. The first-order terms
define the equilibrium conditions, and will vanish. The
second-order terms determine the normal modes, while the
higher-order terms are neglected. The equilibrium planar
deformation curvatures that we will work with in this
paper are

(R + R3) = (K3 +2K205) + ((07

_K§9%)+0é2) ’ (3)

7:2 = (’l,bl—:‘igel)Q. (4)

Here we have assumed the DNA to be isotropic in
bending stiffness, £, =¢; = {5, and intrinsically straight.
The curvature components contained in the Hamiltonian
are made non-dimensional by scaling with the overall DNA
length, L.

When constructing the Hamiltonian, the Galerkin
method is used to numerically solve for the normal
modes of the open and looped states. Each deformation
variable (61(s),02(s),1(s)) is expanded in terms of N
orthogonal comparison functions, which are then used
to create a 3N x 3N Hamiltonian matrix for the open
H° and the looped H' states. The comparison functions
satisfy the angular boundary constraints imposed by
§(61(L)), 6(62(L)), 6(¥(L)) in eq. (1). The remaining
looped boundary condition §3(#) are satisfied by Fourier
expanding the delta functions, and then integrating over
the eigenvector amplitudes &;, leading to the constraint
matrix V. An additional integration for the open state is

required to cover the modes which cause displacements of
the end points. The J factor can then be expressed as

S [ deme 6\ e
éf, 2m3det Hfdet V \ L

Il
=
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which is a product of two functions, one describing
the entropic contributions, henceforth referred to as
the entropic coefficient A(©), and the exponential term
containing the enthalpic contributions. While the product
of eigenvalues is formally infinite, the ratio of determi-
nants of the Hamiltonians for the open and looped state
are finite. In the limit of large N, the differences between
the open and looped eigenmodes vanish, as the spatial
resolution of the eigenmodes is below the curvature of
the states. This fact allows us to truncate the ratio of
modes after the M-th eigenmode, which in practice,
M ~ 20, which for DNA of the order of ¢, corresponds to
spatial node distances of 7 base pairs, which can safely be
regarded as continuous. The ratio of eigenvalues is

detH®  A9--- XY,
det HE NG+ NG,

(6)

The ratio of eigenvalues describes how the space accessible
to thermal fluctuations of the DNA is reduced upon loop
formation, which in turn allows us to quantify the entropic
change of the system.

Results. — The results presented here are for near
planar DNA loops with coincident end points and arbi-
trary loop tangent angle ©. In this paper we present results
for DNA of the length 50 nm or approximately 14 helical
repeats, so we will assume ¢; = £5. We treat the DNA as a
homogeneous polymer with bending and torsional persis-
tence lengths of 50nm and 75nm, respectively [29-31].
While DNA is a heteropolymer with anisotropic bending
persistence lengths ¢;(s) # ¢2(s), this anisotropy largely
averages out after a few helical repeats (10.5 base pairs)
as demonstrated by Kehrbaum and Maddocks [32].

The entropic coefficient A(©) is computed for a torsion-
ally unconstrained DNA loop with overall length L =1/,
and loop tangent angles ranging from a Ring © =0, to a
Teardrop © ~ 0.54m, to a Hairpin © =7 and is given in
fig. 2. The lowest eigenvalue of the in-plane loops can be
well approximated as \{ = 27©. Factoring this contribu-
tion from A(©) reveals a slowly varying function (0). We
are able to fit our numerical results to within 1% by using
a modified Bessel Function

1 /¢, 11/2
5 (%)

1 L
X exp (E’E(G) - 4€> ,
P

7(0) = 36507 — 5250 + 3273

J(©) = [Io(270)e~?"®] 4(©)
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DNA Length =50 nm
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Fig. 2: (Colour on-line) The entropic coefficient A(©) is largely
dominated by contributions from the lowest eigenmode of the
loop, A{(©). To illustrate this dependence, we write A(©)=
F(A1(©))v(©), where f(A]) contains only the contributions of
the lowest eigenmode A{. The function f ()\f) is represented by
the bracketed quantity in eq. (7), and v(©) is given in eq. (8).
It is then clear that v(©) is a slowly varying function on the
interval (© =0) to (© = 0.547), and then steadily increases on
the interval from © = 0.547 to Hairpin (© = ). The shift in
behavior of v(©) occurs after the lowest eigenmode changes
from symmetric to antisymmetric. Even for relatively short
DNA A(©) is shown to effect the J factor by an order of
magnitude in fig. 3. Note the dimensions are in molarity rather
than concentration as in eq. (5).

E(©)= % / kpds =2.02(0 — 0.547)% +14.05,  (9)
where O is the loop tangent angle in radians. The fit is
accurate for all angles © although the dimensional scaling
of eq. (7) needs to be modified to (£,/L)® when © =0,
as the ring has a zero mode [3]. The unconstrained loop
by contrast has dimensional scaling of (£,/L)°, due to
integrating over the orientations of the tangent vectors.

The Teardrop shape has the lowest strain (enthalpic)
energy, 14.4%’ kT, of any of the in-plane shapes, and
is where the end point curvatures of the loop vanish.
Enthalpic considerations demonstrate which loop tangent
angle © will produce the maximum J factor, although
for small angles, as well Hairpin structures, entropic
considerations are required to demonstrate the absolute
behavior of the J factor, as seen in fig. 3.

Shimada and Yamakawa provided two special cases for
the in-plane J factors [3]: the Ring defined by aligned
tangents, © =0, and the unconstrained loop. Zhang and
Crothers [8] arrived at different results for these J factors
using their base pair harmonic mode computations,
although the reason for the difference remains unclear.

DNA Length =50 nm
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Fig. 3: (Colour on-line) A comparison of entropic coefficient
effects on the J factors computed using only enthalpic consid-
erations vs. a full treatment of enthalpic and entropic consid-
erations. In this way we demonstrate via several orders of
magnitude difference that the entropic changes are vital to the
calculation of the J factor. Small angles and Hairpin structures
are poorly described by the enthalpic only extrapolations of
the J factor. These results are for DNA of length 50 nm and
increase in difference as length is increased.

We have reproduced the ring and unconstrained loop
results to within 0.01% using our continuum rod model in
agreement with Shimada and Yamakawa. The two models
should not yield significantly different results since the
radius of curvature is much greater than the DNA bond
length. We also compute nearly the same ring and loop
energy as Zhang and Crothers. In addition, the highest
spatial frequency modes, which would probe the shortest
length scales do not contribute as seen from eq. (6).
Finally, our theory treats the delta functions in eq. (1)
differently than Zhang and Crothers, which may be the
cause of the discrepancy in their results.

The ring offers a unique challenge when computing
the normal modes as it contains a zero-eigenvalue mode
which causes the entire ring to rotate about the two DNA
end points under our 6(u,#)-function conditions. This
rotation can be related to the amplitude &, and the subse-
quent integration yields a finite contribution when inte-
grated over this angle instead of &. The unconstrained
loop formation assumes that E(O) given above in eq. (9)
is symmetric about the Teardrop. As most biologically
relevant cases do not fit neatly into one of these special
cases, our generalized results allow a more accurate predic-
tion of the J factor. To illustrate the effect of angular
dependence on the J factor, we plot three J factors with
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Fig. 4: (Colour on-line) (a) The effective torsional persistence
length, £; in units of ¢, as a function of loop formation angle,
©. The Ring has pure torsional modes with stiffness )\/f
and as O increase the bending and torsional modes become
coupled, reducing the effective torsional persistence length.
(b) The torsion-bending coupling «(©) shown as open circles, is
quadratic from the Ring to the Teardrop as seen by the dashed
line. From the Teardrop to the Hairpin, a(©) is cubic in ©.

different entropic coefficients A in fig. 3. Two of these J
factors have constant entropic coefficients A # A(©), that
of the Ring and unconstrained loop, while allowing the
normal angular dependence of the enthalpic contributions
E(©). Thus fig. 3 demonstrates that the changes to the
entropic contributions as a function of © are critical in the
J factor calculation. The extrapolation from the orienta-
tion averaged loop is better than the ring, except for small
angles ©. For all angles, the Bessel function given in eq. (7)
is an excellent fit, with a maximum error of less than 1%
for all ©.

The general DNA-protein complex has spatially sepa-
rated end points as well as prescribed angles (0, ®, )
which can be obtained from DNA-protein co-crystals with
Lacl protein serving as the canonical example [33]. The
extension of this work to include proteins would neces-
sitate a more complete description of the DNA-protein
binding regions which would involve modifying our §(@)
functions above in eq. (1) as was done in [9,17,21].

Computing the torsionally constrained J factor by
including 6(¢) in eq. (1) allows a determination of an

effective torsional persistence length £. The coupling of
torsion and bending elasticity can be computed as

J(em—o)Q

0 =2m ( , 10
J(©)yz0 1o
where J(O)y—o and J(O©)yzo are the torsionally

constrained and unconstrained J factors, respectively.
The effective torsional persistence length represents the
conversion between twist and writhe.

The effective torsional persistence length can be written
as a torsional and bending spring in series

—:iJra(@)

- (1)

1
0,
where all of the angular dependence is given by «. In fig. 4,
it is clear that «(©) has as simple quadratic dependence
up until the Teardrop shape and afterwards becomes cubic
in ©

1 1

*®)=33 673

=52 o, 0<6<0.557,
T

(12)
a(©) =0.420° — 2.550% + 5.460 — 3.87,0.557 < © < 7.
(13)

Conclusion. — We have developed a generalized
approach for computing J factors of arbitrary loop
shapes, which may include sequence-dependent stiffness
and curvature and reproduces the results of Shimada
and Yamakawa for the ring and unconstrained loop.
We have shown that the J factor varies strongly for
near planar loop shapes as a function of loop tangent
angle © for intrinsically straight DNA with isotropic
bending stiffness. The in-plane J factors can be well fit
with analytic functions for all ®. We have defined an
effective torsional persistence length ¢ and subsequence
torsion-bending coupling «(©) which are shown to vary
significantly as a function of loop formation angle, ©.
Finally, our calculation is computationally very quick,
taking only a few minutes per J factor for any set of
input boundary conditions.
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