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Abstract 
Accurate attenuation correction can be performed in 

P E T  using transmission scanning to estimate the sur- 
vival probabilites along each coincidence line. However, 
since these measurements are typically corrupted by Pois- 
son counting noise, they propagate additional uncertainty 
into reconstructed images and kinetic parameter estimates. 
This can be especially true in the thorax where the atten- 
uating medium is heterogeneous and the statistical preci- 
sion of the transmission scan may be approximately the 
same as that  of the emission data. To account for the 
Poisson noise in the transmission measurement we have 
developed a sieve-constrained maximum likelihood algo- 
rithm that  jointly estimates both the survival probability 
and emission intensity. 

I. INTRODUCTION 

In positron emission tomography, accurate quantifica- 
tion of emission intensity will result only if y-ray absorp- 
tion is accounted for in the reconstructioii process [l]. This 
usually entails pre-correcting the projection data  by divid- 
ing each projection element by the survival probability of 
-/-rays emitted along each coincidence chord. In 121 Politte 
and Snyder noted that  this pre-correction is inconsistant 
with the Poisson projection data  model and developed con- 
strained maximum likelihood reconstruction algorithms for 
the case in which the survival probabilities are known ex- 
actly. I t  is usually the case, however, that these parame- 
ters are not known and must be estimated using a trans- 
mission scan with a positron-emitting transmission source. 
The counting noise inherent in this scan propagates addi- 
tional errors into the reconstruction. In regions where the 
distribution of attenuator is relatively constant, it may be 
reasonable to  simply smooth the resulting survival proba- 
bility estimates. But in regions such as the thorax, where 
the attenuating medium is extremely heterogeneous, this 
may result in additional reconstruction errors due to the 
bias introduced by smoothing. 

In this paper we offer an interesting alternative-joint 
maximum likelihood estimation of both the survival prob- 
abilities and the emissioii intensity. In the next section, we 
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describe the assumptions and extensions necessary to  for- 
mulate the joint estimation problem. In Section I11 we de- 
scribe alternative methods for solving the likelihood maxi- 
mization problem and develop a constrained joint alternate 
and maximize (JAM) version of the generalized EM algo- 
rithm. Section IV presents some of our initial experiences 
in using the JAM algorithm with simulated PET data. 

11. THEORY 

A .  Emission and Transmission Response Model 

To form the likelihood it is necessary to have a statistical 
model relating our measured projections to  the underlying 
parameters of interest, the emission intensity and the sur- 
vival probabilities. We assume that  effects of the system 
geometry on the measurements are known and can be rep- 
resented as a D x B matrix A where D is the total number 
of coincidence lines and B is the number of object pixels. 
Moreover, we require that  the random projection vector 
Y = [Yl, . . . , Y D ] ~  has the following distribution 

Y - Pois(p - 0 AX + 2), (1) 

where @ signifies element-by-element vector multiplica- 
tion, = [XI,. . . X B ] ~  is the vector of emission intensi- 
ties, E = [PI, . . . , po lT  is the vector of survival probabili- 
ties, and in accordance with the random coincidence model 
given in [3], 17 = [VI, . . . ,1701 is a vector representing the 
random coincidence rate. In (l), the survival probabilties 
p have been separated from the response matrix A by as- 
suiniiig that  they are invariant with respect to the emission 
location along each coincidence line (a reasonable model for 
attenuation in P E T  tomographs having good resolution). 

For the transmission scan we assume that this response- 
invariance extends to the location of the transmission 
source and that  the randoin vector of transmission mea- 
surements M = [MI, . . . , 

- 

has distribution 

M N Pois (E0 A). (2) 

In (2) the vector A summarizes the effects of transmission 
source strength and transmission scanning time relative to 
the total emission scanning time. 
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B. J o  iiit Likelihood 

Armed with the above iiiodel for the projection and 
transinissioii measureiiieiits, and with the kiiowledge that  
these measurements are independent, we can immediately 
forin the joint log-likelihood by siiiiply adding tlie individ- 
ual log-likelihoods, 

L(X ,  F) = yT log& O AX + 9) - l T ( p  - O AX) + 
lllT log - pa - 1T(p  - 0 12) + c, (3) 

wliere y = [yl, . . . , yDIT and i n  = [ m l ,  . . . , 1 7 1 0 3 ~  represent‘ 
realizations of tlie random vectors Y and M respectively, 
1 represents a vector of ones of the appropriate length, and 
C is a term iiidepeiideiit of or p .  

We maximize (3), by simultaneously choosing vectors 
and from the admissible doiiiaiii 

2, = { A , E :  A b  2 O , b =  1 . . . . , B  
O < / l ~ < l , d = l ,  . . . ,  D } .  

If these masiiiiiziiig ‘vectors lie iii the interior of D ,  they 
will satisfy O,L(X,g) = O L L L ( X , ~ )  = O wliere - 

~ X L ( X , E )  = A T ( ( y O ~ ) @ ( ~ O A A + 7 ~ ) )  - - A T p ( 4 )  - 

v,L(X,g) = ( Y O A X ) O ( ~ O A X + ~ ) - A X +  

111 0 - A, ( 5 )  

and the syilibol 0 denotes element-by-element vector divi- 
sion. Furthermore, if the 1il;eliliood is strictly concave, 
these vectors will be the unique, global inaximizer of 
L(A,  E). 

C. Properlies of Jo in t  L,zkelihood 

In addition to being a sufficient conditioii for tlie exis- 
tence of a unique global maximum of (3), strict concavity 
is a necessary ingredient in many of the global convergence 
proofs for iterat I \ 1 maximization techniques [4 ,5] .  For this 
condition to  hold [or (3), tlie following IIessiaii matrix must 
be positive- defilii t e : 

where 

Bii = d i a g ( ~  O E’ 8 ?‘(X,E)), 
BIZ  = BZI  = diag(1 - y 0 2 8 Y’(X, E ) ) ,  
Bz2 = diag(y 0 ( A X ) ?  Q Y 2 ( X ,  2)) + 111 0 E’), 

aiid 
?(A, /1) = E E, A X  + - 77.  ( 7 )  

Uiifort,unately, Ire see taliat, I ,(A, - I ( )  is not, necessarily 
st.rict.ly concave and the global convergeiice properites of 
iterative met,liods may be difficult to  estalilisli. Nevertlie- 
less, tlie folloiriiig analysis s1ion.s that  under reasonable 

conditions, the likelihood has a large area over which strict 
concavity exists. If we restrict our estimates to this region, 
any algorithm which increases tlie likelihood a t  each iter- 
ation will converge to tlie regional maxiinum. (However, 
we have yet to  establish that  tlie global maximum on 23 
always lies within this region.) 

For ( 6 )  to  be positive-definite, it  is sufficient tliat the 
B-matrix be positive definite. This implies that  b i i b j j  > 
b i j  b j i ,  V i ,  j and, in tlie absence of random coincidences, 
leads to  tlie following conditions 

Y d ( Y d + n z d )  ( g a d b i b ) ’ ,  d =  1 , . . . , D .  (8) 

If there are a sufficient number of events in tlie emission 
aiid transmission data ,  it- is extremely unlikely that we 
would consider estimates and & that  violate these con- 
ditions. This also applies when random coincideiices com- 
prise a small fraction of the total events; however, we have 
not completed our analysis in tlie high random coincidence 
regime, 

111. ALGORITIIRIS FOR RIAXIAIIZATION 

A .  Tlie EM Alyorithiia-Choice of Complete  Datu 
To develop the joint maximum likelihood reconstruction 

algorithm, we s tar t  with the “natural” complete da ta  space 
for emission tomography introduced by Shepp and Vardi 
[GI aiid extended to  include random coincidences by Politte 
and Snyder in [2] wliere it is termed “ML-IB.” In this 
complete. da ta  space, each observed projection element is 
coinposed as a sum of the unobserved complete data 

where Yd represents the dth coinpoileiit of the random pro- 
jection vector Y ,  N d b  is the nuniber of events emitted from 
tlie 6th pixel in the object detected 011 coincidence line d ,  
and Rd represents an additive, random coincidence com- 
ponent. To perform the joint estiiiiatioii, we augment this 
complete da ta  in the obvious way--by simply including the 
measured transmission da ta  M. Tlie resulting complete 
da ta  space, which we term ML-JB, can be represented as 

To develop tlie E-step of tlie Eh3 algorithm we form the 
espected value of the log-likelihood of tlie complete data, 
conditioned on tlie incomplete, observed data and tlie cur- 
rent par aiiie t er es t imat es : 

XJB = { { A ’ d b } ,  {Rd},  {Aid}}- 

- ( k )  - ( E )  
E [ l o g f ( X I ~ , ~ ) l Y , ~ ~ : , X  ,,I 1 = 

d 

d 
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The expectations on the right side of (10) are given by 

where 

b=l  

The maximization, or RI-step of the algorithm requires 
that we choose new parameter estimates A and that max- 
imize (10). Substituting the above expectations into ( lo ) ,  
and_ differentiating the resulting expression with respect 
to  and ,Li yields the following equations which must be 
solved fortl ie AI-step: 

/ B  \ 

Unfortunately, these equations are coupled in 4 and mak- 
ing the hl-step with tlie ML- JB complete da ta  computa- 
tionally unattractive. But, they can form the basis for the 
one-step late (OSL) iteration introduced by Green [7] or a 
generalized ER1 (GEM) iteration [8]. In the next section 
we develop a version of the GEM method that we call the 
joint alternate and maximize (JAM) method. 

First however, we note in passing, that  by augmenting 
the ML-JB complete da ta  by the events which originate 
from object pixel b ,  propagate along coincidence line d ,  
but due to  absorption are not  detected, xve can uncou- 
ple the equations in the hl-step of the update to derive 
a computationally feasible Eh1 algorithm. This is equiv- 
alent to adding the observed transiiiission iiieasureiiieiits 
to the complete da ta  space ML-IA ill 121. The emission 
update for the resulting ERI algorithm is linear, wliile the 
survival update requires solving a quadratic equation for 
each component of [4]. However, based on the aiialy- 
sis iii [4] we expect that  algorithms based on the ML-JA 
complete da ta  to  converge more slowly than those based 
011 ML-JB. 

B. The Joiiat Alteriiate-dIa~il,Lize (JAAI) Algorithm 

Although tlie coupling between 1 and i i  in (15) and (16) 
makes the necessary iiiaxiiiiization for t l e  EM algorithiu 
difficult, it is quite straightforward to derive ,a GEM algo- 
rithm, we siiiiply alternate between updating and using 
their most recent estiiriates a t  each step of the iteration. 

Such iterations have been called alternate and maximize 
methods and often demonstrate improved asymptotic con- 
vergence properties over the EM algorithm 191. The JAM 
iteration takes the form: 

There are two features of particular interest in the above 
iteration: (1) the likelihood increases a t  each step and ( 2 )  
it is not necessary to  perform both emission and survival 
updates at each iteration. We typically update tlie survival 
probabilities once for every ten emission updates. 

C. Solution Stabilization 

Because the tomographic reconstruction problem is ill- 
posed, it is usually necessary to  either constrain the esti- 
mates to  lie in a subspace consisting of smooth solutions 
or penalize estimates that are inconsistant with our prior 
notions of the smoothness of emitter or attenuator in the 
object. 

Here we take the former approach and apply kernel 
sieves [lo] to constrain both the survival probability es- 
timate and the emission estimate. If the true survival 
probability and emission intensity are members of their 
respective sieves, then this method will result in a joint 
maximum-liltelihood estimate that is asymptotically unbi- 
ased. If, on the other hand, they are not sieve members, 
the method will inevitably introduce bias-although hope- 
fully, with a correspondingly larger reduction in estimator 
variance. 

To implement the sieve-constrained reconstruction we 
assume the existence of both “pre-emission” and “pre- 
survival” spaces and signify individual elements of these 
spaces by and p respectively. \Ire define the transforma- 
tions that t a k e  elements of these spaces to  corresponding 
elements and E in the desired, constrained spaces by G 
and H 

By defining the complete pre-emission and pre-survival 
da ta  as 

where 
xtp~ = { { N z q } ,  {Rd}, {Lpd,}), (20) 

q = 1  

R 

r=l 
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We have implemented the JAR1 algoritlini on a Stardelit 
ST3000 computer system using C in conjunction with tlie 
Application Visualization System (AVS). IPe have per- 
forined preliminary evaluations of the joint estimation 
method using sii-iiulated PET data.  

A P E T  imaging systeiii having 100 projections of 64 par- 
allel rays with ail invariant Gaussian projection resolution 
of (3 iiim FWIIRI was simulated. The object domain was 
an elliptical regia1 circumscribed wit,liin a 50x64  6 nim 
pixel rectangle. Projection images were generated from 
tlie einissioii phantoms shown in Fig. 1. The emission im- 
age shown in tlie center simulates a tumor iinaging situa- 
tion while the image oil tlie riglit corresponds to cardiac 
study. The survival probabilities for all reconstructions 
werc generated using tlie phantom on the left in Fig. 1. 
We used linear attenuation coefficients of 0.156 cni-l for 
bone, 0.095 C I I I - ~  for soft tissue, and 0.022 CIII-' for lung  
tissue. 

Figure 2 sliows recoiistructioiis floiii an estreine exani- 
ple; there are 2 million tot,al counts in t lie t,ransiiiission 
scan and 5 inillion events in the eiiiission data.  Tlie ran- 
donis fraction of t o h l  events in the emission scan is about 
2%. The data  were reconstructed using 1000 iterations 
of the ER1 algoritlini, for the cases in which either the 
Iinowii survival probabilities or survivals estiiiiated solely 
from transinission data  irere used, or using 1000 iterations 
of t,he JAAI algoritliiii for joint survival-emission cst,iiiia- 
tioii. The  eiiiissioii estimates were subjected to n 1.5 pixel 
fwliili Gaussian sieve constraint and no survival sieve was 
employed. Tlie images on tlie left in Fig. 2 result' from 
using tlie noiseless survival probabilities. Images in the 
center \yere reconstructed usiiig noisy t raiisiiiission mea- 
surements aiid tlie J A l l  algorithm. Tlie images on tlie 
right \vcre reconstructed using tlie noisy transniission data  

Figure 1: Top Row: Left. RIap of tlie attenuation density 
in the simulated object. Center. Emission intensity for 
tumor simulation. Right. Eiiiissioii intensity for cardiac 
imaging simulation. Bottom Row: Emission intensities 
displayed on log scale t o  enhance low-level detail 

and tlie conventional ERI method. Clearly, the joint esti- 
mation images are visually better than when the survival 
probabilities are not jointly estimated. The  survival esti- 
mates for the tlirce reconstructions are shown in Fig. 3. 
Note the impro\.cment in noise here as well. 

To investigate tlie quantitative performance of joint es- 
timation, we used the cardiac phantom (Fig. 1, right) and 
the same attenuation distribution as above t o  generate 30 
Poisson realizations each having 3 million emission events 
and 3 million transniission events. We reconstructed each 
realization using a 1.5 pixel Gaussian kernel sieve and 500 
iterations of tlie appropriate algorithm. Reconstructions of 
one realization are slioivii in Fig. 4 (same order as Fig. 2) .  
From the 30 reconstructions, we estimated the pixel-mise 
mean-squared error in  the eiiiissim estimate. The square- 
root of this error distributioii is sliomn in Fig. 5. The total 
e n o r  in each iiiiage is: (1) Survivals known exactly: 18700. 
(2) Noisy survivals, joint estimation: 27000. ( 3 )  Noisy sur- 
vi  vals , eiii iss ion est iiii at, ioii 011 1 ), : 4 1 0 0 0. 

V. DISCUSSION A K D  CONCLUSION 

IT'liile the simulation results in  tlie previous section are 
encouraging, there reinain many areas requiring invest,i- 
gation. I11 particular tlie JAR1 algoritlini inay have coil- 
siderably poorer convergence properties tliaii algorit,lims 
that estimate tlie einission ~ I I ~ I ~ I I - I I ~  iJl1ly. This is 110 sur- 
prise, since t,liere is inherentl!. ,I 1 . 1 1  gt>r number of degrees- 
of-freedom in tlie joint estiniatioii ~ ) r o l ~ l c m .  While conceiv- 
ably the  Eh1 algorithm we 1 1 ~ 1 ~  dcrivccl for joint est,imatioii 
using complete data ML-.IA coulcl lie faster, we are not 
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encouraged by the fact that  in practice the Eh1 method us- 
ing the ML-IA complete da ta  converges much more slowly 
than its ML-113 counterpart and, moreover, that  AM al- 
gorithms often exhibit better convergence properties than 
do ER1 methods. In  aiiy case, the use of appropriate sieve 
constraints silould help the convergence properties of all 
algorithms. 

The accuracy of the model relating the parameters to  
the observed da ta  can also be brought into question. Both 
the emission scan and transmission scan are typically cor- 
rupted by Coinpton-scatter, which we do not model here‘, 
aiid additioiially, the transmission scan is degraded by ran- 
dom coincidences. Although, this can be included in the 
joint likelihood model in a straightforward manner, the 
questions always arise: \Yliich degradations are most sig- 
nificant? How much modeling is too much? 

Ultiinately, however, we feel that  the joint, estimation 
method and the constrained JAM algorithm we have out- 
lined liere will prove useful in PET reconstruction. The 
method may have the most t o  offer in thoracic imaging, 
where the distribution of attenuator in the object is ex- 
tremely heterogeneous and the transmission scan often 
noisy due to  long attenuation paths. 
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