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Abstract

Accurate attenuation correction can be performed in
PET using transmission scanning to estimate the sur-
vival probabilites along each coincidence line. However,
since these measurements are typically corrupted by Pois-
son counting noise, they propagate additional uncertainty
into reconstructed images and kinetic parameter estimates.
This can be especially true in the thorax where the atten-
uating medium is heterogeneous and the statistical preci-
sion of the transmission scan may be approximately the
same as that of the emission data. To account for the
Poisson noise in the transmission measurement, we have
developed a sieve-constrained maximum likelihood algo-
rithm that jointly estimates both the survival probability
and emission intensity.

I. INTRODUCTION

In positron emission tomography, accurate quantifica-
tion of emission intensity will result only if y-ray absorp-
tion is accounted for in the reconstruction process [1]. This
usually entails pre-correcting the projection data by divid-
ing each projection element by the survival probability of
v-rays emitted along each coincidence chord. In [2] Politte
and Snyder noted that this pre-correction is inconsistant
with the Poisson projection data model and developed con-
strained maximum likelihood reconstruction algorithms for
the case in which the survival probabilities are known ex-
actly. It is usually the case, however, that these parame-
ters are not known and must be estimated using a trans-
mission scan with a positron-emitting transmission source.
The counting noise inherent in this scan propagates addi-
tional errors into the reconstruction. In regions where the
distribution of attenuator is relatively constant, it may be
reasonable to simply smooth the resulting survival proba-
bility estimates. But in regions such as the thorax, where
the attenuating medium is extremely heterogeneous, this
may result in additional reconstruction errors due to the
bias introduced by smoothing.

In this paper we offer an interesting alternative—joint
maximum likelihood estimation of both the survival prob-
abilities and the emission intensity. In the next section, we
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describe the assumptions and extensions necessary to for-
mulate the joint estimation problem. In Section III we de-
scribe alternative methods for solving the likelihood maxi-
mization problem and develop a constrained joint alternate
and maximize (JAM) version of the generalized EM algo-
rithm. Section IV presents some of our initial experiences
in using the JAM algorithm with simulated PET data.

II. THEORY

A. Emission and Transmission Response Model

To form the likelihood it is necessary to have a statistical
model relating our measured projections to the underlying
parameters of interest, the emission intensity and the sur-
vival probabilities. We assume that effects of the system
geometry on the measurements are known and can be rep-
resented as a D x B matrix A where D is the total number
of coincidence lines and B is the number of object pixels.
Moreover, we require that the random projection vector
Y = [¥1,...,Yp]T has the following distribution

Y ~ Pois(p © AX + 1), (1)

where © signifies element-by-element vector multiplica-
tion, A = [A1,...,Ap]T is the vector of emission intensi-
ties, p = [p1,...,up]T is the vector of survival probabili-
ties, and in accordance with the random coincidence model
given in [3], . = [m1,...,7mp] is a vector representing the
random coincidence rate. In (1), the survival probabilties
1 have been separated from the response matrix A by as-

- suming that they are invariant with respect to the emission

location along each coincidence line (a reasonable model for
attenuation in PET tomographs having good resolution).
For the transmission scan we assume that this response-
invariance extends to the location of the transmission
source and that the random vector of transmission mea-
surements M = [My, ..., Mp]7 has distribution

M ~ Pois(p © A). (2)

In (2) the vector A summarizes the effects of transmission
source strength and transmission scanning time relative to
the total emission scanning time.
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B. Joint Likelihood

Armed with the above model for the projection and
transmission measurements, and with the knowledge that
these measurements are independent, we can immediately
form the joint log-likelihood by simply adding the individ-
ual log-likelihoods,

LA, p)

YT log(p ® AX+ 1) — 17 (p© A)) +
m7 logpu® A — lT(H(DA) +C,

()

wherey = [y1,...,yp) andm = [my,...,mp]7T represent’
realizations of the random vectors Y and M respectively,
1 represents a vector of ones of the appropriate length, and
C 1s a term independent of A or .

We maximize (3), by simultaneously choosing vectors A
and p from the admissible domain

e A >0,b=1..... B
O<pa<l,d=1,...,D}.

D

If these maximizing vectors lie in the interior of D, they
will satisfy VL(A, p) = V, L(A, p) = 0 where

ATy o p) @ (p® A + 1)) — AT u(4)

(yoA ) oo Ar+n) —AA+

mou— A, (5)

and the symbol @ denotes element-by-element vector divi-
sion. Furthermore, if the likelihood is strictly concave,
these vectors will be the unique, global maximizer of

L(A, w).

C. Properties of Joint Likelihood

In addition to being a suflicient condition for the exis-
tence of a unique global maximum of (3), strict concavity
is a necessary ingredient in many of the global convergence
proofs for iterativc maximization techniques [4,5]. For this
condition to hold for (3), the following HHessian matrix must
be positive-definite:

T

) AT 0][ By B [A 0
— VL) = [ 0 1| By Bwllo 1] ©®
where

By = diagly @ ” @ §*(A, ),

Biy = By =diag(l-y®no S’Q(A,g)):

By = diag(y © (40)? 09 (A p) + m @ p*),
and

(7
Unfortunately, we sce that L(A,p) is not necessarily
strictly concave and the global convergence properites of
iterative methods may be difficult to establish. Neverthe-
less, the following analysis shows that under reasonable

A ) =pc AA+.

conditions, the likelihood has a large area over which strict
concavity exists. If we restrict our estimates to this region,
any algorithm which increases the likelihood at each iter-
ation will converge to the regional maximum. (However,
we have yet to establish that the global maximum on D
always lies within this region.)

For (6) to be positive-definite, it is sufficient that the
B-matrix be positive definite. This implies that by;bj; >
bi;b;:,Vi,7 and, in the absence of random coincidences,
leads to the following conditions

2
adbib> ) d

If there are a sufficient number of events in the emission
and transmission data, it is extremely unlikely that we
would consider estimates A and i that violate these con-
ditions. This also applies when random coincidences com-
prise a small fraction of the total events; however, we have
not completed our analysis in the high random coincidence
regime.

B

va(ya +ma) > i (Z

b=1

1,...,D. (8)

III. ALGORITIIMS FOR MAXIMIZATION

A. The EM Algorithm—Choice of Complete Data

To develop the joint maximum likelihood reconstruction
algorithm, we start with the “natural” complete data space
for emission tomography introduced by Shepp and Vardi
[6] and extended to include random coincidences by Politte
and Snyder in [2] where it is termed “ML-IB.” In this
complete-data space, each observed projection element is
composed as a sum of the unobserved complete data

Yd=;Ndb+Rd, Z:f:":::g, )
where Yy represents the dth component of the random pro-
jection vector Y, Ngp is the number of events emitted from
the bth pixel in the object detected on coincidence line d,
and Ry represents an additive, random coincidence com-
ponent. To perform the joint estimation, we augment this
complete data in the obvious way—by simply including the
measured transmission data M. The resulting complete
data space, which we term ML-JB, can be represented as
Xsp = {{Na}, {Ra}, {Ma}}.

To develop the E-step of the EM algorithin we form the
expected value of the log-likelihood of the complete data,
conditioned on the incomplete, observed data and the cur-
rent parameter estimates:

Ellog f(X]4, p)ly,m, A" 4] = (10)

NGO . . . .
Z[E[Ndﬂyyi( ).ﬁ(k)] log ftactar Ay — ,u.dad,,z\z,} +
d,b

A

Z [E[Rdl)ﬁ i(k)y ;L_(k)] logna — 77d] +

d
Z [E[]\/Idllll,[_t(k)] Iog /JdAd - ;ldAd] .
d

1928



The expectations on the right side of (10) are given by

flaags Ay

ElNaly, A = ya=222, (11)

= Ja(A, 1)
E[Rdy, A i) = ya—2—, (12)

Pa(A, )
E[Mam, g = my, (13)

where
~ B ~
Ja(d, ) = f1a Y agAs + na. (14)
b=1

The maximization, or M-step of the algorithm requires
that we choose new parameter estimates A and [t that max-
imize (10). Substituting the above expectations into (10),
and differentiating the resulting expression with respect
to A and it yields the following equations which must be
solved for the M-step:

-~ — L - a’db}ld = 0’ (15)
A oo LS, adb)\gk) + 0 d=1

1 va Yy amdy)

T NG 0 —+ myg

Ha | g’ Sy amAy’ + ma

B

— (Z adb/A\b + Ad> = 0. (16)

b=1

Unfortunately, these equations are coupled in A and £ mak-
ing the M-step with the ML-JB complete data computa-
tionally unattractive. But, they can form the basis for the
one-step late (OSL) iteration introduced by Green [7] or a
generalized EM (GEM) iteration [8]. In the next section
we develop a version of the GEM method that we call the
joint alternate and maximize (JAM) method.

First however, we note in passing, that by augmenting
the ML-JB complete data by the events which originate
from object pixel b, propagate along coincidence line d,
but due to absorption are not detected, we can uncou-
ple the equations in the M-step of the update to derive
a computationally feasible EM algorithm. This is equiv-
alent to adding the observed transmission measurements
to the complete data space ML-IA in [2]. The emission
update for the resulting EM algorithm is linear, while the
survival update requires solving a quadratic equation for
each component of j [4]. However, based on the analy-
sis in [4] we expect that algorithms based on the ML-JA
complete data to converge more slowly than those based

on ML-JB.

B. The Joint Alternate-Mazimize (JAM) Algorithm

Although the coupling between A and ;i jiin (15) and (16)
makes the necessary maximization for the EM algorithm
difficult, it is quite straightforward to derive a GEM algo-
rithm, we simply alternate between updating A and fi i using
their most recent estimates at each step of the iteration.

Such iterations have been called alternate and maximize
methods and often demonstrate improved asymptotic con-
vergence properties over the EM algorithm [9]. The JAM
iteration takes the form:

~(k ~(k
Ao )oAT((W@y)
o (@®oai® +p)oaTi®, a7
~(k Ak ~(k+1
Aty 1% o (v 0 435 Y)
@ (u(k) @AA( * )+Q))+1n]
o (A" ), (18)

There are two features of particular interest in the above
iteration: (1) the likelihood increases at each step and (2)
it 1s not necessary to perform both emission and survival
updates at each iteration. We typically update the survival
probabilities once for every ten emission updates.

C. Solution Stabilization

Because the tomographic reconstruction problem is ill-
posed, 1t is usually necessary to either constrain the esti-
mates to lie in a subspace consisting of smooth solutions
or penalize estimates that are inconsistant with our prior
notions of the smoothness of emitter or attenuator in the
object.

Here we take the former approach and apply kernel
sleves [10] to constrain both the survival probability es-
timate and the emission estimate. If the true survival
probability and emission intensity are members of their
respective sieves, then this method will result in a joint
maximum-likelihood estimate that is asymptotically unbi-
ased. If, on the other hand, they are not sieve members,
the method will inevitably introduce bias—although hope-
fully, with a correspondingly larger reduction in estimator
variance.

To implement the sieve-constrained reconstruction we
assume the existence of both “pre-emission” and “pre-
survival” spaces and signify individual elements of these
spaces by £ and p respectively. We define the transforma-
tions that take elements of these spaces to corresponding
elements A and g in the desired, constrained spaces by G
and H

>

G
H

I

(19)
By defining the complete pre-emission and pre-survival
data as

2

S

X5y = {({NE ) {Ra} { L5, 1), (20)
where
Q
Yd = ENgq +Rd) (21)
q—l
J‘/jd = Z Ld1 ) (22)

1929



and taking G and H to be Bx @ and D x R matrices, we can
develop the following sieve-constrained JAM algorithm:

A(k+1 Ak ‘
= oetan@oey)
Ak ~(k 3

o (@® a6 + )] o (4Ti®), (23)
(k41 (K
e o
L;(L-+1) — é(k)Q[HT((y@A:/\‘(k*'l))

) (ﬁ(k)®Ai(k+l)+g)+m®ﬁ(k))}

o HT(a+ 4"y, (25)
AT = g, (26)

IV. APPLICATION

We have implemented the JAM algorithm on a Stardent
ST3000 computer system using C in conjunction with the
Application Visualization System (AVS). We have per-
formed preliminary evaluations of the joint estimation
method using simulated PET data.

A PET imaging system having 100 projections of 64 par-
allel rays with an invariant Gaussian projection resolution
of 9 mm FWHM was simulated. The object domain was
an elliptical region circumscribed within a 50x64 6 mm
pixel rectangle. Projection images were generated from
the emission phantoms shown in Fig. 1. The emission im-
age shown in the center simulates a tumor imaging situa-
tion while the image on the right corresponds to cardiac
study. The survival probabilities for all reconstructions
were generated using the phantom on the left in Fig. 1.
We used linear attenuation coefficients of 0.156 cm™? for
bone, 0.095 cm™! for soft tissue, and 0.022 cm™! for lung
tissue.

Figure 2 shows reconstructions from an extreme exam-
ple; there are 2 million total counts in the transmission
scan and 5 million events in the emission data. The ran-
doms fraction of total events in the emission scan is about
2%. The data were reconstructed using 1000 iterations
of the EM algorithm, for the cases in which either the
known survival probabilities or survivals estimated solely
from transmission data were used, or using 1000 iterations
of the JANM algorithm for joint survival-emission estima-
tion. The emission estimates were subjected to a 1.5 pixel
fwhm Gaussian sieve constraint and no survival sieve was
employed. The images on the left in Fig. 2 result from
using the noiseless survival probabilities. Images in the
center were reconstructed using noisy transmission mea-
surements and the JAM algorithm. The images on the
right were reconstructed using the noisy transmission data

Figure 1: Top Row: Left. Map of the attenuation density
in the simulated object. Center. Emission intensity for
tumor simulation. Right. Emission intensity for cardiac
imaging simulation. Bottom Row: Emission intensities
displayed on log scale to enhance low-level detail

and the conventional EM method. Clearly, the joint esti-
mation images are visually better than when the survival
probabilities are not jointly estimated. The survival esti-
mates for the three reconstructions are shown in Fig. 3.
Note the improvement in noise here as well.

To investigate the quantitative performance of joint es-
timation, we used the cardiac phantom (Fig. 1, right) and
the same attenuation distribution as above to generate 30
Poisson realizations each having 3 million emission events
and 3 million transmission events. We reconstructed each
realization using a 1.5 pixel Gaussian kernel sieve and 500
iterations of the appropriate algorithm. Reconstructions of
one realization are shown in Fig. 4 (same order as Fig. 2).
From the 30 reconstructions, we estimated the pixel-wise
mean-squared error in the emission estimate. The square-
root of this error distribution is shiown in Fig. 5. The total
error in each image is: (1) Survivals known exactly: 18700.
(2) Noisy survivals, joint estimation: 27000. (3) Noisy sur-
vivals, emission estimation only: 41000.

V. DISCUSSION AND CONCLUSION

While the simulation results in the previous section are
encouraging, there remain many areas requiring investi-
gation. In particular the JAM algorithm may have con-
siderably poorer convergence properties than algorithms
that estimate the emission intcnsity only. This is no sur-
prise, since there is inherently i Lirger number of degrees-
of-freedom in the joint estimation problem. While conceiv-
ably the EM algorithim we have derived for joint estimation
using complete data ML-JA could be faster, we are not

1930



Figure 2: Top Row: Lelt, Reconstruction of tuimor sim
tion with the survival probabilities known exactly. Center.
Reconstruction jointly estimating survivals. Right. Re-
construction using survival probabilities directly estimated
from transmission measurements. Bottorn Row: Logarith-
mic display of top row.

Figure 3: Left. True survival probabilities.
Jointly estimated survival probabilit

in Fig. 2. Right. Survival estimated solely from ¢
sion data.

s for

wla-

estimated from Lransmissi
Row: Logarithmic display.

Figure 4: Reconstructions of simulated cardiac image. Or-
der is the same as in Fig. 2.

for the sim cardiac image using 30 re-
Top Row: Left. Known survival probabilities.
Joint estirnation.

0 measurements only. Bottom
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encouraged by the fact that in practice the EM method us-
ing the ML-IA complete data converges much more slowly
than its ML-IB counterpart and, moreover, that AM al-
gorithms often exhibit better convergence properties than
do EM methods. In any case, the use of appropriate sieve
constraints should help the convergence properties of all
algorithms.

The accuracy of the model relating the parameters to
the observed data can also be brought into question. Both
the emission scan and transmission scan are typically cor-
rupted by Compton-scatter, which we do not model here,
and additionally, the transmission scan is degraded by ran-
dom coincidences. Although, this can be included in the
joint likelihood model in a straightforward manner, the
questions always arise: Which degradations are most sig-
nificant? How much modeling is too much?

Ultimately, however, we feel that the joint estimation
method and the constrained JAM algorithm we have out-
lined here will prove useful in PET reconstruction. The
method may have the most to offer in thoracic imaging,
where the distribution of attenuator in the object is ex-
tremely heterogeneous and the transmission scan often
noisy due to long attenuation paths.
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