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Nonuniform Fast Fourier Transforms Using
Min-Max Interpolation
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Abstract—The fast Fourier transform (FFT) is used widely
in signal processing for efficient computation of the FT of
finite-length signals over a set of uniformly spaced frequency lo-
cations. However, in many applications, one requires nonuniform
sampling in the frequency domain, i.e., anonuniform FT. Several
papers have described fast approximations for the nonuniform FT
based on interpolating an oversampled FFT. This paper presents
an interpolation method for the nonuniform FT that is optimal in
the min-max sense of minimizing the worst-case approximation
error over all signals of unit norm. The proposed method easily
generalizes to multidimensional signals. Numerical results show
that the min-max approach provides substantially lower approx-
imation errors than conventional interpolation methods. The
min-max criterion is also useful for optimizing the parameters of
interpolation kernels such as the Kaiser–Bessel function.

Index Terms—Discrete Fourier transform, gridding, imaging,
min-max interpolation, magnetic resonance, tomography.

I. INTRODUCTION

T HE fast Fourier transform (FFT) is used ubiquitously in
signal processing applications where uniformly-spaced

samples in the frequency domain are needed. The FFT requires
only operations for an -point signal, whereas
direct evaluation of the discrete Fourier transform requires

operations. However, a variety of applications require
nonuniform sampling in the frequency domain, as has been
recognized for at least 30 years [1]. Examples include radar
imaging [2]–[6], computing oriented wavelets via the Radon
transform [7], computational electromagnetics [8]–[12], and
FIR filter design, e.g., [13]–[15]. Such problems require a
nonuniform Fourier transform[16], yet one would like to
retain the computational advantages of fast algorithms like
the FFT, rather than resorting to brute-force evaluation of the
nonuniform FT.

Our work on this problem was motivated by iterative mag-
netic resonance image (MRI) reconstruction [17]–[20] and by
iterative tomographic image reconstruction methods, where
reprojection is based on the Fourier slice theorem [21]–[28].
These problems relate closely to the problem of reconstructing
a bandlimited signal from nonuniform samples. Strohmer
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argued compellingly for using trigonometric polynomials
(complex exponentials) for finite-dimensional approximations
in such problems [29] and proposed to use an iterative conju-
gate gradient reconstruction method with the nonuniform FFT
(NUFFT) approach of [30] at its core. The min-max NUFFT
approach presented here fits in that framework but provides
higher accuracy. We explore these applications in more detail
elsewhere [20], [28] and focus here on the broadly applicable
general principles.

In the signal processing literature, many papers have dis-
cussed frequency warping approaches for filter design [1], [14],
[15], [31] and image compression [32], [33]. Warping methods
apply only to special patterns of frequency locations and are
insufficiently general for most applications.

In the scientific computing literature, several recent papers
have described methods for approximating the one-dimensional
(1-D) nonuniform FT by interpolating an oversampled FFT, be-
ginning with [34] and including [8], [10], [30], and [35]–[41].
Related methods were known in astrophysics even earlier [42].
Such methods are often called the nonuniform FFT or NUFFT.
Most of these algorithms have been presented only for 1-D sig-
nals, and many involve seemingly arbitrary choices for interpo-
lation functions. This paper starts from first principles to derive
a min-max approach to the interpolation problem. We find the
fixed-width interpolator that minimizes the worst-case approx-
imation error over all signals of unit norm. (Like all NUFFT
methods, the user can trade off computation time and accuracy.)
This method generalizes naturally to multidimensional signals
such as the imaging problems that motivated this work. This
work was inspired by the paper of Nguyen and Liu [40]. We
compare our approach to theirs in detail in Section IV-C.

This work is in the spirit of min-max approaches for other
signal processing problems, such as bandlimited signal interpo-
lation [43]–[49] and filter design [50], [51].

Section II derives the min-max NUFFT method. Section III
describes extensions including multidimensional signals.
Section IV analyzes the approximation error of the min-max
method. Section V compares the min-max method to conven-
tional methods. Section VI gives a practical two-dimensional
(2-D) NUFFT example.

II. THEORY: 1-D CASE

For simplicity, we first describe our min-max approach in the
1-D case. The basic idea is to first compute an oversampled FFT
of the given signal and then interpolate optimally onto the de-
sired nonuniform frequency locations using small local neigh-
borhoods in the frequency domain.
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A. Problem Statement

We are given equally-spaced signal samples, for
, with corresponding FT

(1)

We wish to compute the FT at a collection of (nonuniformly
spaced) frequency locations :

(2)

The symbol “ ” denotes “defined to be.” The s can be ar-
bitrary real numbers. This form has been called the nonuniform
discrete Fourier transform (NDFT) [52, p. 194]. Directly eval-
uating (2) would require operations, which would be
undesirably slow. Fast computation of (2) is called the NUFFT.
This is “Problem 2” in the nomenclature of [34], [40]. Sec-
tions III-F and G discuss alternative problems.

The first step of most NUFFT algorithms is to choose a con-
venient and compute a weighted-point FFT of :

(3)

where is the fundamental frequency of the-point
DFT. The nonzero s are algorithm design variables that have
been called “scaling factors” [40]. We call the
scaling vector. The purpose of is to partially precompensate
for imperfections in the subsequent frequency-domain interpo-
lation. This first step requires operations if imple-
mented efficiently as described in Section III-D.

The second step of most NUFFT methods is to approximate
each by interpolating the s using some of the neighbors of

in the DFT frequency set .
Linear interpolators have the following general form:

(4)

where the s denote interpolation coefficients, “” denotes
complex conjugate, and . The design
problem is choosing the scaling vectorand the interpolators

.
Given the s, an ideal linear “interpolator” could first re-

cover by computing the inverse FFT from
(3) and then computing explicitly the desired FT values
using (2). Specifically, for :

where the ideal interpolator kernel is

(5)

where , and where denotes the following
Dirichlet-like “periodic sinc” function:

(6)

Oversampling is of no benefit to this ideal interpolator. Ap-
plying this ideal interpolator would require operations
and would use all of the s in (4); therefore, it is
impractical.

To contain computational requirements, most NUFFT
methods constrain each to have at most nonzero elements
corresponding to the nearest neighbors to in the set .
With this practical restriction, the interpolation step requires

operations, where .
Define the integer offset as follows:

odd
even.

(7)

This offset satisfies the following shift property:

(8)

Let , denote the possibly nonzero entries
of . Then, the interpolation formula (4) becomes

(9)

where denotes the modulo- operation (ensuring that
is 2 periodic). To apply this formula, one must choose

the interpolation coefficients and compute the
indices . One would like to choose each interpolation

coefficient vector such that
is an accurate approximation to andsuch that

is relatively easy to compute. Dutt and Rokhlin used Gaussian
bell kernels for their interpolation method [34]. Tabei and Ueda
also used such kernels in the specific context of direct Fourier
tomographic reconstruction and included error analyses [53].
For even and odd only, Nguyen and Liu [40] considered
interpolation of the form (9) with a choice for thes that arises
from least-squares approximations of complex exponentials by
linear combinations of other complex exponentials. We propose
next an explicit min-max criterion for choosing thes, with
uniform treatment of both even and oddand using (7).

B. Min-Max Interpolator

We adopt amin-max criterionfor choosing the interpolation
coefficients . For each desired frequency location,
we determine the coefficient vector that minimizes
the worst-caseapproximation error between and
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over all signals having unit norm. Hypothetically, this could
yield shift-variant interpolation since each desired frequency lo-
cation may have its own set of interpolation coefficients.

Both the scaling vector and the interpolators are
design variables, so ideally, we would optimize simultaneously
over both sets using the following criterion:

(10)

As discussed in Section IV, the outer optimization requires nu-
merical methods. Thus, we focus next on optimizing the inter-
polation coefficients for a fixed scaling vector and ad-
dress choice of in Section IV-C.

Mathematically, our min-max criterion is the following:

(11)

Remarkably, this min-max problem has an analytical solution,
as derived next.

From (2) and (9), we have the following expression for the
error:

(12)
Using (3) and (12), this error expression becomes

(13)

where is an -vector with elements

for . In matrix-vector form

(14)

where diag , “ ” denotes Hermitian transpose, is
a diagonal matrix, is a matrix, is a
diagonal matrix, and is a -vector with respective entries

(15)

(16)

(17)

(18)

(We chose these definitions with considerable hindsight to sim-
plify subsequent expressions.)

In this form, the min-max problem (11) becomes

(19)

By the Cauchy-Schwarz inequality, for a given frequency, the
worst-case signal is , i.e.,

Inserting this case into the min-max criterion (19) and applying
(14) and (15) reduces the min-max problem to the following (cf.
[40, eqn. 10]):

(20)

The minimizer of this ordinary least-squares problem for
is where

(21)

(since is unitary). This is a general expression for the
min-max interpolator. Due to the shift property (8) and the
definitions of and , we see

(22)

Therefore, the min-max interpolator is-periodic and “shift in-
variant” in the sense appropriate for periodic interpolators.

To apply the min-max interpolator (21), we must compute the
interpolation coefficients for each frequency location
of interest. One method for computing (21) would be to use the
following QR decomposition:

(23)

where is a matrix with orthogonal columns, andis
an upper triangular invertible matrix. Since is independent
of frequency location, we could precompute its QR decomposi-
tion and then precompute the matrix product . We could
then compute the interpolation coefficients by substituting (23)
into (21), yielding

(24)

After precomputing , this approach would require 2
operations per frequency location. These operations are inde-
pendent of , so this approach may be reasonable when one
needs apply repeated NUFFT operations for the same set of
frequency locations. (This mode is discussed further below.)
However, the next subsection shows that if we use an-term
Fourier series for the s, then we can reduce precomputation
to operations per frequency location. Usu-
ally, ; therefore, the savings can be significant
for small . However, very high accuracy computations may
require large , in which case, the above QR approach may be
preferable.

C. Efficient Computation

An alternative expression for the interpolator (21) is

(25)

where we define

(26)

(27)
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Fortuitously, the matrix is independent of fre-
quency sample location, so its inverse can be precomputed.

To facilitate computing , we expand the s in terms
of a (usually truncated) Fourier series

(28)

The natural fundamental frequency corresponds to ,
but we consider the general form above since orthogonality is
not required here, and can be a design parameter. We assume
that the s are Hermitian symmetric, i.e., . We repre-
sent the coefficients by the vector . As one
special case of (28), the “cosine” scaling factors considered in
[40] correspond to and . For ,
there is no loss of generality in using the expansion (28). This
expansion generalizes significantly the choices of scaling fac-
tors considered by Nguyen and Liu in [40] and can improve ac-
curacy significantly, as shown in Section IV-C. Nguyen and Liu
referred to matrices of the form as ( , , ) reg-
ular Fourier matrices[40].

Combining (28) and (26) with (16) yields

(29)

for , , where was defined in (6).
The following properties of are useful. From (26), is

Hermitian, and from (29), is Toeplitz. In the usual case where
the s are real, is a real matrix. If and , then

.
Conveniently, in this min-max framework the matrix-vector

product defining in (27) also simplifies

(30)

for . This is a Dirichlet-like function of the dis-
tances between the desired frequency location and the nearest
points in the set .

In the usual case where thes are real, the vector is
real. Therefore, the only complex component of the min-max
interpolator in (25) is the complex phases in . By
(17), these phases coincide with the linear phase of the ideal
interpolator (5).

To summarize, we compute the min-max interpolation co-
efficients in (25) for each using the analytical results (29)
and (30). Since is only , where is usually
less than 10, we always precomputein (26) prior to all other
calculations.

As described next, there are a few natural methods for using
the above formulas, depending on one’s tradeoff between
memory and computation.

D. Precomputed Mode

In problems like iterative image reconstruction, one must
compute the NUFFT (2) several times for the same set of
frequencies but for different signals . In such cases, it is
preferable toprecomputeand store all of the interpolation
coefficients , if sufficient fast memory is available, and
then apply (9) directly to compute the NUFFT as needed.

Precomputing each using (25) requires only
operations. A key property of (29) and (30) is that

they collapse the summations overinto the easily computed
function , thereby significantly reducing the precomputation
operations.

After precomputing each , every subsequent NUFFT
interpolation step (9) requires only operations. Ex-
cluding the precomputation, the overall operation count per
NUFFT is . An accuracy-computation
time tradeoff is available through the choices for the oversam-
pling factor and the neighborhood size. Typically, we
use , , , and ; therefore, the
overall computational requirements are akin to an FFT but with
a larger constant. The larger constant is an unavoidable conse-
quence of needing accurate nonuniform frequency samples!

E. Reduced Memory Mode

In unusual cases where storing all coefficients is infea-
sible, one can evaluate each as needed using (25), (30),
and the precomputedin (26). In this mode, the operation count
for the NUFFT interpolation step increases to

, but the storage requirements for the interpolator decrease
to .

Alternatively, one could decrease the interpolation operation
count to roughly 2 by finely tabulating over a uni-
form grid (cf. Fig. 1) and using table lookup with polynomial
interpolation to determine the s “on the fly.” This ap-
proach reduces both storage and interpolation operations but
presumably decreases accuracy.

Table I summarizes these various modes.

F. “Large” Interpolator

The dependence of the interpolator on the signal-length
can be inconvenient since it would seem to necessitate designing
a new interpolator for each signal length of interest. To sim-
plify the design, we consider hereafter cases whereis “large.”
These are, of course, the cases where fast algorithms are partic-
ularly desirable.

Defining , from (6), one easily sees that

sinc
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TABLE I
COMPUTEOPERATIONS ANDINTERPOLATORSTORAGEREQUIREMENTS FORVARIOUS MODES, DISREGARDINGSMALL FACTORSINDEPENDENT OFM

Fig. 1. Illustration of the min-max interpolator corresponding to (33) forJ =
6,N = 128,K=N = 2 and uniform scaling factors.

where sinc . Therefore, for large , ,
where

sinc (31)

Similarly, , where

sinc (32)

Combining these with (25), the interpolator we consider here-
after is

(33)

From (29) and (30), the maximum argument ofis 2
and typically is less than 30. From (6), as long as this argument
is much smaller than , the sinc approximation will be very
accurate. For example, even foras small as 32, the sinc and

differ by less than 1% for arguments less than 30. Thus,
focusing on the sinc-based interpolator (33) is very reasonable.

G. Effective Interpolation Kernel

Most interpolation methodsstart with a specific functional
form for the kernel, such as a Gaussian bell or B-spline. In

contrast, we have started with only the min-max criterion and
no other constraints, except using thenearest neighbors.
Consider the case of uniform scaling factors ( so that

and ). To visualize the min-max interpolator
(33), we can vary over the interval [ , ] and
evaluate using (33), yielding real functions such as
those shown in Figs. 1 and 2 for the cases and ,
respectively, using . The figures also show (part of) a sinc
interpolator [cf. (5)] for comparison. For even, the min-max
interpolator is not differentiable at integer arguments. For odd,
the min-max interpolator has discontinuities at the midpoints
between DFT samples since the neighborhood changes at
that point (cf (7)). These properties depart significantly from
classical interpolators, but they need not be surprising since
regularity was not part of the min-max formulation.

Although we have not attempted to prove this analytically, we
have found empirically that the interpolation coefficient vector

seems to satisfy the property that is close to unity
(particularly as increases). This is an expected property of
interpolators, but our formulation did not enforce this constraint
a priori. Interestingly, it seems to have arisen naturally from the
min-max framework. With uniform scaling factors ( ), the
kernel also satisfies the property that it is unity at and
zero at each other . This expected property follows directly
from the min-max formulation.

III. EXTENSIONS AND VARIATIONS

This section describes some extensions to the min-max
NUFFT developed above.

A. Multidimensional NUFFT

The extension of the min-max method to two dimensions and
higher is conceptually very straightforward. In 2-D, we over-
sample the 2-D FFT in both directions and precompute and store
the min-max interpolator for each desired frequency location
using the nearest sample locations. The storage require-
ments are if the interpolation coefficients are precom-
puted. Precomputing the interpolator involves simple Kronecker
products of the 1-D interpolators. Specifically, for a 2-D image,
if we use a neighborhood, with oversampling factors

and in the two dimensions, respec-
tively, then the matrix in (31) becomes a Kronecker product
(denoted “ ”):

(34)
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Fig. 2. Illustration of the min-max interpolator corresponding to (33) forJ =
7,N = 128,K=N = 2, and uniform scaling factors.

as does the vector in (32):

(35)

Subroutines for Matlab are freely available online.1

B. Shifted Signals

Applications often need a “shifted” version of (1):

(36)

Incorporating the phase term into the precomputed inter-
polation coefficients induces this shift efficiently.

C. Adaptive Neighborhoods

In the approach described above, the same numberof
neighboring DFT samples is used for each frequency location

of interest. This simplifies implementation but is subop-
timal in terms of both memory and computation. Some of the

s are likely to fall very close to the DFT samples in the set
and for those locations, a smaller value ofmay suffice

(depending on ; see Fig. 6). An interesting extension would
be to specify a maximum error tolerance and then, for each

, use the smallest that guarantees that error tolerance,
assuming that one has made a reasonable choice for.

In higher dimensions, one could consider using nonsquare
neighborhoods, e.g., approximate balls.

D. Reduced FFT

Since (3) corresponds to an oversampled FFT, when is
an integer, one can evaluate (3) by combining invocations
of an -point FFT routine, reducing the operation count for (3)

1http://www.eecs.umich.edu/~fessler

from to . As a concrete example, if
, then

even

odd.

(37)
One can evaluate each of these two expressions using an

-point FFT. In general, one needs FFTs, where
the modulation needed for the th FFT is ,

.

E. Adjoint Operator

Since the NUFFT method described above is a linear oper-
ator, it corresponds implicitly to some matrix, say . In
other words, we can express (3) and (9) in matrix-vector form
as , where , where was defined below
(14), is the oversampled DFT matrix with elements

, and is the (sparse) interpolation ma-
trix with elements . (This matrix representation is for anal-
ysis only and not for implementation.) For iterative image recon-
struction algorithms, one also needs theadjoint of the NUFFT
operator, i.e., one must perform matrix-vector multiplications
of the form for some vector . Since itself is too
large to store in the imaging problems of interest and since di-
rect matrix-vector multiplication would be computationally in-
efficient, we must evaluate by “reversing” (not
inverting!) the algorithm steps described in Section II.

The adjoint corresponding to (4), i.e., the term, is

(This step is akin to “gridding.”) When the (sparse) interpola-
tion matrix is precomputed and stored, this interpolation step
requires operations. For (3), i.e., for , the adjoint is

which is the -point inverse DFT of scaled by , dis-
carding all but the first signal values. This step requires

operations. One can reduce this to
by using the adjoint of the reduced FFT (37). The final step for

is to scale each by .

F. Nonuniform Inverse FFT

By duality, i.e., by changing the sign in the exponent of (1),
one could apply the min-max approach to cases where one has
uniformly-spaced frequency samples and wants to evaluate the
inverse FT on a nonuniform set of spatial locations. Given,

corresponding to frequencies , we can
compute

(38)

using the same type of approach with min-max interpolation.
This is again “Problem 2” in the terminology of [34] and [40].
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G. Inverse NUFFT

The formulation (2) is called “Problem 2” in the terminology
of [34] and [40]. We view the imaging problems that motivated
this work as being theinverseof (2). For example, in magnetic
resonance imaging with non-Cartesian-space trajectories, we
are given nonuniform samples in the spatial-frequency domain
and want to reconstruct uniformly-spaced object samples. In
other words, the s are given, and we must find thes.
One can formulate such applications asinverse problemsin a
maximum-likelihood or penalized-likelihood framework, e.g.,
[54]. For example, a least-squares formulation would be

where was defined in Section III-E. Lee and Yagle analyze
the conditioning of such problems [55]. Lacking an efficient
method for solving this inverse problem directly (for large),
one applies iterative algorithms. These iterative algorithms re-
quire repeated calculation of the “forward problem” (from ob-
ject space to frequency space and the adjoint thereof) [18]–[20],
[28], [56]. Those forward problems are exactly of the “Problem
2” type addressed in this paper; therefore, the methods herein
enable fast and accurate iterative solutions to “inverse NUFFT”
problems.

In yet another family of problems, one would like to compute
an expression of the form

(39)

where the s of interest are uniformly spaced, but the givens
are not. This is called “Problem 1” in [34] and [40]. It has been
called “the Fourier transform of nonuniformly spaced data,” al-
though it differs from the usual Fourier transforms considered
in signal processing. One can use NUFFT methods to compute
accurate approximations to (39) [34], [40]. Such methods are
known as “gridding” in the imaging literature, e.g., [25]. The
interpolator proposed in this papermaybe useful for (39), but
here, we have been unable to formulate any claim of optimality.
In the context of imaging problems known to us, we believe that
iterative inverse NUFFT approaches will improve image quality
relative to formulations of the form (39), albeit at the expense
of greater computation. Nevertheless, there may be other appli-
cations where “Problem 1” is the natural formulation, and for
these problems, we recommend the general guidelines provided
in reviews like [41].

IV. ERRORANALYSIS

Combining (20) and (21) and simplifying yields the following
expression for the worst-case error at frequency:

(40)

where was defined in (23). The errorboundsgiven in NUFFT
papers are often described as pessimistic. In contrast, theexact
worst-case error given by (40) is achievable. Of course, the
unit-norm signal that achieves this worst-case error may not be

representative of many problems of interest; therefore, the “typ-
ical” performance may appear better than (40).

Alternatively, combining (25) and (20) yields

(41)

When , the simpler form (41) is usually ad-
equate. For larger , the subtraction within the square root is
numerically imprecise, so we revert to (40).

To simplify analysis for modest values of, one can use the
“large ” approximations (31) and (32) and normalize out the

dependence. Specifically, the following approximation is
usually very accurate:

(42)

We focus on this normalized error hereafter when
.

Due to the shift-invariance property (22), the error is
periodic with period . One can also show that has a local
extremum when is midway between the nearest two DFT sam-
ples . Themaximumerror

(43)

usually occurs either at the midpoint between DFT samples or
at the DFT samples themselves. (See Fig. 6 for examples.) Un-
fortunately this does not always hold, so we apply numerical
methods to evaluate (43). We begin with the simplest case: uni-
form scaling factors ( ).

A. Uniform Scaling Factors

Fig. 3 plots for a variety of choices of neighborhood
size and oversampling factor for uniform scaling fac-
tors ( ). As expected, increasing or reduces the
error with diminishing returns as increases. By examining
many such curves, we fit the following empirical formula for the
error:

(44)

This might serve as a guide for choosingand .
To create Fig. 3, we used (40) because for large values of

and , the matrix becomes very poorly conditioned,
and (41) becomes numerically inaccurate. Using a truncated
SVD to compute the pseudo-inverse of did not seem to
help.

B. Multidimensional Case

Using (34) and (35), the 2-D error has the form

where and denote the 1-D errors in (42). This gives an
upper bound on the potential accuracy “penalty” in 2-D rela-
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Fig. 3. Maximum errorE of min-max interpolator with uniform scaling
vector (sss = 1) for various neighborhood sizesJ and oversampling factors
K=N .

Fig. 4. Maximum errorE as a function of� for L = 1 and� = 1.
Since the minimum is not at� = 0, uniform scaling factors are suboptimal.

tive to 1-D. It also suggests that tensor products of good 1-D
min-max interpolators should work well in higher dimensions;
therefore, we can focus the efforts in optimizingand on the
1-D case.

C. Choice of Scaling Factors

Both and in the error expression (42) depend on the
choice of scaling vector, as seen in (31) and (32). Returning to
(10), ideally we would like to choose the scaling factors using
the following criterion:

Unfortunately, an analytical solution to this optimization
problem has proven elusive. For the ideal interpolator (5),
uniform scaling factors are optimal. (In fact, the s are

Fig. 5. Maximum errorE as a function of� for L = 2 and� = 1.

TABLE II
COEFFICIENTS IN(28) OF CONVENTIONAL AND NUMERICALLY OPTIMIZED

SCALING FACTORS FORK=N = 2

irrelevant.) Intuition suggests that for good interpolators, the
s should be fairly smooth, so a low-order expansion in (28)

should be adequate. (This is consistent with the smooth choices
that have been used in the literature, e.g., [34], [37], and [40].)
Using the series expansion (28) and denoting the dependence
of on the Fourier series coefficients and on , for a
given , we would like to solve

Lacking an analytical solution, we have explored this
minimization numerically using brute-force global search
for small values of by searching jointly over and

. For example, for the case ,
, and , we searched jointly over and in

. The best was 0.19, and Fig. 4 plots versus
for that . The minimizer is , rather than 0, so

clearly, uniform scaling factors are suboptimal. Because the
minimum in Fig. 4 is sharp, this minimization required a fine
search, so such extra effort is warranted only when one needs
many NUFFTs for the same and . We also investigated
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complex values for and found that the minimizer was always
a real-valued .

For , , and , we numerically
minimized over , , and . The
minimizer was and . Fig. 5
shows versus . Again, in the
neighborhood of the minimum, can be fairly sensitive to

.
Table II summarizes the optimizeds and s for these and

other cases.
Fig. 6 compares the accuracy of these optimized min-max

interpolators to uniform scaling factors and to the cosine scaling
factors emphasized in [40]. As acknowledged by Nguyen and
Liu, “the cosine scaling factors … are by no mean[s] the “best”
ones,” which is a point that Fig. 6 confirms. We found in many
such experiments (for a variety ofs and s) that uniform
scaling factors yielded consistently lower errors than cosine
scaling factors.2

The shapes of the curves in Fig. 6 are noteworthy. Uniform
scaling factors yield zero error at the DFT samples and peak
error at the midpoints. In contrast, optimized scaling factors tend
to balance the error at the DFT samples and at the midpoints.
We expect that the latter property will be preferable in prac-
tice, since the desired frequency locations often have essentially
random locations; therefore, there is little reason to “favor” the
DFT sample locations.

The interpolators shown in Figs. 1 and 2 were for uniform
scaling factors. Fig. 7 shows the effective interpolators for the
optimized s described above for 1, 2. The optimized in-
terpolators ( 1, 2) have lower sidelobes than the uniform
case ( ) and are not unity at zero nor zero at other DFT
samples.

Our emphasis here has been on worst-case error, and the
error values given in Fig. 3 differ from those reported in
[40]. This “discrepancy” has two explanations. First, we
consider “Problem 2” in (2), whereas the figures in [40] are
for “Problem 1.” These problems may have different error
properties. Second, the errors reported in [40] and related
papers are for particular experiments involving pseudo-random
data and sample locations; the characteristics of such data may
differ considerably from the “worst-case” signalconsidered
in the analysis here. Apparently, one must be cautious about
generalizing accuracies reported in particular experiments.

V. CONVENTIONAL INTERPOLATORS

The preceding error analysis was for min-max interpolation.
To enable comparisons, this section analyzes the worst-case
error of conventional shift-invariant interpolation.

Let denote a finite-support interpolation kernel satis-
fying for . Assume . Conventional
interpolation has the following form:

(45)

2There is an error in the second to last equation on [40, p. 292] regarding
uniform scaling factors.

Fig. 6. Worst-case errorE(!) for various scaling vectors���. The “cosine”
scaling factors are inferior to uniform scaling factors. Optimizing��� significantly
reduces error.

Fig. 7. Effective min-max interpolator forJ = 6 andK=N = 2 for optimized
��� and�.

where was defined in (3), and denotes the -periodic and
phase-modulated (cf. (5)) version of:

A. Min-Max Error Analysis

Mimicking (13), the error for interpolator (45) is

where diag , is defined as in (18), and
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Akin to (19), the worst-case unit-norm signal is
, so the worst-case error for frequency, normal-

ized by , is

(46)

Expanding, an alternate expression is

(47)

where

(48)

Since has period unity, is -periodic. Thus, we focus
on for , for which

For odd , the summation limits are to .
For a given interpolation kernel, ideally, we would like to

choose the scaling factorsto minimize themaximumerror via
the following min-max criterion:

This maximization over seems intractable. One practical “do
no harm” approach would be to minimize the worst-case error
at the DFT frequency locations:

(49)

Considering (47), the solution to (49) is simply

(50)

If the kernel satisfied the classical interpolation properties
and for , then (50) would reduce to

uniform scaling factors ( ).
One calculates the worst-case error of conventional interpo-

lators of the form (45) by substituting (50) into (47). Since (47)
approaches a finite limit as , we again focus on this
“large ” approximation.

With the choice (50), for all , and we
have observed empirically that the maximum error occurs at the
midpoints between the DFT frequencies , as expected. We
conjecture that if is Hermitian symmetric about zero, then

has a stationary point at for the choice (50).
Lacking a proof, we compute numerically the maximum error

.

B. Aliasing Error Analysis

The error formula (47) is convenient for computation but
seems to provide little insight. Here, we summarize an alternate
form for the error that is somewhat more intuitive, following
related analyses of “gridding” methods, e.g., [25] and [41].

Since is -periodic, it has a Fourier series expansion of the
form

(assuming sufficient regularity), where thes are samples of
the inverse Fourier transform of:

Substituting into (45)

(51)

Viewed in this form, the natural choice for the scaling factors
is the following (assuming theses are nonzero):

(52)

for . For this choice, the error is

For this error to be small, we want to choosesuch that the
Fourier series coefficients are small for .
Since has finite support [ , ], the s cannot all be
zero, so one must chooseconsidering the usual time-frequency
tradeoffs.

C. Comparisons of Min-Max to Conventional

The purpose of the preceding analysis was to enable a fair
comparison of the min-max interpolator (33) with conventional
interpolators (45) while using good scaling factors for the latter.
The following subsections report comparisons with Dirichlet,
Gaussian bell, and Kaiser-Bessel interpolators.
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1) Apodized Dirichlet: The apparent similarity in Fig. 1
between the min-max interpolator and the (truncated) ideal
Dirichlet interpolator (5) raises the question of how well a
simple truncated Dirichlet interpolator would perform. Using
(43) and (47), Fig. 8 compares the maximum error for the
min-max interpolator and for the truncated Dirichlet inter-
polator rect , for , where rect is
unity on ( 1/2, 1/2) and zero otherwise. Fig. 8 also shows
the -tapered Dirichlet interpolator proposed in [57] and
[58]. Both uniform scaling factors and numerically optimized

s were used for the min-max case. Min-max interpolation
can yield much less error than truncated or tapered Dirichlet
interpolation. The seemingly minor differences in Fig. 1 can
strongly affect maximum error!

2) Truncated Gaussian Bell:Many NUFFT papers have fo-
cused on truncated Gaussian bell interpolation using

rect

For fair comparisons, for each, we optimized the Gaussian
bell width parameter using (47) by exhaustive search. We in-
vestigated both (50) and (52) as the scaling factors and found the
latter to provide 10–45% lower maximum error; therefore, we
focused on (52). Empirically the min-max width agreed closely
with the approximation .

Fig. 9 compares the worst-case error of min-max interpola-
tion and optimized Gaussian bell interpolation. Errors for the
min-max method are shown for both uniform scaling factors and
least-squares fit scaling factors, as described next.

Choosing the scaling vector by exhaustive minimization of
becomes more tedious asincreases, and the presence

of sharp local minima (cf. Fig. 5) is a challenge for local de-
scent methods. We found the following approach to be a useful
alternative. After optimizing the width for the Gaussian bell
interpolator, we compute its scaling factors using (52). Then, we
use ordinary least-squares linear regression with in (28)
to find a for (28) that closely matches the optimized Gaussian
bell scaling factors. Then, we use thatin (43) to compute the
error of this “optimized” min-max interpolator. An example is
shown in Fig. 9. This approach reduces the nonlinear part of the
search from an -dimension search overto a 1-D search over
the Gaussian bell width. Again, this process is practical only
when one plans to perform many NUFFTs for the sameand

. (Clearly, analytical optimization offor the min-max ap-
proach would be preferable.)

Fig. 9 illustrates several important points. First, the min-max
interpolator with simple uniform scaling factors has comparable
error to the exhaustively-optimized Gaussian bell interpolator.
Second, optimizing the scaling factors very significantly re-
duces the min-max interpolation error, outperforming both the
Gaussian bell interpolator and the min-max interpolator with
uniform scaling factors. Third, for , exhaustive opti-
mization of with yields comparable maximum error
to the simpler least-squares fit (using ) to the optimized
Gaussian bell scaling factors (50), so the latter approach may
be preferable in the practical use of the min-max method.
However, even better results would be obtained if there were
a practical method for optimizing for .

Fig. 8. Maximum error E of truncated Dirichlet interpolator, of
cos -tapered Dirichlet interpolator, of linear interpolator (J = 2), and of
min-max interpolator for various neighborhood sizesJ and for oversampling
factor K=N = 2. Despite similarities in Fig. 1, the min-max approach
significantly reduces error relative to a truncated or tapered Dirichlet.

Fig. 9. Maximum errorE of min-max interpolators and truncated Gaussian
bell interpolator versus neighborhood sizeJ for oversampling factorK=N = 2.
For eachJ , the Gaussian bell width� was optimized numerically by exhaustive
search to minimize worst-case error. Three choices of scaling factors (s s) for
the min-max method are shown: uniform, numerically optimized, and LS fit of
(28) to optimized Gaussian bell (s s) given by (50).

3) Kaiser–Bessel:An alternative to the Gaussian bell inter-
polator is the generalized Kaiser-Bessel function [59], [60]

where denotes the modified Bessel function of order, and

otherwise.
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Fig. 10. Maximum errorE of Kaiser–Bessel interpolator versus orderm
for � = 2:34J . Surprisingly, the minimum is nearm = 0.

The width of this function is related to the “shape parameter”
. This function is popular in “gridding” methods for imaging

problems, e.g., [61], but has been largely ignored in the general
NUFFT literature to our knowledge.

Again, for fair comparisons, we used (43) and (46) to op-
timize both the order and numerically to minimize the
worst-case error. Initially, we had planned to use since
this provides continuity of the kernel and its first derivative at
the endpoints . However, we found numerically that
the min-max optimal order is near . This property is il-
lustrated in Fig. 10. Choosing reduces the maximum
error by a factor of more than 10 relative to the “conventional”

choice. For , we found that the optimal was
about 2.34 for . Fig. 11 shows examples.

For the scaling factors, we compared the “do no harm” choice
(50) to the Fourier choice (52), i.e., , where
[59]

where (for the 1-D case), ,
, and , where denotes

the Bessel function of the first kind of order. The Fourier
choice (52), which is conventional in gridding methods, yielded
about 25–65% lower errors than (50) for .

Fig. 12 compares the maximum errors of the (optimized)
Kaiser-Bessel interpolator, the (optimized) Gaussian bell
interpolator, and a few min-max interpolators. We investigated
three choices of scaling factors: uniform, the numerically
optimized choices for shown in Table II, and a third case
in which we used the scaling factors computed by least-squares
fit of (28) with and to the Kaiser–Bessel scaling
factors from (52).

As expected, the min-max interpolator yields lower errors
than both the optimized Gaussian bell and the optimized
Kaiser–Bessel interpolators. For the choices of scaling fac-
tors investigated here (particularly the least-squares fitting

Fig. 11. Maximum errorE of Kaiser–Bessel interpolator versus width
parameter� for m = 0.

Fig. 12. Maximum errorE of min-max interpolators, truncated Gaussian
bell interpolator (with numerically optimized width), and Kaiser–Bessel
interpolator (with numerically optimized shape) versus neighborhood sizeJ
for oversampling factorK=N = 2. Three choices of scaling factors (s s) for
the min-max method are shown: uniform, numerically optimized forL = 2,
and LS fit of (28) to optimized Kaiser-Bessels s given by (50).

approach), the reduction in error relative to the Kaiser–Bessel
interpolator is 30–50% for . It is plausible that larger
error reductions would be possible if a practical method for
optimizing the scaling parameters (e.g.,for larger ) were
found. Lacking such a method, it seems that the Kaiser-Bessel
interpolator, with suitably optimized parameters, represents a
very reasonable compromise between accuracy and simplicity.

From Fig. 12, one sees that is sufficient for single-pre-
cision (10 ) accuracy in the min-max sense. (Practical prob-
lems are usually not worst case, so is probably overkill.)
For and , using Matlab’s command,
we found that the interpolation step (with precomputed coef-
ficients) required roughly twice the CPU time required by the
oversampled FFT step.
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Fig. 13. Optimized Kaiser–Bessel (m = 0, � = 2:34J) and Gaussian bell
(� = 1:04) interpolation kernels forJ = 10.

Fig. 13 compares the shape of the optimized Kaiser–Bessel
and Gaussian bell interpolation kernels. Superficially, the ker-
nels appear to be very similar, but can provide errors
on the order of 10 with the Kaiser–Bessel kernel; therefore,
even subtle departures in the kernel shape may drastically affect
the interpolation error.

VI. 2-D EXAMPLE

To illustrate the accuracy of the NUFFT method in a practical
context, we considered the classical 128128 Shepp–Logan
image [62], [63]. We generated 10 000 random frequency lo-
cations ( s) in and computed the 2-D
FT exactly(to within double precision in Matlab) and with the
min-max 2-D NUFFT method with and . The
relative percent error

was less than 0.14% when uniform scaling factors were used and
less than 0.011% when the optimized scaling factors for
in Table II were used and less than 2.110 when the scaling
factors were based on least-squares fits to Kaiser–Bessel scaling
factors, as described in Section V-C3. These orders-of-magni-
tude error reductions are consistent with the reductions shown
in Figs. 3 and 12 and confirm that minimizing the worst-case
error can lead to significant error reductions even with prac-
tical signals of interest. The exact FT method required more
than 100 times the CPU time of the NUFFT method, as mea-
sured by Matlab’s functions. For comparison, clas-
sical bilinear interpolation yields a relative error of 6.7% for
this problem. This large error is why linear interpolation is in-
sufficiently accurate for tomographic reprojection by Fourier
methods. The NUFFT approach with optimized min-max inter-
polation reduces this error by four orders of magnitude.

VII. D ISCUSSION

This paper has presented a min-max framework for the in-
terpolation step of NUFFT methods. This criterion leads to a
novel high-accuracy interpolator and aids in the optimization
of the shape parameters of conventional interpolators as well.
These optimized interpolators for the NUFFT have applications
in a variety of signal processing and imaging problems where
nonuniform frequency samples are required.

The min-max formulation provides a natural framework for
optimizing the scaling factors when expressed using an appro-
priate Fourier series. This optimization led to considerably re-
duced errors compared with the previously considered uniform
and cosine scaling factors [40]. Optimizing the scaling factors
further remains an challenging open problem; perhaps iterations
like those used in gridding [61], [64] are required.

Based on the results in Fig. 12, we recommend the following
strategies. In applications where precomputing and storing
the interpolation coefficients is practical and where multiple
NUFFTs of the same size are needed, such as for iterative re-
construction in the imaging problems that motivated our work,
using the proposed min-max approach with scaling factors fit
to the Kaiser–Bessel s provides the highest accuracy of the
methods investigated and, therefore, allows the reduction of the
neighborhood size and, hence, minimization of computation
per iteration. On the other hand, if memory constraints preclude
storing the interpolation coefficients, then based on Figs. 9 and
12, we see that a Gaussian bell or Kaiser–Bessel interpolator,
suitably optimized, provides accuracy comparable to the
min-max interpolatorif one is willing to use a modestly larger
neighborhood .

Alternatively, one could finely tabulate any of these interpo-
lators and use table lookup (with polynomial interpolation) to
compromise between computation and storage. The accuracy of
such approaches requires investigation.

One remaining open problem is that the matrix be-
comes ill-conditioned as increases beyond about 10 (likewise
for , at least for the optimized scaling factors). Since
is small, we currently use a truncated SVD type of pseudo-in-
verse when such ill-conditioning appears. Perhaps a more so-
phisticated form of regularization of its inverse could further
improve accuracy.

Several generalizations of the method are apparent. We have
used the usual Euclidian norm in our min-max formula-
tion (10). In some applications, alternative norms may be useful.
The general theory accommodates any quadratic norm; how-
ever, whether simplifications of the form (29) and (30) appear
may depend on the norm.

Another possible generalization would be to usedifferent
scaling factors for the two FFTs in (37). It is unclear how much,
if any, error reduction this generalization could provide, but the
additional computational cost would be very minimal.

Although detailed analyses of the errors associated with
NUFFT methods for “Problem 1” are available, e.g., [41],
to our knowledge, no provably optimal interpolator has been
found for Problem 1; therefore, this remains an interesting open
problem.
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Finally, one could extend the min-max approach to related
transforms such as Hankel and cosine [12], [65].
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