560 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 2, FEBRUARY 2003

Nonuniform Fast Fourier Transforms Using
Min-Max Interpolation

Jeffrey A. FesslerSenior Member, IEEEand Bradley P. SuttqgriMember, IEEE

Abstract—The fast Fourier transform (FFT) is used widely argued compellingly for using trigonometric polynomials
in signal processing for efficient computation of the FT of (complex exponentials) for finite-dimensional approximations
finite-length signals over a set of uniformly spaced frequency lo- in such problems [29] and proposed to use an iterative conju-

cations. However, in many applications, one requires nonuniform . . . .
sampling in the frequency domain, i.e., aonuniform FT. Several gate gradient reconstruction method with the nonuniform FFT

papers have described fast approximations for the nonuniform FT (NUFFT) approach of [30] at its core. The min-max NUFFT
based on interpolating an oversampled FFT. This paper presents approach presented here fits in that framework but provides
an interpolation method for the nonuniform FT that is optimal in higher accuracy. We explore these applications in more detail

the min-max sense of minimizing the worst-case approximation g|sewhere [20], [28] and focus here on the broadly applicable
error over all signals of unit norm. The proposed method easily S
general principles.

generalizes to multidimensional signals. Numerical results show 3 . ) )
that the min-max approach provides substantially lower approx- In the signal processing literature, many papers have dis-
imation errors than conventional interpolation methods. The cussed frequency warping approaches for filter design [1], [14],

min-max criterion is also useful for optimizing the parameters of [15], [31] and image compression [32], [33]. Warping methods
interpolation kernels such as the Kaiser—Bessel function. apply only to special patterns of frequency locations and are
Index Terms—Discrete Fourier transform, gridding, imaging, insufficiently general for most applications.

min-max interpolation, magnetic resonance, tomography. In the scientific computing literature, several recent papers
have described methods for approximating the one-dimensional
I. INTRODUCTION (1-D) nonuniform FT by interpolating an oversampled FFT, be-

_ _ o ~ginning with [34] and including [8], [10], [30], and [35]-[41].
T HE fast Fourier transform (FFT) is used ubiquitously ifRejated methods were known in astrophysics even earlier [42].
signal processing applications where uniformly-spaceg|,ch methods are often called the nonuniform FFT or NUFFT.
samples in the frequency domain are needed. The FFT requiffisst of these algorithms have been presented only for 1-D sig-
only O(N log N) operations for anV-point signal, whereas pa|s, and many involve seemingly arbitrary choices for interpo-
direct evaluation of the discrete Fourier transform requirggion functions. This paper starts from first principles to derive
O(N?) operations. However, a variety of applications requirg min-max approach to the interpolation problem. We find the
nonuniform sampling in the frequency domain, as has begged-width interpolator that minimizes the worst-case approx-
recognized for at least 30 years [1]. Examples include radgfation error over all signals of unit norm. (Like all NUFFT
imaging [2]-[6], computing oriented wavelet.s via the Radopethods, the user can trade off computation time and accuracy.)
transform [7], computational electromagnetics [8]-{12], anfhis method generalizes naturally to multidimensional signals
FIR filter design, e.g., [13]-[15]. Such problems require gych as the imaging problems that motivated this work. This
nonuniform Fourier transform{16], yet one would like t0 \york was inspired by the paper of Nguyen and Liu [40]. We

retain the computational advantages of fast algorithms lik@mpare our approach to theirs in detail in Section IV-C.
the FFT, rather than resorting to brute-force evaluation of theThjs work s in the spirit of min-max approaches for other

nonuniform FT. _ o signal processing problems, such as bandlimited signal interpo-
Our work on this problem was motivated by iterative magation [43]-[49] and filter design [50], [51].

netic resonance image (MRI) reconstruction [17]-[20] and by gection 11 derives the min-max NUFFT method. Section Il

iterative tomographic image reconstruction methods, whefigscribes extensions including multidimensional  signals.

reprojection is based on the Fourier slice theorem [21]-[28ection IV analyzes the approximation error of the min-max
These problems relate closely to the problem of reconstructipgsinod. Section V compares the min-max method to conven-
a bandlimited signal from nonuniform samples. Strohmenal methods. Section VI gives a practical two-dimensional
(2-D) NUFFT example.
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A. Problem Statement where the ideal interpolator kernel is
We are given equally-spaced signal sampigs for n = A e N
0,...,N — 1, with corresponding FT I(k) = e "0?5N('€) (5)
N-1 wheren, £ (N —1)/2, and where () denotes the following
X(w) = Z Tpe . (1) Dirichlet-like “periodic sinc” function:
n=0 L Nl
We wish to compute the FT at a collection of (nonuniformly on (k) éﬁ Z etrsin=m)
spaced) frequency locatioRs,,, }: n=0
sin((Z) Py
N1 ={ Nsin(Z2)' K (6)
1, 7= €1.

X 2 X(wn) = aneﬂwm”, m=1,...,M. (2)
n=0

Oversampling is of no benefit to this ideal interpolator. Ap-
- R _ plying this ideal interpolator would requir@(M K) operations
The symbol denotes “defined to be.” The,, s can be ar and would use all/K of the v,.4s in (4): therefore, it is

bitrary real numbers. This form has been called the nonuniform .
impractical.

discrete Fourier transform (NDFT) [52, p. 194]. Directly eval- To contain computational requirements, most NUFFT

uating (2) would requir€(} V) operations, which would be 1F1eth0ds constrain eaeh), to have at mosf nonzero elements
undesirably slow. Fast computation of (2) is called the NUFFCbrresponding to thd nearest neighbors to,, in the set.

This is “Problem 27 in the nomenclature of [34], [40]. SecWith this practical restriction, the interpolation step requires
tions lll-F and G discuss alternative problems. P ' P b req

. . . O(M J) operations, wherd < K.
The first step of most NUFFT algorithms is to choose a con- Define the integer offset,, — ko(w,) as follows:

venientK > N and compute a weighted-point FFT of{x,, }:

A

o (w) 2 { (arg mingez |w — vk|) — £, J odd %

N-1 - J
keZ:w>~k})—+%, Jeven.
Vo= suwne™, k=0,...K—-1, () (max{k € Z:w > 7k}) = 5, v
n=0 This offset satisfies the following shift property:
wherey £ 27/ K is the fundamental frequency of t#é-point ko (w4 1lv) =1+ ko(w), VIeZ. (8)
DFT. The nonzera,,s are algorithm design variables that have . ] ]
been called “scaling factors” [40]. We cali= (sy, . ..,sy)the Letu;(wm),j =1,...,J denotethe/ possibly nonzero entries
scaling vector The purpose of is to partially precompensate ©f 7. Then, the interpolation formula (4) becomes
for imperfections in the subsequent frequency-domain interpo- 7
lation. This first step require9(K log V') operations if imple- X (wm) = ZY{kmﬂ‘}KUf (W) 9)

mented efficiently as described in Section IlI-D.

The second step of most NUFFT methods is to approximate _ _
eachX,, by interpolating th&;.s using some of the neighbors ofwhere {-} x denotes the modulés operation (ensuring that
w,, in the DFT frequency sébx 2 {vk:k=0,..., K —1}. X(w) is 2r periodic). To apply this formula, one must choose

Jj=1

Linear interpolators have the following general form: the JM interpolation coefficientu;(w;,)} and compute the
M indices{k,,}. One would like to choose each interpolation
K—-1 coefficient vectoru(w,,) = (u1(wm),- .., us(wm)) such that
X(wm) =Y vpiYe=(Y,v,), m=1....M (4 X(wn)isanaccurate approximation 1, andsuch thatu(-)
k=0 is relatively easy to compute. Dutt and Rokhlin used Gaussian

. ] o bell kernels for their interpolation method [34]. Tabei and Ueda
where thev,,,xs denote interpolation coefficients;™denotes 450 ysed such kernels in the specific context of direct Fourier

complex conjugate, ang,, = (1, --.,vmx). The design tomographic reconstruction and included error analyses [53].
problem is choosing the scaling vectoand the interpolators oy evenn and oddJ only, Nguyen and Liu [40] considered
{”m_}- ) ) i i interpolation of the form (9) with a choice for thes that arises
Given theY;s, an ideal linear “interpolator” could first re- o |east-squares approximations of complex exponentials by
coverz = (zo,...,xn-1) by computing the inverse FFT from |iyear combinations of other complex exponentials. We propose
(3) and then computing explicitly the desired FT valué$om)  next an explicit min-max criterion for choosing thes, with
using (2). Specifically, fos = 1: uniform treatment of both even and oddand N using (7).
N-1 N-1 K-1 H
X(w) = Z e _ Z % Z o B. Min-Max Int.erpolator. . | | |
= = — We adopt anin-max criterionfor choosing the interpolation
K1 coefficients{u;(wy, ) }. For each desired frequency locatiop,

= Z Y, I <£ — k) we determine the coefficient vectafw,,, ) € C]thatmir]imizes
=0 v the worst-caseapproximation error betweeN,,, and X (w,,)
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over all signalsr having unit norm. Hypothetically, this could By the Cauchy-Schwarz inequality, for a given frequesacthe
yield shift-variant interpolation since each desired frequency lerorst-case signal is = g*(w)/||g(w)], i.e.,
cationw,, may have its own set af interpolation coefficients.

Both the scaling vectos and the interpolatoréu(w,,)} are ol [z, g(w))| = [lg(w)]|-
design variables, so ideally, we would optimize simultaneously
over both sets using the following criterion: Inserting this case into the min-max criterion (19) and applying
(14) and (15) reduces the min-max problem to the following (cf.
min max min max X(w) - X(w)|. (10) [40, eqn. 10]):
SeCN w wuU(w)eC’ xeCV: x| L1
min VN ||S’C'A (w)u(w) — b(w)“ . (20)
As discussed in Section IV, the outer optimization requires nu- uec’

merical methods. Thus, we focus next on optimizing the inteThe minimizer of this ordinary least-squares problemdos
polation coefficientas(w,, ) for a fixed scaling vectos and ad- ,, is u(w,,) Where

dress choice of in Section IV-C.

Mathematically, our min-max criterion is the following: u(w) = A'(w) [C'SS'C] L O'Sb(w) (21)
min max X(w )= X (W) (11) (since A is unitary). This is a general expression for the
U(wn)ECT TeCN||Z|<1 " " min-max interpolator. Due to the shift property (8) and the

definitions of A(w) andb(w), we see
Remarkably, this min-max problem has an analytical solution, @) (@)

as derived next. uj (w+vl) =uj(w), VIeL. (22)
From (2) and (9), we have the following expression for the
error: Therefore, the min-max interpolator4speriodic and “shift in-

variant” in the sense appropriate for periodic interpolators.
To apply the min-max interpolator (21), we must compute the

X (wm) — Xm‘ = ZY{kmﬂ-}KU’; (Win) = X (wm)| - interpolation coefficients(w) for each frequency locatian,,,
j=1 of interest. One method for computing (21) would be to use the
) ) i (12) following QR decomposition:
Using (3) and (12), this error expression becomes
Nt S'C=QR (23)
> wl (wm) [Z snxne_”(k”””)"] =) mpememn whereQ € CV*7 is a matrix with orthogonal columns, aitis
j n=0 = an upper triangular invertible matrix. SineC is independent

= \/N@g (wm)) (13) offrequency location, we could precompute its QR decomposi-
tion and then precompute the matrix prodct'Q’. We could
whereg(-) is an N-vector with elements then compute the interpolation coefficients by substituting (23)
into (21), yielding

. L pvko @iy, oy | — L grem A 1y
gn(w) = 85 ;::1 \/Ne uj(w) \/Ne u(w) = A'(w) (R7'Q') b(w). (24)
After precomputing®~*Q’, this approach would require\2J
forn =0,..., N — 1. In matrix-vector form operations per frequency location. These operations are inde-
pendent ofz, so this approach may be reasonable when one
9(w) = D(w) [S'CA(w)u(w) — b(w)] (14) needs apply repeated NUFFT operations for the same set of

) . _ frequency locations. (This mode is discussed further below.)
wheresS = diag{s, }, “"" denotes Hermitian transposB(w) IS However, the next subsection shows that if we use.aerm
aN x N diagonal matrixC'is aN x .J matrix, A(w) isaJ x J  Eourier series for the,.s, then we can reduce precomputation
diagonal matrix, andéi(w) is a N -vector with respective entries O((L + 1 + J).J) operations per frequency location. Usu-

ally, L + 1+ J < N, therefore, the savings can be significant

((4)) etwio eZWkO (w)(n—mng) (15) . .

Jri(n—no) for small L. However, very high accuracy computations may
e require largel, in which case, the above QR approach may be
Chj = (16)
! \/ﬁ preferable.

Ajj(w) = —2[w—v(ko(w)+3)]no (17)
1@ ko () (n—10) C. Efficient Computation

bn(w) = JN . (18) An alternative expression for the interpolator (21) is

(We chose these definitions with considerable hindsight to sim- u(w) = A'(w)Tr(w) (25)

plify subsequent expressions.)

i : where we define
In this form, the min-max problem (11) becomes

| T2 [C'ss'c] (26)
mnin_max VN [(z,g(w))]. (19) r(w) 2C'Sb(w). (27)
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Fortuitously, theJ x .J matrix C'SS’'C is independent of fre-  To summarize, we compute the min-max interpolation co-
quency sample location, so its inverse can be precomputed. efficients in (25) for eaclv,, using the analytical results (29)
To facilitate computing>’ SS’C, we expand the,,s in terms and (30). SinceC’SS'C is only J x J, whereJ is usually

of a (usually truncated) Fourier series less than 10, we always precompf(ltén (26) prior to all other
calculations.
L As described next, there are a few natural methods for using
Su=_ ope?PTm) =0, N -1 (28) the above formulas, depending on one’s tradeoff between
t=—L memory and computation.

The natural fundamental frequency corresponds te K/N, p Precomputed Mode
but we consider the general form above since orthogonality is

not required here, and can be a design parameter. We assume !N problems like iterative image _reconstruction, one must
that theass are Hermitian symmetric, i.ex,_, = a}. We repre- compute the NUFFT (2) several times for the same set of

sentthe coefficients by the veci®r (ag, a1, .. ., az). Asone frequencieqw,, } but for different signals:. In sugh cases,.it is
special case of (28), the “cosine” scaling factors consideredgﬁefer"’,‘ble tqarecom_puteapc_j store al/ M of the mterpolaﬂon
[40] correspond tg = 1/2 ande = (0,1/2). For3 < K/N coefficientsu, (w.» ), if sufficient fast memory is available, and
there is no loss of generality in using the expansion (28). Ti‘H%en apply (9)_ directly to Compute the NUF_FT as needed.
expansion generalizes significantly the choices of scaling fac-~ "€computing eadﬂ(“’l;n) using (25) rcfequwes or&l@(J(l;+ o
tors considered by Nguyen and Liu in [40] and can improve aﬁ;Jr J)) operations. A key property of (29) and (30) is that

curacy significantly, as shown in Section IV-C. Nguyen and Lifi"®Y collapse the summations oveinto the easily computed
referred to matrices of the for@'C as (K/N, N, J — 1) reg- unctionéy, thereby significantly reducing the precomputation

ular Fourier matriceg[40]. operations. )
Combining (28) and (26) with (16) yields _ After pr_ecomputlng eacb_(wm), every subseque_nt NUFFT
interpolation step (9) requires onl§(JM) operations. Ex-
N1 cluding the precomputation, the overall operation count per
[C’SS’C]I_]. _ Z C% 5057 O NUFFT isO(K log N) + O(JM). An accuracy-computation

0 time tradeoff is available through the choices for the oversam-
N—-1 L L pling factor K/N and the neighborhood sizé Typically, we
Z Z Z apateUmHA=))(n=m)  yseK ~ 2N, L < 13,.J < 10, andM ~ N; therefore, the
n=0 t=—L s=—L overall computational requirements are akin to an FFT but with

n=
1

=l

L L a larger constant. The larger constant is an unavoidable conse-
= Z Z arodn (j— 1+ B(t—s)) (29) quence of needing accurate nonuniform frequency samples!
t=—Ls=—L

E. Reduced Memory Mode

forl,j=1,...,.J, wheredy(-) was defined in (6). In unusual cases where storing &M coefficients is infea-

The following properties off" are useful. From (26)T" is  _. .
Hermitian, and from (29)I" is Toeplitz. In the usual case WhereSIble’ one can evaluate eagfw,,) as needed using (25), (30),

; . o = and the precomputéflin (26). In this mode, the operation count
;I:I?{lS_&géEil:l}lS areal matrix. IfK' = N and$ = 1, then for the NUFFT interpolation step increases@.J(L + 1 +

Conveniently, in this min-max framework the matnx—vectoi? J2), but the storage requirements for the interpolator decrease

product definingr(w) in (27) also simplifies

Alternatively, one could decrease the interpolation operation

N1 count to roughly ZM by finely tabulatingT'r(w) over a uni-
ri(w) = Z C j5nba(w) _form grid_(cf. Fig. 1) an_d using table lookup with polynomial
= interpolation to determine the;(w.,)s “on the fly.” This ap-
L L V=1 proach reduces both storage and interpolation operations but
= Z O — Z ew/v—ko(w)—j+pt](n—no) presumably decreases accuracy.
= Nz Table | summarizes these various modes.
L
- Z abn (f — ko(w) — j + ﬂt) (30) F “Large” N Interpolator
t=—L 7 The dependence of the interpolator on the signal-lergth

. . o . : . can beinconvenient since it would seem to necessitate designing
for j = 1,...,J. This is a Dirichlet-like function of the dis- a new interpolator for each signal length of interest. To sim-

tances between the desired frequency location and the ”eaﬁﬂﬁ;the design, we consider hereafter cases wheéig*“large.”

points in the sefy. _ These are, of course, the cases where fast algorithms are partic-
In the usual case where thes are real, the vectat(w) is ularly desirable

_real. Therefore, t_he only complex component of_ the min-max Defining ;1 2 K/N, from (6), one easily sees that
interpolatoru(w) in (25) is the complex phases ih(w). By
(17), these phases coincide with the linear phase of the ideal lim S (f) = sinc t
interpolator (5). i O () = si 1
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TABLE |

COMPUTE OPERATIONS AND INTERPOLATORSTORAGE REQUIREMENTS FORVARIOUS MODES DISREGARDING SMALL FACTORSINDEPENDENT OFM

Method ” Precomputation | Interpolation l Storage | Accuracy

QR precomputed J2NM JM JM very high

T'r precomputed JL+1+J)M JM JM high

T'r partial 0 JL+1+J)M J? high

Table / linear interp. (table size) 2JM (table size) | medium high

Equwalent mterpolator for J=6, K/N=2 contrast, we have started with only the min-max criterion and
11— Min-max { no other constraints, except using thienearest neighbors.
--- Sinc / Consider the case of uniform scaling factosg € 1 so that

L =0 and oy = 1). To visualize the min-max interpolator
(33), we can varyw/vy over the interval +.7/2, J/2] and
evaluateT#(w) using (33), yielding real functions such as
those shown in Figs. 1 and 2 for the caskes 6 andJ =7,
respectively, using = 2. The figures also show (part of) a sinc
interpolator [cf. (5)] for comparison. For eveh the min-max
interpolator is not differentiable at integer arguments. For.6dd
the min-max interpolator has discontinuities at the midpoints
between DFT samples since the neighborhood changes at
that point (cf (7)). These properties depart significantly from
classical interpolators, but they need not be surprising since
regularity was not part of the min-max formulation.
Although we have not attempted to prove this analytically, we
have found empirically that the interpolation coefficient vector
u(w) seems to satisfy the property tlﬁtjzl 4; is close to unity
Fig. 1. lllustration of the min-max interpolator corresponding to (33)fee  (particularly as.J increases). This is an expected property of
6, N' =128, K/N = 2 and uniform scaling factors. interpolators, but our formulation did not enforce this constraint
_apriori. Interestingly, it seems to have arisen naturally from the
where sin¢t) = sin(rt)/(rt). Therefore, for largeV, T ~ T, min-max framework. With uniform scaling factors £ 1), the
where kernel also satisfies the property that it is unity.at= 0 and
zero at each otheyk. This expected property follows directly

|:~71:| Z Z o smc( =1+ pB(t - )>' (31) from the min-max formulation.

t=—L s=—L H

Interpolator
© o© o
S [e2] [ee]

o
N

-0.2f

/Yy

- N [1l. EXTENSIONS AND VARIATION
Similarly, r(w) =~ 7(w), where SIONS ONS

. This section describes some extensions to the min-max
£ —ko(w) —j+pt NUFFT developed above.
2 Z a;sinc m . (32)

=—L
‘ A. Multidimensional NUFFT

Combining these with (25), the interpolator we consider here-

after is The extension of the min-max method to two dimensions and

higher is conceptually very straightforward. In 2-D, we over-
a(w) 2 A () TFw). (33) sampl_e the 2-_D FFT in both directions ar_1d precompute and store

the min-max interpolator for each desired frequency location
From (29) and (30), the maximum argumentgfis 2(.J + 3L) using the nearest x J sample locations. The storage require-
and typically is less than 30. From (6), as long as this arguménents are)(.J> M) if the interpolation coefficients are precom-
is much smaller thark, the sinc approximation will be very puted. Precomputing the interpolator involves simple Kronecker
accurate. For example, even fiiras small as 32, the sinc andproducts of the 1-D interpolators. Specifically, for a 2-D image,
§n differ by less than 1% for arguments less than 30. Thuéwe use aJ; x .J, neighborhood, with oversampling factors

focusing on the sinc-based interpolator (33) is very reasonable.= K1/N1 andus = K1 /N> in the two dimensions, respec-
tively, then the matrixl” in (31) becomes a Kronecker product

G. Effective Interpolation Kernel (denoted ®"):

Most interpolation methodstart with a specific functional } } }
form for the kernel, such as a Gaussian bell or B-spline. In Top = Tip (J2, p2) @ Tip (J1, 1) (34)
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Equivalent interpolator for J=7, K/N=2 from O(K log K) to O(K log N). As a concrete example, if
1l — Min-max j . j j ) K/N = 2, then
--- Sinc N-1
08 S (spxy) et T/ N)n(k/2) k even
' n=0
Yie=1q o1

(snxne—l'yn) e—z(27r/N)n((k—1)/2)7 k odd.

’ (37)
One can evaluate each of these two expressions using an
N-point FFT. In general, one needs/N FFTs, where
the modulation needed for thenth FFT is e *Y™",
m=20,...,K/N — 1.

o
»

n

Interpolator
o
S

0.2f

E. Adjoint Operator

Since the NUFFT method described above is a linear oper-
ator, it corresponds implicitly to sonmd x N matrix, sayG. In
other words, we can express (3) and (9) in matrix-vector form
/Yy asX = Gz, whereG = VWS, whereS was defined below
(14),W isthe K x N oversampled DFT matrix with elements
win = e 7% andV is the (sparse) x K interpolation ma-
trix with elementsv,,,.. (This matrix representation is for anal-
ysis only and not for implementation.) For iterative image recon-

Fig. 2. lllustration of the min-max interpolator corresponding to (33)ffee
7, N =128, K/N = 2, and uniform scaling factors.

as does the vectarin (32): struction algorithms, one also needs #tjoint of the NUFFT
operator, i.e., one must perform matrix-vector multiplications
Top = T1p (J2, p2) @ 1p (J1, p1) . (35)  of the form@G'y for some vectog € CM. Since@ itself is too
} ) large to store in the imaging problems of interest and since di-
Subroutines for Matlab are freely available online. rect matrix-vector multiplication would be computationally in-
efficient, we must evalual®'y = S'W'V’y by “reversing” (not
B. Shifted Signals inverting!) the algorithm steps described in Section I1.
Applications often need a “shifted” version of (1): The adjoint corresponding to (4), i.e., thé term, is

M
Xk = E /U’mkgm-
m=1

(This step is akin to “gridding.”) When the (sparse) interpola-
Incorporating the=**™ phase term into the precomputed intertion matrix is precomputed and stored, this interpolation step

N-1 N-1
E xne—'L(n—T)w = W7 E .’L'ne_lnw. (36)
n=0 n=0

polation coefficientsi; (w) induces this shift efficiently. requiresO(JM) operations. For (3), i.e., fd¥%, the adjoint is
K-1
C. Adaptive Neighborhoods fr— Z Xpe2mn/ Ky — 0, N —1
In the approach described above, the same nuribef k=0

neighboring DFT samples is used for each frequency locatigmich is the K -point inverse DFT ofX, scaled byK, dis-

wn Of interest. This simplifies implementation but is subopearding all but the firstV signal values. This step requires
timal in terms of both memory and computation. Some of the( K log K') operations. One can reduce this @K log N)
wm$ are likely to fall very close to the DFT samples in the seéjy using the adjoint of the reduced FFT (37). The final step for
Q2 and for those locations, a smaller value.bfmay suffice $’ is to scale eacl,, by sk,

(depending onx; see Fig. 6). An interesting extension would

be to specify a maximum error tolerance and then, for eath Nonuniform Inverse FFT

wm, Use the smallesf,,, that guarantees that error tolerance, By duality, i.e., by changing the sign in the exponent of (1),

assuming that one has made a reasonable choidé fr. one could apply the min-max approach to cases where one has
In higher dimensions, one could consider using nonsquajgiformly-spaced frequency samples and wants to evaluate the
neighborhoods, e.g., approximate balls. inverse FT on a nonuniform set of spatial locations. Gi%gn
k= 0,...,K — 1 corresponding to frequenci¢sk}, we can
D. Reduced FFT compute
Since (3) corresponds to an oversampled FFT, WK is K-1
an integer, one can evaluate (3) by combiniigV invocations z (tn) = Z Xpektn  p=1,...,N (38)
of an N-point FFT routine, reducing the operation count for (3) k=0

using the same type of approach with min-max interpolation.
Ihttp://www.eecs.umich.edu/~fessler This is again “Problem 2” in the terminology of [34] and [40].
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G. Inverse NUFFT representative of many problems of interest; therefore, the “typ-

The formulation (2) is called “Problem 2” in the terminology/¢@/” Performance may appear better than (40).
of [34] and [40]. We view the imaging problems that motivated Alternatively, combining (25) and (20) yields
this work as being th@verseof (2). For example, in magnetic Eexact(W) |1 o ,
resonance imaging with non-Cartesiaspace trajectories, we VN HS CA(w) [A'(0)Tr(w)] - b(w)H
are given nonuniform samplgs in the spaual—frgquency domain /1= 7(0)Tr(w). (41)
and want to reconstruct uniformly-spaced object samples. In
other words, theX (w,,,)s are given, and we must find thgs. WhenJ < 10 — K/N, the simpler form (41) is usually ad-
One can formulate such applicationsiagerse problem#n a equate. For largey, the subtraction within the square root is
maximume-likelihood or penalized-likelihood framework, e.g.numerically imprecise, so we revert to (40).

[54]. For example, a least-squares formulation would be To simplify analysis for modest values @f one can use the
. _ “large N” approximations (31) and (32) and normalize out the
& = arg win | X — Gz|| V'N dependence. Specifically, the following approximation is

) . . usually very accurate:
whereG was defined in Section IlI-E. Lee and Yagle analyze

the conditioning of such problems [55]. Lacking an efficient Eexact(w) ~E(w) &1 -7 (w)THw). (42)
method for solving this inverse problem directly (for lary®, VN

one applies iterative algorithms. These iterative algorithms mafe focus on this normalized errdl{(-) hereafter when/ <

quire repeated calculation of the “forward problem” (from obt — K/N.

ject space to frequency space and the adjoint thereof) [18]-[20] pue to the shift-invariance property (22), the erfdw) is

[28], [56]. Those forward problems are exactly of the “Problerperiodic with periody. One can also show th&tw) has a local

2" type addressed in this paper; therefore, the methods hergifremum when is midway between the nearest two DFT sam-
enable fast and accurate iterative solutions to “inverse NUFFples {yk}. Themaximumerror

problems. A
In yet another family of problems, one would like to compute Emax = max &(w) (43)

an expression of the form usually occurs either at the midpoint between DFT samples or

Z Fettt (39) at the DFT samples themselves. (See Fig. 6 for examples.) Un-
; ! fortunately this does not always hold, so we apply numerical

) ) . methods to evaluate (43). We begin with the simplest case: uni-
where thefs of interest are uniformly spaced, but the giues  form scaling factorss = 1).

are not. This is called “Problem 1” in [34] and [40]. It has been
called “the Fourier transform of nonuniformly spaced data,” aA. Uniform Scaling Factors
though it differs from the usual Fourier transforms considered Fig. 3 plots€ for a variety of choices of neighborhood

in signal processing. One can use NUFFT methods to COMpU{ge 7 and oversampling factak /N for uniform scaling fac-
accurate approximations to (39) [34], [40]. Such methods ajg ¢ 6 = 1). As expected, increasing or K/N reduces the

known as “gridding” in the imaging literature, e.g., [25]. Theyror with diminishing returns a& /N increases. By examining
interpolator proposed in this paperaybe useful for (39), but many such curves, we fit the following empirical formula for the
here, we have been unable to formulate any claim of optimalityq,-

In the context of imaging problems known to us, we believe that K
iterative inverse NUFFT approaches will improve image quality &,,.. ~ 0.75exp (—J [0.29 + 1.03log (—)D . (44)
relative to formulations of the form (39), albeit at the expense N
of greater computation. Nevertheless, there may be other applis might serve as a guide for choosiig@nd K/ N .
cations where “Problem 1” is the natural formulation, and for To create Fig. 3, we used (40) because for large values of
these problems, we recommend the general guidelines provided K /N, the matrixC'C becomes very poorly conditioned,
in reviews like [41]. and (41) becomes numerically inaccurate. Using a truncated
SVD to compute the pseudo-inverse @fC did not seem to
IV. ERRORANALYSIS help.

Combining (20) and (21) and simplifying yields the followingg  \ultidimensional Case

expression for the worst-case error at frequency Using (34) and (35), the 2-D error has the form

s'c[c'8S'C] ™ C'Sbw) - bw)| eap =1 — FoTaion
=[[(1 - Q) b(w)]| (40) /1 = Tt Ty

where@ was defined in (23). The errloundggiven in NUFFT 2 2 2 2
. N =\ /1-(1-E2)(1=E&2)</E2+E&
papers are often described as pessimistic. In contrastxet \/ ( 2)( 1)< \/ i+e
worst-case error given by (40) is achievable. Of course, théere&; and€&; denote the 1-D errors in (42). This gives an
unit-norm signal that achieves this worst-case error may not beper bound on the potential accuracy “penalty” in 2-D rela-

Eexact (UJ) _ )
VN
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. Maximum error for o = (1) Error for J=6, K/N=2, oc1=—0.57, B=0.43
107 T r r r -2
e o KIN=15 190
g\f S —— K/N=2
2K § 8 g —2— K/N=2.5
10 \:\ S Se - K/N=3
SRRy e —&— K/N=4
A S e SN —— K/N=5
107 RA S TS g
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© o A S S S R ::_ \\\
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Fig. 3. Maximum erroty,,., of min-max interpolator with uniform scaling rig. 5. Maximum erro€,..... as a function ofx, for L = 2 andayo = 1.
vector 5 = 1) for various neighborhood size and oversampling factors ’

K/N.
v TABLE I
COEFFICIENTS IN(28) OF CONVENTIONAL AND NUMERICALLY OPTIMIZED
1072 Error for J=6, K/N=2, p=0.19 SCALING FACTORS FORK /N = 2
L J|B a | Emax
0 6 |0 (1) (uniform) 2:1073
0 6 |12 (0 1/2) (cosine) 6-1073
1 6 |0.19 (1-0.46) 5.10~4
107°% 2 2 034 [(@-02 -0.04) 5.10~2
,_ug 2 4 |0.56 (1-047 0.085) 1.1073
Bl 2 6 |043 (1-0.57 0.14) 1-10~*
o 2 8 |047 |(1-054 0.16) 21075
\ 2 10043 (1-0.57  0.185) 6-10~7
10 ' - EEBX 3 4 |0.6339 | (1-0.5319 0.1522 -0.0199) 3.10™4
L ~ . - -—- | - . —4
| E(v/2) 3 6 |0.2254 | (1-0.6903 0.2138 -0.0191) { 1-10
05 04 03 02 o1 0 01 » _
o, irrelevant.) Intuition suggests that for good interpolators, the

_ _ _ snS should be fairly smooth, so a low-order expansion in (28)
g'i%é:~the“/'§frm“u%ei;rgc'ftn;x iy L“nr;g'r‘;:‘s‘?;ﬁnfo; ito:rsla;”gfboo ﬁiniél should be adequate. (This is consistent with the smooth choices
e 9 PIME. " that have been used in the literature, e.g., [34], [37], and [40].)

. Using the series expansion (28) and denoting the dependence
tive to 1-D. It also suggests that tensor products of good 1Jp ... ON the Fourier series coefficients and ong, for a
min-max interpolators should work well in higher dimensionsg'ivenL we would like to solve

therefore, we can focus the efforts in optimizimgnd on the
1-D case. %}ig Emax(a, B).

C. Choice of Scaling Factors Lacking an analytical solution, we have explored this

Both # and 7' in the error expression (42) depend on thinimization numerically using b.rute.—fc.Jrce global search
choice of scaling vectay, as seen in (31) and (32). Returning tdor small values of . by searching jointly overj and

(10), ideally we would like to choose the scaling factors usir@ = (L,ai,...,ar). For example, for the caseé = 1,
the following criterion: = 6, andK/N = 2, we searched jointly ovef and«; in

a = (1,a1). The best? was 0.19, and Fig. 4 plot§,,.x versus
min max &(w). aq for that 8. The minimizer isay; = —0.46, rather than 0, so
sech @ clearly, uniform scaling factors are suboptimal. Because the
Unfortunately, an analytical solution to this optimizatioominimum in Fig. 4 is sharp, this minimization required a fine
problem has proven elusive. For the ideal interpolator (5earch, so such extra effort is warranted only when one needs
uniform scaling factors are optimal. (In fact, thg,s are many NUFFTs for the samé and K/N. We also investigated
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complex values for; and found that the minimizer was always Worst-case errors for J=6, K/N=2
a real-valued;. ) - - )

ForL = 2,J = 6, and K/N = 2, we numerically
minimized &,,.x((1, a1, a2),3) over a;, as, and 3. The
minimizer wasa = (1,-0.57,0.14) and = 0.43. Fig. 5
shows &,ax((1, —0.57, ), 0.43) versus as. Again, in the 10
neighborhood of the minimung,,,. can be fairly sensitive to
.

Table Il summarizes the optimizegs andgs for these and
other cases.

Fig. 6 compares the accuracy of these optimized min-mi 10
interpolators to uniform scaling factors and to the cosine scalil
factors emphasized in [40]. As acknowledged by Nguyen ai
Liu, “the cosine scaling factors ... are by no mean[s] the “bes
ones,” which is a point that Fig. 6 confirms. We found in man
such experiments (for a variety db andK /Ns) that uniform 1% .
scaling factors yielded consistently lower errors than cosit 0 0.2 0.4 0.6 08 1
scaling factors.

The shapes of the curves in Fig. 6 are noteworthy. Uniforgly. 6. worst-case erraf (w) for various scaling vectore. The “cosine”
scaling factors yield zero error at the DFT samples and pegtaling factors are inferior to uniform scaling factors. Optimizingjgnificantly
error atthe midpoints. In contrast, optimized scaling factors teffluces eror.
to balance the error at the DFT samples and at the midpoints
We expect that the latter property will be preferable in prac

_3-

E(w)

0,a=(00.5) "cosine"
.00,a=(1) "uniform”

9, 0= (1 —0.46)

3, 0= (

Equivalent min-max mterpolator for J=6, K/N=2

tice, since the desired frequency locations often have essenti 1 — L=0 L | o
random locations; therefore, there is little reason to “favor” th --- L=t ol
DFT sample locations. ogl—— L=2

(1 -0.46)

1
The interpolators shown in Figs. 1 and 2 were for uniforr_. 2 |(1-0570.14)

scaling factors. Fig. 7 shows the effective interpolators for tfe o6t
optimizedas described above far = 1, 2. The optimized in- E
terpolators [, = 1, 2) have lower sidelobes than the uniforn=
case (. = 0) and are not unity at zero nor zero at other DF S
samples.

Our emphasis here has been on worst-case error, and &
error values given in Fig. 3 differ from those reported i
[40]. This “discrepancy” has two explanations. First, wt oF—=-_xX-- -
consider “Problem 2” in (2), whereas the figures in [40] ar ' '
for “Problem 1.” These problems may have different errc _g of 1
properties. Second, the errors reported in [40] and relat — _5 > - 0 y > 3
papers are for particular experiments involving pseudo-randc ®/y
data and sample locations; the characteristics of such data may
differ considerably from the “worst-case” signalconsidered Fig. 7d N Effective min-max interpolator fof = 6 and'/N = 2 for optimized
in the analysis here. Apparently, one must be cautious about™
generalizing accuracies reported in particular experiments.

0.4

erpol

0.2r

whereY;, was defined in (3), an¢h denotes thes -periodic and

V. CONVENTIONAL INTERPOLATORS phase-modulated (cf. (5)) version of

The preceding error analysis was for min-max interpolation. (k) 2 Z e~ V(=m0 (1 1K),
To enable comparisons, this section analyzes the worst-case
error of conventional shift-invariant interpolation.

Let ¢(-) denote a finite-support interpolation kernel satis;
fying ¢(x) = 0 for |x| > J/2. AssumeK > .J. Conventional
interpolation has the following form: Mimicking (13), the error for interpolator (45) is

l=—00

*A. Min-Max Error Analysis

K1 X(w) - X(w)‘ = VN |(z,§'q(w) — b(w))|
Yo | — —k (
2) ( ) whereS = diag{s,}, b(w) is defined as in (18), and
2There is an error in the second to last equation on [40, p. 292] regarding gn(w) é Z ”knz/z (— — k)
uniform scaling factors. \/—
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Akin to (19), the worst-case unit-norm signalds= (S'q — B. Aliasing Error Analysis
!
b)/15"a — b]], so the worst-case error for frequencynormal- e error formula (47) is convenient for computation but
ized by1/V/N, is seems to provide little insight. Here, we summarize an alternate
E(s,w) = ||§'q(w) — bw)|). (46) form for the error tf:at_ is _sorpewhat more intuitive, following
related analyses of “gridding” methods, e.g., [25] and [41].
Expanding, an alternate expression is Sincey is K -periodic, it has a Fourier series expansion of the
No1 form
L N-
52(370}) = Sn*\/ﬁqn(w) —en ~ ad Cn  —svnk
N n=0 P(k) = ?e 7
N-1 2 n=-—00
1 w
N SnZn <;> -1 (47) (assuming sufficient regularity), where thgs are samples of
n=0 the inverse Fourier transform gf.
where 72 7/2
cn 2 PY(K)e T dr = 1/)(/1)617(n77]0)ndli.
zu(p) £ VNG (p) Z e~ k). (48) e e
k=0 Substituting into (45)
Sincez, (p) has period unity¢ (-) is y-periodic. Thus, we focus c
onw = pv for p € [0,1), for which Z Y Z —ne_m‘(“/”’ k)]
K-l ~ 0o S K-1
p) = Z ez'y(p—k)nw(p - k) — —wn i Y; 1ynk
J/2 B -
= Z ==y (p — ). = Z Cn” T ) S{nd
j=—J/2+1 n=—oo
For odd.J, the summation limits are (J — 1)/2to (J — 1)/2. B z_: JR—-
For a given interpolation kernel, ideally, we would like to o e
choose the scaling factoggo minimize themaximunerror via N
the following min-max criterion:
g + Z Tn | Sn ch-HKe wntHE) | (51)
min max&(s,w). 1#0

seCN w
Viewed in this form, the natural choice for the scaling factors
This maximization ovew seems intractable. One practical “do, . is the following (assuming thesg s are nonzero):

no harm” approach would be to minimize the worst-case error

at the DFT frequency locations 5. = i 1 (52)
o [72 Yerr(n=no)s dg;
min - max E(s,w). (49) a2 ¥
SECN wei forn =0,...,N — 1. For this choice, the error is
Considering (47), the solution to (49) is simply N > cn+zKe_W("+”")
1 1 S 10
_ _ R(w) - X ‘ = .,
e = : (50) (W) = X(w)| == -
> enkemmy(k)
k==J/2 > lenyix|
1#0
If the kernely(-) satisfied the classical interpolation properties <l|=ll, ™y %
¥(0) = 1 andy(k) = 0 for & # 0, then (50) would reduce to nE "
uniform scaling factorss( = 1). For this error to be small, we want to choogesuch that the

One calculates the worst-case error of conventional intergoourier series coefficients, are small for ¢ {0,..., N —1}.
lators of the form (45) by substituting (50) into (47). Since (47%ince has finite support{.//2, J/2], the ¢,,s cannot all be
approaches a finite limit a8 — oo, we again focus on this Z€ro, so one must choogeonsidering the usual time-frequency
“large N approximation. tradeoffs.

With the choice (50)£(w) = 0 for all w € Qg, and we
have observed empirically that the maximum error occurs at the
midpoints between the DFT frequenci@g, as expected. We The purpose of the preceding analysis was to enable a fair
conjecture that if)(-) is Hermitian symmetric about zero, thencomparison of the min-max interpolator (33) with conventional
&(w) has a stationary point at = ~/2 for the choice (50). interpolators (45) while using good scaling factors for the latter.
Lacking a proof, we compute numerically the maximum errdrhe following subsections report comparisons with Dirichlet,
Emax = max,, £(s,w). Gaussian bell, and Kaiser-Bessel interpolators.

Comparisons of Min-Max to Conventional
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1) Apodized Dirichlet: The apparent similarity in Fig. 1 Maximum error for K/N=2
between the min-max interpolator and the (truncated) ide ; ) ) )
Dirichlet interpolator (5) raises the question of how well ¢ 10
simple truncated Dirichlet interpolator would perform. Using
(43) and (47), Fig. 8 compares the maximum error for th 1072
min-max interpolator and for the truncated Dirichlet inter
polator I(w)rec{w/(vyJ)), for K/N = 2, where redt) is
unity on (~1/2, 1/2) and zero otherwise. Fig. 8 also show ,J0 f
the cos®-tapered Dirichlet interpolator proposed in [57] an(u_lg
[58]. Both uniform scaling factors and numerically optimizec  ,-4|
as were used for the min-max case. Min-max interpolatic

can yield much less error than truncated or tapered Dirichl [[== Truncated Dirichiet
interpolation. The seemingly minor differences in Fig. 1 ca 10 ' o Tapered Dirichlet
strongly affect maximum error! * Linear (J=2)

2) Truncated Gaussian BellMany NUFFT papers have fo- 10l = Min—-Max (uniform)
cused on truncated Gaussian bell interpolation using —&— Min-Max (best L=2) . .

2 4 6 8 10 12
(k) = e‘(’“/")z/?rect(i) | !
vJ Fig. 8. Maximum error £,.x Of truncated Dirichlet interpolator, of

: : . . cos®-tapered Dirichlet interpolator, of linear interpolatof (= 2), and of
For fair comparisons, for each, we optimized the C-:'a‘USSI‘E“’]min-max interpolator for various neighborhood sizesand for oversampling

bell width parametes using (47) by exhaustive search. We infactor K/N = 2. Despite similarities in Fig. 1, the min-max approach
vestigated both (50) and (52) as the scaling factors and found shgsificantly reduces error relative to a truncated or tapered Dirichlet.
latter to provide 10-45% lower maximum error; therefore, we
focused on (52). Empirically the min-max width agreed closel Maximum error for K/N=2
with the approximatiomr = 0.31 * JO-52, 10 (% : : :
Fig. 9 compares the worst-case error of min-max interpol.
tion and optimized Gaussian bell interpolation. Errors for th 2|
min-max method are shown for both uniform scaling factors ar
least-squares fit scaling factors, as described next.
Choosing the scaling vector by exhaustive minimization ¢ 157
Emax becomes more tedious dsincreases, and the presence
of sharp local minima (cf. Fig. 5) is a challenge for local de &
scent methods. We found the following approach to be a use™ 1
alternative. After optimizing the width for the Gaussian bell
interpolator, we compute its scaling factors using (52). Then, v
use ordinary least-squares linear regression With 6 in (28) 10
to find aa for (28) that closely matches the optimized Gaussic

—*— Gaussian (best o)

bell scaling factors. Then, we use tlain (43) to compute the 107 i m:::mgi Effiéo[g)m)
error of this “optimized” min-max interpolator. An example is —o~ Min—Max (b;st L=2)
7 9]

shown in Fig. 9. This approach reduces the nonlinear part of t z
search from arL-dimension search overto a 1-D search over J

the Gaussian bell width. Again, this process is practical onyy.9. Maximum erro€,... of min-max interpolators and truncated Gaussian
when one plans to perform many NUFFTs for the sahemnd bellinterpolator versus neighborhood sizéor oversampling factok /N = 2.

K/N (Clearly analytical optimization offor the min-max ap- For each/, the Gaussian bell widtt was optimized numerically by exhaustive
’ ’ search to minimize worst-case error. Three choices of scaling fastps$ for

proach would be preferable.) the min-max method are shown: uniform, numerically optimized, and LS fit of
Fig. 9 illustrates several important points. First, the min-mag8) to optimized Gaussian bel ,(s) given by (50).

interpolator with simple uniform scaling factors has comparable
error to the exhaustively-optimized Gaussian bell interpolator. 3) Kajser—Bessel:An alternative to the Gaussian bell inter-

Second, optimizing the scaling factors very significantly reyo|ator is the generalized Kaiser-Bessel function [59], [60]
duces the min-max interpolation error, outperforming both the

Gaussian bell interpolator and the min-max interpolator with s o (af5(K))

uniform scaling factors. Third, for/ < 6, exhaustive opti- P(r) = [} (")T(a)

mization of @ with . = 2 yields comparable maximum error

to the simpler least-squares fit (usiig= 6) to the optimized wherel,, denotes the modified Bessel function of orderand
Gaussian bell scaling factors (50), so the latter approach may

be preferable in the practical use of the min-max method. 2 ;
However, even better results would be obtained if there were fr(k) = 1- (ﬁ) Kl < 5

a practical method for optimizinge for L > 2. 0, otherwise.
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Kaiser-Bessel Error for K/N=2 and a=2.34-J Kaiser—Bessel Error for K/N=2 and m=0

107}
é 5
w0

—4— J=5

|| & J=6

10 ' = J=7

1.5 2 25 3
m (Kaiser-Bessler order) o/J (Kaiser—Bessler width)

Fig. 10. Maximum erro€,,., of Kaiser—Bessel interpolator versus order Fig. 11. Maximum erroif,,.. of Kaiser—Bessel interpolator versus width
for « = 2.34.J. Surprisingly, the minimum is near = 0. parametery for m = 0.

Maximum error for K/N=2

The width of this function is related to the “shape paramete

a.. This function is popular in “gridding” methods for imaging
problems, e.g., [61], but has been largely ignored in the gene 10
NUFFT literature to our knowledge.

Again, for fair comparisons, we used (43) and (46) to of
timize both the ordern and o« numerically to minimize the 1¢
worst-case error. Initially, we had planned to use= 2 since
this provides continuity of the kernel and its first derivative a %
the endpoints: = +.J/2. However, we found numerically that w o}
the min-max optimal order is neat = 0. This property is il-
lustrated in Fig. 10. Choosing. = 0 reduces the maximum - -
error by a factor of more than 10 relative to the “conventional i g;”u;'\sﬂiz); ((Lég';%rm)
m = 2 choice. Form = 0, we found that the optimal was 10 —%— Min-Max (best L=2)

-4

am

about 2.34 for K/N = 2. Fig. 11 shows examples. —o— Kaiser-Bessel (best)
For the scaling factors, we compared the “do no harm” choic 2ol == Min-Max (L=13, p=1 fit)
(50) to the Fourier choice (52),i.,, = ¥U((n—mn9)/K),where 10 "= y . . :
2 4 6 8 10
[59] J
1\" a2 J d m A (z(u)) Fig. 12. Maximum erro€,,., of min-max interpolators, truncated Gaussian
‘I’(U) = 5 ™ 5 a 17 bell interpolator (with numerically optimized width), and Kaiser—Bessel
m(o‘) interpolator (with numerically optimized shape) versus neighborhood 5ize
for oversampling factof{/N = 2. Three choices of scaling factors,(s) for
whered = 1 (for the 1-D case)y = d/2 + m, z(4) = the min-max method are shown: uniform, numerically optimizedZoe 2,

(rJu)? — a2, andA(z) = (2/2)"".J,(z), where.J, denotes and LS fit of (28) to optimized Kaiser-Bessels given by (50).
the Bessel function of the first kind of ordet The Fourier
choice (52), which is conventional in gridding methods, yieldegpproach), the reduction in error relative to the Kaiser—Bessel
about 25-65% lower errors than (50) far= 0. interpolator is 30-50% fog < 10. It is plausible that larger

Fig. 12 compares the maximum errors of the (optimize@yror reductions would be possible if a practical method for
Kaiser-Bessel interpolator, the (optimized) Gaussian b@ptimizing the scaling parameters (e.g.for larger L) were
interpolator, and a few min-max interpolators. We investigatddund. Lacking such a method, it seems that the Kaiser-Bessel
three choices of scaling factors: uniform, the numericalipterpolator, with suitably optimized parameters, represents a
optimized choices foE = 2 shown in Table Il, and a third casevery reasonable compromise between accuracy and simplicity.
in which we used the scaling factors computed by least-squaregrom Fig. 12, one sees that= 9 is sufficient for single-pre-
fit of (28) with L = 13 and8 = 1 to the Kaiser—Bessel scalingcision (10°%) accuracy in the min-max sense. (Practical prob-
factors from (52). lems are usually not worst case, $6= 9 is probably overkill.)

As expected, the min-max interpolator yields lower errofSor.J = 9 and K/N = 2, using Matlab’scputime command,
than both the optimized Gaussian bell and the optimizede found that the interpolation step (with precomputed coef-
Kaiser—Bessel interpolators. For the choices of scaling fdeients) required roughly twice the CPU time required by the
tors investigated here (particularly the least-squares fittimyersampled FFT step.
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Optimized NUFFT Interpolation Functions, J=10 VIl. DISCUSSION

— Kaiser-Bessel
- - - Gaussian This paper has presented a min-max framework for the in-
terpolation step of NUFFT methods. This criterion leads to a
novel high-accuracy interpolator and aids in the optimization
of the shape parameters of conventional interpolators as well.
These optimized interpolators for the NUFFT have applications
in a variety of signal processing and imaging problems where
nonuniform frequency samples are required.

The min-max formulation provides a natural framework for
optimizing the scaling factors when expressed using an appro-
priate Fourier series. This optimization led to considerably re-
duced errors compared with the previously considered uniform
and cosine scaling factors [40]. Optimizing the scaling factors
\ further remains an challenging open problem; perhaps iterations
05 O 5 like those used in gridding [61], [64] are required.

N K Based on the results in Fig. 12, we recommend the following
_ o _ _ strategies. In applications where precomputing and storing
E‘rg-_lf-o 4)Oi$]‘t'$'Z(;gtg":‘]'i‘zrrigsfsofy(_: 1%' a = 2.347) and Gaussian bell the interpolation coefficients is practical and where multiple

- P o NUFFTs of the same size are needed, such as for iterative re-

construction in the imaging problems that motivated our work,

Fig. 13 compares the shape of the optimized Kaiser—-Besasing the proposed min-max approach with scaling factors fit
and Gaussian bell interpolation kernels. Superficially, the kew the Kaiser—Bessel, s provides the highest accuracy of the
nels appear to be very similar, bdit= 10 can provide errors methods investigated and, therefore, allows the reduction of the
on the order of 10° with the Kaiser—Bessel kernel; thereforeneighborhood sizé and, hence, minimization of computation
even subtle departures in the kernel shape may drastically affggt iteration. On the other hand, if memory constraints preclude
the interpolation error. storing the interpolation coefficients, then based on Figs. 9 and
12, we see that a Gaussian bell or Kaiser—Bessel interpolator,
suitably optimized, provides accuracy comparable to the
min-max interpolatoif one is willing to use a modestly larger

To illustrate the accuracy of the NUFFT method in a practicakighborhood/.
context, we considered the classical 32828 Shepp-Logan  Alternatively, one could finely tabulate any of these interpo-
image [62], [63]. We generated 10000 random frequency lfators and use table lookup (with polynomial interpolation) to
cations @,,,S) in (—m,w) x (—=,7) and computed the 2-D compromise between computation and storage. The accuracy of
FT exactly(to within double precision in Matlab) and with thesuch approaches requires investigation.

min-max 2-D NUFFT method withh = 6 andK//N = 2. The  One remaining open problem is that the .J matrixC'C be-

0.8f

0.2f

VI. 2-D EXAMPLE

relative percent error comes ill-conditioned ag increases beyond about 10 (likewise
for C'SS’'C, at least for the optimized scaling factors). Since
max,, | X (wm) — X (W) is small, we currently use a truncated SVD type of pseudo-in-
x 100% verse when such ill-conditioning appears. Perhaps a more so-

maxy [X (wn)] phisticated form of regularization of its inverse could further

was less than 0.14% when uniform scaling factors were used JRgrOVe accuracy.

less than 0.011% when the optimized scaling factorsd.fer2 ~ Several generalizations of the method are apparent. We have
in Table Il were used and less than 21D~*% when the scaling Used the usual Euclidian norffr|| in our min-max formula-
factors were based on least-squares fits to Kaiser—Bessel scaliiig (10)- In some applications, alternative norms may be useful.
factors, as described in Section V-C3. These orders-of-maghf€ general theory accommodates any quadratic norm; how-
tude error reductions are consistent with the reductions sho@¢g". Whether simplifications of the form (29) and (30) appear
in Figs. 3 and 12 and confirm that minimizing the worst-cag®ay depend on the norm.

error can lead to significant error reductions even with prac-Another possible generalization would be to uhitferent

tical signals of interest. The exact FT method required moséaling factors for the two FFTs in (37). Itis unclear how much,
than 100 times the CPU time of the NUFFT method, as mei&any, error reduction this generalization could provide, but the
sured by Matlab’stic/toc functions. For comparison, clas-additional computational cost would be very minimal.

sical bilinear interpolation yields a relative error of 6.7% for Although detailed analyses of the errors associated with
this problem. This large error is why linear interpolation is inNUFFT methods for “Problem 1" are available, e.g., [41],
sufficiently accurate for tomographic reprojection by Fourigo our knowledge, no provably optimal interpolator has been
methods. The NUFFT approach with optimized min-max intefeund for Problem 1; therefore, this remains an interesting open
polation reduces this error by four orders of magnitude. problem.
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Finally, one could extend the min-max approach to relateg3] C. w. Stearns, D. A. Chesler, and G. L. Brownell, “Three-dimensional
transforms such as Hankel and cosine [12], [65].
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