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ABSTRACT 

The inadequacy of the maximum-likelihood criterion for 
emission image reconstruction has spurred the develop- 
ment of several regularization methods. Despite the spa- 
tial variance of medical images, most of the proposed 
methods are spatially invariant. This paper reports a 
preliminary investigation of a spatially-variant penalized- 
likelihood method for tomographic image reconstruction 
based on a Gibbs penalty. The penalty weights are deter- 
mined from structural side information, such as the loca- 
tions of anatomical boundaries in high-resolution magnetic 
resonance images. Such side information will be imper- 
fect in practice, and a simple simulation demonstrates the 
importance of accounting for the errors in boundary lo- 
cations. We discuss methods for prescribing the penalty 
weights when the side information is noisy. Simulation re- 
sults suggest that even imperfect side information is useful 
for guiding spatially-variant regularization. 

I. INTRODUCTION 

Many investigators have noted the inadequacy of the 
maximum-likelihood (ML) criterion for emission image re- 
construction, and have proposed regularization techniques 
that stabilize the emission estimate. Most such methods 
are spatially invariant; however, the spatial variance typi- 
cal of medical images argues for the use of spatially-variant 
reconstruction methods. This paper proposes using side in- 
formation, such as the locations of anatomical boundaries 
obtained from magnetic resonance (MR) images, to con- 
trol a spatially-variant penalized-likelihood method based 
on Gibbs functions. An important feature of this method 
is that it can accommodate imperfect side information. 

The method described is a synthesis of three recent ad- 
vances in emission image reconstruction. The measure- 
ment model includes the effects of attenuation and acciden- 
tal coincidences, the importance of which is shown in [l]. 
The use of spatially-variant weights for a Gibbs penalty 
is analogous to the "weighted-splines'' approach described 
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in [2] for a Gaussian noise model. This leads to an opti- 
mality criterion with an analytically intractable M-step, so 
we apply a variant of the GEM [3] iterative method. These 
points are considered in detail in Section 11. 

The benefits of structural side information, such as 
might be derived from MR images, will clearly be task de- 
pendent. Therefore, in this paper we depart from the con- 
ventional global performance criteria, such as likelihood or 
global mean-square error, and focus on a specific local cri- 
terion: the accuracy of quantifying total uptake within a 
small region of interest (ROI) surrounded by regions of rel- 
atively higher activity. Since the results of such a study will 
be context dependent, we have chosen a context that has 
significance to clinical researchers at  our institution: quan- 
tifying uptake within the globus pallidus and the putamen 
for patients with Huntington's Disease from position emis- 
sion tomographic (PET) measurements of regional benzo- 
diazepine receptor density obtained by injection of ["C] 
flumazenil [4, 51. These small neurological structures are 
poorly quantified by conventional filtered back-projection 
images, due to spill over from the surrounding cortex. 
However, the boundaries of these structures are obtainable 
from MR images, so an iterative reconstruction method 
that can exploit such side information could be beneficial. 

Section I1 describes the basic method, which we have ap- 
plied to both a representative one-dimensional profile and 
to a realistic two-dimensional computer phantom with re- 
gional activities corresponding to autoradiography results. 
Due to space limitations, only the one-dimensional simu- 
lation results are reported in Section 111; preliminary two- 
dimensional results will be presented at  the symposium. 
Section IV discusses the future directions of this research. 

11. METHOD 

A. Measurement model 

Accurate quantification requires the use of an accurate 
measurement model. In particular, as shown in [l], the 
effects of attenuation and accidental coincidences in PET 
should be accounted for by including them in the mea- 
surement model, rather than by precorrecting the mea- 
surements. Precorrection destroys the Poisson nature of 



the measurements. 
For simplicity, we adopt the voxelized object model, 

and denote the rate of activity in the bth voxel by A b ,  

b = 1, . . . , B. The P E T  system consists of D detector pairs. 
Let p d b  denote the point-spread function (PSF) of the PET 
system, i.e., Pdb is the probability that,  in the absence of 
attenuation, an event from the bth voxel is detected by 
the dth detector pair, conditioned on it being detected. 
Thus x d = l p d b  = 1. Let qb denote the overall detection 
probability for an event originating in the bth voxel, in the 
absence of attenuation. Let p d  denote the survival prob- 
ability for the dth detector pair, i.e., the probability that 
both of an annihilation-produced pair of photons emitted 
along the d detector pair tube are detected (not attenu- 
ated). Let r d  denote the rate of accidental coincidences 
for the dth detector pair. Then if Y d  denotes the number 
of events counted by the dth detector pair, we assume the 
y d ' s  have independent Poisson distributions: 

D 

B 

Y d  POiSSOn(T. (E UdbAb + r d ) ) ,  (1) 
b=l 

where T is the product of the scan time and correction fac- 
tors such as that  for radioactive decay, and Udb = P d p d b q b .  

For simplicity, we absorb T into Ab and r d .  

B. Regularizing Penalty Function 
Although one could use (1) to define an estimation method 
based on the ML criterion, the resulting estimates have ex- 
cessive variance for the specific tasks we are considering, 
as we show in simulations below. By considering instead 
an optimality criterion that is the difference between the 
log-likelihood and a penalty function that discourages ex- 
cessive variation between neighboring vclxels, one can sig- 
nificantly reduce the variance with only a small increase 
in bias, thereby reducing the total RMS error. How much 
bias is tolerable is clearly task dependent, and is a subject 
needing further investigation. 

One's choice for the penalty function again will be task 
dependent. Our hypothesis was that the task of quanti- 
fying uptake within a small cold spot would benefit from 
a spatially-variant penalty function, so a weighted Gibb's 
function is a natural choice. Specifically, we consider the 
following optimality criterion: 

@(A) = -1'AX + y'log(AX + r) - aV(X) (2) 

where 1 is the column vector of ones of length D ,  
A = { a & } ,  X = [ A ,  ,..., A B ] ,  r = [ T I , . .  . , r ~ ] ,  and 
y = [ y l ,  . . . , y o ] .  For simplicity, we focus on the one- 
dimensional case hereafter, and define the Gibb's function 
V by: 

B - 1  

v(X) = 5 w b ( A b + l  - A b ) ' .  
b=l 

The weights W b  control the influence of the penalty. If 
the presence of an anatomical boundary in an MR im- 
age implies that the activities in two neighboring voxels 

are likely to  be disparate, then the corresponding weight 
should be set relatively small, so as to avoid penalizing the 
discrepancy. Such a scheme reduces the "edge artifact'' of 
spatially-invariant regularization. 

In practice, side information will be imperfect due to 
noise in MR images and to registration errors. It is es- 
sential to account for these errors, and again the Gibbs 
function approach offers a convenient method. For exam- 
ple, one could first use the side information to generate 
weights that would be optimal if the boundaries were per- 
fect, and then convolve the weights with a kernel whose 
width corresponds to the uncertainty in the side informa- 
tion. 

C. Iterative Algorithm 
Historically, the use of objective functions such as (2), with 
its Gibbs penalty, has been hampered by the slow con- 
vergence of the associated stochastic maximization proce- 
dures or by the uncertain behavior of locally convergent 
methods. Following the usual estimate-maximize (EM) al- 
gorithm derivation, one can show that the E step for (2) 
is: 

B 

y d ( X i )  = UdbA;  + r d ,  
b=l  

n a b  = y d U d b A ' , / Y d (  A'), 

where X i  denotes the emission estimate after the ith itera- 
tion, and nab is the conditional expectation of the number 
of events in the dth detector due to the bth voxel. The M 
step requires maximizing: 

D E  

[-adbAb+' + log(adbAb)] - aV(X'+l)  ( 3 )  
d = l  b=1 

over X i + ' .  The resulting coupled set of equations appears 
to have no analytical solution. We experimented with the 
"one step late" (OSL) method of Green 161, but found 
the necessity of line-search operations [7] to be compu- 
tationally prohibitive. We have adopted the generalized 
estimate-maximize (GEM) method of Hebert [3, 81, which, 
although originally applied to SPECT, is also applicable to 
the PET measurement model (1). Zeroing the derivative 
of (3) with respect to At+' yields: 

The GEM approach is to first set Ab+' = X i  for all b ,  then 
to loop through the b's in some order and to replace Ab+' 
with the unique positive root of (4). After considering the 
discussion in [9], we chose the following ordering: on even 
iterations, the even voxels are updated first, and then the 
odd voxels are updated; the opposite order holds for odd 
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iterations. Unlike the method in [9], this is guaranteed to 
increase the penalized likelihood each iteration [3]. 

The convergence of these methods has been addressed 
by Lange [7], under the assumption that the penalized log- 
likelihood (2) is a strictly convex function of A. This was 
established in [7] by showing that the log-likelihood (for a 
SPECT measurement model) is convex, and the penalty 
term is strictly convex. In our case, it is possible that 
several weights could be set to zero, in which case the 
penalty term may not be strictly convex (although it would 
remain convex). Fortunately, the presence of accidental 
coincidences in P E T  ensures that the log-likelihood term 
is strictly convex, provided the matrix A has full column 
rank [lo]. 

111. 1D SIMULATION 

To explore the possible benefits of spatially-variant regu- 
larization in the presence of imperfect structural side in- 
formation, we performed simulations based on the one- 
dimensional profile shown in Figure 1. This profile is 
representative of the flumazenil quantification task. The 
cold spot represents the putamen, which is adjacent to the 
globus pallidus and the cortex, both of which have signifi- 
cantly higher activity. For this simulation, the diameter of 
the cold spot is 7 pixels. The system matrix A corresponds 
to a triangular point spread function with a FWHM of 5 
pixels. A typical measurement realization y is shown in 
Figure 2. 

Our task is to quantify the total uptake within the cold 
spot. This task requires two components: 1)  reconstruct- 
ing the activity distribution from the noisy measurements, 
and 2) identifying the boundaries of the region of interest 
(ROI) and integrating the activity within that ROI. Here 
we focus only on the first task by integrating the activity 
within the true ROI (pixels 33 through 39) for all simula- 
tions. 

We have examined the performance of the GEM recon- 
struction method as a function of the regularization pa- 
rameter a in four scenarios. For each scenario and for each 
value of a ,  50 measurement realizations were reconstructed 
via 1000 iterations of the GEM algorithm. 

0 Case 1: N o  side information was available, so all 
the weights wb were set to 1. This corresponds to 
spatially-invariant regularization. 

0 Case 2: Perfect side information corresponding to the 
edge locations was used. Specifically, ~ 3 2  = w39 = 0, 
and all other weights were set to 1. Thus, the weights 
for pixel pairs that straddled an edge of the cold spot 
were set to 0, thereby reducing spill over. 

0 Case 3: Imperfect side information was simulated. Let 
bl and b, denote the left a.nd right, edges of the cold 
spot as they might be determined from an MR im- 
age. (These two values are the side information). For 
each realization, 61 was randomly selected from the 

set {31,32,33},  and b, was randomly selected from 
the set {38,39,40}.  For Case 3, the side information 
was applied “blindly,” i.e., we set wb, = wb, = 0 and 
all other weights to 1, despite the fact that bl and b, 
are usually incorrect. 

0 Case 4: Imperfect side information with the same er- 
ror distribution as in Case 3. However, for Case 4 we 
made the following heuristic attempt to account for 
the errors in bl and h,: we set wb,-1 = wb, = wb,+l = 
W b , - l  = W b ,  = Wb,+l = 0.01, and all other weights to 
1. This small band of weights allows for a rapid ac- 
tivity transition in the neighborhood of edge location 
specified by the noisy side information. 

Figure 3 displays the percent root mean-square (RMS) 
error in total uptake within the cold spot as a function of 
the regularization parameter a.  The optimal performance 
of each method is summarized in Table I. It is useful to 
compare the mean of the 50 reconstructions for each case 
with the true activity distribution; these are shown in Fig- 
ures 4-7. The dotted bands around each curve represent 
one standard deviation above and below the mean. The 
curve for each case corresponds to the value aOpt shown 
in Table I that minimized the RMS error. The four cases 
illustrate the tradeoff between bias and variance: Case 1 
has high variance, but additional smoothing would cause 
more bias increase than variance decrease. Case 2 has low 
variance and low bias since the edges are known perfectly. 
Case 4 improves over Case 3 by significantly reducing the 
bias with some variance increase. 

IV. DISCUSSION 

The results summarized in Table I demonstrate that the 
use of structural side information, in conjunction with a 
spatially variant reconstruction method, can significantly 
reduce RMS error over spatially invariant regularization. 
In this case, the RMS error was reduced by almost a factor 
of 3 with the use of perfect side information. However, we 
must also make the sobering conclusion that if the side in- 
formation is imperfect, then using it “blindly” is unlikely 
to be significantly beneficial for quantification tasks. By 
applying a simple heuristic scheme that attempts to ac- 
count for the uncertainty in the side information, we were 
able to recover some of the benefits of the side information, 
despite its imperfections. More investigation into how to 
efficiently use noisy side information is clearly needed. 

V. ACKNOWLEDGEMENT 

The authors gratefully acknowledge the contributions of 
G. Hutchins and R. Koeppe. 

1993 



Case 3 28.8 f 2.1 
0.7 

0.6 

f 0.5- 
Table I: Percent RMS error for the optimal (Y for the four 
cases (see text). 0.4 

03 

0.2 

0.1 
REFERENCES 

[l] D. G. Politte and D. L. Snyder, “Corrections for acciden- 0 

- 

- 

- 

- 

- 7 
- 

[5] V. A. Holtoff, R. A. Koeppe, K. A. Frey, J. B. Penney, D. S.  
Markel, D. E. Kuhl, and A. B. Young, “PET measures of 
benzodiazepine receptors in Huntington’s disease,” 1991. 
In review. 

[6] P. J. Green, “Bayesian reconstructions from emission to- 
mography data using a modified EM algorithm,” IEEE 
Transactions on Medical Imaging, vol. 9, pp. 84-93, Mar. 
1990. 

[7] K. Lange, “Convergence of EM image reconstruction al- 
gorithms with Gibbs smoothing,” IEEE Transactions on 
Medical Imaging, vol. 9, pp. 439-446, Dec. 1990. Correc- 
tions, June 1991 TMI. 

[8] T. Hebert and R. Leahy, “A Bayesian reconstruction al- 
gorithm for emission tomography using a Markov random 
field prior,” in Proc. SPIE 1092, Medical Imaging III: Im- 
age Processing, pp. 458-4662, 1989. 

[9] G. T. Herman and D. Odhner, “Performance evauluation 
of an iterative image reconstruction algorithm for positron- 
emission tomography,” IEEE Transactions on Medical 
Imaging, vol. 10, pp. 336-346, Sept. 1991. 

[lo] J. A. Fessler, N. H. Clinthorne, and W. L. Rogers, “On 
complete-data spaces for pet reconstruction algorithms,” 
1991. Submitted to IEEE Transactions on Medical Imag- 
ing. 

ularization for emission tomography,” Journal of Nuclear 
160 -. Medicine, vol. 32, pp. 936-937, May 1991. . c  

0 . 8  a .  

[3] T. Hebert and R. Leahy, “A generalized EM algorithm 
for 3-D Bayesian reconstruction from Poisson data using 

140- ..* 

lu) 

. .  . 
0 .  

. .  
L = . .  Gibbs priors,” IEEE Transactions on Medical Imaging, - .  

vol. 8, pp. 194-202, June 1989. loo - * Q  .+. . - 9 . a .  ‘. - [4] R. A. Koeppe, V. A. Holtoff, K. A. Frey, M. R. Kilbourn, 
and D. E. Kuhl, “Compartmental analysis of [“C] flumaze- 
nil kinetics for the estimation of ligand transport rate 

raphy,” Journal of Cerebral Blood Flow and Metabolism, 

[ 80- 
...8 . .  - ... ‘c . -. 9, .. e. 

e. .. and receptor distribution using positrom emission tomog- 4o - a. 

vol. 11, no. 5, pp. 735-744, 1991. U)- 

01 ’ ” ’ ” ” ” 
0 10 20 30 40 50 60 70 80 90 100 

pixel 

Figure 2: Measurement realization with lo4 counts. 
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Figure 3: Percent RMS error for the four cases versus CY. 
Case 1 (.), Case 2 (-), Case 3 (-.), Case 4 (- -). 
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Figure 4: True activity (-), mean reconstruction (o), and 
pointwise standard deviation (.) for Case 1. 
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Figure 5: True activity (-), mean reconstruction (o), and 
pointwise standard deviation (.) for Case 2. 
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Figure 6: True activity (-), mean reconstruction (o), and 
pointwise standard deviation (.) for Case 3. 

Figure 7: True activity (-), mean reconstruction (o), and 
pointwise standard deviation (.) for Case 4. 
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