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The technique of phase diversity has been used in traditional incoherent imaging systems to jointly estimate
an object and optical system aberrations. This paper extends the technique of phase diversity to polarimetric
imaging systems. Specifically, we describe penalized-likelihood methods for jointly estimating Stokes images
and optical system aberrations from measurements that contain phase diversity. Jointly estimating Stokes im-
ages and optical system aberrations involves a large parameter space. A closed-form expression for the esti-
mate of the Stokes images in terms of the aberration parameters is derived and used in a formulation that
reduces the dimensionality of the search space to the number of aberration parameters only. We compare the
performance of the joint estimator under both quadratic and edge-preserving regularization; we also compare
the performance of the reduced parameter search strategy to the full parameter search strategy under qua-
dratic regularization. The joint estimator with edge-preserving regularization yields higher fidelity polariza-
tion estimates than with quadratic regularization. With the reduced parameter search strategy, accurate ab-
erration estimates can be obtained without recourse to regularization “tuning.” © 2010 Optical Society of

America
OCIS codes: 100.3020, 100.3190, 100.3010.

1. INTRODUCTION

Polarimetric imaging systems acquire data that can be
used to infer the polarization state of an optical field [1,2].
The polarization state of an optical field across a scene
contains information related to surface features such as
shape and roughness [3]. Naturally occurring objects typi-
cally have a larger surface granularity than man-made
objects, so polarimetry offers the potential for improved
target detection and identification over other imaging mo-
dalities [4].

The polarization state of a transverse optical field can
be specified by the Stokes vector S=(S,,S,S2,S3) [5,6].
The elements of S are functions of the optical intensity
and defined in the following way: S is the total optical in-
tensity, S; is the difference between the optical intensity
transmitted by a linear polarizer with pass axis oriented
at 0° (reference) and one having pass axis oriented at 90°,
Sy is the difference between the optical intensity trans-
mitted by a linear polarizer with pass axis oriented at 45°
and one having pass axis oriented at 135°, and Sj3 is the
optical intensity transmitted by a right circular polarizer
and a left circular polarizer. In the majority of remote-
sensing applications the linear polarization state of the
optical field is of interest and so the S5 component is ig-
nored. We adopt this usual simplification of considering
only the first three components of the Stokes vector,
though the method generalizes easily.

Polarimeters, like traditional incoherent imaging sen-
sors, have resolution limits that depend on noise and sys-
tem point-spread function. In remote-sensing applica-
tions, degradations in the point-spread function are often
due to atmospheric turbulence, residual aberrations in
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the optical system, or misalignment among components
in the optical system. We previously developed a method
for estimating Stokes images directly from polarimetric
measurements [7]. That work assumed complete knowl-
edge of the system point-spread function and was thus
limited in its range of application. In this paper, we pro-
pose methods that overcome this limitation by introduc-
ing phase diversity into the polarimetric measurements.
In traditional incoherent imaging the technique of phase
diversity has been used to jointly estimate the object and
optical aberrations in the presence of atmospheric turbu-
lence [8]. Phase diversity requires the simultaneous col-
lection of two or more images that are related via a deter-
ministic phase perturbation. Typically, two images are
collected: one is the conventional in-focus image and the
second image is acquired on a separate focal plane that is
translated along the optical axis thereby inducing a
known defocus to the second image. Figure 1 shows a
typical phase diversity configuration. A direct extension of
the traditional phase diversity strategy to polarimetry
would be to acquire two measurements per polarimetric
channel; a four-channel polarimeter would be extended to
an eight-channel polarimeter. Here we present two algo-
rithms to jointly estimate the Stokes vectors and optical
aberrations using a simpler four channel phase diverse
polarimeter. The method could be adapted easily to eight-
channel polarimeters and other variations, but a four-
channel polarimeter configuration is particularly attrac-
tive in terms of cost and complexity of hardware.

One acquisition parameter that must be chosen is the
amount of defocus in the diversity channel(s). Choosing
the optimal amount of phase diversity for phase-diverse
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Fig. 1. Traditional phase-diversity imaging strategy.

phase-retrieval in a traditional incoherent imaging sys-
tem was investigated in [9] using the Cramér—Rao lower
bound. In this work we also use the Cramér—Rao lower
bound for phase-diverse phase-retrieval as a guide in
choosing the amount of defocus to introduce into the sys-
tem.

For simplicity of presentation, all optical-system ele-
ments are assumed to be ideal and all polarimetric mea-
surements are assumed to be perfectly registered.

The organization of this paper is as follows. Section 2
presents the mathematical framework of joint estimation
of object and aberrations from polarimetric measure-
ments. Section 3 formulates a reduced-parameter search
strategy. Section 4 explores joint estimation numerically
with both quadratic and edge-preserving regularization.
Sections 5 and 6 give results and concluding remarks.

2. MATHEMATICAL FRAMEWORK

A. Stokes-Vector Imaging

The optical intensity, I', at a single point in an imaging
system with a linear polarizer in the optical path having
pass axis oriented at angle 6 to the reference axis can be
expressed in terms of the Stokes vector,

1
I'(9) = E[SO"'SI cos(26) + Sy sin(26)]. (1)

An imaging polarimeter has multiple channels, each with
a different polarization angle. For o/ measurements (chan-
nels) at polarization angles 6, ...,60;, Eq. (1) becomes a
system of J equations. In matrix form the system is

INCN) 1 1 cos(26;) sin(26) || Sy
: =3 : : : Sil. (2)
I'(6y) 1 cos(26y) sin(26;) || S,

When I'(6;), Sy, S1, and Sy are images each of size N XM,
Eq. (2) can be configured lexicographically to become

F=(TJ><3 ® Inp)S’ npzNM9 (3)

where S=(S,S1,S5) is a 3n, X 1 column vector, Inp is the
n, Xn, identity matrix, ® is the Kronecker product, T3
is the matrix in Eq.(2), and I is a Jn, X1 column vector.

A

The conventional estimate of the Stokes images, Sy, is
formed by using the pseudo-inverse of T 3 [5]:

Seonv = {[(Tcs ) T sl © L, JT, (4)

where “’” denotes conjugate transpose. The matrix in-
verse in Eq.(4) is guaranteed to exist if J=3 and the 6;
are chosen so that T;.3 has linearly independent col-
umns. In words, in Eq. (4) the J X 3 system of equations in
matrix (2) is solved by least-squares at each voxel inde-
pendently.

B. Forward-Imaging Model

The model (3) ignores measurement blur and noise. A
more complete discrete—discrete forward model for an in-
coherent imaging system that accounts for space-
invariant optical blur and additive noise can be repre-
sented by 2D discrete convolution:

yiln,m)=b;n,m)* = I'(n,m) + gi(n,m)

n=1,....N,m=1,... M, (5)

where y;(n,m) are the data for the jth channel, b;(n,m)
denotes the incoherent point-spread function (PSF) asso-
ciated with the jth channel, I'(n,m) is the jth channel
ideal intensity image, ** denotes 2D convolution, and
gi(n,m) is additive noise. A matrix-vector representation
of (5) is

yi= Bj[(TJX3)J ® Inp]S + €j, j= 17 s ’J} (6)

where B; denotes a n, Xn, Toeplitz matrix whose entries
depend on bj(n,m), (T x3); denotes the jth row of T s,
and g; is an additive noise vector. Stacking J channels
[each given by Eq.(6)] yields

y=B(Tss01,)S+e, (1)

where y£(yy,...,y,), B2diag{B}} is a block diagonal ma-
trix with the single-channel blur matrices on the diago-
nal, and ££(gq,...,&)).

C. Point-Spread-Function Parameterization

Ideally the matrices B; (or equivalently the PSFs b;(n,m))
would correspond to diffraction-limited PSFs. In practice
the PSF is often degraded by known or unknown aberra-
tions. In the presence of aberrations the generalized pupil
function (which is also the coherent transfer function) for
the system can be written
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H(u,v) =A(u,v)exp:W(u,v)], (8)

where A(u,v) is a binary aperture function, W(u,v) is a
phase-aberration function, and (u,v) are frequency do-
main coordinates [10]. Aberrations in an optical system
can be represented using a suitable basis set {¢,(u,v)},
such as Zernike polynomials [11]. Representing W(u,v) in
the basis {¢,(u,v)} parameterizes the generalized pupil
function:

K
H(u,v;a) =A(u,v)eXpllE ak¢k(u,v)] ,

k=1

where = (ay, ...,ag). (9)

Visible regime polarimeter configurations, such as
division-of-focal-plane and division-of-amplitude, simulta-
neously acquire all of the polarimetric channels and so
are exposed to identical optical aberrations, i.e., W(u,v) is
the same for each channel.

D. Phase Diversity

To aid in the estimation of aberrations, we propose to in-
troduce phase diversity, typically by different amounts in
the different polarimetric channels. Figures 2 and 3 show
two possible polarimetric-phase-diverse imaging strate-
gies. If the phase diversity function in channel ; is de-
noted ¢;(u,v), then the generalized pupil function for the
Jjth channel can be written

K

Hi(u,v;a,¢) =A(u,v)expy t| >, apdp(u,v) + ¢j(u,v)
k=1

(10)
The corresponding incoherent PSF, h;(x,y), and the op-

tical transfer function, H;(z,v), can be written in terms of
the generalized pupil function:

hj(x,y§a,¢j)=C|‘7:_1[ITIJ'(U,U;CV’<PJ‘)]|2, (11)

atmospheric

extended object
] degradation
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Hiu,v;a,¢) =cF [|F [Hiu,v;a,0))”], (12)

where F[-] is the Fourier transform and ¢ is a constant
that normalizes the PSF to unit volume [9]. The modeled
system PSF, b;(n,m), and optical transfer function consist
of samples of hj(x,y;a,¢) and H;(u,v;a,¢;) at the Ny-
quist sampling rate [10], respectively. Consequently, each
blur matrix, B;, is parameterized by the vector a. For
analysis and implementation we assume periodic bound-
ary conditions on the object so that the blur matrices,
Bj(a), are circulant and thus diagonalized by a 2D dis-
crete Fourier transform (DFT) matrix:

Bi(a@) =QQ(0)Q’, (13)

where Q is a 2D unitary DFT matrix and Qj(a) is a diag-
onal matrix whose entries are the DFT coefficients of the
first column of Bj(a).

3. ALGORITHMS FOR JOINT ESTIMATION
OF STOKES IMAGES AND ABERRATIONS

This section describes novel algorithms for estimating S
and e« jointly under the model (7). Under an additive
Gaussian noise model £j~N(0,021np) for j=1,...,J, the
log-likelihood function for both the object S and aberra-
tion parameters a is

1
v — 2
202||y B(a)(TJX3®Inp)S|| . (14)
Conventional maximum-likelihood estimation is ineffec-
tive for this problem because B(a) is ill-conditioned.
Therefore we focus on penalized-likelihood estimators of
the form

LS,a)=-

(S, &) = argmin{— L(S, @) + R(S)} £ argmin ¥ (S, @),
(S,a) (S,a)

(15)

where R(S) is a regularization term that penalizes an ob-
ject, S, according to how much it departs from our as-
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Fig. 2. Polarimetric phase-diversity strategy utilizing the division-of-focal-plane technique.
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Fig. 3. (Color online) Polarimetric phase-diversity strategy utilizing the division-of-amplitude technique.

sumptions about the image properties [12]. In remote
sensing « is often a nuisance parameter. However, in an
adaptive-optics system with aberration correction capa-
bility, @ is a parameter of interest. Depending on the task
at hand, either a or S or both can be parameters of inter-
est. The choice of regularization penalty will in general
depend on the task, i.e., which parameters are of interest
and which are nuisance.

A. a as a Nuisance Parameter

When the Stokes images, S, are of primary interest, then
« is a nuisance parameter, and a regularization function
that reflects a priori knowledge about the object should be
chosen. Stokes images (S1,S3) typically have sharp edges
due to man-made objects having stronger polarimetric
signatures than naturally occurring objects. To recover as
much polarization information as possible the regulariza-
tion function, R(S), should preserve edges. Since qua-
dratic regularization tends to wash out edges and smooth
noise we explore edge-preserving regularization using a
hyperbolic potential function u(z;8)=6%( V1+(t/ 5%-1).
For fixed § this function is approximately quadratic for
values of ¢ < and approximately linear for > 6. This be-
havior will tend to smooth noise and preserve edges. Spe-
cifically, we choose R(S) to be

2 2np

R(S)=2, > B[CS 18, (16)

1=0 k=1

where C is a 2D finite-differencing matrix (horizontal and
vertical differences). The estimator (15) is then

1

N~ _ s _ 2

(S,a) = argmin g2V ~B(@(Tyxs o L, )S|
2 2n,

+ > > BICS 11 &) 17)

1=0 k=1

B. a as a Parameter of Interest: Reduced Parameter
Search Strategy

In [13] it was shown that, for a two channel phase-
diversity system under an additive Gaussian noise model,
the estimate of the object being imaged could be ex-
pressed in terms of the system aberration parameters.
This result was generalized in [8] for phase-diverse imag-
ing with an arbitrary number of channels. A similar pro-
cedure can be used to derive a closed-form expression for
the Stokes images in terms of system aberrations for po-
larimetric phase-diverse imaging. Deriving this closed-
form expression requires the use of a quadratic regular-
izer that can be diagonalized by the DFT as in Eq. (13).
We focus on quadratic regularizers of the form

1
R(S) = 5||<\@ ® C)S|?, (18)

where V’Eé diag{\s“ﬁro, V"E, VBo}, and B;,>0i=0,1,2. Using
this regularization function Eq. (15) becomes

. 1
(S,a) = al‘(%fgin ﬁlly -B(a)(T 3 ® Inp)S”Z
1 ,
+ 5”(\"[33 ® C)S|*. (19)

For a fixed aberration vector, @, Eq. (19) is convex in S

and the column gradient of S satisfies the stationary
point condition VgW(S;@)=0, where W is defined in Eq.
(15), which leads to

S(@)=[(T)3© L, )B(a)B(a)(Ty3 © L, ) + 0*B3® C'C]™!
X (Tjx3 @1, )B(@)y. (20)

The matrix inverse in Eq. (20) is guaranteed to exist pro-
vided the intersection of the null spaces of the component
matrices is the zero vector. Because C is a first-order fi-
nite differencing matrix, the only nonzero vectors in its
null space are of the form y1 where yeR and 1 is the
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n, X1 vector of ones. Therefore, nonzero vectors in the
null space of (\J’E(@ C) are of the form v=(y;1,v,1,31),
where v, 79,y3 are not all simultaneously zero. It re-
mains to show that v is not in the null space of (T},
o1, )B(@)B(a)(Tx3® 1, ). Now,

(Tyxs ® L, )B(@)B(e)(Ty3 © 1, Jv = (T)q

® L, ) Q@) Q)Q' (T x5 ® I, Jv,
%f—l

u

where the circulant approximation has been used. Ob-
serve that u is nonzero only in the DC components. Recall
that the optical transfer function, Qj(a), for space-
invariant blur conserves energy and thus does not alter
DC components. Thus,

(Ts © 1, )RR Q@ = (T © 1, )b # 0,

since 0 is a nonzero constant vector.
Substitution of Eq. (20) into Eq. (19) yields an “aberra-
tion only” objective function,

1
Q= arginin{ 52l -Bla)(T,; 0 1, )S(@)]”

1
+ Ell(\/ﬂ_s ® C)S(a)llz} (21)

The estimate in Eq. (21) is a joint estimate of object and
aberrations, that is, minimization over « implicitly mini-
mizes over S. Once a has been estimated the object esti-
mate is given by Eq. (20).

4. SIMULATION EXPERIMENTS

We performed simulation experiments to evaluate joint
estimation with both edge-preserving regularization (17)
and quadratic regularization (21). Two situations were
considered: (1) the object parameters are of interest and
the aberration parameters are nuisance parameters, and
(2) the aberration parameters are of interest and the ob-
ject parameters are nuisance parameters. Because of the
significant computational savings afforded by Eq. (21) we
evaluated it with distinct regularization tuned for each
object and aberrations. For comparison we also evaluated
the conventional estimate (4) using the same data with-
out phase diversity. For ground truth, we used polarimet-
ric images collected using a division-focal-plane polarim-
eter by General Dynamics Advanced Information
Systems, Ypsilanti, Michigan. The linear polarizer pass
axes were oriented at {0°, 45°, 90°, 135°}, and the sub-
sampled polarimetric image size was [256 X 256] (sub-
sampled from a [512 X 512] micropolarizer array). The im-
agery was then corrupted by space-invariant optical blur
and additive zero-mean Gaussian noise. The optical blur
was constructed using an annular pupil with a phase dis-
tortion constructed from Zernike polynomials 4-19 as de-
fined in [11]; the phase distortion had an RMS strength of
0.2 waves. The phase of the generalized pupil function is
shown in Fig. 4. We define the SNR of an image to be
20 log1o(|7)|/[7 -y|))dB, where y and y are the noise-free
and noisy images, respectively; the experiments were
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done at two SNR levels: 45 dB and 25 dB. To emulate a
traditional phase-diversity configuration the defocused
channels were at angles {0°, 90°}. In this configuration the
{45°, 135°} channels sum to form the conventional in-focus
channel and the {0°, 90°} channels sum to form the de-
focus channel.

To aid in selecting the amount of defocus to use in the
diversity channels we assumed complete knowledge of the
object in Figs. 5 and 6 (phase-diverse phase-retrieval) and
computed the Cramér—Rao bound for the aberration pa-
rameters over a range of defocus values. The Fisher-
information matrix is computed from the log-likelihood
function in Eq. (19):

1
F= ;[Vaﬂ(a)][%ﬂ(a)]’, (22)

where V denotes the column gradient and u(a)2B(a)
X(Tyx3®1I, )S. The Fisher-information matrix was com-
puted and inverted for various values of defocus. Since
the Zernike polynomials are orthonormal, the mean of the
diagonal elements corresponds to the minimum achiev-

able mean-squared error, Wy, of any unbiased estima-

tor of the degrading wavefront W(a). In Fig. 7 WMIN is
plotted against peak-to-valley defocus. The minimum oc-
curs when the amount of defocus is 1.8 waves peak-to-
valley; we used this amount of defocus in the simulations
but we note that it is not necessarily the optimal choice
for joint estimation of object and aberrations. The blurry
and noisy data with and without phase diversity are
shown in Figs. 8 and 9.

Numerical evaluation of Egs. (17) and (21)requires the
selection of regularization “tuning” parameters; for Eq.
(17) six parameters must be chosen, (8y, 81,82, %, 51, %),
and for Eq. (21) three parameters must be chosen
(Bo>B1,B2)-

When there is no phase diversity the estimator PSF,
l(a), of Eq. (19) for a fixed aberration parameter, a, is
given by [16]

li(a) =[B(a)'B(a) + ¢°,C'CI"'B(e)' B(a)e;, (23)

where B(a) is the common blur across channels, e, is a
Kronecker impulse, and £=0,1,2 indicates the Stokes im-

[waves]

Fig. 4. (Color online) Phase of the generalized pupil function.
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Fig. 5. (Color online) Image estimation results for SNR=45 dB. From left to right: object, estimate using edge-preserving regularizer,

estimate using quadratic regularizer, and the conventional estimate.

Fig. 6. (Color online) Image estimation results for SNR=25 dB. From left to right: object, estimate using edge-preserving regularizer,

estimate using quadratic regularizer, and the conventional estimate.

age; because the blur is space invariant Eq. (23) is inde-
pendent of pixel location. The parameters (By,31,82) in
Eq.(17) were chosen so that in the limit that the hyper-
bolic potential is approximately quadratic, i.e., Eq.(17) ~
Eq.(19), the channel PSFs had full width at half maxima
(FWHM) of (r,2r,2r), where r is the FWHM of the
diffraction-limited PSF in the absence of phase diversity;
Bo was calculated using

Bo = argmin||FWHM([Zy(a)] - 7%, (24)
Bo

and (B1,B2) were calculated similarly. Setting the PSF

FWHM of S; and S, to twice that of SO is reasonable be-
cause of the significantly lower SNR in the S; and Sy im-
ages. We generated 20 realizations of @ each having RMS
phase strengths of 0.2 waves over the pupil. For each ab-
erration realization, Eq. (24) was solved numerically us-
ing a simplex search site [14], and then the final values
for (By, B1,B2) were determined by averaging over the en-
semble. Once the B parameters were fixed the nonqua-
dratic regularization parameters, {&, 5, 5}, were deter-
mined by a brute-force multidimensional search for the
parameter combination that minimized the normalized
RMS error between the Stokes object and the Stokes es-
timate.

For Eq. (21) there were three regularization param-
eters to set for each case. These parameters were deter-
mined by a brute-force multidimensional search for the
parameter combination that minimized the normalized
RMS error between (1) the Stokes object and the Stokes
estimate, and (2) the true aberrations and the aberration
estimate. The regularization parameters that were
“tuned” for object estimation were 10 orders of magnitude
larger than those for aberration estimation.

After the regularization parameters were set, the esti-
mators were evaluated over a 20-realization noise en-
semble for each of two SNR levels. The initial estimate in
each case was formed using Eq. (4) with the phase-diverse
data. Since closed form expressions for the minimizers of
Egs. (17) and (21) are not tractable they were minimized
numerically. The optimization was done using the limited
memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS)
algorithm [15]. The minimization of Eq. (17) required pre-
conditioning because of the different scales of the Stokes
images and the aberration parameters. Samples of the
Hessian matrix of Eq. (17) were calculated via finite dif-
ferences and used in a diagonal preconditioner. The itera-
tive search was stopped when the iteration, %, satisfied
(W), 1—W,)/W,<10710; this corresponded to =200 itera-
tions for Eq. (17) and =30 iterations for Eq. (21).
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Fig. 7. (Color online) Minimum mean squared error as a func-
tion of defocus measured from peak to valley.
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Fig. 9. Data for SNR=25 dB: from left to right: {0°, 45°, 90°, 135°}.

5. RESULTS

Tables 1 and 2 show normalized RMS estimation errors
for each of Egs. (17), (21), and (4). The reported errors are
of the quantities S, the total linear polarization (TPOL)
VS%+S2, and wavefront. There is no wavefront error to be
reported for the conventional estimate, Eq. (4), so a value
of N/A is listed. Also, the estimates of S; and TPOL are
listed as N/A for Eq. (21) when the regularization was
tuned for aberration estimation because the estimated
images are unrecognizable. The poor object estimates in
this case are due to the small values of the regularization
parameter. Recall that the object estimate is given by Eq.
(20), which approaches the inverse filter as 8— 0 and thus
greatly amplifies noise. The aberration estimation errors
for Eq. (21) when tuned for object estimation were reason-
ably good and are included for completeness.

Figures 8 and 9 show object estimates for SNR=45 dB
and SNR=25 dB, respectively. Each estimate is displayed
in red-green-blue (RGB) format with the RGB channels
set as [Sy+ 10\/S%+Sz,SO,SO]; in this display scheme the
polarized elements of the scene are red while the unpolar-
ized elements are in gray scale; the factor of 10 in the red
channel was chosen for visual appeal. As expected, the es-
timates with data at a higher SNR have lower RMS er-
rors and are more visually appealing. Figures 10 and 11
show cuts through TPOL reconstructions, at a column
having an edge with large polarization content, for SNR
=45 dB and SNR=25 dB, respectively. The benefit of
edge-preserving regularization is apparent in both cases
but more pronounced at the 25 dB SNR level, as the qua-
dratically regularized estimate shows significantly larger
blurring across the edge.

Table 1. RMS Error Percentages for SNR=45 dB

Cost Parameter of Interest S VS%+S2 Wavefront
Edge-preserving S 1.8%+0.01% 36%+0.3% 3.3%+0.2%
Quadratic S 1.6%+0.01% 40%+0.2% 3.0%+0.2%
Quadratic @ N/A N/A 1.4%+0.2%
Conventional estimate S 10%+0.0013% 60%+0.11% N/A
Table 2. RMS Error Percentages for SNR=25 dB
Cost Parameter of Interest So V82452 Wavefront
Edge-preserving S 6.2%+0.2% 59%+1.4% 80% +4.6%
Quadratic S 6.5% +0.02% 61%+1.0% 79% +0.36%
Quadratic @ N/A N/A 16%+7%
Conventional estimate S 11%+0.011% 490% +1.7% N/A
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regularization tuned for aberration estimation.
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Figures 12 and 13 show the residual wavefronts, that
is, the estimated wavefront less the true wavefront. The
estimates in all cases have lower RMS errors with higher
SNR data. At 45 dB SNR the wavefront estimation errors
are all comparable. At 25 dB SNR the wavefront error in
using Eq. (21) (when tuned for aberration estimation) is
markedly lower than for Egs. (17) and (21) (when tuned
for object estimation). This significant reduction in esti-
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Fig. 13. (Color online) Residual wavefront errors for SNR
=25 dB. From left to right: edge-preserving regularization, qua-
dratic regularization tuned for object estimation, and quadratic
regularization tuned for aberration estimation.

mation error can be attributed to the regularization being
tuned for aberration estimation.

6. CONCLUSIONS AND FUTURE WORK

This paper has described two methods, Eqgs. (17) and (21),
for joint estimation of Stokes images and aberrations
from polarimetric images with phase diversity. Estima-
tion accuracy follows a task-based hierarchy, i.e., in a
joint-estimation framework the choice of algorithm is task
dependent. When the task is image restoration (aberra-
tions are nuisance parameters) an algorithm that jointly
estimates object and aberrations while incorporating a
priori knowledge of the object is appropriate. However, if
the aberration parameters are of interest and the object is
a nuisance parameter then a reduced-parameter algo-
rithm should be chosen.

Future work includes analyzing the bias and covari-
ance of Eq. (19) and using those expressions to investigate
how the choice of diversity channels affects estimation of
Stokes images and aberrations.
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