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Abstract: A parametric estimation approach to recon- 
struction from projections with incomplete and very 
noisy data is described. Embedding prior knowledge 
about "objects" in the probed domain and about the data 
acquisition process into stochastic dynamic models, we 
transform the reconstruction problem into a computation- 
ally ,challenging nonlinear state-estimation problem, 
where the objects' parametrized descriptions are to be 
directly estimated from the projection data. This paper is 
a review in a common framework and a comparative 
study of two distinct algorithms which were developed 
recently for the solution of this problem. The first, is an 
approximate,  globally optimal minimum-mean- 
square-error recursive algorithm. The second is a hierar- 
chical suboptimal Bayesian algorithm. Simulation exam- 
ples demonstrate accurate reconstructions with as few as 
four views in a 135 ~ sector, at an average signal to noise 
ratio of 0.6. 

Key Words: 3D tomography, incomplete projections, 
Bayesian estimation, stochastic modeling 

I. Introduction 

Tomography, or the reconstruction of a multidi- 
mensional function from its line-integral projec- 
tions, is a well-studied problem, typically arising in 
the context of determining the internal structure of 
an object from the results of external probing by 
electromagnetic or sound waves, or by subatomic 
particles. The problem is usually posed and solved 
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in two dimensions, where a cross section, or a thin 
slice, is reconstructed from its projections. Most 
often, 3-D reconstruction is simply obtained by 
stacking thin reconstructed slices. The applications 
of reconstruction from projections are seen in di- 
verse disciplines, ranging from medicine and non- 
destructive testing to geophysical exploration, and 
from astronomy to electron microscopy (Deans 
1984, Herman 1980). 

Owing to various temporal, physical, geometri- 
cal, or economic constraints in the data acquisition 
(Bresler and Macovski 1987, Rossi and Willsky 
1984) it is often impossible to acquire projection 
data at all angles (views), and the number of views 
and/or rays within a view is severely restricted. 
This is almost always the case with 3-D reconstruc- 
tion, where a complete data-set is exceedingly 
large. An attempt to reconstruct the original distri- 
bution in this so-called incomplete data case results 
in images that suffer from artifacts such as streaking 
and geometric distortion, poor resolution, and high 
noise level, because the problem is ill-posed, and in 
extreme cases, because of the inherent nonunique- 
ness of the solution (Louis and Natterer 1983). Con- 
sequently, although 3-D reconstruction would be an 
ideal tool in a variety of medical (Bloch and Udupa 
1983) and other applications, it is rarely attempted 
in practice with limited data. 

In this paper we consider the incomplete data 
case in the extreme situation when the data are re- 
stricted and heavily corrupted by noise to the point 
where all current limited data reconstruction meth- 
ods (Gordon and Herman 1974; Kak 1979; Ran- 
gayan et al. 1984; Stark 1987) produce unacceptable 
results. (For example, we are unaware of a current 
method producing diagnostically useful reconstruc- 
tions from four views at a signal-to-noise ratio 
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(SNR) of 0 dB.) The original motivation for this 
work has been the 3-D reconstruction of systems of 
blood vessels (e.g., coronary arteries and the vas- 
culature in the brain) from X-ray images (Bresler 
and Macovski 1984a), using minimally invasive im- 
aging techniques. In particular, we seek quantita- 
tive information about the cross-section parame- 
ters, which are required for assessment of vessel 
disease and about their location, which is essential 
for the planning of surgical intervention. The prob- 
lem then corresponds to 3-D reconstruction from 
several entire-volume projection images. Two con- 
straints, both of which are dictated by the require- 
ment for a minimally invasive procedure, contribute 
to the low signal-to-noise ratio (SNR) condition. 
First, the radiopaque dye that is used to produce 
contrast between the blood and surrounding tis- 
sue is injected intravenously (rather than intra- 
arterially, as in direct catheter angiography), result- 
ing in low contrast. Second, the minimization of the 
radiation dose results in higher photon count noise. 
A similar situation prevails in the "ultimate nonin- 
vasive technique," Magnetic Resonance Angiogra- 
phy, where the various subtraction flow-imaging 
techniques (Nishimura et al. 1986, 1987) that are 
used produce noisy projection images of blood ves- 
sels. 

Our approach is based on the observation that in 
many practical cases abundant a priori information 
on the imaged domain is available, and the ultimate 
goal is not to obtain an image of an arbitrary distri- 
bution, but rather to extract specific, quantitative 
information about objects in the probed volume. 
Examples (Rossi and Willsky 1984) include the de- 
tection and localization of organs and tumors in 
medical diagnostic CT (Selfridge and Prewitt 1981) 
the detection and tracking of high contrast thermal 
regions in oceans by oceanographic acoustic tomog- 
raphy (Munk and Wunsch 1979), and the detection 
and localization of interior cracks and flaws in ma- 
terials, in the area of nondestructive testing. We 
describe parametric techniques overcoming the in- 
herent underdeterminacy of the solution from the 
data by incorporating a priori information into the 
reconstruction. Stochastic modeling for both the 
measurement process and the three-dimensional 
objects in the probed domain is used to account for 
the associated uncertainty and in order to encom- 
pass a large class, an ensemble of objects rather 
than a single nominal version. The reconstruction 
problem is thus converted from an algebraic prob- 
lem into a computationally challenging estimation 
problem, with operations to be performed directly 
on the projection data. 

With a view toward operation with low SNR 

data, we have recently developed two distinct algo- 
rithms, which take advantage of the structure of this 
estimation problem for its approximate optimal so- 
lution. The first is a special approximate minimum 
mean square error (MMSE) smoothing algorithm 
providing an object estimate that is globally opti- 
mal, in the sense that at each point in space, the 
reconstruction error is minimized by optimum use 
of all available measurements and prior informa- 
tion. The second, tailored for the case when multi- 
ple objects may be simultaneously present, is a glo- 
bally suboptimal maximum a posteriori (MAP) 
algorithm, which relies on a hierarchical structure 
to achieve computational feasibility. In addition to 
the quantitative morphological information pro- 
vided by the algorithms, the results can be used to 
synthesize a 3-D display of the reconstructed ob- 
jects. 

Previous work using a similar philosophy has 
been limited, for the most part, either conceptually 
(Hanson and Wecksung 1983, Rossi and Willsky 
1984) or by computational feasibility (Shmueli et al. 
1981), to a 2-D case [see also the discussion in 
(Bresler and Macovski 1987).] 

The purpose of this paper is twofold. First, it 
reviews in a common framework the algorithms, 
whose separate detailed derivations can be found in 
Bresler (1985) and Bresler and Macovski (1987). 
Second, the paper compares the performance of 
these two algorithms and a third, less sophisticated 
algorithm, on the same simulation example to de- 
termine their relative merits, and to verify the ac- 
tual need for sophisticated near-optimal processing. 

II. Statistical Models 

Object Model 
The probed region in 3-D space is the cylinder D = 
{(~, qq, Z) : ~2 at_ qq2 ~ (T/2)2, 0 ~< Z ~< L)}, which is 
assumed to have a known background density 
which we set, without loss of generality (Bresler 
and Macovski 1987) to zero. We assume that D C 
~ 3  contains J distinct 3-D objects Oj, j = 1, 2 . . . .  , 
J, each represented by a real functionfj.(~, ~q, z), j = 
1, 2 . . . .  , J, which is defined on D, and its value 
describes an additive component to the density in 
each point in space. Thus, the overall density is 
given by 

J 
f(r, z) = ~ J~(r, z), 

j=l 
(1) 

where r = (6, "q)' represents the 2-D location vector 
in the plane. (We use lower and upper case bold- 
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face letters to denote vectors and matrices, respec- 
tively, and (.)' to denote transposition.) 

We adopt a subclass of generalized cylinders, 
(Binford 1971) as a representation for the objects, 
providing an effective tradeoff between model com- 
plexity and richness. An object (Figure 1) is repre- 
sented by a collection of vertically stacked unit 
height cylindrical sections, which we call primitives 
(Figure 2). The cross-sectional density of each 
primitive perpendicular to the (vertical) z-axis is 
f0(r; y), where fo is a known function of r and of a 
vector of shape parameters y. For example, fo can 
be the indicator function on an elliptical support 
(assuming a value of 1 on its support) whose shape 
is specified by the parameter vector y = [a, h, +]': 

is the radius of the ellipse, defined as the geomet- 
rical mean of its semi-axes; X is its axis ratio; and its 
orientation ~ is the angle between its major axis and 
the ~ coordinate axis. Each object primitive is cen- 
tered at a point (cj(z), z) on a discrete trajectory c/(z) 

~2, z = z l j  . . . . .  Zlj +. L~., which defines the 
center axis of an object Oj of vertical starting posi- 
tion Z I j  and length Lj (Figure 1). Thus, the cross- 
sectional density function of such a primitive is 
f0[r - cj(z); y~(z)]. 

The object model is completed by a rule assign- 
ing a probability measure to the different object re- 
alizations in the given class defined by f0. In partic- 
ular, we represent  prior knowledge about the 
smoothness and curvature properties of an object Oj 
by a discrete linear state-space dynamic stochastic 
Markov model for the primitive-to-primitive evolu- 
tion of the position and cross-sectional parameters. 
Defining the state vector xj.(z) = [c/(z), y/(z)]' (xj(z) 

L~ 

Figure 1. Object formed from stacked primitives. 

A ( r  : V)  

Figure 2. Unit height cylindrical primitive. 

may be augmented to allow higher order evolution 
models) we have 

xj(z + 1) = Axe(z) + Bwj(z), z = zl j  . . . . .  zld + Lj 
exj(zoj) = Xo cov{x(zo)} = no (2) 

where wj.(z) is a white Gaussian noise vector- 
sequence of identity covariance, uncorrelated with 
xj.(z0j). The different objects and their associated 
stochastic processes {xj(z), z = zld . . . . .  z i j  + Lj} 
are assumed statistically mutually independent im- 
plying that for i r j i, j = 1 . . . . .  J, COV{xi(zo,i), 
xj(z0j)} = 0 and E[wi(1)wj '(m)] = 0 V l, m. The ob- 
jects are further assumed to have identical statis- 
tics, and are therefore modeled by identical state- 
space models. Diverse structures may be modeled 
by properly choosing f0('; "), Y(') and dynamic 
model parameters (Bresler and Macovski 1987). 
The process noise wi(z) and the random initial state 
xj(zoj) both represent the uncertainty about the ex- 
act shape and position of the jth object: While a 
nominal, deterministic object is given by the ex- 
pected value E xj(z), which is obtained by initializ- 
ing equation (2) with Xo and setting wj.(z) = 0 for all 
z, the actual object is some random variation on this 
theme. 

The jth object is completely determined by the 
data set O~ = {Zld, Lj, Xj}, where Xj __a {xj(z), z = 
z]j . . . .  , Zld + Lj} is its state sequence, and its 3-D 
density function (with the dependence on Oj made 
explicit) can be immediately recovered from this 
representation as 

zIj+L 

3~(r, z; Oj) = ~ /0[r - cj(z); Yj{z)]gl,z 
l=zld 

(3) 

where ~k~/ = 1 iff j = k is the Kronecker delta 
function. Hence, by equations (1) and (3), the den- 
sity function fir, z; 01j) of the entire domain is 
uniquely determined by the data set O~d a= {Oj, j = 
1, 2 , . . .  , J}, which we ultimately seek to estimate. 

Measurement Model 
The Radon Transform. The 2-D projection of the 
cross-sectional distribution fir) at given projection 
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angle 0 and radial distance t from the origin is the 
integral 

g(t, O) : f ~  f (r)8(, - O'r)d~d'q : fO,r:t f (r)dr (4) 

along the line l(t, 0) = {r: 0'r = t}, where 0 is the 
corresponding unit direction-vector 0 ___a (cos0, 
sin0)'. The projection g(t ,  0) at any value of 0 is a 
1-D function of t (Figure 3). The mapping of f into g 
via equation (4) corresponds to the 2-D radon trans- 
formation (Deans 1984) whereas the reconstruction 
problem of determining the distribution f from its 
projections g involves inverting the integral equa- 
tion (4), or finding the inverse radon transform. 

As in 3-D axial tomography we assume that we 
are given sets of 2-D projection of vertically stacked 
thin slices of the domain D, for z = 1, 2 . . . . .  L. 
Denoting the radon transform off0(r; "/) by O(t, 0; "/), 
which is also a known function, it follows that the 
2-D projection of a slice at a given height z contain- 
ing a single primitive is 

f0,r=t f0(r - c; "/)dr = ~(t - 0'c, 0; T). (5) 

By the linearity of the radon transform, it follows 
from equations (1), (3), and (5) that the radon trans- 
form of the J objects is given by 

t 
W(t, 0, z; Ol:j) A J0 , r=t f ( r ,  z; Ol:j)dr 

J z ~ j + L  

: ~ ~ t~[t -0'cj{z), 0; Tj(Z)]gz,lj. 
j=l tj=zlj (6) 

Note that at any z position, ~(-) consists of the 
superposition of the projections of at most J prim- 
itives. Neglecting for simplicity the effect of a finite 
imaging aperture, which may be easily taken into 

11 

J 

\- 
Figure 3. 2-D project ion geometry.  

/ 

L ! z 

. . , i  
N 

Figure 4. Classical radiograph interpreta t ion of y(t, 0, z). 

account (Bresler and Macovski 1987), the actual 
noisy projection measurements are modeled by 

y(t, 0, z) = ~l(t, O, z; Ol:j)  + v(t, 0, z), (7) 

where v(t, O,z) is a white noise zero-mean Gaussian t 
random field, of intensity N O . 

In the limited data case, the projection data is 
available only at a discrete set 0 ~ {0m}m~= ~ of M 
(possibly nonuniformly spaced) projection angles 
covering a sector 0M -- 01 ~< "rr, at N uniformly 
spaced values of t covering the range [ -  T/2, T/2], 
and at L values of z spaced at the primitive height 
interval of 1. These values of (t, 0, z) define the 
support set Sy of the available measurements. For a 
fixed 0 = Om, y(t ,  0 m, z) may be regarded as a clas- 
sical X-ray (radiograph) (Figure 4). Alternatively, 
using the indices n and m to index the discrete t and 
0 values, respectively, the measurements can be 
represented for each value of z by an N • M data 
matrix Y(z) = [Ynm(Z)]  with elements given by the 
samples of y(.): 

n = 0  . . . . .  N = I  

Ynm(Z) A y _ -~ + n ~ , Om, Z = ~nm(Ol:J) + ~nm(Z), 

m = 1 . . . . .  M (8) 

E[v~,.m,(ZO " v.~,m~(z2)l = Cr2gn~,.~g,~,.m~g~,.~. 

1 The modeling of the noise as additive and Gaussian is ac- 
curate in a variety of applications including MRI (Edelstein et al. 
1983), and even when the true statistics of the noise are Poisson, 
as in X-ray imaging, the Gaussian approximation is often ade- 
quate. Furthermore, the Gaussian assumption can be dispensed 
with altogether in the hierarchical algorithm which is readily 
adapted to any known noise probability distribution, whereas the 
MMSE algorithm only requires that the Fourier transform of the 
noise field be Gaussian. The latter property applies asymptoti- 
cally to any noise distribution with finite moments (Brillinger 
1980). 
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The mth column of Y(z) corresponds to a single 
scan line at height z in the radiograph at view an- 
gle 0 m. 

III. The Estimation Problem 

The object reconstruction problem may now be 
stated in the following form: 
Given the noisy set of projections y =a {y(t, O, z), (t, 
O, z) ~ Sy} and the state space models from equation 
(2), determine optimal estimates J and 01:3 of the 
number of objects and their representations, re- 
spectively. 

The problem is one of joint estimation and detec- 
tion, since both the number of objects J and the 
number of primitives of which they comprise (i.e., 
their lengths Lj), as well as their state sequences Xj., 
need to be estimated. 

The problem is reduced to estimation only, if we 
assume a single object (J = 1) extending from bot- 
tom to the top of the imaged domain (i.e., zl = 1, L 1 
= L). q~(.) in equation (7) is then replaced by t~[t - 
0'c(z); 7(z)]. In this simplified case, stacking up the 
elements of Y(z), for example, in lexicographical 
order into a column vector It(z) of length N "  M 
(where the t - 0 samples of ~(.) and v(.) are simi- 
larly stacked into h[x(z)] and v(z), respectively), 
produces a vector nonlinear measurement equation 
with white additive noise. 

la(z) = h[x(z)] + v(z) (9a) 

E[V(Zl)V'(Z2)] = ~r 2 �9 I ~z~.z2" (9b) 

Note that h[x(z)], whose elements are the t - 0 
samples of +[t - 0'c(z); ?(z)] is a known nonlinear 
vector function of c(z) and 7(z), and hence of the 
state x(z). Combining equation (9) with equation (2) 
and with the minimum mean square error (MMSE) 
criterion, the estimation proble m for x(z) takes on a 
standard form of a nonlinear state estimation prob- 
lem. It is a f i x e d  in terva l  s m o o t h i n g  problem 
(Jazwinski 1970) since the estimate at each point 1 

z ~< L is formed using the measurement data for 
the entire interval, which is available simultaneous- 
ly. While the optimum MMSE estimator is known 
to be given, in principle, by the conditional mean of 
the state given the measurements, its exact compu- 
tation is not a finite process. Even an approximate 
solution by the widely used Extended Kalman Fil- 
ter (EKF) (Jazwinski 1970) can not be obtained, 
owing to the severe nonlinearity of the measure- 
ments, which leads to filter divergence (Bresler and 
Kailath 1987). A special algorithm that is based on 
the EKF but yields extended convergence range is 
briefly reviewed below. 

The abovementioned algorithm is restricted to 
only a few objects, owing to certain observability 
limitations. Our approach to the general multiple 
object detection-estimation problem is therefore 
different. We consider the m a x i m u m  a poster ior i  
probabil i ty  (MAP) (Jazwinski 1970) estimates ) and 
01:3 defined as the solution to 

max p(J, Ol:Jly), (10) 
J,OIJ 

where p(J,  Ol:jly ) is the posterior probability of J 
and Ol:j given that the data y were observed. Once 
more, while the solution is well defined, its actual 
computation is unfeasible for all but the smallest 
problems, owing to the high dimensionality of the 
search space. Consequently, we propose a subop- 
timal hierarchical algorithm, consisting of an opti- 
mal combination of individually optimal steps. 

IV. Single Object Estimation Algorithm 

The essence of this method lies in a 1-D Fourier 
transformation (FT) of the projection data from the 
spatial domain (indexed by t) to a frequency do- 
main, and then a reordering of these measurements, 
to yield a new set of measurements that is more 
amenable to linearization, permitting the applica- 
tion of tlae EKF. The 1-D FT of the continuous (in 
t) measurement function, (with the z dependence 
suppressed for notational compactness) is 

+[ill x, 0l A FT{+[t - c'0, 0; ?]} 

= tb0(/'f~, 0, Y) " e-JOc'~ (11) 

where +0(jO, 0; 7) the FT of tb(t, 0; ?), is a known 
functiofi. Note that the shift dependence has been 
transformed into an exponential  phase factor, 

TRANSFORMED DATA PROJECTION BACKWARD 
DATA ~r ) "FILTER ~ Y(z) 

FORWARD 0 ~ , . ~  
FILTER 

Figure 5. Data processing sequence for FSRS. Individual 
cuboids represent scalar samples. Slabs are processed as 
vectors. 
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transformed into an exponential phase factor, 
which can be effectively linearized in a neighbor- 
hood i of x(z), satisfying II~'ek] ~ 1, where 6 is the 
corresponding neighborhood of the position c. An 
EKF applied to the transformed measurements can 
be expected to converge for the range of estimate 
errors :~ satisfying the aforementioned requirement, 
if we assume that the "shift dependence," (which 
has been transformed into the exponential), is in- 
deed the major source of nonlinearity in the mea- 
surement. Hence, we term the ~ neighborhood sat- 
isfying If~6'ekl ~ 1 the convergence region of the 
filter at the measurement frequency f~. 

Clearly, low-frequency components (small ~) 
imply larger convergence region than the higher 
components. This ordering is key to our scheme: 
Starting with the lowest frequency component of 
the measurement, (hence with a wide convergence 
region) use an EKF smoothing algorithm to obtain 
an estimate of the state for all z = 1 . . . .  , L. Next, 
linearizing about  this estimate,  run the EKF 
smoother to process the data of the next frequency 
component for all z = 1 . . . . .  L. As long as the 
estimation error is sufficiently reduced by the pro- 
cessing of one frequency component data-set so 
that it is within the convergence range of the next 
higher component, this process can be repeated 
without EKF divergence. The resulting estimate 
when all frequency components have been used, is, 
to within the approximation involved in the EKF 
linearization, the MMSE estimate. It is globally op- 
timal, in the sense that at each point in space, the 

�9 reconstruction error is minimized by optimum use 

Figure 6. Noisy projection measurement at 0 = 0 ~ 

Figure 7. Noisy projection measurement at 0 = 90 ~ 

of all available measurements and prior informa- 
tion. 

Such issues, as the replacement of the FT by a 
discrete FT (DFT) for the sampled measurements; 
the derivation of a recursive update scheme for a 
complete EKF smoothing solution to include an ad- 
ditional measurement set at the higher frequency; 
and convergence analysis of the algorithm, are ad- 
dressed elsewhere (Bresler 1985, Bresler and 
Kailath 1987, Bresler and Macovski 1987). Here, 
we show in Figure 5 the overall structure of the 
resulting algorithm. In the preparatory step of the 
algorithm, a set of 1-D FFTs of the projection data 
is performed by columns of the measurement ma- 
trix Y(z), that is, separately for each view angle 0m, 
transforming the radial index n to the frequency in- 
dex u. The smoothing algorithm itself consists of a 
set of nested recursions. The inner recursion is in 
the spatial index z, where for a given frequency 
component u (a given vertical layer of transformed 
data in Figure 5) forward and backward filters are 
computed respectively for z = 1 . . . . .  L and z = L 

- 1 . . . . .  0, and then combined into the smoothing 
solution is,,(z) for L = 0 . . . . .  L. The outside re- 
cursion is in u, where successive vertical layers of 
transformed data in Figure 5 are used to update the 
complete smoothing solution for u = 0, . . . , N/2. 
This recursive structure of the algorithm in a hybrid 
space-frequency domain (Fig. 5) has suggested its 
ac ronym FSRS (Frequency-Space  Recurs ive  
Smoother). 

Noting that higher-frequency components pro- 
vide information about the finer structure of the 
data, the FSRS can also be interpreted as a multi- 
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V. Multiple Object Hierarchical Algorithm 

The algorithm produces estimates of the objects' 
positions and shapes in four hierarchical steps. 

Step 1: Primitive Detection and Estimation 
First, we detect object primitives in each slice (nor- 
malized to thickness 1) and compute local maxi- 
mum likelihood (ML) estimates of their parameters 
using only the measurements for that slice. Hence, 
the problem reduces to L decoupled 2-D problems, 
each requiring the maximization with respect to {xj} 
of likelihood function 

L({xj}~I ) =A log p[YI{xj}K=I] 
1 M N 

= C1-~2 Z Z(Ynm- 
m=l n=l 

~ ,  - ~ + n ~  - ok'cj, ok; ~,j 
j=l 

(12) 

Figure 8. Noiseless object projection (shaded) with su- 
perimposed projection of FSRS-estimated object (solid 
line), 0 = 0 ~ 

resolution scheme, whereby the data are examined 
at increasing levels of resolution. It differs, howev- 
er, from such schemes that have been proposed in 
various hierarchical computer vision algorithms in a 
fundamental way. First, it is recursive rather than 
hierarchical. Thus, no information is lost by pro- 
ceeding in frequency order, the final result being an 
optimal combination of the data at all resolution 
levels. Second, rather than being postulated to re- 
duce the computational load, the multiresolution 
structure here serves the purpose of increasing the 
domain of validity of the EKF-type linearization. 
Nonetheless,  similarly to other multiresolution 
techniques, the FSRS also affords a trade-off be- 
tween computation and estimate accuracy: The 
computation may be discontinued at u < N/2 short 
of using all the nonredundunt frequency compo- 
nents, resulting in an object estimate that is less 
than optimum. In fact, since most of the energy of 
typical projection functions qff.) is concentrated in 
the low-frequency components (e.g., I~0(jf~, o, "/)12 
for an elliptical cross-section function falls off as 
f~-3), such truncated computation offers significant 
computational savings with little degradation in es- 
timate accuracy. 

Figure 9. Noiseless object projection (shaded) with su- 
perimposed projection of FSRS-estimated object (solid 
line), 0 = 90 ~ 
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where K is the number of primitives in that slice, 
and we suppress the z-dependence for convenience. 
The difficulty of the associated nonlinear search in 
K �9 dim (xj) dimensional parameter space is allevi- 
ated (as will be described in detail in a forthcoming 
paper) by an algorithm based on Alternating Maxi- 
mization (Ziskind and Wax 1987), where the likeli- 
hood is iteratively maximized over the parameters 
of one primitive, holding the others fixed, effective- 
ly requiring only K searches in dim(xj) dimensional 
space. Its structure consists of iterative matched 
filtering of a signal formed by subtracting out the 
contributions of all but one estimated primitive 
from the measurements,  by a filter with a kernel 
matched to the projection of that primitive. 

The detection problem of determining the num- 
ber K of primitives in the slice can be addressed in 
several ways,  including multiple hypothesis testing, 
and In fo rmat ion  Theore t ic  cri teria (Rissannen 
I978). Alternatively, the estimation procedure can 
be carried out for a predetermined upper bound on 
the number of primitives in a slice, thus generating 

false alarms that will have to be pruned by the fol- 
lowing steps of the hierarchy. 

In this step, the raw projection data are mas- 
sively reduced, producing for each z = 1 , . . .  , L a 
set ~(z) = {~i}ff=(]) of K(z) (arbitrarily ordered and 
sequentially numbered) ML parameter estimates of 
detected primitives. Equivalently, each ~i(z) pro- 
vides a linear measurement of x~.(t) corrupted by the 
estimation error vj(z) for some unknown object j ,  as 
in 

g~(z) = xj(z) + vj(z). (13) 

Assuming the estimation error to be Gaussian dis- 
tributed and uncorrelated between data points, the 
sys tem and measurement  models descr ibed by 
equations (2) and (13) seem to be in a classical form 
to which Kalman filtering (Jazwinski 1970) may be 
applied, to obtain a MMSE estimate of {xj.(z)} thus 
reconstructing the object�9 Note however,  that con- 
trary to the classical case, the uncertainty in equa- 
tions (2) and (13) is not confined to the noises w and 
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Figure 10. Comparison of true (solid) and estimated (dashed) parameters for the simple (left), hierarchical (center), and 
FSRS (right) algorithms. 
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v; in fact, the association between a measurement 
~i(z) and an objec t j  is not known. Moreover, owing 
to detection error, "false alarm primitives" will be 
generated that do not correspond to any object. 

Unsupervised Pattern Recognition Problem 
The problem is first converted into a finite combi- 
natorial search; to find the globally optimal way (in 
the MAP sense) to combine the detected primitives 
into objects. Equivalently, this is an unsupervised 
pattern recognition problem, in which it is neces- 
sary to estimate from the unclassified data ~ both 
the number of clusters (objects) present, and their 
individual parameters. Our solution (Bresler 1985, 
Bresler and Macovski 1984b) to this problem is in- 
spired by a technique proposed by Morefield (1977) 
for multitarget tracking in a cluttered environment. 

An Association Hypothesis H is a complete par- 
titionir~g of the set Z of detections in all the slices 
into J* disjoint object clusters {~,i, j = 1 . . . . .  J*} 
and a false alarm cluster �9 consisting of data points 
rejected from all h i. Since no two objects occupy the 
same point in space, or share a primitive, the dis- 
tinct clusters must be disjoint, and we have 

j *  

d p = Z -  U h  i 
(14a) j=l  

h " 7 1 h  i = 0 i # j  (14b) 

Denoting the set o f  all such valid hypotheses by S, 
we formulate the problem as a multihypothesis test 
under the MAP criterion H = arg maxI4~sP(HlZ), 
which is known (Jazwinski 1970) to minimize the 
associated Bayes risk, if errors are equally weighted 
and correct decisions not penalized. 

Since this combinatorial problem is still too large 
to be solved directly 2 additional steps are neces- 
sary. Using the assumed independence of the ob- 
jects, of the estimation noises vj and the constraint 
(14b), which together imply independence of the 
clusters h i conditioned on a specific association hy- 
pothesis H, we decompose the problem into a step 
of feasible object construction followed by an inte- 
ger optimization program, greatly alleviating the 
computational difficulty. 

Step 2: Feasible Object Construction 
A clustering procedure is implemented in this step 
to detect clusters h i in Z that are "reasonable" to 

2 With k detected primitives in each of L slices, the number of 
different hypotheses H in S is lower bounded by llSI1 >t k (k ! )  L - 1, 

ruling out a solution by direct enumaration of these hypotheses 
in all but the smallest problems. 

incorporate in an assignment hypothesis H, given 
the object and measurement models (2) and (7). 
Specifically, we construct a feasible object set con- 
taining object clusters whose likelihood exceeds a 
certain threshold by scanning the data with a depth 
first, backtracking search procedure; as many data 
points are added to an object as possible, before its 
likelihood test is failed, at which time the algorithm 
backtracks, and examines another branch of the 
search tree. The likelihood function for this sequen- 
tial hypothesis test is computed from the white 
Gaussian innovation sequence (Jazwinski 1970) 
produced by a linear Kalman filter based on the 
model (2), (7), which is applied to the data k j as the 
search proceeds. 

Only association hypotheses formed using the 
feasible objects will be considered in the subse- 
quent Bayesian decision process, effectively substi- 
tuting a pruned feasible set for the larger original set 
of all possible association hypotheses. The elimina- 
tion of low probability (infeasible) hypotheses in 
this process contributes to great computational sav- 
ings. 

Step 3: Discrete Optimization 
Note that while two or more (individually) feasible 
objects may share a primitive, only one of these 
objects can be included in the winning association 
hypothesis. Therefore, a multiple hypothesis test is 
performed next to determine the number of objects 
and which particular combination of the many fea- 
sible objects maximizes the posterior probability 
subject to the constraints (14). This final multihy- 
pothesis test can be structured as a linear integer 
optimization problem of the form 

min c'~ subject to A~ ~< [1, 1 . . . .  1] (15) 
-r 

where x is a binary "selection" vector whose en- 
tries are zero or one according to whether or not the 
corresponding feasible object is included in the final 
selection. Each of the columns of the matrix A is 
used to similarly encode the selection of detected 
primitives in a corresponding feasible object ob- 
tained in the previous step, and the vector C con- 
tains the individual negative log-likelihoods associ- 
a ted  with these  feas ib le  ob j ec t s .  Thus ,  the 
inequality in (I5) represents the constraints (14), 
and the minimization of the linear cost function cor- 
responds to a global MAP criterion. The problem 
(15) is known as the set packing problem in 0-1 in- 
teger programming (Taha 1975) and specialized ef- 
ficient algorithms taking advantage of the typical 
sparseness of the matrix A are available for its so- 
lution 
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Table 1. Comparison of three algorithms 

Error Standard Deviations 

Simple Hierarchy FSRS 

X Position (actual) 3.06 1.49 0.94 
X Position (predicted) 2.12 2.12 0.7 
Y Position (actual) 2.53 0.99 0.76 
Y Position (predicted) 2.12 2.12 0.7 
Radius (actual) 0.39 0.39 0.40 
Radius (predicted) 0.89 0.89 0.48 

Step 4: Fixed Interval Linear Smoothing 
At the completion of the previous step, an optimum 
association hypothesis /:/ is produced specifying 
the estimated number of objects ), their starting 
positions Zld, lengths Lj, j = 1, . . . , 3, and which 
detected primitives belong to which object. Given 
this hypothesis and the models (2) and (13), the 
problem of determining optimum estimates of the 
state sequences Xj, j = 1 . . . . .  J of these objects 
decomposes (once again, owing to the conditional 
independence of the objects) into ) independent  lin- 
ear Gaussian fixed interval smoothing problems 
(Jazwinski 1970). A MMSE estimate of the X i is 
obta ined by applying s tandard Kalman filter 
smoothing formulae individually to the data sets 

eration count for the simulations in section VI is 
between 10 6 and 108 . 

VI. Simulation Results 

Both of the foregoing algorithms have been imple- 
mented for the case of cylindrical objects with cir- 
cular cross section. In addition, the following 
"s imple"  suboptimal algorithm has been imple- 
mented for comparison: for each slice, find the 
maximum likelihood estimate of the parameters of a 
cylindrical primitive. Smooth the resulting esti- 
mates using the object model. 

For the simulation, we choose the object model 
to reflect the following assumptions: (a) low curva- 
ture of center axis; (b) independent evolution of the 

and ~q coordinates; (c) continuity of the cross- 
section parameters; (d) uniform distribution of the 
initial horizontal position in D with T = 64 pixels, 
and of the radius in the range [2,8] pixels. A random 
cylindrical object was generated by driving the ob- 
ject models with white noise. The resulting object 
has an average radius of 6 pixels. A 50% area re- 
duction narrowing was inserted by hand. Simulated 
projection measurements of the object, (Figures 6 
and 7) were generated at angles 0, 45, 90, and 135 ~ 
with additive zero-mean white Gaussian noise re- 

Computational Requirements 
The operation count is found (Bresler 1985) to be 
dominated by the first step, and in particular by the 
convolutions required to implement the matched fil- 
ter operations. For example, depending on the spe- 
cific implementation of the AM algorithm, the op- 

Figure 11. Noisy projection measurement at 0 = 0 ~ 

Figure 12. Noiseless object projection (shaded) with su- 
perimposed projection of FSRS estimated object (solid 
line), 0 = 0 ~ 
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sulting in a projection SNR (the ratio of signal peak 
to noise-standard-deviation) of 0.5-0.7. 

Figures 8 and 9 show synthesized projections of 
the estimated object (as estimated by the FSRS al- 
gorithm) superimposed on the projection of the ac- 
tual (noiseless) object. With a suitable graphics 
package, a 3-D display of the estimated object could 
be generated. Figure 10 allows a quantitative com- 
parison of estimated versus true object parameters 
for the three different approaches to the estimation 
problem. As can be seen from Figure 10a, the 
"simple" algorithm has substantial tracking error. 
This is due to the threshold effect for maximum 
likelihood position estimates (Zakai and Ziv 1969), 
which results in several of the primitives being 
poorly estimated. However, Figure 10b represents 
the result of applying the hierarchical algorithm 
with two primitive estimates per slice. The optimum 
estimated object formed from the estimated primi- 
tives is seen to be substantially more accurate. Fi- 
nally, Figure 10c shows the FSRS MMSE algorithm 
estimates using 16 frequency components. 

Table 1 compares the average performance of 
these algorithms. Note that the error performance 
predicted by the simple algorithm is optimistic, 
since it ignores the threshold effect. The hierarchi- 
cal algorithm's performance is comparable to that 
of the FSRS MMSE algorithm, indicating that the 
approximations used in its derivations hold at this 
(and higher) signal-to-noise ratios. The hierarchical 
algorithm has been demonstrated with simulations 
of multiple objects (to be reported in detail in a 
forthcoming paper); Figure 11 is one of four noisy 
projection measurements used there, and Figure 12 
shows the superposition of the estimated objects on 
the projections of the actual objects. All of the es- 
timation errors are in the subpixel range, including 
the tracking of a narrowing (indicated by the arrow) 
in the largest object which is difficult to see in the 
projections. Therefore, the hierarchical algorithm is 
the candidate for further investigation. 

VII. Concluding Remarks 

We have presented an estimation framework for 3- 
D reconstruction from limited-view noisy line- 
integral projections based on dynamic stochastic 
object models. Although the globally optimal solu- 
tion of the resulting joint detection estimation prob- 
lem is computationally infeasible, the two algo- 
rithms presented in this paper provide approximate 
and suboptimal solutions, respectively, drawing on 
a variety of techniques. The FSRS represents a syn- 
thesis of a signal processing technique, the DFT, 
with approximate recursive optimum nonlinear 

smoothing, to produce a new algorithm for multidi- 
mensional signal processing. The hierarchical algo- 
rithm, on the other hand, employs a divide and con- 
quer strategy at several levels, extensive data 
reduction at the first step, and a mix of continuous 
and combinatorial optimization, which all contrib- 
ute to the computational efficiency of the algorithm. 
In the process, global optimality of a single step 
procedure is replaced by local optimality of the in- 
dividual steps, whose results are combined to opti- 
mize a global performance criterion. However, ju- 
dicious choice of decision thresholds in the various 
steps of the algorithm that produces a sequence of 
finer and finer tests, allows one to obtain significant 
reduction in computation, with little loss in perfor- 
mance. 

The simulation results reported in this paper in- 
dicate the potential of the algorithms for reconstruc- 
tion from extremely noisy and restricted data. The 
comparison of the two algorithms confirms that the 
hierarchical algorithm is capable of performance 
similar to the approximately optimal FSRS. In con- 
trast, a simple algorithm consisting of single-slice 
maximum likelihood estimation followed by 
smoothing based on the object model performed 
much worse, suggesting that a sophisticated ap- 
proach is indeed necessary for this problem. 

Our hierarchical algorithm differs from other hi- 
erarchical algorithms that abound in artificial intel- 
ligence (AI) in general (Nillson 1980) and computer 
vision in particular (Ballard and Brown 1982), in 
that rather than use ad hoc criteria and procedures, 
it is characterized by well-defined quantitative op- 
timality criteria, and by procedures that are either 
optimal or represent a well-defined trade-off be- 
tween computation and optimality. This pursuit of 
optimality is motivated by the adverse conditions 
under which the algorithm has to operate---limited 
data and poor SNR; while in most computer vision 
applications the aim is to match the performance of 
a human observer, the purpose of our the algorithm 
is to perform a task of which neither the unaided 
human observer nor current algorithms are capable, 
3-D reconstruction from few projections at low 
SNR. 

The formulation and algorithms as presented in 
this paper are restricted by the object representa- 
tion and by the causal evolution model to objects 
whose center axis is a single valued function of a 
fixed spatial coordinate. While this limitation is in- 
herent to the recursive structure of the FSRS, it can 
be overcome in a modified version of the hierarchi- 
cal algorithm, as described in Bresler (1985). An- 
other inherent limitation is to the class of general- 
ized cylinders. However, as indicated before, by 
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appropriately choosing the cross-section functionfo 
and dynamic model parameters, a good approxima- 
tion to a variety of man-made and natural objects 
can be obtained. 
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