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---We give a recursive algorithm to calculate submatriees of 
the Cramer-Rao (CR) matrix bound on the eovpriance of any unbiased 
estimator of a vector parameter 9. Our a&pr&bm unmputea a scqpcnee 
of lcrwer bounds that oonvmges I P O ~  to tBe CR b o d  a#h 
exp@nenti.l speed of Ewvergence. The naueive PlgMithm uses an 
invertible “splitting matrix“ to successively approximate the inverse 
Fisher information matrix. We present a statistical approach to selecting 
the splitting matrix based on a ‘ “ n ~ e t e d a ~ i ~ t e d a t a ~  tomu- 
lation similar to that of the well-known EM parameter estimation 
algorithm. As s c“te Ustration we ”@er iarrgc rceanstrpetlon 
f” projections for emission computed tomography. 

Index Term-Multidimensional parameter estimation, estimator co- 
variance bounds, complete-incompletedata plpMem, Image reconstruc- 
tion. 

I. INTRODUC~ON 
The Cramer-Rao (CR) bound on estimator covariance is an 

important tool for predicting fundamental limits on best achiev- 
able parameter estimation performance. For a vector parameter 
8 E 8 c R“, an observation Y, and probability density function 
(pd0 fy(y; e), one seeks a lower bound o! the Finimum achiev- 
able variance of an unbiased estimator 6, = e,(Y) of a scalar 
parameter fll of interest. More generally, if, without loss of 
generality, the p parameters el;-*, e,, are of interest, p 5 n, one 
may want to specify a p X p  matrix which lowe: bounps the 
error covariance matrix for unbiased estimators O , ; . . ~ B , , .  The 
upper left p X p submatrix of the n x n inverse Fisher informa- 
tion matrix F;’ provides the CR lower bound for these parame- 
ter estimates. Equivalently, the first p columns of F;’ provide 
this CR bound. The method of sequential partitioning [l] for 
computing the upper left p X p submatrix of F;’ and 
Cholesky-based Gaussian elimination techniques [2] for comput- 
ing the p first columns of F;’ are efficient direct methods for 
obtaining the CR bound, but require Oh3) floating point opera- 
tions. Unfomately, in many practical cases of interest, e.g., when 
there are a large number of nuisance parameters, high computa- 
tion and memory requirements make direct implementation of 
the CR bound impractical. 
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In this correspondence we give an iterative algorithm for 
computing columns of the CR bound which requires only O(pn2) 
floating point operations per iteration. This algorithm falls into 
the class of “splitting matrix iterations” [2] with the imposition 
of an additional requirement: the splitting matrix must be cho- 
sen to ensure that a valid lower bound results at each iteration 
of the algorithm. While a purely algebraic approach to specifying 
a suitable splitting matrix can also be adopted, here we exploit 
specific properties of Fisher information matrices arising from 
the statistical model. Specifically, we formulate the parameter 
estimation problem in a complete-data-incomplete-data setting 
and apply a version of the “data processing theorem” [31 for 
Fisher information matrices. This setting is similar to that which 
underlies the classical formulation of the maximum likelihood 
expectation maximization (ML-EM) parameter estimation algo- 
r$-. The ML-EM algorithm generates a sequence of estimates 
@ck)), for 8 which successively increases the likelihood func- 
tion and converges to the maximum likelihood estimator. In a 
similar manner, our algorithm generates a sequence of tighter 
and tighter lower bounds on estimator covariance which con- 
verges to the actual CR matrix bound. 

The algorithms given here converge monotonically with expo- 
nential rate, where the asymptotic speed of convergence in- 
creases as the spectral radius p(Z - Fi’F,) decreases. Here Z 
is the n X n identity matrix and Fx and Fy are the complete- 
and incomplete-data Fisher information matrices, respectively. 
Thus when the complete data is only moderately more informa- 
tive than the incomplete data, Fy is close to Fx so that p(Z - 
F;’Fy) is close to 0 and the algorithm converges very quickly. 
To implement the algorithm, one must 1) precompute the first p 
columns of F;’, and 2) provide a subroutine that can multiply 
Fi’F, or F;’E,[V”Q(@;8)] by a column vector (see (18)). By 
appropriately ch-&sing the complete-data space, this precompu- 
tation can be quite simple, e.g., X can frequently be chosen to 
make F, sparse or even diagonal. If the complete-data space is 
chosen intelligently, only a few iterations may be required to 
produce a bound which closely approximates the CR bound. In 
this case the proposed algorithm gives an order of magnitude 
computational savings as compared to conventional exact meth- 
ods of computing the CR bound. This allows one to examine 
small submatrices of the CR bound for estimation problems that 
would have been intractable by exact methods due to the large 
dimension of Fy. 

The paper concludes with an implementation of the recursive 
algorithm for bounding the minimum achievable error of recon- 
struction for a small region of interest (ROI) in an image 
reconstruction problem arising in emission computed tomogra- 
phy. By using the complete data specified for the standard EM 
algorithm for PET reconstruction [4], [5], F, is shown to be 
diagonal and the implementation of the recursive CR bound 
algorithm is very simple. As in the ML-EM PET reconstruction 
algorithm, the rate of convergence of the iterative CR bound 
algorithm depends on the image intensity and F e  tomographic 
system response matrix. Furthermore, due to the sparseness of 
the tomographic system response matrix, the computation of 
each column of the CR bound matrix recursion requires only 
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O(n) memory storage as compared to O(n') for the general 
algorithm. 

11. CR BOUND AND ITERATIVE ALGORITHM 

A. Background and General Assumptions 
Let ai be an open subset of the real line R. Define I= 

[e,;. . ,  19,]' a real, nonrandom parameter vector residing in 
0 = 0, x x 8,. Let {P,}, E be a family of probability mea- 
sures for a certain random-variable Y taking values in a set 9. 
Assume that for each 3 E 0, 5 is absolutely continuous with 
respect to a dominating measure p, so that for each 3 there 
exists a density function f ( y ; j )  = d $ ( y ) / d p  for Y When 
/ylyld$ is finite, we define the expectation E&Y] = Jyydpa. 

E e is sard to be a regular 
family [6] if 0 is an open subset of R" and 1) f y ( y ; $ )  is a 
continuous function on 0 for p-almost all y; 2) In f(Y; 3 )  is 
mean-square differentiable in 3; and 3) % In f(Y; 3 )  is mean- 
square continuous in 3. These three conditions guarantee that 
the nonnegative definite n X n Fisher information matrix F y ( 3 )  
exists and is finite: 

The family of densities { f y ( y ;  

where V, = [ d/dO,; . . ,  d / d e n ]  is the (row) gradient operator. 
Und& the additional assumption that the mixed partials 

(a2/eie,)fy(Y; e), i, j = l;.., n,  exist, are continuous in 3, and 
are absolutely integrable in Y, the Fisher information matrix is 
equivalent to the Hessian, or "curvature matrix," of the mean of 
In fy(Y; 8 ): 

F y ( 3 )  = - q v p y  In f ,W;  U)lg=81 

= -V,TVuEs[ln - -  fy(Y; u)ll,=j. (2) 

Finally we recall convergence results for linear recursions of 
the form 

Ag', i = 1,2;--, u I + l  = - 

where g' is a vector and A is a matrix. Let p(A)  denote the 
spectral radius, i.e., the maximum magnitude eigenvalue, of A. 
If p(A)  < 1, then E' converges exponentially to zero and the 
asymptotic rate of convergence increases as the root convergence 
factor p (A)  decreases [7]. 

B. The CR Lower Bound 
Let i = &Y) be an unbiased estimator of 3 E 0, and assume 

that the densities { f y ( y ;  $)>B E are a regular family. Addition- 
ally assume that the Fisher infopation F ,  is positive definite. 
Then the covariance matrix of 3 satisfies the matrix CR lower 
bound [6]: 

(3) 

We refer to the above as the unbiased CR bound. 
Assume that among the n unknown quantities 3 = [e,, . . . ,  e,]', 

only a small number p c*: n of parameters 3' = [O1;-, Op]'are 
directly of interest, the remaining n - p parameters being con- 
sidered "nuisance parameters." Partition the Fisher information 
matrix F y  as 

cov, (4) 2 B ( 8 )  = FF'(8) .  

(4) 

where F,, is the p X p Fisher information matrix for the param- 
eters 8' of interest, FZ2 is the ( n  - p )  X ( n  - p )  Fisher infor- 
mation matrix for the nuisance parameters, and F12 is the 

( n  - p )  x p information coupling matrk. The- CR !ound on 
the covariance of any unbiased estimator 3' = [e,;-- ,  e!]' of the 
parameters of interest is simply the p x p  submatrlx in the 
upper left-hand comer of F;': 

(5) 

where 8 is the n X p elementary matrix consisting of the first p 
columns of the n X n identity matrix, i.e., 8 = [_el;-., _ep], and E, 
is the jth unit column vector in R". Using a standard identity for 
the partitioned matrix inverse [2], the submatrix (5) can be 
expressed in terms of the partition elements (4) of FYI yielding 
the following equivalent form for the unbiased CR bound: 

covB (4') 2 8'F; '8, 

(6) 

By using the method of sequential partitioning [ll, the right-hand 
side of (6) could be computed with Oh3) floating point opera- 
tions. Alternatively, the CR bound (5)  is specified by the first p 
columns F;'8  of FTl.  These p columns are given by the 
columns of the n x p matrix solution U to F,U = 0. The 
topmost p x p block 0'U of U is equal to the right-band side 
of the CR bound inequality (5). By using the Cholesly decompo- 
sition of Fy and Gaussian elimination [2], the solution U to 
FyU = &7 could be computed with (n3) floating point operations. 

Even if the number p of parameters of interest is small, for 
large n the feasibility of directly computing the CR bound (5) is 
limited by the high number O(n3) of floating point operations. 
For example, in the case of image reconstruction for a moder- 
ate-sized 256 X 256 pixelated image, F y  is 256' X 256' so that 
direct computation of the CR bound on estimation errors in a 
small region of the image requires on the order of 2566, or 
approximately floating point operations! 

C. A Recursive CR Bound Algorithm 
The basic idea of the algorithm is to replace the difficult 

inversion of Fy with an easily inverted matrix F .  To simpllfy 
notation, we drop the dependence on 8. Let F be an n X n 
matrix. Assume that F y  is positive definite and that F 2 Fy,  i.e., 
F - Fy is nonnegative definite. It follows that F is positive 
definite, so let F112 be the positive definite matrix-square-root- 
factor of F.  Then, 

1 - ~ - 1 / 2 ( ~  - ~ , ) ~ - 1 / 2  = ~ - 1 / 2 ~ ~ ~ - 1 / 2  > 0, 

and 
F-'/'(F - F,)F-'/' 2 0. 

Hence 0 I Z - F - 1 / 2 F y F - 1 / 2  < Z, so that all of the eigenvalues 
of Z - F-l/'FyF-l/' are nonnegative and strictly less than 1. 
Since Z - F - 1 / 2 F y F - 1 / 2  is similar to Z - F-'Fy, it follows that 
the eigenvalues of Z - F-'Fy lie in [0,1) [8, Corollary 1.3.41. 
Thus, applying the matrix form of the geometric series 18, 
Corollary 5.6.161: 

B = [FYI-' = [ F  - ( F  - Fy) ] - '  

= [Z - F - ' ( F  - FY)]- 'F-'  

= ( :o[Z - F-'FYfk' F - ' .  

This infinite series expression for the unbiased n X n CR bound 
B is the basis for the matrix recursion given in the following 
theorem. 

Theorem 1: Assume that Fy is positive definite and F 2 Fy.  
When initialized with the n X n matrix of zeros B(O) = 0, the 

( 7 )  1 
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following recursion yields a sequence of matrix lower bounds- 
B(k)  = B c k ) @ )  on the n x n covariance of unbiased estimators $ 
of 3. This sequence asymptotically converges to the n x n 
unbiased CR bound F;' with root convergence factor p ( A ) .  

Recurswe Algorithm: For k = 0,1,2;.., 

B(k+l)  = A  .B(k)  + F-1, (8) 
where A = Z - F-'F, has eigenvalues in [0,1). Furthermore, 
the convergence is monotone in the sense that B ( k )  I B(k' ') I 
B = F;', for k = 0,1,2,.-. . 

h f i  Since all eigenvalues of Z - F-'F, are in the range 
[O, 11, we obviously have p(Z - F-'F,) < 1. Now consider . 

B(k+l)  - F-1 = ( I  - F-'F )B(k)  + F-1 - F-1 

= ( I  - F-'F,)(B(k) - F;') .  (9) 
Since the eigenvalues of Z - F ' F ,  are in [O, 11, this establishes 
that B(k+')  -+ F;' as k + Q) with root convergence factor 
p(z - F - ~ F , ) .  similarly, 
B(k+l)  - B(k) = (1 - F -  'F,)[B(k) - B(k-')] ,  k = 1,2, ..., 

with initial condition B(') - BC0) = F-' .  By induction we have 

B(k+ 1) - B(k) = F-  1/2[ Z - F -  1/2F F-  1/2IkF- 1/2 

which is nonnegative definite for all k 2 0. Hence the conver- 

By right multiplying each side of the equality (8) by the matrix 
8 = [g;.., gp] ,  where E, is the jth unit vector in R", we obtain a 
recursion for the first p columns B ( k ) 8  = [_blk),.-,$)I. Fur- 
thermore, the first p rows 8 T B ( k ) 8  of B ( k ) 8  correspond to the 
upper left-hand comer p x p  submatrix of B(k)  and, since 
H B ( k + l )  - B ( k ) ] 8  is nonnegative definite, by Theorem 1, 
€?*B(k)k7 converges monotonically to BrF;'8. Thus we have 
the following corollary to Theorem 1. 

Corollary 1: Assume that F y  is positive definite and F 2 F,, 
and let 8 = [e l , . . - ,gpl  be the n X p  elementary matrix whose 
columns are the first p unit vectors in R". When initialized with 
the n x p matrix of zeros p(O) = 0, the top p x p block €?p(k) 
of p(') in the following recursive algorithm yields a sequence of 
lower bounds on the covariance of any unbiased estimator of 
$' = [81,-., 8 IT which asymptotically converges to the p x p 
CR bound 8'F; '8 with root convergence factor p(A) :  

gence is monotone. 0 

Recurswe Algorithm: For k = 0,1,2,..., , 
p ( k + l )  = A  . p ( k )  (10) 

where A = Z - F-'F, has eigenvalues in [0,1) and 9 - l  = F -  '8 
is the n X p  matfix consisting of the first p columns of F-' .  
Furthermore, the convergence is monotone in the sense that 
8%(k) 5 8p(k+') 5 ETF;'€?, for k = 0,1,2, 

Given F-' and A the n X n times n X p matrix multiplica- 
tion A . P ( k )  requires only O(pn2)  floating point operations. 

D. Dkcusswn 

of Theorem 1 and Corollary 1. 

. 

We make the following comments on the recursive algorithms 

1) In order that the algorithm (10) for computing columns of 
F; ' have significant computational advantages relative to 
the direct sequential partitioning and Cholesky-based 
methods discussed in Section ILB, the precomputation of 
the matrix inverse F-' must be simple, and the iterations 
must converge reasonably quickly. By choosing an F that 
is sparse or diagonal, the computation of F-' requires 
only a n 2 )  floating point operations. If in addition F can 

be chosen such that p(Z - F-'Fy)  is small, then the 
algorithm (10) will converge to within a small fraction of 
the corresponding d u m n  of F;' with only a few itera- 
tions and thus will be an order of magnitude less costly 
than direct methods requiring Oh3) operations. 
From the relation I - F y B ( k + l )  = AT [ I  - FyB(k) ] ,  ob- 
tained in a similar manner as (9) of the proof of Theorem 
1, we obtain the following recursion for the normalized 
difference AP(k) = FY[F;' - Bck)@ between #l (k)  = 

Bck)8 and its asymptotic limit F; '8: 

Ap('+') = A r A p ( k ) ,  k = 1,2, ..., 
with Ap(O) = 2Y. This recursion can be. implemented in 
parallel with (10) to monitor the progress of the iterative 
CR bound algorithm towards its limit. 
For p = 1, the iteration of Corollary 1 is related to the 
"matrix splitting" method [2] for iteratively approximating 
the solution g to a linear equation Cg = c. In this method, 
a decomposition C = F - N is found for the nonsingular 
matrix C such that F is nonsqda r  and p(F- 'N)  < 1. 
Once this decomposition is found, the algorithm below 
produces a sequence of vectors gck) which converges to 
the solution g = C-'c as k + Q): 

(11) 

Identifying C as the incomplete-data Fisher information 
Fy,  N as the difference F - Fy,  U as the jth column of 
F;', and c as the jth unit vector gj in W", the splitting 
algorithm (11) is equivalent to the column recursion of 
Corollary 1. The novelty of the recursion of Corollary 1 is 
that we can identify splitting matrices F that guarantee 
monotone conuqence of jth component of by)  to the 
scalar CR bound on var, (8,) based on purely stuiisticul 
comidmtiom (see next section). Moreover, for general 
p 2 1, the recursion of Corollary 1 implies that when p 
parallel versions of (11) are implemented with g = gJ and 
g ( k )  = ET), j = l;..,p, respectively, the first p rows of 
the concatenated sequence [g ik) , -** ,  U?)] converge mFno- 
tcpicaUy to the p x p  CR bound on cov, (3'1, 3' = 
[ 8;-, OPlr. Monotone convergence is imp3ant in the 
statistical estimation context since it ensures that no 
matter when the iterative algorithm is stopped, a valid 
lower bound is obtained. 
The basis for the matrix recursion of Theorem 1 is the 
geometric series (7). A geometric series approach was 
also employed in [9, Section 51 to develop a method to 
speed up the asymptotic convergence of the EM parame- 
ter estimation algorithm. This method is a special case of 
Aitken's acceleration which requires computatio? of the 
inverse of the obsetved Fisher information Fy($)  = 
- V,BT In fy(U; 3) evaluated at successive EM iterates, 
$ =-$ck), k = m,ma+ 1, m + 2;.-, where m is a large 
positive integer. If F($Ck)) is positive definite, then Theo- 
rem 1 of this paper can be ?pplied to iteratively compute 
this inverse. Unfomately, F Y @ )  is not guaranteed to be 
positiye definite except within a small neighborhood @: 
111 - 111 5 8) of the M E ,  so that in practice such an 
approach may fail to produce a convergent algorithm. 

- U ( k +  1) = F-  lNU(k) + F-  IC. - 

111. STATISTICAL CHOICE FOR SPLIT~JNG MATRIX 
The matrix F must satisfy F 2 F y  and must also be easily 

invertible. For an arbitrary matrix F, verifying that F 2 F y  
could be quite difficult. In this section we present a statistical 
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approach to choosing the matrix F; F is chosen to be the Fisher 
information matrix of the complete data that is intrinsic to a 
related EM parameter estimation algorithm. This approach 
guarantees that F 2 F y  due to the Fisher information version of 
the data processing inequality. 

A. Incomplete-Data Formulation 
Many estimation problems can be conveniently formulated as 

an incomplete-complete-data problem. The setup is the follow- 
ing. Imagine that there exists a different set of measurements X 
taking values in a set 2 whose probability density f,(x;f) is 
also a function of 3. Further assume that this hypothetical set of 
measurements X is larger and more informative as compared to 
Y in the sense that the conditional distribution of Y given X is 
functionally independent of 9. X and %" are called the complete 
data and complete-data space, while Y and are called the 
incomplete data and incomplete-data space, respectively. This 
definition of incomplete-complete data is equivalent to defining 
Y as the output of a gindependent possibly noisy channel having 
input X. Note that our definition contains as a special case the 
standard definition [2] whereby X and Y must be related via a 
deterministic functional transformation Y = h(X) ,  where h: Z 
+ is many-to-one. 

1) The EMAlgorithm 
For an initial poini e('), the EM algorithm produces a se- 

quence of estimateAS @ ( k ) E ,  ' by alternating between computing 
an estimate Q(g; of the complete-data log-likelihood func- 
tion f , (x ;g ) ,  call%d the expectation (E) step, and fmding the 
maximum of Q(g; over g,  called the maximization (M) step 
[ 101: 

EMAlgorithm: For k = 0,1,2; . . ,  do: 

(E) Compute: ~ ( g ;  @)) = Eg(r,{log f x ( x ;  ~ ) I Y  = y) (12 )  

(M) - e ( k + l )  = argmax, Q<u; 

It can be shown [ l l ]  that the sequenceAj(k) monotonically 
increases likelihood in the sense that fy(Y; j ( k +  '9 L fy(Y; @k)), 
Vk. FurtFermore, if the likelihood function is strictly concave 
over 0, e(k) converges to the maximum likelihood estimate. 

2) A Data Processing Theorem 
Assume that a complete-data set X has been specified. For 

regular probability densities fx(x; e), fv(y; e), fxly(xly; e), we 
define the associated Fisher information matrices F,@) = 

-Ee[VoV,T In fx(X; e)] ,  F y @ )  = -Ee[VeVl In fy(Y; 811, 
FxIy-@) -Eo[\\' In fxly(X(Y; e)], respectively. The follow- 
ing gives a d&omposition for Fy($)  in terms of Fx(j) and 

Lemma 1: Let X and Y be random variables which have a 
joint probability density f,, y ( x ,  y ;  3) relative to some product 
measure px X py. Assume that X is more informative than Y 
in the sense that the conditional distribution of Y given X is 
functionally independent of 3. Assume also that {fx(x; e)}, E e 
is a regular family of densities with mixed parlials 
( d 2 / e , i 3 , ) f x ( x ; j )  which are continuous in e and absolutely 
integrable in x.  Then { f y ( x ; # ) b E e  is a regular family of 
densities with continuous and absolutely integrable mixed par- 
tials, the above-defined Fisher information matrices F,(j ), 
F y ( j ) ,  and FxlY@) exist, are finite, and 

F y @ )  - Fxly( ) .  (13) 

Proof of Lemma 1: Since X,Y has the density fx,y(x,y;j) 

FXIY(!). 

with respect to the measure px X py, there exist versions 
fylx(y(x; j) and fxly(xly;e) of the conditional densities. Fur- 
thermore, by assumption, fylx(ylx; 9 )  = fYlx(ylx) does not de- 
pend on 8. Since fy(~;!) = lafylx(ylx)fx(x;!)dpx, it is 
straightforward to show that the family {fy(y; tj)b E e inherits 
the regularity properties of the family {fx(x; E e .  Now for 
any y such that fy(y;@) > 0, we have from Bayes' rule, 

Note that fx,y(x,y;j) > 0 implies that fy(y;8) > 0, f x ( x ; j )  
> 0, fylx(ylx) > 0, and fxly(xly;~) 7 0. Hence, we can use 
(14) to express 

log fxly(xly; 3) = log f&; 3) - log fy (Y; e) f log fY IX(Y Ix), 
(15) 

whenever f,,,(x, y; e )  > 0. From this relation it is seen that 
fxly(xly;e) inherits the regularity properties of the X and Y 
densities. Therefore, since the set { ( x ,  y): fX,,(x, y; 8 )  > 0) has 
probability 1, we obtain from (15): 

- E e [ - V t  l~gfy(X;&')I. 
This establishes the lemma. 0 

Since the Fisher information matrix Fxly is nonnegative def- 
inite, an important consequence of the decomposition of Lemma 
1 is the matrix inequality 

F X ( j )  2 F y ( 3 ) .  (16) 

The inequality (16) is a Fisher matrix version of the "data 
processing theorem" of information theory [3], which asserts that 
any irreversible processing of data X entails a loss in informa- 
tion in the resulting data Y. 

B, Remarks 

1 )  The inequality (16) on Fx is precisely the condition 
required of the splitting matrix F by the recursive CR 
bound algorithm (10). Furthermore, in many applications 
of the EM algorithm, the complete-data space is chosen 
such that the dependence of X on e is "uncoupled," SO 

that F, is diagonal or very sparse. Since many of the 
problems in which F y  is difficult to invert are problems 
for which the EM algorithm has been applied, the Fisher 
information F, of the corresponding complete-data space 
is thus a natural choice for F.  

2) If the incomplete-data Fisher matrix Fy is available, the 
matrix A in the recursion (8) can be precomputed as 

A = I  - Fi'F, .  (17) 

On the other hand, if the Fisher matrix F y  is not avail- 
able, the matrix A in the recursion (8) c g  be computed 
directly from Q h ,  E) = E(log f ( X ;  e)lY, 8 )  arising from 
the E step of the EM parameter estimation algorithm 
(12). Note that, under the assumption that exchange of 
order of differentiation and expectation is justified: 

FxIy@) = Eg[  -ViEBIIn f x l y ( X I Y ;  u)lYll ,=e] 

= E,[ - VZOH(J; 311, 
def 

where H ( g ;  0) = &{log fxly(XIY; u)lY = y}. We can 
make use of an identity [ lo ,  Lemma 21: V m H ( e ; e )  = 

-V"($; e). Furthermore, V'lIf(@; 3) = V1'Q(_B; e). This 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 4, JULY 1994 1209 

gives the identity F X I y ( @ )  = E,[V"Q@;@)]; yielding an 
alternative expression to (17) for A: 

A = F i ' E B [ V " Q ( $ ; f ) ] .  (18) 

3) The form p(Z - F-'F,) for the rate of convergence of 
the algorithms (8) and (10) implies that when F = F,, for 
rapid convergence the complete-data space 2' should be 
chosen such that X is not significantly more informative 
than Y relative to the parameter f .  

4) The matrix recursion of Theorem 1 can be related to the 
following Frobenius normalization method for inverting a 
sparse matrix C: 

(19) 
where a = l/llCllz is the inverse of the Frobenius norm 
of C. When initialized with Bco) = I ,  the above algorithm 
convlrges to C-' as k + m. For the case that C is the 
Fisher matrix Fy,  the matrix recursion (19) can be inter- 
preted as a special case of the algorithm of Theorem 1 for 
a particular choice of complete data X. Specifically, let 
the complete data be defined as the concatenation X = 
[YT,STIT of the incomplete data Y and a hypothetical 
data set S = [S1;.-, SmIT defined by the following 

(20) 

where W = [W,;.., WmIT are i.i.d. standard Gaussian ran- 
dom variables independent of Y, and g = [ c l ; * - ,  cmIT is a 
vector function of f .  It is readily verified that the Fisher 
matrix F, for 8 based on observing S is of the form 
F, = Er- ,VTc,(@)Vcj(@). Now since S and Y are indepen- 
dent, F, = F, + Fy,  so that if we could choose c(@) such 
that F, = IIFyll.Z - F,, the recursion of Theorem 1 
would be equivalent to (19) with Fy = C,  F i l  = aZ, 
A = Z - aFY.  In particular, for the special case that Fy 
is functionally independent of 8, we aan take m equal to 
n and take the hypothetical data S = [S1;-*, S,IT as the 
n-dimensional linear Gaussian model: 

B(k+l)  = [ I  - aC]B'k' + az, 

s = C ( f )  + w, 

Si = c j j T  + y ,  j = I;.. , n, 

where 

and {vl,-.-, v,,} are the eigenvectors and {Al;-., A,,} are the 
eigenvalues of Fy.  With this definition of S, F y =  
Cy, Ajzj$ is simply the eigendecomposition of the ma- 
trix llFyll .Z - FYI so that F, = IIFyll-Z = aZ, as re- 
quired. 

IV. APPLICATION TO ECT IMAGE RECDNSTRUCITON 
We consider the case of positron emission tomography (PET), 

where a set of m detectors is placed about an object to measure 
positions of emitted gamma rays. The mathematical formulation 
of PET is as follows [12]. Over a specified time interval, a 
number Nb of gamma rays are randomly emitted from pixels b,  
b = 1,***, n, and a number Yd of these gamma rays are detected 
at detectors d ,  d = l,..., m. The average number of emissions in 
pixels l , . . . ,  n is an unknown vector 8 = [O1;--, O,,lT, called the 
object intensity. It is assumed that the Nb)s are independent 
Poisson random variables with rates ob, b = l;.., n, and the Yd's 
are independent P o W n  distributed with rates pd = lPdlbOb, 
where Pdlb is the transition probability corresponding to emitter 
location b and detector location d.  For simplicity, we assume 
that pd > 0, Vd.  The objective is to estimate a subset [O,,*-*, O,]', 

p < n, of the object intensities within a p-pixel region of 
interest (ROI). In this section we develop the recursive CR 
bound for this estimation problem. 

The log-likelihood function for @ based on Y = [Yl,- .*,  YmIT is 
simply 

(21) 

m m 
= - pd + Yd h p D  + constant. (22) 

d =  1 d l  = 

From this, the Hessian matrix with respect to @ is shhply 
calculated and, using the fact that Ee[Yd] = pd, the n X n 
Fisher information matrix Fy is obtained 

.. . 

(23) 

where & I d l ,  = [Pdll,"., Pdln] is the dth row of the m x n system 
matrix ((I$). If m 2 n, and the, linear span of {Pdl,&=l is R", 
then Fy is invertible and the CR bound exists. However, even 
for an imaging system of moderate resolution, e.g., a 256 X 256 
pixel plane, direct computation of the p X p  ROI submatrix 
OTF;'8, 8 = [e, , . . . ,  g,], of the (256)* x (256)2 Fisher matrix 
Fy is impractical. 

The standard choice of complete data for estimation of 8 via 
the EM algorithm is the set {Ndb)dml;,b= 1, where Ndb denotes the 
number of emissions in pixel b which are detected at detector d 
141, [51. IN&,} are independent Poisson random variables with 
intensity E,[Ndb] = PdJbOb, d = l;.., m, b = l , . . . ,  n. By Lemma 
1 we know-that, with F, the Fisher information matrix associ- 
ated with the complete data, F, - F y  is nonnegative definite. 
Thus F, can be used in Theorem 1 to obtain a monotonically 
convergent CR bound recursion. 

The log-likelihood function associated with the complete-data 
set X = [Ndb]z::,b= is of similar form to (22): 

m n  

Inf,(x;8) = - PdlbOb 
d = l  b = l  

m n  
+ Ndb h ob + constants. 

d = l  b = l  

The Hessian Vt In f x ( X  8 )  is easily calculated, and, assuming 
0, > 0, V b ,  the Fisher information matrix F, is obtained as 

m 

(24) 

where. diag, (U,,) denotes a diagonal n X n matrix with u b ) ~  
indexed successively along the diagonal. 

Using the results (24) and (23) above, we obtain 

A = Z - FY'F, 
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In many SPECT and PET tomographic geometries, the m X n 
(m 2 n)  system response (($,,)) is a sparse matrix, i.e., its 
number of nonzero elements is only O(n) as compared to O(n2) 
for the nonsparse case. Note, however, that even when the 
system response matrix is sparse, the matrix A (25) is not 
generally sparse, and it would appear that the recursive algo- 
rithm (IO) of Carollary 1 requires O(n2) memory storage to 
store the n X n matrix A. In the present case, however, we only 
require O(n) memory storage since it is seen that, using (25) in 
(lo), the recursion collapses into a set of p vector recursions 
which only require storing the n parameters of the vector 3, the 
np entries of B ( k ) ,  and the O(n) nonzero entries of the sparse 
matrix ((P,,,)). Because of this feature, we have been able to 
implement this recursive CR bound on relatively large image 
reconstruction problems [13]. 

The rate of convergence of the recursive CR bound algorithm 
is determined by the maximum eigenvalue p ( A )  of A specified 
by (25). For a fixed system matrix ((P,,,)), the magnitude of this 
eigenvalue will depend on the image intensity 3. Assume for 
simplicity that with probability 1 any emitted gamma ray is 
detected at some detector, i.e., ZY=’, Pdlb = 1 for all b. Since 
trace(& = where are the eigenvalues of A, 
using (25) it is seen that the maximum eigenvalue p ( A )  must 
satisfy 

n 

.. . 
j =  1 

A consequence of the inequality (Ei Prli 8,)’ s Ci 0, Zi eiPli 0, is 

1 1 
- trace(A) I 1 - -. 
n (27) 

where equality OCCUTS if P,li is independent of i. On the other 
hand, as the intensity 3 concentrates an increasing proportion 
1 - E of its mass on a single pixel k,, e.g., 

we obtain ( l / n )  trace (A) = 1 - l/n + O( €1. Thus for this case 
we have, from (26), 1 - l/n + O ( E )  I p(A)  < 1. Since the 
number of pixels n is typically very large, this implies that the 
asymptotic convergence rate of the recursive algorithm will 
suffer for image intensities which approach that of an ideal point 
source, at least for this particular choice of splitting matrix F,. 

V. CONCLUSION AND FUTURE WORK 
We have given a recursive algorithm which can be used to 

compute submatrices of the CR lower bound F;’ on unbiased 
multidimensional parameter estimation error covariance. The 
algorithm successively approximates the inverse Fisher informa- 
tion matrix F; l via a monotonically convergent splitting matrix 
iteration. We have also given a statistical methodology for select- 
ing an appropriate splitting matrix F which involves application 
of a data processing theorem to a complete-data-incomplete- 
data formulation of the estimation problem. We are developing 
analogous recursive algorithms to compute matrix CR-type 

bounds for constrained and biased estimation, such as those 
developed in 1141, [151. 
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Bounds on Achievable Convergence Rates 
of Parameter Estimators via Universal Coding 

Neri Merhav 

Abstract-Lower bounds on achievable convergence rates of parameter 
estimators towards the trne parameter are derived via universal coding 
considerations. It is shown that for a parametric class of finite-alphabet 
information sources, if there exists a universal lossless code whose 
redundancy decays sufficiently rapidly, then it induces a limitation on 
the fastest achievable convergence rate of any parameter estimator, at 
any value of the true parameter, with a possible exception of a vanish- 
ingly small subset of parameter values. A specific choke of a universal 
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