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Exploring Estimator Bias-Variance 
Tradeoffs Using the Uniform C nd 

Alfred 0. Hero, 111, Member, IEEE, Jeffrey A. Fessler, Member, IEEE, and Mohammad Usman, Member, IEEE 

Abstract-We introduce a plane, which we call the delta-sigma 
plane, that is indexed by the norm of the estimator bias gradient 
and the variance of the estimator. The norm of the bias gradient 
is related to the maximum variation in the estimator bias func- 
tion over a neighborhood of parameter space. Using a uniform 
Cramer-Rao (CR) bound on estimator variance, a delta-sigma 
tradeoff curve is specified that defines an "unachievable region" 
of the delta-sigma plane for a specified statistical model. In order 
to place an estimator on this plane for comparison with the 
delta-sigma tradeoff curve, the estimator variance, bias gradient, 
and bias gradient norm must be evaluated. We present a simple 
and accurate method for experimentally determining the bias 
gradient norm based on applying a bootstrap estimator to a 
sample mean constructed from the gradient of the log-likelihood. 
We demonstrate the methods developed in this paper for linear 
Gaussian and nonlinear Poisson inverse problems. 

I. INTRODUCTION 

HE goal of this work is to quantify fundamental tradeoffs 
between the bias and variance functions for parametric 

estimation problems. Let e = [e,, + e . ,  Q,IT E 0 be a vector 
of unknown and nonrandom parameters that parameterize the 
density fy(y;e) of an observed random variable Y. The 
parameter space 0 is assumed to be an open subset of n- 
dimensional Euclidean space R". For fixed e, let t" = t"(Y) be 
an estimator of the scalar to, - where t :  0 + R is a specified 
function Let this estimator have bias be - = E Q [ ~  - - to - and 
variance ai = Ee[(t"-tg)2]. Bias is due to 'mismatch' between 
the average value of the estimator and the true parameter, 
whereas variance arises from fluctuations in the estimator due 
to statistical sampling. 

In most applications, estimator designs are subject to a trade- 
off between bias and variance. For example, in nonparametric 
spectrum estimation [ 11, smoothing methods have long been 
used to reduce the variance of the periodogram at the expense 
of increased bias [2] ,  [3]. In image restoration, regularization 
is frequently implemented to reduce noise amplification (vari- 
ance) at the expense of reduced spatial resolution (bias) [4] 
In multiple regression with multicollinearity, biased shrinkage 
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estimators [5] and biased ridge estimators [6] are used to 
reduce variance of the ordinary least squares estimator. The 
quantitative study of estimator bias and variance has been 
useful for characterizing statistical performance for many sta- 
tistical signal processing applications including tomographic 
reconstruction [7]-[9], functional imaging [lo], nonlinear and 
morphological filtering [ l l ] ,  [12], and spectral estimation of 
time series [13], [14]. 

However, the plane parameterized by the bias and variance 
bo and 0: is not useful for studying fundamental tradeoffs since an estimator can always be found that makes both the bias and 
variance zero at a given point e. Furthermore, use of bias can 
be misleading: Even a very large bias is removable if it is 
constant. In this work, we consider the plane parameterized 
by the norm or length of the bias gradient 60 - = IlVbglI 
and the square root variance fi, which we call the delta- 
sigma or So plane. The norm of the bias gradient is directly 
related to the maximal variation of the bias function over a 
neighborhood of e induced by the norm and is unaffected by 
constant estimator bias components. By appropriate choice of 
norm, the bias gradient length can be related to the overall bias 
variation over any prior ellipsoidal region of parameter values. 
For the inverse problems studied here, we select the norm to 
correspond to an a priori smoothness constraint on the object. 

This paper provides a means for specifying unachievable 
regions in the Sa plane via fundamental delta-sigma tradeoff 
curves. These curves are generated using an extension of the 
Cram&-Rao (CR) lower bound on the variance of biased 
estimators presented in [15]. This extension is called the 
uniform CR bound. In [15], the bound was derived only 
for an unweighted Euclidean norm on the bias gradient and 
for nonsingular Fisher information. Therein, the reader was 
cautioned that the resulting bound will generally depend 
on the units and dimensions used to express each of the 
parameters. It was also pointed out in [15] that the user should 
identify an ellipsoid of expected parameter variations, which 
will depend in the user's units, and perform a normalizing 
transformation of the ellipsoid to a spheroid prior to applying 
the bound. This parameter transformation is equivalent to 
using a diagonally weighted bias gradient norm constraint 
in the original untransformed parameter space. The uniform 
CR bound presented in this paper generalizes [15] to allow 
functional estimation, to cover the case of singular or ill- 
conditioned Fisher matrices, and to account for a general norm 
constraint on the bias gradient. Some elements of the latter 
generalization were first presented in [16]. 
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The methods described herein can be used for system 
optimization, i.e., to choose the system that minimizes the 
size of the unachievable region when estimator unbiasedness 
is an overly stringent or unrealistic constraint [17], or they 
can be used to gauge the closeness to optimality of biased 
estimators in terms of their nearness to the unachievable region 
[18]. Alternatively, as discussed in more detail in [15], these 
results can be used to investigate the reliability of unbiased 
CR bound studies when small estimator biases may be present. 
Finally, these results can be used for validation of estimator 
simulations by empirically verifying that the simulations do 
not place estimator performance in the unachievable region of 
the Sa plane. 

In order to place an estimator on the Sa plane, we must 
calculate estimator variance and bias gradient norm. For most 
nonlinear estimators, analytical computation of these quantities 
is intractable. We present a methodology for experimentally 
determining these quantities that use the gradient of the 
log-likelihood function V In f y  (y; @) and a bootstrap-type 
estimator to estimate the bias gradient norm. 

We illustrate these methods for linear Gaussian and nonlin- 
ear Poisson inverse problems. Such problems arise in image 
restoration, image reconstruction, and seismic deconvolution, 
to name but a few examples. Note that even for the linear 
Gaussian problem, there may not exist unbiased estimators 
when the system matrix is ill conditioned or rank deficient [ 191. 
For each model, we compare the performance of quadratically 
penalized maximum likelihood estimators to the fundamental 
delta-sigma tradeoff curve. We show that the bias gradient 
V b e  of these estimators is closely related to the point spread 
function of the estimator when one wishes to estimate a single 
component t o  = 6 k .  For the full-rank linear Gaussian case, 
the quadratically penalized likelihood estimator achieves the 
fundamental delta-sigma tradeoff in the Sa plane when the 
roughness penalty matrix is matched to the norm chosen by 
the user to measure bias gradient length. In this case, the 
bias gradient norm constraint is equivalent to a constraint 
on bias variation over a roughness constrained neighborhood 
of @. We thus have a very strong optimality property: The 
penalized maximum likelihood estimator minimizes variance 
over all estimators whose maximal bias variation is bounded 
over the neighborhood. For the rank-deficient linear Gaussian 
problem, the uniform CR bound is shown to be achievable by 
a different estimator under certain conditions. Finally, for the 
nonlinear Poisson case, an asymptotic analysis shows that the 
penalized maximum likelihood estimator of [20] achieves the 
fundamental delta-sigma tradeoff curve for sufficiently large 
values of the regularization parameter and a suitably chosen 
penalty matrix. We present simulation results that empirically 
validate our asymptotic analysis. 

A. Variance, Bias, and Bias Gradient 

Let t^ be an estimator of the scalar differentiable function 
to. The mean-square error (MSE) is a widely used measure 
oj  performance for an estimator t^ and is simply related to 
the estimator bias be - and the estimator variance ai through 
the relation MSEe = a; + b i .  While the MSE criterion is of - -  - 

value in many applications, the estimator bias and estimator 
variance provide a more complete picture of performance 
than the MSE alone. From be - and a;, one can derive other 
important measures such as signal-to-noise-ratio SNR = It0 + 
be - I2/ai, coefficient of variation l/SNR, and generalized MSE 

are nonnegative functions. The generalized MSE has been 
used in response surface design [21] and in minimum bias 
and variance estimation for nonlinear regression models [22], 
[23]. Furthermore, since they jointly specify the first two 
moments of the estimator probability distribution, the pair 
( b e ,  a i )  provides essential information for constructing and 
evaluating t^-based hypothesis tests and confidence intervals. 
Indeed, the popular jacknife method was originally introduced 
in [24] and [25] to estimate bias and variance of a statistic and 
to test whether the statistic has prespecified mean [26]. 

An estimator t* whose bias function b: 0 4 R is constant 
is as good as unbiased since the bias can be removed without 
knowledge of e. Therefore, when one is interested in funda- 
mental tradeoffs, it is the bias variation that will be of interest. 
When the density function &(y; e) is sufficiently smooth to 
guarantee existence of the Fisher information matrix (which 
is defined below), be is always differentiable, regardless of 
the form of the estimator, as long as Eo[P] is upper bounded 
[27, Lemma 7.21. In this case, the bias-gradient V b :  0 -+ R" 
uniquely specifies the bias be - up to an additive constant 

= Qgl&) + (1 - Q ) g Z ( q ) >  where Q E [O, 11 and g1,gz 

where is a point such that the line segment connecting @" 
and @ is contained in 0-such a point is guaranteed to exist 
when 0 is convex or star shaped about a point e. Thus the 
gradient function V b e  = [ d b e / d & ,  . . . , dbe/d6$IT (which is a 
column vector) characterizesthe unremovable bias component 
of the bias function. 

the 
norm or length of the bias gradient vector 

1 )  Bias Gradient Norm and Maximal Bias: Define 

where the norm 1 1  . I I c  is is defined in terms of a symmetric 
positive definite matrix C 

We will use the notation I1gI 12 to denote the standard Euclidean 
norm obtained when C = I .  

The norm of the bias gradient at a point 21 = e is a measure 
of the sensitivity of the estimator mean mu = E, [fl to changes 
in 21 over a neighborhood of e. Below, %e derive a relation 
between bias gradient norm and maximal bias variation over 
an ellipsoidal neighborhood. 

Define the ellipsoidal region of parameter variations C = 
C(e, C )  = {U: (U - e)TC-l(g - e) 5 l}, where @ is a point 
in 0, and C is a symmetric positive definite matrix. The 
maximal width of the ellipsoid is 2 As, where A$ is the 
maximal eigenvalue of C.  Assume that the bias function b, 
is continuously twice differentiable and that the magnitude of 

\r 
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the eigenvalues of the Hessian matrix V2bu = VVTb, are 
upper bounded over g E C by a nonnegativeconstant a 2 00. 

Then, using (1) and the Taylor expansion with remainder, the 
maximal squared variation of the bias b, - over C is 

max Ib, - bel2 = max lVTbeAu+ - 
- UEC - - - U E C  

AaTV2bcAg12 - (3) 

where A% = U - e, and < is a point along the line segment 
joining e and U. Now, exfinding the square on the right-hand 
side of (3)  and collecting terms, we obtain 

where I E ~  5 p(1 + 0 . 2 5 ~ )  and p = X$a/d-. - - 

Defining Aij = C-(1/2)Au and,using the Cauchy-Schwarz 
inequality, we obtain 

= VTbsCVbe. - - (5) 

Therefore, combining (5)-(3) 

max Ibu - bel2 = lIVbgl1&(1 + E ) .  (6) 

Hence, we see that when p << 1,l + E M 1, and the norm 
I IVb,l IC is approximately equal to the maximal bias variation 
over the ellipsoidal neighborhood C@C) of e. Note that this 
occurs when the product of the ellipsoid width and the 
ratio of the curvature 01 of the bias function to the bias gradient 
norm 4- is small. For the special case where the 
bias is a linear function (be  = LTe - c) then p = 0, in 
which case the relation (6) between bias gradient norm (1) 
and maximal bias variation (3) is exact. 

The above discussion suggests that the choice of norm I I I IC 
should reflect the range C of joint parameter variations that are 
of interest to the user. This will be illustrated in Section IV. 

- u E C  - 

11. UNACHIEVABLE REGIONS 
For any estimator with bias gradient norm Se and variance 

ai, we plot the pair (Se, ae) as a coordinate in-the plane R2. 
We will call this parameterization of the plane the deZta-sigma 
or Sa plane. A region of the So plane is called unachievable 
if no estimator can exist having coordinates in this region. 
While no nonempty unachievable region can exist in the bias- 
variance plane parameterized by ( b e , a e ) ,  we will show that 
interesting unachievable regions almost always exist in the 
delta-sigma plane. 

A. The Biased CR Bound 
The CR lower bound on estimator variance, which was first 

published by Frechet [28] and later by Darmois [29], Cramer 
[30], and Rao [3 11, is commonly used to bound the variance of 
unbiased estimators. For a biased estimator f of t o  - with mean 

me = EO [fl, the CR bound has the following form, which is 
c d e d  the biased CR bound: 

4 - 2 [VmeJTF$[Vme] 

= [Vtg + Vbs]'F$[Vte - + Obs] (7) 

where FY = Fy(0)  is the n x n Fisher information matrix 

and F$ denotes the Moore-Penrose pseudo-inverse matrix of 
the possibly singular matrix F y .  

The nonsingular-Fy form of the biased CR bound has 
been around for some time, e.g., [32]. The more general 
pseudo-inverse-Fy form given in (7) is less well known 
but can be easiiy derived by identifying U = f - te and 
V = VQ - In f y ( Y ;  e) in the relation [33, Lemma 11 

- 

Eo - [UUT1 2 Eg[UVT] (&[VVT])+Eg[VUT] , 
and using the identities Ee[Ve - In f y ( Y ;  e)] = 0 and 
Eo In f y  ( Y ;  e)] = Vme - (which are easily derivable 
from 09) below). 

The biased CR bound (7) only applies to the class of 
estimators t^ that have a particular bias gradient function V be. 
Therefore, (7) cannot be used to simultaneously bound the 
variance of several estimators, each of which have different 
but comparable bias gradients. 

A. The Uniform CR Bound 

In [15], a ''uniform" CR bound was presented as a way to 
study the reliability of the unbiased CR bound under conditions 
of very small estimator bias. In [34], this uniform bound was 
used to trace out curves over the sigma-delta plane, which 
includes both large and small biases. The following theorem 
extends the results of [15] and [34] to allow singular Fisher in- 
formation matrices, arbitrary weighted Euclidean norm I I . I IC, 
and arbitrary differentiable function t e .  - For a proof of this 
theorem, see Appendix A. 

Theorem I :  Let f be an estimator of the scalar differentiable 
function t e  of the parameter @ = [e,, . e . , e,]'. For a fixed 
S 2 0, letthe bias gradient of t^ satisfy the norm constraint 
I lVbe I IC 5 S, where C is an arbitrary n x n symmetric positive 
definite matrix. Define PB as the n x n matrix that projects 
onto the column space of B = C-(1/2)F;C-(1/2). Then, the 
variance ai of t^ satisfies 

- 
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specified value of S. 

Normalized uniform CR bound on the 6u tradeoff plane for a 

In (9) and (lo), X > 0 is determined by the unique positive 
solution of g(X) = S2, where 

g(X) = VTteF$[XC + F$]-'c[Xc + F$]-'F$Vte. - (11) 

By tracing out the family of points { (6, d m ) :  6 2 O}, 
one obtains a curve in the Sa plane for a particular @ E 0. 
The curve is always monotone nonincreasing in 6. Since 
B(@, 6) is a lower bound on ai, the region below the curve 
defines an unachievable regionYFig. 1 shows a typical delta- 
sigma tradeoff curve plotted in terms of normalized standard 
deviation a = dB(@, S)/B(e, 0). If an estimator lies on the 
curve, then lower variance can only be bought at the price of 
increased bias gradient and vice versa. For this reason, we call 
this curve the delta-sigma tradeoff curve. 

It is important to point out that the delta-sigma tradeoff 
curve can be generated without solving the nonlinear equation 
g( A) = S 2  (1 l), which typically must be solved via numerical 
methods. It is much easier to continuously vary X over 
the range ( 0 , ~ )  and sweep out the curve by using the X 
parameterizations of S2 and B(@, 6) specified by relations (11) 
and (9), respectively. 

Comments: 
The uniform bound B(@,S) is always less than or equal 
to the unbiased CR bound B(& 0) = VTtgF$Vte. The 
slope of B(@,S) at S = 0 gives a bias sensitivityindex 

for the unbiased CR bound. For nonsingular Fy and 
single component estimation ( t g  = 61), it is shown in 1151 

that Q = 2 1 + c ~ F - ~ c ,  where c is the first column of 
F y ,  and F s  is the principal minor of the (1,l) element of 
FY . Large values of this index indicate that the unbiased 
form of the CR bound is not reliable for estimators that 
may have very small, and perhaps even unmeasurable, 
biases. 
The orthogonal projection PB can be expressed either 
as PB = B[BTB]+BT = B'B = BB' or via the 
eigendecomposition of B as PB = Er==, < E T ,  where r is 
the rank of F y ,  and (5 }LZl are orthonoizeigenvectors 
associated with the nGkzero eigenvalues of B.  By using 
properties of the Moore-Penrose pseudo-inverse, it can 

c 

be shown that 

VTteC1/2?~C1/2Vte - - = VTtgF$[C-(1/2)F$]+C1/2Vts. - 

When F y  is nonsingular 

F$ = Fp', 
PFj = I ,  vTt&c1/2PBc1/2 Vt@ - = IlVteII; - 

and (9)-(11) of Theorem 1 reduce to 

B(@, 6) 
= [Vte - + d m i n l T F y '  [Vtg + &in] 

= X2VTte[C-' - + XFy]-'Fy[C-' + XFy]-'Vte - 

(12) 

where 

dmin = -c-'[c-' + XFY]- 'Vte - (13) 

and X > 0 is given by the unique positive solution of 
g(X) = S2, where 

g(X) = VTte[C-' - + XFY]- 'C- ' [C-l  + XFy]-'Vte. 
(14) 

When C = 1 and t o  = 61, these are identical to the 
results obtained in [fi]. 
In Theorem 1, dmin defined in (10) is an optimal bias 
gradient in the sense that it minimizes the biased CR 
bound (7) over all vectors Vbe, satisfying the constraint 
I I Vbgl I C  5 S. The resultant bound is independent of 
the particular estimator bias as long as the bias gradient 
norm constraint holds. From the proof of Theorem 1, if 
s2 > VTt8C1/2pBC1/2Vte, - - then the minimizing bias 
gradient is of the form dmin = -%C1/2vt8 + 4, 
where 4 is any vector satisfying B$ - = 0, and 1 @ 1 1 2  - 3 
62-v%$1/2pBC1/2vtg. n u s ,  for the case of singular 
F y ,  there exist many optikal bias gradients. 
An estimator is said to locally achieve a bound in a neigh- 
borhood of a point @ if the estimator achieves the bound 
whenever the true parameter lies in the neighborhood. It 
has been shown [15] that if FY is nonsingular, if S is 
small, if t o  - = 61, and if the unbiased matrix CR bound 
is locally achievable by an unbiased estimator g* in a 
neighborhood of a point e, then one can construct an 
estimator that locally achieves the uniform bound in this 
neighborhood by introducing a small amount of bias into 
- 6 . However, since unbiased estimators may not exist for 
singular F y ,  the uniform CR bound for singular FY may 
not be locally achievable. An example where the bound is 
globally achievable over all 0 is presented in Section IV. 
While we will not use it in this paper, a more general 
form of Theorem 1 holds for the case that C may be 
nonnegative definite. This situation is relevant for cases 
where the user does not wish to penalize the estimator 
for high bias variation over certain hyperplanes in the 
parameter space. For example, when estimation of image 
contrast is of interest, spatially homogeneous biases may 
be tolerable, and C may be chosen to be of rank n - 1 
having the vector 1. = [ l ,  . . . , 1IT in its nullspace. Let 

A*  
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B(&S),&, and g(X) be as defined in Theorem 1. 
Assume that C is nonnegative definite, but F$ + XC 
is positive definite for 0 < X < CO. For fixed S > 0, let 
the bias gradient of t^ satisfy the semi-norm constraint 
llVbgllc 5 S. Then, varg ( t^)  _> B*(& S), where 

B ( B , d W ) ) ,  0 I S2 < g ( W )  

0, g(0) < S2 < CO, 

B*(&S) = B(@,S), g(CO) 5 S2 I d o )  

, g ( a )  = limx_,o,, g(X), and g(0) = limx_,o g(X). 

C. Recipes for Uniform Bound Computation 
As written in Theorem 1, (9)-(11) are not in the most 

convenient form for computation as they involve several 
matrix multiplications and inversions. An equivalent form for 
the pair B(@, 6) and g(X) in (9) and (1 1) was obtained in the 
process of proving the theorem ((47) and (48)) 

B(& 6) = X2VTtgC1/2[XI - + B]-lB[XI + B]-1C1/2Vt~ - 

g(X) = VTtQ[C'1/2B(XI - + B)-2Bc112]VtQ - = S2  

where B = C-(1/2)F$C-(1/2). If an eigendecomposition of 
the matrix B is available, the delta-sigma tradeoff curve can 
be efficiently computed by sweeping out X in the following 
pair of weighted sums of inner products 

where Pz and E denote an eigenvalue and eigenvector of B.  
When FY G'positive definite but ill conditioned, the com- 

putation of B may be numerically unstable. In this case, it is 
better to use the equivalent form 

B(& 6) = X2VTtQC1/2[I - + XG]-lG[I + XG]-1C1'2Vte - 

(17) 
S2 = UTtQC1/2[I - + X = G]-2C1/2Vts - (18) 

where G = B-l = C1/2FyC1/2. Note that computation of 
the form (17) and (18) requires only a single matrix inversion 
[I + X q " .  Since X > 0 and FY is positive definite, this 
inversion is well conditioned except possibly if X is very large. 

The eigendecomposition of G can be used in (17) and (18) 
to produce a pair of expressions similar to (15) and (16) for 
computing the delta-sigma tradeoff curve for positive definite 
FY . Alternatively, the right-hand sides of (17) and (18) can be 
approximated by using iterative equation solving methods such 
as Gauss-Seidel (GS) or preconditioned conjugate gradient 
(CG) algorithms [35]. See [45] and [36] for a more detailed 
discussion of the application of iterative equation solvers to 
CR bound approximation. This approach can be implemented 
in the following sequence of steps. 

1) Select X E ( 0 , ~ ) .  
2) Compute g = [I+XFyCIL1Vt~ by applying CG or GS 

iterations to solve the followinglinear equation for g: 

[I + XFyC]: = VtQ. 

3) Compute y = Cg. 
4) Compute the point (s, B(@, 6)) via 

B(& 6) = X2.TFy: 
I 

Since step 2 must be repeated for each value of A, this 
method is competitive only when one is interested in eval- 
uation of the curve B(@, 6) at a small number of values of 
6 = &(A). When a denser sampling of the curve is desired an 
eigendecomposition method, e.g., as in (15) and (16), becomes 
more attractive since once the quantities pz and IVTt&"2$t l 2  
are available, the curve can be swept out over without 
performing additional vector operations. 

ESTIMATION OF BIAS GRADIENT NORM 
To be able to compare the performance of an estimator 

against the uniform CR bound of Theorem 1, we need to 
determine the estimator variance and the bias gradient length. 
In most cases, the bias gradient cannot be determined analyt- 
ically, and it is therefore important to have a computationally 
efficient method to estimate it either experimentally or via 
simulations. A brute force estimate would be to estimate the 
finite difference approximation 

1 
V b e  = - [bg+e ,  - bg, ' . . , bg+,gn - be] 

E - 

but this requires performing a seperate simulation run for each 
coordinate perturbation e+ el,. In the following, we describe a 
more direct method for estimating the bias gradient that does 
not require performing multiple simulation runs nor does it 
require making a finite difference approximation. The method 
is based on the fact that for any random variable 2 with finite 
mean 

Thus, in particular, we have the following relation: 

V b e  - = Eo[t^(Y)V@ - - In fy(Y;@)] - BtQ. - 

Since EQ - -  [VQ In f y (Y ;  e)] = 0, an equivalent relation is 

Vbe - = EL[(@) - C)Vglnfr(Y;@)] - Vtg (20) 

for any random variable < statistically independent of Y. As 
explained in the following discussion, the quantity < can be 
used to control the variance of the bias gradient estimate. 

Substituting sample averages for ensemble averages in (20), 
we obtain the following unbiased and consistent estimator of 
the bias gradient vector VbQ - 
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where {yZ},”=l is a set of i.i.d. realizations from f y ( y ; e ) .  In 
(21), {(z}f!l is any sequence of i.i.d. random variables such 
that y Z ,  sz are statistically independent for each 2. 

It can be shown that when 5% = 0 for all i the covariance 
matrix of Vbg - is the matrix sum 

h 

where 

and 

is the single trial Fisher information. The first term on the right- 
hand side (RHS) of (22) decays as 1/L and is independent of 
the mean me. The second term also decays as l /L  but is 
unbounded in  the mean mg. It is easily shown that this term 
can be eliminated by setting Cz = me = constant in (21) 
but this is not a practical since the mean mg = Eg[i(Y;)] 
is unknown to the user. However, we can use-the punctured 
sample mean estimate: 

which is unbiased and, as required for the validity of (20), 
is statistically independent of E. Substitution of this <i into 
(21) gives, after simplification, the following unbiased and 
consistent sample mean estimate of Vbg - : 

- Vts. - 

A simple calculation shows that the covariance of (23) is 

Note that the second term in (24) depends on mg only through 
its gradient and decreases.to zero at the much faster asymptotic 
rate of 1/L2 as compared with the rate 1/L in (22). 

A. A Bootstrap Estimator for Bias Gradient Norm 
A natural “method-of-moments’’ estimate for 6; = I IVbgl I& 

is the norm squared of the unbiased estimator 8’ = I l%elI& 
(21). It can easily be shown that this estimator is biased with 

h 

bias equal to Eg[llKe-Vbg(l&] = trace {S(Vbe)} ,  which, in 
view of (22) 0;(24),deca$ to zero only as 1/z. Below, we 
present a norm estimator based on the bootstrap resampling 
methodology whose bias decays at a faster rate. 

, Yz denote a bootstrap sample obtained by 
randomly resampling the realizations Y l  = ~ 1 ,  . . . , YL = y~ 
with replacement. Given the estimate S2  = S2 (y1, * , y ~ )  = 
I l=g/l& the bootstrap estimate of 682 is defined as the expec- 
tation of 8: = i2 (Y;”, . . . , YL) with respect to the resampling 
distribution [37] 

Let Y;, a 

- - 

In (25), e, is the number of times the value yz appears 
in the set {y,*},”_,, and E, denotes a summation over all 
nonnegative integers c1, . . . , C L  satisfying Cfflcz = L. The 
bootstrap estimate of the bias of the estimator S2 is defined as 
E,[8:] - i2, which leads to the bias corrected estimator 8: 

6, A2 - - 2 i 2  - E, [8.3. (26) 

Due to the simple quadratic dependence of i2 on the 
single sample quantities t^( yz) ~g In f y  ( yz ; e), i = 1, . . . , L, 
the expectation (25) can be expressed in analytical form (see 
Appendix B), leading to the bias-corrected estimate 

i=l 

where %e(yi) is the estimate (21) based on a single sample 
(si = O):qyi)Vslnfy(yi,@) -to. - The bias of 8: is equal to 

which, relative to the estimator IIVbgll&, decays to zero at the 
much faster rate of 1/L2. However, if L is insufficiently large, 
the bootstrap estimator 8: may take on negative values. 

Iv .  APPLICATION TO INVERSE PROBLEMS 

We use the theory developed above to perform a study of 
fundamental bias-variance tradeoffs for three general classes 
of inverse problems. First, we consider well-posed linear 
Gaussian inverse problems that have positive definite Fisher 
information. Next, we consider ill-posed Gaussian inverse 
problems where the Fisher matrix is singular. For these two 
linear applications, an exact analysis is possible since all 
curves in the delta-sigma tradeoff plane have analytic expres- 
sions. Finally, we study a nonlinear Poisson inverse problem 
to illustrate the empirical bias-gradient norm approximations 
discussed in the previous section. 

A. Linear Gaussian Model 

W” that obeys the linear Gaussian model: 
Assume that the observation consists of a vector Y = 1 E 
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(35) 

where, 
A m x n coefficient matrix called the system matrix; 
- 0 unknown source; 
g vector of zero mean Gaussian random variables with 

positive definite covariance matrix E. 
For concreteness, we will refer to 8% as the intensity of the 
source at pixel i. The Fisher information matrix has the well- 
known form [19] 

F y  = AT2T1A. (29) 

This matrix is nonsingular when A is of full column rank 
n. We will consider estimation of the linear combination 
to - = hT@, where h is a fixed nonzero vector in R". Since 
FY and VtQ = b are not functionally dependent on e, the 
uniform bound B(e, 6) will not depend on the specific form 
of the unknown source e. 

To demonstrate the achievability of the fundamental delta- 
sigma tradeoff curve, we consider the quadratically penalized 
maximum likelihood (QPML) estimator. The QPML strategy 
is frequently used in order to obtain stable solutions in the 
presence of small variations in experimental conditions [38] 
or as a way to incorporate parameter constraints or a priori 
information [39]. For the linear Gaussian problem (28), the 
QPML estimator of the linear combination to - = bTe is 
t^ = b'l, where 1 minimizes the following objective function 
over $: 

(30) 

In the above, P >  0 is a regularization parameter, and P 
is a symmetric nonnegative-definite penalty matrix. For ill- 
conditioned or singular A, the penalty improves the numerical 
stability of the matrix inversion [Fy + PPI-' in (31) below 
by lowering its condition number. The simplest choice for 
the penalty matrix P is the identity I ,  which yields a class 
of energy penalized least squares estimators variously known 
as Tikonov regularized least squares in the inverse problem 
literature [38] and shrinkage estimation or ridge regression in 
the multivariate statistics literature [5].  A popular choice in 
imaging applications is to use a nondiagonal differencing type 
operator to enforce smoothness constraints [40], [41]. 

The minimizer of (30) is the penalized weighted least 
squares (PLS) estimator 

[y  - AeITE-l[y - AB] + peTPe. 

= [ F y  + PP]-lATE-ly (3 1) 

yielding the QPML estimator t^ = hT$. 
The estimator bias is 

and its bias gradient is 

Vb0 - = [FY [FY + PPI-' - r]h (32) 
= -PP[PP + Fy]- 'b .  (33) 

Finally, the variance of the QPML estimator t^ is 

Consider the special case of estimation of a single compo- 
nent Bk of @ for which h = ck = [O, . s s , O,I, 0, ' ' ' , o ] ~ .  When 
the matrices Fy and P commute, as occurs, for example, 
when P = I ,  the bias gradient (32) is seen to be equal to 
the difference between the mean response [PP + Fy]- 'Fyg,  
of the PLS estimator to a point source e = e,, i.e., the point 
spread function of the estimator and the ideal point response 
gk. Thus, under the commutative assumption, the bias gradient 
norm can be viewed as a measure of the geometric resolution 
of t^ [16]. 

I )  Positive Definite Fisher Matrix: Assume that F y  is pos- 
itive definite, and compare (33) and (34) to (13) and (12) for 
dmin and the bound B(8, S), respectively. Identifying Vte - = 
- h,X = l/@, it is clear that when P is chosen as C-l,  the 
PLS estimator achieves the bound B(& 6) and has optimal bias 
gradient d,,,. Thus, for linear functions to, the uniform bound 
is achievable, and the region above and including the fun- 
damental delta-sigma tradeoff curve is an achievable region. 
Furthermore, since the bias gradient is a linear function, from 
(6), we have a very strong optimality property: The QPML 
estimator t^ is a minimum variance biased estimator in the sense 
that it is an estimator of minimum variance among estimators 
that satisfy the maximal bias constraint supuEc Ib, - b ~ l  5 6, 
where S2 = g(l /p)  and C is the ellipsoid defined above (3). 

We used the computational recipe presented in Section I1 to 
trace out the delta-sigma tradeoff curve (uniform bound) para- 
metrically as a function of X > 0. Fig. 2 shows the delta-sigma 
tradeoff curve for the case of pixel intensity estimation (h = 
- e,,gC = I )  and a well-conditioned full rank discrete Gaussian 
system matrix. Specifically, we generatedza 128 x 128 matrix 
A with elements aZ3 = (l/fiw)e-('-J) /2w2 and w = 0.5. 
The condition number of A is 1.7. The matrix C in the 
norm 1 1  V b e  I I C  was selected as the inverse of the second-order 
(Laplacian) differencing matrix 

With this norm, the restriction IIVbellc 5 S corresponds to 
a constraint on maximal bias variation maxeEc (Ab01 over 
a roughness-constrained neighborhood C (e, C) of B-(recall 
relation (6)). The performance curves ( 1  lVbe I IC, 0 0 )  - for two 
PLS pixel intensity estimators (31) (one using the smoothing 
matrix P = C-l, called the smoothed QPML estimator and 
another using the diagonal "energy penalty" P = I called the 
unsmoothed QPML estimator) are also plotted in Fig. 2. These 
curves were traced out in the bias variance tradeoff plane by 
varying P in the parametric descriptions of estimator variance 
(34) and estimator bias gradient (33). 

2) Singular Fisher Matrix: When A has rank less than 
n, F y  is singular, and unbiased estimators may not exist for 
all linear functions to of @ [19], [42]. A lower bound on the 
norm of the bias gradient can be derived (see Appendix C) 
using the relation (6) between the norm and the maximal bias 
variation over a region of parameter space. Since the uniform 



HERO et al.: EXPLORING ESTIMATOR BIAS-VARIANCE TRADEOFFS USING THE UNIFORM CR BOUND 2033 

1.41 I 
- Uniform Bound 
X Smoothed QPML 

,.. 
1 2 3 4 5 6 

BIAS-GRADIENT NORM 

Fig. 2. Bias variance tradeoff study for pixel-intensity estimation and non- 
singular Fisher information. The smoothed PLS estimator (labeled smoothed 
QPML) exactly achieves the uniform bound. 
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- - Minimum Bias 
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Fig. 3. Bias variance tradeoff study for pixel intensity estimation and singu- 
lar Fisher information. Neither of the QPML estimators achieve the uniform 
bound. 

CR bound is finite and equal to the unbiased CR bound at 
S = 0, we cannot expect the delta-sigma tradeoff curve to be 
achievable for all S as in the nonsingular case. 

To illustrate we repeat the study of Fig. 2 with a rank 
deficient Gaussian kernel matrix A, obtained by decimating 
the rows of a full-rank Gaussian kernel matrix A (w = 2) by 
a factor of 4. This yields the ill-posed problem of estimating a 
vector of 128 pixel intensities @ based on only 32 observations 
- Y .  We used the singular value decomposition of A to compute 
the delta-sigma tradeoff curve and the minimal bias gradient 
norm. The results for pixel intensity estimation (ts = g67) are 
plotted in Fig. 3 along with the performance curves associated 
with smoothed QPML ( P  = C-' of (35)) and unsmoothed 
QPML (P = I )  estimators. Note that neither of the estimators 
achieve the uniform bound for any value of the parameter p. 
The bound on bias gradient norm (dashed line) is an asymptote 
on estimator performance that forces a sharp knee in the 
estimator performance curves. At points close to this knee, 
maximal reduction in bias is only achieved at the price of 
significant increase in the variance. 

G 0.04 
U W 
0 
0 0.02 

-0.02 r- 
-0.04' I 

0 20 40 60 80 100 120 140 
PIXEL 

Fig. 4. 
tradeoff study shown in Fig. 5 .  

Coefficients b of contrast function t g  - = bT@ used for bias variance 

Fig. 5. Bias variance tradeoff study for estimation of contrast function 
(illustrated in Fig. 4) for singular Fisher information. The smoothed QPML 
estimator of contrast virtually achieves the uniform bound for bias-gradient 
norm 6 greater than 0.2. 

For comparison, in Fig. 5, we plot the analogous curves for 
smoothed and unsmoothed QPML estimation of the contrast 
function defined as to = hTe, where the elements of h are 
plotted in Fig. 4. Observe that the smoothed QPML estimator 
of contrast comes much closer to the uniform bound than does 
the smoothed QPML estimator of pixel intensity shown in 
Fig. 3. 

Under certain conditions, the uniform CR bound is exactly 
achievable even for singular F y ,  although generally not by a 
QPML estimator of the form (31) and generally not for all S. 
Consider the estimator 

- 8 = hTII + PF$P]-'F$ATE-ly. (36) 

This estimator reduces to the previous estimator (31) for the 
case of nonsingular F y .  The estimator bias gradient is 

Vbg - = (FyF$[I  + pPF31-l - I)otg 
-1  

+ F $ ]  FGh 
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Fy. 7. Bias vanance tradeoff study for estimation of nullspace compound 
- h for singular Fisher informatlon (h is illustrated in Fig. 6). The 
bound is exactly achieved by the smoothed QPML estimator at the point 
b = 5.4 x 10-6. 

Fig. 6. Coefficients !&Of the h e a r  ComPoundte = hTe SatlsfYlng condition 
2 of Theorem 2 and used for computing the curves in Fig. 7. 

and the estimator variance is 
- - - - h T F 1 [ P - '  +PF$]-lF$[P-' +PF$]-lP-lh (38) 

where in (38), we have used the property F$FyF$ = FG 
[43]. Noting that here Vte = h, we conclude that the estimator 
variance is equal to the lower bound expression B(@, 6) given 
in (9) when P = C-l and ,b' = 1/X.  Furthermore, under these 
conditions, the bias gradient (37) differs from the optimal bias 
gradient ciz,,, which is given in (lo), only by the presence 
of the second additive term on the right-hand side of (37). 
Thus, the estimator (36) with P = C-' is an optimal biased 
estimator when this second additive term is equal to zero. 

We summarize these results in a theorem that applies to 
both singular and nonsingular F y .  

Theorem2: Let B = P1/2F$P1/2,  where FY is the 
possibly singular Fisher information matrix. If 

1) S2 < h T P 1 / 2 P ~ P 1 / 2 ~  and 
2) the vector h lies in the nullspace of [I - FyF$][ I  + 

then the estimator t^ of to = bT@ given by (36) achieves 
the fundamental delta-sigma tradeoff in the sense of having 
minimum variance over all estimators satisfying I l ~ b e  I 5 
S2 = g(l/P), where g(.) is the function given in (1Q. 

Recognizing the matrix I - F$Fy  = I - F y F $  as the 
operator that projects onto the null space of F y ,  an equivalent 
condition to (2) is that [I + PPF$]-'h lie in the range space 
of F y .  For the special case of ,Ll = 0, condition (2) of 
Theorem 2 reduces to the well-known necessary condition 
for achievability of the unbiased CR bound: The vector & 
must lie in the range space of the Fisher information F y .  
In order for the uniform CR bound B(& S) to be achievable 
for all values of 6, condition (2) must hold for all /? > 0. 
This is a much stronger condition except when the nullspace 
is independent of ,B, as occurs when P = I. This suggests 
that when estimation of any fixed t g  is of interest and the 
Fisher information is singular, the uniform bound will rarely 
be achievable everywhere in the delta-sigma plane. 

To illustrate Theorem 2, we selected a small value of ,/3 
and found a vector b lying in the nullspace of the matrix 
[I - F Z F y ]  [ I  + PPF$]-' via singular value decomposition. 

pPF$]-' 

This vector is shown in Fig. 6. In view of Theorem 2, we know 
that the estimator (36) of bT@ should achieve the uniform 
bound for the chosen value of p. In Fig. 7, we plot the uniform 
bound for estimators of hT@ and the performance curve of 
smoothed ( P  = C-') and unsmoothed ( P  = I )  estimators of 
the form (36). Observe that the smoothed estimator essentially 
achieves the uniform bound for S < 0.2. 

B. Poisson Model 

In some applications, the observations Y are given by 
the linear model (28) but with non-Gaussian additive noise. 
Here, we consider the case of Poisson noise that arises in 
emission-computed tomography and other quantum-limited 
inverse problems [44]. The observation Si = [Yl, * . , Y,lT 
is a vector of integers or counts with a vector of means 
p = [ P I ,  . . , pmIT. This vector of counts obeys independent 
Poisson statistics with log-likelihood 
- 

m 

l.f&e) = [VJ In (/+(e)) - P,(@)] + c. (39) 
j=1 

In (39), c is a constant independent of the unknown source e, 
and the mean number of counts is assumed to obey the linear 
model 

For example, in emission-computed tomography 
p vector of mean object projections measured over m 

detectors; 
A m x n system matrix that depends on the tomographic 

geomeby 
- 8 unknown image intensity vector; 
- r m x 1 vector representing background noise due to 

randoms and scattered photons. 
The Fisher information has the form [45] 

- 

(41) 

where AT* is the j th row of A. 
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To investigate the achievability of the region above the 
delta-sigma tradeoff curve and to illustrate the empirical 
computation of bias gradient, we consider again the QPML 
strategy. The QPML estimator studied is t^ = ti ,  where 8 is 
the vector e that maximizes the penalized likeli6ood function 

where P is a nonnegative definite matrix. 
Exact analytic expressions for the variance, bias, and bias 

gradient of the QPML estimator are intractable. However, it 
will be instructive to consider asymptotic approximations to 
these quantities. In Appendix D, expressions for asymptotic 
bias, bias gradient, and variance are derived under the assump- 
tion that the difference between the projection AE@] of the 
mean QPML image and the projection A@ of the true image 
is small-frequently a very good approximation in image 
restoration and tomography. Specializing the results (58)-(60) 
in Appendix D to the case of linear functions to = hT@, we 
obtain the following expressions for the asymptotic variance 
of t^: 

and the asymptotic bias gradient 

where O(l /p)  is a remainder term of order l/p. 
When we identify P = C-’ and p = 1/X, we see that the 

estimator variance is identical to the optimal variance (12) and 
that for linear to, the bias gradient is identical to the optimal 
bias gradient (13) to order O( 1/P). Therefore, assuming the 
bias gradient and variance approximations (44) and (43) are 
accurate, for linear t o ,  we can expect that the fundamental 
delta-sigma tradeoff curve will be approximately achieved by 
the QPML estimator for large values of the regularizatioa 
parameter p if P = c-’. 

To examine the performance of the methods for estimating 
bias gradient norm described in Section I11 and to verify 
the asymptotic bias and variance performance predictions, we 
generated simulated Poisson measurements with means given 
by (40). In these simulations, A was a 128 x 128 tridiagonal 
blurring matrix with kernel (0.23, 0.54, 0.23) for which the 
condition number is 12.5. The source intensity is shown in 
Fig. 8. The function of interest was chosen as t o  = 1965, which 
is the intensity of pixel 65 in Fig. 8. We generated L = 1000 
realizations of the measurements, each having a mean total 
of , L L ~ ( ~ )  = 2100 counts, including a 5% background 
representing random coincidences [20]. 

We computed three types of estimates of 8: 
i) 

ii) a truncated SVD estimator; 
iii) a “deconvolve/shrink” estimator. 

the quadratically penalized maximum likelihood esti- 
mator using the “energy penalty” ( P  = I ) ;  

0‘ I 
0 20 40 60 80 100 120 

Pixel 

Emission source 8 used for Poisson simulations. The spike in Fig. 8. 
center was the pixel of interest. 

the 

We maximized the nonquadratic penalized likelihood objective 
using the PML-SAGE algorithm, which is a variant of the iter- 
ative space alternating generalized expectation-maximization 
(SAGE) algorithm of [20] adapted for penalized maximum- 
likelihood image reconstruction [46]. We initialized PML- 
SAGE with an unweighted penalized least-squares estimate: 
(ATA + p”I)-lA’(Y - E ) ,  which is linear so that it can be 
computed noniteratively. Here, p” = ,f3 E, A,k/(E, A,k/%) 
for I ;  = 65 (cf. [47] and [48]). By so initializing, only 30 
iterations were needed to ensure convergence to a precision 
well below the estimate standard deviation. For the truncated 
singular value decomposition estimator, we computed the sin- 
gular value decomposition of A and computed the approximate 
pseudoinverse of A by excluding the 10 smallest eigenvalues. 
The form of the “deconvolve/shrink” estimator is 

- B ( Y )  = ~ ( A ~ A ) - ~ A ~ ( Y  - E )  

where P ranges from 0 to 1. 

realizations and computed the standard sample variance 
We applied each estimator to the L = 1000 measurement 

where 
L - 1  

L 
t ^ =  -Ci(X) 

Z=1 

is the estimator sample mean. We estimated the estimator bias 
gradient length (BGL) (the norm I I a I IC with C = r )  via the 
methods described in Section 111. We traced out the estimator 
performance curves in the delta-sigma plane by varying the 
regularization parmeter p. 

Fig. 9 illustrates the benefits of using the bootstrap estimate 
of BGL as compared with the ordinary method-of-moments 
BGL estimator for the identity penalized likelihood estimator. 
Included are standard error bars (twice the length gives 95% 
confidence intervals) for bias (horizontal lines) and variance 
(vertical lines smaller than plotting symbol) of the bootstrap 
BGL estimator for L = 500 and L = 1000 realizations. The 
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Fig. 9. Performance of penalized likelihood estimator compared to uni- 
form CR bound Bias gradient length (BGL) estimates were computed using 
both the standard method-of-moments estimate and the bootstrap estimate 
descnbed in Section I11 Data points to left fall below bound due to insufficient 
number of realizations for reliable BGL estimation 

BGL error bars were computed under a large L Gaussian 
approximation to the bias gradient estimates and a square 
root transformation. In general, as the smoothing parameter 
/3 is decreased, QPML estimator bias decreases while QPML. 
estimator variance increases. This increase in variance pro- 
duces an increasingly large positive bias in the ordinary BGL 
estimator, causing the curve to abruptly diverge to the right. 
The bootstrap BGL estimator diverges for a much smaller 
value of ,8 and therefore extends the range of 6, which can 
be reliably studied. 

In Fig. 10, we compare the three different estimators to the 
uniform CR bound. As predicted by the asymptotic analysis 
the uniform bound is virtually achieved by the identity penal- 
ized likelihood estimator in the high bias and low variance 
region (large p). The identity penalized maximum likelihood 
estimator visibly outperforms the other two estimators. Unfor- 
tunately, for fixed L = 1000, as the estimator performance 
curves approach the left side of the delta-sigma plane, the 
bootstrap BGL estimates become increasingly variable (recall 
error bars in Fig. 9); therefore, an increasingly large number of 
realizations is required to make reliable comparisons between 
the estimator performance and the bound. On the other hand, 
ECT images corresponding to such highly variable estimates 
of @ are unlikely to be of much practical interest. 

V. CONCLUSIONS 
We have presented a method for specifying a lower bound 

in the delta-sigma plane defined as the set of pairs (Se, a$),  
where 60 is the estimator bias gradient norm, and a i% the 
estimator variance. For two inverse problems, one linear and 
one nonlinear, we have established that the bound is achievable 
under certain circumstances. 

There remain several open problems. In ill-posed problems, 
the Fisher matrix is singular, and an eigendecomposition 
appears to be required to compute the bound. For small ill- 
posed problems, this is not a major impediment. However, 

I, I 
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Fig. 10. 
form CR bound. 

Performance of three different estimators compared with the uni- 

for large problems with many parameters, which includes 
many image reconstruction and image restoration problems, 
the eigendecomposition is not practical, and faster numerical 
methods are needed. Another problem is that the variance 
of the bootstrap estimator for bias gradient norm increases 
rapidly with the number of unknown parameters. Since the 
bootstrap estimator is not guaranteed to be nonnegative, this 
high variance can make the estimator useless for estimating 
small-valued bias gradient norms. In such cases, asymptotic 
bias and variance formulas may be useful and can be derived 
along similar lines as described in Appendix D. Finally, we 
established a general relation between bias gradient norm 
and maximal bias variation. Although for general estimation 
problems the interpretation of the bias gradient norm may be 
difficult, for the two applications considered in this paper, the 
bias gradient norm has a natural interpretation as a measure 
of spatial resolution of the estimator. 

APPENDIX A 
PROOF OF THEOREM 1 

For a fixed S > 0, we perform constrained minimization of 
the biased form of the CR bound (7) over the feasible set 
Vbe: - I lVbe - I I C  5 S of bias gradient vectors 

where 

and d is a vector in R". Defining 2 = C1/2d, where C1I2 
is a square root factor of C,  the minimization of Q(d) is 
equivalent to 

where B = C-(1/2)F+C-(1/2), 
Y 

First, we consider the case where the unconstrained min- 
imum Q(d)  = 0 occurs in the interior of the constraint set 
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lldllc 5 S. From (45), it is clear that Q ( d )  can be zero if 
and only if C1/2Vte - + z lies in the null space of B.  Such a 
solution must have the form 

- d = -PBC1/2Vtg 9 
where - 4 is an arbitrary vector in the null space of B.  However, 
for $ to be a feasible solution, it must satisfy 118 112 5 S so 
that, by orthogonality of F ’ B C ~ I ~ V ~ Q  - and - q5 

“0 

We conclude that mind,IIdllcls Q ( d )  = 0 iff 

If VTt&1/2PBC1/2bte = 0, then we have nothing 
left to prove. Otherwise, assume 6 lies in the range 0 5 
S2 < VTt@1/2PBC1/2Vte. In this case, the minimizing 2 
lies on the boundary and satisfies the equality constraint 
11d112 = S. We thus need to solve the unconstrained 
minimization of the Lagrangian: 

IIPBC1/2Vtellg = vTt@C1/2?BC1/2Vte - 5 S2. 

min [[C1/’Vte - + dTB[C1I2Vtg + 4 + - S2)] (46) 
d 

where we have introduced the undetermined multipler X 2 0. 
Assuming for the moment that X is strictly positive, the matrix 
X I  + B is positive definite, and the completion of the square 
in the Lagrangian in (46) gives 

[d+ ( X I  + B)-1BC%t&XI + B )  
* [z+ ( X I  + B)-1BC1/2Vte] + VTteFGVtg - 

- AS2. 

- VTt&1/2B(XI - + B)-1BC1/2]vts - 

- (2 = Jmin = - ( X I  + B )  -1BClI2Vte - 
It follows immediately from the above that 

achieves the minimum. Noting that dm,, = C-(l/’)d” -min ? 

expressing B in terms of C and F y ,  and performing simple 
matrix algebra, we obtain (10). Substituting the expression for 
-min 2 . into (45) 

= [Vte + dmJ’F$ [Vtg + dmin] 

= VTteC1/2[1- - [ X I  + B]-1B]TB[I - [ X I  + B]-1B] 
* C W t *  - 

= X2VTtgC1/2[XI - + B]-lB[XI + B]-1C1/2vt& (47) 
which, after simple matrix manipulations, gives (9). 

constraint 
The Lagrange multiplier X is determined by the equality 

-T - 
S2 = dmindmin = VTte[C1/2B[XI - + B]-2BC1/2]Vte 

= g(X). (48) 
Substitution of B = C-(1/2)F+C-(1/2) Y yields (11) after 
simple matrix algebra. 

Let the nonnegative definite symmetric matrix B have 
eigendecomposition B = C;=.=, ,&I I T ,  where 

-,-a 

positive eigenvalues; 
E eigenvectors; 
r > 0  rank of B. 
-a 

With these definitions, the function g(X) (48) has the equiv- 
alent form 

Since by assumption VTteC1/2P&/2Vte - - > 0, C1l2Vte - 
does not lie in the nullspace of B,  and thus, IVTteC1I2[ l 2  > 0 
for at least one i ,i  = 1, .. . , r.  Therefore, from &>, it 
is obvious that the function g(X) is continuous monotone 
decreasing over X 2 0 with limx+Dc)g(X) = 0, and 
1imx-o g(X) = VtQC1/2pgC1/2Vtg. Hence, there exists 
a unique strictly poscive X such that 9(X) = S2 for any value 

0 6’ E [o, Vt&c1/2’PBC1/2Vte). - 

APPENDIX €3 
BOOTSTRAP DERIVATION 

We start with the following simple estimator Vbg = 

G ( Y 1 ,  . . . , YL) of the bias gradient Vbe 

h 

- - 

where z is the column vector 

- Z ( K )  = ~(Y,)v; - In fy(~,;@) - Vt6. - 

The (biased) sample magnitude estimator of the norm squared 
S2 = IIVbell& is - 

I12 

Now, given the random sample Y1 = y ~ , . . .  ,YL = y ~ ,  the 
resampled estimate 6: = $z(Y;, 3 . , Y;) is [37] 

. L L  

where ( 1 4 , ~ ) ~  = gTCc is defined as the (weighted) inner 
product of column vectors U and 9. Define c = [q,  . . . ,  CL]^, 
and let H = [[( , (yZ) ,  &))cl] denote a L x L matrix of inner 
products. Then, the resampled estimate (50) has the equivalent 
form 

(51) 

(52) 

A 1  
6x2 = - c T H ~  

L2- 
1 

L2 
= - trace { H G ~ } .  

The resampling outcomes c1, . . . , C L  are multinomial dis- 
tributed with equal cell probabilities p l  = . . . = p ~ .  = 1/L and 
Cf=, c, = L. Averaging (52) over c, we obtain the bootstrap 
estimate of the mean 

(53) 
1 

L2 
= -trace {HE,[gT]}. 
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From the mean and covariance of the multinomial distribution 
[49, Sec. 3.21: 

llT 
L - 1  

E*[gT]  = I +  - L -  
where 1 is a vector of ones. Applying this identity to (53) 
and noting that trace { H }  = I/g(yZ)ll& and JTHJ = 
IlC:=, g(yZ)ll&, we obtain 

1 
E,[$~*]  = strace {HE,[$]} 

z=1 
" L  

where 

L z=m= --y&(yz) 1 

z=1 
- L  - 

is the sample mean, and we have identified 8' = 11-11; 
Plugging this last expression into (26), we obtain 

8: = 2 i 2  - E*[Z3 
< L  

which is identical to (27). 

VIII. APPENDIX C 
LOWER BOUND ON BIAS GRADIENT 

Here, we derive a simple lower bound on the maximal bias 
variation over the region C = {U: (U - @)TC-l(, - 8) 5 l} 
under the assumptions i) FY (14) is constant over g E C, and ii) 
the functional tu to be estimated is linear over E C. Define 

1) PF = F y F ;  = FGFy  as the symmetric matrix that 

2) JVF = {U: PFU = 0)  as the nullspace of F y  

- 

orthogonally projects onto the range space of F y  , 

3) mx = E,[t̂ l. 
Under assumption i), the parameter is not identifiable for 
U E MF n C, and it follows that mu - me - = 0. Therefore, 
we obtain the lower bound 

- - 

2 max Ib, - bgl = ~ t ;  Im, - t g  - mg + tgI2 
- UEC - 

where Au = 14 - e. Now, using an extrema1 property of the 
Rayleigh quotient, the right-hand side of (54) is 

= - h*[I - pF]c[J! - ? F ] h  (55) 

where, in the third line, 5 = C-('/')Au. 

following lower bound on the norm: I I VbJ I c : 
In view of (6), the combination of (54) and (55) yields the 

For the case that the bias bu is linear over E C, t in (56) 
is equal to zero, and we have an exact bound /IVb,Ilc 2 
JhTII - - PF]C[I - P F ] ~ .  In view of the relation (54), re- 
placing E: with VtR in this bound will give an approximate 
bound when tu is nonlinear but smooth over E C. Expression 
(56) with E = O  will probably be a fairly good approximation 
to the bound when the range space components of U can 
be estimated without bias. This is true for linear models 
Y = Ag + U.  However, the reader is cautioned that for 
nonlinear models, (56) may not be very tight since unbiased 
estimators may not exist even for components lying in the 
range space of FY [42]. 

- 

APPENDIX D 
ASYMPTOTIC AE'PROXIMATION OF BIAS, BIAS 

GRADIENT, AND VARIANCE FOR POISSON QPML 

Define the vector 

z = [FY (8) + P W F Y  @)e, 

Here, we derive the following asymptotic formulas for vari- 
ance, bias, and bias gradient of the Poisson QPML estimator 
of a general differentiable function to. - 

Asymptotic Variance: 

0; = VT&[FY (8) + PP1 -IFY (8) [FY (8) + PPl-lVt,. 
(58) 

(59) 

Asymptotic Bias: 

be - - _  = t ,  - to 
Asymptotic Bias Gradient: 

Vbe - = F y ( @ ) [ P P  + Fy(Q)l-'Vt, - - VtR - - O 

where 
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and Vt, - denotes the evaluation of the gradient of t g  - at the 
point e = z. 

Define the ambiguity function a(%,@) = Eo[J(g)] ,  and 
let = z = ~ ( 0 )  be the root of the equation-X(u) = 0, 
where X(u) = Vloa(g ,e ) .  Assuming the technical conditions 
underlying [50, Corollary 3.2, Sec. 6.31 are satisfied,' we have 
the following approx!mation: In the limit of large observation 
time, the estimator e is asymptotically normal with mean g 
and covariance matrix .E = [V2'u(z, e)]-1G=[020u(z ,B)]-T,  
where G, - = cove(VJ(g)). Furthermore, assuming that the 
function t g  has nonzero derivative at e = z the estimator 
t^ = t g  is asymptotically normal with mean tz and variance 
VTt,EVt, - - [51, p. 122, Theorem A]. This gives the asymp- 
totic expression for bias be = Eo[; - ts] = t4 - te and an 
asymptotic expression for variance 

Neglecting the O(& - e))  remainder terms, multiplication 
of the inverse of 766) the covariance (64) and the inverse 
transpose of (66) yields the asymptotic variance expression 
(63). Likewise, neglecting the remainder term in (65) and 
solving for the root U = g of the equation V10a(14,8) = 0 
yields the asymptotic expression for the root (57). 

We next derive (60) for the bias gradient. Applying the chain 
rule to differentiate (59), we obtain 

Vbo - = VzTVt, - - - Vtg - (67) 

where 0,~: is an n x n matrix of derivatives of g = 3. - From 
(57), the Eth row of this matrix is 

- 1  

+ O(& - B)) .  

(68) 

varg - ( t")  = VTt,[V20a(x, ~)]-1G,[V20u(g,e)]-'Vt~. - (63) 

Since the penalized Poisson likelihood function J(u) in 
(42) is linear in the observations Y ,  and K are indepen- 
dent Poisson random variables, it is simple to derive the 
following expression for the covariance matrix of V J ( z )  = 

c;=1 Aj*(Y,/Pj (2) - 1) - PPz: 

Define the matrix B = P + (l/P)Fy(@). From the differenti- 
ation formula (d/dOk)B(o)-' = -B-l(d/dQk)B(O)B-' and 
from (41) for the Fisher information matrix F Y ( @ ) ,  we have 

d 

cove [VJ(z)]  = F ( z ,  e) 
1 
P- d 8 k  

= A , * A ~ T ,  - 

= FY (8) + o(& - e))  
where A:* is the j th row of A,Fy(e )  is the Fisher matrix 

small. To obtain (64) with remainder term, we used theseries 

= -OTPB-l-Fy(e)B-l 

1 A,k@TpB-lAj* A ~ * B - l  
(64) 

j=1 

=--E 
p j = 1  P3" (8) 

p j = 1  
(69) 

l m  
(29), and o(& - e))  is a remainder term that is close to zero 
when the difference between the projections ~(g) and p(@) is = -- xyjk(e)AT*B-l  

development 
where T 3 k ( @ )  is the kth element of the vector y j  defined in 
(62). Combining (68) and (69), we obtain x - O)TA,* + o ( ( ~  - B)TAj*). 

The ambiguity function is 

which, when substituted into (67) and neglecting the remainder 
term O(p(g - - e)),  yields the bias gradient expression (60). 

P m 

a(u,8) = X ( P j ( l )  lnPj(14) - #a)) - pTP14. 
j = 1  

Differentiation of the ambiguity function with respect to U 
yields 

and similarly, 

Among other things, these conditions involve showing that the gradient 
function VJ(@) converges a s .  to zero as the observation time increases. 
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