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Abstract—In magnetic resonance imaging, magnetic field
inhomogeneities cause distortions in images that are reconstructed
by conventional fast Fourier trasform (FFT) methods. Several
noniterative image reconstruction methods are used currently
to compensate for field inhomogeneities, but these methods
assume that the field map that characterizes the off-resonance
frequencies is spatially smooth. Recently, iterative methods have
been proposed that can circumvent this assumption and provide
improved compensation for off-resonance effects. However,
straightforward implementations of such iterative methods suffer
from inconveniently long computation times. This paper describes
a tool for accelerating iterative reconstruction of field-corrected
MR images: a novel time-segmented approximation to the MR
signal equation. We use a min–max formulation to derive the
temporal interpolator. Speedups of around 60 were achieved by
combining this temporal interpolator with a nonuniform fast
Fourier transform with normalized root mean squared approx-
imation errors of 0.07%. The proposed method provides fast,
accurate, field-corrected image reconstruction even when the field
map is not smooth.

Index Terms—Field inhomogeneity correction, image re-
construction, iterative methods, magnetic resonance imaging,
temporal interpolation, time segmentation.

I. INTRODUCTION

D IFFERENCES in the magnetic susceptibility of adjacent
regions within an object, which occur for example near

air/tissue interfaces in the brain, cause image distortions in mag-
netic resonance (MR) images formed by conventional recon-
struction methods. In spin-warp imaging, off-resonance effects
cause spatial shifts and intensity variations [1], whereas spa-
tial blur is induced in noncartesian k-space MR imaging (MRI)
(using spirals, etc.) [2]. Many image reconstruction methods
have been proposed to correct for the field distortions [3]–[7].
We focus on algorithms appropriate for conventional computers;
optical implementations may also be feasible [8]. There are two
components to most methods for field-corrected MR image re-
construction. The first procedure is to obtain an estimate of the
field map that quantifies the spatial distribution of magnetic field
inhomogeneities. The second procedure is to use that field map
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to form a reconstructed image of the transverse magnetization.
This paper focuses on the second procedure; like many methods,
we assume that an accurate, spatially undistorted field map is
available. This simplification underlies most of the field-cor-
rected MR image reconstruction methods. However, in many
cases it may be necessary or desirable to couple the field-map
estimation and image reconstruction procedures. In such cases,
the methods described in this paper could be one component of
an overall joint estimation procedure [9].

After a field map is obtained, one method of field-corrected
image reconstruction, the conjugate phase method [3], [6], [7],
seeks to compensate for the phase accrual at each time point
due to the off-resonance. This method, like most noniterative
methods, relies on the assumption of a smooth field map. Time-
segmented and frequency-segmented approximations exist for
this method to speed image reconstruction [3], [7]. Recent work
has suggested that the failure of the conjugate phase method in
regions where the field map is not smooth may be due to incor-
rect density compensation coefficients. Spatially varying den-
sity compensation may be necessary in those cases, restricting
the application of methods to speed computation [10]. Iterative
reconstruction methods do not require density compensation co-
efficients and are immune to discussions on how to calculate ac-
curate density coefficients.

Schomberg [6] provides a rigorous analysis of the family
of conjugate-phase methods for off-resonance correction of
MR images, and concludes that segmented conjugate-phase
methods are preferable to SPHERE methods [5], at least for
spiral imaging. Therefore, in this paper we focus on comparing
our proposed iterative methods to the conjugate-phase method
as thede factostandard for noniterative off-resonance correc-
tion. Schomberg’s analysis assumes existence of a “time map”
relating each k-space point to a unique acquisition time. Our
proposed iterative methods do not require any such assumption
and are, therefore, applicable to self-intersecting k-space
trajectories such as rosettes [11]. Nor are any assumptions
about regularity of a time map required for iterative methods.

Model-based iterative reconstruction methods have the
potential to account for field maps that violate smoothness as-
sumptions. Mungeret al. [12] reported that iterative conjugate-
gradient methods based on Fourier reconstructed echo-planar
images outperform the conjugate-phase approach. Their spar-
sified system model is specific to cartesian trajectories like
echo-planar, whereas the conjugate gradient (CG) approach
considered here is applicable to any trajectory. Manet al. [13]
described an iterative algorithm to remove the residual blur
left over after conjugate phase reconstruction in regions with
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rapidly varying inhomogeneity. The iterative reconstruction
algorithm proposed in [14] was shown to provide significant
improvements in image quality over noniterative methods even
for field maps with discontinuities. Their method also can be
used in an extended form to estimate more accurate field maps.
Unlike standard reconstruction schemes that directly map the
k-space data to a reconstructed image, (we will call this a
back-projector), most iterative reconstruction methods require
a forward-projector (given an estimate of the object and field
map, form k-space data) as well as the adjoint of the forward
projector.

Interest in iterative reconstruction methods has increased
recently due to its utility in multiple coil noncartesian k-space
sensitivity encoding (SENSE) problems [15]. Due to the com-
plex aliasing pattern associated with undersampling k-space
trajectories such as spirals, iterative methods that include
coil sensitivity patterns in the projectors are necessary to
reconstruct artifact-free images in practice [15]. Although this
paper will focus on field inhomogeneities, one can also apply
iterative image reconstruction methods to compensate for other
physical phenomena such as deviations in k-space trajectory
and relaxation effects, such as [16].

The principal drawback of iterative reconstruction methods
has been computation time, with reported values of computa-
tion time/iteration ranging up to eight minutes [14]. Recently,
accurate and fast nonuniform fast Fourier transform (NUFFT)
methods have been developed [17]–[19] and these methods have
been applied to MRI data with spiral k-space trajectories [20],
[21]. The MR reconstruction problem is closely related to the
problem of reconstructing a band-limited signal from nonuni-
form samples. Strohmer argued compellingly for using trigono-
metric polynomials (complex exponentials) for finite-dimen-
sional approximations in such problems, and proposed to use an
iterative CG reconstruction method with the NUFFT approach
of [22] at its core [23], [24]. In the MR context, this is essentially
equivalent to the finite basis expansion we use in (3). In [25],
an NUFFT-like algorithm, referred to as “reverse gridding,”
was applied in combination with the CG algorithm to speed
up SENSE image reconstructions. These NUFFT methods have
reduced the computation time/iteration to that of noniterative re-
construction methods.

However, the standard NUFFT method by itself does not
allow for the compensation of field inhomogeneity effects
because the integral signal equation for MR is not a Fourier
transform when field inhomogeneities are included. This paper
describes several tools for accelerating iterative reconstruction
of field-corrected images. Inspired by the time-segmented
conjugate-phase reconstruction approach [3], we propose a
fast time-segmented forward projector, and its adjoint, that
accounts for field effects and uses the NUFFT. The possibility
of combining “conventionally used [time or frequency] seg-
mentation approaches” with NUFFT-type methods to correct
for field inhomogeneities was noted by Pruessmanet al. [25].
However, as we show in this paper, the conventional temporal
interpolators (linear, Hanning, etc.) are signficantly suboptimal
since they fail to capture the oscillatory nature of phase modula-
tions caused by off-resonance effects. Instead, in this paper we
present a temporal interpolation method that is optimal in the

min–max sense of minimizing worst-case interpolation error,
and compare its accuracy with the “conventional” temporal
interpolators. We show that accurate temporal interpolation
combined with the NUFFT results in a fast, accurate iterative
reconstruction algorithm for field-corrected imaging. We
evaluate the accuracy of our time-segmentation interpolator by
comparing it to the result of the exact (but slow) evaluation of
the signal equation.

This paper starts with an introduction to iterative image re-
construction for MRI in Section II, then we present the deriva-
tion of our min–max temporal interpolator for time segmen-
tation in Section II-A. Section II-B describes various ways to
compute the interpolator. Section II-C examines the effect of
the initial image and preconditioning on the image reconstruc-
tion. Simulation and human data experiments are described in
Section III with the results given in Section IV.

II. THEORY

In MRI, ignoring relaxation effects, the signal equation is
given by [26]

(1)

where is the complex baseband signal at timeduring the
readout, is the echo time, is a continuous function of
the object’s transverse magnetization at locationimmediately
following the spin preparation step, is the sensitivity map
of the receiver coil, is the field inhomogeneity present at
, and is the k-space trajectory. For convenience, we let

. Accurate estimation of yields
assuming the sensitivity and field maps are known. In an

MR scan, the raw measurements are noisy samples of the signal
in (1)

(2)

where the ’s denote complex Gaussian noise. From these
samples we would like to reconstruct . The conventional
approach for image reconstruction is to interpolate the’s
onto a cartesian grid in spatial frequency space, after applying
sample density compensation, and to then use an inverse FFT
and deapodization to estimate samples of [27]. This
gridding method, when combined with time segmentation
of the field inhomogeneity effects, is a fast conjugate phase
approach [3].

The combination of (1) and (2) form a continuous-to-discrete
(CD) mapping. This is clearly an ill-posed problem since there
is an infinite collection of solutions, , that exactly match
the data . In [28], the pseudoinverse of this
CD mapping was investigated for minimum-norm least-squares
image reconstruction without field-correction. Although their
approach was computationally intensive, the pseudoinverse cal-
culation was object-independent and could be performed once
for a given trajectory. However, in the case of field-corrected
imaging, the CD mapping is object-dependent because of the
specific field map of the slice of interest. This prohibits precal-
culation of the singular-value decomposition of the CD operator,
so we seek more practical methods.
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Instead of finding the pseudoinverse of the CD mapping, we
restrict the number of unknowns to be estimated by parameter-
izing the object and field map in terms of basis functions, ,
assuming that

(3)

For this paper, we will use the voxel indicator function
for the -dimensional

problem. This choice is somewhat natural for display devices
that use square areas of nearly constant luminance. However,
this parameterization does not model within-voxel field gradi-
ents. Regardless of what basis one chooses, (3) is only an ap-
proximation and we plan to explore other choices, such as tri-
angle functions, in our future work. Triangle basis functions
would allow us to model first-order gradients of the field map
and voxel intensities, which may help reduce within-voxel sus-
ceptibility effects. Substituting (3) in (1) yields

(4)

where denotes the Fourier Transform of . We express
the noisy measured samples of this signal in matrix-vector form
as follows:

(5)

where and the elements of the
matrix are

(6)

In the discrete-to-discrete formulation (5), our goal is to estimate
the image from the k-space data, accounting for the statistics
of the noise . This will still be an ill-posed problem if ,
and is usually ill-conditioned even if for noncartesian
trajectories.

Since the dominant noise in MRI is white Gaussian [29], we
estimate by minimizing the following penalized least-squares
cost function

so that,

(7)

The second term in the equation for is a regularization
function, , that penalizes the roughness of the estimated
image. This regularization can decrease the condition number
of the image reconstruction problem and, therefore, speed con-
vergence. We choose the parameterby examining the point
spread function (PSF) of the reconstructed image [30], prefer-
ably by choosing small enough to not significantly degrade
the spatial resolution relative to the natural resolution associ-
ated with the k-space trajectory.

The least-squares cost function used here is appropriate for
Gaussian measurement noise. If non-Gaussian error “spikes”
are present, then one could use a nonquadratic cost function
to provide robustness to those outliers [31], at the expense
of increased computation. Alternatively, one could use other
methods to detect those spikes,e.g., [32], then exclude the

corresponding measurement samples from the iterative recon-
struction process; no “interpolation” of samples is needed.

We apply the iterative CG algorithm for minimization of (7).
The algorithm is given below for reference. For simplicity, we
have used quadratic regularization: for a
matrix that takes differences between neighboring pixels. The
algorithm may also include a data weighting matrixfor per-
forming weighted least squares, i.e., replace with in
(7). One can also include a preconditioning matrixto speed
convergence of the CG algorithm. Section II-C discusses the
weighting and preconditioner matrices in more detail. In the al-
gorithm below, denotes the negative gradient of from
(7), is the residual, denotes the step direction, anddenotes
the step size. The algorithm is started with an initial estimate
of the image, . Section II-C discusses the choice of this
initial estimate.

CG Algorithm
Initialize

residual

Iteration Steps

1st iteration

else

update image

update residual

The dominant computation in each iteration of the CG algo-
rithm is computing and , where the superscriptdenotes
complex conjugate transpose. Computing corresponds to
evaluating (4). For cartesian k-space trajectories, one can eval-
uate (4) quickly via the FFT if the field inhomogeneity is ig-
nored. However, for noncartesian k-space trajectories (spirals,
etc.) direct evaluation of (4) is very time consuming. When field
inhomogeneity is ignored, a NUFFT [17], [19] can be used to
rapidly and accurately evaluate the discrete signal (4) even for
noncartesian trajectories. However, the NUFFT method is not
directly applicable when the field inhomogeneity is included
because (1) is not a Fourier transform integral. We propose to
combine the NUFFT and a version of time segmentation [3] (but
with min–max temporal interpolation) to compute (4) rapidly
and accurately. We first derive the min–max interpolator and
then discuss some approaches to computing it. This section con-
cludes with a discussion of proposed methods to speed conver-
gence of the CG algorithm for iterative MR imaging.

A. Time Segmentation

In (4), the problem is in the term , where is not a
constant. If were a constant, then the term could be
absorbed into and (4) could be evaluated quickly by the
NUFFT. The idea of “time segmentation” is to use small time
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segments over whichis approximately constant [3]. For a time-
segmented approximation of the term , we partition the
acquisition window into time segments of width and com-
pute the term at the break points. We then interpolate
between these break points to evaluate an approximation at in-
termediate time points as follows:

(8)

where is the interpolation coefficient for theth break point
for time . Replacing the term in (4) with its time-seg-
mented approximation (8) gives

(9)

The key property of (9) is that it is a weighted sum of dis-
crete-space Fourier transforms of the term in brackets, weighted
by the coefficients . We can perform
these inner FTs quickly and accurately using an NUFFT [19].
Our goal here is to choose the to minimize the error of ap-
proximation (9). In the spirit of [18] and [19], we propose to
adopt a min–max criterion to optimize the temporal interpola-
tion coefficients, for , i.e., for every point in
the k-space readout. For any time, we choose the coefficients

using the following criterion:

:
(10)

That is, we seek the interpolation coefficients that will min-
imize (min) the interpolation error for the object vector,, that
causes the largest (max) error of all possible signals. Note that
if , then the error in the approximation (9) would
be zero regardless of the interpolator.

The error in the approximation (9) can be expressed as

(11)

where , , and

(12)

Define , and let be an by

matrix with , then

(13)

From (12), and is independent of time.
Therefore, using (11), we can rewrite our min–max estimation
problem from (10) as follows:

:
(14)

By the Cauchy–Schwarz inequality, for a given time, the
worst-case is , i.e.,

:
(15)

Note that this is the approximation error in (8). Inserting this
worst-case into the min–max criterion (14) and applying (13)
reduces the min–max problem to

(16)

The solution to this least-squares problem yields the min–max
interpolator

(17)

where

(18)

for , To compute the min–max interpolator, we
form the matrix and multiply its inverse
by the vector . Typically, so this is
feasible.

B. Computing the Min–Max Interpolator

The interpolator in (17) is object dependent since it is a func-
tion of the field map, and, therefore, must
be computed after an initial estimate of the field map is formed.
To compute efficiently, first form the column sums of
as follows:

(19)

Then, using (18), we evaluate the elements of as follows:

otherwise.
(20)

This is a very fast way to compute for the min–max
interpolator.

The sums in (18) do not depend on the spatial arrangement
of the field map. This independence suggests that we could
compute these sums using simply a histogram of the field map
values. We have investigated approximating the computation
of (18) by forming the histogram of the field map using
equal-sized bins covering the range of offset frequencies in-
duced by the field inhomogeneity. Let be the number of field
map values that fall into bin with a center off-resonant fre-
quency of . Then, we can approximate (18) by

(21)

We compute (21) efficiently via a FFT of , since we use
equally spaced histogram bins. We call this approach thehis-
togram approximationto the min–max interpolator. This quan-
tization of the field map into a histogram is somewhat akin to
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the frequency-segmentation method for reducing computation
in the conjugate-phase approach for field inhomogeneity cor-
rection [33], [34].

The expression for this interpolator bears a striking resem-
blance to the “multifrequency interpolator” proposed by Man
et al. [7]. However, the use of the two interpolators is quite
different. The multifrequency interpolator is applied to a set of
images that have each been reconstructed by a constant demod-
ulation approximation to the conjugate-phase approach for field
inhomogeneity correction. In contrast, our min–max interpo-
lator is applied to predicted k-space signals. The multifrequency
interpolation approach inherits the fundamental limitations of
the conjugate-phase approach (in particular the requirement of
a spatially smooth field map) which are illustrated in the figures
in Section IV.

The min–max interpolator (17) depends on the field map
and should be recomputed if the field map changes. To avoid
recalculating the interpolator coefficients when a field map is
updated, we also investigated the use of an object-independent
histogram for the field map values. A generic histogram for
field maps was used to calculate the interpolator coefficients in
(21) and we will refer to this approach as thegeneric histogram
approximation. Several shapes and ranges for generic histo-
grams were examined.

C. Speeding Convergence of the CG Algorithm

It has been suggested that a weighted-least squares approach
be used to speed convergence of the CG algorithm for iter-
ative MR image reconstruction and that the weights be the
coefficients of the sampling density compensation function
[25]. However, there has been some discussion on how to
calculate optimal density compensation factors [35]–[39] and
the iterative image reconstruction algorithm does not require
and is not dependent upon these weights if an unweighted (i.e.,
weighting is unity) least squares approach is used instead. Also,
assuming the noise in MRI is white Gaussian, usingnonuniform
weighting would be suboptimal statistically according to the
Gauss–Markov Theorem. Using nonuniform weighting may
appear to provide faster convergence in the initial steps of the
algorithm for some choices of initial image, but would prevent
convergence to the minimum variance solution. Although,
Pruessmannet al.[25] state that the signal-to-noise ratio (SNR)
penalty is negligible when the density compensation function
is used as the weights, we will next discuss how to benefit from
this approach without risking any SNR.

Consider the CG algorithm in (8) when an initial estimate of
the image of zeros is used: . Then, the first iteration gives

(22)

If the data weighting matrix were just the identity matrix,
then this first iteration would simply give the conjugate phase
reconstruction without density compensation. Ifwere instead
equal to the density compensation factors, then the first iteration
yields a density-compensated conjugate phase reconstruction.
Therefore, rather than using an inappropriately weighted CG al-
gorithm, we use the conjugate phase image (reconstructed via
a fast, density-compensated, time-segmented approach) as the
initial estimate, . As noted in [40], initializing with a good
density-compensated conjugate phase image ensures that sub-
sequent iterations will improve on this initial guess.

(a) (b)

Fig. 1. (a) Simulation object and (b) field map in Hertz.

Convergence of iterative algorithms can be accelerated by
the use of an appropriate preconditioner, e.g.,in (8). Circu-
lant preconditioners have been shown to be effective in shift-in-
variant problems in tomographic imaging [41]. These precon-
ditioners attempt to undo the blurring induced by applying the
forward projector and its adjoint. A circulant preconditioner
should be particularly helpful for MR reconstruction with small
off-resonance effects, where the PSF is nearly shift invariant, but
may also be of some benefit in regions of higher off-resonance
effects. Our results to date with circulant preconditioners have
shown mild improvements in convergence rate. Preconditioners
have also been designed for shift-variant problems [42] and such
methods will be investigated for MRI in our future work.

III. M ETHODS

Three sets of studies were performed to evaluate the accuracy
and utility of our min–max interpolated iterative reconstruction
algorithm. All three studies used a single-shot spiral k-space tra-
jectory with a of 25 ms, matrix size of 64 64, and field of
view of 22 cm 22 cm, giving 3770 k-space points. The length
of the readout interval was 18.9 ms, so 100-Hz off-resonance
causes 3.8 extra spin phase accrual during the readout.

A. Interpolator Accuracy

We performed a simulation study to evaluate the maximum
interpolation error, in (15), over a finely sampled range
of times, , for several temporal interpolators. We used the field
map shown in Fig. 1. We observed empirically that, for many
field maps, the min–max optimal temporal interpolator could
have a significant imaginary component, and this imaginary
component contributes to the overall accuracy of the min–max
interpolation method. Conventional temporal interpolators
used in MRI have been real valued, so to simplify comparisons
between the proposed min–max approach and the conventional
approaches, we shifted the field map values to a range where
the min–max interpolator had a very small imaginary com-
ponent, as illustrated in Fig. 3. We compared the following
interpolation methods: linear interpolation of the two nearest
endpoints to the time sample of interest, a Hanning window
interpolation using only the two nearest endpoints (similar
to that used in [3] for the back-projector problem), the ideal
min–max interpolator (17), the histogram approximation to the
min–max interpolator calculated using (21) with 1000 bins, and
an interpolator using a generic histogram also calculated using
(21). Various shapes (flat and triangular) and ranges were used
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for the generic histogram to determine the effect of accuracy of
the histogram on the error of the interpolator.

B. Simulation Study

We performed a series of simulation studies using the same
field map and a simulation object shown in Fig. 1. The simu-
lation data was formed by constructing a simulation phantom
at a matrix size of 256 256 and then applying (4) to compute
the signal at the desired k-space locations. To avoid intravoxel
effects from gradients of the field map inside our larger recon-
structed voxels (matrix size of 6464), we constructed the sim-
ulated field map at a size of 6464 and zero-order-hold inter-
polated it up to 256 256 to create the simulation field map.
(We also present one case that includes intravoxel dephasing for
comparison). Noise-free simulation studies were conducted to
examine the effect of iteration on the interpolation error by com-
puting the normalized root mean squared (NRMS) difference in
the reconstructed image of the interpolated, time-segmented ap-
proach versus using the exact (slow) signal (4) at convergence.

For the rest of the simulation studies, zero-mean complex
Gaussian noise was added to the k-space data to give an SNR
of approximately 100, calculated as the ratio of the norms of
the k-space data vector and the noise vector: . We ex-
amined the normalized root-mean-squared error (NRMSE) be-
tween the reconstructed image and the known simulation object.
This measure was used to examine accuracy and convergence
rate of our proposed iterative algorithm. In the simulation and
human studies, the NUFFT was used with the following parame-
ters: two times oversampling, a neighborhood size of 55, and
an optimized Kaiser-Bessel window and scaling factors [18].

C. Human Study

The time-segmented, NUFFT reconstruction scheme was ap-
plied to a human data set collected on a 3.0T GE Signa Scanner
in accordance with the Institutional Review Board of the Univer-
sity of Michigan. For the human data, the field inhomogeneity
map must be measured by acquiring two gradient echo images
with slightly different echo times [43]. To minimize field inho-
mogeneity distortions in the images used to estimate the field
map, we acquired a pair of 4-shot gradient echo images with

’s of 5 and 7 ms. This fieldmap was used to reconstruct
field-corrected images of the same slices with single-shot spi-
rals at a of 25 ms. The proposed fast, iterative reconstruction
scheme was compared with the conjugate phase method and an
uncorrected gridding reconstruction. Since the exact object is
not known in a human data set, we attempted to match the full
conjugate phase and iterative reconstruction times and qualita-
tively compare the resulting images.

IV. RESULTS

A. Interpolator Accuracy

Fig. 2 shows the maximum interpolation error for
through time segments for the five interpolators de-
scribed in Section III-A. The error given, , is the
maximum error in interpolation as given in (15) over a range of
times . The generic histogram used was flat over the range of

Hz. The min–max interpolators (ideal min–max, his-
togram min–max, and generic histogram min–max) have been
plotted until the condition number of the matrix becomes

Fig. 2. Maximum interpolation error over a range of time points for each
interpolator for various numbers of time segments. Error given is the maximum
error in interpolation over a range of times as given in (15).

Fig. 3. Real (solid lines) and imaginary (dashed lines) parts of interpolators
usingL = 5 for the Hanning and min–max interpolators for the field map
given in Fig. 1.

too large for inversion. For the maximum error for the
min–max and histogram interpolator is more than four orders of
magnitude lower than that of the linear and Hanning “conven-
tional” interpolators.

Fig. 3 shows the Hanning and min–max interpolators for
. The real and imaginary parts of the min–max interpolator are

oscillatory, a property not found in the conventional interpola-
tors. The histogram interpolators looked very similar to the ideal
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Fig. 4. Comparison of maximum interpolation error of various generic
histogram approximate min–max interpolators.

min–max interpolator, even though the generic histogram had a
different range of off-resonance frequencies and different his-
togram shape (flat). Even though it was not explicitly required
in our formulation, the min–max interpolators appear to sum to
unity at every time point, a property expected of interpolators.

When a histogram of the field map is used that differs from
the actual field map (generic histogram), the max error in Fig. 2
showed a slightly higher level of error compared with the ideal
min–max interpolator and required a larger number of time seg-
ments. We investigated several generic histograms, rectangular
and triangular shapes, and several different ranges of off-reso-
nance, 75, 100, 150, 200, and 250 Hz. All the generic histograms
were centered around 0 Hz, to agree with the simulated field
map. Fig. 4 shows the maximum NRMSE for various numbers
of time segments. As seen in this figure, the interpolator is rela-
tively immune to moderate changes in the histogram of the field
map. At an value of 11, the rectangular histograms with ranges
of 150, 200, and 250 Hz and triangular histograms with ranges
of 150 and 200 Hz all provide maximum interpolation errors
below 10 . Given the independence on spatial arrangement in
the formulation of the ideal min–max interpolator, we need only
have a range of off-resonance in our histogram that is similar to
that of the exact field map.

B. Simulation Study

As described in Section II-C, we examined the convergence
of the CG algorithm under various conditions using the simu-
lation object and field map shown in Fig. 1. Considering the
max error in Fig. 2, we selected to give a low error for
the min–max interpolator, and examined the error of time seg-
mentation versus using the exact (slow) signal (4) over iteration
to see how the error propagates through the iterative process.
Fig. 5 shows the NRMS difference between and
where denotes the th iteration of CG algorithm with
the fast approximation (9) using various interpolators and
denotes the 100th iteration (i.e., essentially at convergence) of
CG using the exact (slow) signal (4). As shown in Fig. 5, in-
terpolation errors can cause the CG algorithm to converge to a
different image. The linear and Hanning interpolated iterative

Fig. 5. NRMS difference betweenfff andfff forL = 6 in simulation
study.

Fig. 6. NRMS difference betweenfff using the ideal min–max
interpolator forL = 1, 3, 4, 5 andfff over 20 iterations. The time to
compute the exact iterative method, using (4), was�12.7 s/iteration while
the time to compute the fast, interpolated iterative method, using (9), was
(0:019 + 0:030(L+ 1)) s/iteration.

methods converge to a final image that differs from the exact
final image by more than 10% NRMS.

To choose a value for that gives fast computation yet
retains good reconstruction accuracy, we examined the NRMS
difference between the interpolated and exact iterative methods
for various values of . Fig. 6 shows the NRMS difference
between and over 20 iterations using the ideal
min–max interpolator for , 3, 4, 5. Computation time
for the min–max interpolated iterative method is approxi-
mately proportional to . On a 2-GHz Xeon workstation
using Matlab (The Mathworks, Natick MA), our implemen-
tation of the exact (slow) iterative method, using (4), took

12.7 s/iteration to evaluate. The min–max interpolation
method, took approximately s/iteration
for values of . The linear interpolated method
took approximately the same computation time as the min–max
interpolated method and is shown for reference in Fig. 6.
Depending on the noise level expected in our reconstructed
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TABLE I
COMPUTATION TIME AND NRMSE BETWEEN ^f AND f FOR SIMULATION STUDY

(a) (b) (c)

(d) (e) (f)

Fig. 7. Reconstructed images from the simulation study. (a) Simulation object. (b) Slow conjugate phase. (c) Slow iterative. (d) No correction. (e) Fast conjugate
phase. (f) Fast iterative.

images, a value of might be reasonable for the min–max
interpolator. We chose to use for the ideal min–max
interpolator for our simulation and human data studies with a
time/iteration of 0.2 s, a speed-up of around 60 over the exact
iterative method.

Next, given the exact field map, we ran a simulation study
with noise to compare the errors in the reconstructed images
under five different reconstruction schemes: no correction for
field inhomogeneities, a conjugate-phase reconstruction with
density compensation, a fast conjugate phase reconstruction
using time segmentation according to [3], the exact (slow)
evaluation of the signal equation used in combination with
the CG algorithm (the slow iterative method), and the NUFFT
with min–max temporal interpolation used in combination
with the CG algorithm (the fast iterative method, ).

The results of NRMSE and computation time are shown in
Table I. The NRMSE was calculated over a mask defined by the
true object’s support. Fig. 7 shows the reconstructed images.
The full iterative and fast iterative methods give virtually
the same results with a NRMS difference between the two
reconstructions of 0.07%, but the fast iterative method takes
only 2.2 s for ten iterations as compared with 128 s for the
slow iterative method. The unsegmented, density-compensated
conjugate-phase reconstruction takes 4 s and both conjugate
phase reconstructions produce serious artifacts in regions
where the field map is not smoothly varying, and these artifacts
propagate to nearby regions.

To verify that interpolator accuracy is important in recon-
structing field-corrected images, we compared reconstructions
from the CG algorithm using NUFFT with linear, Hanning, and
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(a) (b) (c)

Fig. 8. Effect of temporal interpolator on fast iterative reconstructions. (a) Linear interpolation. (b) Hanning interpolator. (c) Ideal min-max interpolator.

(a) (b) (c)

Fig. 9. Reconstructed images from a simulation study with intravoxel field effects. (a) No correction. (b) Slow conjugate phase. (c) Fast iterative.

ideal min–max intepolators. Fig. 8 shows the reconstructions
using and ten iterations of the CG algorithm. The stan-
dard interpolators are insufficiently accurate and the algorithm
converges to a distorted image, whereas the min–max method
yields a nearly undistorted image. This behavior agrees with the
quantitative comparison shown in Fig. 5.

As mentioned in Section III, the simulated field map was
purposefully constructed to avoid intravoxel dephasing due to
within-voxel field inhomogeneities. To show the effects of such
dephasing on the field-corrected reconstructions of Fig. 7, we
simulated a field map at a 256256 matrix size that allowed
gradients across the voxels when reconstructed at a matrix size
of 64 64. Fig. 9 shows the reconstructed images. As this figure
shows, by assuming basis functions of , we are unable to
model the field gradients across the voxel and the result is signal
loss where the field gradient is high. In the iterative reconstruc-
tion, this degradation is localized primarily in the pixels where
the high gradient occurs. In the conventional field correction, the
artifacts are more widespread. We plan to implement triangular
basis functions in our future work to model linear intravoxel sus-
ceptibility gradients, or to use over-sampled field maps.

C. Human Data

As a final comparison, we reconstructed real data collected
from a slice of the brain using both the proposed iterative

method and a full conjugate phase method. Although the
proposed iterative method can be used in an extended form
to estimate an undistorted field map, in this case we focused
on comparing computation time, so both reconstructions used
a field map obtained in the standard way from two short
(5, 7 ms) 4-shot gradient echo images. For convenience in
the iterative method, we used the generic histogram (flat,

Hz) since it does not depend on the specific field
map and can be computed in advance for a given trajectory
(depends only on number of time points and a chosen range of
off-resonance frequencies). The range of the generic histogram,

Hz, was chosen to agree with our routinely acquired
field maps from the slice of interest. The NUFFT used the
parameters given in Section III-B and the min–max interpolator
used . The reconstruction time for the full conjugate
phase was about 4 s, the time for ten iterations of the proposed
fast iterative method was 3.6 s. Fig. 10 shows the reconstructed
images for two slices. Artifacts in regions of high off-res-
onance are reduced significantly by the iterative approach.
The conjugate phase reconstruction suffers from ringing and
piling-up artifacts near the region of field inhomogeneity.
Residual signal loss in the iterative reconstruction could be
due to a high in-plane gradient in the field map as discussed
in Section IV-B, or may be due to through-plane susceptibility
gradients. We plan to incorporate models of both phenomena
in our future work. Also, the iterative method can be used to
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(a) (b) (c) (d)

Fig. 10. Distorted image, its field map, conjugate phase and iterative image reconstructions for two slices. The time for the field-corrected reconstructions were
about 4 s each. (a) Uncorrected. (b) Conjugate phase. (c) Fast iterative. (d) Field map (Hz).

simultaneously estimate an undistorted field map and provide
a better field-corrected image [14], [44].

V. DISCUSSION

We have presented a method that allows fast, iterative
reconstruction of field-corrected MR images. By combining
the NUFFT with time segmentation using a min–max temporal
interpolator, a computation speed up of a factor of around 60
is achievable with NRMS error in the reconstructed image
of 0.07%. We have also developed an approximation to the
min–max interpolator that depends on the object-specific field
map only through the range of off-resonant frequencies yet pro-
vides accuracies near those of the ideal min–max interpolator.
For a given trajectory, this interpolator can be precomputed
and stored. We have shown that this approximation is relatively
robust to small changes in the shape or range of the histogram of
the field map. This method should easily be adaptable to other
forms of iterative reconstruction in MRI, including SENSE to
allow fast, field-corrected SENSE reconstructions [45].

We envision the iterative reconstruction algorithm in the gen-
eral case to proceed as follows: first, an initial field map is
formed via a gridding reconstruction on data at two different
echo times. This initial estimate of the field map is used to de-
rive an interpolator for the min–max time interpolation. The es-
timate of the field map is also used, via a fast conjugate phase
reconstruction, to give an initial estimate to the iterative recon-
struction. The iterative reconstruction is then run in extended
mode with simultaneous estimation of field map and image ei-
ther by explicit joint estimation [44] or by alternating updates
[6], [14]. After several loops of updating the image and field
map, we are left with an undistorted estimate of the image and
field map.

If the field map has a strong linear component, then it may be
possible to adapt the method of Irarrazabalet al. [34] to reduce
the number of segments required for a given accuracy.

The ability to accurately compensate for off-resonance ef-
fects as demonstrated here may increase the feasibility of using
other acquisition methods with long readout times, such as echo-
volume imaging [46].

Although this paper has focused on MR image reconstruction
in the presence of field inhomogeneities, the general approach is
also applicable to image reconstruction with compensation for
other sources of undesired (but known) spin phase accrual, such
as eddy currents and concomitant gradient effects [47], [48].
An iterative method based on an explicit signal model like (1)
should yield more accurate images compared with conventional
approaches to compensating for such effects.

We have ignored spin-spin relaxation during the signal
readout in our signal model (1). However, many aspects of the
algorithms we have described are also applicable to problems
where both spin density and spin relaxation are estimated from
multiecho measurements [9], [16], [49], [50]. The framework
for the min–max time interpolation provided by (16) can
be extended to include relaxation effects, such as. The
simplifications that resulted in (18) are not available in this case
and computation of the interpolator may be more expensive.
Preliminary testing shows that the high accuracy of the time
segmentation method can still be achieved without knowing
the exact field and maps. This work will be included in a
future paper.
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