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Abstract—n magnetic resonance imaging, magnetic field to form a reconstructed image of the transverse magnetization.
inhomogeneities cause distortions in images that are reconstructed This paper focuses on the second procedure; like many methods,
by conventional fast Fourier trasform (FFT) methods. Several \ye a5sume that an accurate, spatially undistorted field map is
noniterative image reconstruction methods are used currently . L L . .
to compensate for field inhomogeneities, but these methods available. T_h|s simplification gnderlles most of the fleild—cor—
assume that the field map that characterizes the off-resonance 'écted MR image reconstruction methods. However, in many
frequencies is spatially smooth. Recently, iterative methods have cases it may be necessary or desirable to couple the field-map
been proposed that can circumvent this assumption and provide estimation and image reconstruction procedures. In such cases,

improved compensation for off-resonance effects. However, yha methods described in this paper could be one component of
straightforward implementations of such iterative methods suffer . . .
an overall joint estimation procedure [9].

from inconveniently long computation times. This paper describes . . b .
a tool for accelerating iterative reconstruction of field-corrected After a field map is obtained, one method of field-corrected

MR images: a novel time-segmented approximation to the MR image reconstruction, the conjugate phase method [3], [6], [7],
signal equation. We use a min—max formulation to derive the seeks to compensate for the phase accrual at each time point
temporal interpolator. Speedups of around 60 were achieved by §,e tg the off-resonance. This method, like most noniterative

combining this temporal interpolator with a nonuniform fast thod li th ti f th field Ti
Fourier transform with normalized root mean squared approx- methods, refies on the assumption of a smooth neld map. fime-

imation errors of 0.07%. The proposed method provides fast, Segmented and frequency-segmented approximations exist for
accurate, field-corrected image reconstruction even when the field this method to speed image reconstruction [3], [7]. Recent work

map is not smooth. has suggested that the failure of the conjugate phase method in
Index Terms—Field inhomogeneity correction, image re- regions where the field map is not smooth may be due to incor-
construction, iterative methods, magnetic resonance imaging, rect density compensation coefficients. Spatially varying den-

temporal interpolation, time segmentation. sity compensation may be necessary in those cases, restricting
the application of methods to speed computation [10]. Iterative
I. INTRODUCTION reconstruction methods do not require density compensation co-

efficients and are immune to discussions on how to calculate ac-

D IFFERENCES in the magnetic susceptibility of adjacent,rate density coefficients.

regions within an object, which occur for example near schomberg [6] provides a rigorous analysis of the family
air/tissue interfaces in the brain, cause image distortions in mag-conjugate-phase methods for off-resonance correction of
netic resonance (MR) images formed by conventional recogr images, and concludes that segmented conjugate-phase
struction methods. In spin-warp imaging, off-resonance effeGifethods are preferable to SPHERE methods [5], at least for
cause spatial shifts and intensity variations [1], whereas spgjral imaging. Therefore, in this paper we focus on comparing
tial blur is induced in noncartesian k-space MR imaging (MRByr proposed iterative methods to the conjugate-phase method
(using spirals, etc.) [2]. Many image reconstruction methogs thede factostandard for noniterative off-resonance correc-
have been proposed to correct for the field distortions [3]-[#}on, Schomberg’s analysis assumes existence of a “time map”
We focus on algorithms appropriate for conventional computergiating each k-space point to a unique acquisition time. Our
optical implementations may also be feasible [8]. There are tWpoposed iterative methods do not require any such assumption
components to most methods for field-corrected MR image rgng are, therefore, applicable to self-intersecting k-space
construction. The first procedure is to obtain an estimate of th@jectories such as rosettes [11]. Nor are any assumptions

field map that quantifies the spatial distribution of magnetic fielghoyt regularity of a time map required for iterative methods.
inhomogeneities. The second procedure is to use that field mapjodel-based iterative reconstruction methods have the
potential to account for field maps that violate smoothness as-
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rapidly varying inhomogeneity. The iterative reconstructiomin—-max sense of minimizing worst-case interpolation error,
algorithm proposed in [14] was shown to provide significardand compare its accuracy with the “conventional” temporal
improvements in image quality over noniterative methods evarterpolators. We show that accurate temporal interpolation
for field maps with discontinuities. Their method also can beombined with the NUFFT results in a fast, accurate iterative
used in an extended form to estimate more accurate field magzonstruction algorithm for field-corrected imaging. We
Unlike standard reconstruction schemes that directly map thealuate the accuracy of our time-segmentation interpolator by
k-space data to a reconstructed image, (we will call thiscmmparing it to the result of the exact (but slow) evaluation of
back-projector), most iterative reconstruction methods requitee signal equation.
a forward-projector (given an estimate of the object and field This paper starts with an introduction to iterative image re-
map, form k-space data) as well as the adjoint of the forwacdnstruction for MRI in Section II, then we present the deriva-
projector. tion of our min—max temporal interpolator for time segmen-
Interest in iterative reconstruction methods has increas@dion in Section IlI-A. Section 1I-B describes various ways to
recently due to its utility in multiple coil noncartesian k-spaceompute the interpolator. Section [I-C examines the effect of
sensitivity encoding (SENSE) problems [15]. Due to the conthe initial image and preconditioning on the image reconstruc-
plex aliasing pattern associated with undersampling k-spdégn. Simulation and human data experiments are described in
trajectories such as spirals, iterative methods that incluGection Il with the results given in Section IV.
coil sensitivity patterns in the projectors are necessary to
reconstruct artifact-free images in practice [15]. Although this Il. THEORY
paper Wi.” focus on field inhomogeneities, one can also applyln MRI, ignoring relaxation effects, the signal equation is
iterative image reconstruction methods to compensate for ot &len by [26]
physical phenomena such as deviations in k-space trajectory
and relaxation effects, such &5 [16]. N ,, r ok
The principal drawback of iterative reconstruction methods ~ 5(f) = /f(r)c(f)eﬂw(r)(“r 2o 2rEO D gy (1)
has been computation time, with reported values of computa- '
tion timef/iteration ranging up to eight minutes [14]. Recentlyyheres(t) is the complex baseband signal at timguring the
accurate and fast nonuniform fast Fourier transform (NUFFfdadout 7 is the echo timef(r) is a continuous function of
methods have been developed [17]-[19] and these methods h@¢eobject’s transverse magnetization at locatiammediately
been applied to MRI data with spiral k-space trajectories [2Gbllowing the spin preparation stepir) is the sensitivity map
[21]. The MR reconstruction problem is closely related to thef the receiver coilw(r) is the field inhomogeneity present at
problem of reconstructing a band-limited signal from nonuni~, andk(t) is the k-space trajectory. For convenience, we let
form samples. Strohmer argued compellingly for using trigong{r) = f(r)c(r)e~*7T=, Accurate estimation of (r) yields
metric polynomials (complex exponentials) for finite-dimenf(r) assuming the sensitivity and field maps are known. In an
sional approximations in such problems, and proposed to use\iR scan, the raw measurements are noisy samples of the signal
iterative CG reconstruction method with the NUFFT approach (1)
of [22] atits core [23], [24]. Inthe MR context, this is essentially
equivalent to the finite basis expansion we use in (3). In [25], yi=s(t;) +ei, i=1,....M (2
an NUFFT-like algorithm, referred to as “reverse gridding,”
was applied in combination with the CG algorithm to spee§fhere thee;’s denote complex Gaussian noise. From these
up SENSE image reconstructions. These NUFFT methods h&¢&hPles we would like to reconstrugtr). The conventional
reduced the computation timefiteration to that of noniterative r@PProach for image reconstruction is to interpolate giie
construction methods. onto a cartesian grid in spatial frequency space, after applying

However, the standard NUFFT method by itself does né?mp'e densjty gompensat_ion, and to then use an inver.se FFT
allow for the compensation of field inhomogeneity effect hd deapodization to estimate samples f¢f) [27). This

because the integral signal equation for MR is not a Fouri fidding method, when combined with time segmentation

transform when field inhomogeneities are included. This pap Etfrlgafclil?sinhomogenelty effects, is a fast conjugate phase
describes several tools for accelerating iterative reconstruction, combiﬁation of (1) and (2) form a continuous-to-discrete

of f|eld-c0rrected Images. Ipspwed by the t|me-segment?eD) mapping. This is clearly an ill-posed problem since there
conjugate-phase reconstruction approach [3], we proposesan infinite collection of solutionsf(r), that exactly match
fast time-segmented forward projector, and its adjoint, thafe gatay — (y1,-..,yar). In [28], the pseudoinverse of this
accounts for field effects and uses the NUFFT. The possibilip mapping was investigated for minimum-norm least-squares
of combining “conventionally used [time or frequency] segmage reconstruction without field-correction. Although their
mentation approaches” with NUFFT-type methods to corregpproach was computationally intensive, the pseudoinverse cal-
for field inhomogeneities was noted by Pruessreaal. [25].  culation was object-independent and could be performed once
However, as we show in this paper, the conventional tempofat a given trajectory. However, in the case of field-corrected
interpolators (linear, Hanning, etc.) are signficantly suboptimahaging, the CD mapping is object-dependent because of the
since they fail to capture the oscillatory nature of phase modukpecific field map of the slice of interest. This prohibits precal-
tions caused by off-resonance effects. Instead, in this paper gugation of the singular-value decomposition of the CD operator,
present a temporal interpolation method that is optimal in tls® we seek more practical methods.
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Instead of finding the pseudoinverse of the CD mapping, ve®rresponding measurement samples from the iterative recon-
restrict the number of unknowns to be estimated by parametstruction process; no “interpolation” of samples is needed.

izing the object and field map in terms of basis functiaf(s;), We apply the iterative CG algorithm for minimization of (7).
assuming that The algorithm is given below for reference. For simplicity, we
N-1 have used quadratic regularizatioR(f) = 1/2||Cf||? for a
f(r)= Z frno1(r—1y) matrixC that takes differences between neighboring pixels. The
n=0 algorithm may also include a data weighting ma##for per-
N-1 forming weighted least squares, i.e., replef’ with [|- ||, in
w(r) ~ anqbg(r —Th). (3) (7). One can also include a preconditioning maf¥xto speed
n=0 convergence of the CG algorithm. Section II-C discusses the
For this paper, we will use the voxel indicator function(r) = weighting and preconditioner matrices in more detail. In the al-

¢2(r) = rect(r1/Aq) - - -rect(rp/Ap) for the P-dimensional gorithm belowg,,.,, denotes the negative gradientloff) from
problem. This choice is somewhat natural for display devic€s), r is the residuald denotes the step direction, andlenotes
that use square areas of nearly constant luminance. Howetleg, step size. The algorithm is started with an initial estimate
this parameterization does not model within-voxel field gradsf the image f = f,. Section II-C discusses the choice of this
ents. Regardless of what basis one chooses, (3) is only an iafital estimate.
proximation and we plan to explore other choices, such as tri-

angle functions, in our future work. Triangle basis functiongg Algorithm
would allow us to model first-order gradients of the field map jnjtialize

and voxel intensities, which may help reduce within-voxel sus-

ceptibility effects. Substituting (3) in (1) yields r=y-Af, (residual )
N—1 Iteration Steps
s(t) ~ O(k() Y fre Tt ROT (g Goew =A"Wr — JC*CF,
n=0 0, 1st iteration
where®(u) denotes the Fourier Transform ¢fr). We express v=X{g.. Mg, |
the noisy measured samples of this signal in matrix-vector form g9..Mg_.~° else
as follows: d:=Mg,.. +d
y=Af+e 5) g=Ad
a = d .qnew
wheref = (fo,..., fv—1) and the elements of th& x N ¢*Wq+ pd*C*Cd
matrix A are ' - foy1 =fn +ad (update image )
U = B(k(ty) e~ ot e 2RI T (6) r:=r—agq (update residual )
Inthe discrete-to-discrete formulation (5), our goal is to estimate 9o1d =now-

the imagef from the k-space datg accounting for the statistics
of the noise:=. This will still be an ill-posed problem iV > M,
and is usually ill-conditioned even ¥ < M for noncartesian ~ The dominant computation in each iteration of the CG algo-
trajectories. rithm is computingAd andA*r, where the superscriptdenotes
Since the dominant noise in MRI is white Gaussian [29], weomplex conjugate transpose. Computidg corresponds to
estimatef by minimizing the following penalized least-square§valuating (4). For cartesian k-space trajectories, one can eval-
cost function uate (4) quickly via the FFT if the field inhomogeneity is ig-
1 nored. However, for noncartesian k-space trajectories (spirals,
() D) ly — AfII* + BR(f) so that, etc.) direct evaluation of (4) is very time consuming. When field
f=argmin U(f). (7) inhomogeneity is ignored, a NUFFT [17], [19] can be used to
f rapidly and accurately evaluate the discrete signal (4) even for
The second term in the equation fdiI(f) is a regularization noncartesian trajectories. However, the NUFFT method is not
function, R(f), that penalizes the roughness of the estimaté&tfectly applicable when the field inhomogeneity is included
image. This regularization can decrease the condition numi§&cause (1) is not a Fourier transform integral. We propose to
of the image reconstruction problem and, therefore, speed c6@mbine the NUFFT and a version of time segmentation [3] (but
vergence. We choose the parametdny examining the point With min—max temporal interpolation) to compute (4) rapidly
spread function (PSF) of the reconstructed image [30], prefémd accurately. We first derive the min—-max interpolator and
ably by choosing? small enough to not significantly degradethen discuss some approaches to computing it. This section con-
the spatial resolution relative to the natural resolution assogltdes with a discussion of proposed methods to speed conver-
ated with the k-space trajectory. gence of the CG algorithm for iterative MR imaging.
The least-squares cost function used here is appropriate for__ )
Gaussian measurement noise. If non-Gaussian error “spik8s” 1IMe Segmentation
are present, then one could use a nonquadratic cost functioin (4), the problem is in the terra—*“~* wheret is not a
to provide robustness to those outliers [31], at the expensenstant. Ift were a constant, then the terwmn‘* could be
of increased computation. Alternatively, one could use othabsorbed intof,, and (4) could be evaluated quickly by the
methods to detect those spikesg., [32], then exclude the NUFFT. The idea of “time segmentation” is to use small time
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segments over whichis approximately constant [3]. Foratime-By the Cauchy—Schwarz inequality, for a given timethe
segmented approximation of the term“~t, we partition the worst-casey is g*(¢)/l|g(t)]], i-e.,

acquisition window intal. time segments of width and com- max  |(g(t),q)| = |lg(t)|- (15)
pute the term at thé, + 1 break points. We then interpolate gec™iql=1 /
between these break points to evaluate an approximation atNote that this is the approximation error in (8). Inserting this
termediate time points as follows: worst-casey into the min—max criterion (14) and applying (13)
. L . reduces the min—-max problem to
et 2 Y ay(t)e ! ®) min [b(1) - Ga()]| (16)
=0

whereu(t) is the interpolation coefficient for tHeh break point  The solution to this least-squares problem yields the min-max
for time t. Replacing the term—%* in (4) with its time-seg- interpolator
mented approximation (8) gives

L N a(t) = (G"G)'G"b(1) (7)
$() = (k) S ar(t) Y [fae™™ 7] e EOTI (@) yhere
=0 n=0 N-1
The key property of (9) is that it is a weighted sum of dis- (GG L D emien=h
crete-space Fourier transforms of the term in brackets, weighted N =
by the coefficienta(t) = (ao(t),...,ar(t))’. We can perform V=1
these inner FTs quickly and accurately using an NUFFT [19]. [G"b(1)], = D emient=h (18)
Our goal here is to choose thét) to minimize the error of ap- n=0
proximation (9). In the spirit of [18] and [19], we propose tdor [, !’ = 0, ..., L. To compute the min—max interpolator, we

adopt a min—max criterion to optimize the temporal interpolderm the(L + 1) x (L + 1) matrixG*G and multiply its inverse
tion coefficientsa(t;) fori = 1,..., M, i.e., for every pointin by the(L + 1) x 1 vectorG*b(t). Typically, L < N so this is
the k-space readout. For any timewne choose the coefficientsfeasible.
a(t) using the following criterion:
Ay B. Computing the Min—Max Interpolator
) 5(t) — s(t)
min max — | -

(10) The interpolator in (17) is object dependent since it is a func-

a(t) feen:fi=1| @(k(t)) . .
. . . . o tion of the field mapw = (wy, . .. ,wn—1) and, therefore, must
Thatis, we seek the interpolation coefficieats) thatwill min- o ¢ompyted after an initial estimate of the field map is formed.

imize (min) the interpolation error for the object vectfrthat | computeG*@ efficiently, first form the column sums o
causes the largest (max) error of all possible signals. Note that¢,|ows: '

if ®(k(t)) = 0, then the error in the approximation (9) would

be zero regardless of the interpolator. A 1 iy
The error in the approximation (9) can be expressed as = \/—N Z Gn. (9)
n=0
~ N-1
w =3 frei2r kT Then, using (18), we evaluate the element&b6 as follows:
*0) = « Yo =120
it Za (t)e—’i“’“l ’ ~*i—r  otherwise.
— ! This is a very fast way to comput€*G for the min—max
No1 - interpolator.
:Zg ) f p—i2n(k()T) The sums in (18) do not depend on the spatial arrangement
— A ' of the field map. This independence suggests that we could
B ju compute these sums using simply a histogram of the field map
_‘/N@(t)’q“)) (11) values. We have investigated approximating the computation
whereg(t) = (9o, ---,98v-1),4 = (g0, --,qn-1), and of (18) by forming the histogram of the field map usings
1 L equal-sized bins covering the range of offset frequencies in-
gn(t) =—— le‘i“"t — Zaz(t)e_i”””] duced by the field inhomogeneity. Let, be the number of field
VN -0 map values that fall into bip with a center off-resonant fre-
gn(t) :fn*em(k(t).rn)‘ (12) quency off,. Then, we can approximate (18) by
Np
Defineb, (t) = (1/\/W) e~'nt and letG be anN by L + 1 (GG %% Zmpe—i%fpr(l’—l)
matrix with G,,; = (1/\/]V) e~wnTl then iv_l
1 ,
g(t) = b(t) — Ga(t). (13) [G*b(1)) ~ > myem 2T, (21)
From (12),||fIl = ll¢(¢)|| and]|q(¢)]| is independent of time. p=1
Therefore, using (11), we can rewrite our min—max estimatioile compute (21) efficiently via a FFT of,,, since we use
problem from (10) as follows: equally spaced histogram bins. We call this approacttse
min max \/N|<g(t), al. (14) togram approximatiorio the min—max interpolator. This quan-

a(t) gec¥:||q|l=1 tization of the field map into a histogram is somewhat akin to
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the frequency-segmentation method for reducing computati
in the conjugate-phase approach for field inhomogeneity c(
rection [33], [34].
The expression for this interpolator bears a striking resel
blance to the “multifrequency interpolator” proposed by Ma
et al. [7]. However, the use of the two interpolators is quitt
different. The multifrequency interpolator is applied to a set (
images that have each been reconstructed by a constant der
ulation approximation to the conjugate-phase approach for fi¢
inhomogeneity correction. In contrast, our min—max interpo-
lator is applied to predicted k-space signals. The multifrequency @ ()
interpolation approach inherits the fundamental limitations &fg. 1. (a) Simulation object and (b) field map in Hertz.
the conjugate-phase approach (in particular the requirement of
a spatially smooth field map) which are illustrated in the figures

in Section IV. the use of an appropriate preconditioner in (8). Circu-
The min-max interpolator (17) depends on the field m t reconditioﬂ%rsphave k?een shown toybilgé.;fectiv.e in shift-in-
and should be recomputed if the field map changes. To avoid . P

recalculating the interpolator coefficients when a field mapcéarlant problems in tomographic imaging [41]. These precon-

updated, we also investigated the use of an object-indepen IE\/?/ 2?(;5 ?g%rggrtg#;?; tgg.gilgtr r'z\gc'irrlgllj;?g b)r/eizﬁlgilt?gnt:re
histogram for the field map values. A generic histogram fop Proj Joint. P

field maps was used to calculate the interpolator coefficientssf%},OUId be particularly helpful for MR reconstruction with small

(e1) nd e wilrfr o s approsh a aneric hsogram *1ES0TICEETEcs were e P ey imarnt b
approximation Several shapes and ranges for generic histY nreg 9 "
. effects. Our results to date with circulant preconditioners have
grams were examined. o . o
shown mild improvements in convergence rate. Preconditioners
have also been designed for shift-variant problems [42] and such

) methods will be investigated for MRI in our future work.
It has been suggested that a weighted-least squares approach

be used to speed convergence of the CG algorithm for iter-
ative MR image reconstruction and that the weights be the I1l. M ETHODS

coefficients of the sampling density compensation function tpyree sets of studies were performed to evaluate the accuracy
[25]. However, there has been some discussion on how d@q ytility of our min-max interpolated iterative reconstruction
calculate optimal density compensation factors [35]-[39] anglyorithm. All three studies used a single-shot spiral k-space tra-
the iterative image reconstruction algorithm does not reqUitgetory with aT of 25 ms, matrix size of 64 64, and field of

and is not dependent upon these weights if an unweighted (i\gew of 22 cmx 22 cm, giving 3770 k-space points. The length
weighting is unity) least squares approach is used instead. Algpthe readout interval was 18.9 ms, so 100-Hz off-resonance

assuming the noise in MRI is white Gaussian, usinguniform c4,5es 3.4 extra spin phase accrual during the readout.
weighting would be suboptimal statistically according to the

Gauss—Markov Theorem. Using nonuniform weighting ma
appear to provide faster convergence in the initial steps of thé
algorithm for some choices of initial image, but would prevent We performed a simulation study to evaluate the maximum
convergence to the minimum variance solution. Althougliterpolation error]|g(t)|| in (15), over a finely sampled range
Pruessmanat al.[25] state that the signal-to-noise ratio (SNRPf times,z, for several temporal interpolators. We used the field
penalty is negligible when the density compensation functishapw shown in Fig. 1. We observed empirically that, for many
is used as the weights, we will next discuss how to benefit frofield maps, the min—-max optimal temporal interpolator could
this approach without risking any SNR. have a significant imaginary component, and this imaginary
Consider the CG algorithm in (8) when an initial estimate gfomponent contributes to the overall accuracy of the min—max
the image of zeros is usef}; = 0. Then, the first iteration gives interpolation method. Conventional temporal interpolators
N used in MRI have been real valued, so to simplify comparisons
fi=oA"Wy. (22) between the proposed min—max approach and the conventional
If the data weighting matri¥ were just the identity matrix, approaches, we shifted the field map values to a range where
then this first iteration would simply give the conjugate phagbe min—-max interpolator had a very small imaginary com-
reconstruction without density compensatio#fwere instead ponent, as illustrated in Fig. 3. We compared the following
equal to the density compensation factors, then the first iteratimerpolation methods: linear interpolation of the two nearest
yields a density-compensated conjugate phase reconstructemrdpoints to the time sample of interest, a Hanning window
Therefore, rather than using an inappropriately weighted CG alterpolation using only the two nearest endpoints (similar
gorithm, we use the conjugate phase image (reconstructedtaighat used in [3] for the back-projector problem), the ideal
a fast, density-compensated, time-segmented approach) astire-max interpolator (17), the histogram approximation to the
initial estimate,f,. As noted in [40], initializing with a good min—-max interpolator calculated using (21) with 1000 bins, and
density-compensated conjugate phase image ensures that anbnterpolator using a generic histogram also calculated using
sequent iterations will improve on this initial guess. (21). Various shapes (flat and triangular) and ranges were used

Convergence of iterative algorithms can be accelerated by

C. Speeding Convergence of the CG Algorithm

Interpolator Accuracy
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for the generic histogram to determine the effect of accuracy o —»— Linear
the histogram on the error of the interpolator. —6- Hanning
—0— Generic Histogram
. . —A— |deal Min-Max
B. Simulation Study 10°} —8— Histogram Min-Max
We performed a series of simulation studies using the sam: &

B

field map and a simulation object shown in Fig. 1. The simu-
lation data was formed by constructing a simulation phantomzs
at a matrix size of 25& 256 and then applying (4) to compute 2 10T
the signal at the desired k-space locations. To avoid intravoxe 3
effects from gradients of the field map inside our larger recon- €
structed voxels (matrix size of 6464), we constructed the sim- 107
ulated field map at a size of 6464 and zero-order-hold inter-
polated it up to 256« 256 to create the simulation field map.
(We also present one case that includes intravoxel dephasing f
comparison). Noise-free simulation studies were conducted tt 10 . . . ' . .

; , . ; : 0 2 4 6 8 10 12 14
examine the effect of iteration on the interpolation error by com- L
puting the normalized root mean squared (NRMS) difference in
the reconstructed image of the interp0|ated, time-segmentedg;-z Maximum interpolation error over a range of time points for each

; : erpolator for various numbers of time segments. Error given is the maximum
proach versus using the exact (slow) signal (4) at convergen for in interpolation over a range of times as given in (15).

For the rest of the simulation studies, zero-mean complex

Gaussian noise was added to the k-space data to give an SNF Hanning Interpolator Min—Max Interpolator
of approximately 100, calculated as the ratio of the norms of 1 1
the k-space data vector and the noise vedtslt/||e||. We ex- \ \
amined the normalized root-mean-squared error (NRMSE) be- 0 0
tween the reconstructed image and the known simulation object. -1 -1
- . 1 2 3 4 5 0 1 2 3 4 5
This measure was used to examine accuracy and convergenc 4 1
rate of our proposed iterative algorithm. In the simulation and
human studies, the NUFFT was used with the following parame- 0 0

ters: two times oversampling, a neighborhood size »fH and
an optimized Kaiser-Bessel window and scaling factors [18].

C. Human Study

of Endpoint
(=) -
o -

N

The time-segmented, NUFFT reconstruction scheme was ap- 2 _4 -1
plied to a human data set collected on a 3.0T GE Signa Scanne § 10 1 2 3 4 5 10 1 2 3 4 5
in accordance with the Institutional Review Board of the Univer- /\ /\
sity of Michigan. For the human data, the field inhomogeneity 0 Of ==/
map must be measured by acquiring two gradient echo images _, -1
with slightly different echo times [43]. To minimize field inho- 0 1 2 3 4 5 0 1 2 3 4 5
mogeneity distortions in the images used to estimate the field 1 1
map, we acquired a pair of 4-shot gradient echo images with (] ] S
Tg's of 5 and 7 ms. This fieldmap was used to reconstruct » 1
field-corrected images of the same slices with single-shot spi- 0 1 2 3 4 5 0 1 2 3 4 5
rals at al'’r of 25 ms. The proposed fast, iterative reconstruction 1 / 1 /
scheme was compared with the conjugate phase method anda ¢ 0
uncorrected gridding reconstruction. Since the exact object is
not known in a human data set, we attempted to matchthe full ~%o~3 2 3 2 5 Y% 1 2 3 4 5
conjugate phase and iterative reconstruction times and qualita- t/7T t/ 7T

tively compare the resulting images.

Fig. 3. Real (solid lines) and imaginary (dashed lines) parts of interpolators
IV. RESULTS using L. = 5 for the Hanning and min—max interpolators for the field map
given in Fig. 1.
A. Interpolator Accuracy
Fig. 2 shows the maximum interpolation error fbr= 1 too large for inversion. Fof. = 8 the maximum error for the
through L = 13 time segments for the five interpolators demin—max and histogram interpolator is more than four orders of
scribed in Section IlI-A. The error givemax; ||g(¢)||, is the magnitude lower than that of the linear and Hanning “conven-
maximum error in interpolation as given in (15) over a range ¢ibnal” interpolators.
timest. The generic histogram used was flat over the range ofFig. 3 shows the Hanning and min—max interpolatordfes
[-75,75] Hz. The min—max interpolators (ideal min—-max, hiss. The real and imaginary parts of the min—max interpolator are
togram min—max, and generic histogram min—max) have beescillatory, a property not found in the conventional interpola-
plotted until the condition number of tH&*G) matrix becomes tors. The histogram interpolators looked very similar to the ideal



184 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 2, FEBRUARY 2003

5 rect 75 10'@®
10 rect 100 ]
rect 150
rect 200
rect 250
10°} triang 150 X %
triang 200 310 B X*xkxkxkxkkxkkkxkxx%x
_ Ideal Min-Max o S
=) £
2 10% o =
" 0 o o [72]
£ 8 o ? x z 102/ * Linear
o © 0 b z + Hanning
10°l ¥ A o A Ideal Min—-Max
x A O Histogram Min-Max
X Y g g 2 | O Generic Histogram
A | — Exact Iterative
10° : : : : : : 10 3o 5 10 15 20
0 2 4 6 L 8 10 12 14 Iteration

. ) . ) . . Fig.5. NRMS difference betwegfi"""** andfsxa<t for L = 6 in simulation
Fig. 4. Comparison of maximum interpolation error of various genen&gdy‘ i /oo

histogram approximate min—-max interpolators.

0,

min—max interpolator, even though the generic histogram had i 1073

different range of off-resonance frequencies and different his-

togram shape (flat). Even though it was not explicitly required YV

in our formulation, the min—max interpolators appear to sum to$ g 83 /VVVVVVVVVVVVVY

unity at every time point, a property expected of interpolators. %_10'1- GO+t ++++++++++ 47
When a histogram of the field map is used that differs from 9 (L0000 0000000

the actual field map (generic histogram), the max error in Fig. 2 &
showed a slightly higher level of error compared with the ideal 3
min—max interpolator and required a larger number of time seg-=

. ! s g 103 *t Li_near, L=6 \
ments. We investigated several generic histograms, rectanguli = ¥ Min Max, L=1
and triangular shapes, and several different ranges of off-resc ¢ Min Max, L=3
nance, 75, 100, 150, 200, and 250 Hz. All the generic histogram g M:E m::’ tfg
were centered around O Hz, to agree with the simulated fielc — Exact lterative p
map. Fig. 4 shows the maximum NRMSE for various numbers  1¢°® . . s
of time segments. As seen in this figure, the interpolator is rela- 0 5 10 15 20

. . . . . lteration Number
tively immune to moderate changes in the histogram of the field

map. AtanL value of 11, the rectangular histograms withrangesy. 6. NRMS difference betweerf2"**** using the ideal min-max
of 150, 200, and 250 Hz and triangular histograms with rangegrpolator forZ. = 1, 3, 4, 5 andf§55=* over 20 iterations. The time to
of 150 and 200 Hz all provide maximum interpolation erroreempute the exact iterative method, using (4), wek2.7 s/iteration while
4 . . the time to compute the fast, interpolated iterative method, using (9), was
below 10°". Given the independence on spatial arrangement #ly19 4 0.030(L + 1)) sfiteration.
the formulation of the ideal min—max interpolator, we need only

have a range of off-resonance in our histogram that is similar to S )
that of the exact field map. methods converge to a final image that differs from the exact

final image by more than 10% NRMS.

To choose a value fol., that gives fast computation yet
retains good reconstruction accuracy, we examined the NRMS

As described in Section II-C, we examined the convergenddference between the interpolated and exact iterative methods
of the CG algorithm under various conditions using the simder various values ofL. Fig. 6 shows the NRMS difference
lation object and field map shown in Fig. 1. Considering theetweenf{5o* and £3°**°* over 20 iterations using the ideal
max error in Fig. 2, we selecteld = 6 to give a low error for min-max interpolator fol, = 1, 3, 4, 5. Computation time
the min—max interpolator, and examined the error of time sef@r the min—max interpolated iterative method is approxi-
mentation versus using the exact (slow) signal (4) over iteratiomately proportional ta, + 1. On a 2-GHz Xeon workstation
to see how the error propagates through the iterative procassing Matlab (The Mathworks, Natick MA), our implemen-
Fig. 5 shows the NRMS difference betwefP**** and f{33°* tation of the exact (slow) iterative method, using (4), took
where f;PP** denotes théith iteration of CG algorithm with ~12.7 s/iteration to evaluate. The min—-max interpolation
the fast approximation (9) using various interpolators Af§§”  method, took approximately).019 4 0.030(L + 1)) s/iteration
denotes the 100th iteration (i.e., essentially at convergencefaf values of L = 1,...,13. The linear interpolated method
CG using the exact (slow) signal (4). As shown in Fig. 5, inook approximately the same computation time as the min—max
terpolation errors can cause the CG algorithm to converge tingerpolated method and is shown for reference in Fig. 6.
different image. The linear and Hanning interpolated iteratii@epending on the noise level expected in our reconstructed

B. Simulation Study
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TABLE I
COMPUTATION TIME AND NRMSE BETWEEN f AND firue FOR SIMULATION STUDY

Reconstruction Method | Time (s) | NRMSE of complex | NRMSE of magnitude
No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters) 128.16 0.04 0.04

(b)

(d) (e) ®

Fig. 7. Reconstructed images from the simulation study. (a) Simulation object. (b) Slow conjugate phase. (c) Slow iterative. (d) No correasiocoifg)date
phase. (f) Fast iterative.

images, a value af = 4 might be reasonable for the min—-maxThe results of NRMSE and computation time are shown in
interpolator. We chose to use = 5 for the ideal min—-max Table I. The NRMSE was calculated over a mask defined by the
interpolator for our simulation and human data studies withteue object’'s support. Fig. 7 shows the reconstructed images.
time/iteration of 0.2 s, a speed-up of around 60 over the exddte full iterative and fast iterative methods give virtually
iterative method. the same results with a NRMS difference between the two
Next, given the exact field map, we ran a simulation studgconstructions of 0.07%, but the fast iterative method takes
with noise to compare the errors in the reconstructed imagady 2.2 s for ten iterations as compared with 128 s for the
under five different reconstruction schemes: no correction fetow iterative method. The unsegmented, density-compensated
field inhomogeneities, a conjugate-phase reconstruction witbnjugate-phase reconstruction takes 4 s and both conjugate
density compensation, a fast conjugate phase reconstrucfitiase reconstructions produce serious artifacts in regions
using time segmentation according to [3], the exact (slowjhere the field map is not smoothly varying, and these artifacts
evaluation of the signal equation used in combination witbropagate to nearby regions.
the CG algorithm (the slow iterative method), and the NUFFT To verify that interpolator accuracy is important in recon-
with min—-max temporal interpolation used in combinatiostructing field-corrected images, we compared reconstructions
with the CG algorithm (the fast iterative methol, = 5). from the CG algorithm using NUFFT with linear, Hanning, and
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() (b) ()

Fig. 8. Effect of temporal interpolator on fast iterative reconstructions. (a) Linear interpolation. (b) Hanning interpolator. (c) Ideal nniterpabator.

@ (b) ©

Fig. 9. Reconstructed images from a simulation study with intravoxel field effects. (a) No correction. (b) Slow conjugate phase. (c) Fast iterative.

ideal min—max intepolators. Fig. 8 shows the reconstructiongethod and a full conjugate phase method. Although the
using L = 5 and ten iterations of the CG algorithm. The starproposed iterative method can be used in an extended form
dard interpolators are insufficiently accurate and the algorithim estimate an undistorted field map, in this case we focused
converges to a distorted image, whereas the min—-max mettowdcomparing computation time, so both reconstructions used
yields a nearly undistorted image. This behavior agrees with tadield map obtained in the standard way from two stfst
guantitative comparison shown in Fig. 5. (5, 7 ms) 4-shot gradient echo images. For convenience in
As mentioned in Section lll, the simulated field map wathe iterative method, we used the generic histogram (flat,
purposefully constructed to avoid intravoxel dephasing due [i@ 150] Hz) since it does not depend on the specific field
within-voxel field inhomogeneities. To show the effects of sucimap and can be computed in advance for a given trajectory
dephasing on the field-corrected reconstructions of Fig. 7, @epends only on number of time points and a chosen range of
simulated a field map at a 256256 matrix size that allowed off-resonance frequencies). The range of the generic histogram,
gradients across the voxels when reconstructed at a matrix gize 50] Hz, was chosen to agree with our routinely acquired
of 64 x 64. Fig. 9 shows the reconstructed images. As this figufield maps from the slice of interest. The NUFFT used the
shows, by assuming basis functiongaft(r), we are unable to parameters given in Section IlI-B and the min—-max interpolator
model the field gradients across the voxel and the resultis signged L = 8. The reconstruction time for the full conjugate
loss where the field gradient is high. In the iterative reconstruphase was about 4 s, the time for ten iterations of the proposed
tion, this degradation is localized primarily in the pixels whertast iterative method was 3.6 s. Fig. 10 shows the reconstructed
the high gradient occurs. In the conventional field correction, thimages for two slices. Artifacts in regions of high off-res-
artifacts are more widespread. We plan to implement triangulamance are reduced significantly by the iterative approach.
basis functions in our future work to model linear intravoxel su§he conjugate phase reconstruction suffers from ringing and
ceptibility gradients, or to use over-sampled field maps. piling-up artifacts near the region of field inhomogeneity.
Residual signal loss in the iterative reconstruction could be
due to a high in-plane gradient in the field map as discussed
in Section IV-B, or may be due to through-plane susceptibility
As a final comparison, we reconstructed real data collectgdadients. We plan to incorporate models of both phenomena
from a slice of the brain using both the proposed iteratiia our future work. Also, the iterative method can be used to

C. Human Data
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140

140

(@) (b) (© (@)

Fig. 10. Distorted image, its field map, conjugate phase and iterative image reconstructions for two slices. The time for the field-correttecti@rongre
about 4 s each. (a) Uncorrected. (b) Conjugate phase. (c) Fast iterative. (d) Field map (Hz).

simultaneously estimate an undistorted field map and providelf the field map has a strong linear component, then it may be
a better field-corrected image [14], [44]. possible to adapt the method of Irarrazadtzdl. [34] to reduce
the number of segments required for a given accuracy.

The ability to accurately compensate for off-resonance ef-
fects as demonstrated here may increase the feasibility of using
other acquisition methods with long readout times, such as echo-

We have presented a method that allows fast, iteratiVg!ume imaging [46]. . _
reconstruction of field-corrected MR images. By combining Although this paper has focused on MR image reconstruction

the NUFFT with time segmentation using a min-max tempor#) the presence of field inhomogeneities, the general approach is
interpolator, a computation speed up of a factor of around g¢s0 applicable to image reconstruction vv_|th compensation for
is achievable with NRMS error in the reconstructed imagcéther sources of undesired (but known) spin phase accrual, such
of 0.07%. We have also developed an approximation to tR& €ddy currents and concomitant gradient effects [47], [48].
min-max interpolator that depends on the object-specific fief]" iterative method based on an explicit signal model like (1)
map only through the range of off-resonant frequencies yet pﬁh_ould yield more accuratg images compared with conventional
vides accuracies near those of the ideal min-max interpolaf@PProaches to compensating for such effects. _

For a given trajectory, this interpolator can be precomputedVeé have ignored spin-spin relaxation during the signal
and stored. We have shown that this approximation is relativéfgadout in our signal model (1). However, many aspects of the
robust to small changes in the shape or range of the histogrard§i°rithms we have described are also applicable to problems
the field map. This method should easily be adaptable to Otwgrpefe both spin density and spin relaxation are estimated from
forms of iterative reconstruction in MRI, including SENSE tdnultiecho measurements [9], [16], [49], [S0]. The framework
allow fast, field-corrected SENSE reconstructions [45]. for the min-max time interpolation provided by (16) can

We envision the iterative reconstruction algorithm in the gef€ €xtended to include relaxation effects, such/igs The

eral case to proceed as follows: first, an initial field map isimplifications that resulted in (18) are not available in this case

formed via a gridding reconstruction on data at two differe/@1d computation of the interpolator may be more expensive.
echo times. This initial estimate of the field map is used to d&Y€liminary testing shows that the high accuracy of the time
rive an interpolator for the min—max time interpolation. The eS€gmentation methfd can still be achieved without knowing
timate of the field map is also used, via a fast conjugate phd8€ €xact field and?; maps. This work will be included in a
reconstruction, to give an initial estimate to the iterative recoffture Paper.

struction. The iterative reconstruction is then run in extended

mode with simultaneous estimation of field map and image ei-

ther by explicit joint estimation [44] or by alternating updates ACKNOWLEDGMENT

[6], [14]. After several loops of updating the image and field

map, we are left with an undistorted estimate of the image andThe authors would also like to thank V. Olafsson for his input
field map. and careful reading.

V. DISCUSSION
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