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Abstract 
An improved List Mode EM method for reconstructing 

Compton scattering camera images has been developed. First, 
an approximate method for computation of the spatial variation 
in the detector sensitivity has been derived and validated 
by Monte Carlo computation. A technique for estimating 
the relative weight of system matrix coefficients for each 
gamma in the list has also been employed, as has a method for 
determining the relative probabilities of emission having come 
from pixels tallied in each list-mode back-projection. Finally, 
a technique has been developed for modeling the effects of 
Doppler broadening and finite detector energy resolution on 
the relative weights for pixels neighbor to those intersected 
by the back-projection, based on values for the FWHM of the 
spread in the cone angle computed by Monte Carlo. Memory 
issues typically associated with list mode reconstruction are 
circumvented by storing only a list of the pixels intersected 
by the back-projections, and computing the weights of the 
neighboring pixels at each iteration step. Reconstructions 
have been performed on experimental data for both point and 
distributed sources. 

I. INTRODUCTION 
List mode Expectation Maximization (EM) methods 

[ l ,  2, 31 are appealing in the Compton camera reconstruction 
problem because the total number of detected photons is 
significantly smaller than the number of possible combinations 
of position and energy measurements, leading to a much 
smaller problem than that faced by traditional iterative 
reconstruction approaches. For a realistic device, the number of 
possible system bins M s ,  which is the product of the number of 
first (or scatter) detector positions, second (or capture) detector 
positions, and scatter detector energy bins, can be as large as 
10 billion per pixel of the image space, whereas the number of 
counted photons would typically be a fraction of a percent of 
that. Though memory and computation speed are still important 
issues (10 million particles in a 128 x 128 image space requires 
that lo1' weights be stored and a like number of computations 
made at each step), the primary difficulty in applying the list 
mode technique is in modeling system response for performing 
the successive back and forward projection operations. 

The conventional (binned data) Maximum Likelihood (ML) 
problem for the Compton scatter camera can be posed as 
follows: Let Y be the measured projection data, accumulated in 
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bins as the number of counts for a given combination of scatter 
detector element, capture detector element, and scattering 
energy bin (with the number of counts in each bin denoted K), 
and the underlying pixelated object, each pixel having an 
intensity given by X j  . The iteration, (indexed by i ) ,  is given by 

where, sj  is the sensitivity, or the probability that a photon 
emitted from pixel j would be detected anywhere, and t i j  the 
probability that a y emitted from pixel j is collected in bin i, so 

sj  = Etij 
i 

In the list mode case, we approximate Y by considering that 
each event is measured in a unique bin, so that yi + 1 for 
each detected particle, and yi + 0 for the infinite number of 
possible events not detected in the given measurement. The 
sums over the MS system bins in the above equations become 
instead sums over just the N, detected events. Barrett et d[2 ]  
and Parra and Barrett [3] have proven that this approximation 
on Y holds (here we ignore any time dependence of the 
measurement), with the one exception that as the detected 
no longer span the space of all possible events, sj  # xi t i j ,  
but rather, sj  is now the integral over all possible events i, 
including those for which = 0. 

In an earlier work [4], a simple method for determining the 
required system matrix coefficients needed in the EM algorithm 
was developed. That method assumed uniform sensitivity 
and perfect energy and spatial resolution in the detectors, 
and ignored Doppler broadening of the Compton scattered 
photon energy spectrum. These approximations limited the 
possible emission positions for a given detected event i (in 
2D) to those points along conic sections traversing the image 
plane. The probabilities t i j  were then approximated as some 
constant times the line integral of the conic through pixel j .  
This technique had two main advantages, in that because of the 
uniform sensitivity approximation, the method is independent 
of the system, and in that the coefficients t i j  could be generated 
trivially during a fast initial back-projection operation [5] done 
to obtain a starting image. Further, it was found that for an N 
by N image, typically 2N pixels would lie on a conic section, 
saving a factor of N / 2  in storage of matrix elements and in 
computations at each iteration. 

In the current work, we introduce a simple method for 
approximating the sensitivities for any Compton device with a 
planar first detector, and approximations for modeling more 
than 2N pixels per gamma at no increase in storage cost. 
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11. METHODS 
Straight-forward computation of the sensitivities s j  and 

matrix elements t i j  requires numerical integration of the 
probabilities and density functions describing the interaction 
and measurement of the two interaction positions and the 
scattering energy over the areas of the pixels j, the entire 
first detector and the entire second detector. As this is 
computationally intensive and requires detailed a priori 
knowledge of all system components, we employ a simpler, 
alternative approach, as described below. 

First, the relative spatial variation in the sensitivities s j  

is assumed to be dominated by just two effects, the solid 
angle subtended by the scatter detector and the probability 
of interaction inside the detector. This is justified by noting 
that after the first Compton scatter, the main efficiency effects 
(absorption of the scattered photons in the scatter detector and 
the solid angle subtended by the capture detectors) depend 
only on the exit angle and hence only on the scattering angles. 
For systems with large second detector areas, most gammas 
will scatter into angles subtended by the second detector, 
and so the sensitivity loss after the first scatter will be fairly 
uniform across the image space. We thus approximate the 
relative sensitivity for pixel j as the integral, taken over all 
rays originating in the pixel and incident on the first detector, 
of the emission probability times the interaction probability in 
the first detector. We further assume that the pixels are small 
so that the sensitivity is uniform in each pixel, and we then 
compute s j  as a sum over the D1 first detector elements by 

0.7 1 0.74 
0.35 0.33 (3) 

D l  cos(e) [I - exp(--atzjl)l 

dj”l 
s j  

where the gt  is the total cross section in the scatter detector, z j l  
is the pathlength inside the first detector element along the ray 
from the center of pixel j to the center of each detector element 
m, d j l  the distance between the centers, and B the azimuthal 
angle measured relative to the centers. These approximations 
will work best when both the image pixels and the first detector 
elements are small, so that the track lengths of gammas emitted 
from a given pixel through a given detector element are uniform 
over the volumes. Additionally, though there will certainly be 
variations in the response of the second detector to gammas 
scattered in different first detector elements (due to track-length 
effects on escape probabilities and to differences in the solid 
angles subtended by the capture detector), for large source 
to first detector distances and large area second detectors, 
these effects will be fairly consistent across the image space, 
thus introducing a constant factor in equation 3, which can be 
ignored. For large first detectors and short image distances 
there will be a great variation in angles of incidence and escape 
across the image space, and this methodology will not hold. 

An image map of the relative sensitivities determined for 
a typical detector configuration using this approach is shown 
in figure 1, for a 64 by 64 image space covering 30 cm. The 
method was validated by comparing results to those generated 
by Monte Carlo computation [6]. The detector modeled was the 
prototype C-SPRINT device [IO],  consisting of a 32 by 8 array 

Fig. 1 Approximated relative sensitivities 

of 1.4 mm silicon detector elements 1 mm thick for the first 
detector and the SPRINT second detector. Agreement is very 
good, especially considering that the C-SPRINT geometry, 
with the short second detector (11 cm) and the first detector 
recessed inside the SPRINT ring, is very likely to accentuate 
any spatially varying effects caused by incomplete solid angle 
coverage of the second detector and re-absorptions in the first 
detector because of non-uniform average escape track lengths 
inside the first detector. 

Table 1 
Comparison of Monte Carlo and approximate sensitivities 

Position 1 MCresult 1 Approx. 
Center I 1.00 I 1 .oo 

- 
Half-Corner 1 0.51 I 0.52 
Comer I 0.21 I 0.17 

As noted above, straight-forward computation of the 
weights t i j  would require the computation of integrals over 
three positions and an energy variable for each gamma and 
yield a total of N’N, results. We use here an approach 
requiring computation of just N, back-projections with just 
2NN,  stored results. The approximation of t i j  is done in a 
three part fashion. We begin with our original model in which 
the weights are computed for only those pixels which are 
intersected by the back-projected cone of each measurement 
i. As we seek to compute the relative values of the weights 
(from equation 1 we see that the iteration is independent of any 
normalization on the tij), we note that we require 2 factors. 
The first to describe the relative probabilities between the 
measurements i, and the second to describe the probabilities 
within the measurements, i. e., the relative probability that the 
gamma giving rise to the measurement i was emitted from 
pixel j. 

We assume that the first factor is influenced primarily by the 
relative differential cross section and the escape probability of 
the scattered photon in the first detector: 

(4) 
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where ut is the total cross section at the scattered photon 
energy in the first detector, 212 the distance traveled through 
the first detector along the ray between the first and second 
collisions, and % the differential Compton cross section. 
Since we need only to determine functional dependence and 
not absolute values, we approximate $$ as the Klein-Nishina 
cross section at the given energy divided by the square of the 
distance between the two collisions. 

The second factor, the relative probabilities that a given 
event originated from a gamma emitted from the various 
pixels, must take into account the pixel sensitivities sj as 
well as the resolution loss brought on by Doppler broadening 
and the finite resolution in the energy measurement. We use 
the approximate relative sj's of equation 3 for the first factor 
here, and then assume that the other effects are described by 
the angular resolution of back-projected cones determined for 
a given system [5, 71. We assume that the value of the full 
width at half maximum of the cone-spread function is constant 
for all possible Compton scattered energies for a given initial 
energy, which is valid over most of the angular spectra in 
which Compton cameras are designed to function [SI. We then 
assume that the cone spread distribution, which is not Gaussian 
because of the long Doppler tails, can be modeled by adding to 
.9 times a Gaussian about the computed standard deviation to 
10% of a Gaussian distribution with 3 times the cone spread 
standard deviation, 

where T is the normal distance in the image plane from the 
pixel to the back-projected cone. The relative value assigned 
to each pixel would be the integral of this function over the 
area of the pixel. As we plan to store for each gamma only 
a list of intersected pixels and to generate the pixel weights 
of all neighboring pixels at each iteration step, we seek to 
approximate these integrals. If we assume the conics to be 
linear within a given pixel and have T < < U (this corresponds to 
pixel dimension L less than the cone spread in the image plane), 
it can be shown that integrals over pixels which are intersected 
by conics vary in the range from 2 - L2/8u2 to 2 - 3L2/4a2 
depending upon the orientation of the conics and the normal 
distance to the center of the pixel. For practical applications, 
L2/n2 will be less than 0.1, and we can take the integrals to 
be constant. We therefore have that the relative weight of a 
non-intersected, neighboring pixel j in the computation of t i j  
for a given i is dependent solely on the distance between it and 
a pixel of intersection. Neighbors are chosen by taking them 
along either rows or columns of the image space (depending 
if the conic intersected the image space in a more vertical or 
horizontal orientation respectively), so the distance to the mth 
neighbor is mL, and the relative weight of that pixel is taken as 

f(m) cc . g e x p ( - ( m ~ ) ~ / 2 u ~ >  + . lexp(-(m~)~/2(3cr) ' ) .  
(6) 

Since the selection of which neighboring pixels to include 
is made normal to the conic, even though the integral over 
the spread function in the pixels is fairly independent of the 
orientation of the conic, for conics which intersect the image 

space with slopes not near to zero or to infinity, the distances 
to the center of the neighbor pixels are smaller than L ,  and 
the relative weight for the mth neighbor taken from equation 
6 needs to be adjusted. We do this by multiplying f(m) by a 
relative correction which is a maximum of 1 for slopes of 1 
(which correspond to minimum distances between intersected 
pixel centers and neighbor centers) and is given by: 

(7) 

Here s is a factor related to the slope of a conic with the given 
cone cosine X and axis direction given by uz i  f u y j  + uzk.  We 
approximate the slope of the conic by translating the focus from 
(az1 ay] a,) to (x', Y', 2') = (x-,, vy, 2 4 , )  where (z, y,  z )  
is the pixel center, and using 

The slope parameter s is then given by c ~ s ~ [ t a n - ~ ( $ ) ]  if 
) d y / d z ]  is less than 1, and sin2[tan-'( $)] otherwise. 

To summarize the procedure, the t i j  are computed by first 
determining a list of pixels intersected by the back-projected 
conic for each gamma, as described in [5 ] .  Next, the relative 
probability between the measurements f(i) is computed 
according to equation 4. At each step of the iteration, the 
weights are approximated by branching out either vertically or 
horizontally from the intersected pixels and multiplying f( i) 
first by the sensitivity s j ,  then by the pre-computed spread 
function f(m), and finally by the slope dependent correction 
fm(s) for each of the m neighbors in both the plus and minus 
direction. Storage requirements are minimized to 1 real number 
per intersected pixel by adding the real value of f(m) (which 
is always less than 1) to the integer pixel ID number, and using 
the sign of the value to indicate if the branch is horizontal 
or vertical. Thus we save a factor of N / 2  in storage at the 
expense of taking an absolute value and doing an real to integer 
conversion, plus 3 extra multiplications per particle per pixel 
at each iteration step. For the current work, in which only 
workstations with 256MB or less of memory were available, 
this allows us to model 500,000 particles on a 64x64 image 
grid without exhausting memory. 

As with the assumptions made in determining an expression 
for the sensitivities, the approximations described above 
will hold best for normally incident gammas, and will be 
most accurate for high angle scatters and for the pixels along 
the back-projections. Small scattering angles yield greater 
curvature in the back-projections (which are approximated 
above as straight lines), and acute angles of incidence introduce 
more variation in the image to detector distances between the 
pixels near and far from the back-projections. This introduces 
some error in both the solid angle computation and the 
cone-spread FWHM. 

Figures 2 and 3 show the back-projection for a single particle 
(i. e., the weights) computed by a lengthy and fairly rigorous 
method [9] and the current approximation. Agreement is seen 
to be quite good, although the effects of the approximations in 
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the model here are evident from the discontinuities in the back- 
projection. Note from the figure that for this conic, neighbors 
were chosen in the vertical direction. 

back-projections with large variations in the first derivatives of 
the conics in the image space. For such particles, in which the 
slope changes from near zero to near infinity, either the nearly 
horizontal or the nearly vertical portion will be mis-modeled. 

111. RESULTS AND DISCUSSION 

Results are given below for reconstructions using the current 
method on measured data for several source configurations. 
The experimental data taken with the prototype C-SPRINT 
detector [ 101 described earlier. Reconstructed images of a point 
source, using a 15 cm FOV and a 64x64 grid are shown below 
at iterations 0, 50, and 100. Computations were performed on a 
Ultra 10 workstation, and required approximately 1 minute per 
iteration using 100,000 particles. 

Fig. 2 Computed back-projections of representative particles . .  

0 0  

Fig. 5 Reconstructed point source, 0th iteration 

Fig. 3 Approximate back-projections of representative particles 

Figure 4 shows cross sectional cuts through the image plane 
of the weights for the approximate method (solid lines) and the 
detailed computation (crosses) for two sets of back projections, 
the first with slope very nearly normal to the image space, and 
the second with slope close to 45 degrees. The rigorous and 
approximate models agree well for both cases, except quite far 
out on the Doppler tails. 

Fig. 4 Computed cross sectional back-projections of representative 
particles 

The obvious weakness of the present method, which relies 
on several linearity approximations, will be for image spaces 
with large pixel dimensions relative to Doppler spread, and 
for particles with very small scattering angles, leading to 

0 0  

Fig. 6 Reconstructed point source, 50th iteration 

The Oth is simply the back-projection, and figures 6 and 7 
clearly show the image reducing to the expected point source at 
the center of the image field. The full width at half maximum 
of the point spread of the image was determined to be roughly 
8 mm (see figure 8). From measurements of the point spread of 
the image at higher interations, it was seen that convergence of 
the algorithm was not achieved in 100 iterations. No systematic 
analytic criteria for determing convergence was applied. 

The final figures are reconstructions of an extended source. 
The phantom in this case was formed by placing a 99mT~ line 
source 7.5 cm long in the shape of a 2. The separation distance 
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0 0  

Fig. 7 Reconstructed point source, 100th iteration 
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Fig. 8 Profile of reconstructed point source, 100th iteration 

between the parallel sections was 6 cm, and the intensity of the 
angled line 1/2 that of the parallel lines. The inherent device 
FWHM cone spread at the 11 cm source to detector distance 
was computed to be 1.5 cm [8], and results are shown here for 
reconstructions after 100 iterations using m of 0, 8, and 16 
pixels on either side of the initial back-projected cones (for the 
m = 0 case , as the higher iteration images are extremely noisy, 
the 20th iteration is shown). 

We see that there is no discernible improvement in the 
images quality from treating more of the tails of the cone 
spread. This would indicate that the errors in the computation 
of the sensitivities and the weights for pixels near to the 
back-projection have a greater impact on the performance of the 
algorithm than the truncation of the weights at larger distances, 
and suggests that future effort be devoted to eliminating 
the approximations involved in determining t ; j  . Candidate 
targets enhancements are the use of spatially varying cone 
spread FWHM, correcting for escape probabilities and solid 
angle effects for the scattered photons, and more accurately 
approximating the cone-spread for pixels adjacent to the 
back-projection, accounting for both non-normal angle of 
incidence and position and curvature of the back-projected 
cone. 

Fig. 9 Reconstructed line phantom using only central pixel, 20th 
iteration 

Fig. 10 Reconstructed line phantom using 8 nearest pixels, 100th 
iteration 

IV. CONCLUSIONS 
A computationally efficient method has been devised 

for determining the relative sensitivities and system matrix 
coefficients for Compton scatter cameras with planar first 
detectors. The method has been shown to give results with 
excellent agreement in comparison to both Monte Carlo and 
rigorous analytical results. Images have been reconstructed 
from experimental data for point and extended sources. 
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Fig. 11 Reconstructed line phantom using 16 nearest pixels, 100th 
iteration 
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