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1. Introduction

Measuring the absolute reactor power level is a problem common to many reactor

operations groups. The most obvious need for an accurate determination of the reactor

power level is that of satisfying the safety criteria established for a given system.

Research reactors, however, are frequently involved with experiments requiring an

accurate measure of the reactor power. Furthermore, the statistical significance of

experimental measurements that are normalized to reactor power level cannot be mean

ingfully stated unless the statistical variation of the reactor power level measurement

is known.

The more conventional (flow rate) x (core At) method for determining reactor

power was investigated with the existing instrumentation at The University of Michigan

Ford Nuclear Reactor, The uncertainties in the flow meter calibration accuracy and

the errors associated with measuring a 14 °F temperature difference prompted consider

ation of another technique for power determination, The method investigated is a

calorimetric method in which the pool water system is treated as a calorimeter and

measurements are made to determine the rate at which energy is being added to the

system. The errors inherent in this method appear to be reasonably small and the

method has been adopted for routine reactor power measurements by both experimenters

and the operations group,

II. Description of Experiment

The Ford Nuclear Reactor (FNR) is a 2 megawatt pool-type reactor containing

approximately 48,000 gallons of light water in the pool and primary cooling system.

An isometric view of the reactor is shown in Figure 1. The reactor pool is approximately

26 feet deep by 10 feet wide by 20 feet long, one end being a semi-cylinder having
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Figure 1 — Isometric View of the FNR



a 5 foot radius, The primary coolant water is pumped down through the core at

approximately 1000 gallons per minute through the heat exchanger and back to the

pool The primary return is at the bottom of the pool where a deflector plate is used

to spread the returned water over the pool floor,

The calorimeter experiment consists of randomly locating 12 thermocouples

in the reactor pooi and operating the reactor at full power without the use of the

secondary cooling pump. In this mode of operation, it is observed that the return

water to the pool is approximately 14 °F warmer than the bulk pool temperature.

The combination of the deflector dispersion and the buoyant forces due to the 14°F

temperature difference result in a thorough mixing of the reactor pooi water during

the calorimeter experiment. This postulated mixing is confirmed by the observation

that the thermocouples measure the same rate of increase of the pool temperature

regardless of their location, The thermocouple data are subsequently analyzed with

the aid of an IBM—7090 computer to determine the mean rate of increase of the bulk

pool temperature and the statistical variation of the measurement,

For the case of a perfect calorimeter it may be recalled that the rate of energy

input to the system is simply the product of the mass of the pool water, the specific

heat of the water and the average rate at which the pool temperature increases, Two

obvious bias errors which must be evaluated for the experiment are 1) heat losses

from the system during the experiment, and 2) the accuracy of the pool water mass.
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IllS Bias Errors

Calculations for the heat losses from the reactor and primary system were made

by using conservative heat transfer models which tend to overestimate the energy loss

and thus to establish an upper limit estimate for the error in neglecting the losses.

The loss factors considered were 1) conduction from the pool water to the ceramic tile

lined reactor shield tank, 2) evaporation and radiation losses from the 246 ft.2 pool

surface, and 3) convection and radiation losses from the heat exchanger and primary

piping. The details of the calculations are shown in Appendix A and a summary of the

results is presented in Table I. It should be emphasized that all of these estimates are

upper limit estimates and that the actual losses are expected to be lower than the 3.6%

indicated by these calculations,

________________

Energy Loss During Experiment

11.1 x STU

17,6x BTU

39,2x BTU

12.2x BTU

167.Ox BTU

TABLE I

Summary of Heat Loss Calculations

MaxLoss Mechanism

Thermal radiation from pool surface

Thermal radiation from primary piping

Evaporation from pool surface

Convection from primary piping components

Conduction to pool walls

Total Losses 2471
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To determine the possible error in the pool water mass-, accurate measurements

were taken of the pool dimensions, These measurements indicate that the pool volume

is known to within ± 1 %. Corrections cre made for the primary coolant system and

any large oblects in the pool at the time of the experiment.

IV. Data Analysis

An essential part of the data analysis procedure was in determining the copper—

consta ntan thermocouple calibration constants. The entire temperature measuring system,

including the thermocouple switch box and potentiometer readout device, was calibrated

by making repeated thermocouple measurements in a water filled Dewar flask. The

Dewar temperature was determined with a mercury thermometer which was graduated in

0,1 degrees centigrade and read to the nearest 005 °C. The calibration experiment

consisted of taking measurements at various temperatures with the potentiometer readout

dial being changed and readjusted for each measurement. Approximately 100 points

were taken onach thermocouple and the data was reduced by a least squares analysis

to determine the 95% confidence interval and the mean value of the calibration constant

over the temperature range of interest,

Recall that the object of the calorimeter experiment is to accurately determine

the mean rate of increase of the pool water temperature. This determination is made by

fitting each set of thermocouple data too straight line by the least squares method. The

details of the statistical method used are given in Appendix B. From this analysis the

value of the slope and its standard deviation are determined. The results of several

experiments are plotted in Figure 2 along with the thermocouple calibration data. The

error bar shown for each thermocouple represents the 95% confidence interval for the
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slope as determined from each set of raw thermocouple data. After determining the

average value of the slope from each thermocouple, a mean value for the average of

all thermocouple slopes is determined and is taken to be the mean rate of the pool

temperature increase, The t distribution is used to calculate the 95% confidence

interval for this average. The “dashed’ line shown in Figure 2 represents the 95%

confidence interval for each of the calorimeter experiments.

The t+iermocouples having a large variation were located at positions in the

pool where the flow conditions caused a continuous movement of the T C. during

the experiment. The removal of these data from the calculations would result in a

marked reduction of the confidence intervals,

During the routine calorimeter experiment data is also collected on the reactor

control system temperature chart, By visually fitting a straight line to the slope on

the temperature chart, it is also possible to get an estimate of the rate of increase of

the pool temperature. Analysis of the temperature charts for several calorimeter

experiments clearly indicates that the mean reactor power level can be determined

from the strip chart recorder with reasonable accuracy. A typical trace is shown on

Figure 3. The strip chart data technique is now frequently used for experiments and

reactor operations requiring a quick reference to the absolute power,

V. Conclusions

The calorimetric power determination technique can be used to determine the

reactor power level for systems having low heat losses, to within a few per cent, The

method can be used to calibrate relative power measuring devices and to determine the

confidence level for reference power meters,
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APPENDIX A

Conduction t.osses from Pool to the Shield

Assume the walls of the pool to be an infinite slab extending from.X = 0 to

+ , and the pool water as slab extending from 0 to - oo• Assume on infinite

heat transfer coefficient between pool water and pool walls (i.e. no film drop). Since

the temperature of the pool increases with time, the heat losses from the pool will be

a function of time,

H20 Concrete

U = F(t)

T = initial temperature
0

-x 0 +X

Using the notation and method of Churchill1,the heat diffusion equation is

written

(1) U (x, t) = K U (x, t) (x> o, t> o)

with boundary conditions:

(a) U (x, o) = T (x> o)

(b) U (o, t) = gt (t> o)

(c) lim U (x, t) = T (t> o)

x— +
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Transforming equation (1) and applying B.. C. (a):

(2) - T + $ U (x,. S) = K u (x, s) (x> o)

and B. C. (b) becomes u (o, s.)
2

S

The real solution of (2) is:

(3) u(x,s)= Ae

Using B. C. (b): A - _2...
2 s

5

(4) U (x, s) =( -

-

The heat flux per unit area is:

q(t) = KU (o,t),

A

thus from (4) and after inverting:

Kr
(5) p(t) = 2gf +(F -T)

A Lw .jt

where F = U (x, a) (x < o)

or, F = F(ot).

To estimate the total heat lost during operating time T, (5) is integrated as

follows:

(6) Q = AK
g T3/2 + 2 (F - T ) T

1/2T L 0 0
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The thermal properties for barytes concrete are given by Rockwell2Os;

K = .884BTU/hr ft,2°F

= .0250ft.2/hr.

The total area of concrete in contact withpool water is:

A = 2270 fL,2

From a calibration experiment at 2.MW, g was found to be approximately

constant and equal to 180°F/hr.

Whenever the initial wall temperature is the same as the initial pool temperature,

F = T, and equation (6) becomes:

(7)
T

= 4A K g T3/2

During the calibration experiment the pool tempertture increases for one hour.

Therefore, the maximum possible heat loss to the shield is

= 4x 2270x ,884x 180
= L67x BTUT

3xiy025O’rr
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II. Radiation Heat Losses

The conventional equation3for heat losses by radiation from a surface of

constant temperature T to an environment at temperature T is

=A)
()4j

it may be seen that the time dependent: case can be written as:

/T \41

__

(a

100

an experiment in which T increases

t s obtained by integrating

= A

The total heat loss by radiation during

linearly at g °F/hr. from T to T0 in time

T

5

During a standard calorimeter experiment at 2 MW, the pool temperature increases

at 18 °F/hr, too maximum of 116 °F. The initial temperatures are T = 98°F and

Ta = 80 °F. The use of these constants in the above equation with 1,0 gives

the maximum total heat loss from the pool surface OS:

= l.llx 10 BTU
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The same equat.ion isusedo.estrnite the maximum losses by radiation from the

88 feet of 12 inch primary pipe and heat exchange. For this case however, T is

0 • 0130 F and T is 112 F. The calculation yields:
0

= l.76x BTU

Ill. Convection Losses from Horizontal Piping

A simplified equation for the convection coefficient from the horizontal primary

piping at constant temperature is given on page 177 of reference 3 as:

h = •27(..t\ 0.25
c

0

(t) = hC(t) (T(t) - T
. ) irD Lair o

After substituting for h , the time dependent heat loss relation is:
c (t)

27irD L
0

(t) =
D

T/4 (TP(t) - T ) 5/4
air

0

This equation can be written for the time dependent temperature case as:

1/4

hc(t) —

— T.ai

D
0

or, in terms of the heat loss as a function of time:
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The total heat loss in operating time t is obtained by integrating, thusly:

= .27D34Lf (TP(t) - Tjdt,

and, since TP(t) T +gt

Q = .27 D
3/4

L (g t + T - T .

9/4 t
T o o air

99 0

For the standard one hour experiment (T0 — T0..) 32 °F and g t 18 °F,

therefore, the convection power loss from the 88 feet of 12 inch primqry piping can

be calculated to be:

= 1,22x 104 BTIJ

IV. Evaporation Losses

The water evaporation rate is calculated by using the equation from 8rown4:

W = 240+37T (p- P).

where:

W = H20 evaporated in grains/hr. - ft,2.

T = poo1 water temperature - °F

= Vapor pressure of H20 at T - in. Hg

P = Partial pressure of H20 vapor in air — in. Hg.

The equation is written for the variable temperature case as:

w (t) = 240 + 3.7T (t)
(p*

P).
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A simplification which results in a maximum estimate for the evaporation rate

is obtained by assuming:

P a. + 13 (T(t) - T),

where, a = 1.B2and 13 = .0702.

The equation for the evaporation rate as a function of time is therefore:

(t) = 240 + a .7 T(t) + 13 (T(t) - T) - P]

For the case T(t) = g t + T, the equation is written:

w(t) 240 + 3.7(gt + T) (a + f3 gt - P).

Integrating from t = a to t = 1 hr. gives:

W=240+3.713 L +T
aP)9

+T
(a-P)

3 L° 13 2 °
13

This equation has been evaluated for the maximum conditions of a 20% relative

0 • . . .. 0humidity in 70 F building air and forT of the pool = 116 F.max

The equation predicts a maximum of 405 lbs. of pooi water will evaporate

during the experiment. The total energy lost due to the heat of vaporization of the

pool water is, therefore:

= 3.92x BTU
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APPENDIX B

Statistical Methods

The thermocouple data is recorded with the aid of a stopwatch so that time

errors or variations may be neglected in the data analysis. Imposing this condition,

the data approximates a straight line so that deviations in y can be written:

o y. = y. - (a + b x.)

To minimize the deviations, the leost squares method imposes:

a (oj

and,

ab

The solution of the equations which result from the application of these

conditions can be written in terms of the mean slope as:

nx.y.-Dy.Dx.
II I I

2 2nx. - (‘x.)

The variance forl has been derived5as:

2 N y.2-2ay.-2bZx.y.+Na2+2abEx.+b2Ex.2
U b

N-2 N Zx.2 -(x.)2
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The mean of all slopes k calculated by:

b* Zk kk

The variance for b* is calculated by the variance of sums theorem:

1 [2 + (1. - b*)2]
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