Calculation of Radiation Dose Rates From Fission Products In The Ford Nuclear Resctor

By: 3. B. Bullock

Michigen Memorial Phoenix Project The Universty of Michigan November 1962

MROLUMED

Calculdions are given for estimating the ganme-radiation dose tate due to an unshielded core in the empty poot of the FNR. The calculctions were made in order to estimate consequences of an accident which would cause the water to drain out of the pool. The calculations are based on the methods of Stephenson.

The equations were programmed in the MAD language for use on The University of Michigan $H B M-7090$ computer. The programs ore given in Appendices A and B.

The assumptions made in the approach are:

1. The reactor is a point source.
2. The fission product inventory is due to 2 MW operation for 10^{7} seconds.
3. The reactor has been shut down for 10 minutes.
A. Radiation outside the direct beam is due to single sactiering from:
1) the pool walls, 2) the building walls, 3) the building ceiling and 4) the building air.
5. Air absorprion and pair production may be neglected.

GENERAL EQUATBONS FOR SLAB SCATTERUNG

Consider a monowenergetic gamma beam of iniensity $!_{0}$ and crossmectional area A_{b}, incident on a unit slab. See Figure 1. Assume Σ_{1} and Σ_{2} to be the total macroscopic cross sections of the slab material for the incident and scotrered radiction, Io and d. At a distance i below the surface of a slab of density p, the mass of a small scotrering element dt as seen by l_{o} is $p \operatorname{Sec} \theta$, di and the radiation intensity of the depth is:

$$
\begin{equation*}
I_{t}=\|_{0} e^{-\Sigma,+\operatorname{Sec} \theta} \tag{11}
\end{equation*}
$$

* Srephenson, Rog "mroduction to Nuclear Engineering", (pgs, 193-200) McGrawhill. New York, 1954

Similchly the fraction of the scattered radiarion reaching the surface is

$$
\begin{equation*}
e^{-\Sigma_{2}+\sec \theta} 2 \tag{2}
\end{equation*}
$$

fr we now assume the scaytering pheromena to be adequately described by the Klein-Nishino formula we moy wite:

$$
\begin{equation*}
I=\frac{N A_{b} \sec \theta_{1}}{c^{2}} d \theta \int_{0}^{i} e^{-\left(\Sigma_{1} \operatorname{Sec} \theta_{1}+\Sigma_{2} \sec \theta_{2}\right) t} d t \tag{3}
\end{equation*}
$$

where is the intensity at a detector located a distance C from the scatering slob N is the electron density of the slab and $\frac{d}{d \Omega}$ is the differemtal Klein-Nishina cross secion.
$\operatorname{Since} \frac{d}{d \Omega}=\frac{0^{2}}{2}\left(P-P^{2} \sin ^{2} \phi+P^{3}\right)$

$$
\begin{equation*}
\text { where } P=\frac{-c}{E_{0}}=\frac{1+E_{0}(1-\cos \varphi)}{{ }_{0} 511} \tag{5}
\end{equation*}
$$

where E_{0} is the incident gamma energy, E is the scatiered gamma energy and Q is the scatrering angle。

After integroting and simplifying (3) becomes:

$$
\begin{equation*}
\left.1=\frac{N A_{b}}{C^{2}}\left[\frac{\left.1-e^{-\left(\frac{\Sigma_{1}}{\cos \theta_{1}}\right.}+\frac{\Sigma_{2}}{\cos \theta_{2}}\right) \theta}{\Sigma_{1}+\Sigma_{2}\left(-\cos \theta_{1}\right.}\right)\right] \frac{d \sigma}{d \Omega} \tag{6}
\end{equation*}
$$

Figura

Using the cpproximate expression (page 184. Stephenson)

Dess Rate $(\mathrm{P} / \mathrm{mp})^{\infty}=8.86 \times 10^{-6} \mathrm{E}$.
for $\mathrm{E} \approx .07 \mathrm{Mev}$ to ≈ 3 Mev, the dose rote may be colculcted by evoluating (6) of any detector location of imerest where 1 is the number of photons per em ${ }^{2}$ per sec. The difficulty in applying equation (6) is the requirement that the scattering source approsimate o point source. Since the detector is 20 to 30 feet from the seatering planes, this reguirement is gotisfied by dividing all the scattering walls imto $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ squares and summing the commibution from each square. This is the colculation caried out by the program shown in Appendix A 。

GENERAL EQUATIONFOR AR SCATTERING

The air scotering problem is simplified by neglecting absorption in air which also rends to compensate for the arror in neglecting secondary scastering. Howeverg the calculation is more laborious because of the necessity of volumerric integration. The equarion used here is:

$$
\begin{equation*}
1=\frac{N S}{4 \pi d^{2}} c^{2} \frac{d x d y d z}{d \Omega} \tag{8}
\end{equation*}
$$

and the new symbols are $S=$ source strength in gammas per second $d_{1}=$ disrance from source to scattering volume $d x d y d y$. For this calculation the unit volume selected was $50 \mathrm{~cm} \times 50 \mathrm{~cm} \times 50 \mathrm{~cm}$. This calculation was performed with the aid of the program shown in Appendix B.

SOURCE CHARACTERISTICS
The source charocteristics were token from slomeke and Todd where four energy groups are given. The maximum energy was used for ach energy group. The source characteristics for the assumed power history are given in Table 1.

$$
\text { Table } 1 \text { - Source Characteristics }
$$

Group	Energy (Mev)	$S($ phorons $/ \mathrm{sec})$
1	.25	3.51×10^{16}
H	1.0	7.39×10^{16}
H	1.7	2.21×10^{16}
H	3.0	0.70×10^{16}

* ORNL-2127, Part 1 Volume 2, "Uranium-235 Fission-Product Production As A Function Of Thermal Neutron Flux Irradiarion Time, And Decay Time." J. O. Biomeke and Mary F. Todd

Using equation (7) ond the source values shown in Table I, the gamma dose rate in the direct beam of the reactor bridge was estimetred to be $9100 \mathrm{r} / \mathrm{hr}$. In addition, estimates were made for the delayed neutron contribution to the dose rate in the direct beam. The results indicare that neutron dose rate is less than $100 \mathrm{mrem} / \mathrm{hr}$ 。

Using the computer program shown in Appendices A and B_{θ} calculations for scatrered radiation dose rates were performed for two defector locarions. The location labeled "Inside Building" in Table 2 is considered to be representarive of locations of interest in the reactor building. This location is 6 feet above the operating floor af the west wall of the reactor building. Contributions to the dose rate at this location are as follows: the interior south wall of the reactor building; the inside edge of the reactor pool wall; the ceiling of the reactor building and the interior north wall of the reactor building. The dose rate contribution from these individual scattering planes is indiccied in the following table.

The location labeled "Outside suilding" is considered to be a rypical location of interest. The point lies 10 feet to the west of the building of the operating floor elevarion which is 10 feet above the ground leve!.

In addition to the wall scattering contribution, the contribution from radiations scattered by the air in the reactor building is also presented in the table of results.

Toble 2 - Radiarion Dose Rates

APPENDIX A

```
962 VERSIONI PROGRAM IISTIMG
```

```
        READ DATA
```



```
        WMEAEVER CASE.E.I
        K1 =CXI
    K1 = Cx1 * CXI
    K2=cxl
    D1 z DELY
    02 = DELZ
    DC = xD
    DELI = DELY
    DELJ = DELZ
    OR HMENEYER CASEEF%
    XI = CX2
    K1= 482:Cx2
    K2 = CX2
    D1 = OELY
    D2 = DELR
    DC= KD
    DELI = DELY
    DEL\ = DELZ
    OR WHENEVER CASE.E.3
    Z1_=CI
    K1=C2#C2
    K2=C2
    D1 = DELX
    D2 = OELY
    DC=2D
    DELI EDELX
    DELJ = DELY
    DR MHENEVER GASEOE.4
    YI = CY
-_M =CY = CY
    K2 = CY
    DL = DELX
    D2 = DELZ
    DC I YD
    JMIN = 2F-(2D-IF) WPA.ABS. (YD-YW)
    OELL = OELX
    DELJ = DELZ
    OIHERULSE
    TRANSFER TO STOP
    END OF CONDLILIONAL
    INTERNAL FUNCTION F.IDI:D2.K1,V1,V2)= DI*O2#KI/ISORT.IKI*
```



```
    INTERNAL FUNCTION COIT: (K2) =.ABS. (K2 (SB)
    INIERNAL FUNGILONCO2TR IK2Z ODC) =:ABSO (K2-DC)/SC
    TOR = 0.C
    THROUGH LOOF,FOR YALUES OF EL = 0.25, 1.0. 1. 2% 3.0
    DOS1 = 1
-_HENEVER EL E O. 25
    XCrI =.270
    S= 3.5MFl6
    OR WHENEYER EI.E. 1.0
```

KETE $=-849$
$3>7.39 \mathrm{El} 6$
58. WhEMEVE EL E5 6.70
$x+81=-120$

$\operatorname{Act}=2063$
$\$ 30.70 \mathrm{FE} 6$
EMD OF GDNDTEDAGL

WHENEVER CASE E A OP CASEEA 2
Y
$2 \pi=3$
OR NHEMEYFE SAEE ER3
x $\mathrm{C}=\mathrm{B}$
$y=3$

$x=8$
$\frac{X}{2}=8$
WRUENTES
FRAMSER 10 S OOP
EMD of comprrional

$58=5012 \times 181$
$S C=S 0[1+46$
$\operatorname{c2B}=2.0=50$ 56
$\cos 1=\operatorname{An} 8 \operatorname{cog} \operatorname{czs}$
$5 \operatorname{sen}=2.0-\cos i=\cos 2$

$11=1$
$\psi 2=4$

$\mathrm{COL}=60 \mathrm{BH}, 1 \mathrm{~K} 21$
$\operatorname{coz}=\mathrm{CRELa} \times 2 \mathrm{BDCl}$
$E=P$ El

WHENEVER E GE $=0.40$ AND $E \cdot 1.0 .50 . X C T 2=2045$

HHEMEVER E GE 0.60 .AND. E . . 0.80 . XCT2 $=.1659$

HAEMEYEQ E GE. 1.00 . ANO. E . . $1.25: X C 72=.1332$

WHEMEVERE OGE 1.50 .AND. E . $2.00, K C T 2=.1046$

WHEMEVER E.GE. $3.00 .4 N O . E . O 9.00, X C T 2=.060$

GANI = KONSAB (NUMADENIDOKNEIBC
 1 CASE

APPENDIX B


```
IN REGODATA
```



```
            & JMENAKMAX: KMEN
                        TOR=OO
                        THROUGH IOQP,FOR VALUES OF EI = %.25, 10., 1.7. 3.C
                        WHEHEVEX ES OE. O.2S.S S 3.5IELE
                        WHENEVER ES OE L-00, S = 7.29EIG
                        WHMEVER ER EES 1.70. 5 = 2.21E:5
                            WHENEVEQ EE OE. 3.ON:S = O.TCELE
                            OOST = 0.0
                            THROUGHFIRSTSFOR XI = IMIN, DELI, XT =G. IMAX
                            THROUGH FIRST,FOR YL = JMIA% DELJ, Y! # ज JMAK
                            THROUGH FIRST,FOK FI = KMIN, DELK. II G.G.KAAX
                            A = XDOXD + YOEYD & 2DO20
                            F=XI =XI % YT&%I क Z? ZI
```



```
                            SH=SgRT. (R)
                            SC=SORT. 1CO
                            C2B=2.0% SB % 5C
                            Cos)= A-B-C),C2E
                            SM2l = 0. - cose cosi
```



```
                    E=P EI
```



```
                            & EI , XIg YI, LI,GAMI
```



```
            PRINT RESULTS EI: OUSI, KO, YO. LD
            LUOP TUR = TDR & UOSN
            GRINT RESULTS TOR, RO: YO, ZO
            FRAMSEER TO IN
                    STON END OF PROGRAM
```

THE FOLLOMINX, NAMES HAVE OCCURRES ONLY GACE IN THIS PROGRAM GOPGIHATION WILL GONTINUE
$5 \operatorname{TOH}$

