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The scattering of electromagnetic radiation by a fully ionized, collision&ominated plasma in a
magnetic field is investigated using a stochastic approach. The stochastic equations for the
density-Auctuation operators are modified to include particle collisions through a Bhatnagar-Gross-Krook

collision model. The equations of this model are constructed to conserve particle number, energy, and

momentum. Explicit numerical results are obtained in the absence of magnetic fields and compared to
experimental values and other theories. The analytical results are assumed valid for plasmas which can

be characterized by Maxwellian velocity distributions for electrons and ions at the same or different

temperatures.

I. INTRODUCTION

The problem of light scattering from a fully
ionized plasma has been investigated from a num-
ber of different viewpoints. ' ' To our knowledge
no one has used a Bhatnagar-Gross-Krook' (BGK)
collision model which consex ves particle number,
energy, and momentum to describe charged-par-
ticle binary collisions in the light-scattering prob-
lem. Use has been made of this model in the de-
scription of collisions in fluids' and charged-par-
ticle-neutral collisions in plasmas. "" Here we
apply this model, which may (at least in part)
account for binary collisions between charged
particles, to a fully ionized plasma in a magnetic
field. Collisions between unlike particles are not
included in this analysis.

Vfe use a stochastic approach to the calculation
of the spectrum of electromagnetic radiation scat-
tered from a plasma along with a BQK model to
describe collisions. In the limit of no collisions
our results reduce to those of Salpeter" both
with and without magnetic fields. The calculated
spectra in the collisionless case are in agreement
with the numerical results of Williamson, Nodwell,
and Barnard. " When collisions are included, the
results agree qualitatively with those of DuBois
and Gilinsky' for the shape of the central peak.
The expected effect of collisions on the resonance
at the plasma frequency is also obtained. ' This
model allows an analytic solution from which nu-
merical results are relatively easily obtained.

In Sec. II we introduce the model and present the
formulism necessary for the calculation of the
scattering function. The explicit solution is ob-
tained for the scattering cross section. Results
of numerical calculations are shown in Sec. III
and compared with experiments and other theories.
In Sec. IV we briefly comment on our results.

II. FORMUI. ATION

The cross section for the scattering of electro-
magnetic radiation from a plasma is given by

o = ((u'/(o") or S(k, &u), (1

where o~ is the differential Thomson cross section
and co" and e' are the angular frequencies of the
incoming and scattered radiation, respectively.
The quantity S(k, &u) is the scattering function,
where au=~" —~' and k=k" -k', i.e.,

S (k, (u) = (2n'n, ) ' J' d t e ' ' J dr dr ' dv dv' e'" " "
x (gf"(r', v', 0) &y'(r, v, t)). (2)

The quantity 6f' is the electron-density fluctuation
operator defined in the Appendix, n, is the number
of electrons in the scattering volume, and the
angular brackets represent an average over an
appropriate probability distribution. The remain-
der of this section is devoted to the calculation of
the function defined in Eq. (2).

As a starting point we consider the linearized
equations for the density fluctuations in a fully
ionized plasma in an external magnetic field, i.e.,

m~ v Qr

-I~'bf~ -I'~ 5f' —I~'5f'=S'(r, v, t), (3)
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where S'(r, v, t) is a stochastic function"'" and

fo is chosen to be a Maxwellian velocity distribu-
tion for the jth species. The quantity N& is the
particle-number density. The collision integrals
(see Appendix) will be carried along in a symbolic
fashion until approximations become necessary.

Taking the Fourier transform of Eq. (3) and
rewriting it in matrix form, one obtains

assumption that"

{S*(k,v, t) S(k, v', t'))= 6(t t'-)D(k, v, v'). (7)

It can be shown that'4

D(k, v', v) =M (k, v')Q(k, v', v)

+Q(k, v', v) M(k, v),

—4(k, v, t)+M%' =S(k, v, t),

whexe

@(k
-

)
Of'(k, v, t)

6f '(kv, t),

S(~k
~

)
S (k& v& t)

S'(k, v, t}

(4) Q(k, v', v) =—{4'*(k,v', t' =0)&i&(k, v, t =0)) .
For the equilibrium case the approximate values
of the matrix elements Q(k, v', v) are known. "
Using the above expressions and defining

(A (k, &u) =—fdvdv'A (k, v', v, ur),

one obtains, for the correlation matrix,

A(k, ~) =2Befdhdv'[M(k, v)+ is&I] Q(k, v', v)

M~~ M~2

M2~ M22

The matrix elements of M are

M„= ik v-+&u (v&B) ~ - +iU"
i

dv'-I" —I"
C8

M, =iU" dv'-I",

M2~ =M,m(e= i),

M» =M» (e = i),

where

U~ = V~~(k)k f~,
m ev

%e define a new' function

G(k, v, &u)= fdv'[M(k, v)+i(uI] 'Q(k, v, v').

(10)

The scattering function is now obtained in terms
of the electron-density fluctuations, i.e.,

S(k, (o) = (2vn, ) 'A„(k, (o),

where

A»(k, &u) =2Re fdvG»{k, v, &o}. (12)

In order to solve for G„we note that G (k, v, ar) is
actually a 2 x 2 matrix, and that Eq. (10) ean be
written as two coupled pairs of equations. The
coupled pair of interest is

(i(d +M»)Gg~ +Mph G» = fdv Qgg(k& v, v )

(d~g =g)B/ol)c.

Next me define a correlation matrix as"

A (k, v', v, ur) = {4' (k, v', &o)4'{k, v, ~)),
where 4 is the transpose of 4. Taking the Fourier
transform in time of Eq. (4) and solving for
4(k, v, &u) one obtains

A =[ i(dl +M -(k&v )] D(k, v, v)[i&ol+M(k, v)]

where we have used, as a first approximation, the
I

(i~+M»)G»+M„G» = fdv Q„('kvv ,), '

where the matrix elements I are the same as
those in Eq. (4).

We transform Eqs. (13) back into the real space
and time domain and arrive at expressions for
G»{r,v, t) and G»(r, v, t) which are similar to
Eq. (3) with the stochastic functions S' and S' re-
placed by the known quantiti~:s 0» and Q»,

To proceed further it becomes necessary to
specify the collision operators. %'e will neglect
the cross-collision terms and represent the self-
collisions by a BGK collision modeP

U 3 U 3I"G„= -v„+v„f;Ji dv+v„f;, vdv+v„fo —,———, v'dv —v„f; —,—— dv G„(r,v, t).
"e ~e e "e
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A similar expression is obtained for O'G». The term v» is a velocity-independent collision frequency of
the jth species, and v~ =26, /m~, where 6~ is the temperature in energy units.

The equations for C» and Q» are now solved to obtain

G (-„v ~) g g ~.(&,~./l~ l}~.(&,~,/l~„l)
oo yg= oo p +

zeal

Zk35s z ping(g)~e

X&i ((t)'(ft-1')
Z

e e yee k ~e k + + hei

~,f; q'(k, a)+,' ~ q'(k, ~)+ ' —,-I v'(t, ~) +N f; ()- (,)}
2' Ne v 3

'U e e I

(15a)

g Ik ~ ~ ~ ~n("i'. /(()cg)~m(l)x "i/(()a)
Vi i +z(d —zk353 ZPPl()L)~

xe '"'" ' z
'

0 V«k ~i k ~ +yie k qe k ~ ~c&+~3US

~ ~ 2Ni
¹

v 3
+v, ,f,' q'(k, (d)+ v ~ q'(k, u))+ ——,-—7'((k, (u) +N, C,fo

i i i
(15b)

JG„(k,v, (d)dv =@'(k, (d),

Jva»(ki v, &u)dh=N, q'(k, (d}, (15}

Expressions similar to Eqs. (16}with electron
terms replaced by ion terms are obtained for 6».
The functions Z„(y) are Bessel functions and"

C, =[(1+Z)(1+ h'x', )]-',

where Z is the charge on the ion. We take the
Debye length A~ to be

1~2

4)rN, e'(6, +Z6, )
i

The magnetic field is taken in the 3 direction, the
wave vector k is chosen in the 1-3 plane, and v,
is the magnitude of the component of velocity per-
pendicular to the magnetic field.

Making use of Eqs. (15) along with the moments
defined in Eqs. (16}, we arrive at ten equations
in ten unknowns. These equations may then be
solved numerically for q'(k, (d) to give the scatter-
ing function, since

S(k, (()}= ())'n, } ' Re q'(k, (d}. (19}

In the absence of collisions these results reduce
to those of Salpeter" both with and without a
magnetic field. The remainder of this paper will
deal with the special case of no external magnetic
field in which we solve for S(k, (d) numerically.
These results are discussed in Sec. III.

HI. RKSUI.TS

A. Preliminary Discussion

In this section we discuss the numerical results
obtained by applying Eqs. (15) in the absence of
magnetic fields to a number of speeifie cases.
ln formulating the problem we have assumed a
fully ionized plasma with Maxwellian velocity
distributions. The results presented are for
hydrogen plasmas unless otherwise specified. The
incident radiation is taken to be 6943-A ruby laser
light in most cases, and the scattering angle is
specified. Both one- and two-temperature plasmas
are considered. It was found that the energy-
conserving term in the BGK approximation did not
make any contribution to the shape of the scattered
spectrum. The momentum-conserving term, on
the other hand, has a significant effect in colli-
sion-dominated cases.

The spectrum of the scattered radiation is con-
sidered in two parts: (i) the central peak, where
most of the scattered radiation is observed, and
(ii) the satellite, or electron feature, which is
located near the plasma frequency. We calculate
these two parts of the scattered spectrum for a
number of different plasmas using both a colli-
Sionless model and the collision model outlined
in Sec. II. The effect of collisions is most pro-
nounced for high-density low-temperature plasmas
as expected.

We deal mainly with cases in which ion-electron
collective effects are important, that is, the scat-
tering wave vector lk[«(An ) ', where xn, is the
electron Debye length of the plasma. The wave
vector is given by
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a=(kZn. ) '. (23)

For e & 1, interactions between electrons and ions
bring about an ion-broadened central peak and
cause plasma resonance peaks or satellites to
appear in the neighborhood of the plasma frequen-
cy. For a&1 the scattered spectrum is deter-
mined by the Doppler broadening of the electron
distribution. The collision frequencies are cal-
culated in the manner described by Spitzer. "

B. Analysis of Results

1. Central Peak

For the case where a &1, interactions between
electrons and ions produce a distinct feature cen-
tered about zero frequency as shown in Fgs. 1
and 2. In Fig. 1 we consider a plasma with a
density of 10" cm ', a temperature of 1 eV, and

where y is the angle between the incident and
scattered beams. The electron Debye length is
given by

A. ne = (6,/4trN, e )

where e, and N, are the electron temperature and
density, respectively.

A measure of the importance of these collective
effects is given by the parameter a where

e =33. The collisionless or Vlasov case has a
slight dip in the center with peaks at approximately
the ion-acoustic frequency kv, . The collision mod-
el leads to a rather strong enhancement at the
ion-acoustic frequency and a corresponding dip
at the center. This is also predicted by DuBois
and Gilinsky' for collision-dominated plasmas in
which the acoustic frequency is less than either
the electron-electron or ion-ion collision fre-
quencies as is the case here. The remaining curve
on Fig. 1 is the result obtained with our collision
model when the momentum and energy-conserving
terms are ignored. The results are in qualitative
agreement with those obtained using a modified
Fokker-Planck model which conserves only par-
ticle number. 4

Collision frequencies are considerably lower in
the case displayed in Fig. 2. As in Fig. 1, we are
scattering 6943-A ruby laser light from a 1-eV
hydrogen plasma. In this case the plasma density
is only 2.4&&10" cm ', which accounts for the
lower collision frequencies. The fact that this
line is a good deal narrower is a result of the
lower ion-acoustic frequency which is due to a
smaller momentum transfer of the scattered light.
Whereas Fig. 1 deals with 90' scattering, Fig. 2
represents the observed scattered spectrum at
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13.5 . The effect of collisions is small in this
case, as one might expect, but it should be noted
that collisions tend to make the acoustic peak more
pronounced as in Fig. 1.

Z. Satellite

(em~ = ((u', + 3e.P/m, )"',
which can also be written

(dmax = (d& (1 + 3j% )

(24)

In Fig. 3 we again consider the dense low-tem-
perature plasma of Fig. 1—this time, though, we
are looking in the region of the plasma frequency.
Since Landau damping alone is not enough to broad-
en this resonance to the point where it can be
resolved by this calculation, the collisionless case
is not shown in the figure. It is seen that collisions
significantly broaden the line in this case.

This is not the case in Fig. 4 in which a rela-
tively low-collision-rate plasma is considered.
Here the broadening due to collisions is rather
insignificant. This might be expected since the
effect of collisions on the central peak (Fig. 2)
was also negligible.

The approximate position of the satellite is given
by

We see that the larger the value of o., the less
displacement of the satellite from ~~. This is
illustrated by Figs. 3 and 4.

3. CO, Scattering

The preceding discussion has been concerned
entirely with the scattering of ruby laser (6943-A)
light from hydrogen plasmas. Figure 5 shows the
spectrum, both with and without collisions, ob-
tained when the CO, laser radiation (10.6 p. ) is
scattered from a hydrogen plasma with a density
of 10" cm ' and a temperature of 1 eV. Qualita-
tively, the results are very much like those in
Fig. 1.. It is interesting to note that the half-
widths in this case are an order of magnitude
greater than those calculated for an incident ra-
diation of 6943 A. As CO, laser technology im-
proves, this may be an aspect of laser diagnostics
that could prove useful.

4. Two- Temjerature Plasmas

The calculation of the scattering function is
sufficiently general to allow consideration of elec-
trons and ions at different temperatures. The
first case we examine is illustrated in Fig. 6.
Here the parameters are chosen to compare with
Rosenbluth and Rostoker. ' They examined the
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owing to its high-density (comparable to gases at
standard pressures) and collision-dominated
nature.

Quite the opposite effect is observed on the
satellite by varying the electron-electron collision
frequency while holding the other parameters
fixed. As is shown in Fig. 10, a higher collision
frequency leads to more damping of the resonance
at the plasma frequency. The actual collision
frequency for the case shown in Fig. 10 lies be-
tween the values given for curves 1 and 2. Figs.
9 and 10 could be of more than just academic in-
terest, if, for example, it were found that the
collision frequencies were not adequately repre-
sented but that the remainder of the theory was
quite good.

C. Comparison with Experiment

Comparison with existing experimental results
is, on the whole, quite satisfactory. Most experi-
ments to date have been done on plasmas in which
collisional effects would not be expected to alter
the shape of the scattered spectrum to any great
extent.

The results of Ramsden and Davies' for a hy-
drogen plasma with a density of 2.4&&10" cm '
and a temperature of 1 eV can be compared to our
theoretical results in Figs. 2 and 4. For radiation
scattered at 13.5', corresponding to a =3, the

O. l 0.2 0.3
m (sec ')

I

04 xlo

FIG. 12. Ion feature of the scattering function for
CO2 laser radiation (10.6 p) scattered from an argon
plasma.

resolution in the experiment was insufficient to
determine anything other than the existence of the
central peak and satellite. The theoretical result
for the position of the satellite and the ratio of the
intensity of the central peak to the satellite agree
with the experimental observations.

A scattering experiment performed recently by
Kata" demonstrated that the usual light-scattering
theory gives valid experimental results even for
plasmas with a small number of particles in a
Debye sphere. He considered 90' scattering of
ruby laser light from a hydrogen plasma with a
density of 3.3&10"cm ' and a temperature of
1 eV. The number of particles in a Debye sphere
for these conditions is 2. Figure 11 illustrates
the effect of collisions on the scattered spectrum.
Although the effect is quite noticeable, it is not
experimentally resolvable in this case.

In the case of CO, (10.6-g) scattering from an
argon plasma, we are at odds with the experi-
mental results reported by Offenberger and Kerr. '~

Figure 12 indicates some narrowing of the central
peak and the usual enhancement of the ion-acoustic
peak. In this case the scattered light is observed
at an angle of 160'. The experimental results
appear to reveal a central scattered linewidth of
0.5 A whereas we obtain 3.8 A. It should be noted
that the width of the ion-acoustic peak is 0.5 A,



LIGHT SCATTERING FROM COLLISION-DOMINATED P LASMAS

IO
12

SATELLITE- ARGON Pl ASM'

N =6.3x IO

e = I.'IeeV
a=4

mp =l.42xlO sec '

u~= 6.6 x IQ" sec
2.4 x IO sec

readily yield numerical results. We have em-
ployed a BGK model to account for collisions be-
tween like-charged particles. In the absence of an
external magnetic field we obtain numerical re-
sults which agree well with experiments —where
such experiments exist. Our results agree in the
appropriate limits with those obtained using other
models.
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FIG. 13. Electron satellite feature of the scattering
function for ruby laser light (6943 A) scattered from an
argon plasma.

APPENDIX

The density operator is defined as follows:

(A1)f, (r, v, t) = Q5(r —rj(—t)) 5(v —v, (t)),

where 6(v) is the Dirac 5 function. The vectors
r, (t) and v, (t) denote the position and velocity in
phase space of the jth particle at time t.

The density-fluctuation operator pf~(r, v, f) can
now be defined

6f'(r, v, t)= f,'(r, v, f) -(f,'(r, v-, t)). (A2)
but this peak is located 1.6 A from the center.

The experimental parameters used by Chan and
Nodwell" are incorporated into our theoretical
formulation to give the curves shown in Fig. 13.
In this case, ruby laser light is scattered from an
argon plasma, and the scattering angle is 45'.
The calculated satellites occur at a wavelength
shift of approximately 39 A in agreement with the
experimental observations. The theoretical broad-
ening due to collisions is quite pronounced. The
experimentally observed linewidth is a good deal
broader than the calculated linewidth. This is due

mainly to density variations in the plasma which
lead to the observation of a superposition of plasma
lines at different frequencies. "

IV. CONCLUSION

This study was motivated by the desire to develop
a method to account for binary collisions in a
plasma in an external magnetic field. We were
specifically interested in a method which would

In the derivation of Eq. (3) the averaged density
(f~(r, v, t)), is taken to be a function of velocity
only and is denoted by fe'(v). The equations de-
scribing the density operator (see, for example,
Ref. 14) are linearized using Eq. (A2). In this
analysis an external magnetic field and binary
collisions between charged particles are included
in the formulation.

In the sense of certain approximations, the
density-fluctuation operator is found to satisfy
the linearized Boltzmann equation. The term
(p f'/pt), , generally found on the right-hand side
of the Boltzmann equation and which represents
the change in the distribution function owing to
collisions within a Debye sphere, is represented
in linearized form in Eq. (2) as follows:

fbi f,fJ I&i gP (A3)6t

In Eq. (AS) self-collisions and cross collisions are
considered separately.
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