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ABSTRACT

In this analysis the pulse height spectrum due to a polyenergetic
distribution of gamma rays is synthesized by using a series of normal
ized pulse height distributions resulting from the monoenergetic
components in the incident beam. All of these monoenergetic pulse
height distributions are weighted so their sum is a best fit, based
upon a least-square criterion, to the experimentally determined poly
energetic pulse height distribution. There is difficulty in the application
of least-square technique to the analysis of pulse height spectra
because the problem is nonlinear in energy. In the technique described
here, this difficulty has been overcome by using linear methods of
solution, but applying the constraint that only positive or zero values
be allowed for the intensities or amplitudes of the various mono-
energetic components.

The method of solution proceeds in the following manner. The
energy or pulse height region over which the analysis is to be per
formed is broken up into discrete segments. A monoenergetic pulse
height spectrum corresponding to the energy at the midpoint of this
segment is then obtained. The width of the segment is determined
by the resolution of the system. In cases where the exact position of a
photopeak can be determined, a monoenergetic pulse height spectrum
corresponding to this energy is included. A fit over the total poly
energetic pulse height spectrum is performed by using the least-square
and assuming that the amplitudes or intensities of all but two of the
monoenergetic pulse height spectra are zero. The amplitudes of these
two non-zero components are then determined. If the amplitudes are
positive, a third component is added and the fit is repeated. If there
is a negative amplitude, the corresponding component is eliminated
from the analysis, (i.e., the amplitude is set equal to zero) and the
analysis is continued by adding another component. The process con
tinues after each addition and least-square analysis. One component
is added at a time, and negative components are eliminated until all
the monoenergetic components determined for the energy region have
been tested. This method of solution then indicates the energy com
ponents and the corresponding amplitudes present in the polyenergetic
pulse height spectrum. Error calculations are performed to determine
the precision of the solution.

VI
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I. INTRODUCTION

A least-square fitting technique for the analysis of
complex gamma-ray pulse height spectra has been de
veloped. In this analysis, the pulse height spectrum due
to a polyenergetic distribution of gamma rays is synthe
sized by using a series of normalized pulse height
distributions resulting from either the monoenergetic
components in the incident beam or the pulse height
characteristic of various possible elements in the source.
All of these pulse height distributions are weighted so

that their sum is a best fit, based upon a least-square
criterion, to the experimentally determined polyenergetic
pulse height distribution. There is difficulty in the appli
cation of least-square technique to the analysis of pulse
height spectra because the problem is nonlinear in energy.
This difficulty has been overcome by using linear meth
ods of solution, but applying the constraint that only
positive or zero values be allowed for the intensities or
amplitudes of the various monoenergetic components.

II. APPLICATION OF THE PRINCIPLE OF THE LEAST-SQUARE

A. Formulation
When a number of gamma rays are incident upon a

Nal (Ti) crystal, the measured pulse height spectrum is
made up of a summation of the photopeaks and compton
continua of the various monoenergetic components. That
is, if p is the total number of counts in channel i, then

Pi = (1)

where B,, is the number of counts occurring in channel
i due to the interactions of gamma ray of energy E,, with
the crystal.

This can also be written as

= )J3,,A,, (2)

where Ai,, is the normalized number of counts occurring
in channel i due to the interaction of gamma rays of
energy E,, with the crystal, and

pn
—

nj,,

The A’s can be obtained by using, for example, mono-
energetic emitters placed in the same geometrical con
figuration as that of the poiyenergetic emitter used to
measure j.

Due to the variance in the determination of pi and
/3,, Ai,,, /3,, As,, cannot be simply determined from an in
version of Eq. 2. Therefore, the most probable values of
/3,, A,,’s are determined based on the least-square cri
terion, that is

(pj —
is to be, or ap

i n J proaches minimum
(3)

where <o is the statistical weight and 1/ut. In the
simplest case c—’ pi, if the counting time in each chan

1
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nel is constant and if it is assumed that there is no
variance in The summation is over all channels i and
all energies n.

B. Method of Obtaining Minimum
for Least-Square Fit

1. Incident Gamma Flux Discrete in Energy (energy
distribution known and intensities required)

A number of algorithms can be used to obtain the
minimum required in Eq. (3). The method of solution
used depends upon how much is known about the inci
dent flux. The simplest case is considered first. In this
case the gamma ray energy distribution is known, and it
is desired to determine the intensity.

The polyenergetic spectrum given by the p is meas
ured, and since the energy distribution is known, the
monoenergetic components (A) are known. The mini
mum is therefore obtained by taking the partial derivative
with respect to /3k for each of the p monoenergetic com
ponents. Each derivative is then set equal to zero. Thus:

= —2
— Ef3Afl) Ak = 0 (4)

for k = 1, 2,
..., p. There are thus p linear equations to

be solved for the fl’s. Equation (4) can be expressed in
matrix notation, as follows (Ref. 1):

— (AA)j3 = 0 (5)

where 16 is a vector of the flk’s.

A is a p by n matrix of the pulse height spectra, n is
the maximum pulse height, A is the transpose of A, and

is a diagonal matrix of the o’s.

Solving for 6, it is found that

/3 (AwA)_1Awp (6)

The calculation described in Eq. (6) has been program
med for the IBM 7090 computer and can handle up to
40 monoenergetic pulse height spectra and up to 250
values for each pulse height spectrum.

An application of this method is now considered. The
emitter’s energy distribution is known. The problem is
to determine the relative intensities of these energy com
ponents. The emitter chosen is J131 The gamma-ray
energies in the spectrum of p31 are 0.722 Mev, 0.637 Mev,
0.364 Mev, and 0.284 Mev. Another gamma ray which
is a possible contaminant is also noticed at 0.5 Mev. The
measured pulse height spectrum is shown in Fig. 1. A

PULSE HEIGHT

Fig. 1. Pulse height spectrum, 1131

point source of J131 was placed 10 cm from the top of a
2 x 2 in. NaI(Tl) crystal. The shapes of the monoener
getic pulse height spectra were determined by using
monoenergetic sources and by extrapolating from these
spectra the pulse height spectra for the energies desired.
These spectra were normalized so that the area under
the photopeak was unity. The curves were normalized in
this manner so that the /3’s obtained would equal the
area under the photopeak. Thus it is only necessary to
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divide by the absolute peak efficiency to determine the
intensity. A least-square fit is made using Eq. (6). The
results are shown in tabular form in Table 1 and graph
ically in Fig. 1. Results for two experimentally determined
decay schemes for J131 as determined by other investi
gators (Refs. 2, 3), are also presented to show the close
agreement with the results obtained by using the least-
square fitting technique.

Table 1. 131 gamma-ray spectrum

Other experimental results
Energy, Mev Least mean square

Ref. 2 Ref. 3

0.284 5.2 ±0.7 6.0 4.2

0.364 100.0 ±9.0 100 100

0.500° 0.5 ±0.1

0.637 1 0.2 ± 1.2 10 7.2

0.722 2.4 ±0.3 3 2.4

a Possible contaminant

The errors were determined by a method described
later in this Report. It was also assumed that the intrinsic
efficiencies are known to within ±5%. This assumed
error was determined by comparing theoretical and ex
perimental results obtained for the efficiencies of 2 )< 2
in. NaI(T1) crystals (Refs. 4, 5, 6, 7).

2. Discrete Incident Energy Spectrum (both the energy
distribution and intensity of the incident beam
unknown)

The difficulty in the application of the technique lies
in the method of obtaining the minimum. The minimiza
tion should be made with respect to both /3,, and A,,;

is a function of both pulse height and energy while
/3,, is only a function of energy. Since the pulse height
spectra (A) is not known analytically as a function of
pulse height and energy, it is extremely difficult to at
tempt to minimize Eq. (3) with respect to the At,, (i.e.,
numerical methods would introduce large errors in the
calculation). Therefore, the following method is used.

The energy spectrum under consideration is divided
into discrete increments. A monoenergetic pulse height
distribution corresponding to each increment is included.
The energy components or increments to be chosen de
pend upon the photopeaks observed in the measured
distribution. In those regions where the photopeaks are
not obvious, the energy region is divided up depending
upon the energy resolution of the system. Now, ideally

one can use Eq. (6) to obtain the value fin for the various
energy components. If a given energy component m is
not present, /3,,, should be zero or the statistical variance
in /3m should be greater than /3m itself. The presence of
these zeroes in the inverse transformation leads to the
possibility of obtaining negative solutions, which in turn
leads to oscillating components in the solution of Eq.
(6). This problem is treated in detail in a work by W. R.
Burrus (Ref. 8). This paper points out that the source
of error in unscrambling scintillation data by the incre
mental technique [i.e., simple inversion of Eq. (1)) can
be attributed to an error amplification when the basic
equations are solved exactly. As is stated, this amplifica
tion is caused by an attempt of the exact solution to
restore rapidly fluctuating components in the original
gamma ray spectrum which have been attenuated below
the statistical error level by the instrumental response.
A first attempt to smooth out this fluctuation was made
by the author using the least-square technique described
above. A further smoothing can be obtained by requiring
not only that Eq. (3) lead to a minimum, but that the
solution for the fl’s be either positive or zero.

A problem demonstrating this difficulty is now con
sidered. The problem is to determine the energies and
intensities of the singlet spectrum of W187. The measured
pulse height spectrum is shown in Fig. 2. Certain ener
gies are easily identified from the resolved photopeaks.
In Table 2, the various energies that were assumed
present are tabulated, and four iterations using the least-
square fitting technique are presented.

The negative /3 is obtained for the 0.440 Mev gamma.
The intensity of the decay scheme of W’ in relation to
the other gamma rays present is almost zero, and is there
fore lost in the background. This has been established by
other experimental and theoretical calculations (Ref. 9).

An interesting result to be noted is that a variation in
the choice of energy components in one region does not
seem to affect the value of /3 in the other regions. In
the 0.730-0.866 Mev region, the energies cannot be re
solved as separate (i.e., there is loss of resolution due to
the obliteration of the information by the detector), but
the results obtained show that the number of gamma rays
remains constant, although the distribution changes de
pending upon the components chosen to represent the
region. These results seem to hold for the other cases
investigated. Thus it seems that when the energy spec
trum in a given region cannot be resolved, because of
the finite resolution of the detection system, only the

3
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Fig. 2. Pulse height spectrum, W’87

total number of gamma rays in the region can be de
termined. The exact energy distribution in that region
cannot be determined. The ability to resolve two energies

can be related to the width of the photopeak at half
maximum. This problem has been considered theoretic
ally by Burrus (Ref. 8). There seems to be a minimum
separation in the choice of monoenergetic components to
be used in a given region, depending upon the width of
the photopeak at half maximum. This choice will also
depend greatly upon how well numerically (i.e., to how
many significant figures) the monoenergetic pulse height
spectra are known or can be known, since the least-square
analysis depends upon the difference in these numerical
values.

The results obtained in this calculation for W’7 agree
substantially with other experimental and theoretical
calculations, and are discussed further in a paper by R. G.
Arns and M. L. Wiedenbeck (Ref. 9). In this paper, the
decay scheme of W’87 is discussed in detail.

A more general method of solution for the unfolding
of gamma-ray pulse height spectra has been developed.
Before the method is outlined, a simple problem is pre
sented to help clarify the discussion.

A measurement is made with a three-channel pulse
height analyzer. The following data is obtained:

Channel i

1

2

3

Counts

3

2

3

It is known that the measured spectrum is some linear
combination of the following functions:

Table 2. Results of least-square analysis of W18 spectrum

Energy, Mev for Data 731 for Data 741 for Data 733 for Data 743

0.866 0.464 ±0.008 0.462 ±0.008 0.438 ±0.007 0.437 ±0.007

0.775 1.93 ±0.06 1.94 ±0.06 2.95 ±0.02 2.94 ±0.04

0.760 1.72 ±0.09 1.69 ±0.09

0.735 0.0245 ±0.0615 0.0383 ±0.0615 1.11 ±oo3 1.11 ±0.03

0.686 22.7 ±0.06 22.5 ±0.06 21.8 ±0.05 21.7 ±0.05

0.619 7.36 ±0.03 7.33 ±0.03 7.42 ±0.03 7.40 ±0.03

0.552 6.02 ±0.03 6.02 ±0.03 6.17 ±0.03 6.18 ±0.03

0.480 25.9 ±0.06 25.6 ±0.06 26.1 ±0.06 26.0 ±0.06

0.440 —0.601 ±0.035 —0.223 ±0.036

0.301 0.112 ±0.032 0.136 ±0.032 0.115 ±0.032 0.123 ±0.032

0.256 0.867 ±0.040 0.850 ±0.040 0.806 ±0.040 0.799 ±0.040

4
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NORMALIZED COUNT element and then re-evaluating Eq. (6). The followingChannel Ai1 Ai2 Ai3 matrices are now formed:
1 1 1 1 /1
2 1 1 0

3 1 0 0 0/ (14)

The following matrices are formed according to pre- A = ‘ 1 1

vious definitions: 1 0 (15)

and remains the same.
/1 1

1 o) (7) Then
0 0/

/7/6 1/3
/1 1 1\ (AA) =

A = (1 1 o) (8)
h13 1/3) (16)

/ 6/5 —6/5’0 0 (AA)-’
= c6/5 2115) (17)/113 0 0 \

=

(0

1/2 0

)
(9) (AA)-1A = (0 3/5 2/5\

1 —3/5 —215) (18)0 0 1/3

“3 %

Using these matrices, /3 is found to be

0 3/5 215\ /3\3 1 = (A)-’A
= ( —3/5 —215) (2

Then

/7/6 516 1/3\ 12/5’\
(AA) (516 5/6 1/3\

= ( 3/5)
(19)

\1/3 1/3 1/3) (10)
These results indicate that the best fit requiring only a

/ 3 —3 0\
(AA)-’ = (— 5 —2)

positive or zero /3 is

\ 0 —2 5/ (11) 2.4(1,1,1) + 0(1,1,0) + .6(1,0,0) = 3,2.4,2.4

/0 0

_

The method just completed is rather simple, but care
(AA)’A — ( 0 1 —1 must be taken in eliminating the negative components. A\ i —1 oJ (12) method for minimizing quadratics subject to various

constraints is described by Beale (Ref. 10). The follow-
The /3’s or intensities of each component vector can be ing is an application to the above problem, and is a

determined from Eq. (6) simplification of the work found in Ref. 11. The simplifi
cation is possible, since the only constraint required in/0 0 1\ /3\ / 3\

/3 = (AA)-’A<p = (o 1 _i) ( 2 ) ( applying the technique to pulse height analysis is that of

\1 —1 0/ \ / \, 1)
a poitive solution for the /3’s when minimizing the
quadratic.

(13)

That is, the sum of the vectors (1,1,1), (1,1,0) and (1,0,0) In this method, the quadratic given in Eq. (3) can be
which yields the best fit to the experimental data using formed. For the conditions in the problem discussed
the least-square criterion is 3(1,1,1) — 1(1,1,0) + above, Eq. 3 can be written as
(1,0,0) = (3,2,3). The residual is zero.

M = 8 — 6j3 — 4/3 — 2,83
2If it is known that the intensities must be positive, the + i + -- s +

least-square fit must be made so as to require Eq. (3) 6 6
to be a minimum with the constraint /3 0, /32 0, and
/3 0. One could proceed by eliminating the negative + fl P + /3’ /3 + /3 fi (20)

5
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The sum of the residual squared (M), is to be minimized
and the constraint J3 0, /3 0, /33 0 is to be applied.

A geometric solution of the problem can be considered
with reference to Fig. 3. The method of solution proceeds
in the following manner: Start at point 0 (Fig. 3), that
i&, assume the solution j3 = /32 = /33 = 0. Keeping
/32 = /3 0, increase /3 in a positive direction. As Pi
increases along this direction, M will decrease until point
A is reached. Point A is determined by taking the deriva
tive of M with respect to /3, and setting the derivative
equal to zero with /32 = /33 = 0.

7 5 2
—6+--/31+--fl2+--/33=2u1

Then for

ui = /3 = /3 = 0, /3 = 18/7

The coordinates of A are (18/7, 0, 0). The plane u1 = 0
in the space described by /3i, /3, and /33 contains all points
/3 for which M is a minimum, given any values of /32 and
/33.

Continuing the solution, it is found that increasing /3
any further will only increase M. A change of basis is
now made. Using Eq. (21), ,& is found in terms of u1,
/32, and /33.

=
+ 3

— --

/3
—

This substitution is now made in Eq. (19) and

6U

+ --/3 +

(21a)

Now, keeping u1 = /33 = 0, one changes /32, attempting
to decrease M; that is, /32 is increased or decreased by
moving along the line of intersection of the ii 0 plane
and the /33 0 plane. This intersection is along the line
E indicated in Fig. 3. The problem is to determine in
which direction to move along 51 so that M decreases.
This can be done by taking the derivative of M Eq. (20)
with respect to /3.

at

10aM _2

3
= fl u1 0, /32 = —

In order to decrease M, /32 must move in a negative
direction. This cannot be allowed because of the con
straints; therefore /32 must be made zero. In this case

/32 U2 (23)

and again substitution is made in Eqs. (20) and (21).
The. plane u’2 = 0 is the plane of all values of /32, given
any /3k, /33 for which M is a minimum within the con
straints of the problem. Of course, because of Eq. (23),
this means /32 = 0 for all values of /3 and /3g.

Starting again at point A, an attempt is made to mini
mize M by increasing /33 from zero. /33 is increased along

(21) line, the intersection of the u1 = 0 and u = 0 planes.
This insures that /3 and /32 will have values which will
yield a minimum value of M within the constraint /3 0,
/32 0 for any value of /3g. Using Eqs. (20) and (23),
and taking the partial derivative of .M with respect to
/33, the direction of increase or decrease of /33 and also
the value of /33 can be determined so as to minimize M.

2 10 4 4

(24)

for u3 = u = 0, /3 = 3/5. This value of /33 along
with the value /3 = u1 = 0 can be substituted in Eq.
(21) to determine the value of

— 6r3 1 ()1 — 12
131_7[

3 5J 5

This is point C on Fig. 3 and corresponds to the inter
sections of the u1 = 0, u’2 = 0, and u3 = 0 planes. Thus,
the values of /3, /32, and /3 required to minimize Eq. (20)
within the constraints that /3 > 0, /32 0, and /33 > 0,
are in order 12/5, 0, and 3/5. This is the same result as
that obtained in Eq. (19). If the solution is continued
ignoring the constraints, the absolute minimum (3, -1, 1)
is obtained. This is point H, the intersection of the u1 = 0,

= 0, and U3 = planes. The solution will be independ
ent of the path taken to reach the solution.

The method applied to a case where there are n values
of /3,, to be determined, can be outlined as follows:

1. Using Eq. (3), form the quadratic M = M (/3,

2. Take the partial derivative of M with respect to
/3, and let 2u1

(22)

6
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/33

Fig. 3. Geometric solution of least-square fitting problem

7
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3. Let u1 = /32 = /33 = ... = /3,, = 0 and solve for /31.

If /3i > 0 then solve for /3 in terms of u1, /32, ...,

/3,,. Substitute this value of /3 into the equation for
M. Now M = M (u1, /32. . . ,

/3). The first /? chosen
will always be positive.

4. Now, using the quadratic M found in step 3, the
partial derivative of M is taken with respect to /32.

Let 2u2 = aM/a/32.

5.Letu1=u2=/33=...=/3,,=0,andsolveforf32.
If /32 > 0, then solve for /32 in terms of u1, u2, /3,

/3,, and substitute this value in the equation for
M, step 3. If /3 0, then let /33 = u’2 and substitute
this value of /32 into M, step 3.

6. The above procedure is continued for all /3’s. At
each step, the values for all the /3’s considered up
to that point are determined. If any of these /3’s are
negative, the variable /3 = u is changed. Further,
if a previous change of variable was made which
introduced a u3 = M/f33, u must be eliminated
from the function M, using the relations u f3j
and u, = aMj’a133 before continuing the iterative
process.

7. The n values of /3 are found after the last iteration
by setting all the u and u’ vectors equal to zero.

This solution is equivalent to the following matrix
approach: Assume the measured distribution is made up
of only two components (e.g., the A1’s and A2’s). Least-
square fitting can be used to obtain the /31 and /32 from
Eq. (6).It has been assumed that/33 /34 = ... = /3,, = 0.
If /3 > 0 and /32> 0, add a third component (e.g., A3’s)
and solve Eq. (6) for /3j, /32, and /3g. If any of these /3’s are
negative, that /3i is set equal to zero by eliminating the
A1 components from the matrix calculation involved in
Eq. (6). In this manner, one of the n monoenergetic
components is added at a time, and the /3’s for this set are
determined. If any one of the /3’s determined in a given
set is negative, that /3 is set equal to zero and its cor
responding component is eliminated from the matrix A.
The solution for the /3’s, after all n components have been
added in the manner prescribed above, will give the
values for the /3’s for which M is a minimum and /3’ 0,
/320,...,/3n0,

The number of monoenergetic pulse height spectra
used in performing the above approach will depend upon
the energy resolution of the system. If the energy distri
bution of the incident flux in some region is such that the
energy separation between the various components is less
than some fraction of the half-widths of the photopeaks,

it may be only possible to determine the total number of
gamma rays without being able to uniquely determine the
energy distribution in this region. The half-width of the
photopeak is a measure of the energy resoultion of the
system.

The method described above has been programmed for
the IBM 7090 computer. A fortran statement of this pro
gram is located in the Appendix.

At this point, a comment on the non-negativity con
straint is in order. In the discussion on a negative
intensity was obtained for a component which was almost
zero in comparison to the other gamma rays in the distri
bution. This negative intensity may be attributed to the
statistical fluctuation in the measurement of the poly
energetic spectrum, or to the uncertainty in the deter
mination of the monoenergetic pulse height distributions.
Although the negative solution due to the statistical fluc
tuation in the measurement of the polyenergetic spectrum
might be acceptable in the analysis, it is believed that the
negative introduced by the uncertainty in the mono-
energetic distributions is not meaningful in the analysis
because the variances in these components are not neces
sarily random. The non-negativity constraint is an attempt
to annihilate the oscillations produced by the negative
intensities.

C. Error in Calculation

Once the /3’s in Eq. (6) have been determined, it is
possible to determine the mean square deviation in /3.
If it is assumed that the A,’s are known without error,
this calculation is rather simple. Then, due to the varia
tion in the measurement in p, there will be a correspond
ing mean square deviation in the determination of the
/3’s (Ref. 1). Using Eqs. (4) and (6),

= C A
,

where the following definitions are used: the matrix C
(AA) is a symmetric matrix and the elements C of C
are given by

C = A A- (25)

C’ is the inverse of matrix of C. The elements of C’ are
written as CA’. Thus

CC1 = I

where I is the identity matrix with elements IvA and
T
lvA — L ‘-‘vy ‘—yA (26)

remembering that both C and C are symmetric matrices.
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Further,

From Eq. (6), it is seen that fix is a linear homogeneous
function of the counts under the assumption that there is
no error in the A,5. Thus the mean square deviation u2 (j)
corresponding to the variation in p can be written as

u2(fi) = c c;AivAyw2cr2 (pi)
V 7

1
= 2 (,.)o.i

that is, u2 (fix) can be found from the diagonal elements
of the C-’ matrix. The mean square deviation .2 ( p,) in
the simplest case is

2(p•) Pi

Depending upon the experiment, the corresponding cr’s
can be determined and used in the above situation. The
probable error can then be determined from the mean
square deviation.

The above considerations are true only if it is assumed
that the A’s are known without error, that the set of
A,’s chosen are the correct set, and that the set of pulse
height spectra are linearly independent (i.e., there is no
interference between various components). Further cal
culations are carried in an attempt to determine whether
these problems contribute a significant error.

A factor indicating percent interference can be calcu
lated in the following manner:

lyX 1
IvA = 0

if = A
if A

where

Then

cr2(fix) = CAVAI7

or

= C C. At,, A7

Then from Eq. 25

a2C ( fix) = C C7 C,,7
V7

or

2C(/3) = c;
V 7

andfrom Eqs. (26) and (27)

o2C(fix) = C

‘n=
()

X100% (30)
(27) Cxx C77

It was shown above that C’ is the variance on fix, and
is can be shown (Ref. 11) that Cxy’ is the covariance
of the A’th and y’th components. Then, Eq. (30) is a
measure of interference between the A’th and ‘th com
ponents (Refs. 11, 12).

D. The Analysis of Complex Gamma Spectra
The following experiment was designed to test the

analytic method described above. A mixture of ten differ
ent elements was activated in a thermal neutron flux for
a given length of time and the pulse height spectrum of
the activated sample was measured as a function of time.
A known amount of each element was activated in the
same neutron flux for the same length of time as the
mixture, and the pulse height spectrum of each of these
elements was measured in the same geometrical configu
ration as that for the mixture. A 3 >< 3 in. NaT (Tl) crys
tal with a 200 channel pulse height analyzer was used
for the measurement. These pulse height spectra are
shown in Figs, 4-24. The background spectrum is in
cluded as a separate pulse height distribution. Further
more, it was noticed that due to the presence of some air
in the sample, argon gas had been activated and tended
to perturb the measurement of the pulse height spectra
of the various other elements. A pure argon pulse height
spectrum was measured and an attempt was made to

128) subtract this effect from the spectra of the other elements.
The argon spectrum was included in the analysis of the
mixture spectrum. Finally, it was noticed that in the sup
posedly pure chromium spectrum, there was a significant
amount of sodium. The contribution of the sodium spec
trum to the chromium spectrum was substracted out, and

(29) a “pure” chromium spectrum was obtained.

Since the mixture and each of the various elements
were activated in the same neutron flux for the same
length- of time, and since the standard spectra used in the
analyses were those due to the activation of the various
elements, the results of the least-square analysis will be
in terms of the relative abundance of the element in the
mixture to the amount in the standard. Because there is
radioactive decay of the standard and mixture, decay
time correction must be made in order to determine the
difference between the absolute abundance and the rela
tive abundance. The relative abundances obtained from
the least-square analysis are tabulated in Table 3. The
zeros indicate that the given element has been rejected
in the fit. Interference between the various component
spectra were then calculated. Those interferences which

9
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Table 3. Relative intensities of various elements in mixture obtained using least-square analysis
Mixture removed from reactor Oct. 4, 1962 at 1055

Oct. 4 Oct. 4 Oct. 4 Oct. 4 Oct. 5 Oct. 5 Oct.6 Oct. 7 Oct. Il
Element

1122 1146 1259 1633 0827 1641 0900 1329 0914

Background 9.44 9.55 33.6 3.6 4.72 4.86 5.86 6.87 1.91
No.24 19.9 19.1 15.2 17.1 7.22 3.86 2.12 0.0 0.0
Cl-38 0.68 0.466 0.133 0.0 0.0 0.0 0.0 0.0 0.0
K.42 8.78 7.67 5.59 6.5 3.28 2.34 0.0630 0.0 0.0
Mn-56 0.0691 0.0669 0.0382 0.0166 0.00173 0.0048 0.0 0.0 0.0
Sc-46 0.0340 0.0340 0.0422 0.0442 0.0488 0.0466 0.0360 0.0431 0.0413
A-41 0.0 0.0 0.0 0.0 0.0 0.00806 0.0 0.0 0.0
As-76 10.6 12.5 1 1.3 9.75 6.04 4.52 3.54 1.65 0.363
Cu-64 4.45 3.49 1.94 2.91 1.77 1.38 0.183 0.148 0.0493
Cr-51 4.00 3.93 3.60 4.81 5.0 4.94 4.12 4.39 4.13
1-128 18.1 9.6 0.0 0.0 0.138 0.0274 0.0 0.0 0.132
Lo-140 5.68 4.79 4.41 3.98 2.30 1.91 1.57 0.989 0.199

were significantly high are plotted in Fig. 25. From these
curves it can be seen that one would expect significant
errors in the calculation of the backgrounds of Lan
thanum, Potassium, Sodium, and Scandium. At certain
times the interference may be great, but if one element
decays away, the interference will become negligible.

After correcting for decay, the analysis of the mixture
was obtained, and compared with the actual composition
of the mixture. The results are given in Table 4. The
calculated errors indicated in the table do not include
interference effects.

The calculation for sodium seems to be rather in
substantial; however, it must be remembered that the
sodium was noticed in the chromium standard and this
may partially explain the discrepancy. Further, it should
be noted that in those cases with significant interference,
one element would be overestimated while the other with
interference would be underestimated. The remaining
results seem to be in rather good agreement within the
statistical variance involved in the experiment.

The interference effect may be greatly reduced by
breaking up the various standard spectra into mono-

energetic components and using these components for the
analysis. This group of monoenergetic spectra should be
a linearly independent group.

Further, it can be seen that there is a very significant
interference by background. This background should be
subtracted before the analysis is performed. In the prob
lem above, the background was very small in comparison
to the counts above background, so that when the analysis
was redone with the background subtracted, there were
no significant differences from those reported in Table 4.

Table 4. Experimental determination of composition

Prepared Experiment
Element

sample determinations

Sodium 5.00 g 7.7 ± 1 g
Chlorine 36.8 zg 38.0 ±3.8 g
Potassium 0.404 mg 0.301 ±1.011 mg
Manganese 0.101 cg 0.0904 ±0.0018 g
Scandium 14.2 4ug 12.2 ±2.5 g
Arsenic 5.00 g 4.98 ±0.11 g
Copper 2.23 g 2.11 ±0.16 zg
Chromium 1.82 mg 1.56 ±0.24 mg
Iodine 2.49 4ug 2.68 ± 0.08 jzg
Lonthonum 2.19 ,g 3.02 ±.04 g
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Fig. 16. Pulse height spectrum, K-42 standard

I

0
C)

Fig. 17. Pulse height spectrum, Mn-56 standard

Ca
I
z
0

I I I
:

TIME: 1623 PDT, 9-4-62
- TEST SAMPLE: Mn-56 STANDARD

- SOURCE SPACING FROM CRYSTAL
SURFACE: 5 cm

CRYSTAL SURFACE: 3X3 in.NaI(TI)
\ 66 PULSE HEIGHT UNITS I Mev
\ BACKGROUND SUBTRACTED

‘ooo—,’— I

- COUNTING PERIOD: 5 mm

ARGON: CONTAMINATION

IOO----

10 — —_.- — —

II) .50 50 10 90 110 130 150 70 190 210
PULSE HEIGHT

17



JPL TECHNICAL REPORT NO. 32-373.

Fig. 19. Pulse height spectrum, A-41 standard
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Fig. 23. Pulse height spectrum, 1-128 standard
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NI. CONCLUSION

Finally, it should be pointed out that the analysis is
only as good as the set of fitting spectra available. Spectra
such as those due to bremsstrahlung should be included
in the library of functions used for analysis. At the
present time, a chi-square test is being prepared for

inclusion in the analysis for testing the goodness of fit.
This test, together with the calculation of interference,
should indicate whether such difficulties as the shifting
of gain and the lack of a complete library of functions
have perturbed the analysis.

ACKNOWLEDGEMENT

The author wishes to thank Professor M. Wiedenbeck, University of
Michigan, for his guidance in the development of this Report; Dr. V.
Guinn and his activation analysis group at General Dynamics Corpora
tion, General Atomic Division, San Diego, California, for their aid in
the preparation of samples, activation of these samples, and measure
ment of the pulse height distributions; and P. Poulson of the Computer
Staff at JPL for the preparation of the computer code used in the
analysis.

23



JPL TECHNICAL REPORT NO. 32-373

REFERENCES

1. Rose, M. E., “The Analysis of Angular Correlation and Angular Distribution Data,’
The Physical Revue, Vol. 91, p. 610, 1953.

2. Bell, R. E., R. 1. Graham, and H. E. Petch, “Disintegration Scheme of I’s’ ,“Canadian
Journal of Physics, Vol. 30, p. 35, 1952.

3. Haskins, J. R., and J. D. Kurbatow, “The Disintegration of 1131,” The Physical Revue,
Vol. 88, p. 884, 1952.

4. Bell, P. R., “The Scintillation Process,” Beta and Gamma-Ray Spectroscopy, ed. Kai
Siegbaum, North-Holland Publishing Co., Amsterdam, 1955.

5. Vegors, S. H., L. L. Marsden, and R. 1. Heath, Calculated Efficiencies of Cylindrical
Radiation Detectors, Idaho Operations Office AEC 16370, Sept. 1, 1 958.

6. Miller, W. F., J. Reynolds, and W. J. Snow, Efficiencies and Photofractions for
Gamma Radiation on Nal(T1) Activated Crystals, Argonne National Laboratory
5902, August, 1958.

7. Francis, J. E., C. C. Harris, and J. I. Trombka, Variation of Nal(T1) Detection Effi
ciencies with Crystal Size and Geometry for Medical Research, Oak Ridge National
Laboratory 2204, February 1 2, 1957.

8. Burrus, W. R., “Unscrambling Scintillation Spectrometer Data,” Institute of Radio
Engineers Transactions on Nuclear Science, Vol. INS-7, No. 2-3, February 25-26,
1960.

9. Arns, R. G., and M. 1. Wiedenbeck, “Energy Levels of Re187,”University of Michigan
Research Institute, Report 2863-2-P, August, 1960.

10. Beale, E. M. 1., “On Quadratic Programming,” Naval Research Logistics Quarterly,
Vol. 6, September, 1959.

11. Scheffe, Henry, The Analysis of Variance, John Wiley & Sons, Inc., New York, 1959.

12. Bennett, Carl A., and Norman L. Franklein, Statistical Analyses in Chemistry and the
Chemical Industry, John Wiley & Sons, Inc., New York, 1954.

24



JPL TECHNICAL REPORT NO. 32-373

APPENDIX

Fortran Statement, Least-Square Analysis

The following is a Fortran statement of the least-square (3) NCØL is the number of columns.
analysis program, and was prepared by P. Poulson of the

(4) NOM is the Omega MODE.Computer Staff, Jet Propulsion Laboratory.
NOM = —1, input the weights

The size of the matrices used in the calculation is urn- NØM = 0, unity matrix equal weight
ited by the size of the memory core of the IBM 7090 at
the Laboratory. The designations for the various vectors NOM = 1, set weight equal to 1/RH0
and matrices in the program are the same as those used (5) NRHO is the identification number for complex
in the formulation of the least-square analysis as pre- spectrum set.
sented in this Report.

(6) NRUN is the identification number of the A matrix
A few comments with regard to the input form may set.

aid in the understanding of the problem: (7) Input procedures:

a. Input A matrix by columns.(1) There are two possible calculational MODES;
b. Input RHO vector of size NROWMØDE = 0, non-iterative
c. Input Omega matrix if applicable (i.e., ifMØDE = 1, iterative

NOM —1).
The input is identical for both MODES.

(8) SETUP, MMULT, and MVERT are all JPL matrix
(2) NRØW is the number of rows. package subroutines.
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