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An approximate, closed-form expression for the value of the integral encountered in the 
calculation of the probability density function (PDF) of the envelope of a partially saturated 
ocean acoustic process is obtained. Furthermore, an expression of this PDF as a series of 
modified Bessel functions is presented. The results may also be directly applied to the 
evaluation of the PDF encountered in the structural reliability analysis of rotating machinery 
components. Numerical applications show that the closed-form expression is always within 
1%-2% of the exact result. The required computational effort is substantially lower than that 
required by direct numerical integration. 

PACS numbers: 43.60. Cg, 43.30. - k 

INTRODUCTION 

Acoustic signals in the ocean environment that propa- 
gate through multiple independent paths form processes 
named unsaturated, fully saturated, and partially satu- 
rated. •.2 When the source-receiver distance is small, and for 
frequencies of the process such that negligible perturbations 
occur between paths, the acoustic propagation is called un- 
saturated. In this case, the phases of the paths are constant. 
On the other extreme, when the source-receiver distance is 
large enough, and/or for high frequencies, the phases of the 
propagation paths can be characterized as independent, uni- 
formly distributed random variables with standard devia- 
tions equal to 2•r or Gaussian distributed with standard devi- 
ation >2•r. In that case, the process is called fully saturated. 
The term partially saturated refers to a narrow-band multi- 
path acoustic process occurring at intermediate ranges of the 
source-receiver distance. In that case, the phases of the 
channels can be characterized as independent random vari- 
ables with standard deviations less than 2re. For a more de- 

tailed discussion of the above definitions, see Ref. 1. 
Knowledge of certain statistical properties of the acous- 

tic signal envelope is required in order to use existing signal 
detection algorithms. 3 The first- and second-order PDFs of 
the envelope of a partially saturated process are of particular 
importance, since the partially saturated process is the most 
general of the three processes mentioned above. In fact, the 
envelope statistics in the partially saturated case have been 
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shown to reduce to the corresponding statistics of the un- 
saturated and fully saturated cases as they have been derived 
in Refs. 4-6. 

Expressions for the PDFs of the envelope of a partially 
saturated ocean acoustic process at one • and two 2 points in 
time have been recently derived. Both expressions are not in 
an analytical closed form and their applications require nu- 
merical integrations. The evaluation of the upcrossing and 
downcrossing statistics of a given threshold requires integra- 
tion of the first- and second-order envelope PDFs. Multiple 
nested numerical integrations should be performed to evalu- 
ate the aforementioned statistics. 

The results for the envelope PDFs derived in Refs. 1 and 
2 are also of interest in recent research in torsional vibrations 

and structural reliability. 7-9 Under certain assumptions, the 
envelope statistics of the stress in a diesel engine shaft are the 
same as that of a partially saturated acoustic process. An 
integration scheme based on Robert's methodSø has been de- 
vised to evaluate the necessary upcrossing statistics in that 
case. 

Since the computational cost of the above evaluation is 
high, and in the absence of an exact closed-form expression, 
it is highly desirable to derive approximate, closed-form ex- 
pressions for the integrals involved in the evaluation of the 
first- and second-order PDFs of the envelope of a partially 
saturated process. This will make the detection algorithm 
more efficient and also provide insight into the limiting be- 
havior of the PDFs. 

Finally, it should be mentioned that the importance and 
usefulness of a closed-form expression for the envelope PDF 
is not confined to the particular problem in underwater 
acoustics and structual reliability, but extends into other 
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problems in random vibration and statistical communica- 
tions theory. 

The first-order PDF of the envelope of a partially satu- 
rated process p 

P•, (Po) = Po 
2rrax%(l _2 ,,/2 

Xexp 2(1 --p•y 
--- -•, (1) 

where 

I = exp(a cos • + b sin • + c cos 2• + d sin 2•)d•b, 

and 

d- - Po (Px•__• #•, ). 

(2) 

2(1 _ p•2•,) 

In the same equation,/a•,/•y are the means and o•, • are the 
variances of the coefficients of the cosine and sine compo- 
nents of the acoustic signal, respectively. Finally, p•y stands 
for the correlation coefficient of these components. 

It is the scope of this article to derive a dosed-form, 
approximate expression for integral I involved in the evalua- 
tion of the first-order PDF of the envelope, and, consequent- 
ly, an expression for that PDF. The exponent of I in (2) is 
the sum of two sinusoids with a given phase difference. 
Therefore, it is expected to have four stationary points. The 
derivation is based on the approximation 6f the exponent in 
the neighborhoods of the maxima by second-order polyno- 
mials having the same roots and maxima. The derived 
expression is tested by applying it for different cases and 
comparing the results with those obtained by direct numeri- 
cal integration. 

I. DERIVATION OF THE APPROXIMATE CLOSED-FORM 

EXPRESSION 

Our approach is based on the approximation of the ar- 
gument of the exponent in (2) in the neighborhoods of the 
maxima by second-order polynomials having the same roots 
and maxima. It is then clear that the integral obtained after 
the approximation can be evaluated in closed form. 

We use the following abbreviations: 

F(qf) =acoscp+bsinc•+ceos2q•+dsin2qf, (3) 

I = exp[F(•) ]d•. (4) 

The exponent can be written in the following form: 

F(•) = a' cos(• + •,) + b' cos(2• + 62), (5) 
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where 

a' = (a 2 + b 2),/2, (6) 

b ' = (ca + d2) '/2, (7) 

6,=tan-'(-b/a), 6, in [--•r,•r], (8) 

62 = tan-•( - d/c), 62 in [ - •r,•r]. (9) 
First, we find the maxima, minima, and the roots of the 

exponents F(O). For the stationary points, we set dF/ 
d• = 0. That gives 

-- a sin • + b cos • -- 2c sin 2• + 2d cos 2• = 0. 

(lO) 

Substituting cos • = u and sin 6 = -I- x/• •, we get 
16(d 2 + C2)U 4 -1- 8(bd + ac)u 3 

+ [a2+b 2--16(ca+d2)]u • 

+ ( -- 4bd -- Sac) u + 4cl • -- a • = O. ( 11 ) 

A similar transformation yields the following equation for 
the roots of the exponent: We set F = 0. After the substitu- 
tion cos • = u, we obtain 

4(ca + d2)u 4 -{- 4acu 3 -I- 4bdu 3 

+ [a2+b2-4(ca+d2)]u 2 
-- 2acu -- 4bdu + c a - b • = 0. (12) 

Hence, in both cases, we have an algebraic equation of the 
fourth order in u. The roots and the maxima of the exponent 
can be found by solving the corresponding algebraic equa- 
tions with respect to u, and, consequently, the equation 

• = cos-' u•, 0<• < 2rr 
for •. The last equation has two roots • for each u•. There- 
fore, we have to select those angles that satisfy Eq. (10) for 
the maxima, and F({fi) = 0, where F{•) is given by {3), for 
the roots. 

The roots of the fourth-order algebraic equation 

U 4 "{- 0•1 u3 'JU Oil u2 '3 L an: 0 (13) 

are given by the following theorem": 
If.v• is a real root of the third-order equation 

• -- (Z2• '•- (•,•3 -- 4•4)Y -{- 4a2an -- •3 z -- •'•4 = 0, 
(14) 

then the four roots of (13) are the roots of the quadratic 
equation 

Z z + •[(z, + (a• -- 4• + 
+ -T- - = 0. ( 

The roots of the third-order equation 
y• + •v • + •'• + •'3 = 0 are 

y• = - «($ + •) - « •, + •, •($- T), (l•) 

= - + T) - - 
where 

$= [• + (• + • •)m]•/•, 
(17) 
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and 

Q--•(3/•:-/• •), R = fi(9•l•: - 27fl3 - 2• ). 
(18) 

If [•l,F(41)] is a positive local maximum of the exponent 
and 4'1 and 4'1' are the two roots before and after 41, respec- 
tively, the value of the integral 

A • = e v d4 

can be approximated by 

e-Z•+•dx+ e-Z'•+•dx ' 

where 

p[=•-•;, •=F(4•), 2•=•/p( •, 

P7 =4';-4, ana 2" 
Therefore, 

A• = •(p•/2)• erf (•). (19) 
In the case of a local minimum, where we do not expect a 

significant contribution to the value of th• total integral, we 
use a quadratic approximation to the quantity F. If 
F(•) ] is a local minimum and • = F(4•) • 0, the integral 

• = e • d•, 

where 4• and 4•' are the roots of the exponent immediately 
before and after 4•, respectively, can be approximated 

A• =p•(• + •), (20) 

where p• = 4•' - 4•. Hence, 
4 

I= • A,, (21) 
where 

A•'(p•/2)• eff(•), i= 1,2,3,4, g>0 (22) 
and 

Ai•pi(•4•'), i= 1,2,3,4, g<0. (23) 
The final result for the first-order PDF then becomes 

2•a•%(•p•y)•/2 exp 2(1 -p•) 

Note that it is possible to have only two roots, • and •2. In 
this case, we can take I = A • + A 2. In the case where three 
stationary points exist between the two roots, we can handle 
the middle one as if it were another root. 

In the frequent case where the maximum value of the 
exponent is large (• >4), Laplace's method may be ap- 
plied. •2 According to this method the major contribution to 
the value of the integral arises from the immediate vicinity of 
those points of the interval, at which the exponent assumes 
its largest value. IfF(•) has more than one maxima, we may 
break up the integral into a number of integrals, such that in 

each integral F(4) reaches its maximum at one of the end 
points and at no other point. Accordingly, we shall assume 
that F(4) reaches its maximum at 4=4o, and that 
F(4) <F(4o) in the interval discussed. Since our Fis twice 
continuously differentiable, and F' ( 4o ) = 0, F" (4o) < 0, we 
may apply the technique introduced by Laplace. Specifical- 
ly, a new variable u defined by the substitution 

F(4o) -- F(4) = u•F'(qb), 

will be negative in 40<4<4o + V, for some sufficiently small 
•/. As F(4) becomes large, 

I--•2 e r(•) d4 

- 4 u (exp[F(•o) - u2])du, (25) 
F'(4) 

where 

u = [F(•b o) -- F(4o + r/)] '/2 >0. (26) 
Since only the neighborhood of u = 0 matters, we may re- 
place u/F' (d) by -- [ -- 2F"(4o) ] - i / 2, which is the limit of 
u/F'(d) as 4--'4o, and obtain 

I-• \F" (40) ] {exp[ - u 2 + F(4o) ]}du. (27) 
By the same argument, we may extend the integration to 
u = o• and finally obtain Laplace's result: 

I•--e v(•ø) [ -- 2•r/F ' (40) ] I/2. (28) 
In the general case, where we have to deal with two maxima, 
/•l = F(4ol) and/% = F(4o2), 4•[0,2•r], the value of the 
integral will be 

I--•e •' [ -- 2•'/F" (4Ol) ]1/2 ..• e,a2[ _ 2•'/F" (402) ]1/2 
(29) 

A. Special cases 

Case A: a 2 + b 2 >) c 2 + d • 
Using Eq. (5) and the transformation •b = 4 + 61, we 

obtain 

I= exp Fl(•b)d•b, 

where Fl(gb) =a' cos •b+b' cos (2gb+6) and 
6 = 62 - 251. In this case, we expect the maximum value of 
Fl(gb) to be near •b = 0. 

For small values of •b, 

a' cos •b-•a'(1- if/2), 
and 

b' cos(2•b + •5) = b '(cos 2•b cos 6 - sin 2gb sin 6) 

•-- [ ( 1 -- 2if)cos õ -- 2•b sin õlb '. 
Consequently, 

Fl•a'--(a'/2)gA + (cos 6--20: cos 6--2• sin 6)b' 

=a'+b' cos 6-2•bb' sin 6 

- ½3(2b' cos õ + a'/2). 
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To find the value of•b that maximizes F•, set dF1/d•b = O, or 
equivalently, -- 2b' sin 6 -- 4•bb' cos • + a'/2 = 0,which 
yields 

•bo = -- b' sin 8/(2b' cos • + a'/2) (30) 

(since a'>• b' and Iol 41). 
An approximation to I can now be the quantity 2rr I o (/•) 

for/• <4, where/x = •b(4o), •o = •bo - $l, and Io(/•) is the 
modified Bessel function of order 0. The above approxima- 
tion is valid for small values of/•. For large values of/•, we 
can use Eq. (28). 

Case B.' a 2 d- b 2<•C2 '-• d 2 

After the substitutions •b = & + $2/2 and 5 = $, -- $2/ 
2, the exponential becomes 

F2(•b) = a' cos(•b + t•) + b' cos 2•b. 

The exponent has two maxima located near 0 and rr. 
Using a Taylor expansion, we obtain the following ap- 

proximations for small 

a' cos(•b+6)=a'[(1- •/2)cos •--• sin 6], 
and 

b' cos 2•b=b'(1--2•). 
Consequently, 

F2•_a'cos 6 -- a'(•b2/2)cos 
The value of •b that lies near 0 and maximizes F 2 is 

•bOl = a' sin •/(a' cos t5 + 4b ') 

_• --a' sin 8/(a' +4b'). (31) 

For the second maximum, we have 

•bo• = rr -- •bOl. (32) 

An approximation to [ can now be the quantity 

2•rlo(/•l) d- 2•rlo(/•2), (33) 

where/x I and/•2 are the maxima of F at •bo• and •bo2, respec- 
tively. Equation (33) should be used for small values of/•, 
/•2. For values of/ž l,/•2 greater than 4, we can use Eq. (29). 
Case C.' 

If parameters a, b, c, d are all small ( • 1 ), an approxima- 
tion can be obtained by expanding the exponent, in power 
series about zero, integrating term by term and dropping the 
higher than second-order terms: 

er= 1 + (F/l!) + (F2/2!) + '-', 

hence, 

I -- f2•' 2;,r 
= [4+(a2+b2+c•+d2)]•'/2. (34) 

II. DERIVATION OF A BESSEL SERIES 
APPROXIMATION 

The first-order PDF can be evaluated in terms of an 

infinite power series of modified Bessel functions. The eva- 
luation is based on the expansion of the cosine terms of the 
exponential into power series as follows: 

a' cos(•+8•)= • 
n= o 

e.( -- 1)" I.(a')cos(n• + n$1) 

(35) 

and 

b' cos (2•b + g2) 

= •, era( - 1)'"I,,(b')cos(2mqb+m$2), 
rn=O 

where 

e,(m) = 1 for n(m) = 0and e,(m) = 2 for n(m)>l. 

Substituting (35) and (36) in (4), we obtain 

l= e.e,•( -- 1)'"+"I•(a')I,.(b ') 
n=O m=O 

Xcos(n• + nt•)cos(2m4 + m62)dq), 
or 

(36) 

-- e,.e. ( - 1)'"+"I. (a ') 
2 n, = I n=O m=O 

X[,,(b')cos([2m + ( - 

+ [mt• + ( - 1)•'ntS1])d&. (37) 

The only terms of the sum in (37) that are not zero are for 
n = 2m and rt I = 1. Dropping all the terms that are zero, Eq. 
(37) yields 

I=•rlo(a')Io(b') + w • erne:rn -- 1)I,,(a')I:,,(b') 
rn=l 

žCOS m(5 2 -- 26•). 

In most cases, three or four terms in the sum of Eq. (38) are 
enough to obtain a reasonable estimate of I. However, the 
evaluation of the modified Bessel functions requires a con- 
siderable amount of computational effort. To obtain the en- 
velope PDF, we substitute the expression for I as obtained 
from (38) in (1). 

III. EXAMPLES 

A. General case 

Quantities a 2 + b 2 and c 2 + d 2 are of the same order of 
magnitude. Two numerical examples will be considered 

L a=b=c=d= I 

Equation (12) becomes 

8U 4 d- 8U 3 -- 6U 2 -- 6u = 0, 
or 

u(4u 2-- 3)(u + 1) = 0, 

whose roots are 

u,=0, u2 = -1, U3----3Xfer, U4----- 3xfer. 
Since u = cos •, the corresponding values of • are 

•l = •r/2 = 1.5708, • = •r---- 3.1416, 

•3 = 3.6652, •b 4 = 5.7596. 

Equation ( 11 ) becomes 

u 4 + 0.5u 3 -- 0.9375u • -- 0.3750u + 0.0938 ---- 0. 
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The third-order equation, 

Y• -- az• + ( ata3 -- 4•t4).P -{- ( 4ct2a4 -- ot• -- a•2 ot4) = O, 
becomes 

y• + 0.9375y 2 -- 0.56253, -- 0.5156 = 0. 

The real root of this equation is Yt = 0.7454. 
The quadratic equation, 

Z 2 q- «(or I +___4o• -- 4o• 2 q- 4yl)Z 

-4a4) =0, 
becomes 

(1) Z2+ 1.5711Z+0.5851 =0, 

with roots Z, = -- 0.6008 and Z2 = -- 0.9644, and 

(2) Z 2-- 1.0711Z+0.1602=0, 

with roots Z 3=0.1798 and Z4=0.8914. Since 
4i = cos-' ui, 4a•(0,2•r), we have 

•b I = 0.4704, 42 = 2.2228, 

•b 3 = 3.4092, •b4 = 4.8932, 
and 

/z• =F(41) =2.7418, /z2 =F(•b•) = -- 1.0402, 

/t3 = F(•b 3) = 0.1414, /z 4 = F(•b 4) = -- 2.0930. 

Since the values of/•e are small ( < 4), we use (19) and (20): 

Al = e"'(pl/2) •x/37•eff(•x/•) = 15.6523, 
A• =Pc(« + e•) = 1.0850, 
A3 = 0.3979, A• = 0.9563, 

and 

I=•A i = 18.0915. 

The exact value of/, calculated numerically, is 17.7622, and, 
hence, the difference is only -- 1.854%. 

•. a=b=c=d 

Equation (11) is the same as in Sec. Ill A 1. Hence, 
•bo• =0.4704, /•t = 13.7090, and F'(•bol) = -- 34.6665. 
Also, 

•bo2 = 3.4092, /z• = 0.7070, 
and 

F • (•bo•) = -- 21.2595. 

Using (29), we obtain I• 382 719. The exact value of/is 
387 820, and, hence, the error is + 1.315%. 

B. Special case A: a=+ba•c•+d • 

Assuming a = 10, b = 1, c = 1, d = 1, we obtain 

a' = • = 10.0499, 
8• = tan-I( -- b/d) = - 0.0997. 

b' = • = 1.4142, 

82 = tan-'( - d/c) = - 0.7854, 

6 = •i2 - 261 = - 0.5860, 

•ba = - b 'sin •5/(2b' cos 6 + a'/2) = 0.1060, 

•bo = •bo - •5• = 0.2057, 

/a = F(•b o) = 11.3099, 

e • = 81,685, and F'(•bo) = -- 15.2591. 

Using (28), we obtain I•52416. The exact value 
I = 53 361, and the error is q- 1.771%. 

C. Special case B: a•+b2<•c=+d • 

Fora= 1, b= 1, c= 1, andd= 10, 

a' = • = 1.4142, 
•5• = tan-l( -- b/a) = -- 0.7854, 

b'= c• = 10.0499, 

2i 2 = tan-l( -- d/c) = -- 1.4711, 
$ = 61 -- •52/2 = - 0.0498. 

For the first maximum we use Eq. (28): 

gbo• = -- a' sin 6/(a' + 4b ') = 0.0017, 
or 

i$ 

q•Ol = •Ol -- (52/2 = 0.7373, 

]/1 •- 11.4624, F"•bOl ) = --41.6118. 

For the second maximum, 

•bo2 = -- •ol = -- 0.0017, 
or 

q3o• = 1Po2 -- 62/2 + rr = 3.8755, 

,u 2 = 8.6371, F" (•bo2) = -- 38.7869. 

Using formula (29) we get I• 39 212. The exact value of/is 
39 702 and, hence, the error is 1.233%. 

IV. FURTHER RESEARCH 

An approximate closed-form expression for the joint 
PDF of the envelope at two distinct points in time is a desir- 
able future research direction. The evaluation of this PDF 

involves two nested integrations. The quantity to be integrat- 
ed is an exponential function and the exponent F(•bl,•b 2) is a 
generalized form of F(•b) as defined in Eq. (3). Laplace's 
method has been applied to integrals depending on two large 
variables by Fulks •3 and Thomsen" and to double and mul- 
tiple integrals by Hsu 15-'? and Rooney. '8 If the stationary 
points of the exponent F(•b,,•b z) can be analytically located, 
an approximate closed form expression may be derived. 
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