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A sequential hypothesis testing, optimal stopping problem in underwater acoustic detection is 
formulated and solved using dynamic programming. The problem calls for deciding whether 
acoustic signals being received over long ranges in the ocean are due to a source or to ambient 
noise alone, so as to minimize the expected value ofa specitied cost function over a given time 
horizon. The cost function incorporates a constant cost per observation as well as terminal costs 
for false acceptance of either hypothesis. According to previous work by the authors, and without 
loss of generality, modeling the acoustic signals assumes a two-state discrete-time Markov process 
for each of the two hypotheses, the state of the process depending on whether the intensity of the 
signal at the receiver is above a specified threshold or not. The decision process presented is based 
on observations of the signal's "interarrival times," that is, the time intervals between two 
successive detection events. The algorithm is then extended into more than two alternative 
hypotheses (several "false" targets) and results using both simulated and experimental acoustic 
data for the two and three hypotheses cases are presented. Computational issues in implementing 
the algorithms as well as possible extensions of this work are finally discussed. 

PACS numbers: 43.60.Gk,43.30.Bp 

INTRODUCTION 

In previous work (Psaraftis et al., 198 la,b), it was shown 
that under fully saturated phase-random multipath acoustic 
fluctuations (for a definition see Hamblen, 1977; Mikha- 
levsky and Dyer, 1978; Mikhalevsky, 1979, 1980), the under- 
water acoustic detection process has memory. It was demon- 
strated theoretically and also verified via a comparison with 
data, that the occurrence of a detection event at some instant 
of time strongly influences the probability of another detec- 
tion event shortly thereafter. Detection events were defined 
as occurring whenever p, the root mean square pressure at 
the receiver, exceeded a specified threshold level. In Psaraf- 
tis et al. (1981b) it was shown that the detection process can 
be modeled as a discrete-time two-state Markov process (see 
Fig. 1) being in state U (for "up") for p>po and in state D (for 
"down") forp <Po- The transition probabilities a and b were 
evaluated as functions ofpo, of some other statistical param- 
eters of the signal and of the user-calibrated time increment 
A T, which separates two consecutive opportunities for a 
state transition. Probability mass functions (PMFs) of the 
time interval between two successive detections (or D-U 
transitions) and of the time interval between a D-U transi- 
tion and the first U-D transition that follows, were derived 
in terms of a and b. The above time intervals will be referred 

to as "interarrival time" and "holding time," respectively. 
The purpose of this paper is to develop an algorithm for 

deciding whether acoustic fluctuations being received over 
long ranges in the ocean are due to a source or to noise alone. 
Specifically, we assume that exactly one of two hypotheses is 
true: Hypothesis Hi, according to which the fluctuations 
being received are coming from a source (plus some back- 
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ground noise), or hypothesis H• according to which the fluc- 
tuations are due to noise alone. We also assume that the 

detection process is a discrete-time Markov one as outlined . 
above, with known transition probabilities: (ai,b•) if HI. is 
true and (ao,bo) if rio is true, and with the same time interval 
A Tin both cases. Starting with an apriori probability that Hi 
is true, we have to decide in at most N observations (stages) 
about which of H• and H o is true. At each but the last time 
stage, we may stop and declare one ofH, Ho as being true, or 
we may continue "observing" the process. In both cases we 
incur costs. In the former case, we incur costs in case of false 
acceptance, while in the latter case we incur observation 
costs. The objective at hand is to make the above decision so 
as to minimize its expected total costs. 

The idea to use sequential algorithms in order to decide 
on the validity of a particular hypothesis chosen among a set 
of mutually exclusive hypotheses is not a new one. In Wald 
(1,947), the Sequential Probability Ratio Test {SPRT) was 
first proposed as a procedure to test a simple hypothesis 
against a simple alternative. Modifications to the test have 
appeared in subsequent research, enabling it to deal with a 
wider class of problems in a satisfactory manner. Several 
authors have presented modifications to the decision thresh- 
olds of the SPRT so as to maintain a reasonable expected 
sample size when the same SPRT is used in testing a simple 
hypothesis against a composite alternative (Anderson, 1960). 

1-a 1-b 

FIG. 1. Two-state Markov model. 
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Resets were also introduced in Chien and Adams (1976) in 
order to detect a change from one hypothesis to another at 
some unknown time. 

A usual assumption in problems of that nature, which 
we shall also adopt, is that only one of the hypotheses tested 
is true, for the entire duration of the observation interval. 
Attempts to include changes in hypotheses, such as shifts 
from one hypothesis to another at random points in time, 
usually cause severe computational difficulties in the solu- 
tion; Chernoffand Zacks (1964) point out that in such cases 
only ad hoc and hence suboptimal procedures offer any prac- 
tical solutions. In terms of our specific problem, the above 
assumption will mean that the source (target) under investi- 
gation either is or is not there, with no shifts allowed between 
these two states. The stationarity assumption of the phase 
random process is hence preserved in our hypothesis testing 
as well. 

The remainder of the papeLis organized as follows: Sec. 
I formulates and solves the two-{aypotheses case via dynamic 
programming, using the probability of one of the hypotheses 
being true as the system's state variable. This probability is 
updated in a Bayesian manner based on observations on the 
interarrival time of the process. It is seen that the Markov 
assumption causes no loss of generality in our algorithms 
and that their generalization to any other process is straight- 
forward if the PMF of the interarrival time of the process is 

. given. This section also extends the above formulation for 
more than two hypotheses. Although the extension is 
straightforward, it is seen that computational issues are like- 
ly to make such an extension impractical for a number of 
hypotheses higher than three. Section II presents and dis- 
cusses several numerical applications of the algorithms for 
the two and three hypotheses cases. Finally Sec. III discusses 
important issues regarding this work and suggests areas for 
further research. 

I. PROBLEM FORMULATION AND SOLUTION 

As mentioned in the previous section, the version of the 
problem we shall deal witl• calls for deciding between two 
hypotheses H•, the "signal-plus-noise" hypothesis, and/-/o, 
the "pure noise hypothesis." The following is assumed to be 
known about the decision process: 

(1) Each hypothesis Hi(i ---- 0,1) implies a discrete-time 
two-state Markov process for fluctuations arriving at the 
receiver, according to which the state of the process is either 
U or D {"up" or "down") with known transition probabili- 
ties al and bi {i = 0,1 } from U to D and D to U, respectively. 
Opportunities for a state transition occur every A T units of 
time. 

{2) The process starts with some user-supplied a priori 
probabilitypo{Ho} that Ho is true. If such a probability is not 
available, we can always start with Po{Ho}.= 0.5. Based on all 
available information and at any subsequent point in time, 
we may decide to stop and declare that either H o or H• is 
true. In case of false acceptance ofH o {H•) we incur a known 
penalty of L•L•}. Alternatively, we may decide to gather 
more information about the process in a way described be- 
low. 

(3) Observing the process involves a known cost of Cper 
observation. Each observation simply involves recording the 
process' "interarrival time," that is, the time interval 
between two consecutive detection events (or D-U transi- 
tions). In other words we assume that we will be using only 
the above variable to update our information about the sys- 
tem. 

{4} Our objective is to declare one of the two hypotheses 
as being true in at most N observations, while minimizing the 
expected value ofthe.total cost associated with that decision. 

Before we proceed to the mathematical formulation 
some observations and clarifications are in order. 

(1) As it will be seen later in this section, the Markov 
assumption about the process is not binding, and therefore 
causes no loss of generality. That assumption can be replaced 
by any other assumption about the detection process as long 
as the PMF of the interarrival times for each hypothesis of 
that process is an input and these interarrival times form a 
sequence of independent observations. In the Markov case, 
the above PMFs are derived from the Markov transition pro- 
babilities and the independence assumption holds. 

(2) The false acceptance costs L o and L•, as well as the 
observation cost C are not constrained to be constants. We 

could generalize by assuming that these costs depend on 
when they are incurred, that is, on the stage of the process at 
which they are realized. The assumption that they are con- 
stant is for simplicity reasons and may be therefore easily 
dropped. Moreover, since we are minimizing the total ex- 
pected costs, if the cost per observation is not just a function 
of time but a random variable whose expected value is a 
known function of time we will not have additional compli- 
cations in the algorithm. 

(3) The interpretation of the above costs is open to dis- 
cussion. In a passive sonar surveillance situation, either a 
"monetary" or an "operational" interpretation can be given. 
For instance, C could be interpreted in terms of resources 
(sensors, CPU time, communication channels) that are used 
in order to make an additional observation. Similarly, the 
penalty costs L o and L• can be interpreted in terms of re- 
sources that would have to be used if a corrective action is 

necessary in case a false "verdict" is recognized. The issue of 
how to weigh these two kinds of costs i•s considered to be 
beyond the scope of this paper. 

(4} The assumption that our only observation variable is 
the interarrival time of the process is, of course, simplistic 
and patently in contrast with the intricate signal processing 
and other information collecting mechanisms available in 
modern underwater surveillance. However we have made 

that assumption to provide a motivation on how the above 
important variable could affect the decision-making process 
in the version of the problem we described. A further discus- 
sion on the merits of that variable as opposed to others is 
carried out in Sec. III. 

With the above clarifications, we now proceed to the 
formulation and solution of the problem. 

Let n be the stage variable of the process. Each stage 
corresponds to a potential observation. The process starts at 
n = 0 and ends at astage n which can be no more than dr. 
Each decision to continue observations or stop and declare 
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Ho orH• true is made immediately after each observation. It 
is, in that respect, important to emphasize that the time in- 
terval between stages n and n d- 1 is not constant, but is equal 
to the duration of the interarrival time that elapses in 
between. Of course, this time interval is an integer multiple 
of AT. 

Let also x, be the state variable ofthe process. x, is the 
probability that Ho is true at stage n, that is, after n interarri- 
val time observations. Obviously, x o ---- po(Ho}. 

We denote asf•{k } li -- 0, I and k positive integer) the 
PMF of the interarrival time of the process if hypothesis Hi 
is true. k is the interarrival time itself and is expressed in 
multiples of AT. It was shown by Psaraftis et al. (1981b) {or 
can be easily derived) that for a two-state Markov process 
with transition probabilities a, and b,,f•{k ) is of the follow- 
ing form: 

f•{k)= (1-a)•-•!l-b) •-•-• , k=2,3,4 .... 
lO, otherwise. 

We note that our notation implies tl•at k----2 (the lowest 
possible'value for k ) in case of a D--U-D-U transition. 

Our observation variable is denoted as z,. z, is the value 
the nth observed interarrival time, also expressed in multi- 
pies of A T. 
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FIG. 2. Stagea in a 2-hypotheses teating nl•orithm. 
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FIG. 5. Simulated data, 2-hypotheses case, for various po(Ho)'s. 
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Finally, let us define asJ, (x,), the minimum achievable 
additional expected cost to terminate the decision process 
given that after n observations the probability that H o is true 
is x•. Following Bertsekas (1976) it is now straightforward to 
solve the problem by dynamic programming. The relevant 
relationships are 

JN(XN = rain [(1 -- x,lo, 

f(1 - x)Lo 
J,(x•) = minl x,L, (n = 0,1,...,N -- 1}, 

l c 
(3} 

with 

x,, +, = , (41 
x•fo(z,+ ,) + I 1 -- x•)f,(z,+ •) 

and 

and the expectation taken over z, + • which obeys the PMF 
given by 

prob(2• +, I = x, folz, + •1 + (1 - Xn [fl{2n + I ), 
for z• + • = 2,3,... (6) 

The numerical implementation requires a diseretization of 
the state space. 

The extension of the above algorithm to more than two 
hypotheses is also straightforward. For M> 2.hypotheses 
Ho, H1,...,/-/•t_ •, the state variable becomes a (M -- 1}-di- 
mensional vector each of its elements denoting the current 
probability that the corresponding hypotheses is true. Per- 
haps the most significant difference between the M = 2 and 
M> 2 eases conecrus the computational effort of the algo- 
rithm. If we diseretize the [0,1]'interval of each probability 
into s values, then storage for the algorithm grows as Ns •t- • 
and running time as NMs st- •. It is dear that this growth 
becomes explosive even for relatively small values ofM le.g., 
4 or 5), unless the degree of discretization also becomes very 
small. But even in the most crude discretization scheme--in 

which s = 2, "high probability" or "low probability"--the 
growth still remains an exponential function of M. 

II. A NUMERICAL ILLUSTRATION 

The DP algorithms described in the previous section 
were programmed at the MIT Joint Computer Facility's 
VAX/VMS system, Both th6M = 2 and them = 3 hypoth- 
eses cases were run. In both cases the probability state spaces 
were discretized; 101 values for M = 2 and 51 X 51 values for 
M = 3. The results of those runs appear in Figs. 2-7. Table I 
summarizes the values of the inputs to those runs. The Mar- 
kov transition probabilities were calculated for a specific 
phase random acoustic environment and detection thresh- 

old, as described in Psaraftis et aL (1981b). In all runs, the 
time interval A T of the Markov model was chosen to be 

equal to 0.4 s, being calibrated in a way also describo.:l. in 
Psaraftis et al. {1981b). The PMFs of each Markov mode!'s 
interarrival times can be obtained by substitufin• the values 
of the Markov transition probabilities {Table I) in Eq. {I). A 
discussion of the numerical results follows: 

Figure 2 shows the decision regions for each stage in a 
two-hypotheses case, for two different observation costs and 
for N = 30. Everything else being equal, as it could be ex- 
pected, the "continue-observations" decision region gets 
wider if the observation cost drops. It can also be seen that 
there is a gradual shrinking of the above region as one ap- 
proaches the end of the decision horizon N, at which point 
the region in question actually vanishes. 

Figure 3 is the counterpart of Fig. 2 for the three-hy- 
potheses case and for N = 7. The acceptance and "continue 
observations" regions form now areas in the [p{Ho), p(H!} ] 
plane, separated by distinct boundaries. As before, the "con- 
tinue-observations" region shrinks as n approaches N. 
Clearly, two consecutive states of the decision process (for 
instance, two adjacent points on the abscissa of Fig. 2) are 
not necessarily separated by a fixed time interval, but corre- 
spond to instants when detection is made. The time interval 
between two consecutive stages is the interarrival time of the 
process which can take on any value. Hence, the horizontal 
axis of Fig. 2 cannot be considered as being to scale with any 
fixed time interval. 

Figures 4 and 7 represent actual realizations of the deci- 
sion process for both real and simulated data. All runs corre- 
sponding to those figures require the user to specify an a 
priori probability that each hypothesis is true. The "for- 
ward" part of the algorithms is then executed, taking into 
account observations of the interarrival time of the process. 
In the runs discussed here, these observations were sampled 
either from real acoustic records {Figs. 4 and 6) or from data 
obtained via a Monte Carlo simulation on the interarrival 

time PMFs {Figs. 5 and 7). 
In Fig. 4 we test our algorithm with real data sampled 

from hypothesis H o {the actual true hypothesis), starting 
with six different values of the user-supplied a priori prob- 
ability that H o is true, all of them inside the "continue obser- 
vations" range at n = 1, and with C = 0.02. We can see that 
even whenp{Ho) is as low as 0.2, observations on the systems 
interarrival times are such that in all cases the algorithm 
identifies the correct hy•othesis within at most nine observa- 
tions, much shorter than the allowed horizon of 30. 

Figure 5 is similar to Fig. 4 but data are now sampled by 
Monte Carlo simulation. The same comments as before are 

in order, but the algorithm here takes longer to identify the 
correct hypothesis. Figures 6 and 7 display similar tests for 
the three-hypotheses case, where the actual true hypothesis 
is Hi. Figure 6 refers to real data while Fig. 7 to simulated 
data. In both cases the algorithm concludes that Hi is true 
after five observations lin a horizon of seven). 

Of course, the figures presented above by no means sug- 
gest that the algorithm will always identify the true hypothe- 
sis. Its ability to do so would be reduced if the algorithm is 
"forced" to come to a conclusion within a few observations, 
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because of, say, a high observation cost that would make the 
"continue observations" region narrower. 

III. DISCUSSION: CONCLUSIONS AND POSSIBLE 
EXTENSIONS 

The algorithms presented in this paper were developed 
to take advantage of recent work in the area of ocean acous- 
tic detection (Psaraftis et al., 1981a,b), work which demon- 
strated that one can predict the timing of detection events in 
the case of a phase random multipath process. The random 
variable which was chosen to reflect the timing of such 
events is the "interarrival time" of the process, that is, the 
time between two consecutive detections. In that respect, the 
algorithms developed use the above random variable as the 
"observation variable" for their Bayesian probability up- 
dates. One can say that the choice of that random variable as 
opposed to another has been dictated by methodological ar- 
guments rather than its unambiguous superiority for use as a 
statistic. This is a topic for discussion which is considered 
outside the scope of this paper. Nevertheless, one can justify 
the use of such a statistic in situations in passive underwater 
acoustic surveillance where it is particularly important to 
have a grasp of when a particular target will be "lost," or be 
detected again, and use such information to make conclu- 
sions about the nature of that target. Another random vari- 
able of the process which could be very well used for that 
purpose is the target's "holding time," that is, the time inter- 
val during which the signal is above the detection threshold, 
or, equivalently, the time during which the Markov process 
is in its "up" state. PMFs and various other properties of that 
variable have been derived also by Psaraftis et al. (1981a,b} 
and could be used, either alone, or in combination with the 
"interarrival time" PMFs, in algorithms similar to ours. The 
necessary modifications of the algorithm involve mainly the 
Bayesian update of the state variable [Eq. (4)] and are consid- 
ered straightforward. It should be emphasized again that the 
phase randomness assumption or the use of a Markov model 
for the detection process causes no loss of generality for the 
algorithms developed. Any other process could be assumed, 
provided the PMF of the process' interarrival time could be 
derived. This PMF could then be readily used in the algor- 
ithms. 

Results from various computer runs have shown that 
the a priori probabilities of each hypothesis being true, as 
well as the interarrival time PMFs do play an important role 
both in the final "verdict" of the algorithm and in the time it 
takes to reach such a conclusion. The system is quite sensi- 
tive to values of the observations in the sense that even when 

the user-specified a priori probabilities are strongly in favor 
of the wrong hypothesis, a few observations are likely to 
make the algorithm get on the right track. 

Computationally, running time and storage will depend 
on the fineness of discretization of the probability state space 
in a polynomial manner, and on the number of alternative 
hypotheses in an exponential manner. More than three hy- 
potheses are likely to create serious computational difficul- 
ties, unless a very crude discretization, or some other heuris- 
tic rule is adopted. 

An extension of our algorithms to the infinite horizon 
case would necessitate either the discounting of future costs, 
or a redefinition of the objective in terms of minimizafton o• 
a long term average of some cost function. The latter is con- 
sidered a more sensible direction. 

Another direction for possible extension involves the 
issue of stationarity. We have already mentioned that the 
observations process is stationary. To take M = 2 as an ex- 
ample, stationarity means that, for the entire extent of our 
observations, either Ho or Hi, is true. In Chien and Adams 
0976) a refinement is made for having a "degradation" oc- 
curring during the observations, the real state of the process 
switches after some observation from Ho to Hi (or vice versa) 
with no further switches allowed. This can be used for our 

purposes in problems in which the target is held for a rather 
long time and then goes away, that is, the observations pro- 
cess can be thought of as approximately stationary up to the 
point at which the switch is made. This refinement results in 
a modified SPRT, the so-called Sequential Reset Detection 
Test (SRDT), which is formulated in Walker (1980). This 
minimizes for a given •xpected time to a false alarm, the 
expected time to detection of a shift from Ho to H l, following 
a long persistence ofH o. The (approximate) results converge 
to the true ones as the expected time to false alarm ap- 
proaches infinity. In the case of passive sonar surveillance, 
the assumptions of this model are justified, since targets over 
long ranges in the ocean can be thought of as being at a 
certain "location" for a relatively long period of time before 
they move away. 
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