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The investigation of truth is in one sense difficult, in 

another easy. A sign of this is the fact that neither can 

one attain it adequately, nor do all fail, but each says 

something about the nature of things; and while each of 

us contributes nothing or little to the truth, a 

considerable amount of it results from all our 

contributions.  

 

    Aristotle 

    Metaphysics Book α 

    993
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This is how it works 

You're young until you're not 

You love until you don't 

You try until you can't 

You laugh until you cry 

You cry until you laugh 

And everyone must breathe 

Until their dying breath 

 

No, this is how it works 

You peer inside yourself 

You take the things you like 

And try to love the things you took 

And then you take that love you made 

And stick it into some 

Someone else's heart 

Pumping someone else's blood 

And walking arm in arm 

You hope it don't get harmed 

But even if it does 

You'll just do it all again 

 

    “On the Radio” 

    Regina Spektor 
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Chapter 1 

Introduction 

When I first studied biology as an undergraduate in the early 1990’s, only a handful of genomes 

had been sequenced, and those were of viruses and organelles (Fleischmann et al. 1995). Between 

then and now, a genomic revolution has occurred (Zhang 2010). Thousands of genomes have 

been completed, including our own (Consortium 2004), and thousands more are under way 

(www.genomesonline.org). In the genomic age, rock stars have their genomes sequenced 

(www.knome.com), as do species that have never been seen or identified except by their 

distinctive genome sequences (Venter et al. 2004). In other words, genomic sequences now 

inform us of both the diversity within species (What are the genetic differences between Ozzy 

Osbourne and Craig Venter?) and the diversity of life on Earth (How many species are swimming 

in the Sargasso Sea?). Fundamental questions in molecular evolution, such as the origin of new 

genes (Ohno 1970), the molecular basis of human traits (King and Wilson 1975), and the relative 

contributions of drift and selection (Kimura 1983b) can be studied with such data on a genomic 

scale, with the goal of moving beyond the understanding of individual genes and towards an 

understanding of the patterns of gene evolution (Zhang 2010). 

In this dissertation, I examine aspects of all three of the above fundamental questions in 

molecular evolution. My first project (Chapter 2) examines the evolution of brain genes, using the 

genomic sequences of human, chimpanzee and rhesus macaque, along with several genomic gene 

expression datasets (Su et al. 2004; Semon et al. 2006), to first identify brain-specific genes and 

then compare their evolution in human and chimp, and to compare their evolution with that of
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other genes. A previous study (Dorus et al. 2004) had concluded that nervous system genes 

experienced accelerated evolution in humans, perhaps due to positive selection, but one of the 

flaws in that study was the small size of the dataset – only 24 genes were compared between 

human and chimp. Leveraging genomic sequence and expression data, I examined 686 genes 

expressed predominantly or specifically in the brain to address the question of whether a pattern 

of accelerated evolution in brain-specific genes contributed to the unique brain size and related 

cognitive capacities of humans. 

My second project (Chapter 3) also focuses on human evolution, in this case, the prevalence of 

positive selection. Again using almost 14,000 genes from the human, chimpanzee, and rhesus 

macaque genomes, I identify positively selected genes in human and chimpanzee on a genome-

wide basis. Since the neutral theory predicts that drift plays a more important role in species with 

a small effective population size(Kimura 1983a), like human, compared to those with a larger 

effective population size, like chimpanzee (Chen and Li 2001), it is interesting to compare the 

action of drift and positive selection in the two species. Despite the anthropocentric view that 

humans have many more beneficial traits than chimps, in fact, I found that chimpanzees have 

more genes that have experienced positive selection than humans have. This finding and other 

aspects of the human and chimpanzee genomes are consistent with reduced efficacy of selection 

in humans compared to chimps. 

My final project focuses on the processes that lead to new genes by examining patterns of 

evolution in 12 Drosophila genomes and using those patterns to simulate long-term evolution of 

genes (Chapter 4). After evolution under gradual and punctuated models (Domazet-Loso and 

Tautz 2003), I assess the extent to which genes retain sequence similarity with their homologs. 

Findings from this study indicate that it is difficult to distinguish between new and old genes, due 

to both classifying old genes as new, and classifying new genes as old. In addition, this work 

shows that the combination of gene duplication with both gradual and punctuated evolution are 
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not sufficient to account for the observed number of young genes in Drosophila, indicating that 

other mechanisms, such as gene origination from non-coding regions, must also be at work.  

Each of these studies examines the majority of genes in multiple genomes to obtain information 

about how genes in general evolve. Another common theme that unites these studies is the 

importance of careful design in genomic studies. For example, in the study about brain genes, we 

found that simply defining a “brain gene” is no trivial task. We used several different definitions 

to try to capture a core set of brain genes, taking into account level and specificity of expression 

as well as functional annotations where available. In the study about positive selection in human 

and chimp, great care was taken to ensure that the lower quality of the chimp genome compared 

to the human genome did not influence the results. A naïve comparison of positive selection in 

human and chimp, without taking this bias into account, could only yield spurious results. 

Finally, in my third study about evolutionary patterns of new genes in Drosophila, I confront the 

issue of bias directly by comparing published results about genes of different ages with simulated 

results that incorporate biased measurement, and I find that at least some published results 

attributed to biological processes(Domazet-Loso et al. 2007) can be more parsimoniously 

explained by biased measurement of gene age. Taken together, these studies shed light on the 

patterns of molecular evolution, and also remind us that great care must be taken to ensure that 

genomic patterns reflect true biological processes rather than artifacts of the data and techniques 

we use.
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Chapter 2 

Did brain-specific genes evolve faster in humans than in chimpanzees? 

Abstract 

One of the most distinctive characteristics of humans among primates is the size, organization 

and function of the brain. A recent study has proposed that there was widespread accelerated 

sequence evolution of genes functioning in the nervous system during human origins. Here we 

test this hypothesis by a genome-wide analysis of genes that are expressed predominantly or 

specifically in brain tissues and genes that have important roles in the brain, identified on the 

basis of five different definitions of brain specificity. Although there is little overlap among the 

five sets of brain-specific genes, none of them supports human acceleration. On the contrary, 

some datasets show significantly fewer nonsynonymous substitutions in humans than in 

chimpanzees for brain-specific genes relative to other genes in the genome. Our results suggest 

that the unique features of the human brain did not arise by a large number of adaptive amino acid 

changes in many proteins.  

Introduction 

The human brain differs substantially from those of other primates in size, organization and 

function. For instance, in comparison to that of chimpanzees, the brain weight of humans is over 

300% greater but the body is only 35% heavier (Williams 2002) (Figure 2.1). The structural 

asymmetry between the left and right hemispheres is especially pronounced in human brains 

(Deacon 1994). Humans also have speech or language and other high-order cognitive functions 

that are absent in non-human primates. The genetic changes that have been responsible for the 

emergence of these human-unique brain features are a topic of enduring interest. Generally 
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speaking, the marked evolution of the human brain could be due to modifications of either a small 

or a large number of genes, where the modifications might be in gene expression or protein 

function. 

If widespread changes in many genes were the cause of human brain evolution, the signatures of 

such events might be identifiable from a genome-wide analysis. Recently, Dorus et al. (Dorus et 

al. 2004) analyzed a set of nervous system genes at the protein sequence level and found that 

these genes evolved significantly faster in primates than in rodents, in hominoids than in Old 

World monkeys, and in humans than in chimpanzees. They further suggested that the accelerated 

evolution was due to positive Darwinian selection for advantageous amino acid changes. Their 

analysis, however, suffered from four shortcomings. First, they compared only 24 nervous system 

genes between human and chimpanzee – the most relevant species pair for studying evolution of 

the human brain. Second, their list of nervous system genes was manually compiled and might 

thus be incomplete or biased (see later). Third, they used house-keeping genes as controls in some 

of the analyses, which seems inappropriate because tissue-specific genes and house-keeping 

genes are expected to have different evolutionary patterns (Duret and Mouchiroud 2000; Zhang 

and Li 2004). Fourth, a recent comparison between the dog and mouse genomes found that 18 

nervous system genes that evolved faster in primates than in rodents also evolved faster in 

carnivores than in rodents (Lindblad-Toh et al. 2005), suggesting that the findings of Dorus et al. 

(Dorus et al. 2004) might partially be due to rodent deceleration rather than primate acceleration. 

A more recent analysis of 5,268 genes has also found more amino acid substitutions in humans 

than in chimpanzees for brain-specific genes; however, the statistical significance of the 

difference is uncertain (P = 0.03–0.08, depending on which genes are used as controls) and the 

results are inconclusive (Khaitovich et al. 2005). 
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Here we conduct a comparison of sequence evolution of brain-specific genes between the human 

and chimpanzee lineages, using genome sequences of human, chimpanzee and macaque monkey, 

and human transcriptome data. 

Compilation of the primate gene dataset 

From Ensembl (http://www.ensembl.org), we obtained the DNA and amino acid sequences of all 

of the proteins predicted from the genome sequences of human (Homo sapiens), chimpanzee (Pan 

troglodytes) and macaque (Macaca mulatta). To identify orthologous genes, we used human 

proteins as queries to search chimpanzee proteins with BLASTP (see Supplementary Methods). 

Reciprocal best hits are considered as orthologs. Similarly, we used human sequences to search 

the macaque proteins with BLASTP. A total of 19,422 proteins with reciprocal best hits in both 

the human–chimpanzee and the human– macaque searches were found, and alignments of the 

human–chimpanzee–macaque orthologous proteins were obtained. 

We discarded alignments containing fewer than 100 amino acids because most of these were 

caused by gaps in draft genome sequences. DNA sequence alignments were obtained from the 

protein alignments. We further removed 161 alignments that showed exceptionally high 

divergences among the species and were probably the results of misalignment or non-orthology 

(see Supplementary Methods). The proportion of brain-specific genes was lower in the removed 

alignments than in the remaining alignments. Finally, each protein was assigned to a gene on the 

basis of its Ensembl annotation, resulting in 13,955 distinct genes for further analysis. After the 

removal of alignment gaps, these genes contain 18,287,982 nucleotide sites or 6,095,994 codons, 

covering >50% of all protein coding regions in a primate genome. 

We consider that a nucleotide position has a human-specific substitution if the sequence is 

identical between the chimpanzee and macaque but different in human at this position. We 

similarly define chimpanzee specific substitutions. A nucleotide substitution is then classified as 

either synonymous or nonsynonymous depending on whether it alters the amino acid encoded. 
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We observed 57,545 chimpanzee-specific nucleotide substitutions and 50,254 human-specific 

substitutions. Thus, the nucleotide substitution rate seems to be 1.15 times (57,545/50,254) higher 

in chimpanzees than in humans. This rate difference is probably due to the relatively low quality 

of the 4-coverage chimpanzee draft genome sequence (Consortium 2005), as compared with that 

of the finished human genome sequence (Consortium 2004). 

A recent study estimated that the error rate in the chimpanzee genome sequence has an upper 

limit of 0.07% (Taudien et al. 2006), ~70 times higher than the error rate in the human sequence 

(Consortium 2004). The observed chimpanzee to human divergence is 0.59% in our dataset of 

coding sequences. If we assume that the actual substitution rates in humans and chimpanzees are 

identical, then the chimpanzee to human substitution rate ratio (RC/H) might appear as high as 

1.27, simply because of the 0.07% sequencing errors in the chimpanzee genome (Supplementary 

Methods). If we also consider that the mutation rate per year is slightly (3%) lower in humans 

than in chimpanzees (Elango et al. 2006), RC/H might appear as high as 1.30 (Supplementary 

Methods). Our RC/H value of 1.15 is within these limits. Our result is also comparable to a recent 

estimate of 1.11–1.18 for the RC/H for large numbers of intergenic sequences and introns obtained 

from a comparison of the draft chimpanzee genome sequence and the finished human sequence 

(Elango et al. 2006). 

Several measures of the rate of protein sequence evolution have been well established by 

molecular evolutionists (Nei and Kumar 2000). For example, let n be the number of 

nonsynonymous substitutions for a group of genes in a particular lineage and s be the 

corresponding number of synonymous substitutions; and let N and S be the numbers of 

nonsynonymous and synonymous sites, respectively, for the group of genes (Nei and Kumar 

2000). For any large group of genes in our dataset, N/S = 2.45 (Supplementary Methods). Thus, 

the nonsynonymous- to-synonymous rate ratio (ω), which is commonly used to measure the rate 

of protein evolution controlled by the mutation rate, becomes (n/N)/(s/S) = (n/s)/(N/S) = (n/s)/ 
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2.45 = 0.408n/s. Because most genes in a genome have a ω value of <1, whereas sequencing 

errors are expected to have a ω value of 1, the errors cause overestimation of ω. Thus, we would 

see a higher ω for chimpanzees than for humans owing to chimpanzee sequencing errors. 

Furthermore, the bias is more serious for genes with low ω than for genes with high ω (when 

ω<1). Because brain-specific genes tend to have lower ω values than other genes in the genome 

(Table 2.1), the former are affected by sequencing errors to a greater extent than the latter. Thus, 

we expect to observe a higher ω in chimpanzees than in humans for brain-specific genes, even 

when benchmarked by other genes in the genome (Table 2.2). 

To rectify this problem, we add the same number of random ‘sequencing errors’ to the human 

genome sequence as the number that occurred in the chimpanzee sequence. Although sequencing 

errors will still affect the ω of brain specific genes more than that of other genes, the human and 

chimpanzee lineages can now be compared. Assuming that the total numbers of substitutions in 

our 13,955 genes are equal between the human and chimpanzee lineages, we estimate that the 

error rate in the chimpanzee sequence is 0.04%, which is equal to 7,315 errors (Supplementary 

Methods). We thus randomly add this number of errors to the human sequence and then compare 

the human and chimpanzee sequences. Although the 4.6-coverage macaque genome sequence 

might also contain numerous sequencing errors, these errors are not expected to bias our 

comparison between human and chimpanzee because the macaque is used as an outgroup. 

Analysis of brain-specific genes 

It is not an easy task to define those genes that function specifically in the brain. We therefore use 

five different definitions to examine whether they provide consistent results. 

Analysis based on microarray data 

Our first definition is based on a human microarray gene expression dataset (Su et al. 2004), 

which includes the expression signals of almost all human genes in 73 normal tissues. Because 



9 

 

many of the 73 tissues are from the same organs, we group the tissues into 40 tissue groups 

(Table 2.3). For example, the brain tissue group includes 17 tissues that represent different 

developmental stages or parts of the brain. Brain-specific genes are defined as those genes for 

which the highest expression is found in one of the brain tissues and this highest expression is at 

least twice the expression level in any non-brain tissues. As a result, 249 brain-specific genes are 

identified. Similarly, we identified tissue-specific genes for the other 39 tissue groups, and the 

total number of these other tissue-specific genes is 1,544. The remaining 12,162 genes are 

referred to as non-tissue-specific genes. For our second definition, we used the same human 

microarray gene expression dataset but with more stringent criteria, requiring that the highest 

expression level in a brain tissue is at least four times that in any non-brain tissue for a gene to be 

called brain-specific. Because the results based on these two definitions are almost identical, 

below we describe in detail only those from the first definition (Table 2.1, ‘Microarray [2X]’; see 

‘Microarray [4X]’ for the results from the second definition). 

We find that, for brain-specific genes, the ω value in the human lineage (ωH) is 0.205 and that in 

the chimpanzee lineage (ωC) is 0.198. Their ratio (ωH=ωC ¼ 1:03) is not significantly different 

from 1 (P > 0.5, x2-test; Table 2.1). As a comparison, ωH=ωC equals 1.06 (P > 0.05) for other 

tissue-specific genes, 1.12 (P < 10
-4

) for non-tissue-specific genes, and 1.11 (P < 10
-4

) for all of 

the genes considered together. The observation of ωH=ωC >1 for all genes together is consistent 

with previous findings and is explainable by a smaller effective population size and thus weaker 

purifying selection and a higher nonsynonymous substitution rate in the human lineage than in the 

chimpanzee lineage (Eyre-Walker and Keightley 1999; Consortium 2005; Khaitovich et al. 

2005). We find that the ωH=ωC ratio of brain-specific genes is slightly lower than that of other 

tissue-specific genes, but the difference is not statistically significant (P > 0.5, simulation test; 

Table 2.1). 
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Similar results are obtained when brain-specific genes are compared with non-tissue-specific 

genes (Table 2.1). Because the same genes are compared between human and chimpanzee, we 

can compute the ratio of the number of nonsynonymous substitutions in the human lineage (nH) to 

that in the chimpanzee lineage (nC) and compare this ratio (nH/nC) between different groups of 

genes. Interestingly, we find that nH/nC is significantly lower for brain-specific genes than for 

non-tissue-specific genes (P = 0.04, χ
2
-test; Table 2.1), suggesting a possible human slowdown 

(or chimpanzee acceleration) of the evolution of brain-specific genes, when benchmarked by non-

tissue-specific genes.  

The nH/nC values are not, however, significantly different between brain-specific genes and other 

tissue-specific genes, or between other tissue-specific genes and nontissue- specific genes. 

Analysis based on EST data 

Because the microarray data might be inaccurate (Liao and Zhang 2006), we repeated the above 

analysis using a third definition of brain-specific genes based on expression sequence tags 

(ESTs). Here, tissue-specific genes are those for which ESTs are found in only one tissue. We 

used a recently compiled human EST dataset that includes 4.9 million ESTs from 44 tissues 

(Semon et al. 2006) and classified the 13,955 primate genes into 165 brain-specific genes (i.e. 

ESTs are found only in the brain), 819 other tissue-specific genes, and 12,971 non-tissue-specific 

genes. The results from the EST data (Table 2.1) are similar to those from the microarray data. 

Although ωH=ωC is significantly greater than 1 for other tissue-specific genes and non-tissue-

specific genes, it is not significantly greater than 1 for brain-specific genes. Consequently, the 

ωH=ωC ratio is slightly lower for brainspecific genes than for other genes, although the difference 

is not statistically significant (Table 2.1). Similarly, the nH/ nC ratio appears lower, although not 

significantly, in brainspecific genes than in other genes (Table 2.1). 
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Analysis based on SAGE data 

We also repeated the above analysis using a fourth definition of tissue specificity based on serial 

analysis of gene expression (SAGE). Brain-specific genes are defined as those for which SAGE 

tags are detected only in the brain. On the basis of a recently compiled SAGE dataset (Semon et 

al. 2006) the 13,955 primate genes include 209 brain-specific genes and 632 other tissue-specific 

genes. The remaining genes are considered to be non-tissue-specific. The results obtained from 

the SAGE data (Table 2.1) are similar to those from the microarray and EST data. That is, there is 

no significant difference between ωH and ωC for brain-specific genes, regardless of whether other 

genes are used as controls or not. There is also no significant difference between the nH/nC ratios 

of brain-specific genes and other genes. 

Analysis based on a list of nervous system genes Dorus et al. (Dorus et al. 2004) compiled a list 

of 214 nervous system genes on the basis of (i) literature suggesting important gene functions in 

the nervous system, (ii) SAGE and EST data showing gene expression exclusively or 

predominantly in the brain, and (iii) information on genes implicated in nervous system diseases 

(Dorus et al. 2004). We found 146 of these 214 genes in our list of 13,955 primate genes. Because 

Dorus et al. (Dorus et al. 2004) did not define other tissue-specific genes, we analyzed these 

nervous system genes by using the remaining 13,809 genes in our dataset as a control. We find no 

significant difference between ωH and ωC for nervous system genes, with or without comparison 

to other genes (Table 2.1). Dorus et al. (Dorus et al. 2004) suggested that the human lineage 

acceleration is particularly pronounced for a subset of genes that control nervous system 

development, but is absent for genes with physiological roles and minimal for the remaining (i.e. 

unclassified) nervous system genes. Our data, however, provide no statistical evidence for these 

claims (Table 2.1). We also failed to detect a difference in nH/ nC between nervous system genes 

(or developmental nervous system genes) and other genes (Table 2.1). 
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The main reason why we cannot repeat the result of the faster evolution of humans than 

chimpanzees even when we use the list of nervous system genes that Dorus et al. (Dorus et al. 

2004) compiled seems to be because Dorus et al. did not compare all of the 214 nervous system 

genes between human and chimpanzee. Instead, between humans and chimpanzees they 

compared only 24 genes that were known to evolve faster in the human lineage than in the 

macaque lineage when the squirrel monkey was used as an outgroup. In other words, they used a 

small and biased gene set in their human–chimpanzee comparison. 

Caveats 

Although our results from the five analyses are congruent in showing that there has been no 

accelerated evolution of human brain-specific genes, this congruence would be expected if there 

were large overlaps among the five groups of brain-specific genes identified under the five 

different definitions. Interestingly, however, except for those identified by the two microarray-

based definitions, only a few genes overlap from any two of the five groups of brainspecific 

genes and no genes overlap among all five groups (Figure 2.2). 

Although this finding suggests that the five analyses are largely independent, it also raises the 

issue of how to identify brain-specific genes accurately. The level of gene expression in a tissue is 

a continuous variable. For the EST (or SAGE) data, we identified brain-specific genes as those 

that lack ESTs (or SAGE tags) in non-brain tissues, which actually means genes that have a lower 

expression level in non-brain tissues than in the brain. This definition is qualitatively the same as 

that used for the microarray data, where brain-specific genes are required to show expression at 

least twice as high in the brain as in any other tissue. Although it might be argued that a gene that 

exclusively functions in the brain could have a lower expression in this organ than in other 

tissues, such a situation is unlikely, particularly when expression in the brain is defined by the 

highest expression level among all temporal and spatial brain samples. 
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All five definitions that we used consider gene expression patterns, although the fifth definition 

also includes genes with known brain functions and genes implicated in brain diseases. On the 

one hand, considering gene function provides additional information that might help to reduce the 

reliance on gene expression, which is sometimes a poor indicator of function. On the other hand, 

gene function information is usually incomplete and it is difficult to know whether a gene 

functions exclusively in the brain. Our results suggest that it is still a challenging task to define 

genes that function specifically in a tissue. A potential way of increasing the accuracy of 

identifying brain-specific genes is to use more than one criterion. We therefore analyzed a subset 

of 74 genes that are brain-specific by at least two of our definitions 1, 3, 4, and 5; we excluded 

definition 2 because it is a subset of definition 1 (Figure 2.2). The difference between ωH and ωC 

of brain-specific genes, with or without comparison to other genes in the genome, is still not 

significant (Table 2.1). Interestingly, however, the nH/nC ratio is significantly lower for brain-

specific genes than for other genes in the genome (Table 2.1). 

Our analysis also highlights the intricacy of genomewide comparisons between humans and 

chimpanzees in the presence of sequencing errors. As eloquently articulated by Taudien et al. 

(Taudien et al. 2006), a small leak can sink a great ship. In our analysis, the chimpanzee 

sequencing errors, when not appropriately controlled, generate a significantly higher ωC than ωH 

for brain-specific genes, even when compared with other genes in the genome (Supplementary 

Table 2.1). This difference disappears when we add the same number of ‘sequencing errors’ to 

the human sequence. In our addition of sequencing errors to the human sequence, we assumed 

that the substitution rate for the whole set of 13,955 genes is identical between the human and 

chimpanzee lineages. If the mutation rate is slightly lower in humans than in chimpanzees 

(Elango et al. 2006) and the total substitution rate is also lower in humans than in chimpanzees, 

we might have added more ‘sequencing errors’ than needed, which would have raised ωH=ωC and 
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favored the human acceleration hypothesis. In other words, our result of no human acceleration is 

conservative (see also Supplementary Methods). 

To verify the results obtained from our approach of error addition, we also used the approach of 

error removal. We removed errors from the chimpanzee sequence by using only nucleotide sites 

with quality scores Q20 (or accuracy > 99%) (Consortium 2005). The new dataset contained 

13,888 genes. Again, none of the analyses shows a significantly higher evolutionary rate of brain-

specific genes in humans than in chimpanzees (Table 2.4). 

Concluding remarks 

We have analyzed almost 14,000 human, chimpanzee and macaque genes to test the hypothesis 

that human brainspecific genes have undergone widespread accelerated protein-sequence 

evolution since the human lineage separated from the chimpanzee lineage. Our results, based on 

five different definitions of brain-specificity, show no evidence that supports this hypothesis. 

Because our data include over 50% of all human genes, it is appropriate to conclude that our 

results reject the hypothesis of widespread accelerated sequence evolution of human brainspecific 

genes. 

In fact, in several but not all of our analyses, the nH/nC ratio is significantly lower for brain-

specific genes than for other genes in the genome, suggesting that – relative to other genes – 

brain-specific genes evolved more slowly in humans than in chimpanzees. This phenomenon 

might reflect higher importance of brain-specific genes and therefore stronger purifying selection 

on them in human evolution than in chimpanzee evolution. Our findings imply that the unique 

features of the human brain did not arise by a large number of adaptive amino acid substitutions 

in many proteins. This conclusion, however, does not preclude the possibility that substantial 

accelerations occurred in the evolution of a few nervous system genes during human origins. 

Indeed, several such examples are known, including genes that control brain size and speech 

development (Enard et al. 2002b; Zhang et al. 2002; Zhang 2003; Evans et al. 2004a; Evans et al. 
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2004b; Kouprina et al. 2004; Wang and Su 2004). It also remains possible that the origin of the 

human-unique brain features was due to expression changes (rather than coding sequence 

changes) of many genes, as has been suggested from some microarray data (Enard et al. 2002a; 

Khaitovich et al. 2005) (but see also Refs (Hsieh et al. 2003; Uddin et al. 2004; Lemos et al. 

2005)). 

Supplementary methods 

Primate gene dataset 

Protein and corresponding DNA sequences of all predicted genes in the human, chimpanzee, and 

macaque genome sequences were downloaded from Ensembl v 35 (November 2005, 

http://www.ensembl.org). To identify orthologous genes, human protein sequences (n= 33,869) 

were used to conduct BLASTP searches (Altschul et al. 1990) against the chimpanzee (n = 

39,648) and macaque (n = 31,371) protein sequences. Reciprocal searches were performed using 

the chimpanzee and macaque proteins to query the human proteins. 19,422 proteins with 

reciprocal best hits in both human/chimpanzee and human/macaque searches were retained for 

further analysis. 

Alignment of the human-chimpanzee-macaque orthologous proteins was performed using 

CLUSTALW v 1.83 (Thompson et al. 1994). DNA sequence alignments were obtained following 

the protein sequence alignments. Alignments containing fewer than 100 amino acids ( n= 1,291) 

were discarded. Lineage-specific nucleotide substitutions were identified as described in the main 

text. Review of several alignments with exceptionally high proportions of human- or chimpanzee-

specific changes revealed that they resulted from incorrect alignment or non-orthology. 

Therefore, alignments containing greater than 10% human or chimpanzee-specific amino acid or 

nucleotide changes or greater than 30% macaque-specific changes were discarded from analysis 

(n = 161). Finally, each protein was assigned to a gene based on the Ensembl annotation, and the 

protein sequence with the longest amino acid alignment was retained for each gene, resulting in 
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the alignments of human, chimpanzee, and macaque sequences of 13,955 distinct genes. Using 

modified Nei-Gojobori method (Zhang et al. 1998) with a transition/transversion ratio of 2 

(Rosenberg et al. 2003), we estimated that the total number of nonsynonymous sites in these 

13,955 genes was N = 12,986,068 and the total number of synonymous sites was S = 5,301,914, 

with their ratio being N/S = 2.45. We used the parsimony approach to identify human-specific 

and chimpanzee-specific substitutions (see main text). This approach is justified because of the 

low divergence of the sequences concerned in this paper. The observed human-chimpanzee 

divergence is 0.59% in our dataset of coding sequences. A recent study estimated that the error 

rate in the chimpanzee genome sequence has an upper limit of 0.07% (Taudien et al. 2006). 

Assuming this error rate, the actual divergence between the two species is 0.59% − 0.07% = 

0.52%. If we assume that the actual substitution rates in humans and chimpanzees are identical, 

the proportion of sites with chimpanzee substitutions (including sequencing errors) is 0.52% ÷ 2 

+ 0.07% = 0.33%, whereas the proportion of sites with human substitutions is 0.59% − 0.33% = 

0.26%. The chimpanzee/human substitution rate ratio (RC/H) becomes 0.33 ÷ 0.26 = 1.27. If we 

consider that the substitution rate is 2 3% lower in humans than in chimpanzees (Elango et al. 

2006), the proportion of sites with chimpanzee substitutions is 0.52% ÷ 1.97 + 0.07% = 0.334%, 

whereas the proportion of sites with human substitutions is 0.59% − 0.334% = 0.256%. Their 

ratio RC/H is 0.334% ÷ 0.256% = 1.30. 

We estimated the rate of sequencing error in the chimpanzee sequence as follows. We assume 

that the substitution rates are equal between humans and chimpanzees. Thus,RC/H 
��.��% � 	
/� 
 	 
��.��% � 	
/� , 

where x is the error rate. Given the observed RC/H of 1.15, we estimated that x = 0.04%. Under the 

assumption of a 3% reduction of substitution rate in humans than in chimpanzees, the sequencing 

error rate is estimated to be 0.033%. The above RC/H was estimated using all substitutions. If only 

synonymous substitutions are used, RC/H = 1.10. Thus, the error rate may be lower than the above 

estimates, which makes our conclusion more conservative (see main text). 
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Microarray data 

The microarray gene expression data for 73 human normal tissues and the nucleotide sequences 

for 27,215 probesets were obtained from ref. (Su et al. 2004). The probeset sequences were used 

to perform BLAST searches against the human coding sequences from Ensembl. Probesets that 

matched to multiple genes were considered ambiguous and discarded. 26,195 probesets were 

unambiguously matched to 16,605 distinct genes. Of these genes, 12,145 had human-

chimpanzee-macaque alignments. For genes that matched to more than one probeset, the 

expression levels measured in each probeset were averaged for each tissue replicate. Two 

replicates were available for each tissue; these were averaged to determine the expression level of 

a gene in a tissue. Multiple tissues representing same organs were consolidated into tissue groups 

(Table 2.3). For any given gene, a single representative expression level was used for a tissue 

group by taking the highest expression level from the group. 

The microarray expression data was analyzed in two ways. First, we identified 2,432 genes for 

which the expression level in the highest tissue group was equal to or greater than two times the 

expression level in the second highest tissue group. These genes are said to be tissue-specific in 

the highest tissue. All other genes in our primate gene dataset were treated as non-tissue-specific 

genes. Second, we used a more stringent criterion of tissue-specificity, requiring that the 

expression level in the highest tissue group be at least four times the expression level in the 

second highest tissue group. 

EST and SAGE data 

The human expression sequence tag (EST) and serial analysis of gene expression (SAGE) data 

were compiled by Semon et al. (Semon et al. 2006) and kindly supplied by the authors. Semon et 

al. (Semon et al. 2006) selected from GenBank 4.9 million ESTs from human tissues. cDNA 

libraries from cell culture, tumors, pooled organs, or unidentified tissues were excluded, and 

cDNA libraries that had been sufficiently sampled (>10,000 ESTs) were retained, resulting in 44 
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tissues corresponding to 141 libraries. These authors further removed those tissues with fewer 

than 30 tissue-specific genes, resulting in the final dataset of 2,126 tissue-specific genes from 18 

tissues. The SAGE data contained 1,190 tissue-specific genes from 12 tissues. In both of these 

datasets, a gene was considered to be tissue-specific if its transcript was detected in only one 

tissue. All other genes were treated as non-tissue-specific. 

Dorus et al.’s (2004) data 

We also acquired the list of nervous system genes from Dorus et al. (Dorus et al. 2004). Of 214 

genes in this dataset identified by gene symbol, we were able to find 146 that are present in our 

primate gene dataset. 

Simulation tests 

As described in the main text, we defined ωH and ωC by 0.408n/s for a group of genes in the 

human and chimpanzee lineages, respectively. We used the χ
2
 test with 1 degree of freedom to 

compare ωH and ωC. We compared ωH/ωC values between two groups of genes by computer 

simulation. For example, we compute the ratio (r) of the ωH/ωC value from brain-specific genes 

to that of other tissue-specific genes and then examine the sampling variance of r by simulation. It 

is obvious that n and s are both Poisson random variables when the rate of substitution is given. 

For a given n (or s), we generate 10,000 Poisson random numbers with the mean equal to the 

observed n (or s). Thus, we can obtain 10,000 random r values, which represent the variation of r. 

A two-tail test is then conducted. That is, we consider our observed r to be significantly different 

from 1 at the 5% level when fewer than 250 randomly generated r values are greater than 1 or 

smaller than 1. Use of one-tail tests does not change any of our conclusions in the paper. The Q20 

dataset We also compiled a dataset by using those nucleotide sites in the chimpanzee genome 

sequence with quality scores ≥20 (Q20, or accuracy >0.99). Chimpanzee codons retained for 

analysis must have quality scores ≥20 at all codon positions. The quality score information was 
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downloaded from http://www.genome.ucsc.edu. The data were further cleaned using the same 

criteria as described in the first section. The final dataset contained 13,888 genes. 
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Figure 2.1 Evolutionary tree of human, chimpanzee and macaque monkey. 

Also shown are the brains of the three species drawn to scale and the encephalization quotients 

(EQs). The EQ measures the brain mass relative to the total body mass and is computed by E/Pa, 

where E is the brain mass, P is the body mass, and a is the exponent. The EQ values are taken 

from (Williams 2002); a = 0.75 on the basis of previous analyses of primates (Martin 1981) or 

catarrhine primates (i.e. humans, apes and Old World monkeys) (Pagel and Harvey 1989). The 

brain images are adapted from those in the Comparative Mammalian Brain Collections 

(http://brainmuseum.org). 

 
 



 

Figure 2.2 Venn diagram of brain
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The number of genes is given in each circle. The overlapping sets of the nervous system genes 
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Venn diagram of brain-specific genes identified on the basis of five different 

The number of genes is given in each circle. The overlapping sets of the nervous system genes 

Dorus et al. 2004); colored red) are shown in separate circles because of the 

difficulty in connecting all of the circles. 
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Table 2.1 Evolutionary rates of brain-specific genes and other genes in humans and chimpanzees 

 
a Number of nonsynonymous substitutions in the lineage indicated. 

b Number of synonymous substitutions in the lineage indicated. 

c Nonsynonymous/synonymous substitution rate ratio, computed by 0.408n/s. 

d Statistically significant deviation from 1 is indicated by asterisks: Significance level: *P < 0.05, **P < 0.01, ***P < 

0.001, ****P < 0.0001. Simulation tests are used for comparing ratios between groups of genes, whereas χ2-tests are 

used within groups of genes. 

e Statistically significant deviation from 1 (between groups of genes) is indicated by asterisks. χ2-tests are used. 

f From Dorus et al. (Dorus et al. 2004). 

g Genes identified to be brain-specific in at least two of the four definitions (‘Microarray [2X]’, ‘EST’, ‘SAGE’ and 

‘Nervous system genes’). 
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Table 2.2 Comparison of the evolutionary rates of brain-specific genes and other genes in human 

and chimpanzee lineages using microarray 2X definition of tissue-specificity and unmodified 

genome sequences. 

 
1 Number of nonsynonymous substitutions in the lineage indicated. 
2 Number of synonymous substitutions in the lineage indicated. 
3 Nonsynonymous/synonymous substitution rate ratio, computed by 0.408n /s . 
4 Statistically significant deviation from 1 is indicated by asterisks. Significance level: *, 5%; **, 1%; ***, 0.1%; ****, 

0.01 

Simulation tests are used in the bottom two rows, whereas χ2 tests are used in all other rows. 
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Table 2.3 Tissue groups considered in the analysis of the microarray data 
Tissue Group Tissues Combined 

721B lymphoblasts 721B lymphoblasts 

Adipocyte Adipocyte 

Adrenal cortex Adrenal cortex 

Adrenal gland Adrenal gland 

Appendix Appendix 

Atrioventricular node Atrioventricular node 

BM BMCD33 myeloid, BMCD105 endothelial, BMCD34, BMCD71 early 

erythroid 

Bone marrow Bone marrow 

Brain temporal lobe, globus pallidus, cerebellum peduncles, cerebellum, caudate 

nucleus, whole brain, parietal lobe, medulla oblongata, amygdala, prefrontal 

cortex, occipital lobe, hypothalamus, thalamus, subthalamic nucleus, 

cingulated cortex, pons, fetal brain 

Bronchial epithelial cells Bronchial epithelial cells 

Cardiac myocytes Cardiac myocytes 

Ciliary ganglion Ciliary ganglion 

DRG DRG 

Heart Heart 

Kidney Kidney 

Liver liver, fetal liver 

Lung lung, fetal lung 

Lymph node Lymph node 

Olfactory bulb Olfactory bulb 

Ovary Ovary 

Pancreas pancreas, pancreatic islets 

Pathogenic (excluded) colorectal adenocarcinoma, leukemia lymphoBLASTic molt 4, lymphoma 

burkitts Raji, leukemia promyelocytic hl60, lymphoma burkitts Daudi, 

leukemia chronicmyelogenous k562 

PB PBCD14 monocytes, PBBDCA4 dentritic cells, PBCD56NK cells, PBCD4T 

cells, PBCD8T cells, PBCD19B cells 

Pituitary Pituitary 

Placenta Placenta 

Prostate Prostate 

Salivary gland Salivary gland 

Skeletal muscle Skeletal muscle 

Skin Skin 

Smooth muscle Smooth muscle 

Spinal cord Spinal cord 

Superior cervical ganglion Superior cervical ganglion 

Testis testis, leydig cell, germ cell, testis interstitial, seminiferous tubule 

Thymus Thymus 

Thyroid thyroid, fetal thyroid 

Tongue Tongue 

Tonsil Tonsil 

Trachea Trachea 

Trigeminal Ganglion Trigeminal Ganglion 

Uterus Uterus 

Uterus Corpus Uterus Corpus 

Whole blood Whole blood 
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Table 2.4 Comparisons between evolutionary rates of brain-specific genes and other genes in 

human and chimpanzee lineages using high quality (Q20) chimpanzee sequences. 

 
1
 Number of nonsynonymous substitutions in the lineage indicated. 

2
 Number of synonymous substitutions in the lineage indicated. 

3
 Nonsynonymous/synonymous substitution rate ratio, computed by 0.408n /s . 

4 
Statistically significant deviation from 1 is indicated by asterisks. Significance level: *, 5%; **, 1%; ***, 

0.1%; ****, 0.01%. Simulation tests are used for comparing ratios between groups of genes, whereas χ2 

tests are used within groups of genes. 
5
 Statistically significant deviation from 1 (between groups of genes) is indicated by asterisks. χ2 tests are 

used. 
6
 Genes identified to be brain-specific in at least two of the four definitions (microarray 2X, EST, SAGE, 

and Dorus et al.). 
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Chapter 3 

More genes underwent positive selection in chimpanzee evolution than 

in human evolution 

Abstract 

Observations of numerous dramatic and presumably adaptive phenotypic modifications during 

human evolution prompt the common belief that more genes have undergone positive Darwinian 

selection in the human lineage than in the chimpanzee lineage since their evolutionary divergence 

6–7 million years ago. Here, we test this hypothesis by analyzing nearly 14,000 genes of humans 

and chimps. To ensure an accurate and unbiased comparison, we select a proper outgroup, avoid 

sequencing errors, and verify statistical methods. Our results show that the number of positively 

selected genes is substantially smaller in humans than in chimps, despite a generally higher 

nonsynonymous substitution rate in humans. These observations are explainable by the reduced 

efficacy of natural selection in humans because of their smaller long-term effective population 

size but refute the anthropocentric view that a grand enhancement in Darwinian selection 

underlies human origins. Although human and chimp positively selected genes have different 

molecular functions and participate in different biological processes, the differences do not 

ostensibly correspond to the widely assumed adaptations of these species, suggesting how little is 

currently known about which traits have been under positive selection. Our analysis of the 

identified positively selected genes lends support to the association between human Mendelian 

diseases and past adaptations but provides no evidence for either the chromosomal speciation 

hypothesis or the widespread brain-gene acceleration hypothesis of human origins. 
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Introduction 

Although humans and their closest living relatives, chimpanzees, are highly similar at the 

genomic level (Chen and Li 2001; Britten 2002; Ebersberger et al. 2002; Wildman et al. 2003; 

Watanabe et al. 2004; Consortium 2005), they differ in many morphological, physiological, and 

behavioral traits (Varki and Altheide 2005). Phenotypically, modern humans appear to have 

changed considerably more than modern chimps from their common ancestors (King and Wilson 

1975; Pilbeam 1996; Olson and Varki 2003; Varki and Altheide 2005). Many of these 

evolutionary modifications in humans, such as the origins of bipedalism, speech and language, 

and other high-order cognitive functions, are widely thought to be adaptive (Darwin 1871; 

Vallender and Lahn 2004; Sabeti et al. 2006). These observations led to a common belief that 

more genes underwent positive Darwinian selection in the human lineage than in the chimpanzee 

lineage. Indeed, there are more reports of positively selected genes (PSGs) in humans than in 

chimps (Vallender and Lahn 2004; Sabeti et al. 2006). Nonetheless, this difference may be 

largely due to a lack of study in chimps. To avoid such a bias, one could identify and compare all 

PSGs from the human and chimp genomes. Positive selection acting on a protein-coding gene 

may be detected by various population genetic and molecular evolutionary methods that use 

intraspecific polymorphism data, interspecific divergence data, or a combination of the two (Li 

1997; Nei and Kumar 2000; Nielsen 2005). However, because of the paucity of polymorphism 

data from chimps, a fair comparison between the two species would have to be limited to the 

divergence data. Such data can be used to estimate the ratio of nonsynonymous to synonymous 

substitution rates (ω). An ω value significantly >1 indicates the action of positive selection, 

whereas an ω significantly <1 indicates negative (or purifying) selection. Using this approach, 

two earlier studies (Clark et al. 2003; Arbiza et al. 2006) pioneered the identification of human 

and chimp PSGs at the genomic scale, although no comparison was made between the numbers of 

human and chimp PSGs. In fact, the studies’ results would be unsuitable for the comparison, 
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owing to a number of deficiencies. First, both studies used the mouse as an outgroup, to 

distinguish between human-specific and chimp-specific nucleotide substitutions, because of the 

unavailability of genome sequences from any closer outgroups at that time. Because mouse is 

distantly related to human and chimp, this practice introduces errors. Second, one of the studies 

(Clark et al. 2003) was based on less reliable statistical methods and assumptions (Zhang 2004), 

whereas the other (Arbiza et al. 2006) used the draft chimp genome sequence (Consortium 2005) 

known to contain many more errors than the finished human genome sequence (Shi et al. 2006; 

Taudien et al. 2006). Because the majority of genes in a genome have ω < 1, and sequencing 

errors have an expected ω of 1, the errors inflate ω and the false detection of positive selection. In 

this work, we first design a protocol to rectify these problems and then use the protocol to identify 

and compare human and chimp PSGs. Our results show substantively more PSGs in chimpanzee 

evolution than in human evolution.  

Results and Discussion 

Study Design 

To compare human and chimp PSGs impartially, we made three improvements in the design of 

the analysis. First, to distinguish nucleotide substitutions that occurred in the human lineage from 

those that occurred in the chimp lineage, we used the macaque monkey as the outgroup. Because 

the divergence time between the macaque and human/chimp is approximately a quarter of that 

between the mouse and human/chimp (Goodman et al. 1998; Hedges 2002; Glazko and Nei 

2003), the reliability of our analysis was expected to increase significantly. Gene orthology 

determination and sequence alignment among the more closely related human–chimp–macaque 

gene trios is also more reliable than among human–chimp–mouse trios.  

Second, we applied an improved branch-site likelihood method for identifying PSGs (Zhang et al. 

2005), which has been shown by computer simulation to produce good results even when some of 
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the assumptions are violated (Zhang et al. 2005). The method requires that the branches in a 

phylogenetic tree be separated into foreground and background branches a priori, where 

foreground branches are tested for the occurrence of positive selection. The method assumes that 

two classes of codons, either negatively selected (class 0) or neutral (class 1), exist in the 

background branches. This null model is compared with an alternative model in which a 

proportion of class 0 codons, and the same proportion of class 1 codons, become positively 

selected in the foreground branches. Positive selection in foreground branches is inferred for a 

gene if the likelihood of the observation of the gene sequences is significantly higher under the 

alternative model than under the null model. To further verify the suitability of the method in the 

present context, we conducted additional computer simulations specifically designed to mimic the 

evolution of human, chimp, and macaque genes (see Materials and Methods). Our results showed 

that the false-positive rate is acceptable, except for extreme conditions when it slightly exceeds 

the nominal rate (Table 3.3 and Table 3.4).  

Third, we used high-quality nucleotides from the 4X coverage chimp genome sequence to allow a 

fair comparison with the human sequence. Briefly, we assembled alignments of orthologous 

genes from human, chimp, and macaque, using publicly available genome sequences and 

annotations (see Materials and Methods). We then eliminated alignment gaps and those codons in 

which one or more chimp nucleotides did not meet our quality cutoff. Three different cutoffs, low 

(Q0), intermediate (Q10), and high (Q20), were used to generate three data sets. After removing 

alignments of <100 codons, we obtained our final data sets, containing 13,955, 13,924, and 

13,888 genes for the Q0, Q10, and Q20 cutoffs, respectively (Table 3.5). Even the smallest data 

set (Q20) has a total alignment length of 17,995,887 nucleotides, with a mean alignment length of 

432 codons (standard deviation, 339 codons). All three data sets contain >50% of genes in a 

primate genome and cover >50% of all protein-coding regions in the genome. Using parsimony, 

we inferred the numbers of nucleotide substitutions in human and chimp lineages since their split. 
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This inference is expected to be accurate because the three species studied here are closely 

related. We found that the ratio of the number of synonymous substitutions in the chimp lineage 

to that in the human lineage is r = 1.103 ± 0.009, 1.020 ± 0.008, and 0.985 ± 0.008 for the Q0, 

Q10, and Q20 data sets, respectively. Assuming identical mutation rates per year between human 

and chimp lineages, r is expected to be 1. If the mutation rate is 3% lower in humans than in 

chimps, as has been suggested (Elango et al. 2006), r is expected to be 1.03. Given these 

considerations, Q0 data, as used in an earlier study (Arbiza et al. 2006), are apparently unsuitable 

because the observed r is significantly higher than the expectation. To make our conclusion more 

conservative, we use Q20 rather than Q10 data. Two other independent assessments of the chimp 

genome sequence, one of which evaluated it against 172 kb of finished chimp sequence, also 

recommended the use of Q20 data for comparison with the human genome sequence (Consortium 

2005; Taudien et al. 2006). Most importantly, the number of synonymous substitutions is already 

1.5% lower in chimp than in human when the cutoff of Q20 is used, suggesting that the chimp 

sequencing errors become negligible at this quality level. The comparison between the 172 kb of 

draft and finished chimp sequences also showed that the use of cutoffs higher than Q20 is 

undesirable because many chimp-specific nucleotide changes tend to be lost (Taudien et al. 

2006). This is probably because polymorphic sites in the chimp individual that was sequenced, 

estimated to be 0.1% of all sites (Consortium 2005), tend to have lower qualities than 

homozygous sites. These polymorphic sites are excluded progressively as one increases the 

quality cutoff, which hampers a fair comparison with human because the human genome 

sequence contains polymorphic sites (Consortium 2005). Note that errors in the macaque genome 

sequence should not affect our analysis because the probability for a macaque error to occur at a 

nucleotide position where human and chimp differ is small. Even when such rare events occur, 

they should affect human and chimp equally and hence would not bias our results. Our human–

chimp comparison should not be biased by indel errors because the detection of positive selection 

does not use indel information.  
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More PSGs in Chimp Evolution than in Human Evolution 

Applying the likelihood method and a P value of 5% for statistical significance (Zhang et al. 

2005), we identified 154 genes that were under positive selection in the human lineage (Table 3.1 

and Appendix) and 233 in the chimp lineage (Appendix). Thus, chimps have 51% more PSGs 

than humans have. As expected, the excess of chimp PSGs is even greater (157%) should the Q10 

data be used (Table 3.5). The proportion of PSGs in the genome is 233/13,888 = 1.7% for the 

chimp lineage, significantly greater than that (154/13,888 = 1.1%) for the human lineage (P < 10
-

4
, χ

2
 test). Because 13,888 statistical tests were conducted for each lineage, it is necessary to 

control for multiple testing. Under Bonferroni correction, two human genes and 21 chimp genes 

remain statistically significant (Appendix). With use of a false discovery rate of 5%, the same two 

human genes and 59 chimp genes are significant (Appendix). The proportion of PSGs in the 

chimp genome remains significantly greater than that in the human genome (P = 10
-4

, χ
2
 test), 

even after the multiple-testing corrections (Table 3.1).  

To further confirm our results, we analyzed the recently released 6X chimp genome assembly for 

the 233 chimp PSGs identified above. We found that 212 (or 91%) of them still show significant 

signals of positive selection (see Materials and Methods). Hence, when this new data set is used, 

chimps have 38% more PSGs than humans have (P = 0.002, χ
2
 test). Note that this is a 

conservative estimate because we did not consider non-PSGs from the 4X sequence that may 

become PSGs in the 6X sequence. Such incidences are possible because potentially more 

nucleotides per gene can be analyzed in the 6X sequence, leading to improved statistical power in 

identifying PSGs. Additionally, 4X and 6X sequences may differ at polymorphic sites, which can 

affect the outcome of PSG identification when the number of substitutions is small. Because the 

analyses of the 4X and 6X sequences both indicate substantially more PSGs in chimps than in 

humans, and because the 6X assembly is preliminary and unpublished, our subsequent analyses 

use the PSGs identified from the Q20 data of the 4X assembly. An additional reason for using the 
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4X assembly is the finding of a number of cases in which the 4X assembly is apparently more 

accurate than the 6X assembly (see Materials and Methods).  

We found that the mean ω of all genes is 0.259 ± 0.002 in the human lineage, significantly larger 

than that (0.245 ± 0.002) in the chimp lineage (P < 10
-4

; Table 3.1). For the common set of 13,508 

non-PSGs between humans and chimps, the mean ω is also significantly larger in human (0.252 ± 

0.002) than in chimp (0.238 ± 0.002) (P < 10
-4

; Table 3.1). Because the majority of non-PSGs are 

under negative selection, as reflected in their low ω values, the above results indicate stronger 

negative selection in chimps than in humans. Multiple-population genetic data indicate that the 

long- term effective population size of humans (in the last 1–2 million years) is several-fold 

smaller than that of chimps and than that of the human–chimp common ancestor ((Ferris et al. 

1981; Takahata et al. 1995; Ruvolo 1997; Kaessmann et al. 1999; Chen and Li 2001; Kaessmann 

et al. 2001; Stone et al. 2002; Wall 2003; Fischer et al. 2004)). A recent analysis of 1 million base 

pairs of Neanderthal nuclear DNA also suggested that the common ancestor of modern humans 

and Neanderthals had a small effective population size (Green et al. 2006). It is thus probable that 

the effective population size is greater in the chimp lineage than in the human lineage for a large 

portion of the divergence time between the two lineages. Population genetic theories (Kimura 

1983b) predict that both positive and negative selection are more effective in large populations 

than in small populations. Our observation that chimps have more PSGs but fewer 

nonsynonymous substitutions in non- PSGs than humans is consistent with these predictions.  

Computer simulations showed that the branch-site likelihood method cannot detect all PSGs. 

Rather, the detection rate increases as the ω of background branches increases (Table 3.6). If the 

overall strength of positive selection is weaker in humans than in chimps because of smaller 

populations of humans than chimps, a higher average background ω is required for PSGs to be 

detectable in humans than in chimps. We found that in the macaque branch of the human–chimp–
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macaque tree, the mean ω for all genes is 0.226±0.001. For human PSGs, the mean ω in the 

macaque branch is 0.294 ± 0.007, significantly greater than the mean ω in the macaque branch 

(0.278±0.005) for chimp PSGs (P<0.05). Hence, these observations are consistent with the 

simulation result and further support the notion that positive selection was weaker in the human 

lineage than in the chimp lineage. Theories also predict that recombination can increase the 

efficacy of selection (Hill and Robertson 1966). Indeed, PSGs tend to be located in high-

recombination regions, although this effect is significant in chimps (P = 0.041) but not in humans 

(P = 0.32) (Figure 3.7), probably as a result of a difference in statistical power caused by the 

difference in the number of PSGs in the two species. 

Similarities and Differences Between Human and Chimp PSGs 

It has been claimed that genes of certain functional categories, such as olfaction and nuclear 

transport, were more frequently under positive selection in humans than in chimps, based on the 

ranking of all genes by their P values in the likelihood test of positive selection (Clark et al. 

2003). Because genes with reduced negative selection also tend to have low P values (although 

unlikely to be as low as 0.05), such ranks potentially mix genes under positive selection with 

those under reduced negative selection. We took a more rigorous approach by limiting our 

analysis to the PSGs we detected. We found that seven genes are shared between the human and 

chimp PSGs (Table 3.7), significantly greater than expected by chance (2.6; P < 0.02, binomial 

test), suggesting the presence of some common targets of positive selection in the two lineages. 

We classified all PSGs into biological process groups and molecular function groups, as defined 

in the PANTHER database (Mi et al. 2005). A randomization test indicated a significant 

difference in distribution of human and chimp nonoverlapping PSGs among biological process 

groups (Figure 3.1A) and among molecular function groups (Figure 3.1B). Those groups showing 

the greatest differences between the two species are listed in Figure 3.1C. Interestingly, however, 

the majority of these groups (e.g., protein metabolism and modification, anion transport, 
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phosphate transport, and lyase) do not correspond to the widely assumed adaptive phenotypic 

differences between humans and chimps (e.g., neurogenesis), suggesting the existence of yet-to-

be-recognized adaptive phenotypic differences between the two species. We did not detect 

several previously reported PSGs that control brain size or cognitive functions (Enard et al. 

2002b; Zhang et al. 2002; Zhang 2003; Evans et al. 2004b) because previous identifications of 

these PSGs were based on a comparison of polymorphism and divergence data, whereas only 

divergence data are used here. As mentioned above, due to the paucity of chimp polymorphism 

data, any fair genomewide comparison of human and chimp PSGs would have to be limited to 

divergence data at this time.  

Using microarray data of human gene expression, we found that human and chimp PSGs are not 

significantly different in their distributions between the categories of tissue-specific genes and 

nonspecific genes (P > 0.5, χ
2
 test; Table 3.8). On examining the peak-expression tissue group for 

each gene (Appendix), we again found no significant difference in the overall tissue distribution 

between human and chimp PSGs (Figure 3.2). Notably, 14 (11%) human PSGs and 13 (6.7%) 

chimp PSGs have peak expressions in one or more parts of the brain, but the difference is not 

statistically significant (χ
2
 = 1.74, P = 0.19). On the contrary, for the central nervous system 

outside of the brain, human (8) has fewer PSGs than chimp (14) (χ
2
 = 0.09, P = 0.77). These 

findings are consistent with recent comparative genomic analyses (Shi et al. 2006; Wang et al. 

2007) and do not support more positive selection in humans than in chimps in regard to nervous 

system genes (Dorus et al. 2004).  

Genome-wide identification of human and chimp PSGs helps to test several evolutionary 

hypotheses. First, it has been argued that PSGs are more likely than non-PSGs to underlie known 

Mendelian disorders in humans because the current environment of humans is considerably 

different from that of earlier hominins and previous adaptive changes may become deleterious 

today (Neel 1962; Young et al. 2005). Our data provide some support for this hypothesis. We 
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found that 9.7% of human PSGs are disease-associated (Appendix), significantly greater than that 

(6.1%) among the non-PSGs examined (P = 0.049; Table 3.2). Consistent with the prediction of 

the above hypothesis, the fraction of human PSGs underlying human diseases is greater than the 

fraction of chimp PSGs underlying human diseases (P = 0.044, Fisher’s exact test). Furthermore, 

as expected, there is no significant difference in the proportion of genes underlying human 

diseases between chimp PSGs and non-PSGs (P = 0.23; Table 3.2).  

Second, a recently proposed chromosomal speciation hypothesis asserts that chromosomal 

rearrangements facilitated the formation of reproductive isolation between populations that 

eventually led to modern humans and chimps (Navarro and Barton 2003). Several predictions of 

this hypothesis have been examined, with mixed results (Lu et al. 2003; Navarro and Barton 

2003; Marques-Bonet et al. 2004; Zhang et al. 2004; Osada and Wu 2005; Innan and Watanabe 

2006; Patterson et al. 2006). One interesting prediction that has not been explicitly tested is that 

PSGs are preferentially located on rearranged chromosomes because such chromosomes are less 

likely to be introgressed after the initial separation of two lineages during speciation and thus are 

more likely to accumulate genes subject to local adaptations (Navarro and Barton 2003). Nine 

chromosomes (1, 4, 5, 9, 12, 15–18) contain pericentric inversions between humans and 

chimpanzees, and human chromosome 2 resulted from a fusion of two acrocentric chromosomes 

common to other great apes (Yunis and Prakash 1982). These chromosomes are considered as 

rearranged chromosomes, whereas the other chromosomes are considered as colinear 

chromosomes. Our data, however, do not support the chromosomal speciation hypothesis for 

humans and chimps because the proportion of PSGs is even slightly lower on the rearranged 

chromosomes than on the colinear chromosomes in both the human and chimp lineages (Figure 

3.3). 
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Implications 

In summary, our genome-wide analysis showed that substantively more genes underwent positive 

selection in the chimp lineage than in the human lineage since their split. Although our study 

could not, and did not, detect all PSGs in human and chimp evolution, particularly those 

beneficial alleles that are yet to be fixed (Bustamante et al. 2005; Sabeti et al. 2006; Wang et al. 

2006), it provides an unbiased comparison between the two lineages. Our results have several 

implications. First, in sharp contrast to common belief, there were more adaptive genetic changes 

during chimp evolution than during human evolution. Without doubt, we tend to notice and study 

human-specific phenotypes more than chimp-specific phenotypes, which may have resulted in the 

prevailing anthropocentric view on human origins. Our finding suggests more unidentified 

phenotypic adaptations in chimps than in humans. Although human and chimp PSGs show 

different distributions among molecular functions and biological processes, the differences do not 

ostensibly correspond to the widely assumed adaptive phenotypes in humans. Assuming that our 

statistical method is equally powerful in detecting PSGs of different biological processes, the 

finding shows how little is currently known about which traits are adaptive. Second, although the 

influence of population size on negative selection has been well documented (Ohta 1995; Eyre-

Walker and Keightley 1999), the present study also demonstrates the impact of population size on 

positive selection at the genomic scale. Interestingly, even during human evolution when so many 

apparently dramatic phenotypic changes took place, the laws of population genetics prevailed. 

This being said, it is important to recognize that other factors also influence the frequency of 

positive selection. For example, it is possible that as a result of the relatively recent out-of-Africa 

migration of modern humans, many new advantageous alleles are yet to be fixed and thus are not 

identified by our method. Our results thus apply largely to completed selective sweeps in human 

and chimp lineages. Furthermore, a higher level of polymorphism in chimps than in humans 

could potentially lead to more predicted PSGs in chimps than in humans. But because some 
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chimp polymorphic sites have been removed in the Q20 data, and because the number of 

synonymous changes is already 1.5% lower in chimp than in human for the Q20 data, we do not 

think this factor has affected our result. At any rate, it will be interesting to examine in other 

species whether the number of PSGs is strongly dependent on population size. Third, although we 

only studied positive selection on protein sequence changes and did not address positive selection 

on gene expression evolution (Rockman et al. 2005; Khaitovich et al. 2006), a recent comparison 

between hominoids and murids in regard to regulatory sequence conservation showed that a 

reduction in population size also lowers the efficiency of natural selection on gene expression 

changes (Keightley et al. 2005). Most interestingly, when conserved noncoding sequences, which 

often regulate gene expression, are examined, chimps show more incidences of accelerated 

evolution than humans do (Prabhakar et al. 2006). Thus, it is likely that the total number of genes 

for which either the regulatory or coding regions underwent adaptive selection is also greater in 

chimp evolution than in human evolution. 

Materials and Methods 

Compilation of Human–Chimp–Macaque Gene Sequence Data 

Protein and corresponding nucleotide sequences of all predicted genes in the human, chimpanzee, 

and macaque genome sequences were downloaded from Ensembl (version 36, December 2005; 

www. ensembl.org). To identify orthologous genes, human protein sequences (n = 33,869) were 

used to conduct BLASTP searches (Altschul et al. 1990) against the chimpanzee (n = 39,648) and 

macaque (n = 31,371) protein sequences. Reciprocal searches were performed using the 

chimpanzee and macaque proteins to query the human proteins. A total of 19,422 proteins with 

reciprocal best hits in both human/ chimpanzee and human/macaque searches were retained for 

further analysis. Alignment of the human–chimpanzee–macaque orthologous proteins was 

performed using CLUSTALW version 1.83 (Thompson et al. 1994). DNA sequence alignments 
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were obtained by following the protein sequence alignments. Alignments containing <100 amino 

acids (n = 1,291) were discarded. Lineage-specific nucleotide substitutions were identified by 

parsimony as described in the next paragraph. Review of several alignments that had 

exceptionally high proportions of human- or chimpanzee-specific changes revealed that the 

apparent high level of lineage-specific changes resulted from incorrect alignment or 

nonorthology. Therefore, alignments containing >10% human- or chimpanzee-specific amino 

acid or nucleotide changes or >30% macaque-specific changes (n = 161) were discarded from 

analysis. Finally, each protein was assigned to a gene on the basis of the Ensembl annotation, and 

the protein sequence with the longest amino acid alignment was retained for each gene, resulting 

in the alignments of human, chimpanzee, and macaque sequences of 13,955 distinct genes (Q0 

data set). Chimp genome sequence quality information was downloaded from the University of 

California, Santa Cruz, Bioinformatics web site (http://hgdownload.cse.ucsc.edu/ 

goldenPath/panTro1/bigZips/chromQuals.zip). The average chimp quality score in the Q0 data set 

is 48.9526. The 13,955 alignments were scanned for codons in which one or more nucleotides 

had a chimp quality score <20 (i.e., an error rate of 1%) (Ewing et al. 1998), and these codons 

were removed from the alignments. After this procedure, 67 alignments contained <100 amino 

acids and were removed from analysis. The remaining 13,888 alignments constituted the Q20 

data set. The average chimp quality score in the Q20 data set is 49.3443. We similarly obtained 

the Q10 data set (i.e., a maximum error rate of 10% at any nucleotide site), comprising 13,925 

genes. The average chimp quality score in the Q10 data set is 49.0695.  

We applied the parsimony principle to identify human-specific and chimpanzee-specific 

substitutions, using the macaque as the outgroup. The numbers of synonymous (s) and 

nonsynonymous (n) nucleotide substitutions in the human and chimp lineages were counted. 

Using the modified Nei–Gojobori method (Zhang et al. 1998) with a transition/transversion ratio 

of 2 (Rosenberg et al. 2003), we estimated that the total number of nonsynonymous sites in the 
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13,888 genes of the Q20 data set was N = 12,783,034 and the total number of synonymous sites 

was S = 5,215,415, with their ratio being N/S = 2.45. Thus, for a set of genes, the mean 

nonsynonymous-to-synonymous rate ratio in a lineage can be computed by (n/s)/(N/S) = 

(n/s)/2.45 = 0.41n/s. 

Identification of PSGs 

Using PAML (Yang 1997), we applied the improved branch-site test of positive selection (test 2 

in ref. 25) to identify putative cases of positive selection in the human lineage among the 13,888 

genes (Q20 data). When we tested positive selection in the human lineage, the human branch was 

designated as the foreground branch and the chimp and macaque branches were designated as 

background branches. We tested positive selection in the chimp lineage similarly. Bonferroni 

correction (Sokal and Rohlf 1995) and a false discovery rate of 5% (Storey and Tibshirani 2003) 

were used to correct for multiple testing. We also analyzed the Q10 data set and identified 165 

human and 424 chimp PSGs.  

Comparison Between Human and Chimp PSGs 

Using the PANTHER database (Mi et al. 2005), we classified the 13,888 genes into different 

groups of biological processes and molecular functions. Note that these groups are not mutually 

exclusive and that a gene may belong to more than one group. To examine the distributional 

difference between human and chimp PSGs across PANTHER groups, we defined the statistic 

2���� � ��
�/��� � ��
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where xi and yi are the number of human and chimp PSGs, respectively, in PANTHER group i, 

and n is the total number of PANTHER groups. Because of the nonindependence of PANTHER 

groups, we used a randomization test to examine whether the observed χ
2
 was significantly 
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different from the random expectation. Briefly, we randomly divided the 373 unshared human 

and chimp PSGs into 147 human PSGs and 226 chimp PSGs and computed χ
2
 by using the above 

formula. We repeated this procedure 10,000 times to obtain the null distribution of χ
2
, to which 

the observed χ
2
 is compared. Similar results were obtained when the seven shared PSGs were 

included.  

The microarray gene expression data in 79 human tissues, and the nucleotide sequences for 

27,215 probe sets on the array, were obtained from (Su et al. 2004). The probe set sequences were 

used to perform BLAST searches against the human coding sequences annotated by Ensembl. 

Probe sets that matched to multiple genes were considered ambiguous and were discarded. A total 

of 26,195 probe sets were unambiguously matched to 16,605 distinct genes. Among these 16,605 

genes, 12,099 genes, including 127 human PSGs and 195 chimp PSGs, can be found in our Q20 

data set. For genes that matched to more than one probe set, the expression levels measured by 

different probe sets were averaged for each tissue replicate. Two replicates were available for 

each tissue, and these were averaged to determine the expression level of a gene in each tissue. 

Identification of tissue specificity can be obscured if multiple tissues with very similar expression 

profiles are used (Winter et al. 2004). We therefore consolidated multiple tissues representing 

similar areas into tissue groups and took the highest expression level from any tissue in a group as 

the single representative expression level score for the tissue group (Shi et al. 2006) (Table 2.3). 

Expression levels in pathogenic tissues were not considered. A gene was considered to be tissue-

specific if the expression level in the highest tissue group was greater than or equal to twice the 

expression level in the second highest tissue group. The 3,299 genes meeting this criterion are 

said to be tissue-specific in the highest tissue. We also considered the peak expression tissue for 

every gene. 
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Online Mendelian Inheritance in Man (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) was 

used to identify all genes known to be involved in human Mendelian diseases. The chromosomal 

locations of all genes were obtained from Ensembl.  

Recombination rate data for 1-megabase segments of human chromosomes were downloaded 

from University of California, Santa Cruz (http://genome.ucsc.edu/cgi-bin/hgTables). A 

recombination rate was assigned to each gene in the Q20 data set, based on the 1-megabase 

segment in which the midpoint of the gene lies. Of the 13,888 genes analyzed here, 13,714 are 

found in regions of known recombination rates. Among these 13,714 genes, 152 human and 228 

chimp PSGs have available recombination rates. We then computed the mean recombination rate 

of the 152 human PSGs. To estimate the expected value of this mean, we randomly picked 152 

genes from 13,714 genes and computed the mean. This procedure was repeated 10,000 times to 

estimate the probability that the observed mean is greater than the expected mean. The same 

procedure was applied to chimp PSGs, under the assumption that the recombination rate of a 

chimp gene is the same as for its human ortholog, which is probably correct for the majority of 

genes at the 1-megabase scale (Serre et al. 2005). 

Use of the 6X Chimp Genome Assembly 

The 233 chimp PSGs identified by using the Q20 data from the 4X chimp sequence were 

reanalyzed using sequences from the 6X chimp genome assembly (panTro2; 

www.genome.ucsc.edu). The 6X sequences corresponding to 4X sequences of the 233 PSGs were 

found by using BLAT (http://genome.ucsc.edu/cgi-bin/hgBlat?command=start). Codons with one 

or more bases having a quality score less than Q20 in the 4X assembly were eliminated, as 

described in Materials and Methods. Of the 233 PSGs, 100 had a perfect match between the 4X 

and 6X assemblies. Forty-eight PSGs were aligned to the 6X assembly with no gaps, but with 

mismatches of 0.02-0.13%. Eighty-five PSGs were aligned to 6X with some gaps, ranging from 

0.02 to 63.0%. Codons having one or more bases missing or ambiguous (i.e., N) in the 6X 
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assembly were also eliminated, and the resulting sequence was aligned to the human and 

macaque sequences. This alignment was used in the branch-site test of positive selection in the 

chimp branch, as described in Materials and Methods. 

Of the 48 PSGs with no gaps, 42 still show positive selection in chimp, using the 6X sequence, 

whereas 6 no longer show the signal of positive selection. Of the 85 PSGs with gaps, 65 still 

show positive selection in chimp, whereas 20 appeared not to be under positive selection when 

the 6X alignment was used. Each of these 26 (6 + 20) apparent reversals was examined manually 

to determine the source of discrepancies between the 4X and 6X results. In five cases (all with 

gaps), it was determined that the 4X assembly was more accurate because of elimination of exons 

or other problems in the 6X assembly. In these cases, the 4X result was retained. 

Performance of the Improved Branch-Site Likelihood Method 

Although there have been concerns about the performance of the likelihood method in detecting 

positive selection (Nei 2005), the improved branch-site likelihood method was previously shown 

by computer simulations to produce reasonably good results, even when some of the assumptions 

are violated (Zhang et al. 2005). To further verify the suitability of the method when the number 

of substitutions is as small, as in the present context, we conducted additional simulations 

specifically designed to mimic the evolution of human, chimp, and macaque genes. The 

simulation procedure follows ref. 2. A tree of three taxa was used. The numbers of synonymous 

substitutions per site for the human, chimp, and macaque branches were set as 0.006, 0.006, and 

0.058, respectively, because these were the actual numbers observed from our Q20 data for the 

three branches. Because the 13,888 alignments have a mean length of 432 codons and a standard 

deviation of 339 codons, we examined three different sequence lengths (150, 400, and 1,000 

codons) in the simulation. To examine the type I error (i.e., false-positives), we used model B1 

(negative selection) to simulate sequence evolution in the background branches (macaque and 

chimp branches) and either model F1 or F2 for the foreground branch (human branch) (Table 
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3.3). Note that F1 and F2 do not contain sites under positive selection; rather, they represent 

partial and complete relaxation of negative selection, respectively. After the three sequences were 

generated, the likelihood method was used to detect positive selection in the human branch. 

Positive selection was inferred if the likelihood of the alternative model was greater than that of 

the null model at the 5% significance level. Four hundred simulation replications were conducted. 

The results showed that the type I error is lower than the nominal rate of 5% in the case of partial 

relaxation of negative selection (Table 3.4). In the case of complete relaxation of negative 

selection, the error rate is lower than, close to, and higher than the nominal rate for short, 

intermediate, and long sequences, respectively (Table 3.4). Because only 10% of our 13,888 

genes have >800 codons, and because complete relaxation of negative selection is rare, it is 

expected that the slightly-higher-than-nominal type I error observed in one condition of the 

simulation will have only a minimal influence on our results. Although the χ
2
  approximation of 

the likelihood ratio test depends on the large-sample assumption, our simulation showed that the 

approximation is justified in the present context. This may be due to two factors. First, we used 

χ1
2
 instead of a 50:50 mixture of point mass 0 andχ1

2
  (Self and Liang 1987; Zhang et al. 2005), 

thus reducing type I errors. Second, the χ
2
  approximation appears insensitive to sample size, as 

was found previously (Zhang 1999). 

We also examined the power of the statistical test in four simulations, by changing the 

background and foreground models (Table 3.3). The sequence length of 400 codons was used in 

this set of simulations. The four background models (B3-B6) differ in the level of mean ω. The 

corresponding foreground models (F3-F6) also have different mean ω, but have the same level of 

positive selection. The results showed that a higher background ω increases the detection rate of 

positive selection (Table 3.6). 
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We noticed that when the likelihood ratio test provides statistical evidence for positive selection 

in a gene, the estimated ω for the positively selected sites (class 2 codons) in the foreground 

branch is often very large (e.g., >100). This appears biologically unreasonable. We examined the 

accuracy of the estimated ω by using the simulations described in the previous paragraph. We 

allowed 30% of codons to be under positive selection in the foreground branch, with a mean ω 

for these positively selected codons equal to 5 (Table 3.3). However, as shown in Table 3.6, the 

estimated ω for class 2 codons has a mean of several hundred and a standard deviation of several 

hundred among the genes in which positive selection is detected by PAML. Thus, the simulations 

showed that, although the likelihood ratio test of positive selection is reliable, the estimation of ω 

(when >1) is problematic and not trustable. For this reason, we do not present the likelihood-

estimated ω values. 
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Figure 3.1 Functional differences between human and chimp unshared PSGs. 

(A and B) Human and chimp PSGs show a significantly larger difference in distribution across 

biological process groups (A) and molecular function groups (B) than by chance (P = 0.84% and 

0.26%, respectively, one-tail randomization test). The bars show the frequency distribution of the 

χ
2
 values in 10,000 random divisions of the 373 unshared PSGs into 147 human PSGs and 226 

chimp PSGs. The arrow indicates the observed χ
2
. Here, the randomization test is superior to the 

standard χ
2
 test because the functional groups are not independent of one another, and a single 

gene may belong to more than one group. Similar results are obtained when the seven shared 

PSGs are included. (C) Biological process and molecular function groups that show the greatest 

differences between human and chimp unshared PSGs, as ranked by individual χ
2
 values. Shown 

are the groups that each contribute at least 2% of the total χ
2
 of all groups. Groups with a higher 

frequency of human PSGs than chimp PSGs are shown in red; those with a higher frequency of 

chimp PSGs than human PSGs are shown in blue.  
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Figure 3.2 Frequency distribution of human and chimp PSGs across 20 peak expression tissue 

groups.  

The overall difference between the distributions of the two species is not statistically significant 

(χ
2
 = 23.8, df=19, P=0.21). Only smooth muscle (χ

2
 = 7.7, P = 0.0056) shows a significant 

difference in proportion of PSGs between the two species, but the significance disappears when 

multiple testing is corrected for. Pink dots show the expected distribution of PSGs when there is 

no enrichment of PSGs in any tissue groups. 
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Figure 3.3 Distributions of human and chimp PSGs among chromosomes.  

Contrary to the chromosomal speciation hypothesis, PSGs are slightly less abundant on 

rearranged chromosomes than on colinear chromosomes (P = 0.10 and 0.055 for the human and 

chimp lineages, respectively, χ
2
 test). The human chromosome numbers are used. The expected 

number of PSGs on each chromosome is calculated under the assumption that the probability of a 

gene being targeted by positive selection is not affected by the chromosome on which it is 

located. 
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Figure 3.4 Distribution of human and chimp PSGs across chromosomes.  

The human chromosome numbers are used. Shown are 13,714 genes in the Q20 dataset for which recombination rate data are available. Genes 

located in segments with a recombination rate in the lowest quintile of all 1-megabase segments in the genome are colored blue; genes in the 

second, third, fourth, and fifth quintiles of recombination rate are colored green, yellow, orange, and red, respectively. A total of 152 human PSGs 

(filled diamonds) and 228 chimp PSGs (open diamonds) for which recombination data are available are shown to the right of each chromosome. 

For all genes, position along the chromosome corresponds to the midpoint of the gene. There is a weak tendency for PSGs to have higher 

recombination rates than by chance (P = 0.32 and 0.04 for human and chimp, respectively; simulation test). 
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Table 3.1 Genic positive selection in human and chimp lineages since their split 

 

 

Table 3.2 Association of PSGs with human disease 

 
 

Table 3.3 The ω values used in generating the DNA sequences in computer simulation 
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Table 3.4 False-positive rates of the branch-site likelihood method in detecting positive selection 

at the 5% significance level 

 
 

 

Table 3.5 Basic statistics of the three datasets 

 
 

Table 3.6 Rate of detection of positive selection by the branch-site method when there is positive 

selection 
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Table 3.7 Genes showing significant signal of positive selection in both human and chimp 

lineages 

 
 

 

Table 3.8 Numbers of genes with regard to tissue-specificity of expression 
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Chapter 4 

Genomic phylostratigraphy and spurious patterns of new gene evolution 

 

Abstract 

Phylostratigraphy is a method for estimating the phylogenetic age of a gene by the distribution of 

its homologs on the tree of life. Applying this method to all genes in a species constitutes 

genomic phylostratigraphy. Gene age estimation relies on the ability to detect distant homologs 

via sequence similarity, typically by BLAST and its derivatives. In spite of the expectation that 

homologs of fast evolving genes in distantly related species tend to be missed by BLAST, a 

simulation study that considered substitution rate variation among sites discovered few errors, 

stimulating an explosive use of genomic phylostratigraphy that has led to many reports of 

differential properties of genes of different ages.  Unfortunately, the simulation study relied on 

rate heterogeneity patterns of a potentially biased set of only 14 genes. Here we reevaluate the 

accuracy of genomic phylostratigraphy with a genomic scale gene set and investigate the impact 

of its error on findings about young and old genes. We show that failure to detect distant 

homologs can generate spurious non-uniform distributions of various gene properties among age 

groups, many of which are not predicted a priori. Furthermore, phylostratigraphy also 

overestimates gene age substantially for new genes that have arisen from gene duplication 

followed by very rapid sequence evolution for 20 million years. We find that the reported large 

numbers of lineage-specific genes cannot possibly be explained by the model of gene duplication 

followed by substantive neofunctionalization. Given the high likelihood that conclusions about 

gene age are faulty, we advocate the use of realistic simulation to determine if observations from 
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genomic phylostratigraphy are explainable by a null model of biased measurement, and in all 

cases, critical evaluation of results.   

Introduction 

Compared to old genes, young genes evolve faster (Alba and Castresana 2005), are subject to less 

purifying selection and perhaps more positive selection (Cai and Petrov 2010), are less likely to 

be associated with human disease (Domazet-Loso and Tautz 2008) or to be expressed during the 

phylotypic stage (Domazet-Loso and Tautz 2010a), are more likely to be singletons (Prachumwat 

and Li 2008), and have different codon usage (Prat et al. 2009). The studies that uncovered these 

correlates of gene age relied on phylostratigraphy (Domazet-Loso et al. 2007) or similar methods 

(e.g. lineage specificity (Cai et al. 2006) or study specific variants (Prachumwat and Li 2008)) to 

estimate gene age. Gene age is operationally defined as the time since the divergence of the most 

distantly related pair of taxa in which homologs can be found. Thus, the ability to detect distant 

homologs is critical to the correct estimation of gene age, and to the reliability of conclusions 

about the properties of young and old genes. Studies of gene age may focus on one or a few 

closely related species and classify genes unique to those species as orphan genes, or they may 

take a wider view and identify genes common to a particular clade, termed lineage specific genes. 

Whether a study focuses on very young genes (orphans) or slightly older genes (lineage specific 

genes), the accuracy of gene age estimation is paramount.  

Because detection of homologs depends on sequence similarity, and slowly evolving genes retain 

greater sequence similarity with their homologs than rapidly evolving genes of the same age, it 

has been suggested that the correlation of gene age with evolutionary rate is purely artifactual 

(Elhaik et al. 2006). Elhaik et al. simulated DNA sequences representing several taxa, all derived 

from a common ancestor, for a range of evolutionary rates and used BLAST to search for the 

homologs. In this scenario, failure of BLAST to detect a homolog is due solely to loss of 



 

53 

 

sequence similarity between homologs because all simulated sequences have a homolog in each 

taxon. The inability to detect homologs results in gene age estimation error, that is, the 

assignment of an incorrect age to the gene. Error rates as high as 100% were observed, and fast 

evolving genes had the highest error rates, leading the authors to conclude that the statement that 

young genes evolve fast is a mere tautology. However, the above simulation used nucleotide 

sequences, whereas amino acid sequences allow more sensitive detection of distant homologs. In 

addition, all sites were allowed to evolve at the same rate, while in real genes some sites are more 

functionally constrained than others, resulting in rate heterogeneity among sites. BLAST search 

begins by scanning the database for high scoring words – that is, sequences of a given length (w) 

that achieve a minimum similarity score to a subsequence of the query. Therefore, the presence of 

consecutive functionally constrained sites within a sequence is expected to improve BLAST 

detection. The default word size (w) in protein BLAST is only 3, so even short stretches of 

conserved residues may improve results. A simulation study comparing gene age estimation error 

in sequences simulated with and without among site rate heterogeneity confirmed this prediction 

(Alba and Castresana 2007). Using amino acid sequences and rate heterogeneity patterns derived 

from alignments of vertebrate or bilaterian species, Alba and Castresana found that while gene 

age estimation error rates were still high in fast evolving genes, the majority of genes evolve at 

rates that are consistent with very low error rates.  

While the latter simulation study implements a more realistic model than did the former, it has 

three features that make it difficult to assess to what extent the inability of BLAST to detect 

homologs impacts the estimation of gene age. First, the rate heterogeneity patterns used were 

derived from alignments of either 7 vertebrates with a most recent common ancestor 

approximately 450MYA, or 9 bilaterians with a most recent common ancestor about 980MYA. In 

both cases, these alignments may represent slowly evolving genes, as they could not have been 

included unless a homolog was found in each of these widely divergent taxa. A simulation using 
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the rate heterogeneity patterns of slowly evolving genes is expected to produce BLAST results 

and gene age estimates similar to those of slowly evolving genes, i.e. low gene age estimation 

error rates and old gene ages. Second, Alba and Castresana used the rate heterogeneity patterns of 

only 14 genes for which alignments could be constructed at that time. Their results may thus 

reflect the rate heterogeneity pattern of these few genes, which may not be representative of 

genomic patterns of rate heterogeneity. Third, the rate heterogeneity patterns used reflect the 

average rate of evolution over hundreds of millions of years. One model for the evolution of 

orphan genes invokes a period of relaxed constraint, during which rapid sequence change reduces 

sequence similarity to homologs (Domazet-Loso and Tautz 2003). This model also suggests that a 

period of positive selection, as a gene acquires new function, could further reduce sequence 

similarity, resulting in the appearance of an orphan gene. After a gene has acquired its new 

function, it is expected to be subject to purifying selection and thus have a reduced evolutionary 

rate. It is not clear whether genes evolving under such a regime would differ significantly from 

genes evolving gradually in terms of their estimated gene age as no such model has been 

simulated in previous studies.  

Here, we simulate the evolution of amino acid sequences using rate heterogeneity patterns 

derived from the alignments of 6,662 genes in 12 Drosophila species. These species share a most 

recent common ancestor about 60MYA, so they may reflect both slowly evolving genes as well 

as more rapidly evolving genes that would not have been included in Alba and Castresana’s 

study. We simulate the evolution of these genes under a gradual model using rates and rate 

heterogeneity patterns estimated from these alignments, and also under models of relaxation and 

neofunctionalization that more accurately reflect models of orphan gene evolution. Thus, we are 

able to examine gene age estimation error rates for genes that should be classified as old – those 

that have been evolving gradually throughout their history – as well as error rates expected for 

orphan genes – those that have undergone a period of more rapid evolution consistent with a loss 
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of ancestral function and gain of new function. For the former, failure to detect a homolog is a 

false negative, while for the latter, detection of a homolog that diverged prior to the period of 

rapid evolution is a false positive. From these simulations, we identify factors impacting gene age 

estimation error rate. In addition, we compare the properties of genes identified as old and young 

in our simulations with those reported for old and young genes in a recent study of gene age in 

Drosophila (Domazet-Loso et al. 2007) and assess the extent to which the reported results can be 

explained by gene age estimation error. Finally, in order to assess how well current models of 

orphan gene evolution explain observed levels of lineage specific genes, we estimate the 

proportion of lineage specific genes expected to be observed when both gene age estimation error 

and true young genes are taken into account, and compare this estimate to the proportion 

observed in real genomes. 

Results 

Detection of simulated homologs by BLAST 

In our study, protein sequences were simulated for each of 11 taxa represented in the phylogeny 

shown in Figure 4.1. Each sequence derives from an ancestral sequence; thus, a homolog is 

present in all 11 taxa. This process was repeated 6,662 times for each iteration of the simulation, 

using parameters derived from 6,662 actual Drosophila group alignments, resulting in a simulated 

proteome of 6,662 amino acid sequences for each of the 11 taxa. BLASTP searches were 

conducted using the simulated D. melanogaster sequences as query and the other 10 proteomes as 

database. Because homologs are present in each of the other 10 species in this simulation, failure 

of BLAST to detect all 10 homologs when gradual evolution is simulated is considered gene age 

estimation error.  

Two variants of a simulation representing gradual evolution were conducted. First, randomly 

generated ancestral sequences created using amino acid frequencies calculated from the entire 
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dataset and matching the lengths of actual Drosophila alignments were evolved using 

evolutionary rates and rate heterogeneity patterns estimated by Tree-Puzzle for those alignments, 

and indel parameters as in Alba and Castresana (2007) (main simulation). Over 10 repeats of this 

simulation, BLASTP failed to detect the most distant homolog for 11.8% of simulated proteins, 

failed to detect at least one of the 10 existing homologs for 12.2% of proteins, and failed to detect 

any homologs for 2.2% of proteins. (Table 4.1). A second simulation, identical to the main 

simulation except that actual D. melanogaster sequences were used as the ancestral sequences in 

place of the randomly generated ancestral sequences, failed to detect the most distant homolog for 

10.9% of simulated proteins, failed to detect at least one of the 10 existing homologs for 11.4% of 

proteins, and failed to detect any homologs for 2.2% of proteins. (Table 4.1).  

Since the evolutionary rate of a given site may change as selective pressures change over time, 

we also simulated sequences with a change in rate heterogeneity patterns. In this group of 

simulations, 0%, 10%, 25% or 50% of sites were randomly chosen from each protein, and the rate 

classes for these sites were shuffled on the branch indicated with the letter S in Figure 4.1. No 

indels were allowed in this group of simulations, but otherwise the methods were identical to the 

main simulation. In the 0%, 10%, 25%, and 50% simulations, BLAST failed to detect the most 

distant homolog in 9.0%, 9.5%, 10.3%, and 23.7% of proteins, respectively. The rates of failure 

to detect any homologs were 1.2%, 1.3%, 1.3%, and 1.3%, respectively, and the rates of failure to 

detect at least one of the 10 existing homologs were 9.2%, 9.8%, 10.7%, and 24.9%, respectively. 

Correlates of BLAST error 

It has been reported that young genes are shorter and evolve faster (Domazet-Loso and Tautz 

2003; Alba and Castresana 2005; Cai et al. 2006; Cai and Petrov 2010) than old genes. In 

addition, the rate heterogeneity patterns of a gene influence the ability of BLAST to detect 

homologs of a gene, as shown above and in previous studies (Elhaik et al. 2006; Alba and 
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Castresana 2007). The level of rate heterogeneity is quantified by the gamma distribution shape 

parameter alpha; low values of alpha indicate considerable among site variability, while high 

values of alpha indicate less heterogeneity among sites, more similar to evolution without rate 

heterogeneity. The degree of rate heterogeneity among sites is expected to be negatively 

correlated with the average evolutionary rate of the protein (Zhang and Gu 1998). The sequence 

of a gene evolving with rate heterogeneity is composed of a mosaic of variable length blocks with 

different evolutionary rates. Long blocks with low evolutionary rates are expected to have the 

highest potential for BLAST detection. Thus, we investigate the correlation of gene age 

estimation error with gene length, evolutionary rate, alpha, and length and relative rate of the 

longest, slowest evolving block in each gene.  

Evolutionary rate correlates well with gene age in the main simulation (r = -0.622, P = 0). Genes 

with the youngest ages, identified as having no homologs outside of Drosophila or insect 

lineages, tend to have the highest evolutionary rates (Figure 4.2). The distribution of evolutionary 

rates in each age class is significantly different from the genomic distribution, with those in the 

oldest age class evolving more slowly, and those in all other age classes evolving more rapidly 

(Figure 4.2, Mann-Whitney U test, p < 0.0001 for all tests after Bonferroni correction). Neither 

gene length nor alpha is well correlated with gene age in the Drosophila data set used in the 

present study (r = 0.110, P = 0 and -0.043, P = 0.0005, respectively). However, estimation of 

alpha is unreliable for high alpha (Gu and Zhang 1997). To examine the correlation between 

alpha and evolutionary rate, we ignore 44 genes with alpha > 3 and observe a positive correlation 

in the remaining 6,618 genes (r = 0.670, P = 0). Furthermore, almost all gene age estimation 

errors in the main simulation occur in the 10% of genes with highest alpha (Figure 4.3, last 

column), and alpha and gene age are correlated within this 10% of genes (r = 0.363, P = 0). 

The 6,662 Drosophila genes examined show considerable variation in the minimum rate class rmin 

(calculated as evolutionary rate * minimum relative rate) and the length of the longest contiguous 



 

58 

 

stretch of amino acids in that rate class (cmax). (Figure 4.4A). gene age estimation error rates are 

very low for genes with low to intermediate rmin and intermediate to high cmax, while error rates 

are as high as 100% for genes with the highest  rmin and lowest cmax values (Figure 4.4B). 

Reproduction of reported results by gene age error 

We focus on three results reported in the initial paper that proposed the phylostratigraphy method 

(Domazet-Loso et al. 2007). First, these authors found that the proportion of genes of a particular 

age expressed in a given tissue may differ significantly from the genome wide proportion 

expressed in that tissue. Here, we also find significant differences between the genome wide 

proportion of endoderm, mesoderm and ectoderm expressed genes, and the proportion in genes of 

a specific age in our main simulation (Figure 4.5A) In the present study, significant differences 

after Bonferroni correction are only found when considering the sum of 10 runs of the simulation. 

Low sample size in individual runs of the simulation likely prevents deviations from genomic 

expression patterns in genes of a given age from attaining significance. Second, Domazet-Loso et 

al. calculated the number of novel genes arising per million years on each branch of the 

phylogeny. Interestingly, they found a peak in this rate of founder gene formation in the branch 

leading to the most recent common ancestor of Bilateria. We also calculated the rate of novel 

gene formation during each age interval in our simulated genes and surprisingly found a peak in 

the same branch leading to the bilaterian ancestor (Figure 4.5B). Finally, the authors of the 

previous work calculated the proportion of genes that were annotated with a biological process in 

each age group, and observed that this proportion was correlated with gene age. This correlation 

is also observed in the data from our main simulation (Figure 4.5C). 

Detection of homologs after rapid evolution 

Two additional classes of simulation were performed. First, we considered models of relaxation 

in which 44%, 90% or 100% of sites were allowed to evolve at the fastest rate observed in the 
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actual protein. The remaining sites were somewhat constrained in the 44% and 90% relaxed 

models (see Methods). Second, we considered models that feature gradual evolution as in the 

main simulation, followed by a burst of rapid evolution of 5MY, 10MY or 20MY at the location 

in the phylogeny indicated by the letter B in Figure 4.1, followed by gradual evolution under a 

rate heterogeneity pattern different from that in the first part of the simulation (see Methods). As 

these simulations represent models of relaxation and/or neofunctionalization that are proposed to 

lead to rapid sequence divergence and orphan gene formation, here we expect BLAST not to find 

all homologs. Whereas in the gradual evolution models, failure of BLAST to detect the most 

distant homolog was considered a gene age estimation error, here, failure of BLAST to detect the 

most distant homolog is consistent with orphan gene formation. Strictly speaking, after the burst 

of rapid evolution, no homologs should be detected in taxa that diverged prior to the burst, so 

detection of such homologs can be considered gene age estimation error as well. In this case, the 

age of a young gene is overestimated. Because the location of burst of rapid evolution in our 

simulation is on the branch leading to Drosophila after its divergence from honeybee, genes 

should not have hits in any of the other 10 taxa. For the 44% and 90% relaxed simulations, 

BLAST does not find a hit in any of the other 10 taxa for 4.5% and 64.5% of proteins, 

respectively. 14.6% and 96.3% of proteins have no hit in the most distant (E. coli) homolog, but 

do have hits in one or more intermediate taxa. In this case the genes would be assigned a gene age 

older than the branch on which the burst of evolution took place, demonstrating that even for true 

orphan genes, the phylostratigraphy method may incorrectly assign their age. For the 100% 

relaxed simulation, a tree topologically identical to that shown in Figure 4.1 was used, but with 

branch lengths representing taxa that diverged from Drosophila 5, 10, 20, 30, 40, 50, 75, 100, 

200, and 500 MYA. Rates of orphan gene formation after 200MY and 500MY are 97% and 99%, 

respectively (Table 4.1). After a burst of 5MY, 10MY or 20MY, the BLAST fails to detect any 

homolog for 2.7%, 3.3%, and 4.7% of genes, respectively.   
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Discussion 

Predicting BLAST error 

In considering sources of error in any experiment, it is important to know whether the errors are 

random and merely generate noise, or if they are systematic and thus tend to bias results. In a 

computational experiment involving gene age, the use of BLAST to detect homologs introduces a 

predictable and significant source of bias. Although we know that evolutionary rate and rate 

heterogeneity patterns both contribute to gene age estimation error, predicting or estimating of the 

impact of this error in a given scenario is not trivial. For example, consider the impact of rate 

heterogeneity. In our simulations, BLAST often failed to find homologs for genes with high 

alpha. Interestingly, comparing the vertebrate and bilaterian genes used by Alba and Castresana 

to study the problem of BLAST error, the vertebrate genes have an average alpha (0.725) lower 

than average alpha in the 6,662 Drosophila gene used in the present study (0.997), while the 

bilaterian genes have a higher average alpha (1.125). We conducted additional simulations 

sampling from vertebrate and bilaterian rate heterogeneity patterns. Rates of gene age estimation 

error in the vertebrate simulation were lower than in our main simulation (8.6% vs. 11.8% unable 

to detect the most distant homolog), while the same measure in the bilaterian simulation was 

substantially higher (49.2%, Table 4.1). These findings demonstrate that gene age estimation 

error may play a much more important role in some contexts than in others, and thus that its 

specific impact must be examined on a case-by-case basis.   

Proportion of false positives among orphan genes 

Orphan genes may result from either gradual evolution and gene age estimation error, as in our 

main simulation, or by punctuated evolution and sequence divergence, as in the relaxed and burst 

simulations. Orphan genes resulting from these two processes may be considered false orphans 

and true orphans, respectively. It is interesting to know what proportion of observed orphans are 

true orphans. In order to estimate the proportion of true orphans expected, it is necessary to know 
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not only the rate at which true orphans and false orphans arise, but the amount of raw material 

available for evolution in gradual and punctuated modes. The majority of existing genes in a 

genome are expected to be functionally constrained and thus evolving under the gradual model. 

The D. melanogaster genome contains ~13,600 genes (Adams et al. 2000) presumably evolving 

in this manner. We have observed that 2.2% of these are classified as orphans due to gene age 

estimation error after 377 million years (the divergence time between Drosophila and honeybee). 

Assuming constant genome size over evolutionary time, we expect gradual evolution to result in 

13,600 * 0.022 = 299 Drosophila or Diptera specific genes (false orphans). This is a conservative 

estimate because the 2.2% figure is derived from 1-to-1 orthologs found in all 12 sequenced 

Drosophila genomes, and these genes are likely evolving more slowly on average than all 

Drosophila genes.  

Considering the process by which true orphans arise, although some studies (Levine et al. 2006; 

Zhou et al. 2008; Toll-Riera et al. 2009) have identified genes formed de novo from intergenic 

sequences, the most likely source of raw material is gene duplication. It has been estimated that in 

Drosophila, 31 new duplicates arise per genome per million years, and that the half-life of these 

genes is 2.9MY (Lynch and Conery 2000). New duplicates may be lost to pseudogenization and 

deletion, or may become orphan genes, lost only in the sense that they can no longer be found in 

the genome due to a high level of sequence divergence. From the 100% relaxation model in our 

simulation, a high-end estimate of the rate at which genes may escape detection through sequence 

change within 5MY is 0.37%. Thus, the number of orphan genes arising in 5MY is equal to the 

number of recent duplicates available multiplied by this rate. The balance of genes lost during this 

5MY interval are pseudogenized or deleted. Using an iterative process (see Methods), we 

estimate that only 63 true orphan genes arise in the Drosophila lineage in 377MY since its 

divergence from honeybee. Although this number seems very low, it is understandable given the 

fact that there is a very short window of time during which a gene can escape sequence detection 
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before becoming pseudogenized or being deleted. Given limitations on the mutation rate, only a 

few genes are able to escape in this short period of time. It is important to note that the rate of 

escape by sequence change is perhaps an overestimate as it is derived from our most extreme 

model of 100% relaxation. Furthermore, we assume that all of these 63 escaped genes acquire 

new function and are retained in the genome, although this may not be the case. Thus, 63 true 

orphans is probably an overestimate. 

After orphan gene formation, further duplication of these founder genes can result in greater 

numbers of observed orphan genes. Domazet-Loso et  al. (2007) used all-against-all BLAST of 

orphan genes to identify such expansions and found that the ratio of all Drosophila and Diptera 

specific orphans to founder genes was 1.21. Multiplying this ratio by the number of founder 

genes estimated above, we expect to observe about 299 * 1.21 = 362 false orphans and 63 * 1.21 

= 76 true orphans. Thus, the false positive rate among observed orphans is about 362/(362 + 76) = 

82.6%. With such a high false positive rate, studies examining the properties of “orphan genes” 

are largely examining the properties of false orphans, i.e., the properties of genes that escape 

BLAST detection.  

The overall proportion of observed Drosophila/Diptera specific orphan genes is 21.1% (Domazet-

Loso et al. 2007), about 6.6-fold higher than the proportion (362 + 76)/13,600 = 3.2% predicted 

here. What can explain the difference? As mentioned, our estimate of gene age estimation error 

rate may be low due to the necessarily conservative nature of genes for which a 1-to-1 ortholog 

exists in each of 12 Drosophila species, which would downwardly bias the number of false 

orphans. Another possibility is that the contribution of non-coding genomic regions to orphan 

gene formation has not been sufficiently appreciated. It has been estimated that 11.9% of new 

genes in Drosophila arise from such regions (Zhou et al. 2008). In addition, ~30% of new 

Drosophila genes are chimeric in nature, including some domains from an existing gene in 

combination with exons from other genes and/or non-coding regions (Zhou et al. 2008). Such 
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genes may more rapidly escape from sequence similarity with their parents because only a portion 

of the gene must escape. Regardless of what other sources contribute to the catalog of orphans 

genes, it is clear that a large proportion, conservatively estimated at 362/(13600*0.211) = 12.6%, 

of orphan genes are due solely to gene age estimation error, and that the contribution of gene age 

estimation error exceeds that of the duplication followed by rapid divergence by 4.7-fold (362/76) 

or more.  

Finally, it is important to note that among retained duplicates, there may be many genes that have 

undergone significant amounts of rapid evolution, consistent with the models of radical 

neofunctionalization that have been proposed to result in the formation of orphan genes, but 

which still retain sufficient sequence similarity to be identified as homologs. Our simulations 

show that, for example, a burst of 20MY rapid evolution erases sequence similarity with all 

homologs for less than 5% of proteins (Table 4.1). If after a period of rapid evolution, a gene’s 

functions are very different from those of its homologs, it may be more correctly considered a 

“young gene”. Even between species as closely related as mouse and human, many homologs 

exhibit differences in fitness effect, which implies change in function, in the two species. 

Furthermore, change in fitness effect is correlated with protein sequence divergence (Liao and 

Zhang 2008). Although it may be debated what level of functional difference is sufficient to 

classify a gene as an orphan, genes with identifiable homologs that nonetheless have different 

functions represent a previously ignored source of error, i.e., false negatives in the search for 

young genes. 

Gene age estimation error as a null model 

Gene age estimation error alone is sufficient to produce “interesting” correlations between gene 

age and biologically important attributes of genes such as evolutionary rate and expression profile 

(Figures 4.2 and 4.5A). For example, although Domazet-Loso et al. declared that “the most 
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parsimonious scenario” to explain their finding of significant differences in expression pattern in 

genes of certain ages was a fluctuation in the adaptive tendencies of different evolutionary time 

periods, it is clear from our simulation results (Figure 4.5A) that a much more parsimonious 

explanation is available: gene age estimation error. It is imperative that results based on 

phylostratigraphy or similar methods be rigorously compared against a null hypothesis of gene 

age estimation error via simulation. However, simulation design requires careful choices about 

model parameters and negative simulation results may reflect parameter choice. Thus, to prevent 

erroneous conclusions about the properties of young and old genes, a skeptical evaluation of 

results is essential, especially for observations that may be explained by the differential ability of 

BLAST to detect homologs of different evolutionary rates. For example, the observation that 

young genes are subject to less purifying selection (Cai and Petrov 2010) is consistent with the 

expectations of BLAST artifact.  

Although plausible scenarios have been imagined for why young genes might evolve faster, be 

shorter, and be differentially expressed compared to old genes, these scenarios have arisen in the 

wake of observations that genes inferred to be young possess these characteristics, rather than as 

a priori hypotheses. It is critical that in the pursuit of new insights about patterns of gene 

evolution we evaluate our observations in the light of a nuanced understanding of the properties 

of the tools used to gather them. Computational experiments are not immune to the effects of 

biased measurement. Here, we have shown that the view of gene age has been distorted by 

viewing it through the lens of homology search by BLAST.  

Methods 

Genomic and supporting data 

Protein alignments of 6,699 1-to-1 orthologs present in 12 Drosophila species were downloaded 

from FlyBase (ftp://ftp.flybase.net/genomes/12_species_analysis/clark_eisen/alignments/) (Clark 
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et al. 2007). Protein alignments used in (Alba and Castresana 2007) provided by J. Castresana. 

Gene ontology biological process annotations were downloaded from FlyBase. Gene expression 

data of fly embryos (Tomancak et al. 2002) was obtained from www.fruitfly.org. Divergence 

dates were obtained from TimeTree (Hedges et al. 2006) (www.timetree.org). 

Rate heterogeneity and main simulation 

Rate heterogeneity patterns for each Drosophila alignment were estimated using TreePuzzle 

using the gamma distribution model with 16 rate categories. D. melanogaster-D. grimishawi 

genetic distance was also estimated by TreePuzzle. 37 genes with D. melanogaster-D. grimshawi 

distance = 0 were discarded from further analysis. For each site in the remaining alignments, the 

rate category contributing most to the likelihood was assigned. Rate heterogeneity patterns for 14 

alignments from (Alba and Castresana 2007) were similarly obtained. Amino acid frequencies in 

the remaining 6,662 alignments were calculated.  

Rose was used to simulate sequence evolution. In the main simulation (Gradual A in Table 4.1), a 

random sequence seed derived from calculated Drosophila amino acid frequencies was used as 

the ancestral sequence. Ancestor sequence length was set equal to the length of the 12 Drosophila 

alignment for each gene. Sequences were evolved according to the rate heterogeneity patterns 

estimated by TreePuzzle, and according to the tree shown in Figure 4.1. Branch lengths were 

scaled based on the D. melanogaster-D. grimshawi distance for each gene and the divergence 

times obtained from TimeTree. Following (Alba and Castresana 2007), gap insertion and deletion 

thresholds were set to 0.0001 and the PAM model of amino acid substitution was used. This 

process generated 6,662 sequences for each of 11 taxa included in Figure 4.1. The simulation was 

repeated 10 times, for a total of 6662 * 11 * 10 = 732,820 sequences in the main simulation. 

Sequences for taxon 1 (representing D. melanogaster) were queried against databases of each of 

the 10 other taxa individually, using BLASTP with an e-value of 0.0001. Gene age was calculated 
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for each protein according to the divergence date of the oldest taxon in which a BLAST hit was 

found. 

Alternate models of evolution 

A simulation was conducted using actual D. melanogaster sequences as the ancestor sequence. In 

this case, the length of the ancestor sequence is shorter than in the main simulation by the length 

of any gaps in D. melanogaster relative to the other 11 Drosophila. Otherwise, this simulation 

(Gradual B) was identical to the main simulation. Gradual B was repeated twice.  

Four simulations were conducted shuffling the rate categories of 0%, 10%, 25% or 50% of sites. 

Site to be shuffled were randomly chosen and some sites may have the same rate category after 

shuffling as before as the process was random and there are only 16 rate classes. In this model, 

Sequences were evolved as for the main simulation except that no indels or deletions were 

allowed, until the point indicated by the letter S in Figure 4.1, corresponding to the start of the 

branch ancestral to Metazoans. At this point, rate heterogeneity patterns were shuffled, and 

simulation was continued with the new rate assignments for the remaining branches of the 

phylogeny. Each of these simulations (0%, 10%, 25%, 50%) were repeated 10 times.  

Three simulations were conducted to model different levels of relaxation of constraint by 

constructing alternative rate heterogeneity patterns. In the first model (44% relaxed), for each 

gene, the lowest N rate categories were selected such that at least 10% of sites were included in 

those rate categories, and rate category N had a relative rate > 0. The average proportion of sites 

selected by this procedure was 56%. The selected sites were assigned rate category N. The 

remaining 44% of sites were assigned rate category 16, i.e., the maximum rate category for the 

gene. In the second model of relaxed evolution (90% relaxed), 10% of sites were randomly 

selected in blocks of 5 sites. These sites retained the rate categories assigned by TreePuzzle. The 

remaining 90% of sites were assigned rate category 16. In the third model of relaxation (100% 
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relaxed), all sites were assigned rate category 16. For each of these 3 models, simulation was 

conducted as for the main simulation, substituting he alternate rate heterogeneity patterns 

described. Each relaxation simulation was repeated 10 times. 

Three simulations were conducted to model a burst of rapid evolution (5MY, 10MY, and 20MY). 

In each of these, sequences were simulated as for the main simulation until the point indicated by 

the letter B in Figure 4.1, i.e. the point of divergence between Drosophila and honeybee. Even 

during a period of rapid evolution, we expect there is some level of constraint on the protein, or it 

would likely be lost or pseudogenized. Therefore, the sequence at this node was evolved using the 

same procedure as the 90% relaxed model for 5, 10 or 20 MY. Then, post-burst rate heterogeneity 

pattern was created by selecting a random gene from the 6,662 genes, and selecting a random 

starting point along the length of its alignment. Starting at this point, rate categories were 

assigned to the post-burst rate heterogeneity pattern for the 90% of sites that had been assigned 

rate category 16 during the burst. The 10% of sites that were evolving at their original rates 

during the burst retained those rates after the burst. Finally, the gene was evolved for an 

additional 372MY, 367MY, and 357MY in the 5MY, 10MY and 20MY burst models, 

respectively using the post-burst rate heterogeneity pattern. The burst simulation was repeated 10 

times. 

BLASTP search for homologs and age assignment was repeated for each iteration of the alternate 

model simulations as for the main simulation. 

Estimation of rates of orphan gene formation 

The number of new duplicate genes arising per genome per million years in Drosophila is 31 

(Lynch and Conery 2000). Thus, mutational input in 5MY is 31 * 5 = 155. Let A = the number of 

recent duplicates available for founder gene formation. The total number of gene lost in a 5MY 

window (B) can be calculated using the half life of new duplicates (2.9MY) (Lynch and Conery 
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2000) with the equation for exponential decay. These lost duplicates may be lost due to sequence 

divergence and escape. We used the rate of escape from measured in the 100% relaxed model at 

5MY (3.75x10
-3

/gene/5MY) to calculate the number of genes lost by escape (C = B * 3.75x10
-3

). 

Then, the number of genes lost to pseudogenization or deletion is D = C – B. The number of 

genes that have not been lost during this 5MY window is E = A – B. At+5MY = Et + 155. We set A0 

= 155 and iterated over 380MY. Convergence is reached fairly quickly. The convergence value of 

C represents the equilibrium number of orphan genes formed by escape per 5MY. By multiplying 

this figure by 377/5 we estimate the number of orphan genes formed in this way since the 

divergence of Drosophila and honeybee.  
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Figure 4.1 Phylogeny showing the relationships of sequences simulated in gene age study.

All sequences are simulated; the organism names simply illustrate the evolutionary distances 

involved. The branch lengths are proportional to divergence times between the indicated taxa. 

INT 1 and INT 2 do not represent actual taxa, but are evenly spaced between the divergence of 

plants and bacteria. B indicates the location of a simulated burst o

the location where evolutionary rates were shuffled.
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Phylogeny showing the relationships of sequences simulated in gene age study.

All sequences are simulated; the organism names simply illustrate the evolutionary distances 

involved. The branch lengths are proportional to divergence times between the indicated taxa. 

INT 1 and INT 2 do not represent actual taxa, but are evenly spaced between the divergence of 

plants and bacteria. B indicates the location of a simulated burst of rapid evolution. S represents 

the location where evolutionary rates were shuffled. 
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Figure 4.2 Distribution of genetic distance between 
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Distribution of genetic distance between D. melanogaster and D. grimshawi

First panel (ALL) shows distribution for 6,662 Drosophila genes used in the simulation; panels 1

genes in each age group (1-11). Age groups correspond to divergence 

-11 in Figure 4.1. 

 

D. grimshawi for genes 

genes used in the simulation; panels 1-

11). Age groups correspond to divergence 

 



 

 

Figure 4.3 Age group within each of 10 approximately equally sized bins of increasing alpha.

Age groups correspond to divergence dates of branches labeled 1
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Age group within each of 10 approximately equally sized bins of increasing alpha.

Age groups correspond to divergence dates of branches labeled 1-11 in Figure 4
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Figure 4.4 Distribution of 6,662 

gene and maximum block length of the minimum rate class (A) and 

within each group (B). 
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Distribution of 6,662 Drosophila genes by minimum evolutionary rate class for the 

gene and maximum block length of the minimum rate class (A) and gene age estimation

genes by minimum evolutionary rate class for the 

gene age estimation error rate 
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Figure 4.5 Log-odds ratio of expression in mesoderm, ectoderm and endoderm for each age 

group compared to the average of all genes studied.  

Bonferroni corrected p-value is indicated in the table above (two-tailed-hypergeometric test) (A). 

Rate of novel gene formation per MY by age group. (B) Percent of gene with biological process 

GO annotation by age group. (C) 
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Table 4.1 Parameters and results for simulation models used. 

Simulation Name 

Seed 

sequence Rate heterogeneity pattehrns Indels 

 

No  hits 

at all 

No hit in one or 

more taxa 

No  hit to most 

distant 

homolog 

Gradual evolution models     

 

Gene Age Estimation Error Rates 

 

Gradual A Random 6662 alignments of 12 Drosophila Yes  2.20% 12.20% 11.80% 

 

Gradual B D. mel 

actual 

Same as Gradual A Yes  2.20% 11.40% 10.90% 

 

Switch 0% Random Same as Gradual A No  1.20% 9.20% 9.00% 

 

Switch 10% Random Same as Gradual A, 10% of sites shuffled No  1.30% 9.80% 9.50% 

 

Switch 25% Random Same as Gradual A, 25% of sites shuffled No  1.30% 10.70% 10.30% 

 

Switch 50% Random Same as Gradual A, 50% of sites shuffled No  1.30% 24.90% 23.70% 

Punctuated evolution models     

 

Orphan Formation Rates 

 

Relaxed 44% Random Same as Gradual A, with 56% at rate 1 and 

44% at rate 16 

Yes  4.50% 15.10% 14.60% 

 

Relaxed 90% Random Same as Gradual A, with 10% at normal rate 

1 and 90% at rate 16 

Yes  64.50% 98.30% 96.30% 

 

Relaxed 100% Random Same as Gradual A, with 100% at rate  16 Yes  0.10% 99.10% 99.10% 

 

Burst 5MY Random Same as Gradual A, with 5MY as for Relaxed 

90%, followed by 372MY at a different rate 

heterogeneity pattern 

No  2.70% 14.50% 13.80% 

 

Burst 10MY Random Same as Gradual A, with 10MY as for 

Relaxed 90%, followed by 367MY at a 

different rate heterogeneity pattern 

No  3.20% 15.50% 14.70% 

 

Burst 20MY Random Same as Gradual A, with 20MY as for 

Relaxed 90%, followed by 357MY at a 

different rate heterogeneity pattern 

No  4.70% 17.50% 16.30% 

Gradual evolution models with alternate rate heterogeneity patterns   

 

BLAST Error Rates 

 

Vertebrate Random sampled from 8 alignments of 7 vertebrates Yes  0.50% 9.40% 8.60% 

 

Bilaterian Random sampled from 6 alignments of 9 bilaterians Yes  4.20% 40.30% 39.20% 



 

75 

 

Chapter 5 

Conclusions 

In conclusion, I want to address three themes that unite my three projects. First, I will 

discuss the opportunities for revisiting old questions when new data become available. 

Second, I will consider the challenges of inference about function and evolutionary 

history from genomic sequences, high throughput expression data, and other genomic 

datasets. Finally, I will return to the call for careful hypothesis generation coupled with 

healthy skepticism that was articulated in the discussion section of Chapter 4. 

Old questions, new data 

Darwin attributed the success of the human species to “powers of observation, memory, 

curiosity, imagination, and reason” and inferred that these powers had arisen by the 

action of natural selection (Darwin 1871) but this conclusion was disputed by Wallace. In 

Chapter 2, using genome sequences that became available over 130 years after Darwin 

and Wallace disagreed, I examined the genomic patterns of brain gene evolution and 

found no evidence of widespread acceleration of the evolution of brain-specific genes, 

disputing the findings of Dorus and coworkers (Dorus et al. 2004). However, as noted, 

my results do not rule out positive selection on a subset of genes, but simply reveal the 

overall pattern of evolution for these genes. Nonetheless, when positive selection has 

been identified in specific genes known to have severe phenotypic consequences on brain 

morphology and function when mutated (e.g., null mutations of ASPM (Zhang 2003) and 
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microcephalin (Evans et al. 2004a) lead to microcephaly and mental retardation), strong 

objections have been raised regarding the inference that positive selection in these genes 

was due to enhanced brain function or improved cognitive abilities (Nielsen 2009).  

Given this history of conflicting conclusions and interpretations, one might wonder if it is 

possible to find satisfying answers about the evolutionary history of the human brain. In 

my opinion, the best approach takes its cue from Darwin – pile on the evidence, from as 

many sources as possible. For example, objections to the proposal that positive selection 

in ASPM and microcephalin led to increased brain size included the lack of evidence that 

mutations in these genes correlate with intelligence in modern humans (Nielsen 2009). 

As much as we might shy away from the societal implications of genetic factors that 

influence intelligence, the growing number of fully sequenced human genomes and 

associated phenomic data (Durbin et al. 2010) may make it possible to identify variants in 

brain genes that are relevant to brain size and/or some measure of intelligence. Another 

emerging resource that can help us to identify functionally important variants is the 

Neandertal genome sequence (Green et al. 2010). Neandertal encephalization is close to 

that of modern humans and even greater than that of contemporaneous archaic Homo 

sapiens (Stanyon et al. 1993). Although it is debated what cognitive abilities Neandertals 

possessed (e.g. (Gunz et al. 2010)), we may parsimoniously expect variants responsible 

for larger brain size to be present in Neandertal if they arose prior to the divergence of the 

two species. We may also identify additional Neandertal specific variants of genes 

involved in brain development and function that show signals of positive selection in that 

lineage. In addition, it has been suggested that because human intelligence differs in 

degree rather than in kind from that of other mammals, and because certain other non-
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primate mammals have large brains and advanced cognitive capabilities (e.g. elephants), 

a phylogenomic approach examining a wide spectrum of mammals can shed light on the 

fundamental processes of brain evolution (Goodman and Sterner 2010). Initiatives such 

as the BGI “genomic zoo” (http://ldl.genomics.org.cn/page/bgi-g10k.jsp), which 

ambitiously proposes to sequence 10,000 vertebrate genomes by 2015, will provide the 

data needed to robustly implement the phylogenomic approach. By combining many 

types and sources of evidence, as Darwin did for evolution by natural selection in On the 

Origin of Species (Darwin 1859), the story of human brain evolution will become richer, 

and perhaps at some point can credibly be called a history rather than a mere story.  

Although I have focused here on the ways new data will illuminate the history of human 

brain evolution, these and similar data will no doubt also help uncover the evolutionary 

history of positive selection on other traits, in human and other lineages. In addition, it 

will be possible to extract an accounting of the origin of new genes within the vertebrate 

lineage with a previously impossible level of detail by analyzing the phylogenomic and 

population genomic resources now being constructed. This analysis can be informative 

about the processes of gene duplication and orphan gene formation studied in my Chapter 

4. Thus, new data can be used to address multiple old questions.  

Challenges of functional and evolutionary inference 

Different values of the nonsynonymous to synonymous substitution rate ratio (ω) are 

expected under different evolutionary regimes. For a protein with no impact on 

organismal fitness, fixation and loss are determined solely by genetic drift. Thus, 

synonymous and nonsynonymous changes are equally likely to be fixed or lost and the 
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ratio of their substitution rates is expected to be one. However, for a protein that does 

impact organismal fitness, nonsynonymous changes are more likely to affect the function 

of a protein than synonymous changes. Nonsynoymous changes may improve function, 

which is understood to mean that they improve the fitness of the organism carrying such 

changes, and thus rise to fixation by positive selection, increasing ω compared to the 

neutral case. Nonsynonymous changes may also destroy or decrease the function of the 

protein, thereby decreasing the fitness of the organism, and be eliminated by purifying 

selection. These fundamental principles in molecular evolution build on two even more 

fundamental principles in biology: function and fitness. With the availability of large 

amounts of sequence data and powerful programs to detect positive selection (Yang 

1997), it has been possible to catalog potential sites of positive selection without any a 

priori hypotheses about the function of such sites or their fitness effects, as for example in 

my Chapter 3. In the face of growing numbers of such reports of positive selection, it has 

been suggested that functional validation be required to link the molecular signature of 

selection to the fitness effect of the putatively selected variant (MacCallum and Hill 

2006).  

The challenges associated with measuring fitness and function are daunting. Even in 

tractable model organisms such as Saccharomyces cerevisiae, where fitness can be 

precisely assayed by competition among strains in the lab, fitness in a synthetic 

environment may not a good predictor of fitness in natural environments experienced in 

the evolutionary history of the species, the “lab-nature mismatch”. Of course, any past 

episodes of selection in a species depend on its fitness in the past environment. A study 

of thousands of simulated nutritional conditions failed to find simulated conditions that 
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create a better correlation between evolutionary rate and condition-specific gene 

essentiality than in lab conditions, and thus concluded that the lab-nature mismatch 

hypothesis was incorrect (Wang and Zhang 2009). However, the study examined many 

nutritional conditions, but not other relevant aspects of environment less amenable to 

simulation, such as temperature, intra- and interspecific competition, toxins, pathogens, 

availability of water, etc. Any of these, or fluctuations in environment, may result in 

significant differences between lab fitness and fitness in the evolutionarily relevant 

environment. We are further hampered in assessing fitness by an unfortunate lack of 

information about even the present day environments experienced by wild yeast (Fay and 

Benavides 2005).  

Despite these challenges, the task of assessing fitness and function in yeast seems trivial 

by comparison to the prospects in human. Even supposing we had perfect data about 

genotype-phenotype-environment relationships for some human trait such as intelligence, 

inferring fitness or function from that data in the context of other human traits and in the 

context of cultural and physical environments might still be impossible. In general, we 

make simplifying assumptions based on apparent trait values, as did Darwin when he 

gave human intelligence, and even more specifically “articulate language”, primary credit 

for  human evolutionary success (Darwin 1871). 

Another challenge for making evolutionary inferences about fitness and function from 

molecular data derives from imperfect or nonexistent genotype-phenotype mapping. 

From first principles, nonsynonymous changes may be beneficial, deleterious, or even 

neutral, but in general we do not have a good way to tell which case applies from 
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sequence data alone. Thus we infer the evolutionary process via observing the overall 

pattern of substitution in multiple lineages over multiple sites. But, because of the 

inherent stochasiticity of evolution, we can occasionally be misled by chance events. The 

levels of false positives in a test for positive selection are generally quite low (Table 3.4), 

but when false positives occur, it may be due to the chance occurrence of two 

nonsynonymous substitutions within a single codon (Mallick et al. 2009). Furthermore, 

when only one or a few sites are subject to positive selection, it is difficult to distinguish 

this from relaxation of constraint, leading to high levels of false negatives in tests for 

positive selection (Table 3.6).  

Skepticism, hypotheses, and the self-correcting nature of science 

Skepticism is a critical aspect of scientific inquiry. My analysis of the phylostratigraphic method 

and bias in the measurement of gene age emphasizes the need for more critical evaluation of 

results based on this and similar methods. Despite the publication of two simulation studies 

showing that measurement of gene age is biased, many studies were subsequently performed 

without any attempt to ascertain whether bias in measurement impacted their findings (Domazet-

Loso et al. 2007; Domazet-Loso and Tautz 2008; Prachumwat and Li 2008; Cai et al. 2009; Prat 

et al. 2009; Cai and Petrov 2010; Domazet-Loso and Tautz 2010a; Domazet-Loso and Tautz 

2010b), and thus may contain spurious results. 

Bias can take other forms in addition to measurement error. For example, the existing literature 

on a given subject may unduly influence our expectations about future findings. The conclusion 

that selection is less effective in smaller populations is uncontroversial. Reports of lower effective 

population size in humans compared to chimpanzees or the human-chimp common ancestor have 

been confirmed using multiple different methods and datasets ((Ferris et al. 1981; Takahata et al. 
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1995; Ruvolo 1997; Kaessmann et al. 1999; Chen and Li 2001; Kaessmann et al. 2001; Stone et 

al. 2002; Wall 2003; Fischer et al. 2004). However, my finding, consistent with these prior 

findings, that both positive and purifying selection have been less efficient in the human lineage 

compared to the chimpanzee lineage, was considered a newsworthy surprise (Hopkin 2007). 

Why? Almost certainly because of an anthropocentric view of evolution, where the changes that 

have occurred in the human lineage are well studied and obvious even to non-scientists, and the 

changes that have occurred in the chimp lineage are mostly unknown. At present, 147 studies of 

positive selection in both human and chimpanzee are cataloged in ISI Web of Science, and 4,124 

in human alone, compared to only 19 studies that focus on chimpanzee alone. Careful study of 

chimpanzee traits has the potential to overturn the idea that chimpanzees have changed little since 

their divergence from humans. For example, detailed examination of the morphological and 

ontological aspects of knuckle walking in chimpanzee and gorilla revealed that this is not an 

ancestral trait, but rather evolved independently in chimpanzees and gorillas from non-knuckle 

walking ancestors. In the past, knuckle walking was considered to be an ancestral trait, so the new 

research shows that changes in locomotion have occurred in humans, chimpanzees, and gorillas. 

While I do not expect or suggest that the amount of research on chimpanzee evolution will ever 

equal that on human evolution, it is critical that we are aware of the biases inherent in the 

lopsided research agenda. 

In this dissertation, I present work that criticizes previous studies, as well as two published 

chapters (Shi et al. 2006; Bakewell et al. 2007) which have in turn been the subject of critical 

analysis by other authors (Mallick et al. 2009; Crespi et al. 2010). Each careful examination of 

data and methods may lead to further insights. Thus, I conclude that the process of scientific 

exchange, of open criticism and careful reading of the work of others, can continue to move us 

toward a clearer understanding of evolutionary processes and history. 
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Appendix 

Genes (n=154) showing significant signal of positive selection in human before Bonferroni correction 

Ensembl Gene ID Gene Name Gene Description wH

1
 wH

2
 p-value2 

ENSG00000165659 DACH1 Dachshund homolog 1 (Dach1).  0.205 999.000 0.0000 

ENSG00000188153 COL4A5 Collagen alpha-5(IV) chain precursor.  0.205 999.000 0.0000 

ENSG00000186395 KRT10 Keratin, type I cytoskeletal 10 (Cytokeratin-10) (CK-10) (Keratin-10) (K10).  0.154 268.730 0.0001 

ENSG00000188712 Q8NHB3_HUMAN Seven transmembrane helix receptor.  0.342 999.000 0.0001 

ENSG00000186683   0.615 999.000 0.0001 

ENSG00000147889 CDKN2A Cyclin-dependent kinase inhibitor 2A, isoform 4 (p14ARF) (p19ARF).  1.230 999.000 0.0001 

ENSG00000118298 CA14 Carbonic anhydrase 14 precursor (EC 4.2.1.1) (Carbonic anhydrase XIV) (Carbonate 

dehydratase XIV) (CA-XIV).  

0.820 999.000 0.0002 

ENSG00000180509 KCNE1 Potassium voltage-gated channel subfamily E member 1 (IKs producing slow voltage-

gated potassium channel beta subunit Mink) (Minimal potassium channel) (Delayed 

rectifier potassium channel subunit IsK).  

0.410 999.000 0.0002 

ENSG00000149054 ZNF215 Zinc finger protein 215 (BWSCR2-associated zinc-finger protein 2) (BAZ 2).  1.230 999.000 0.0003 

ENSG00000136003 NIFUN NifU-like N-terminal domain-containing protein, mitochondrial precursor (NifU-like 

protein) (Iron-sulfur cluster assembly enzyme ISCU).  

0.410 999.000 0.0003 

ENSG00000164626 KCNK5 Potassium channel subfamily K member 5 (Acid-sensitive potassium channel protein 

TASK-2) (TWIK-related acid-sensitive K(+) channel 2).  

0.051 612.830 0.0003 

ENSG00000171522 PTGER4 Prostaglandin E2 receptor, EP4 subtype (Prostanoid EP4 receptor) (PGE receptor, 

EP4 subtype).  

0.820 999.000 0.0003 

ENSG00000174948 GPR149 Probable G-protein coupled receptor 149 (G-protein coupled receptor PGR10).  0.205 999.000 0.0005 

ENSG00000163069 SGCB Beta-sarcoglycan (Beta-SG) (43 kDa dystrophin-associated glycoprotein) (43DAG) 

(A3b).  

0.137 242.742 0.0005 

ENSG00000169738 DCXR L-xylulose reductase (EC 1.1.1.10) (XR) (Dicarbonyl/L-xylulose reductase) (Kidney 

dicarbonyl reductase) (kiDCR) (Carbonyl reductase II) (Sperm surface protein P34H).  

0.205 906.960 0.0005 

ENSG00000164935 TM7SF4 Transmembrane 7 superfamily member 4 (Dendritic cell-specific transmembrane 

protein) (DC-STAMP) (IL-4-induced protein) (FIND).  

0.820 999.000 0.0005 

ENSG00000164977   0.246 999.000 0.0006 

ENSG00000119596 YLPM1 YLP motif-containing protein 1 (Nuclear protein ZAP3) (ZAP113).  0.308 774.738 0.0008 

ENSG00000166004 KIAA1731 CDNA FLJ37899 fis, clone CD34C3000314.  1.025 1.110 0.0008 

ENSG00000119431 HDHD3 haloacid dehalogenase-like hydrolase domain containing 3  0.410 999.000 0.0008 

ENSG00000185409 Q8IYB0_HUMAN  0.410 999.000 0.0009 

ENSG00000165632 TAF3 TAFII140 protein (Fragment).  0.410 999.000 0.0009 

ENSG00000136805 NP_055149.1  0.205 999.000 0.0010 
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Ensembl Gene ID Gene Name Gene Description wH

1
 wH

2
 p-value2 

ENSG00000165325 CCDC67  0.410 999.000 0.0012 

ENSG00000177138 FAM9B Protein FAM9B.  0.410 999.000 0.0013 

ENSG00000150347 ARID5B AT-rich interactive domain-containing protein 5B (ARID domain- containing protein 

5B) (Mrf1-like) (Modulator recognition factor 2) (MRF-2).  

0.137 999.000 0.0015 

ENSG00000092470 WDR76 WD repeat domain 76  0.410 914.069 0.0015 

ENSG00000160051 IQCC IQ motif containing C  1.640 999.000 0.0016 

ENSG00000100889 PCK2 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial precursor (EC 4.1.1.32) 

(Phosphoenolpyruvate carboxylase) (PEPCK-M).  

0.308 999.000 0.0017 

ENSG00000171227 TMEM37 Voltage-dependent calcium channel gamma-like subunit (Neuronal voltage-gated 

calcium channel gamma-like subunit) (Transmembrane protein 37).  

0.205 999.000 0.0017 

ENSG00000198935   0.410 999.000 0.0018 

ENSG00000090339 ICAM1 Intercellular adhesion molecule 1 precursor (ICAM-1) (Major group rhinovirus 

receptor) (CD54 antigen).  

0.342 156.095 0.0019 

ENSG00000152939 MARVELD2 MARVEL domain containing 2 isoform 1  0.615 526.677 0.0021 

ENSG00000186074 CD300LF NK inhibitory receptor precursor  0.547 264.084 0.0022 

ENSG00000164393 GPR111 Probable G-protein coupled receptor 111 (G-protein coupled receptor PGR20).  1.230 999.000 0.0023 

ENSG00000138029 HADHB Trifunctional enzyme beta subunit, mitochondrial precursor (TP-beta) [Includes: 3-

ketoacyl-CoA thiolase (EC 2.3.1.16) (Acetyl-CoA acyltransferase) (Beta-

ketothiolase)].  

0.410 999.000 0.0024 

ENSG00000181908 XR_000554.1  0.410 999.000 0.0027 

ENSG00000133101 CCNA1 Cyclin-A1.  0.410 663.547 0.0027 

ENSG00000187475 HIST1H1T Histone H1t (Testicular H1 histone).  2.460 999.000 0.0031 

ENSG00000164944 KIAA1429  0.308 482.855 0.0032 

ENSG00000131018 SYNE1 Nesprin-1 (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope 

protein 1) (Syne-1) (Myocyte nuclear envelope protein 1) (Myne-1) (Enaptin).  

0.376 1.278 0.0033 

ENSG00000116141 MARK1 Serine/threonine-protein kinase MARK1 (EC 2.7.1.37) (MAP/microtubule affinity-

regulating kinase 1).  

0.410 404.497 0.0034 

ENSG00000143851 PTPN7 Tyrosine-protein phosphatase non-receptor type 7 (EC 3.1.3.48) (Protein-tyrosine 

phosphatase LC-PTP) (Hematopoietic protein-tyrosine phosphatase) (HEPTP).  

0.273 999.000 0.0036 

ENSG00000138658 NP_060862.2  0.513 560.568 0.0039 

ENSG00000163500   0.228 311.489 0.0040 

ENSG00000132677 RHBG Rhesus blood group, B glycoprotein  0.410 409.973 0.0041 

ENSG00000123901 GPR83 Probable G-protein coupled receptor 83 precursor (G-protein coupled receptor 72).  0.205 144.724 0.0042 

ENSG00000184574 GPR92 Probable G-protein coupled receptor 92.  0.410 256.320 0.0044 

ENSG00000104804 TULP2 Tubby-related protein 2 (Tubby-like protein 2).  0.410 999.000 0.0044 

ENSG00000196893 Q8N2W8_HUMAN  1.640 999.000 0.0047 

ENSG00000170891 CYTL1 Cytokine-like protein 1 precursor (Protein C17).  0.205 999.000 0.0047 
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Ensembl Gene ID Gene Name Gene Description wH

1
 wH

2
 p-value2 

ENSG00000158292 GPR153 Probable G-protein coupled receptor 153 (G-protein coupled receptor PGR1).  0.308 999.000 0.0049 

ENSG00000158553 POM121L2  0.923 799.779 0.0050 

ENSG00000130508 PXDN PXDN protein (Fragment).  0.082 137.188 0.0050 

ENSG00000087301 KIAA1344  0.410 745.691 0.0052 

ENSG00000129696 NP_079391.1  0.513 392.348 0.0053 

ENSG00000130818 ZNF426 Zinc finger protein 426.  0.615 237.650 0.0054 

ENSG00000182551 ADI1 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase (EC 1.13.-.-) (Aci-reductone 

dioxygenase) (ARD) (Membrane-type 1 matrix metalloproteinase cytoplasmic tail-

binding protein 1) (MTCBP-1) (Submergence-induced protein 2 homolog) (SIPL).  

0.410 999.000 0.0055 

ENSG00000135931 ARMC9  0.820 263.934 0.0056 

ENSG00000033867 SLC4A7 Sodium bicarbonate cotransporter 3 (Sodium bicarbonate cotransporter 2) (Sodium 

bicarbonate cotransporter 2b) (Bicarbonate transporter) (Solute carrier family 4 

member 7).  

0.164 428.510 0.0057 

ENSG00000011028 MRC2 Macrophage mannose receptor 2 precursor (Urokinase receptor-associated protein) 

(Endocytic receptor 180) (CD280 antigen).  

0.176 128.163 0.0059 

ENSG00000178977 Q8NAT9_HUMAN  2.050 999.000 0.0059 

ENSG00000183005   0.957 114.349 0.0061 

ENSG00000147223 Q5JRB8_HUMAN Novel protein (Fragment).  0.410 999.000 0.0061 

ENSG00000139182 CLSTN3 Calsyntenin-3 precursor.  0.103 213.710 0.0064 

ENSG00000162723 SLAMF9 SLAM family member 9 precursor (CD2 family member 10) (CD2F-10) (CD84 

homolog 1) (CD84-H1).  

0.820 128.061 0.0065 

ENSG00000185087 NP_872368.1  1.230 999.000 0.0068 

ENSG00000133805 AMPD3 AMP deaminase 3 (EC 3.5.4.6) (AMP deaminase isoform E) (Erythrocyte AMP 

deaminase).  

0.410 181.036 0.0068 

ENSG00000164440 TXLNB Beta-taxilin (Muscle-derived protein 77) (hMDP77).  0.328 179.365 0.0070 

ENSG00000177553 Q8NDA9_HUMAN Novel protein (Fragment).  1.435 999.000 0.0070 

ENSG00000172769 OR5B3 Olfactory receptor 5B3 (Olfactory receptor OR11-239).  3.690 999.000 0.0072 

ENSG00000167987 VPS37C vacuolar protein sorting 37C  0.547 532.924 0.0072 

ENSG00000165409 TSHR Thyrotropin receptor precursor (TSH-R) (Thyroid-stimulating hormone receptor).  0.547 211.287 0.0074 

ENSG00000118600 TMEM5 Transmembrane protein 5.   999.000 0.0074 

ENSG00000160781 PAQR6 Progestin and adipoQ receptor family member VI.  0.410 184.802 0.0076 

ENSG00000036672 USP2 Ubiquitin carboxyl-terminal hydrolase 2 (EC 3.1.2.15) (Ubiquitin thiolesterase 2) 

(Ubiquitin-specific-processing protease 2) (Deubiquitinating enzyme 2) (41 kDa 

ubiquitin-specific protease).  

0.615 274.810 0.0076 

ENSG00000196476 CT096_HUMAN  1.435 108.387 0.0079 

ENSG00000197128 NP_001019767.1  0.615 204.378 0.0082 

ENSG00000100141 PISD Phosphatidylserine decarboxylase proenzyme (EC 4.1.1.65) [Contains: 0.205 999.000 0.0085 
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Phosphatidylserine decarboxylase alpha chain; Phosphatidylserine decarboxylase beta 

chain].  

ENSG00000196242 OR2C3 Olfactory receptor 2C3.   999.000 0.0094 

ENSG00000137727 ARHGAP20 Rho GTPase activating protein 20  1.025 228.974 0.0103 

ENSG00000170264 NP_115556.1  0.547 163.768 0.0103 

ENSG00000197586 ENTPD6 Ectonucleoside triphosphate diphosphohydrolase 6 (EC 3.6.1.6) (NTPDase6) (CD39 

antigen-like 2).  

0.410 999.000 0.0104 

ENSG00000188996 HUS1B Checkpoint protein HUS1B (hHUS1B).  0.683 115.765 0.0115 

ENSG00000188039 NP_001007526.1  0.718 282.228 0.0117 

ENSG00000018607 ZNF221 Zinc finger protein 221.  1.025 96.486 0.0119 

ENSG00000198169 ZNF251 Zinc finger protein 251 (Fragment).  1.230 999.000 0.0119 

ENSG00000186530 XKR5 XK-related protein 5.  3.280 999.000 0.0121 

ENSG00000188683   1.640 207.826 0.0127 

ENSG00000137507 LRRC32 Leucine-rich repeat-containing protein 32 precursor (GARP protein) (Garpin) 

(Glycoprotein A repetitions predominant).  

0.820 999.000 0.0136 

ENSG00000141837 CACNA1A Voltage-dependent P/Q-type calcium channel alpha-1A subunit (Voltage- gated 

calcium channel alpha subunit Cav2.1) (Calcium channel, L type, alpha-1 polypeptide 

isoform 4) (Brain calcium channel I) (BI).  

0.205 170.058 0.0140 

ENSG00000163071 SPATA18 spermatogenesis associated 18 homolog  1.093 87.723 0.0143 

ENSG00000178966 NP_079221.1  1.640 236.525 0.0149 

ENSG00000132357 CARD6 Caspase recruitment domain-containing protein 6.  0.752 98.346 0.0150 

ENSG00000198483 ANKRD35 ankyrin repeat domain 35  0.683 147.562 0.0151 

ENSG00000146232 NFKBIE NF-kappa-B inhibitor epsilon (NF-kappa-BIE) (I-kappa-B-epsilon) (IkappaBepsilon) 

(IKB-epsilon) (IKBE).  

0.410 131.912 0.0153 

ENSG00000158258 CLSTN2 Calsyntenin-2 precursor.  0.224 94.972 0.0154 

ENSG00000102805 CLN5 Ceroid-lipofuscinosis neuronal protein 5 (Protein CLN5).  0.308 219.881 0.0158 

ENSG00000176900 OR51T1 Olfactory receptor 51T1.  0.273 111.343 0.0159 

ENSG00000129219 PLD2 Phospholipase D2 (EC 3.1.4.4) (PLD 2) (Choline phosphatase 2) 

(Phosphatidylcholine-hydrolyzing phospholipase D2) (PLD1C) (hPLD2).  

0.205 183.490 0.0167 

ENSG00000091157 WDR7 WD-repeat protein 7 (TGF-beta resistance-associated protein TRAG) (Rabconnectin-3 

beta).  

0.246 47.927 0.0168 

ENSG00000101405 OXT Oxytocin-neurophysin 1 precursor (OT-NPI) [Contains: Oxytocin (Ocytocin); 

Neurophysin 1].  

0.205 52.642 0.0170 

ENSG00000174038 NP_976044.1  3.690 4.740 0.0171 

ENSG00000182372 CLN8 Protein CLN8.  0.137 115.068 0.0175 

ENSG00000168575 SLC20A2 solute carrier family 20, member 2  0.164 143.491 0.0183 

ENSG00000122971 ACADS Acyl-CoA dehydrogenase, short-chain specific, mitochondrial precursor (EC 1.3.99.2) 0.137 80.204 0.0189 
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(SCAD) (Butyryl-CoA dehydrogenase).  

ENSG00000019169 MARCO Macrophage receptor MARCO (Macrophage receptor with collagenous structure) 

(Scavenger receptor class A member 2).  

0.615 70.123 0.0196 

ENSG00000165238 WNK2 Serine/threonine-protein kinase WNK2 (EC 2.7.1.37) (Protein kinase with no lysine 2) 

(Protein kinase, lysine-deficient 2).  

0.351 999.000 0.0198 

ENSG00000182805 NP_001013756.1  1.025 999.000 0.0202 

ENSG00000197674 Q8NH68_HUMAN Seven transmembrane helix receptor.   999.000 0.0206 

ENSG00000002726 NM_001091.2 amiloride binding protein 1 (amine oxidase (copper-containing)) (ABP1), mRNA  0.293 999.000 0.0207 

ENSG00000139637 MYG1_HUMAN MYG1 protein.  0.410 166.481 0.0208 

ENSG00000105501 SIGLEC5 Sialic acid-binding Ig-like lectin 5 precursor (Siglec-5) (Obesity- binding protein 2) 

(OB-binding protein 2) (OB-BP2) (CD33 antigen-like 2) (CD170 antigen).  

 999.000 0.0214 

ENSG00000095637 SORBS1 Sorbin and SH3 domain-containing protein 1 (Ponsin) (c-Cbl-associated protein) 

(CAP) (SH3 domain protein 5) (SH3P12).  

0.234 120.546 0.0218 

ENSG00000196118 NP_001014979.1  0.205 999.000 0.0222 

ENSG00000141458 NPC1 Niemann-Pick C1 protein precursor.  0.469 47.724 0.0224 

ENSG00000189348 XP_934528.1 PREDICTED: hypothetical protein XP_934528  0.547 256.471 0.0225 

ENSG00000120875 DUSP4 Dual specificity protein phosphatase 4 (EC 3.1.3.48) (EC 3.1.3.16) (Mitogen-activated 

protein kinase phosphatase 2) (MAP kinase phosphatase 2) (MKP-2) (Dual specificity 

protein phosphatase hVH2).  

0.103 685.022 0.0227 

ENSG00000104635 SLC39A14 solute carrier family 39 (zinc transporter), member 14  0.205 116.647 0.0227 

ENSG00000008438 PGLYRP1 Peptidoglycan recognition protein precursor (PGRP-S).  2.050 999.000 0.0245 

ENSG00000086288 TXNDC3 Thioredoxin domain-containing protein 3 (Spermatid-specific thioredoxin-2) (Sptrx-2) 

(NM23-H8).  

0.615 132.598 0.0245 

ENSG00000164520 RAET1E NKG2D ligand 4 precursor (NKG2D ligand 4) (NKG2DL4) (N2DL-4) (Retinoic acid 

early transcript 1E) (Lymphocyte effector toxicity activation ligand) (RAE-1-like 

transcript 4) (RL-4).  

0.410 162.719 0.0249 

ENSG00000064042 NP_055803.1  0.205 226.199 0.0257 

ENSG00000165125 TRPV6 Transient receptor potential cation channel subfamily V member 6 (TrpV6) (Epithelial 

calcium channel 2) (ECaC2) (Calcium transport protein 1) (CaT1) (CaT-like) (CaT-

L).  

0.513 38.372 0.0269 

ENSG00000125631   3.280 4.037 0.0275 

ENSG00000140950 NP_065998.2  0.410 58.150 0.0283 

ENSG00000109674 NEIL3 Endonuclease VIII-like 3 (Nei-like 3) (DNA glycosylase FPG2).   999.000 0.0293 

ENSG00000174655   0.615 157.318 0.0294 

ENSG00000154719 MRPL39 Mitochondrial 39S ribosomal protein L39 (L39mt) (MRP-L39) (MRP-L5).  0.513 46.491 0.0301 

ENSG00000100376 CV008_HUMAN  0.820 36.569 0.0306 

ENSG00000187705 Q6ZUC2_HUMAN CDNA FLJ43826 fis, clone TESTI4002703.   238.376 0.0312 
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ENSG00000167945 NP_001013660.1  1.640 999.000 0.0314 

ENSG00000153201 RANBP2 Ran-binding protein 2 (RanBP2) (Nuclear pore complex protein Nup358) 

(Nucleoporin Nup358) (358 kDa nucleoporin) (P270).  

0.351 133.102 0.0331 

ENSG00000062370 ZNF228 Zinc finger protein 228.  0.478 58.786 0.0338 

ENSG00000171936 OR10H3 Olfactory receptor 10H3.   999.000 0.0339 

ENSG00000088836 SLC4A11 Sodium bicarbonate transporter-like protein 11 (Bicarbonate transporter-related 

protein 1) (Solute carrier family 4 member 11).  

0.342 97.814 0.0342 

ENSG00000162745 OLFML2B olfactomedin-like 2B  0.319 70.723 0.0347 

ENSG00000180116 NP_001026918.2   178.068 0.0371 

ENSG00000182348 NP_857597.1  1.312 50.379 0.0373 

ENSG00000147804 SLC39A4 Zinc transporter ZIP4 precursor (Solute carrier family 39 member 4).  2.050 14.143 0.0392 

ENSG00000076382 SPAG5 Sperm-associated antigen 5 (Astrin) (Mitotic spindle-associated protein p126) 

(MAP126) (Deepest).  

 999.000 0.0397 

ENSG00000124568 SLC17A1 Renal sodium-dependent phosphate transport protein 1 (Sodium/phosphate 

cotransporter 1) (Na(+)/PI cotransporter 1) (Renal sodium-phosphate transport protein 

1) (Renal Na(+)-dependent phosphate cotransporter 1) (Solute carrier family 18 

member 1) (NA/PI-4)  

 999.000 0.0402 

ENSG00000082269 KIAA1411  0.273 74.664 0.0412 

ENSG00000186453 Q86W67_HUMAN  2.050 999.000 0.0414 

ENSG00000102794    999.000 0.0423 

ENSG00000189424    999.000 0.0429 

ENSG00000166801 FAM111A  2.870 999.000 0.0432 

ENSG00000083622 NP_060296.1  3.280 50.896 0.0454 

ENSG00000122490 PQLC1 PQ loop repeat containing 1  0.273 145.404 0.0463 

ENSG00000164649 CDCA7L transcription factor RAM2  0.273 151.192 0.0466 

ENSG00000104974 LILRA1 Leukocyte immunoglobulin-like receptor subfamily A member 1 precursor 

(Leucocyte immunoglobulin-like receptor 6) (LIR-6) (CD85i antigen).  

0.525 11.464 0.0486 

ENSG00000184278    999.000 0.0491 

ENSG00000162591 EGFL3 EGF-like domain-containing protein 3 precursor (Multiple EGF-like domain protein 

3) (Multiple epidermal growth factor-like domains 6).  

3.690  0.0498 

ENSG00000179750 APOBEC3B Probable DNA dC->dU-editing enzyme APOBEC-3B (EC 3.5.4.-) (Phorbolin- 1-

related protein) (Phorbolin-2/3).  

1.333   0.0498 

1 Gene descriptions downloaded from Ensembl. Blanks indicate information not available or unknown.    
2 Nonsynonymous/synonymous substitution rate ratio, computed by 0.41n /s . Blank indicates no synonymous changes.    
3 Nonsynonymous/synonymous substitution rate ratio, computed by PAML for foreground site class 2b    
4 Uncorrected p-value from likelihood ratio 

test 
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Genes (n=233) showing significant signal of postive selection in chimpanzee before Bonferroni correction 

Ensembl Gene ID Gene Name Gene Description1 wC

2
 wC

3
 p-value4 

ENSG00000167522 ANKRD11 Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 

1).  

0.256 999.000 0.0000 

ENSG00000126822 PLEKHG3 pleckstrin homology domain containing, family G, member 3  0.492 999.000 0.0000 

ENSG00000152242 CR025_HUMAN 0.137 999.000 0.0000 

ENSG00000117713 ARID1A AT-rich interactive domain-containing protein 1A (ARID domain- containing 

protein 1A) (SWI/SNF-related, matrix-associated, actin- dependent regulator of 

chromatin subfamily F member 1) (SWI-SNF complex protein p270) (B120) (SWI-

like protein) (Osa homolog  

0.123 999.000 0.0000 

ENSG00000185727   0.205 999.000 0.0000 

ENSG00000165521 EML5 echinoderm microtubule associated protein like 5  0.252 999.000 0.0000 

ENSG00000002746 HECW1 NEDD4-like ubiquitin-protein ligase 1  0.186 999.000 0.0000 

ENSG00000198308 Q9NSI3_HUMAN 0.273 999.000 0.0000 

ENSG00000116141 MARK1 Serine/threonine-protein kinase MARK1 (EC 2.7.1.37) (MAP/microtubule affinity-

regulating kinase 1).  

0.410 999.000 0.0000 

ENSG00000091986 NP_955806.1 steroid-sensitive protein 1  0.351 999.000 0.0000 

ENSG00000147036 LANCL3 LanC lantibiotic synthetase component C-like 3  0.205 999.000 0.0000 

ENSG00000112276 BVES Blood vessel epicardial substance (hBVES) (Popeye domain-containing protein 1) 

(Popeye protein 1).  

0.273 999.000 0.0000 

ENSG00000106415 GLCCI1 glucocorticoid induced transcript 1  0.205 999.000 0.0000 

ENSG00000130227 XPO7 Exportin-7 (Ran-binding protein 16).  0.205 999.000 0.0000 

ENSG00000096401 CDC5L Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5- related protein).  0.164 999.000 0.0000 

ENSG00000126010 GRPR Gastrin-releasing peptide receptor (GRP-R) (GRP-preferring bombesin receptor).  0.273 999.000 0.0000 

ENSG00000100345 MYH9 Myosin-9 (Myosin heavy chain, nonmuscle IIa) (Nonmuscle myosin heavy chain 

IIa) (NMMHC II-a) (NMMHC-IIA) (Cellular myosin heavy chain, type A) 

(Nonmuscle myosin heavy chain-A) (NMMHC-A).  

0.112 211.772 0.0000 

ENSG00000129116 PALLD palladin  0.059 999.000 0.0000 

ENSG00000197996 PADI6 Peptidylarginine deiminase type VI (EC 3.5.3.15) (Peptidylarginine deiminase type 

6).  

0.246 915.618 0.0000 

ENSG00000198700 IPO9 Importin-9 (Imp9) (Ran-binding protein 9) (RanbP9).  0.816 999.000 0.0000 

ENSG00000123607 TTC21B tetratricopeptide repeat domain 21B  0.205 999.000 0.0000 

ENSG00000178662 TAIP2_HUMAN TGF-beta-induced apoptosis protein 2 (TAIP-2).  0.082 999.000 0.0000 

ENSG00000073050 XRCC1 DNA-repair protein XRCC1 (X-ray repair cross-complementing protein 1).  0.410 999.000 0.0000 

ENSG00000059588 TARBP1 TAR RNA binding protein 1  0.256 999.000 0.0000 

ENSG00000144130 NT5DC4  0.342 984.278 0.0000 

ENSG00000180530 NRIP1 Nuclear receptor-interacting protein 1 (Nuclear factor RIP140) (Receptor-interacting 0.273 999.000 0.0000 
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protein 140).  

ENSG00000102385 DRP2 Dystrophin-related protein 2.  0.273 999.000 0.0000 

ENSG00000125772 K1434_HUMAN 0.137 999.000 0.0000 

ENSG00000133619 NP_115923.1  0.293 379.927 0.0000 

ENSG00000136014 USP44 Ubiquitin carboxyl-terminal hydrolase 44 (EC 3.1.2.15) (Ubiquitin thiolesterase 44) 

(Ubiquitin-specific-processing protease 44) (Deubiquitinating enzyme 44).  

0.410 999.000 0.0000 

ENSG00000198171 CT116_HUMAN Protein C20orf116 precursor.  0.205 999.000 0.0000 

ENSG00000198265 HELZ Probable helicase with zinc-finger domain (EC 3.6.1.-).  0.410 999.000 0.0000 

ENSG00000166012 JOSD3  0.273 999.000 0.0000 

ENSG00000152422 XRCC4 DNA-repair protein XRCC4 (X-ray repair cross-complementing protein 4).  0.410 999.000 0.0000 

ENSG00000185834   0.820 999.000 0.0000 

ENSG00000169957 NP_078947.2  0.273 999.000 0.0000 

ENSG00000105216 LSM14A Protein FAM61A (Putative alpha synuclein-binding protein) (AlphaSNBP).  0.308 999.000 0.0000 

ENSG00000135605 TEC Tyrosine-protein kinase Tec (EC 2.7.1.112).  0.342 999.000 0.0000 

ENSG00000124496 TRERF1 Transcriptional-regulating factor 1 (Transcriptional-regulating protein 132) (Zinc 

finger transcription factor TReP-132) (Zinc finger protein rapa).  

0.308 999.000 0.0000 

ENSG00000100368 CSF2RB Cytokine receptor common beta chain precursor (GM-CSF/IL-3/IL-5 receptor 

common beta-chain) (CD131 antigen) (CDw131).  

0.492 999.000 0.0000 

ENSG00000113269 RNF130 Goliath homolog precursor (RING finger protein 130).  0.103 999.000 0.0000 

ENSG00000013503 POLR3B DNA-directed RNA polymerase III subunit 127.6 kDa polypeptide (EC 2.7.7.6) 

(RNA polymerase III subunit 2) (RPC2).  

0.117 999.000 0.0000 

ENSG00000162341 TPCN2 two pore segment channel 2  0.410 999.000 0.0000 

ENSG00000189257   0.308 999.000 0.0000 

ENSG00000166540 NP_060227.1 zinc finger protein 407  0.205 128.727 0.0001 

ENSG00000136383 ALPK3 alpha-kinase 3  0.513 325.969 0.0001 

ENSG00000182646 TMEM29  0.410 999.000 0.0001 

ENSG00000116750 UCHL5 Ubiquitin carboxyl-terminal hydrolase isozyme L5 (EC 3.4.19.12) (UCH- L5) 

(Ubiquitin thiolesterase L5) (Ubiquitin C-terminal hydrolase UCH37).  

0.410 999.000 0.0001 

ENSG00000188683   0.410 941.509 0.0001 

ENSG00000160299 PCNT Pericentrin (Pericentrin B) (Kendrin).  0.308 999.000 0.0001 

ENSG00000126337 KRTHA6 Keratin, type I cuticular Ha6 (Hair keratin, type I Ha6).  0.308 516.751 0.0001 

ENSG00000176819   0.820 999.000 0.0001 

ENSG00000152455 SUV39H2 Histone-lysine N-methyltransferase, H3 lysine-9 specific 2 (EC 2.1.1.43) (Histone 

H3-K9 methyltransferase 2) (H3-K9-HMTase 2) (Suppressor of variegation 3-9 

homolog 2) (Su(var)3-9 homolog 2).  

0.410 999.000 0.0001 

ENSG00000053524 MCF2L2 Rho family guanine-nucleotide exchange factor  0.273 999.000 0.0001 

ENSG00000095637 SORBS1 Sorbin and SH3 domain-containing protein 1 (Ponsin) (c-Cbl-associated protein) 0.234 999.000 0.0001 
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(CAP) (SH3 domain protein 5) (SH3P12).  

ENSG00000182405 PGBD4 piggyBac transposable element derived 4  0.273 999.000 0.0002 

ENSG00000077063 CTTNBP2 cortactin binding protein 2  0.308 999.000 0.0002 

ENSG00000139625 MAP3K12 Mitogen-activated protein kinase kinase kinase 12 (EC 2.7.1.37) (Mixed lineage 

kinase) (Leucine-zipper protein kinase) (ZPK) (Dual leucine zipper bearing kinase) 

(DLK) (MAPK-upstream kinase) (MUK).  

0.410 999.000 0.0002 

ENSG00000189180 ZNF11A Zinc finger protein 33A (Zinc finger protein KOX31) (HA0946).  0.574 999.000 0.0002 

ENSG00000121101 TEX14 testis expressed sequence 14 isoform a  0.492 999.000 0.0003 

ENSG00000083168 MYST3 Histone acetyltransferase MYST3 (EC 2.3.1.48) (EC 2.3.1.-) (MYST protein 3) 

(MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (Runt-related transcription factor-

binding protein 2) (Monocytic leukemia zinc finger protein) (Zinc finger protein 

220).  

0.246 999.000 0.0003 

ENSG00000135049 AGTPBP1 ATP/GTP binding protein 1  0.615 999.000 0.0004 

ENSG00000176225 RTTN rotatin  0.820 999.000 0.0004 

ENSG00000182898 TCHHL1 trichohyalin-like 1  0.820 999.000 0.0004 

ENSG00000101076 HNF4A Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Transcription factor HNF-4) 

(Transcription factor 14).  

0.117 999.000 0.0004 

ENSG00000132321 IQCA IQ motif containing with AAA domain  0.234 999.000 0.0005 

ENSG00000119185 ITGB1BP1 Integrin beta-1-binding protein 1 (Integrin cytoplasmic domain- associated protein 

1) (ICAP-1).  

 999.000 0.0005 

ENSG00000080511 RDH8 retinol dehydrogenase 8 (all-trans)  0.410 999.000 0.0005 

ENSG00000171303 KCNK3 Potassium channel subfamily K member 3 (Acid-sensitive potassium channel 

protein TASK-1) (TWIK-related acid-sensitive K(+) channel 1) (Two pore 

potassium channel KT3.1).  

1.230 999.000 0.0006 

ENSG00000130595 TNNT3 Troponin T, fast skeletal muscle (TnTf) (Fast skeletal muscle troponin T) (fTnT) 

(Beta TnTF).  

0.461 63.182 0.0008 

ENSG00000117748 RPA2 Replication protein A 32 kDa subunit (RP-A) (RF-A) (Replication factor-A protein 

2) (p32) (p34).  

0.137 999.000 0.0008 

ENSG00000180104 EXOC3 Exocyst complex component 3 (Exocyst complex component Sec6).  0.410 999.000 0.0008 

ENSG00000118922 KLF12 Krueppel-like factor 12 (Transcriptional repressor AP-2rep).  0.410 999.000 0.0008 

ENSG00000056586 MNAB Membrane-associated nucleic acid-binding protein (RING finger protein 164).  0.273 492.590 0.0010 

ENSG00000172732 MUS81 Crossover junction endonuclease MUS81 (EC 3.1.22.-).  1.230 999.000 0.0010 

ENSG00000149115 TNKS1BP1 182 kDa tankyrase 1-binding protein.  0.410 999.000 0.0010 

ENSG00000113645 WWC1 KIBRA protein  0.082 375.411 0.0011 

ENSG00000159166 LAD1 Ladinin 1 (Lad-1) (120 kDa linear IgA bullous dermatosis antigen) (97 kDa linear 

IgA bullous dermatosis antigen) (Linear IgA disease antigen homolog) (LadA).  

0.205 904.548 0.0011 

ENSG00000128052 KDR Vascular endothelial growth factor receptor 2 precursor (EC 2.7.1.112) (VEGFR-2) 0.103 999.000 0.0012 
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(Kinase insert domain receptor) (Protein-tyrosine kinase receptor Flk-1) (CD309 

antigen).  

ENSG00000124006 OBSL1 OBSL1 protein (Fragment).  0.410 942.191 0.0012 

ENSG00000174448 STARD6 StAR-related lipid transfer protein 6 (StARD6) (START domain- containing protein 

6).  

0.820 999.000 0.0013 

ENSG00000188672 RHCE Blood group Rh(CE) polypeptide (Rhesus C/E antigens) (Rh30A) (RhIXB) (Rh 

polypeptide 1) (RhPI).  

2.050 999.000 0.0014 

ENSG00000101844 ATG4A Cysteine protease ATG4A (EC 3.4.22.-) (Autophagy-related protein 4 homolog A) 

(hAPG4A) (Autophagin-2) (Autophagy-related cysteine endopeptidase 2) (AUT-

like 2 cysteine endopeptidase).  

0.820 999.000 0.0014 

ENSG00000135164 DMTF1 cyclin D binding myb-like transcription factor 1  0.410 638.008 0.0016 

ENSG00000139508 NP_861450.1  1.230 999.000 0.0017 

ENSG00000198324 NP_653272.2  0.615 999.000 0.0017 

ENSG00000104059 K0574_HUMAN 3.280 999.000 0.0018 

ENSG00000011260 WDR50 WD-repeat protein 50.  0.820 999.000 0.0018 

ENSG00000112159 MDN1 Midasin (MIDAS-containing protein).  0.234 213.911 0.0018 

ENSG00000169105 D4ST1 Carbohydrate sulfotransferase D4ST1 (EC 2.8.2.-) (Dermatan 4- sulfotransferase 1) 

(D4ST-1) (hD4ST).  

0.205 656.829 0.0018 

ENSG00000158258 CLSTN2 Calsyntenin-2 precursor.  0.718 999.000 0.0019 

ENSG00000059804 SLC2A3 Solute carrier family 2, facilitated glucose transporter member 3 (Glucose 

transporter type 3, brain).  

0.273 714.347 0.0019 

ENSG00000108733 PEX12 Peroxisome assembly protein 12 (Peroxin-12) (Peroxisome assembly factor 3) 

(PAF-3).  

 999.000 0.0021 

ENSG00000103995 CEP152 Centrosomal protein of 152 kDa (Cep152 protein).  0.902 237.337 0.0022 

ENSG00000147081 AKAP4 A-kinase anchor protein 4 isoform 2  0.820 999.000 0.0023 

ENSG00000163527 STT3B source of immunodominant MHC-associated peptides  0.205 906.596 0.0023 

ENSG00000185927   0.410 999.000 0.0027 

ENSG00000001626 CFTR Cystic fibrosis transmembrane conductance regulator (CFTR) (cAMP- dependent 

chloride channel) (ATP-binding cassette transporter sub- family C member 7).  

0.547 421.255 0.0027 

ENSG00000133069 TMCC2 Transmembrane and coiled-coil domains protein 2 (Cerebral protein 11).  0.164 308.861 0.0028 

ENSG00000142178 SNF1LK Serine/threonine-protein kinase SNF1-like kinase 1 (EC 2.7.1.37) (Serine/threonine-

protein kinase SNF1LK).  

0.103 999.000 0.0029 

ENSG00000121486 NP_112196.2 N2,N2-dimethylguanosine tRNA methyltransferase-like  0.615 428.612 0.0031 

ENSG00000185739 SRL Sarcalumenin precursor.  1.230 999.000 0.0031 

ENSG00000181804 SLC9A9 Sodium/hydrogen exchanger 9 (Na(+)/H(+) exchanger 9) (NHE-9) (Solute carrier 

family 9 member 9).  

0.103 333.850 0.0031 

ENSG00000108592 FTSJ3 Putative rRNA methyltransferase 3 (EC 2.1.1.-) (rRNA (uridine-2'-O-)- 0.410 999.000 0.0031 
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methyltransferase 3).  

ENSG00000187272 KRTAP9-9 Keratin-associated protein 9-4 (Keratin-associated protein 9.4) (Ultrahigh sulfur 

keratin-associated protein 9.4).  

0.410 19.774 0.0032 

ENSG00000184956 MUC6 Mucin glycoprotein (Fragment).  0.273 67.165 0.0034 

ENSG00000187187 ZNF546 zinc finger protein 546  0.683 208.162 0.0034 

ENSG00000138411 HECW2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2  0.256 163.790 0.0035 

ENSG00000151150 ANK3 Ankyrin-3 (ANK-3) (Ankyrin G).  0.224 721.181 0.0037 

ENSG00000187820    999.000 0.0037 

ENSG00000137871 SUHW4 suppressor of hairy wing homolog 4 isoform 1  0.615 492.176 0.0039 

ENSG00000148840 PPRC1 PGC-1 related co-activator  0.820 192.508 0.0039 

ENSG00000165164 CX022_HUMAN Protein CXorf22.  0.410 635.085 0.0040 

ENSG00000141458 NPC1 Niemann-Pick C1 protein precursor.  0.293 202.984 0.0041 

ENSG00000071203 MS4A12 Membrane-spanning 4-domains subfamily A member 12.  0.615 999.000 0.0043 

ENSG00000154783 FGD5 FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-

containing protein 23).  

0.154 978.102 0.0044 

ENSG00000184950   3.280 999.000 0.0044 

ENSG00000174123 TLR10 Toll-like receptor 10 precursor.  0.246 444.812 0.0045 

ENSG00000113905 HRG Histidine-rich glycoprotein precursor (Histidine-proline-rich glycoprotein) (HPRG).  1.503 85.310 0.0045 

ENSG00000189409 MMP23B matrix metalloproteinase 23B precursor  0.273 148.851 0.0046 

ENSG00000157950 SSX2 Protein SSX2 (Synovial sarcoma, X breakpoint 2) (SSX) (HOM-MEL-40).  0.273 460.090 0.0046 

ENSG00000189136 NP_997265.1  1.640 999.000 0.0048 

ENSG00000177553 Q8NDA9_HUMAN Novel protein (Fragment).  0.615 599.959 0.0049 

ENSG00000133958 NP_065869.2  0.293 195.484 0.0049 

ENSG00000103569 AQP9 Aquaporin-9 (AQP-9) (Small solute channel 1).  0.410 300.882 0.0054 

ENSG00000198796 ALPK2 heart alpha-kinase  0.761 164.694 0.0056 

ENSG00000155275 NP_689757.1  0.615 354.045 0.0057 

ENSG00000186152 LILRB3 Leukocyte immunoglobulin-like receptor subfamily B member 3 precursor 

(Leukocyte immunoglobulin-like receptor 3) (LIR-3) (Immunoglobulin- like 

transcript 5) (ILT-5) (Monocyte inhibitory receptor HL9) (CD85a antigen).  

0.568 424.616 0.0060 

ENSG00000196427 Q5VWK0_HUMAN Novel protein similar to FLJ32883 containing DUF1220 domains (Fragment).  0.718 48.563 0.0060 

ENSG00000179698 NP_115918.1  0.273 999.000 0.0063 

ENSG00000076928 ARHGEF1 Rho guanine nucleotide exchange factor 1 (p115-RhoGEF) (p115RhoGEF) (115 

kDa guanine nucleotide exchange factor) (Sub1.5).  

0.137 176.505 0.0064 

ENSG00000096384 HSP90AB1 Heat shock protein HSP 90-beta (HSP 84) (HSP 90).  0.154 78.444 0.0066 

ENSG00000103449 SALL1 Sal-like protein 1 (Zinc finger protein SALL1) (Spalt-like transcription factor 1) 

(HSal1).  

0.342 999.000 0.0067 

ENSG00000196208 NP_149081.1 GREB1 protein isoform b  0.068 309.232 0.0067 
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ENSG00000115526 CHST10 Carbohydrate sulfotransferase 10 (EC 2.8.2.-) (HNK-1 sulfotransferase) (HNK1ST) 

(HNK-1ST) (huHNK-1ST).  

0.273 170.596 0.0067 

ENSG00000187010 RHD Blood group Rh(D) polypeptide (Rhesus D antigen) (RHXIII) (Rh polypeptide 2) 

(RhPII).  

0.718 999.000 0.0071 

ENSG00000181950 Q8NH17_HUMAN Seven transmembrane helix receptor.  2.050 999.000 0.0071 

ENSG00000172038 KV3H_HUMAN Ig kappa chain V-III region CLL precursor (Rheumatoid factor).  1.025 999.000 0.0071 

ENSG00000082213 NP_060826.1  0.137 228.823 0.0073 

ENSG00000185507 IRF7 Interferon regulatory factor 7 (IRF-7).  0.176 302.105 0.0073 

ENSG00000124731 TREM1 Triggering receptor expressed on myeloid cells 1 precursor (TREM-1) (Triggering 

receptor expressed on monocytes 1).  

 999.000 0.0073 

ENSG00000135622 SEMA4F Semaphorin-4F precursor (Semaphorin W) (Sema W) (Semaphorin M) (Sema M).  0.164 177.660 0.0074 

ENSG00000173230 GOLGB1 Golgin subfamily B member 1 (Giantin) (Macrogolgin) (372 kDa Golgi complex-

associated protein) (GCP372).  

1.312 124.825 0.0074 

ENSG00000143740 NP_444280.1  0.410 998.999 0.0074 

ENSG00000130816 DNMT1 DNA (cytosine-5)-methyltransferase 1 (EC 2.1.1.37) (Dnmt1) (DNA 

methyltransferase HsaI) (DNA MTase HsaI) (MCMT) (M.HsaI).  

0.046 164.787 0.0077 

ENSG00000184459 BPIL2 Bactericidal/permeability-increasing protein-like 2 precursor.  0.308 450.330 0.0078 

ENSG00000198946 SSX4 Protein SSX4.  0.683 999.000 0.0084 

ENSG00000163492 NP_775919.2  0.308 229.471 0.0085 

ENSG00000141690   1.230 74.633 0.0085 

ENSG00000188885   1.640 999.000 0.0086 

ENSG00000133056 PIK3C2B Phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing beta polypeptide 

(EC 2.7.1.154) (Phosphoinositide 3-Kinase-C2-beta) (PtdIns-3-kinase C2 beta) 

(PI3K-C2beta) (C2-PI3K).  

0.082 152.423 0.0088 

ENSG00000183621 ZNF438 ZNF438 transcript variant 3  0.820 160.922 0.0092 

ENSG00000164151 Q6ZT40_HUMAN CDNA FLJ44990 fis, clone BRAWH3008559.  0.293 352.398 0.0094 

ENSG00000106328 FSCN3 Fascin-3 (Testis fascin).  0.410 999.000 0.0095 

ENSG00000117616 NP_064713.3  0.176 433.752 0.0099 

ENSG00000135951 TSGA10 testis specific, 10  0.820 999.000 0.0102 

ENSG00000100829 PPP1R3E Homeobox and leucine zipper protein Homez (Homeodomain leucine zipper- 

containing factor).  

0.820 215.162 0.0110 

ENSG00000134285 FKBP11 FK506-binding protein 11 precursor (EC 5.2.1.8) (Peptidyl-prolyl cis- trans 

isomerase) (PPIase) (Rotamase) (19 kDa FK506-binding protein) (FKBP-19).  

 999.000 0.0112 

ENSG00000130779 RSN Restin (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed- Sternberg 

intermediate filament-associated protein) (Cytoplasmic linker protein 1).  

0.176 999.000 0.0115 

ENSG00000090512 FETUB Fetuin-B precursor (IRL685) (16G2).  0.513 497.834 0.0117 

ENSG00000198162 MAN1A2 Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB (EC 3.2.1.113) (Processing 0.615 152.655 0.0118 
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alpha-1,2-mannosidase IB) (Alpha-1,2-mannosidase IB) (Mannosidase alpha class 

1A member 2).  

ENSG00000164588 HCN1 Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1 

(Brain cyclic nucleotide gated channel 1) (BCNG-1).  

0.082 264.456 0.0124 

ENSG00000135346 CGA Glycoprotein hormones alpha chain precursor (Anterior pituitary glycoprotein 

hormones common alpha subunit) (Follitropin alpha chain) (Follicle-stimulating 

hormone alpha chain) (FSH-alpha) (Lutropin alpha chain) (Luteinizing hormone 

alpha chain) (LSH-alph  

0.615 289.404 0.0129 

ENSG00000109205 NP_060325.2 APin protein  0.410 199.072 0.0143 

ENSG00000065328 MCM10 minichromosome maintenance protein 10 isoform 2  0.574 109.016 0.0147 

ENSG00000041802 LSG1  0.820 72.404 0.0149 

ENSG00000173950 NP_689744.2  0.205 273.981 0.0151 

ENSG00000168661 ZNF30 Zinc finger protein 30 (Zinc finger protein KOX28).  0.820 62.918 0.0152 

ENSG00000183862 CNGA2 Cyclic nucleotide-gated olfactory channel (Cyclic nucleotide-gated cation channel 

2) (CNG channel 2) (CNG-2) (CNG2) (Fragment).  

0.615 999.000 0.0153 

ENSG00000188636 LDOC1L  0.205 203.518 0.0154 

ENSG00000092200 RPGRIP1 X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGR-

interacting protein 1).  

0.574 264.144 0.0162 

ENSG00000154358 OBSCN obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF  0.888 59.721 0.0168 

ENSG00000168229 PTGDR Prostaglandin D2 receptor (Prostanoid DP receptor) (PGD receptor).  1.640 999.000 0.0171 

ENSG00000198118 Q96R54_HUMAN Olfactory receptor (Fragment).  0.820 131.097 0.0171 

ENSG00000196074 SYCP2 Synaptonemal complex protein 2 (SCP-2 protein) (Synaptonemal complex lateral 

element protein) (hsSCP2).  

4.100 173.663 0.0173 

ENSG00000104853 CLPTM1 cleft lip and palate associated transmembrane protein 1  0.205 67.035 0.0181 

ENSG00000085982 USP40 Ubiquitin carboxyl-terminal hydrolase 40 (EC 3.1.2.15) (Ubiquitin thiolesterase 40) 

(Ubiquitin-specific-processing protease 40) (Deubiquitinating enzyme 40).  

0.351 161.113 0.0183 

ENSG00000160856 FCRL3 Fc receptor-like 3 precursor  0.246 246.953 0.0187 

ENSG00000181045 SLC26A11 solute carrier family 26, member 11  0.308 58.984 0.0191 

ENSG00000135540 NHSL1 NHSL1 protein (Fragment).  2.460 734.595 0.0193 

ENSG00000009790 TRAF3IP3 TRAF3-interacting JNK-activating modulator (TRAF3-interacting protein 3).  0.410 101.515 0.0195 

ENSG00000087206 RXINP_HUMAN Retinoid X receptor-interacting protein 110 (Receptor-associated protein 80) 

(Nuclear zinc finger protein RAP80).  

1.025 107.870 0.0196 

ENSG00000099399 MAGEB2 Melanoma-associated antigen B2 (MAGE-B2 antigen) (DSS-AHC critical interval 

MAGE superfamily 6) (DAM6) (MAGE XP-2).  

2.870 999.000 0.0201 

ENSG00000133773 CCDC59  0.410 184.628 0.0202 

ENSG00000197734 NP_777603.1  0.273 168.421 0.0206 

ENSG00000125337 KIF25 Kinesin-like protein KIF25 (Kinesin-like protein 3).  1.230 999.000 0.0206 
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ENSG00000196735 HA25_HUMAN HLA class II histocompatibility antigen, DQ(5) alpha chain precursor (DC-1 alpha 

chain).  

0.478 39.209 0.0207 

ENSG00000079385 CEACAM1 Carcinoembryonic antigen-related cell adhesion molecule 1 precursor (Biliary 

glycoprotein 1) (BGP-1) (CD66 antigen) (CD66a antigen).  

0.410 217.564 0.0209 

ENSG00000135968 GCC2 Ran-binding protein 2-like 4 (RanBP2L4).  0.769 54.241 0.0232 

ENSG00000169021 UQCRFS1 Ubiquinol-cytochrome c reductase iron-sulfur subunit, mitochondrial precursor (EC 

1.10.2.2) (Rieske iron-sulfur protein) (RISP).  

0.820 167.192 0.0233 

ENSG00000073067 CYP2W1 Cytochrome P450 2W1 (EC 1.14.14.-) (CYPIIW1).  0.410 57.026 0.0234 

ENSG00000148411 BTBD14A BTB (POZ) domain containing 14A  0.410 999.000 0.0236 

ENSG00000100312 ACR Acrosin precursor (EC 3.4.21.10) [Contains: Acrosin light chain; Acrosin heavy 

chain].  

0.273 109.920 0.0239 

ENSG00000175305 CCNE2 G1/S-specific cyclin-E2.  0.410 84.369 0.0243 

ENSG00000100450 GZMH Granzyme H precursor (EC 3.4.21.-) (Cytotoxic T-lymphocyte proteinase) 

(Cathepsin G-like 2) (CTSGL2) (CCP-X) (Cytotoxic serine protease C) (CSP-C).  

 999.000 0.0251 

ENSG00000198703 OR10R3P Seven transmembrane helix receptor.   999.000 0.0255 

ENSG00000160229 ZNF486 Zinc finger protein 486.  1.025 105.389 0.0260 

ENSG00000127838 PNKD myofibrillogenesis regulator 1 isoform 2  0.820 999.000 0.0265 

ENSG00000077935 SMC1L2 Structural maintenance of chromosome 1-like 2 protein (SMC1beta protein).   173.415 0.0270 

ENSG00000175885 ZNF611 zinc finger protein 611  0.410 181.404 0.0271 

ENSG00000112273 HDGFL1 hepatoma derived growth factor-like 1  1.435 51.016 0.0283 

ENSG00000179588 ZFPM1 Zinc finger protein ZFPM1 (Zinc finger protein multitype 1) (Friend of GATA 

protein 1) (Friend of GATA-1) (FOG-1).  

0.273 152.552 0.0288 

ENSG00000116254 CHD5 Chromodomain helicase-DNA-binding protein 5 (EC 3.6.1.-) (ATP- dependent 

helicase CHD5) (CHD-5).  

0.041 999.000 0.0292 

ENSG00000145850 TIMD4 T cell immunoglobulin and mucin domain-containing protein 4 precursor (TIMD-4) 

(T cell membrane protein 4) (TIM-4).  

 999.000 0.0294 

ENSG00000152782 PANK1 Pantothenate kinase 1 (EC 2.7.1.33) (Pantothenic acid kinase 1) (hPanK1) (hPanK).  0.205 138.333 0.0296 

ENSG00000115350 POLE4 DNA polymerase epsilon subunit 4 (EC 2.7.7.7) (DNA polymerase II subunit 4) 

(DNA polymerase epsilon subunit p12).  

0.273 36.136 0.0305 

ENSG00000125520 SLC2A4RG SLC2A4 regulator (GLUT4 enhancer factor) (GEF) (Huntington disease gene 

regulatory region-binding protein 1) (HDBP-1).  

0.820 111.824 0.0308 

ENSG00000101447 CT129_HUMAN 0.492 34.327 0.0309 

ENSG00000103855 CD276 CD276 antigen precursor (Costimulatory molecule) (B7 homolog 3) (B7- H3) (4Ig-

B7-H3).  

0.176 37.702 0.0309 

ENSG00000184278   0.547 175.020 0.0318 

ENSG00000162888 NP_001020763.1 1.025 999.000 0.0324 

ENSG00000182227    999.000 0.0327 
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ENSG00000186867 GPR103 Orexigenic neuropeptide QRFP receptor (G-protein coupled receptor 103) (SP9155) 

(AQ27).  

-2.870 999.000 0.0327 

ENSG00000085832 EPS15 Epidermal growth factor receptor substrate 15 (Protein Eps15) (AF-1p protein).  0.205 70.582 0.0339 

ENSG00000156574 NODAL Nodal homolog precursor.  0.308 40.588 0.0345 

ENSG00000091181 IL5RA Interleukin-5 receptor alpha chain precursor (IL-5R-alpha) (CD125 antigen) 

(CDw125).  

0.410 99.357 0.0354 

ENSG00000129103 SUMF2 Sulfatase-modifying factor 2 precursor (C-alpha-formyglycine- generating enzyme 

2).  

 999.000 0.0359 

ENSG00000197912 SPG7 Paraplegin (EC 3.4.24.-) (Spastic paraplegia protein 7).  1.025 71.642 0.0375 

ENSG00000129810 SGOL1 Shugoshin-like 1 (hSgo1) (Serologically defined breast cancer antigen NY-BR-85).   197.140 0.0376 

ENSG00000161914 ZNF653 zinc finger protein 653  0.103 999.000 0.0379 

ENSG00000139117 CPNE8 Copine-8 (Copine VIII).  0.082 999.000 0.0389 

ENSG00000196240 OR2T2 Olfactory receptor 2T2 (Olfactory receptor OR1-43).  0.273 42.879 0.0401 

ENSG00000152582 NP_653323.1 KPL2 protein isoform 2  4.920 7.647 0.0405 

ENSG00000169607 NP_689728.2  0.957 110.869 0.0406 

ENSG00000159433 STARD9 StAR-related lipid transfer protein 9 (StARD9) (START domain- containing protein 

9) (Fragment).  

0.559 525.103 0.0408 

ENSG00000187753 NP_001010907.1  999.000 0.0425 

ENSG00000145041 Q8TBD9_HUMAN VPRBP protein.  0.410 999.000 0.0428 

ENSG00000127366 TAS2R5 Taste receptor type 2 member 5 (T2R5).  2.050 999.000 0.0433 

ENSG00000165120 NP_660311.1   999.000 0.0456 

ENSG00000149418 ST14 Suppressor of tumorigenicity 14 (EC 3.4.21.-) (Matriptase) (Membrane- type serine 

protease 1) (MT-SP1) (Prostamin) (Serine protease TADG-15) (Tumor-associated 

differentially-expressed gene 15 protein).  

0.256 30.260 0.0463 

ENSG00000091592 NALP1 NACHT-, LRR- and PYD-containing protein 2 (Death effector filament- forming 

ced-4-like apoptosis protein) (Nucleotide-binding domain and caspase recruitment 

domain) (Caspase recruitment domain protein 7).  

2.870 999.000 0.0469 

ENSG00000180290 GNRHR2 Gonadotropin-releasing hormone II receptor (Type II GnRH receptor) (GnRH-II-R).   999.000 0.0477 

ENSG00000188869 TMC3 TMC3 protein.  0.461 999.000 0.0482 
1 Gene descriptions downloaded from Ensembl. Blanks indicate information not available or unknown.  
2 Nonsynonymous/synonymous substitution rate ratio, computed by 0.41n /s . Blank indicates no synonymous changes. 
3 Nonsynonymous/synonymous substitution rate ratio, computed by PAML for foreground site class 2b  
4 Uncorrected p-value from likelihood ratio test    
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Human ENSG00000165659 DACH1 Dachshund homolog 1 (Dach1).  0.205 999.000 0.0000 * 

  ENSG00000188153 COL4A5 Collagen alpha-5(IV) chain precursor.  0.205 999.000 0.0000 * 

Chimpanzee ENSG00000167522 ANKRD11 Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 

1).  

0.256 999.000 0.0000 * 

 ENSG00000126822 PLEKHG3 pleckstrin homology domain containing, family G, member 3  0.492 999.000 0.0000 * 

 ENSG00000152242 CR025_HUMAN 0.137 999.000 0.0000 * 

 ENSG00000117713 ARID1A AT-rich interactive domain-containing protein 1A (ARID domain- containing 

protein 1A) (SWI/SNF-related, matrix-associated, actin- dependent regulator of 

chromatin subfamily F member 1) (SWI-SNF complex protein p270) (B120) 

(SWI-like protein) (Osa homolog  

0.123 999.000 0.0000 * 

 ENSG00000185727   0.205 999.000 0.0000 * 

 ENSG00000165521 EML5 echinoderm microtubule associated protein like 5  0.252 999.000 0.0000 * 

 ENSG00000002746 HECW1 NEDD4-like ubiquitin-protein ligase 1  0.186 999.000 0.0000 * 

 ENSG00000198308 Q9NSI3_HUMAN 0.273 999.000 0.0000 * 

 ENSG00000116141 MARK1 Serine/threonine-protein kinase MARK1 (EC 2.7.1.37) (MAP/microtubule 

affinity-regulating kinase 1).  

0.410 999.000 0.0000 * 

 ENSG00000091986 NP_955806.1 steroid-sensitive protein 1  0.351 999.000 0.0000 * 

 ENSG00000147036 LANCL3 LanC lantibiotic synthetase component C-like 3  0.205 999.000 0.0000 * 

 ENSG00000112276 BVES Blood vessel epicardial substance (hBVES) (Popeye domain-containing protein 1) 

(Popeye protein 1).  

0.273 999.000 0.0000 * 

 ENSG00000106415 GLCCI1 glucocorticoid induced transcript 1  0.205 999.000 0.0000 * 

 ENSG00000130227 XPO7 Exportin-7 (Ran-binding protein 16).  0.205 999.000 0.0000 * 

 ENSG00000096401 CDC5L Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5- related 

protein).  

0.164 999.000 0.0000 * 

 ENSG00000126010 GRPR Gastrin-releasing peptide receptor (GRP-R) (GRP-preferring bombesin receptor).  0.273 999.000 0.0000 * 

 ENSG00000100345 MYH9 Myosin-9 (Myosin heavy chain, nonmuscle IIa) (Nonmuscle myosin heavy chain 

IIa) (NMMHC II-a) (NMMHC-IIA) (Cellular myosin heavy chain, type A) 

(Nonmuscle myosin heavy chain-A) (NMMHC-A).  

0.112 211.772 0.0000 * 

 ENSG00000129116 PALLD palladin  0.059 999.000 0.0000 * 

 ENSG00000197996 PADI6 Peptidylarginine deiminase type VI (EC 3.5.3.15) (Peptidylarginine deiminase 

type 6).  

0.246 915.618 0.0000 * 

 ENSG00000198700 IPO9 Importin-9 (Imp9) (Ran-binding protein 9) (RanbP9).  0.824 999.000 0.0000 * 

 ENSG00000123607 TTC21B tetratricopeptide repeat domain 21B  0.205 999.000 0.0000 * 

 ENSG00000178662 TAIP2_HUMAN TGF-beta-induced apoptosis protein 2 (TAIP-2).  0.082 999.000 0.0000  

 ENSG00000073050 XRCC1 DNA-repair protein XRCC1 (X-ray repair cross-complementing protein 1).  0.410 999.000 0.0000  
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 ENSG00000059588 TARBP1 TAR RNA binding protein 1  0.256 999.000 0.0000  

 ENSG00000144130 NT5DC4  0.342 984.278 0.0000  

 ENSG00000180530 NRIP1 Nuclear receptor-interacting protein 1 (Nuclear factor RIP140) (Receptor-

interacting protein 140).  

0.273 999.000 0.0000  

 ENSG00000102385 DRP2 Dystrophin-related protein 2.  0.273 999.000 0.0000  

 ENSG00000125772 K1434_HUMAN 0.137 999.000 0.0000  

 ENSG00000133619 NP_115923.1  0.293 379.927 0.0000  

 ENSG00000136014 USP44 Ubiquitin carboxyl-terminal hydrolase 44 (EC 3.1.2.15) (Ubiquitin thiolesterase 

44) (Ubiquitin-specific-processing protease 44) (Deubiquitinating enzyme 44).  

0.410 999.000 0.0000  

 ENSG00000198171 CT116_HUMAN Protein C20orf116 precursor.  0.205 999.000 0.0000  

 ENSG00000198265 HELZ Probable helicase with zinc-finger domain (EC 3.6.1.-).  0.410 999.000 0.0000  

 ENSG00000166012 JOSD3  0.273 999.000 0.0000  

 ENSG00000152422 XRCC4 DNA-repair protein XRCC4 (X-ray repair cross-complementing protein 4).  0.410 999.000 0.0000  

 ENSG00000185834   0.820 999.000 0.0000  

 ENSG00000169957 NP_078947.2  0.273 999.000 0.0000  

 ENSG00000105216 LSM14A Protein FAM61A (Putative alpha synuclein-binding protein) (AlphaSNBP).  0.308 999.000 0.0000  

 ENSG00000135605 TEC Tyrosine-protein kinase Tec (EC 2.7.1.112).  0.342 999.000 0.0000  

 ENSG00000124496 TRERF1 Transcriptional-regulating factor 1 (Transcriptional-regulating protein 132) (Zinc 

finger transcription factor TReP-132) (Zinc finger protein rapa).  

0.308 999.000 0.0000  

 ENSG00000100368 CSF2RB Cytokine receptor common beta chain precursor (GM-CSF/IL-3/IL-5 receptor 

common beta-chain) (CD131 antigen) (CDw131).  

0.492 999.000 0.0000  

 ENSG00000113269 RNF130 Goliath homolog precursor (RING finger protein 130).  0.103 999.000 0.0000  

 ENSG00000013503 POLR3B DNA-directed RNA polymerase III subunit 127.6 kDa polypeptide (EC 2.7.7.6) 

(RNA polymerase III subunit 2) (RPC2).  

0.117 999.000 0.0000  

 ENSG00000162341 TPCN2 two pore segment channel 2  0.410 999.000 0.0000  

 ENSG00000189257   0.308 999.000 0.0000  

 ENSG00000166540 NP_060227.1 zinc finger protein 407  0.205 128.727 0.0001  

 ENSG00000136383 ALPK3 alpha-kinase 3  0.513 325.969 0.0001  

 ENSG00000182646 TMEM29  0.410 999.000 0.0001  

 ENSG00000116750 UCHL5 Ubiquitin carboxyl-terminal hydrolase isozyme L5 (EC 3.4.19.12) (UCH- L5) 

(Ubiquitin thiolesterase L5) (Ubiquitin C-terminal hydrolase UCH37).  

0.410 999.000 0.0001  

 ENSG00000188683   0.410 941.509 0.0001  

 ENSG00000160299 PCNT Pericentrin (Pericentrin B) (Kendrin).  0.308 999.000 0.0001  

 ENSG00000126337 KRTHA6 Keratin, type I cuticular Ha6 (Hair keratin, type I Ha6).  0.308 516.751 0.0001  

 ENSG00000176819   0.820 999.000 0.0001  

 ENSG00000152455 SUV39H2 Histone-lysine N-methyltransferase, H3 lysine-9 specific 2 (EC 2.1.1.43) (Histone 

H3-K9 methyltransferase 2) (H3-K9-HMTase 2) (Suppressor of variegation 3-9 

0.410 999.000 0.0001  
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Lineage Ensembl Gene ID Gene Name Gene Description1 w
2
 w

3
 p-value   

homolog 2) (Su(var)3-9 homolog 2).  

 ENSG00000053524 MCF2L2 Rho family guanine-nucleotide exchange factor  0.273 999.000 0.0001  

 ENSG00000095637 SORBS1 Sorbin and SH3 domain-containing protein 1 (Ponsin) (c-Cbl-associated protein) 

(CAP) (SH3 domain protein 5) (SH3P12).  

0.234 999.000 0.0001  

 ENSG00000182405 PGBD4 piggyBac transposable element derived 4  0.273 999.000 0.0002  

 ENSG00000077063 CTTNBP2 cortactin binding protein 2  0.308 999.000 0.0002  

 ENSG00000139625 MAP3K12 Mitogen-activated protein kinase kinase kinase 12 (EC 2.7.1.37) (Mixed lineage 

kinase) (Leucine-zipper protein kinase) (ZPK) (Dual leucine zipper bearing 

kinase) (DLK) (MAPK-upstream kinase) (MUK).  

0.410 999.000 0.0002  

  ENSG00000189180 ZNF11A Zinc finger protein 33A (Zinc finger protein KOX31) (HA0946).  0.574 999.000 0.0002   
1 Gene descriptions downloaded from Ensembl. Blanks indicate information not available or unknown.    
2 Nonsynonymous/synonymous substitution rate ratio, computed by 0.41n /s .     
3 Nonsynonymous/synonymous substitution rate ratio, computed by PAML for foreground site class 2b   

* Significant after Bonferonni correction      
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 Genes showing significant signal of postive selection and associated with human disease 

Lineage Ensembl Gene ID Gene 

Name 

Gene Description
1
 OMIM 

ID 

Disease Description
2
 

Both ENSG00000141458 NPC1 Niemann-Pick C1 protein precursor.  257220 Niemann-Pick disease, type C 

(3) 

257220 Niemann-Pick disease, type D, 

257250 (2) 

Chimp ENSG00000001626 CFTR Cystic fibrosis transmembrane conductance regulator 

(CFTR) (cAMP- dependent chloride channel) (ATP-

binding cassette transporter sub- family C member 7).  

602421 Congenital bilateral absence of 

vas deferens, 277180 (3) 

602421 Cystic fibrosis, 219700 (3) 

602421 Sweat chloride elevation without 

CF (3) 

ENSG00000100312 ACR Acrosin precursor (EC 3.4.21.10) [Contains: Acrosin light 

chain; Acrosin heavy chain].  

102480 Male infertility due to acrosin 

deficiency (2) (?) 

ENSG00000100368 CSF2RB Cytokine receptor common beta chain precursor (GM-

CSF/IL-3/IL-5 receptor common beta-chain) (CD131 

antigen) (CDw131).  

138981 Pulmonary alveolar proteinosis, 

265120 (3) 

ENSG00000101076 HNF4A Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) 

(Transcription factor HNF-4) (Transcription factor 14).  

600281 MODY, type 1, 125850 (3) 

600281 Non-insulin-dependent diabetes 

mellitus, 125853 (3) 

ENSG00000103449 SALL1 Sal-like protein 1 (Zinc finger protein SALL1) (Spalt-like 

transcription factor 1) (HSal1).  

602218 Townes-Brocks syndrome, 

107480 (3) 

ENSG00000113905 HRG Histidine-rich glycoprotein precursor (Histidine-proline-

rich glycoprotein) (HPRG).  

142640 Thrombophilia due to elevated 

HRG (1) (?) 

ENSG00000135346 CGA Glycoprotein hormones alpha chain precursor (Anterior 

pituitary glycoprotein hormones common alpha subunit) 

(Follitropin alpha chain) (Follicle-stimulating hormone 

alpha chain) (FSH-alpha) (Lutropin alpha chain) 

(Luteinizing hormone alpha chain) (LSH-alph  

307150 Hypertrichosis, congenital 

generalized (2) 

ENSG00000135605 TEC Tyrosine-protein kinase Tec (EC 2.7.1.112).  148500 Tylosis with esophageal cancer 

(2) 

ENSG00000173230 GOLGB1 Golgin subfamily B member 1 (Giantin) (Macrogolgin) 

(372 kDa Golgi complex-associated protein) (GCP372).  

303800 Colorblindness, deutan (3) 

ENSG00000197912 SPG7 Paraplegin (EC 3.4.24.-) (Spastic paraplegia protein 7).  602783 Spastic paraplegia-7 (3) 
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Lineage Ensembl Gene ID Gene 

Name 

Gene Description
1
 OMIM 

ID 

Disease Description
2
 

Human ENSG00000102805 CLN5 Ceroid-lipofuscinosis neuronal protein 5 (Protein CLN5).  256731 Ceroid-lipofuscinosis, neuronal-

5, variant late infantile (3) 

ENSG00000122971 ACADS Acyl-CoA dehydrogenase, short-chain specific, 

mitochondrial precursor (EC 1.3.99.2) (SCAD) (Butyryl-

CoA dehydrogenase).  

201470 Acyl-CoA dehydrogenase, 

short-chain, deficiency of (3) 

ENSG00000133805 AMPD3 AMP deaminase 3 (EC 3.5.4.6) (AMP deaminase isoform 

E) (Erythrocyte AMP deaminase).  

102772 [AMP deaminase deficiency, 

erythrocytic] (3) 

ENSG00000138029 HADHB Trifunctional enzyme beta subunit, mitochondrial precursor 

(TP-beta) [Includes: 3-ketoacyl-CoA thiolase (EC 2.3.1.16) 

(Acetyl-CoA acyltransferase) (Beta-ketothiolase)].  

143450 Trifunctional protein deficiency, 

type II (3) 

ENSG00000141837 CACNA1A Voltage-dependent P/Q-type calcium channel alpha-1A 

subunit (Voltage- gated calcium channel alpha subunit 

Cav2.1) (Calcium channel, L type, alpha-1 polypeptide 

isoform 4) (Brain calcium channel I) (BI).  

601011 Cerebellar ataxia, pure (3) 

601011 Episodic ataxia, type 2, 108500 

(3) 

601011 Hemiplegic migraine, familial, 

141500 (3) 

601011 Spinocerebellar ataxia-6, 

183086 (3) 

ENSG00000147889 CDKN2A Cyclin-dependent kinase inhibitor 2A, isoform 4 (p14ARF) 

(p19ARF).  

155600 Malignant melanoma, cutaneous 

(2) 

600160 Melanoma, 155601 (3) 

ENSG00000163069 SGCB Beta-sarcoglycan (Beta-SG) (43 kDa dystrophin-associated 

glycoprotein) (43DAG) (A3b).  

600900 Muscular dystrophy, limb-

girdle, type 2E (3) 

ENSG00000165125 TRPV6 Transient receptor potential cation channel subfamily V 

member 6 (TrpV6) (Epithelial calcium channel 2) (ECaC2) 

(Calcium transport protein 1) (CaT1) (CaT-like) (CaT-L).  

600184 Carnitine acetyltransferase 

deficiency (1) (?) 

ENSG00000165409 TSHR Thyrotropin receptor precursor (TSH-R) (Thyroid-

stimulating hormone receptor).  

275200 Graves disease, 275000 (1) 

275200 Hyperthroidism, congenital (3) 

275200 Hypothyroidism, nongoitrous, 

due to TSH resistance (3) 

275200 Thyroid adenoma, 

hyperfunctioning (3) 

ENSG00000169738 DCXR L-xylulose reductase (EC 1.1.1.10) (XR) (Dicarbonyl/L-

xylulose reductase) (Kidney dicarbonyl reductase) (kiDCR) 

(Carbonyl reductase II) (Sperm surface protein P34H).  

190685 Down syndrome (1) 
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Lineage Ensembl Gene ID Gene 

Name 

Gene Description
1
 OMIM 

ID 

Disease Description
2
 

ENSG00000180509 KCNE1 Potassium voltage-gated channel subfamily E member 1 

(IKs producing slow voltage-gated potassium channel beta 

subunit Mink) (Minimal potassium channel) (Delayed 

rectifier potassium channel subunit IsK).  

176261 Jervell and Lange-Nielsen 

syndrome, 220400 (3) 

ENSG00000182372 CLN8 Protein CLN8.  600143 Epilepsy, progressive, with 

mental retardation (2) 

ENSG00000186395 KRT10 Keratin, type I cytoskeletal 10 (Cytokeratin-10) (CK-10) 

(Keratin-10) (K10).  

148080 Epidermolytic hyperkeratosis, 

113800 (3) 

ENSG00000188153 COL4A5 Collagen alpha-5(IV) chain precursor 303630 Alport syndrome 

303630 Leiomyomatosis-nephropathy 

syndrome 
1
 Gene descriptions downloaded from Ensembl.   

2
 Disease descriptions downloaded from OMIM.   
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