
DIRECT MANIPULATION QUERYING OF

DATABASE SYSTEMS

by

Bin Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2011

Doctoral Committee:

Professor Hosagrahar V. Jagadish
Assistant Professor Michael John Cafarella
Assistant Professor Kristen R. Lefevre
Assistant Professor Mark W. Newman

Bin Liu
c© 2011

All rights reserved.

DEDICATION

To my parents and brother.

ii

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor, Prof. H. V. Jagadish, for being an

incredibly wonderful advisor. Without him, this thesis would not have been remotely

possible. His wisdom, patience, and encouragement has and will continue to benefit

me for the rest of my life. When I needed help in career or life, he has always

been firmly standing behind me. I can continue indefinitely on how thoughtful and

amazing he is through everyday details, which I am not going to do due to limited

time and space. I sincerely appreciate his genuine care and generous help in all

aspects of my life.

I would also like to thank my collaborators at IBM Almaden Research Center.

Laura Chitacariu and Frederick Reiss, thanks to both of you for the fruitful

collaboration. Thank you for introducing me to top-notch industrial research and

development. Ru Fang, Bin He, Hui-I Hsiao, and C Mohan, thank you for giving me

a happy and rewarding summer.

I would also like to thank my thesis committee members, Prof. Michael Cafarella,

Prof. Kristen Lefevre, and Prof. Mark Newman. Thank you for spending your

valuable time on my thesis. I appreciate your insightful comments and guidance

along the way.

The fantastic people of the database group have been a great part of my life

at Michigan. Beside the faculty I mentioned above, Professor Jignesh Patel, who

overlapped with me for two years at Michigan, has always been very kind and

inspirational to me. I would like to thank all students in Professor Jagadish’s group

iii

for the support all these years. Ever since I joined Michigan, senior students in

the group, including Adriane Chapman, Magesh Jayapandian, Yunyao Li, Stelios

Paparizos, Nuwee Wiwatwattana, and Cong Yu, have been a never-ending source

of life and professional help, even after their graduation. Their selfless support

has constantly been a great boost for me to forge ahead. I would also like to

thank alumni in Professor Patel’s group, including Yun Chen, Nate Derbinsky, You

Jung Kim, Willis Lang, Michael Morse, Sandeep Tata, and Yuanyuan Tian, for

their friendship and comradeship. Current members of the group, including Zhe

Chen, Daniel Fabbri, Fernando Farfan, Lujun Fang, Arnab Nandi, Li Qian, Anna

Shaverdian, Manish Singh, Glenn Tarcea, and Jing Zhang, I thank you for being

there when the deadlines were looming and when cakes were cut.

My friends at Michigan and all over the world, you are a source of inspiration

and delight. I want to give special thanks to Joseph Xu, my great friend and the

best roommate, for being there in the past five years. Xu Chen, Xin Hu, Xiaolin

Shi, Feifei Wang, Ying Zhang have also been wonderful friends to me. Younger

generation, including Junxian Huang, Feng Qian, Zhaoguang Wang, Yudong Gao,

Fangjian Jin, Caoxie Zhang, Xinyu Zhang, Xiaoen Ju, Yunjing Xu, and Jie Yu, it

has been wonderful to be with you at Michigan. Outside of Michigan, I want to

thank my friends Edward Au and Jing Yan for always believing in and supporting

me.

I also want to thank my friends in the database community. It is impossible to

list all the names so I will not attempt to do so. Thank you for being both kind

and inspirational all these years. I look forward to continue the interaction and

collaboration with you.

Last but not least, I want to thank my parents and my brother, to whom I have

owned too much. I thank you for your unconditional love and support all these

years. You are the best family one could hope for.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTER

I. INTRODUCTION . 1
1.1 Motivation . 2
1.2 Contributions . 4

II. QUERY SPECIFICATION: A SPREADSHEET ALGEBRA
FOR A DIRECT MANIPULATION QUERY INTERFACE 7

2.1 Introduction . 7
2.1.1 Motivation . 7
2.1.2 Conceptual Challenges 8
2.1.3 Contributions . 10

2.2 The Spreadsheet Data Model 12
2.2.1 Intuition . 12
2.2.2 Definition of the Spreadsheet Model 15

2.3 The Spreadsheet Algebra . 16
2.3.1 Basic Data Organization Operators 16
2.3.2 Basic Data Manipulation Operators 18
2.3.3 Additional Housekeeping Operators 23

2.4 Properties of the Spreadsheet Algebra 23
2.4.1 Expressive Power 24
2.4.2 Commutativity . 24

2.5 Query Modification . 26
2.5.1 Query State . 27
2.5.2 Query Specification 28

2.6 Interface Design . 30
2.6.1 Design of Operators 31

2.7 Evaluation . 33

v

2.7.1 User Study . 34
2.8 Related Work . 38
2.9 Conclusion . 40

III. RESULT REVIEW: GENERATING REPRESENTATIVES
THROUGH MUSIQLENS . 41

3.1 Introduction . 41
3.1.1 Motivation . 41
3.1.2 Challenges . 44
3.1.3 Contributions . 45

3.2 What is a Good Set of Representatives 46
3.2.1 Candidate Representative Choices 47
3.2.2 Data . 48
3.2.3 User Study . 49

3.3 Cover-tree Based Clustering Algorithm 53
3.3.1 Cover-tree . 53
3.3.2 Using the Cover Tree 55
3.3.3 Average-medoids Computation 57

3.4 Query Refinement . 61
3.4.1 Zoom-in on Representative 61
3.4.2 Selection . 62
3.4.3 Projection . 64

3.5 Implementation and Experiments 65
3.5.1 System Architecture 65
3.5.2 Experimental Results 66
3.5.3 Fast Representative Choice 71

3.6 Related Work . 73
3.7 Conclusion . 75

IV. QUERY REFINEMENT: A PROVENANCE-BASED FRAME-
WORK . 77

4.1 Introduction . 77
4.2 Related Work . 80
4.3 Preliminaries . 82

4.3.1 Extensions to SQL 84
4.3.2 Example Rules . 86
4.3.3 Canonical Rule Representation 88

4.4 Overall Framework . 89
4.5 Generating High-Level Changes 92

4.5.1 Computing Provenance 93
4.5.2 Generating High-level Changes 95

4.6 Generating Low-Level Changes 96
4.6.1 Producing Low-Level Changes 97
4.6.2 Specific Classes of Low-Level Change 99

4.7 Experiments . 101
4.7.1 Extraction Tasks and Rule Sets 102
4.7.2 Evaluation Settings 102

vi

4.7.3 Quality Evaluation 104
4.7.4 Performance Evaluation 107

4.8 Conclusions . 108
V. ASSISTED QUERYING BY BROWSING 109

5.1 Introduction . 109
5.1.1 Motivation . 109
5.1.2 Challenges . 112
5.1.3 Contributions . 112

5.2 Related Work . 113
5.3 Algorithms . 114

5.3.1 Addressing Structural Uncertainty 114
5.3.2 Query Suggestion Based on Tuple Preference 115
5.3.3 Serving Tuples for Labeling 120
5.3.4 Generating the Initial Set of Queries 121
5.3.5 Dealing with Cold Items 122

5.4 Scalability . 123
5.5 Experiments . 124

5.5.1 Experimental Settings 124
5.5.2 Results . 126

5.6 Conclusion . 126
VI. CONCLUSIONS AND FUTURE WORK 127

BIBLIOGRAPHY . 130

vii

LIST OF FIGURES

Figure

2.1 Aggregation under Grouping . 33
2.2 Compare Price with Avg Price . 33
2.3 Speed Result . 36
2.4 Standard Deviation of Speeds . 36
2.5 Correctness Result . 37

3.1 MusiqLens Example . 44
3.2 After Zooming on First Tuple . 44
3.3 Samples Generated Using Different Methods. Light points are actual

data, and dark points are generated samples. 51
3.4 Average Distance Results for the Seven Methods 52
3.5 Cover Tree Example . 55
3.6 Distance Cost Estimation . 57
3.7 Effect of Selection on a Node . 63
3.8 MusiqLens System Architecture . 66
3.9 Synthetic Dataset of Various Sizes 68
3.10 Synthetic Dataset of Various k Values 69
3.11 Results for Real Dataset . 69
3.12 Time for Selection . 70
3.13 Selection Performance . 71
3.14 Projection Performance on Single Dimension 72
3.15 Cover Tree Building Time on Synthetic Data Sets 72

4.1 An example information extraction rule, in English. 78
4.2 Example extraction program, input document D, and view instances

created by the extraction program on D. 83
4.3 The rule from Figure 4.1, expressed in three different information

extraction rule languages . 84
4.4 Text-specific predicate, scalar, and table functions that we add to

SQL for expressing the rules in this chapter. 86
4.5 Canonical representation of rules in Figure 4.2. 88
4.6 Provenance of tuple t12 from Figure 4.2. 93
4.7 Algorithm for computing high-level changes. 96
4.8 Result Quality After Each Iteration of Refinement 105

viii

5.1 Example Interface . 111
5.2 Differentiating Power Example on Price and Size Attribute of Real

Estate . 117

ix

LIST OF TABLES

Table

2.1 Sample Used Car Database . 9
2.2 Car Database After Grouping by Condition 17
2.3 Car Database – Average Price by Model and Year 22
2.4 Results before Query Modification 29
2.5 Results after Query Modification . 30
2.6 Subjective Results . 38

3.1 p-value of Mann-Whitney Test . 50

4.1 Expert refinements and their ranks in the list of generated refinements
after iterations 1 and 2 (I1, I2). 106

5.1 DP of Tuples With Respect to Queries 118
5.2 Absolute Measurement of User Effort 126

x

CHAPTER I

INTRODUCTION

Databases are tremendously powerful, but their poor usability has been well-

documented [50]. From an information-seeker’s perspective, database systems today

pose insurmountable barriers for use by non-experts. Current database interfaces

usually consist of a structured query language input and a tabular list of output

tuples. How does this type of interface perform in information seeking? A standard

model [95] for information seeking contains four stages: query formulation, action

(running the query), review of results, and query refinement. A database user is

required to learn a programming language in order to formulate a query; when there

are a large number of results, which happens frequently with today’s overload of

information, it is difficult for user to make sense of the output when reviewing the

results; when the user finds some undesirable output, she is offered little help to

refine the query. Through out the information seeking process, today’s database

user interface provides help to users much less than desired. This also explains why

database software remains largely unused by average computer users.

While the database community has always focused on functionality and

performance and thus left a gap between database and users, our neighbors in the

human computer interaction (HCI) community have developed one of the most

popular and user-friendly paradigm – Direct Manipulation [93, 94, 92]. Examples

of a Direct Manipulation interface include the tremendously popular Microsoft

Powerpoint and Adobe Photoshop, where users manipulate objects of interest

1

through mouse-clicks and see what they get immediately. Direct Manipulation has

three principles:

1. Continuous representation of the object of interest.

2. Physical actions or labeled button presses instead of complex syntax.

3. Rapid incremental reversible operations whose impact on the object of interest

is immediately visible.

The success of Direct Manipulation inspired us to bring this paradigm to database

querying. We seek to apply Direct Manipulation principles in each stage of the

information seeking process, which is the central goal of the thesis.

The rest of the chapter is organized as follows. In Sec. 1.1 we further motivate the

thesis by examining the pain points in the information seeking process. In Sec. 1.2

we briefly present our solutions and contributions that relieve users from those pain

points.

1.1 Motivation

We now examine the stages of information seeking and evaluate possible places

to improve. Recall the four stages of information seeking [95]: query formulation,

query execution, review of results, and query refinement. Query execution rarely

involves user action, unless the query is a long-running one. While long-running

queries are very important for industrial tasks, average users are more likely to issue

short-running queries where results are obtained in a matter of seconds. Thus we

focus on the remaining three steps of the process.

• Query formulation. Currently users are required to write a SQL query. This

contradicts the second principle of Direct Manipulation, which dictates that

users use physical actions rather than complex syntax. User inputs a query

2

to the database system, and hoping that the query is correct. Note that user

has to write a query before seeing the actual data – the most the user can see

is the schema of the database being queried. This is against the first principle

of Direct Manipulation. Ideally, users will have some data to see even before

a query is issued. If a query is complex, the user has to make sure that it is

correct by repeatedly debugging – submitting it to the database and observe

the output for both syntactical errors and undesirable data output. This is

against the third principle of Direct Manipulation. It would be much easier for

users to build a complex query with small manageable incremental steps. It is

even more desirable to be able to reverse course if an error has occurred.

• Review of results. Users can review results either after the query is specified

or after their intermediate steps, if the query is complex. The latter does not

yet exist for current database systems. They typically display results either

in the order they are produced or sorted by attributes specified by the user,

either in the SQL query or through a graphical user interface. When the query

is not selective enough, frequently there are a large number of results returned

(can easily be thousands of tuples). A computer screen can typically display

fewer than one hundred rows of results. Users have to manually flip through

multiple sheets of results. For users to make sense of what is actually in the

result set is a daunting task.

• Query refinement. If users find desirable and undesirable results in the output,

and they want to refine the query such that undesirable output tuples are

removed while desirable tuples are kept, they have to manually re-write the

query. This manual process can be tedious and frustrating, especially when the

query is long. When a query involves multiple steps, it is difficult to identify

which step should be adjusted just from the output. Users need more help and

3

automation in this difficult task.

1.2 Contributions

In this thesis, we make the following contributions.

For the query formulation stage, our contribution is a spreadsheet algebra

upon which a direct manipulation interface can be built upon [67]. We develop a

spreadsheet algebra that is powerful (capable of expressing at least all single-block

SQL queries) and can be intuitively implemented in a spreadsheet. Based on the

algebra, we build a spreadsheet interface where users i) always see the data she is

querying, ii) query a database using mouse-clicks, and iii) build a complex query

through small steps and receive feedback for each step. User study shows that this

interface is more usable than a popular graphical query builder. This contribution

brings direct manipulation to the query specification process.

Our second contribution brings direct manipulation to the query result review

stage [68, 69]. When a query has many results, the user can only be shown one

page of results at a time. One popular approach is to rank results such that the

“best” results appear first. However, standard database query results comprise a

set of tuples, with no associated ranking. An alternative approach to the first page

is to help users learn what is available in the whole result set and direct them to

finding what they need. In this chapter, we demonstrate through a user study that

a page comprising one representative from each of k clusters (generated through

a k -medoid clustering) is superior to multiple alternative candidate methods for

generating representatives of a data set. After seeing some results, users often refine

query specifications based on returned results by manipulating the representatives.

We propose a tree-based method for efficiently generating the representatives,

and smoothly adapting them with query refinement. Experiments show that our

algorithms outperform the state-of-the-art in both result quality and efficiency.

4

Our third contribution brings direct manipulation to the query refinement stage

through a provenance-based automatic query refinement framework. It is terribly

difficult to specify a perfect query at once without running it on the actual data.

Often a query can be built incrementally through many intermediate steps or views.

Users observe the output tuples and make necessary modifications to the query

and hope the result will be correct. So far this has been a tedious manual process.

We propose a new framework for automatic query modification based on result

provenance. Users interact with the system through simple mouse-clicks: drag

unwanted results into recycle bin and click on desirable results to indicate they like

them. Our framework takes all labeled results, trace their provenance, and identify

spots in the query where modification can be made to remove unwanted results while

preserving as many as possible desired results. We suggest a ranked list of exact

modifications that can be made, where ranking is based on performance in precision

and recall. This part of the work was collaborated with IBM Research and it was

conducted in the context of rule-based information extraction, but the theory and

principles we used and developed also apply to refining database queries.

Our fourth contribution is to provide assistance to user querying through useful

query suggestions. This part of the work takes into account all three stages of

information seeking. Users often do not start querying with a precise picture of

what she wants and what is available in the data. They often search while browsing.

To take advantage of this scenario, we propose an interaction paradigm where users

query a database through browsing sample tuples. She labels the tuples as desirable

or not, and we take such labels to refine our suggestions. Our approach is based on

data mining techniques applied to query logs, data, and schema of a database. This

work completely relieves the user from writing SQL.

The rest of the thesis is organized as follows. We present the spreadsheet algebra

in Chapter II, which is followed by query result review through representatives in

5

Chapter III. In Chapter IV we discuss the query refinement work (in progress), and

we present assisted querying by browsing in V. We conclude the thesis with future

work in Chapter VI.

6

CHAPTER II

QUERY SPECIFICATION: A SPREADSHEET

ALGEBRA FOR A DIRECT MANIPULATION

QUERY INTERFACE

2.1 Introduction

2.1.1 Motivation

Non-technical users find it challenging to specify queries against structured

databases. This is true even with visual query builders, which provide a largely

“point-and-click” means to develop query specifications. One possible reason for this

is the separation of query specification from result presentation in most databases

available today. The theory is that humans are good at manipulating things that

they can “touch”, but it requires substantially greater technical sophistication to be

able to abstract the specification into a query that must be fully specified separate

from the data being operated on before it can be executed.

To address this need, the term direct manipulation was coined by Shneiderman

[93, 94, 92] to refer to systems that support: i) continuous representation of the

object of interest, ii) physical actions or labeled button presses instead of complex

syntax, and iii) rapid incremental reversible operations whose impact on the object

of interest is immediately visible.

In the text editing context, systems with similar properties have been called

WYSIWYG (What You See Is What You Get). In the database context, with a

direct manipulation interface the user always has on hand some data set, currently

7

being analyzed or manipulated. A chunk of the data set is visible on the screen –

all of it is not likely to fit, except for the smallest data sets. Initially, the current

data set may be source data – say a relation in a database. After each manipulation

is performed, the user has intermediate result data available. Eventually, the final

results become available to the user. Modifications to the data set at hand are

performed by “directly” specifying operators to be applied to it. To meet the second

and third desiderata above, each such user-specified manipulation must be fairly

simple, and the result of applying it reflected immediately by updating the current

data set.

Spreadsheets (for example, Microsoft Excel and OpenOffice Calc) are popular

means for analyzing data through direct manipulation. They are frequently used to

analyze data extracted from database systems, particularly in the context of decision

support. However, spreadsheets are not designed for querying databases (although

it is possible to use them to load data from a database). Our objective is to create a

spreadsheet-like interface to directly query and access relational databases through

direct manipulation. To accomplish this we need to overcome several challenges,

which we describe next, beginning with an example.

2.1.2 Conceptual Challenges

Sam, a new graduate student at the University of Michigan, is looking for a sedan in

a used car database, which maintains common attributes of cars (e.g., year, model,

mileage, price, condition). Some sample records are shown in Table 2.1.

Query Division Challenge Sam is interested in late model cars (2005 or later)

in good or excellent condition, and he would like the results grouped by Model and

ordered by Price. This is a simple query to specify in SQL. But, on a spreadsheet,

just by pointing and clicking, there is no straightforward way to state all these

requirements at once. Instead, Sam has to break down his need into parts, and

8

Table 2.1: Sample Used Car Database
ID Model Price Year Mileage Condition

304 Jetta $14,500 2005 76,000 Good
872 Jetta $15,000 2005 50,000 Excellent
901 Jetta $16,000 2005 40,000 Excellent
423 Jetta $17,000 2006 42,000 Good
723 Jetta $17,500 2006 39,000 Excellent
725 Jetta $18,000 2006 30,000 Excellent
132 Civic $13,500 2005 86,000 Good
879 Civic $15,000 2006 68,000 Good
322 Civic $16,000 2006 73,000 Good

specify one part at a time (e.g. “select late model cars”). Upon asking for this, Sam

will immediately see all late model cars, irrespective of condition, and not grouped

and ordered as he would like, since these requests have not yet been made. This

division of a single query into pieces is not in itself challenging, but it is the root of

other difficulties we discuss below.

Grouping Challenge Whenever data is displayed, issues of ordering and

grouping must be considered. In relational systems, grouping is “hidden” in that it is

paired with aggregation, and ordering is frequently outside the main algebraic query

specification, treated as a post-operation for display purposes. Due to query division,

we have to worry even about “intermediate results” in the case of a spreadsheet.

Since these are shown to the user, we have to be concerned with ordering and

grouping even for the results of each intermediate operation. This takes us from

the realm of sets (or multi-sets) in the case of relational systems to collections that

support grouping and ordering.

Aggregation Challenge Aggregate computation is a common operation

invoked during data analysis. However, computation of a relational aggregate query

results in the definition of a new relation which is typically not union compatible

with the original relation, making it hard to store the data and its aggregates all on

a single “spreadsheet.” For example, suppose Sam wants to see cars whose price

is lower than the average for that Model and Year. It is not immediately obvious

9

how to accomplish this through direct manipulation starting from a display similar

to Table 2.1. (A SQL query to accomplish this would involve nesting, and a join

between two copies of the base table).

Query Modification Challenge In interactive data analysis, users may often

find the need to make small modifications to previously issued queries. For example,

upon finding too many results in model“Jetta” in year 2005 and price less than

$18k (and meeting many other conditions he specified), Sam may feel optimistic

and desire to change the year to 2006. In a direct manipulation interface, complex

queries are developed one operator at a time, and a complete query expression is

never explicitly articulated. We would like to provide the user with a facility that

is the equivalent of making a small modification to a large query expression and

re-submitting it for evaluation.

Operator Ordering Challenge A complex query specification may involve

the specification of a sequence of multiple operators. A non-technical user may find

it strange if applying the same operators in a different sequence produces different

results, particularly since there is no query expression showing explicit operator

ordering or parentheses. For example, suppose Sam first computed the average

price of all cars of each model, and then realizes he is only interested in cars in

2005, he should be able to just specify that condition and the average price should

correct itself immediately. In effect, it should be the same as if the two operations

were specified with the selection first and the average afterward. If such automatic

recomputation is not feasible, there should at least be a suitable notice given to the

user so that unintended wrong results are not quietly computed.

2.1.3 Contributions

The first contribution of this chapter is the development of a spreadsheet algebra

introduced in Sec. 2.3. We developed precise semantics of a spreadsheet model

10

and all algebraic operators that manipulate data in the spreadsheet. The unit of

manipulation in the algebra is a recursively grouped ordered multi-set of tuples

to address the grouping challenge. Operators in this algebra have been carefully

designed so that all unary data manipulation operators commute to address the

operator ordering challenge.

Spreadsheets support aggregate computation, and permit storage of aggregates

in cells with “computed attributes” – the value of such a cell is defined by means of

an expression in terms of the values of the cells being aggregated. This is a notion

that spreadsheet users are used to and can be expected to exploit readily. Exploiting

this notion, aggregation is defined not as an operator directly, but as the creation of

a corresponding computed attribute. This addresses the aggregation challenge.

All single block SQL queries with selection, projection, join, grouping,

aggregation, group selection (the HAVING clause), and ordering, can be expressed in

this spreadsheet algebra. These, and other (e.g., operator commutativity), properties

of the spreadsheet algebra are explored in Sec. 2.4.

The query modification challenge is addressed in Sec 2.5 through a novel proposal

for re-writing query history by exploiting the query state retained in the spreadsheet

interface, and exploiting spreadsheet algebra properties discussed in Sec. 2.4.

The third contribution of this chapter is a spreadsheet interface to an RDBMS

that implements the spreadsheet algebra. The core of this interface is the design of

specific implementations for spreadsheet algebra operators. The design is presented

in Sec. 2.6.

Our final major contribution is an empirical assessment of the spreadsheet

interface. We built a prototype, SheetMusiq, with ideas in this chapter. Experiments

with human subjects not familiar with SQL show that our implementation is easier

to work with than a representative popular visual query builder. Specifically, for

a wide assortment of queries given to them in English, users were able to express

11

the query and obtain results faster with the spreadsheet presentation than with the

visual query builder. Details are given in Sec. 2.7.

The rest of the chapter is organized as follows. We first define the spreadsheet

model in Sec. 2.2, and then present the spreadsheet algebra for this model in Sec.

2.3. In Sec. 2.4, we study the expressive power of the algebra and the commutativity

among unary operators, which lays a solid foundation for query modification in Sec.

2.5. We then present a design (Sec. 2.6) and user evaluation (Sec. 2.7) of user

interface built upon the algebra, before concluding the chapter with related work.

2.2 The Spreadsheet Data Model

A data model (as defined in [104]) contains a notation for describing data, and a set

of operations used to manipulate that data. For example, in relational data model,

we have “relation” and relational algebra operators. We seek to define the notation

and structure of the data model in this section, and will consider specific operators

in Sec. 2.3.

2.2.1 Intuition

The fact that the spreadsheet is used to present data to users for manipulation poses

unique requirements not met by the relational data model. Key amongst these is

that the data must be grouped and/or ordered after every operator. Furthermore,

the user should not have to re-specify the grouping and ordering with each small

operation performed. As such, grouping and ordering must be retained through

operators, to the extent possible. For example, a selection condition applied to the

data should not change its grouping or ordering.

The basic unit of the spreadsheet algebra is a spreadsheet. Unlike a relation,

which is an unordered set of tuples, a spreadsheet must support both grouping and

ordering. A spreadsheet that has no grouping (or ordering) specified is said to be

12

grouped (resp. ordered) by NULL.

Grouping is not in textbook relational algebra [83]. In SQL, it is always

associated with aggregation. The aggregation and grouping operator, if treated as a

single algebraic operator, is quite heavy weight. It can involve a GROUP BY clause,

a HAVING clause, multiple aggregate functions, and constraints between the list of

attributes in the SELECT clause and the GROUP BY clause. A single operator

that does all this is not within the spirit of direct manipulation. Rather, we seek to

define a separate operator for each logical component of this mega-operator – one

for grouping, one for each aggregate, and one for each group selection predicate (in

the HAVING clause). But this new grouping operator is not closed over relations

(grouping is lost in a set), which creates a problem.

In relational algebra with grouping and aggregation, closure is achieved by

insisting that attributes not in the grouping list be projected out (after aggregation

and group qualification have been performed, if specified), leaving precisely one tuple

in place of each group. In the spreadsheet model, we achieve closure by defining

the algebra not over relations restricted to sets of tuples but over spreadsheets

that are recursively grouped set of tuples. Simply put, a recursively grouped set

of tuples is a set of tuples with grouping information. If no grouping is initially

specified, the spreadsheet is grouped by NULL. When grouping contains multiple

levels (e.g., group the cars first by Model, then by Year), a recursive grouping is

formed. Each level of group is a relational group. We number the levels of group

from the outermost – the root (first) is the spreadsheet itself, cars of the same Model

form the second level, and the highest (or finest) level groups are cars with same

Model and Year. The basis of a level of grouping is the set of attributes whose values

are the same for all tuples inside any group at this level but not in the parent level.

Following the example, we say the “basis” for each level of grouping, from outermost,

are {NULL}, {Model}, and {Model, Year}. We will often find it convenient to speak

13

of the relative grouping basis as the difference between the basis for one level of

grouping and level below it. Thus, the innermost level has a relative grouping basis

of Year.

Order can be specified inside each level of group. In the finest level of group,

tuples can be ordered by any attribute that is not in any grouping basis. For

example, we can order cars with the same Model and Year by Price. For other level

of groups, the ordering attribute is already specified by the grouping, and thus only

“descending” or “ascending” is allowed. Specifically, the ordering attributes are

those in the grouping basis of the immediate higher level but not this level. For

example, for the second level groups (cars with the same Model but different year),

cars are automatically grouped by Year.

Note that any recursive grouping can be emulated by a single ordering

specification in that all tuples can be placed in the same order. To accomplish this,

specify order by the lowest level group first, then the next level group, and so on,

until finally the order within the highest group, with each order being the same as

in the recursive grouping to be emulated. Mere ordering does not provide group

identification, though, and leaves all tuples in a single set rather than in a set of (set

of...) sets. We would then be unable to specify operators that compute any function

of groups.

Whereas a spreadsheet could be used to represent data stored with various

organizations, relational databases are prevalent today, and so using a spreadsheet to

represent a relation is the natural thing to do. In this chapter, we restrict ourselves to

the use of spreadsheets to represent relational data. Specifically, a single spreadsheet

is used to represent a single relation. Each column in the relation corresponds to a

column in the spreadsheet. In addition, the spreadsheet may have some computed

columns. (We will describe the use and importance of these computed columns in

Sec. 2.3).

14

2.2.2 Definition of the Spreadsheet Model

Based on previous discussion, we now formally define the spreadsheet data model.

Throughout the chapter, we use subscripted lowercase letters to denote elements in

sets or lists represented by their corresponding capital form. Superscript denotes the

version of an object. For example, g0
i denotes the i-th element in G0 (1 ≤ i ≤ |G0|).

If G0 is changed, we create a new version, G1, and its elements are now denoted as

g1
i .

Definition 1 (Spreadsheet). A spreadsheet S is a multi-set of tuples specified by
a quadruple (R,C,G,O), where

1. R is a reference to the relation it represents, known as the base relation of S.

2. C is a superset of columns in R,

3. G is a list for grouping specification. Element gi is a set of attributes that
forms the basis of the i-th level of grouping (i starts from 1). g1 = {NULL}.

4. O is a list for order specification, where oi is for group level i. For 1 ≤ i < |O|,
oi takes a value of either “ASC” or “DESC”, and ordering attributes are those
in gi+1 but not in gi. For i = |O|, oi contains two ordered lists: attributes and
orders (“ASC” or “DESC”). Elements in the same position of the two lists
form an ordering, and attributes may contain any attribute not in G.

A spreadsheet presents only its base relation R, and multiple spreadsheets can

present the same relation. Given R, it is straightforward to construct an initial

spreadsheet by directly inheriting the columns, and leaving grouping and ordering to

be empty.

Definition 2 (Base Spreadsheet). For relation R, its base spreadsheet is
S0(R,C0, G0, O0), where C0 is the set of columns in R, and G0 and O0 are both
empty lists.

In this chapter, tuples in R can be changed anytime, and the spreadsheet always

retrieves the latest data. However, we require that the columns of the base relation

R remain unchanged in the life–time of a spreadsheet S, which starts from the

creation of S0 to the destruction of the latest version of S. If R does change, we

create a new base spreadsheet.

15

2.3 The Spreadsheet Algebra

In this section, we present operators on spreadsheets and define their semantics.

2.3.1 Basic Data Organization Operators

Ordering and grouping are crucial operators in a spreadsheet even though they do

not change the actual “content”. We begin by studying these data organization

operators first.

Grouping (τ). The grouping operator τ takes as parameters grouping-basis (a

set of attributes) and order (“DESC” or “ASC”). It groups tuples with equal values

in all elements of the grouping-basis and order the groups in the order specified.

A new level of grouping is created when and only when grouping-basis contains a

superset of attributes of any existing grouping basis. Tuples in previously finest level

of groups are further grouped according to attributes newly specified. Those new

groups (not the tuples in each group) are ordered according to order. Denote as

L the ordering attributes at the finest level before applying τ . Tuples inside each

new group are grouped by a new ordered list oL, which contains all elements that

are in L but not in grouping-basis. We use the subtraction sign to denote this “list

subtraction” operation: oL = L − grouping-basis. Note that L is unchanged after

the subtraction.

We now give the formal definition for grouping. We assume we start from version

j of a spreadsheet – Sj(Rj, Cj, Gj, Oj). As in Section 2.2, we use subscripted

lowercase letter to denote elements in a set or list represented by its corresponding

capital form (e.g., oj1 means the first element in Oj). Following standard convention,

we use oj1.attributes and oj1.orders to access the components of ordering specification

oj1.

Definition 3 (Grouping). τgrouping-basis,order(S
j(Rj, Cj, Gj, Oj)) = Sj+1(Rj, Cj, Gj+1, Oj+1),

where

1. gj+1
i = gji for 1 ≤ i ≤ |Gj|, and gj+1

i = grouping-basis for i = |Gj|+ 1;

16

Table 2.2: Car Database After Grouping by Condition
ID Model Price Year Mileage Condition

872 Jetta $15,000 2005 50,000 Excellent
901 Jetta $16,000 2005 40,000 Excellent
304 Jetta $14,500 2005 76,000 Good
723 Jetta $17,500 2006 39,000 Excellent
725 Jetta $18,000 2006 30,000 Excellent
423 Jetta $17,000 2006 42,000 Good
132 Civic $13,500 2005 86,000 Good
879 Civic $15,000 2006 68,000 Good
322 Civic $16,000 2006 73,000 Good

2. oj+1
i = oji for 1 ≤ i ≤ |Oj|; for i = |Oj| + 1, oj+1

i .attributes = oji .attributes −
grouping-basis, and oj+1

i .orders is the corresponding sub-list of oji .orders.

Example 2.3.1. We start from spreadsheet Sj in Table 2.1, where cars are grouped
by Model (DESC) and then Year (ASC), and ordered in the finest groups by Price
(ASC). After operation τ{Y ear,Model,Condition},ASC(Sj), we create the fourth level of
grouping with relative grouping basis of Condition. The result table is shown in Table
2.2.

Ordering (λ). It takes as parameters (attribute, order, l) and orders tuples in

the l-th level groups by attribute (ASC or DESC, as specified in order). Denote

the number of grouping levels as n. As explained in Sec. 2.2, ordering attributes

in group levels other than the n-th are dictated by the grouping. If an ordering

attribute is specified in the i-th level groups (i < n), and it is different from the

current ordering attribute imposed by grouping, all groupings from level-(i+ 1) and

beyond are destroyed (and so are any computed values, such as aggregations, based

on these groupings).

While destruction of groups creates no algebraic or semantic difficulty, it can be

confusing for a user. As such, order specifications that destroy grouping is permitted

in our implementation only if there are no aggregates present on the grouping that

will be lost (the aggregates have to be projected out before such operations are

allowed).

Definition 4 (Ordering). λattribute,order,l(S
j(Rj, Cj, Gj, Oj)) = Sj+1(Rj, Cj, Gj, Oj+1),

and

17

1. If 1 ≤ l < |Gj| and attribute /∈ (gjl+1 − g
j
l): for i < l, gj+1

i = gji , o
j+1
i = oji ; for

i = l, gj+1
i = gji , o

j+1
i = order; for i > l, gj+1

i = NULL, oj+1
i = NULL.

2. If 1 ≤ l < |Gj| and attribute ∈ (gjl+1 − g
j
l): Gj+1 = Gj, oj+1

l = order, and

oj+1
i = oji for i 6= l.

3. If l = |Gj|, then Gj+1 = Gj. And, if ∃i such that attribute ∈ gji , Oj+1 = Oj.
Let |Gj| = k. If attribute ∈ ojk.attributes, change corresponding entry in
ojk.attributes to order to obtain oj+1

k ; else, add attribute and order to the end
of respective list in ojk to obtain oj+1

k .

Example 2.3.2. We start from spreadsheet Sj in Table 2.1 as in Example 2.3.1.
If we apply λMileage,ASC,3(Sj), we further order cars by Mileage in the finest level of
groups. If we apply λMileage,ASC,2(Sj), in level-2 groups, we destroy the grouping at
level 3 (relative grouping basis of Year).

2.3.2 Basic Data Manipulation Operators

A desirable property of a query language is relational completeness [15, 83], meaning

it can express all queries expressible with relational algebra. Among all relational

operators, selection (σ), projection (π), Cartesian product (×), set union (∪), and

set difference (-) form a complete set, since any other operators can be expressed as

a sequence of operators from this set [104] (theorem 2.1). For this reason, we adopt

this complete set of relational operators as the foundation of our direct manipulation

interface. We also use the same set of abbreviations as relational algebra. For their

relational counterparts, we subscript the abbreviations with “r” (for example, ×r for

relational product). Since operators are confined within the spreadsheet model, there

are crucial differences between our operators and their relational counterparts, as we

will describe shortly. Other important operators include join, aggregation, formula

computation, and duplicate elimination. The interface design of all operators will be

presented in Section 2.6. Before detailing the operators, however, we introduce two

related concepts: stored spreadsheet and computed column.

The spreadsheet is designed such that it should be sufficient to present only one

spreadsheet to the user at any time. Not having to manipulate multiple spreadsheets

simultaneously makes the spreadsheet model more user-friendly. This does create

18

a problem for binary operators like Cartesian product, where two spreadsheets are

involved. This is where stored spreadsheet comes in. We allow a spreadsheet to be

stored and later re-loaded, regardless of the number of operations it went through.

Binary operations can now be performed between a stored spreadsheet and the

current spreadsheet (the one currently presented to the user).

Another design consideration is to provide users the power of analytical

processing in the spreadsheet. General spreadsheet applications like Microsoft Excel

are essential to modern business, partly because users can define formulas on the

spreadsheet and do calculations and analysis [108]. We define a computed column

for the result column of computing a formula over the existing spreadsheet. The

essential property of computed columns is automatic updates. Once a user has

defined such a column, the user expects it to reflect the value correctly even as the

database or spreadsheet is updated.

We now introduce formal definition for each operator.

Selection (σ). Let F be a condition that may involve:

1. Atomic predicates in the form of A OP B, where A and B can be column

names or constants (but not both being constants), with optional arithmetic

or string operators (for example, 2 × a or a + b), and OP is any comparison

operator (e.g., “>”),

2. Expressions built from connecting items in (1) with “AND”, “OR”, or “NOT”.

Definition 5 (Selection). δF (Sj(Rj, Cj, Gj, Oj)) = Sj+1(Rj+1, Cj, Gj, Oj), where
for all tuples t in Rj, t ∈ Rj+1 if and only if F applied to t is true.

Projection (π). Projection takes a single parameter, column, for the column to

be removed from the spreadsheet.

Notice the differences between π and its relational counterpart πr: 1) π only

removes one column at a time, while πr can remove multiple columns in one go; 2)

Therefore it is more natural to specify as parameter to π the column to be removed,

19

whereas the parameter to πr is the set of columns to be retained. No duplicate

elimination is performed after projection, since a spreadsheet is defined as a recursive

multi-set. Grouping and ordering is retained through projection.

Definition 6 (Projection). πcolumn(Sj(Rj, Cj, Gj, Oj))
= Sj+1(Rj, Cj+1, Gj, Oj), where Cj+1 = Cj − column.

Cartesian Product (×). It is possible to compute the Cartesian product

of the current spreadsheet Sj with a stored spreadsheet Sks (Rk
s , C

k
s , G

k
s , O

k
s) (we

use subscript s to denote “stored spreadsheet”). Sks and Sj can present different

base relations. To compute Sks × Sj, we perform relational product on Rj and

Rk
s and apply grouping and ordering of Sj on the result to maintain coherence of

presentation. This means that product is not symmetric: Sj × Sks 6= Sks × Sj even

after reordering columns, since the grouping and ordering would be different. All

computed columns are updated such that computation is based on the product.

Definition 7 (Cartesian Product). Sj(Rj, Cj, Gj, Oj)) × Sks (Rk
s , C

k
s , G

k
s , O

k
s)) =

Sj+1(Rj ×r Rk
s , C

j ∪r Ck
s , G

j, Oj).

Set operators. Like product, set union (∪) and set difference (-) operate on

two spreadsheets each time. Grouping and ordering of the current spreadsheet

Sj are used for the result. Note that union, like product, is asymmetric, because

of this notion of current spreadsheet versus the second stored spreadsheet. The

two spreadsheets must be compatible (having the same set of columns, excluding

computed attributes). No duplicate elimination is performed. The union (resp.

difference) is computed using standard multi-set semantics, so that the union of a

tuple and its duplicate are two identical tuples, and the difference {t, t} − {t} is {t}.

Also, computed attributes do not participate in set operators. Instead, computed

attribute columns in the base spreadsheet are retained, and recomputed based on

the new set membership.

Definition 8 (Set Union). Sj(Rj, Cj, Gj, Oj)) ∪ Sks (Rk
s , C

k
s , G

k
s , O

k
s)) =

Sj+1(Rj ∪r Rk
s , C

j, Gj, Oj).

20

Definition 9 (Set Difference). Sj(Rj, Cj, Gj, Oj)) −r Sks (Rk
s , C

k
s , G

k
s , O

k
s)) =

Sj+1(Rj −r Rk
s , C

j, Gj, Oj).

Join (./). Assume Sj(Rj, Cj, Gj, Oj) is the current spreadsheet, and

Sks (Rk
s , C

k
s , G

k
s , O

k
s) is a stored spreadsheet. We can join the two on any condition F

that is supported by SQL. To compute the join, we perform relational join with F

as the join condition on Rj and Rk
s and inherit grouping and ordering from Sj. The

resultant spreadsheet is used as the current spreadsheet, and all computed columns

are updated accordingly. Join can be emulated by product followed by selection.

Definition 10 (Join). Sj(Rj, Cj, Gj, Oj)) ./ Sks (Rk
s , C

k
s , G

k
s , O

k
s)) = Sj+1(Rj ./r,F

Rk
s , C

j+1, Gj, Oj), where

1. ./r,F means a relational join with condition F ,

2. Cj+1 contains all computed columns, as well as all columns in Rj ./r,F R
k
s .

Aggregation (η). Any standard aggregation operator (e.g., sum, avg) can be

computed on a selected column. The operator computes the aggregate over all

attribute values in that column within a group, at any level. Thus η takes parameters

f(function), c (column over which aggregation is computed), and l (level of groups).

Recall that a spreadsheet is always at least grouped by NULL. So if grouping has not

been applied, the aggregation is computed over all values in the column in the entire

spreadsheet. In general, grouping may have been applied, recursively. In such a

case, the aggregation is computed over a group at the specified level, not necessarily

the innermost one. In particular, aggregates may still be computed over the entire

spreadsheet, across all groups. Note that all operators apply to individual tuples

and not to intermediate groups. Thus the result of COUNT is the number of tuples

in the group being counted, and not the number of sub-groups in the group, even if

sub-groups are present.

The next question is where to store and display the result of the aggregation.

There is only one result value per aggregation group. We could store the aggregation

21

Table 2.3: Car Database – Average Price by Model and Year

ID Model Price Year Mileage Avg Price

304 Jetta $14,500 2005 76,000 $15,167

872 Jetta $15,000 2005 50,000 $15,167

901 Jetta $16,000 2005 40,000 $15,167

423 Jetta $17,000 2006 42,000 $17,500

723 Jetta $17,500 2006 39,000 $17,500

725 Jetta $18,000 2006 30,000 $17,500

132 Civic $13,500 2005 86,000 $13,500

879 Civic $15,000 2006 68,000 $15,500

322 Civic $16,000 2006 73,000 $15,500

results in a separate table and join this with the base table as needed. However, this

can be confusing for the user and makes many subsequent queries hard to specify.

Therefore, we choose to forgo normalization and store the result of aggregation in

an additional computed column (which is automatically added by the aggregation

operator) with the value in this column repeated for all rows in each aggregation

group. Table 2.3 shows an example, where an extra column “Avg Price” is computed

for cars of the same Model and Year.

Definition 11 (Aggregation). ηf,c,l(S
j(Rj, Cj, Gj, Oj)) = Sj+1(Rj, Cj ∪

{column}, Gj, Oj), where column is the aggregation result column computed from
f(c) at group level l.

Formula Computation (FC) (θ). This operator provides facility for users to

perform mathematical operations on columns and create a computed column from

the result. It takes parameter f (formula to compute). Each record in the result

column is computed from an arithmetic expression involving values in the same row

(in one or more columns). For example, from a sales table, a user wants a formula

revenue for each product, computed as “price ∗ quantity”. As a computed column,

the result column is automatically updated when underlying data is changed. This

new column can be used in the same way as any other columns in the database.

Definition 12 (FC). θf (S
j(Rj, Cj, Gj, Oj)) = Sj+1(Rj, Cj ∪ {column}, Gj, Oj),

where column is the result column computed from Rj based on the current grouping.

22

Duplicate Elimination (DE) (δ). Since the spreadsheet model operates on

multi-sets, duplicates are allowed in projection, grouping, and set union/difference.

This is similar to relational implementations, but different from pure relational

algebra. Where duplicate elimination is required, it must be invoked explicitly

through the DE operator, which removes all duplicates from the current spreadsheet,

similar to “distinct” in SQL. As a result of DE, computed columns (including

both aggregation and FC) need to be re-computed. Ordering and grouping are not

affected, since duplicates are already placed together where it matters.

Definition 13 (DE). δ(Sj(Rj, Cj, Gj, Oj)) = Sj+1(Rj+1, Cj, Gj, Oj), where
∀t ∈ Rj, t ∈ Rj+1, and ∀t1, t2 ∈ Rj+1, t1 6= t2.

2.3.3 Additional Housekeeping Operators

As introduced in Section 2.3.2, we can save the current spreadsheet anytime, and

should also be able to load a saved spreadsheet, either for reading or for operations

with the current spreadsheet. Thus we have Save, Open, and Close operators. In

addition, we supply the Renaming operator for changing the name of a column.

2.4 Properties of the Spreadsheet Algebra

The spreadsheet algebra is for building an expressive and usable direct manipulation

interface. In the first subsection below we show that the algebra can emulate core

single-block SQL queries.

While complex expressions can be developed in the spreadsheet algebra, it is

important to remember that the purpose of this algebra is to enable the manipulation

of a spreadsheet visible to the user. Operator precedence and commutativity play

an important role in this regard, as will become clear later. In the second subsection

below we deepen our understanding of these two vital properties of spreadsheet

algebra operators.

23

2.4.1 Expressive Power

We define a core SQL single-block query expression to be a statement of the form:
SELECT < projection-list > < aggregation-list >
FROM < relation-list >
WHERE < selection-predicate >
GROUP BY < grouping-list >
HAVING < group-selection-predicate >
ORDER BY < ordering-list >

with the projection-list being a subset of the grouping-list and the ordering-list a

subset of the projection-list union aggregation-list, where all lists are comprised of

column names.

Theorem 1. For every core SQL single-block query expression there exists an
equivalent expression in the spreadsheet algebra such that the result of evaluating
either expression against any set of relations is identical.

Proof. We prove the above theorem by providing a procedure for specifying a core
SQL single-block query expression (denote it as s) with our algebra.

Step 1: One at a time, obtain the Cartesian product of each relation named in
the relation-list, to obtain a single product working relation.

Step 2: Remove all join conditions from the where clause, if any; specify the
remaining where clause using the selection operator.

Step 3. We specify each item in the grouping-list from left to right, using the
grouping operator. The grouping operator takes as input a grouping column, and
the level of this new grouping. We create a new level of grouping with each item.

Step 4. Specify aggregations, which could appear in both the SELECT and
ORDER BY clause. In SQL, when there are multiple grouping levels (multiple items
in the group-list), aggregation is computed over the finest level. We specify each
aggregation using the aggregation operator accordingly.

Step 5. Specify the HAVING clause. Since we already created aggregations
columns for the HAVING clause in step 4, we can apply selection operator on
aggregation columns as required in the given group-selection-predicate.

Step 6. Specify ORDER BY clause using the ordering operator. As in step 4, the
ordering is specified over the finest level of grouping.

Step 7: Project out all columns not included in the projection-list, one at a time.
We have thus completed the specification of a core single-block SQL query.

2.4.2 Commutativity

If operator ℵi commutes with ℵj, the order of evaluation of these two operators

does not affect the result. Commutativity among the complete set of relational

24

operators has been studied in [105]. In relational algebra, under the condition that

attributes in selection predicates are retained in projection, selection commutes with

all operators. Under the same condition, projection commutes with every operator

except set difference [105]. In spreadsheet algebra, all binary operators (set union,

set difference, join, and product) involve a stored spreadsheet, and this impacts

the applicability of commutativity laws for reasons that follow. When commuting

selection with a set difference, we use the following formula [105]:

σF (E1 − E2) ≡ σF (E1)− σF (E2) (2.1)

As we can see, this requires selection to be applied to a stored spreadsheet first.

Since the other spreadsheet already occupies the data view, this can only be done in

the background. This is against our direct manipulation principle, which dictates

all changes to be seen directly by the user. A point of non-commutativity is created

whenever a binary operator (set union, difference, join, product) is applied, meaning

any operator instance after this point does not commute with instances before

that. As explained above, since these binary operators manipulate both the current

spreadsheet and a stored spreadsheet, distribution is not possible in the spreadsheet

model. There is no way to apply operators to a spreadsheet being read in prior to

its being read in for, say, a set union.

We say that a spreadsheet operator instance p precedes operator instance q

if q requires columns created by p or q removes a column that p requires. For

example, column-creating operators (e.g., aggregation) precedes selection that uses

the aggregation result column. In order for two operator instances to commute,

neither of them can precede the other.

For commutativity in spreadsheet algebra, we have the following observation:

Theorem 2. In the spreadsheet algebra, selection, projection, FC, DE, and
aggregation commute with one another, with themselves, and with grouping and
ordering, provided that all precedence relations are satisfied.

25

Proof sketch: We first verify the pair-wise commutativity for the five unary data

manipulation operators – selection, projection, aggregation, formula computation

(FC), and duplicate elimination (DE). We observed that they all commute with

each other in spreadsheet algebra. Some pairs appear surprising, for example,

aggregation and selection, which do not commute in relational algebra. They

commute in spreadsheet algebra for two reasons: 1) aggregation result is stored

as a separate column with repeated values instead of a single value, and 2) result

values are updated once underlying data is changed (for example, by selection). A

similar argument applies to DE and aggregation. We next examine whether the five

operators commute with grouping and ordering operator. Obviously grouping and

ordering do not commute with each other (for example, some ordering can destroy

grouping), but they commute with data manipulation operators. The general

reason for this is that grouping and ordering are maintained by data manipulation

operators.

2.5 Query Modification

In an interactive query environment, users often find it useful to modify their query

to obtain the desired query results. Frequently, these modifications are small, such

as changing a threshold parameter in a selection condition. Suppose the user has

performed n operations {ℵ1,ℵ2, ...ℵn} in sequence (that is, ℵi is executed earlier

than ℵj when i < j) on the data, and she intends to modify a condition specified in

the i -th operation. In the naive case, the user has to begin from scratch, and repeat

all n operations, making the desired change in the i -th operation. If the interface

provides an UNDO facility, the user may not have to start over from scratch. But

she still has to back up to the i -th operation, and re-specify everything from there

onwards.

What we would like instead is for the user to be able to specify a change only to

26

the one affected i -th operation, and have the system take care of the rest. To be

able to accomplish this, we need a notion of query state. The system keeps track of

the history of operators specified by the user. The system could undo all operations

back to the i -th and then re-do from there again. However, this is likely to take too

long. The commutativity property of spreadsheet algebra, as stated in Theorem 2,

can be used to reduce this cost substantially.

2.5.1 Query State

Instead of keeping every user action from the beginning, we keep query history until

only as far back as we expect to be able to permit rewriting efficiently, which is the

most recent point of non-commutativity. From a user perspective what this will lead

to is that queries specified on a single sheet can be changed as needed, but where

data from other sheets has been pulled in we cannot go back beyond.

For each selection or FC, we associate the predicate applied with the column(s)

referenced in the predicate. With each column, we store the associated selection/FC

predicates. This includes columns created by aggregation and FC.

For each projection, we retain a list of columns projected out.

For each aggregation, we retain, associated with the corresponding aggregate

column, a definition of the aggregate function applied, and the grouping it is applied

to.

For each grouping and ordering, we retain the corresponding grouping-list or

ordering-list.

Notice that we did not store the query state as an ordered list of manipulations,

but rather as individual operators associated with objects they affected. On account

of operator commutativity, we can generate a history that is equivalent to the actual

history of the spreadsheet.

Theorem 3. In a direct manipulation interface, modifying an operation in a
sequence of operations without point of non-commutativity through query state

27

change is the same as re-writing query history.

Proof sketch: The proof of this theorem follows commutativity properties we

established in Sec. 2.4.2. We store all operations, without ordering, in association

with either the related columns or the operations themselves, so we are able to list

all previous operations without order. Since operations in a sequence commute, in

the absence of any point of non-commutativity, the order in which they are applied

is immaterial. Hence changing any one operation from the query state has the same

effect as changing it in the complete ordered list of operations.

2.5.2 Query Specification

Having introduced query state, we now show how to modify a previously specified

query through query state. We could show the user the entire query state and let

them specify what they wish to modify. However, non-technical users may have

difficulty understanding the query state. Moreover, manipulating query state goes

against the notion of direct manipulation of data, which is our objective. Instead,

we selectively present history to the user as she attempts to redefine the invocation

parameters of an operator, in a manner that we make precise next.

When a user begins to specify a selection predicate on a column, the user is

given a list of selection predicates currently applied to that column, from the query

state. The user then has an option of replacing a previously applied predicate with

the one now being specified, or even of deleting the previously applied predicate

altogether, without specifying a new predicate at all. History is rewritten, with

the previously applied predicate removed, and replaced with the new one, if one

is specified. Of course, the user also has the option of simply specifying the new

predicate in addition to those previously specified. In this case, the new predicate is

added “now”, without rewriting history.

We can remove an existing selection predicate on any column, just as we can

28

Table 2.4: Results before Query Modification

ID Model Price Year Mileage Condition

872 Jetta $15,000 2005 50,000 Excellent

901 Jetta $16,000 2005 40,000 Excellent

304 Jetta $14,500 2005 76,000 Good

add a new one to any column. Putting these two together, we can also modify the

selection predicate on any column.

We use an “inverse” projection operator to “reinstate” a column that has been

projected out. We write this as Πī(R). Since a column is either included or excluded

in a projection, there is really no additional history to show. The semantics of the

reinstatement are to rewrite history, and make it as if the projection never took

place.

We can remove an aggregate column, provided that no operator depends on it.

If a column that serves dependencies needs to be removed, all dependent columns

must be removed first. Of course, we can always add a new aggregate column.

We can modify an existing grouping or ordering, provided that there is no

operator that depends on it. Otherwise, those that depend on the grouping or the

ordering should be removed first.

We now turn to the used car example. Suppose Sam initially started by searching

for cars in year 2005, model “Jetta”, and mileage lower than 80k. Results should

be grouped by condition and ordered in ascending order of price. After seeing the

results (as shown in Table 2.4), he discovers that his budget allows him to purchase

a newer car. Sam can now simply choose the “Year” column, and change previous

condition of “Year = 2005” to “Year = 2006”. If he prefers, he can also modify

the mileage condition in a similar fashion. All results are updated to meet the new

condition(s), and the specification of model, grouping and ordering remains effective,

as shown in Table 2.5.

29

Table 2.5: Results after Query Modification

ID Model Price Year Mileage Condition

723 Jetta $17,500 2006 39,000 Excellent

725 Jetta $18,000 2006 30,000 Excellent

423 Jetta $17,000 2006 42,000 Good

2.6 Interface Design

The reason to develop the spreadsheet algebra described above is to implement

an effective and easy-to-use spreadsheet interface to a database system. We built

a prototype named SheetMusiq to validate the ideas we presented, as part of the

Musiq (Model-driven Usable System for Information Querying) effort at the

University of Michigan [2].

SheetMusiq reflects all three principles of direct manipulation. First, users

specify queries in SheetMusiq by mouse-clicks, with minimal keyboard input (e.g.,

for inputting constants to compare with). Most query operations are accessible with

a contextual menu, which pops up when the user right-clicks a cell or column-header.

It is contextual because it shows only options that are available for the current cell

value type under current grouping and ordering. Second, SheetMusiq provides

immediate and intuitive result presentation for users to easily specify conceptually

difficult queries. It continuously presents the resultant spreadsheet after each

manipulation, helping users to better adjust the next query step. Third, all user

actions are reversible. Users can access query history (all historical manipulations)

through a “History” menu, and the complete list of operations is shown as a

numbered list, each with meaningful names. Users can do one-step or multi-step

undo/redo of data manipulation. They can also do query modification to modify

an operation in a sequence of operations, without having to repeat the effort to

re-specify unchanged operations.

30

2.6.1 Design of Operators

We first introduce user interface design for each operator, then we re-visit the

motivating problem in Section 2.1.1 using related operators.

Grouping. Grouping is accessed through a context menu. If the spreadsheet is

already grouped by other column(s), the user is asked whether to add to the existing

grouping (as the inner most level of grouping) or destroy the current grouping and

use this new one instead. However, if there are aggregation columns that depend

on the current grouping, user clicking on the latter option will trigger a reminder to

first remove columns that depend on the grouping.

Ordering. Clicking a column header sorts the table according to the column

in ascending order, and another click changes the sorting to descending order. The

header of such a column has an up/down arrow, to show ascending/descending order.

In the presence of grouping, the user is asked explicitly for the level of grouping to

which the order should be applied. If the new ordering can destroy some grouping,

the user is asked for confirmation to do so. If there are aggregates that depend on

that grouping, this operation is not allowed, and user is suggested to project out the

aggregates, if necessary.

Selection. Selection is accessed with a right-click of the mouse. If the click is on

a cell instead of a column header, the user can choose to filter the results based on

current cell value with another click, and the result is immediately shown.

Projection. We present a checkbox to the left of each column header. By default

all checkboxes are checked. Users can remove a column conveniently by unchecking

the checkbox (Figure 2.1). Columns that are projected out can be restored from a

drop down menu.

Cartesian Product and Set operators. These binary operators involve an

additional stored spreadsheet (which is saved previously by a clicking on the “Save”

button). Once an operator is called through a contextual menu, the user is presented

31

with all stored-relations listed in a pop-up menu. The result is then presented as the

current spreadsheet.

Join. Join also involves a stored spreadsheet. In addition to choosing a

spreadsheet to join with, the user is prompted to graphically choose join conditions.

Validity of join condition is checked and any invalid condition is reported to the user

immediately. The result spreadsheet is shown in the screen as the current one.

Aggregation. A user can perform an aggregation function on an attribute

by right clicking a cell and choosing “aggregation”. She is then given a choice of

aggregate function, and possibly the option to specify the grouping level on which

the aggregation should be computed (when data is grouped by some column). Result

column appears next to rightmost column.

Formula Computation. A dialog is shown, allowing the user to choose related

columns and mathematical operators. The user can optionally give a name for the

result column. Otherwise, the system automatically generates a name for it and

reminds the user of the new column. The new column is added to the right of all

existing columns.

Duplicate Elimination. DE is accessible by a single right-click, and all

duplicates are removed.

Having introduced all operators, we show how Sam could use the operators to

explore the car database. Recall that Sam likes cars of Year 2005 or later in good or

excellent condition, and the rest is open-ended. Since he cares about Model and Price

the most, he first groups the data by “Model” and “Year”, and selects “Good” and

“Excellent” condition. He also selects his Models of interest: “Jetta” and “Civic”.

Now he wants to know the average price for the Model and Year so that he does

not overpay. To accomplish that, he computes the average price using Aggregation,

where he is asked to compute average over all the cars or just cars of the same Model

and Year (show in Figure 2.1). Choosing the latter leads the spreadsheet in Table

32

Figure 2.1: Aggregation under Grouping

Figure 2.2: Compare Price with Avg Price

2.3. Now he can filter out all cars more expensive than the average, as shown in

Figure 2.2, where he chooses to compare “Price” with “AVG price”.

2.7 Evaluation

In this section we experimentally evaluate the algebra with our prototype,

SheetMusiq. The database server was PostgreSQL 8.3 (beta 2).

33

2.7.1 User Study

We now measure the usability of SheetMusiq with user studies. Since the interface is

built specifically to help people without knowledge of any database query language

(which rules out any direct SQL query interface), we want to compare SheetMusiq

with a tool that meets the same requirement and with similar expressive power.

Graphical query builders are the closest existing tools that satisfy the requirement.

We found an abundance of such packages, and they are mostly similar. We chose

Navicat for PostgreSQL [3] as a representative to compare with. All experiments

were performed on a laptop (Intel Core 2 Duo 2.16GHz CPU, 2GB of RAM, and

running Windows XP).

Methods

We recruited ten volunteers with no background in database query languages. Their

ages ranged from 24 to 30, and they all have at least a bachelor’s degree (in various

fields).

The data and queries are from the TPC-H benchmark [6]. We used the

demonstration dataset in the benchmark, which was 31MB in size. Since TPC-H

queries are quite complex, some of them contain features that SheetMusiq does not

yet support. Specifically, SheetMusiq does not support nested queries and queries

with keyword “exist” and “case”. This leaves us 10 queries out of the original 22 in

the benchmark. In addition, we predefined views for queries involving many joins so

that users always query a single table.

A brief tutorial (introduction with examples for both SheetMusiq and Navicat)

was given to each subject prior to the study. At the end of the tutorial, subjects

completed a sample query, with help available upon request from the examiner.

Each participant then completed all queries in the query set, using both SheetMusiq

and Navicat, separately. For each user, we gave her/him time to understand the

34

query definition. We started measuring time when the user decided the query was

fully understood and he/she was ready to specify the query. Since the software that

is used first has a potential disadvantage, we alternate the order of which software

was used first for the queries. In the end, each package was used first half the time.

For each subject, we measure speed (time for each task) and correctness. During

the experiment, if a user did not finish the query in 900 seconds, the task was

considered finished with wrong results, and the time was counted as 900 seconds.

Speed Results

We measure the time taken by the subjects for completing each query. Figure 2.3

shows the average time for each user to complete the 10 queries, using Navicat and

SheetMusiq, respectively. Most queries were completed significantly faster with

SheetMusiq than Navicat. Using the Mann-Whiteney test we found the speed result

is statistically significant (with p-value < 0.002) for all queries except query 5, 7,

and 10. For those three queries, the speed performance is comparable with both

packages. We think the reason is that the three query tasks are relatively simple, and

subjects can finish both in a short time. Furthermore, as shown in Figure 2.4, the

standard deviation for SheetMusiq is much smaller on most queries, demonstrating

the consistency of superior efficiency using SheetMusiq.

Correctness Results

We consider correctness of queries the subjects finished. Figure 2.5 shows the number

of users that completed the queries correctly using the two approaches. SheetMusiq

users correctly finished more queries (95 out of 100) than Navicat users (81 out of

100). If we consider each query alone, we can not establish a statistically significant

conclusion. Hence we consider the total number of correctly answered queries. Using

Fisher’s exact test we conclude that SheetMusiq is statistically better than Navicat

35

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Ti
m
e(
m
in
)

Query

Navicat SheetMusiq

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

N
um

 o
f c
or
re
ct
 A
ns
w
er
s

Query

Navicat SheetMusiq

Figure 2.3: Speed Result

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10

St
an

da
rd
 D
ev
ia
ti
on

Query

Navicat SheetMusiq

Figure 2.4: Standard Deviation of Speeds

(in leading to more correctly answered queries), with p value < 0.004.

Analysis

We now analyze why better speed and higher accuracy were observed for SheetMusiq.

Navicat, like most other graphical query builders, has two separate windows for

building a query – a graphical window where users manipulate with mouse-clicks

and a text window for SQL query expression. Usually, only queries with simple

selection, sorting, and joins can be built graphically, while the vast majority of the

36

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Ti
m
e(
m
in
)

Query

Navicat SheetMusiq

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

N
um

 o
f C

or
re
ct
 A
ns
w
er
s

Query

Navicat SheetMusiq

Figure 2.5: Correctness Result

queries need to be completed by adding to the SQL query. SheetMusiq never reveals

or requires the user to know a SQL query. This leads to several benefits, which

directly led to the superior performance of SheetMusiq. First, we found that most

users picked up SheetMusiq much faster than Navicat (also shown by results of the

first two queries). Second, users never stuck on syntactical errors in SheetMusiq,

which often happen in Navicat.

Many users had difficulties accomplishing certain tasks in Navicat but did that

effortlessly in SheetMusiq, largely because Navicat (and almost all graphical query

builders we surveyed) does not have direct manipulation support for database

concepts other than simple selection, sorting, and join and SheetMusiq does. We

now give a few examples of such tasks. First, selection based on aggregation. In

Navicat, users have to resort to a sub-query, which is a very difficult concept for

non-expert users. In SheetMusiq, this can be accomplished by an aggregation

followed by selection, both via mouse-clicks. Second, grouping is much easier in

SheetMusiq. In Navicat, users have no choice but to understand the concept and

syntax of grouping, as well as many related restrictions (e.g., aggregation). This is

very challenging for almost every participant. In SheetMusiq, users do not need to

37

Table 2.6: Subjective Results

Question Answers Count

Which package do you prefer to use?
Navicat 0
SheetMusiq 10

Seeing data helps formulate queries
Yes 10
No 0

Progressive refinement is better than Yes 8
specifying a query all at once No 2

Database concepts are easier in Yes 10
SheetMusiq No 0

know the syntax (mouse right-click is sufficient), and they understand the concept

faster with immediate visual feedback. Third, group-qualification. While many users

struggled with the “having” clause in Navicat, they found it very intuitive to filter

groups with mouse-clicks. This list could go much longer if space were permitted.

Subjective Results

Besides numerical evidence, each participant was asked for opinions on which

program they would prefer and whether certain features are desirable. Results are

presented in Table 2.6. All subjects preferred SheetMusiq over Navicat, and all

agreed that being able to see the data helps formulate a query (second question).

They also found that many concepts (e.g., group-qualification) are more intuitive

and easier to understand in SheetMusiq (fourth question). Eight of ten subjects

preferred progressive refinement of a query over specifying it all at once (third

question).

2.8 Related Work

Direct manipulation [93], although a crucial concept in the user interface field,

is seldom mentioned in database literature. Pasta-3 [62] is one of the earliest

efforts attempting a direct manipulation interface for databases, but its support of

direct manipulation is limited to allowing users to manipulate a query expression

38

with clicks and drags. Tioga-2 [16] (later developed into DataSplash [78]) is a

direct manipulation database visualization tool, and its visual query language

allows specification with a drag-and-drop interface. Its emphasis, however, is on

visualization instead of querying.

Spreadsheets have proven to be one of the most user-friendly and popular

interfaces for handling data, partially evidenced by the ubiquity of Microsoft Excel.

FOCUS [99] provides an interface for manipulating local tables. Its query operations

are quite simple (e.g., allowing only one level of grouping and being highly restrictive

on the form of query conditions). Tableau [4], which is built on VizQL [45],

specializes in interactive data visualization and is limited in querying capability.

Spreadsheets have also been used for data cleaning [84], logic programming [98],

visualization exploration [52], and photo management [56]. Witkowski et al [107]

proposed SQL extensions supporting spreadsheet-like computations in RDBMS.

In addition to desktop tools, we have seen many online database query and

management tools using spreadsheet interfaces. For example, Zoho DB [7] allows

importing, creation, querying, and visualizing databases online. Zoho DB’s querying

capability, however, is still primitive (allowing only simple filtering and sorting, with

the rest resorting to SQL). Dabble DB [1] is similar to Zoho DB, with the additional

feature of supporting grouping.

Much effort has been spent on a visual querying interface for relational databases,

starting with Query-by-Example [115]. Query-by-Diagram [25] allows users to query

by manipulating ER-diagrams. T. Catarci et al. surveyed many early interfaces

and visual query languages in [23]. [24] uses ontologies to help users with their

vocabulary in formulating queries. VisTrails [88] provides a visual interface for users

to keep track of incrementally specified workflows and to modify them incrementally.

[60] proposes a visual query language that enables users to query a database by

manipulating “schema trees”.

39

2.9 Conclusion

A spreadsheet-like “direct manipulation” query interface is desirable for non-technical

database users but challenging to build. In this chapter, we design a spreadsheet

algebra that enables the design of an interface that: i) continuously presents the

data to users, after each data manipulation, ii) divides query specification into

progressive refinement steps and uses intermediate results to help users formulate

the query, iii) provides incremental reversible data manipulation actions, iv) enables

the user to modify an operation specified many steps earlier without redoing the

steps afterwards, and v) allows the user to specify at least all single-block SQL

queries while shielding her from complex database concepts. We built a prototype,

SheetMusiq, with our algebra and evaluated it using user studies with non-technical

subjects, in comparison with a commercial graphical query builder. Results show

that the direct manipulation interface leads to easier and more accurate specification

of queries, and it is welcomed by non-technical users.

40

CHAPTER III

RESULT REVIEW: GENERATING

REPRESENTATIVES THROUGH MUSIQLENS

3.1 Introduction

3.1.1 Motivation

Database queries often return hundreds, even thousands, of tuples in the query

result. In interactive use, only a small fraction of these will fit on one display screen.

This chapter studies the problem of how best to present these results to the user.

The “Many-Answers Problem” has been well documented [27]: too many results

are returned for a query that is not very selective. This problem arises because:

i) it is very difficult for a user, without knowing the data, to specify a query that

returns enough but not excessive results; and ii) often a user starts exploring a

dataset without an exact goal, which becomes increasingly clear as she learns what is

available. Consider Example 3.1.1 below, where a user searches a used car database

for a Honda Civic.

Example 3.1.1. Ann wants to buy a car, and visits a web site for used cars. The
web site is backed by a database that we simplify for this example to have only one
table “Cars” with attributes ID, Model, Price, and Mileage. Ann specifies her
requirements through a form on the web site, resulting in the following query to the
database: Select * from Cars where Model = ‘Civic’ and Price < 15,000

and Mileage < 80,000. The query she formulates may have thousands of
results since it is on a popular model with unselective conditions. How should the
web site show these results to Ann?

A common approach to displaying many results is to batch them into “pages”.

41

The user is shown the first page, and can navigate to additional pages as desired,

and “browse” through the result set. For this process to make sense, the results must

be organized in some manner that the user understands. One popular solution is to

sort the results, say by Price or Mileage in our example. However, this sorting can

be computationally expensive for large result sets. More important, similar results

can be distributed many pages apart. For example, a car costing 8500 with 49000

miles may be very similar to another costing 8200 with 55000 miles, but there could

be many intervening cars in the sort order, say by price, that are very different in

other attributes (e.g. high mileage but recent model year, high mileage but more

features, low mileage but in an accident, and so on).

Another possibility is to order results by what the system believes is likely to

be of greatest interest to the user. Indeed, there is a stream of work [37] trying

to develop ranking mechanisms such that the “best” results appear first. Such

techniques can be successful when the system has a reasonable estimate of the user’s

preference function. However, determining this can be hard: in our example the

system has no way to tell what Ann’s tradeoff is for price versus mileage, let alone

other attributes not even mentioned.

This “Many-Answer Problem” has also attracted much attention from the

information retrieval community. The importance of the first page of results for a

search interface has been well documented [10, 53]. It has been shown that over 85%

of the users look at only the first page of results returned by a search engine. If there

is no exact answer in the first page to meet users’ information need, the first page

needs to deliver a strong message that there are interesting results in the remaining

pages.

In this chapter, we solve the “Many-Answer Problem” starting from a user’s

point of view. Psychological studies have long shown that human beings are very

capable of learning from examples and generalizing from the examples to similar

42

objects [77, 96, 91]. In a database querying context, the first screen of data can be

treated as examples of a large dataset. Since users can expect more items similar to

the examples, we should make them as representative as possible.

To accomplish the above task, we propose a framework called MusiqLens, as

part of the MUSIQ project [2] from the University of Michigan. MusiqLens is

designed to: i) automatically displays the best representatives result tuples in the

first screen of results when the result set is large, ii) at user’s request, displays more

representatives similar to a particular tuple, and iii) automatically adapt to user’s

subsequent query operations (selections and joins). This is exemplified in Fig. 3.1.

Notice that each tuple represents many cars with similar Price and Mileage. The

representatives naturally fragment the whole dataset into clusters such that cars of

various price and mileage range are shown. The representatives themselves have a

high probability of being what the users want. If they are not, they can lead to

more similar items. On the right side of each representative tuple, the number of

similar items is displayed. A hyper-link is provided for the user to browse those

items. Suppose now the user chooses to see more cars like the first one. Since they

cannot fit in one screen, MusiqLens shows representatives from the subset of cars

(Fig. 3.2). We call this operation “zooming-in”, in analogy to zooming into finer

level of details when viewing an image. After seeing the first screen of results, if

the user now has more confidence to further lower the price condition (since there

are more than 100 cars with price around $10k), she could add a condition price <

10,000. The next screen of results are generated with the same spirit. By always

showing the best representatives from the data, we enable users to quickly learn

what is available in the data without actually seeing all the tuples. We have built a

prototype of MusiqLens. See [68] for a demonstration. 1

43

ID Model Price Mileage Zoom‐in
643 Civic 14,500 35,000 311 more Cars like this
876 Civic 13,500 42,000 217 more Cars like this
321 Civic 12,100 53,000 156 more Cars like this
452 Civic 11,200 63,000 87 more Cars like this
765 Civic 10,200 71,000 65 more Cars like this
235 Civic 9,000 78,000 43 more Cars like this

Figure 3.1: MusiqLens Example

ID Model Price Mileage Zoom‐in
643 Civic 14,500 35,000 71 more Cars like this
943 Civic 14,900 25,000 63 more Cars like this
987 Civic 14,700 28,000 55 more Cars like this
121 Civic 14,300 40,000 45 more Cars like this
993 Civic 14,100 43,000 40 more Cars like this
937 Civic 13,900 47,000 37 more Cars like this

Figure 3.2: After Zooming on First Tuple

3.1.2 Challenges

Several challenges must be addressed before one can construct an effective interface

such as the one shown in Fig. 3.1. We discuss these below. Let the first page of

results be limited to k tuples. We call these tuples on the first page representatives

of the whole result set.

Representation Modeling Our first problem is to determine what it means

for a small set of points to “represent” a much larger data set. How can we choose

between two (or more) choices of possible representatives? Although it is generally

accepted that humans can learn from examples, to our knowledge there is no gold

standard for generating those examples.

A naive approach is to display results sorted by some attributes. This approach

only presents to users a very small fraction of results at the boundary of the value

1Note that MusiqLens was named DataLens in the demonstration paper.

44

domain and makes it impossible to find other tuples (for example, a car that balances

the price and mileage). Should we uniformly sample k tuples from the results?

While this can reflect the density of data distribution, it misses small clusters that

may interest the user. Should we sample the results using density biased sampling

[79] instead? We need to answer these questions and find a metric that matches

human information seeking behavior.

Representative Finding Challenge Once the representation model is decided,

we need to efficiently find representatives for the result set that are “best” in this

model. MusiqLens will impose some overhead, but the waiting time perceived by the

user should not be significant relative to the time the database server needs to finish

the query.

Query-Refinement Challenge In the application scenarios of interest to us,

such as a used car purchase or a hotel booking, users are typically exploring available

options. Queries will frequently be modified and reissued, based on results seen

so far. For example, Ann may decide to restrict her search to cars with less than

60,000 miles (instead of the 80,000 originally specified). In addition, once we show

representative data points we should permit users to ask for “more like this,” an

operation we call zooming in. See Fig. 3.2. Such operations must be fast, which

means that we can probably not afford to recompute representatives from scratch.

3.1.3 Contributions

Our first contribution is the MusiqLens framework for solving the “Many-Answers

Problem” in database search. We propose to generate best representatives from a

result set to show on the first result page. Based on the representatives, users can

obtain a global and diversified view of what is available in the data set. Users can

drill down by choosing to view more items similar to any tuple in the screen.

Our second contribution is the development of a representation model and metric.

45

Since the ultimate purpose is for users to learn about the data, we compared several

popular candidates with a user study. Results are reported in Sec. 3.2, and show that

k -medoid clustering with minimum average distance to be the technique of choice.

The third contribution is a fast algorithm to find representative data points.

Based on the cover-tree structure, we are able to generate high-quality k -medoids

clusters, for metrics of average-distance or max-distance. This algorithm is presented

in Sec. 5.3. Experiments show the distance cost and computational cost are both

superior over the state-of-the-art.

The fourth major contribution is algorithms for maintaining representative

samples under common query operations. When a query is applied, some of the

original samples may still qualify to be in the answers and some are not. How to

generate new representative samples without rebuilding the index from scratch?

We devised algorithms for handling selection and projection operators such that we

always have a valid cover tree index, and we can incrementally adjust the set of

representatives in response to query refinement. These algorithms are presented in

Sec. 3.4.

Our final contribution is a thorough experimental study of our algorithms,

compared with the state-of-the-art competitor (R-tree based algorithm), presented

in Sec. 3.5. Experiments show that: i) for generating initial representatives, we

achieve better quality results (in terms of distance metric) in shorter time, and ii)

our algorithms can adapt to selection and projection queries efficiently while R-tree

based algorithms cannot.

3.2 What is a Good Set of Representatives

Given a large data set, our problem is to find a small number of tuples that best

represent the whole data set. In this section, we evaluate various options. Note

that statistical measures, such as mean, variance, skew, moments, and a myriad

46

of more sophisticated measures, can be used to characterize data sets. While such

measures can be important in some situations, we believe they are not suitable for

lay users interested in data exploration. Even for technically sophisticated people

like members of our community, a few sample hotel choices convey a much better

subjective impression than statistical measures of price and location distributions.

As such, we only consider using selected tuples from the actual result set as a

representative set.

3.2.1 Candidate Representative Choices

We consider the following methods for choosing representatives:

1. Random selection. Generate uniformly distributed random numbers in the

range of [1, < Data Set Cardinality >] and use them as index to select cars as

samples. This is a baseline against which to compare other techniques.

2. Density biased sampling. It is argued that uniform sampling favors large

clusters in the data and may miss small clusters. We therefore use the

algorithms by Palmer and Faloutsos [79] to probabilistically under-sample

dense regions and over-sample sparse regions.

3. Select k-medoids. A medoid of a cluster of data points is the one whose

average or maximum dissimilarity is the smallest to other points. We denote

the two kinds of medoids as avg-medoid and max-medoid, respectively. Under

the most commonly used Euclidean distance metric, we select k avg-medoids

and max-medoids from the data. Note that k-means clustering is frequently

used, and is very similar. We do not consider that since the mean values

obtained may not represent actual data points, and so may mislead users.

4. Sort by attributes. Since sorting is the standard facility provided in systems

today, we consider this choice as well. We note that sorting is one attribute at

47

a time in a multi-attribute scenario.

5. Sort by typicality. Hua et al. [48] proposed to generate the most “typical”

examples. They view all data as independent identically distributed samples

of a continuous random variable, and they select data points where the

probability density function (estimated from the data) has highest values.

In the rest of the chapter we use the following abbreviations for each method:

Random (random samples) , Density (density-biased sampling), Avg-Med (avg-

medoids), Max-Med (max-medoids), Sort-<attr> (sorted by attribute <attr>), and

Typical (sorted by typicality).

3.2.2 Data

We obtained information about cars of model Honda Civic from Yahoo! Autos. For

each car, we have values for numerical attributes Mileage and Price. The site limits

the total number of results for a particular type of car to 4100 items, some of which

do not have mileage or price information and are removed. This leaves us with 3922

cars that we used in our study.

In Fig. 3.3 we show representatives generated using all above methods (note that

all data have been normalized to range [0, 1]). The whole dataset is shown in the

background of each figure. We can see visually that sorting does poorly, whether we

sort first by price or by mileage. Even sorting by typicality does poorly, giving us a

few points near the “center”, but no sense of where else there may be data points.

We also see that Avg-Medoids, Max-Medoids and Density-biased Samples all appear

to do much better than random samples. We further see that Max-Medoids seems to

choose points that delineate the boundary of the data set whereas Avg-Medoids gives

us points in the “center” of it, with density-biased samples somewhere in between.

48

3.2.3 User Study

The goal of choosing representative points is to give users a good sense of what else

to expect in the data. While each of us can form a subjective impression of which

scheme is better by looking at Fig. 3.3, we would like to verify this through a careful

user study. Towards this end, we recruited 10 subjects, and showed them the seven

sets of representative points in random order, without showing them anything else

about the data, and not telling them that these were all for the same distribution.

For each set of representatives, we sought to elicit from the users what the rest of

the data set may look like.

Eliciting information regarding an imagined distribution is very tricky. We

cannot get into the head of the user! After considering many alternatives, we settled

on asking the users to suggest a few additional points that they would expect to see

in the data set. (We required these points not to be “too close” to the representatives

provided or to one another – but all of our subjects naturally adopted this constraint

without explicit direction from us). We require that the points suggested by the

user can not be any existing point. Given a set of predicted data points, we can

measure how far these predictions are from actual data set values. For each point in

the dataset, we find the distance to the closest point in the predicted set. We call

this the prediction error distance for that data point. If the minimum prediction

error distance is small, that tells us that an individual predicted point is good, but

says nothing about the overall data set. If the maximum prediction error distance

is small, that tells us that there is no very poor prediction – the user has not been

misled about the shape of the data set. Finally, if the average prediction error

distance is small, that gives us a global metric of how well the set of predicted points

as a whole match the actual data set. We refer to these three metrics as MinDist,

MaxDist, and AvgDist, respectively. We computed values for all three, averaged

across all participants. The results of AvgDist and MaxDist are shown in Fig. 3.4

49

Table 3.1: p-value of Mann-Whitney Test
Random Avg-Med Sort-Mile Density Sort-Price Max-Med Typical

AvgDist, Avg-Med vs. <0.0001 NA <0.0001 0.0087 <0.0001 <0.0001 <0.0001
MaxDist, Max-Med vs. 0.0228 <0.0001 <0.0001 <0.0001 <0.0001 NA <0.0001
MinDist, Avg-Med vs. 0.0011 NA 0.0018 0.1922 <0.0001 0.0104 0.0446

(a), and MinDist is shown in Fig. 3.4 (b) using a different scale in the y-axis.

In Fig. 3.4 (a), avg-medoids (Avg-Med) stands out as the best based on AvgDist

measurement, while max-medoids (Max-Med) is the best in MaxDist measurement.

For MinDist measurement (Fig. 3.4 (b)), the winner is not clear. Among the two

best choices, avg-medoids has a smaller value than density-biased sampling (0.00161

vs. 0.00253). However, the values are too small to be statistically significant. We

calculated the statistical significance using Mann-Whitney test to verify the above

observation. p-values are shown in Table 3.1. The first row shows the p-values

of Avg-Med against others under the AvgDist metric, second row shows that of

Max-Med against others under MaxDist metric, and the third row shows Avg-Med

against others under MinDist metric. All values are significant, except one –

Avg-Med vs. Density under MinDist metric, meaning that the two are similar in

performance. Since Avg-Med is clearly better than Density under AvgDist metric, it

is overall more desirable. In summary, if we consider AvgDist and MinDist metric,

avg-medoids is the choice; if we consider MaxDist, max-medoids is the best.

The conclusion from the investigation described above is that k -medoid (average)

cluster centers constitute the representative set of choice. k -medoid (maximum)

cluster centers may also make sense in a few scenarios. Even though the rest of the

chapter will focus only on the former, computation of the latter is not that much

different, and the requisite small changes are not hard to work out. For the rest of

the chapter, we refer to average medoids when we use the term medoid. Formally,

for a set of objects O , k -medoids are a subset M from O with k objects, which

minimize the average distance from each point in O to the closest point in M .

50

0 5

0.6

0.7

0.8

0.9

1

Random

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

0 5

0.6

0.7

0.8

0.9

1

Density Biased

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

(a) Random Samples (b) Density-biased Samples

0 5

0.6

0.7

0.8

0.9

1

Max‐Medoids

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

Avg‐Medoids

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

(c) Max-Medoids (d) Avg-Medoids

0.5

0.6

0.7

0.8

0.9

1

Sort‐Price

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

Sort‐Mile

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

(e) Sort by Price (f) Sort by Mileage

0 5

0.6

0.7

0.8

0.9

1

Typical

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

(g) Sort by Typicality

Figure 3.3: Samples Generated Using Different Methods. Light points are actual data, and dark
points are generated samples.

51

0.6

0.8

1

1.2 AvgDist MaxDist

0

0.2

0.4 0 006
0.008
0.01

0.012
0.014
0.016

0
0.002
0.004
0.006

(a) AvgDist and MaxDist (b) MinDist

Figure 3.4: Average Distance Results for the Seven Methods

52

3.3 Cover-tree Based Clustering Algorithm

Clustering has been studied extensively. Many clever techniques have been

developed, both to cluster data sets from scratch and to cluster with the benefit of

an index. See Sec. 3.6 for a short survey. Unfortunately, none of these techniques

address the query-refinement challenge or even support incremental recomputation.

As such, we must develop a new algorithm to meet our needs.

We propose using the cover-tree [21] data structure for clustering. The properties

of cover-tree (which will be discussed shortly) make it a great structure for sampling.

This immediately reduces the problem of finding medoids from the original data set

to finding medoids in the sample. We then use statistics gathered during the tree

construction phase to help find a good set of medoids. We begin by providing some

brief background on the cover-tree in Sec. 3.3.1, followed by our novel contributions

in the subsequent sub-sections.

3.3.1 Cover-tree

Cover-tree was proposed by Beygelzimer, Kakade, and Langford in 2006 [21]. It is

so named because each level of the tree is a “cover” for the level beneath it. For

convenience in explanation, we assume that the distance between any two data

points is less than 1 (we will see later how this condition can be relaxed). Following

convention, we number the levels of the tree from 0 (root level). For level i, we

denote the value of 1/2i as D(i), which is a monotonically decreasing function of i.

The condition that distance between any two points is less than 1 can be relaxed if

we allow i to be negative integers. A cover-tree on a data set S has the following

properties for all levels i ≥ 0:

1. Each node of the tree is associated with one of the data points sj.

2. If a node is associated with data point sj, then one of its children must also be

53

associated with sj (nesting).

3. All nodes at level i are at separated by at least D(i) (separation).

4. Each node at level i is within distance D(i) to its children in level i + 1

(covering).

Fig. 3.5 shows a cover-tree of scale 2 for data points s1 to s7 in 2-dimensional

space. Nesting property is satisfied by repeating every node in each lower level after

it first appears. Covering property ensures that nodes are close enough to their

children. Separation property means that nodes at higher levels are more separated

(e.g., nodes s1, s4, s5 are far away from root node s7). Points s1 and s2 are at a larger

distance from each other than are s5 and s6. Thus s2 is a child of s1 at level 2 while

s6 is a child of s5 at level 3 (where inter-node distance is smaller). We can prove

that the distance from any descendant to a node at level i is at most 2×D(i) (using

the convergence property of D(i)). Cover-tree naturally provides a hierarchical view

of the data based on the distance among nodes, which our algorithms will exploit.

The cover-tree shown in Fig. 3.5 is a theoretical implicit tree, where every node

is shown. It is neither efficient nor necessary to repeat a node when it is the lone

child of itself in intermediate levels (for example, s7 at level 1 and 2). In practice,

we use an explicit tree, where such nodes are pruned. So every explicit node either

has a parent other than itself or or a child other than a self-child. We call the rest

of the nodes naive nodes. We use the implicit cover-tree throughout this chapter for

the ease of understanding. All algorithms in this chapter can be easily adapted to

the explicit tree.

A very important property of cover-tree is that the subtree under a node spans

to a distance of at most 2×D(i), where i is the level at which the node appears. We

call this distance the span of the node. For example, point s5 first appears in level

1. The actual span of s5, however, is best obtained when it appears again at level 2,

54

s1
s2

s4

s3

s6

s5

s7

s7

s1 s4s5s7

s7

s7

s2s1

s2s1

s4s5

s3s6s5 s4

Figure 3.5: Cover Tree Example

where it has a non-self child. In both levels, we are in fact trying to get the range

of the same subtree. The span obtained at level 2 is half of that obtained at level 1,

and it gives more accurate information about the subtree. In the rest of the chapter,

we always use span to refer to the least possible span that can be obtained for the

subtree, which is achieved by descending from the root of the subtree to the node

that has a non-self child.

The explicit cover-tree has a space cost to O(n), and it can be constructed in

O(n2) time. The tree is bounded in width (number of children of any node) and

depth. For more details regarding properties and algorithms in cover tree, we refer

the readers to the original paper [21] since they are out of the scope of this chapter.

3.3.2 Using the Cover Tree

Additional Statistics

In order to better grasp the distribution of data, we need to gather some additional

statistics of the subtree rooted at each node si:

• Density. This is the total number of data points in the subtree rooted at node

si. Note that this includes all descendants of the node. For all nodes at the

55

same level in the cover tree, a larger density indicates that the region covered

by the node is more densely populated with data points.

• Centroid. This is the average value of all data points in the subtree. Assume

that there are T points in total in the subtree. For node si, if we denote

the N-dimensional points in the subtree as
−→
X j where j = 1, 2, ..., T , then

Centroid(i) =
∑T

j=1

−→
X j

T
.

We refer to the density and centroid for the subtree under node s as DS(s) and

CT (s), respectively. The exact use of density and centroid of a node will become

apparent in later sections. Both values can be collected when the tree is being built.

As each point is inserted, we increase the density for all its ancestors. Assume the

new data point inserted is
−→
X j, then for each node i along the insertion path of the

new point, we update the density and centroid as follows:

DS(s)′ = DS(s) + 1

CT (s)′ =
CT (s)×DS(s) +

−→
X j

DS(s) + 1

Both operations can be accomplished with a minor change in the recursive

insertion algorithm of the cover tree [21].

Distance Cost Estimation of Candidate k-medoid

Using density and centroid information, we can obtain an estimate of the average

distance cost for a set of candidate k -medoids, using any level of nodes in the cover

tree, without having to read the whole data set. We illustrate using the example in

Fig. 3.6, where we have 8 nodes (s1 to s8) and two medoids (m1 and m2). Note that

each node actually represents many other data points in the subtree. Also, these 8

nodes should form a cover of the tree - they should be all the nodes in a certain level

of the cover tree. An arrow means the node is closest to the pointed medoid. The

total number of data points can be found by summing up the density of each node.

56

s1

s2

s3

s6

s8

s7
s5

s4

m1
m2

Figure 3.6: Distance Cost Estimation

Since we do not want to read all data points under a subtree, we use the centroid

maintained at the root to stand for the actual data points when calculating the

distance to the medoid. For example, to calculate the total distance from all data

points under node s1, we compute the distance from the centroid of s1 to m1, and

multiply it by its density. We do the same for all other nodes and sum up the total

distance. This value is then averaged over the total number of points, and we have

obtained an estimate of the average distance cost.

3.3.3 Average-medoids Computation

We now introduce our algorithm for k average medoid queries. We start by traversing

the cover tree from the root until we reach a level with more than k nodes. Assuming

this is at level number m, and there are t nodes in this level of the tree. Following

notations introduced earlier, we refer to the set of nodes at level m as Cm. For

convenience we call this level of the tree the working level, since we find medoids by

considering primarily nodes in this level. The separation property of the cover tree

ensures that nodes in Cm spread out properly. We can view data under each subtree

as a small cluster, whose centroid and density are maintained in the root of the

subtree. In most cases, m does not equal k. The general approach in the literature is

to group Cm into k groups first, and then find the medoid for each cluster. Usually,

k seeds are first selected among the nodes, and the rest of the nodes are assigned to

the respective closest seed. k-medoid clustering is NP-hard [40], so we usually try to

57

achieve a good local minimum in terms of distance cost from data points to their

medoids. There are two existing seeding methods:

• Random. We can randomly choose k nodes to be the seeds. This is the

simplest method with the lowest cost.

• Space-filling curves. Hilbert space-filling curve has been shown to preserve

the locality of multidimensional objects when they are mapped to linear space

[71], a property which Mouratidis et al. [74] exploited in their R-tree based

clustering technique. We can apply the same idea in the cover tree. Nodes in

Cm could be sorted by Hilbert values, and k seeds chosen evenly in the sorted

list of nodes.

Seeds that are not properly chosen may lead the algorithms to a local minimum

with high cost. In this chapter, we use information provided by the cover tree to

choose seeds in a better way than the above techniques. Level m − 1 of the cover

tree, which contains less than k nodes, provides hints for seeds because of the

clustering property of the tree. As usual, we denote nodes at level m−1 as set Cm−1.

Intuitively, nodes in Cm that share a common parent in Cm−1 form a small cluster

themselves. When we choose seeds, we should avoid choosing two seeds in one such

cluster. Since Cm−1 contains fewer than k nodes, we will not have enough seeds if

we simply choose one node from all that share a parent. As introduced in Sec. 3.3.1,

nodes in Cm−1 may have different maximum distance to their descendant. As a

heuristic, we choose more seeds from children of a node whose descendants span a

larger area. Meanwhile, nodes with a relatively small number of descendants should

have low priority in becoming a seed, since the possible contribution to the distance

cost is small. The contribution of a subtree to the distance cost is proportional to

the product of the density and span. We denote this special value as the weight of a

node. Based on this observation, we use a priority queue to choose seeds as follows.

58

The key of the priority queue is the weight of a node. Initially all non-naive nodes in

Cm−1 are pushed to the queue. We pop the head node from the queue and fetch all

its children. We first make sure the queue has k nodes by adding children of the node

with largest weight. Afterwards, if any child has a larger weight than the minimum

weight of all nodes in the queue, we push it to the queue. We repeat this process

until no more children can be pushed into the queue. The first k nodes in the queue

are our seeds. This procedure, CoverTreeSeeding(), is shown in Algorithm 1.

Once the seeds are chosen, the rest of the nodes are assigned to their respective

closest seed to form k initial clusters. We can obtain the centroids of each cluster by

computing the geometric center of all nodes from their density and centroid. Using

each centroid as input, we can find the corresponding medoid with a nearest neighbor

query, which is efficiently supported by the cover tree. For each final medoid o, we

call nodes in the working level that are closest to o as its CloseSet. In the future, if

the user adds a selection condition and removes a large portion of the CloseSet, the

corresponding medoid may have to be eliminated. More details on how the nodes in

the CloseSet affects the existence of the medoid are in Sec. 3.4.2.

Optionally, we can try to improve the clusters before computing the final

medoids. In the literature [72, 65], usually a repeated updating process is carried

out: the centroid of each cluster is updated; nodes are re-assigned to the updated

centroids. This process repeats until stable centroids are found. In this process, we

can take into account the weight of each node, similar to [65]. This procedure is

outline in Algorithm 2. As another refinement step, we can use cover-tree directed

swaps. Literature [76] suggests that we can swap a medoid with other nodes and

see if this leads to a lower cost. Usually it is the step that computes the cost that is

expensive. We have at our disposal a formula that can estimate the distance cost, as

described in Sec. 3.3.2. Instead of swapping with a random node, we can swap with

nodes that was assigned to the closest neighbor medoid. Both measures significantly

59

Algorithm 1 Cover Tree-based Seeding Algorithm

Input: S : list of nodes in level m of the cover tree
Input: T : list of nodes in level m-1 of the cover tree
Input: k : number of medoids to compute
Input: Q : priority queue for nodes with key being the weight of a node
Output: O : list of seeds
minWeight = 0 {maintains the minimum weight of all nodes in Q}
for node t in T do

if t is a naive node or leaf node then
T = T − t

else
Insert(Q, t)
if weight(t) < minWeight then
minWeight = weight(t)

end if
end if

end for
repeat
n = ExtractMax(Q)
boolean STOP = TRUE
if Size(Q) < k then

add all children of n to Q
update minWeight to smallest weight values seen
STOP = FALSE

else
for each child node c of n do

if weight(c) > minWeight then
Insert(Q, c)
STOP = FALSE

end if
end for

end if
until STOP
O = Exact the first k nodes from Q

60

cut the computational cost. The details are omitted here due to limited available

space.

Algorithm 2 Compute Medoids

Input: S : list of nodes in level m of the cover tree
Input: L: list of seeds
Input: k : number of medoids to compute
Output: M : list of medoids

for node s in list S do
assign s to the seed in L whose centroid is closest {forming the initial clusters}

end for{denote the initial clusters as C}
repeat

for ci in C, i ∈ [1, k] do
mi = the node in ci closest to geometric center of ci

end for
for node s in list S do

assign s to closest medoid in M
end for

until no change in M

3.4 Query Refinement

In practical dataset browsing and searching scenarios, users often find it necessary

to add additional filtering conditions or remove some attributes, often based on

what they see from the data. In interactive querying, the time to deliver results to

the user is most critical. Expensive re-computation that causes much delay (e.g.,

seconds) for the user severely damages the usability of the system. In this section,

we show how our system can dynamically change the representatives according to

the new conditions with minimal cost.

3.4.1 Zoom-in on Representative

When the user sees an interesting tuple from the list of representatives, she can click

on the tuple to see more similar items. This operation can be efficiently supported

using the cover tree structure. Recall that during the initial medoid generation

61

phase, every final medoid is associated with a CloseSet of nodes in the working

level. Those nodes are the set of nodes that is closest to the medoid (relative to all

other medoids). Once a medoid s is chosen by the user, we should generate more

representatives around s. We proceed as follows. We fetch all nodes in the CloseSet

of s, and descend the cover tree to fetch all their children and store them in a list L.

This should give us a sample of the nodes/data around medoid s. We treat nodes

in list L as the nodes in our new working level. We can run the same algorithm in

Sec. 3.3.3 on nodes in L to obtain a new set of medoids.

3.4.2 Selection

When a user applies a selection condition, nodes in the working level are very likely

to change. As mentioned in Sec. 3.3.3, existing representatives (medoids) will be

eliminated if their CloseSet of nodes are removed by the selection condition. In this

section, we detail how to effectively find new medoids when a selection is applied.

First we discuss the effect of a selection condition on each node in the working

level. We start with this step because of the procedure we use to generate the

medoids. Since the user queries a single table, we can consider a selection condition

as a line (in the 2D case) or hyperplane (in 3D or higher dimensionality) in the

data universe. For simplicity we now discuss only the 2D case, but high dimensional

cases are easy to generalize to. For example, if we use Mileage as x -axis and Price

as y-axis in 2D space, adding the selection condition “Price < 12000” removes all

data points that are above the line y = 12000. Recall that for each node in the cover

tree in level i, all its children fall in a circle with radius D(i), and all its descendants

are in the circle with radius 2 × D(i) (span). Thus we can determine the impact

of a new query condition on a node and its subtree by considering the relationship

between the query line and the span of the node. For each node and its subtree

can be classified into one of the following categories: 1) completely invalidated, 2)

62

50

150

A

Mileage

S1

S2

S3 S4

S5

S6

S7

a

P
ric

e

12000
30

201

45
57

90
b

Figure 3.7: Effect of Selection on a Node

partially invalidated, or 3) completely valid. Category 1 nodes are removed from

consideration and category 3 nodes stay intact.

For a category 2 node, once a selection condition is applied and a significant

portion of the possible region that a node’s descendants can span becomes invalid,

the original data point is no longer a suitable approximation of the center of the

subtree. The span value of the node is also inaccurate. The example in Fig. 3.7

shows a category 2 node, node A. The point associated with A is denoted as a, and

it is located in the center of the largest circle, which is the span of A. Assume that

we have a selection condition “price < 12000 ”. For each child s1 to s7, the radius of

the respective circle denotes the span, and the numerical value denotes the density.

After the selection, child nodes s1 and s2 are invalid, and s3 is partially valid.

For partially valid nodes, we use their children to approximate the geometric

center of the subtree. Specifically, we treat each child as a point with weight, and

calculate the geometric center as the weighted average of all children. We also update

the span using the child who is the farthest from the geometric center. Continue

with the example in Fig. 3.7. By averaging over all valid children, we obtain point b

as the estimated geometric center of all valid points of the subtree. Now node s6 is

63

the farthest child from point b. Denote the span of s6 as s6.span, and the distance

from s6 to b is d. The new span is estimated as the sum of d and s6.span. However,

there is a recursion here, since the children can also be partially valid (for example,

node s3). When this happens, we estimate the valid percentage of the children as

follows. For child node s, in 2D case, we calculate the area around s within distance

s.span, and calculate the percentage that is still valid under the selection condition.

This can be easily extended to higher dimensions. We take into this valid percentage

by multiplying it with the node’s weight.

After applying the selection condition, if there are less than k valid or partially

valid nodes in the working level, we descend the cover tree until a level that has

more than k nodes. On the other hand, if we still have more than k nodes in the

working level, we can work on the nodes that remain or descend the tree to fetch

new nodes. Next, we can re-run the medoid generation algorithm in Sect. 3.3.3 over

the new set of nodes obtained from procedures detailed previously. This gives us a

set of updated medoids.

3.4.3 Projection

We assume the user removes one attribute at a time, which is a reasonable

assumption in interactive querying. There is usually some “think time” between two

consecutive user actions. Our goal is to refresh the representative without incurring

much additional waiting for the user.

Once an attribute is removed, the cover tree index is no longer a valid reflection

of the actual distance among data points. Thus the brute-force approach is to

re-construct a new cover tree without the attribute and re-compute the medoids.

We want to do better than that. Our observations is that although the pair-wise

distance between the samples may change dramatically after removing the attribute

from consideration, the samples should still represent the data relatively well. Thus

64

we can still use the cover tree as a sampling tool - we sample the data at a level in

the cover-tree regardless of the removed attribute.

Our approach is to use the same set of nodes in the working level we used to

generate the previous medoids. We remove the dimension chosen by the user. These

nodes serve as our primary samples of data. Since the cost is very low to re-run

the medoid generation algorithm once we have the seeds, the key is to find a good

set of seeds. Using the cover tree as direction is no longer viable: after removing

a dimension, nodes that are previously far away can become very close. Also, the

weight and span are less accurate in the new distance measure, which may severely

affect the quality of generated seeds. So we use Hilbert sort re-order all nodes, and

find seeds as outlined in Sec. 3.3.3. The rest is the same as described in Sec. 3.3.3.

3.5 Implementation and Experiments

3.5.1 System Architecture

The architecture of MusiqLens is shown in Fig. 3.8. When a query is initially sent

from the client user interface to the DBMS, query results are fed to MusiqLens,

which interacts with the client in this query session. MusiqLens then builds a cover

tree index on the query results. This step can be done very efficiently through

cover tree’s construction algorithm. One of the features of cover tree is that it can

be constructed efficiently in an online fashion. In our experiment, the index for

a dataset comprising 130k points in 2D space is built in 0.7 seconds on an Intel

Pentium Dual Core 2.8GHz machine with 4GB DDR2 memory. It takes PostgreSQL

server 2.7 seconds to output the same set of data (we used a selection without any

predicate).

Beside the indexer, the core of MusiqLens contains three other parts: the

k -medoid generator, which generates the initial medoids after the user sends a new

query to the database; the zooming operator, which is responsible for generating new

65

Client User Interface

Q

k‐Medoid
Generator

Zooming
Operator

Query
Operator

Initial
Q

Medoids Zooming
Operations

Medoids
Query
Operations

Medoids

M
U
S

Generator Operator OperatorQuery

Cover‐tree Indexer

I
Q
L
E
N

DBMS

Query results
S

Figure 3.8: MusiqLens System Architecture

representatives after user performs a zooming operation; and the query operator,

which dynamically adjusts the medoids according to user’s new query conditions.

MusiqLens can be implemented as a module in a DBMS or a layer between the client

and the DBMS. The client interface we built is based on SheetMusiq [67], which is a

spreadsheet direct manipulation interface for querying a database.

3.5.2 Experimental Results

The experiments are divided into two parts. First, we want to show that the cover

tree based clustering algorithm generates high quality medoids with low time cost.

For this we compare our algorithm with R-tree based algorithm in [74], which is the

most related work and state-of-the-art. Second, we show that our query-adaptation

66

algorithms work effectively at low time cost and yet do not compromise in quality.

We compare algorithms for selection and projection with computing the medoids

from scratch.

Comparison with R-tree Based Methods

We use both real and synthetic data sets for this comparison. We use the LA data

set from the R-Tree Portal (http://www.rtreeportal.org). It contains 130k rectangles

and we take the center of each rectangle as a data point. We generate synthetic data

containing 2-dimensional data points that follow a Zipf distribution with parameter

α = 0.8. We use 5 sets of data of increasing cardinality: 256K, 512K, 1M, 2M, and

4M. For all data sets, we normalize each dimension of the data to the range of [0,

10000]. We also vary the value of k, the number of medoids to compute. Comparing

with R-tree based algorithms, we measure two metrics:

• Time: time to compute the medoids

• Distance: the average Euclidean distance from data points to their respective

medoid.

For convenience, we refer to the cover tree based method as CTM, and R-tree based

method as RTM. In the figures below, legend for CTM is “Cover Tree”, and that for

RTM is “R-tree”.

Fig. 3.9 shows the time and distance cost with synthetic data sets with growing

cardinality, with a fixed value of k at 32. We can see that CTM (Cover Tree based

Method) consistently outperforms RTM (R-Tree based Method) in both metrics.

Fig. 3.9 (a) shows that both methods are stable and scalable in time with a growing

size of the data set. The primary reason is that, once the R-tree or cover tree index

is built, the cost depends more on the value of k (which we will see soon) than on the

size of the data. Both algorithms fetch the upper levels of the data structure. For a

67

0.008

0.009

0.01

ec
on

ds
)

0.005

0.006

0.007

256K 512K 1024K 2048K 4096K

Ti
m
e
(s
e

Cardinality

R‐tree

Cover Tree

400

500

600

700

800

nc
e

0

100

200

300

400

256K 512K 1024K 2048K 4096K

D
is
ta

Cardinality

R‐tree

Cover Tree

(a) Time (b) Distance

Figure 3.9: Synthetic Dataset of Various Sizes

fixed value of k, the number of nodes that need to be read from the disk does not

vary significantly with the size of the data. The reason CTM is faster is it brings less

data from the disk. Each node of the cover tree is also a data point, and it is smaller

than an R-tree node. Fig. 3.9(b) shows that the distance cost stays stable as the

data size varies. This is expected since the medoids are found mainly on the upper

levels of the data structure. It also shows that cover tree method produces medoids

with much smaller distance cost. In sum, cover tree based method generates better

medoids at a lower cost, regardless of the size of the data.

Fig. 3.10 shows the trend of time and distance cost with the growth of the number

of medoids to compute (k), for a synthetic data set with cardinality of 1024k. We

can see that distance from CTM is consistently lower than RTM while using almost

half of the time, affirming the conclusion before.

Fig. 3.11 shows results on the real data set, LA, with various values of k. The

trend in time is the same as we observed in synthetic data, where CTM outperforms

RTM by a large margin. CTM also produces better quality medoids than RTM.

68

0 5

0.6
R‐tree

0 4

0.5
s)

Cover Tree

0 3

0.4

ec
on

ds

0.2

0.3

Ti
m
e
(s

0.1

T

0

2 8 32 128 512
k

2500

3000

3500

4000

nc
e

R‐tree

Cover Tree

0

500

1000

1500

2000

2 8 32 128 512

D
is
ta
n

k

(a) Time (b) Distance

Figure 3.10: Synthetic Dataset of Various k Values

0 05

0.06
R‐tree

0 04

0.05

s)

Cover Tree

0 03

0.04

ec
on

ds

0.02

0.03

Ti
m
e
(s

0.01

T

0

2 8 32 128 512
k

600

800

1000

1200

1400

1600

D
is
ta
nc
e

R‐tree

Cover Tree

0

200

400

600

800

1000

1200

1400

1600

2 8 32 128 512

D
is
ta
nc
e

k

R‐tree

Cover Tree

(a) Time (b) Distance

Figure 3.11: Results for Real Dataset

Query Refinement

Having established that cover tree based method is superior than the R-tree based

method in generating the initial representatives, we want to see if user issued

refinement can be efficiently processed. Since we have no competitor in this

incremental re-computation of medoids, we use the absolute running time as the

measurement metric. For quality of results, we compare against re-computing the

medoids from scratch. For the latter case, when a user issues a selection condition

or removes an attribute, we re-build a new cover tree on the data after the query.

Thus we are comparing the incremental re-computation algorithms with expensive

69

0.006

0.008

0.01

co
nd

s)

0

0.002

0.004

0.9 0.6 0.3 0.1
Ti
m
e
(S
e

Selectivity

Figure 3.12: Time for Selection

fresh re-computation.

Selection. We apply selection conditions of various selectivity on a synthetic

data set of cardinality 1024k. The selectivity values are 0.8, 0.6, 0.4, and 0.2. We

use selection conditions such as “x < 4500” to remove a portion of the data. Since

re-constructing a cover tree takes much more time than computing the medoids,

there is little meaning to show the time difference. The running time for our

algorithm is show in Fig. 3.12. Since the nodes at the working level can be already

cached in the memory when computing previous medoids, we do not need to fetch

them from the disk. Possible I/O is still necessary if a large portion of the nodes are

disqualified and we need to descend the tree to fetch lower level nodes. The time

for selection is well below 0.01 seconds, which is orders of magnitude smaller than

re-building the index. In Fig. 3.13 we show the comparison in distance cost, for both

synthetic and real data. The synthetic data is of cardinality 1024k. We also use

the LA data set. We can see that incremental re-computation of medoids using the

proposed algorithm (legend “Incremental”) provides comparable quality of medoids.

There is little, if noticeable at all, difference in terms of distance cost. The time

saved is with orders of magnitude, with no compromise of result quality.

Projection. We take the same approach as for selection - compare the

70

300

400

500

600

D
is
ta
nc
e

Re‐Compute

Incremental

0

100

200

300

400

500

600

0.8 0.6 0.4 0.2

D
is
ta
nc
e

Selectivity

Re‐Compute

Incremental

150

200

250

300

350

D
is
ta
nc
e

Re‐Compute

Incremental

0

50

100

150

200

250

300

350

0.8 0.6 0.4 0.2

D
is
ta
nc
e

Selectivity

Re‐Compute

Incremental

(a) Synthetic Data (b) Real Data

Figure 3.13: Selection Performance

incremental algorithm with re-computing from scratch. The number of medoids to

compute is 32.

We assume that the user projects one attribute at a time. We start with 4

different artificial data sets, each of dimension 5, 4, 3, and 2, respectively. We

then remove one dimension from each data set and compare incremental approach

with re-computing from scratch. Fig. 3.14 shows the result. The left figure shows

the comparison of absolute distance cost, while the right shows the percentage

of increased distance cost using the incremental approach. We can see that the

percentage of result compromise is consistently below 10%. In interactive querying,

users may not notice the 10% of difference in distance cost, but they will surely

notice the difference in time between milliseconds and seconds. Thus we think it is

still valuable to save the time of re-building the index and re-computing the medoids

at the cost of small deterioration of result quality. Re-computation is the last resort,

when the user removes a significant number of dimensions.

3.5.3 Fast Representative Choice

Cover tree construction is moderately fast – under one second for a moderate size

data set (LA) with 131k tuples. Fig. 3.15 shows the time to build a cover tree index

71

2000

2500

3000

nc
e

Re‐Compute

Incremental

0

500

1000

1500

5 to 4 4 to 3 3 to 2 2 to 1

D
is
ta
n

Change of Dimensions

0.08

0.1

0.12

nt
ag
e

0

0.02

0.04

0.06

5 to 4 4 to 3 3 to 2 2 to 1

Pe
rc
en

Change of Dimensions

(a) Absolute Distance Cost (b) Percentage of Increase

Figure 3.14: Projection Performance on Single Dimension

15

20

25

ec
on

ds
)

0

5

10

256K 512K 1024K 2048K 4096K

Ti
m
e
(s
e

Cardinality

Figure 3.15: Cover Tree Building Time on Synthetic Data Sets

for synthetic data sets, with cardinality from 256k up to 4M. We can see that the

construction time scales up gracefully. While it is not too expensive from an absolute

time perspective, even one second may be too much time to add to how long a user

waits to see results.

The encouraging results presented above for incremental computation offer

a simple way around this. We pre-compute the cover tree for the data set –

maintenance of this structure is comparable to the cost of incremental index

maintenance. Then every query against the data set, including the very first, can

be treated as a “refinement” of a base query that returns the whole data set. With

this, we have an overhead of only 10s of milliseconds per query, a level that is quite

72

affordable.

3.6 Related Work

Various methods have been proposed for K-medoid clustering. PAM (Partitioning

Around Medoids) [58] starts with k randomly selected objects and iteratively

improves upon them until the quality of clustering (measured by the average distance

to medoids) converges. In each iteration, PAM considers exchanging any of the

current k -medoids with any other data point and choosess the swap that leads to

the best improvement. This is prohibitively expensive to run on large data sets.

CLARA (Clustering LARge Applications) [58] attempts to reduce the cost by first

randomly sampling the data set and then performing PAM on the samples. In order

to ensure the samples are sufficiently random, CLARA draws multiple (e.g., 5) sets

of samples and uses the best output as the final result. However, in order to estimate

the quality of the result, CLARA still needs to compute the distance from all data

points to the candidate medoids. This would require scanning the whole data set

at least once in each iteration, which is again inefficient for large data sets. Ng and

Han’s CLARANS (Clustering Large Applications based on RANdomized Search)

[76], instead of considering all possible swaps like PAM, randomizes the search and

greatly reduces the cost. CLARANS is a main-memory clustering technique, and it

also requires scanning the whole data set. For MusiqLens framework, main-memory

methods will not suffice since we aim at large data sets.

Some other work uses disk-based indices to speed up the clustering. FOR

(focusing on representatives) [34, 36] and TPAQ (tree-based partitioning querying)

[73, 74] both assumes that the data set is indexed by an R-tree. FOR takes the most

centrally located object out of each leaf node and runs CLARANS on the samples.

This means that FOR has to read the entire data set to obtain the samples. TPAQ

starts from the root of the R-tree until it reaches a level where there are more than k

73

nodes. It then uses Hilbert curve to sort the nodes and evenly chooses k seed nodes

out of all nodes in that level. Other nodes are signed to their closest seeds and thus

forming small clusters. The geometric center of each cluster is estimated and used

to perform a nearest-neighbor (NN) query to fetch the closest point in the data set.

The result of each NN query is the medoid of the corresponding cluster. Experiments

in [74] shows that TPAQ improves both result quality and computational cost over

FOR. FOR and TPAQ are advantageous compared to main-memory methods for the

ability to handle large data sets, which is the first requirement of MusiqLens. The

second requirement, query adaptation, however, remains unsatisfied by either FOR

or TPAQ. For interactive browsing, users may not be so critical on the quality of

the medoids, but the lack of interactive refinement and navigation would make the

system unusable.

Pan et al [80] proposed an information-theoretic approach for finding

representatives from large set of categorical data. They treat each data element as

a set of features and obtain a data distribution from the presence of features. It is

unclear how to extend the proposed techniques to numerical data, which is the focus

of this chapter.

Recent work by Li et al [65] proposed generalized group-by and order-by for SQL.

Their grid based method is for clustering only, without actually finding the medoid

for each cluster. They use a separate ordering function to choose which data point

to output for each cluster. To apply techniques in [65] to MusiqLens framework, we

would have to find a center for each cluster. One of the methods is to find the point

that is closest to the geometric center of the cluster. This would require an additional

scan of data or an additional index structure. In addition, [65] does not support

zooming, which is an essential feature of MusiqLens. DataScope [109] provides an

interface for zooming in and out of a data set by ranking. Common built-in ranking

functions are provided (e.g., ranking by the number of publications of authors).

74

The system supports browsing but no searching nor adaption to multiple searching

criteria.

Computing k -medoid is related to the problem of clustering. The goal of

clustering is to find the naturally close groups in a set of data, where the number

of clusters is not known or given a priori. Many efficient techniques have been

developed for clustering, for example, BIRCH [113], DBSCAN [35], and CURE [44]

(see [110] for a comprehensive survey). The difference between the two problems

is, one is to find the natural groupings in the data, and the other is to optimize a

distance cost. The cluster centers that naturally exist in the data may not be the

best k -medoids, which is shown in [74]. Projection adaptation (Sec. 3.4.3) is related

to the problem of subspace clustering, which has been extensively studied [12, 81].

Subspace clustering attempts to find clusters in a data set by selection the most

relevant dimensions for each cluster separately. In our case, the set of dimensions to

consider are dynamically determined by the user.

Another related problem that has attracted increasing attention is query result

diversification [106]. Both [106] and this chapter attempt to provide better usability

when the number of tuples that can be shown are limited. We believe the two

are different solutions under different situations. Diverse results needs ordering of

attributes from experts while we do not.

3.7 Conclusion

In this chapter, we propose the MusiqLens framework for interactive data querying

and browsing, where we solve the “Many-Answers Problem” by showing users

representatives of a data set. Our goals are: 1) to find the representatives efficiently,

and 2) adapt efficiently when users refine the query. We start by identifying

what is a good set of representatives by conducting a user study. Results show

consistently that k-medoids are the best amongst seven options. Towards the first

75

goal, we devised cover tree based algorithms for efficiently computing the medoids.

Experiments on both real and synthetic data sets shows that our algorithm is

superior over our competitor in both time and distance cost. Towards the second

goal, we proposed algorithms to efficiently re-generate the representatives when users

add selection condition, remove attributes, or zoom-in on frequentatives.

A larger context for the work presented in this chapter is the concept of direct

manipulation [67, 57, 94], where a user always has in hand data representing some

partial result of a search. Thus, someone looking for used cars is shown a few

representative cars upon entering the web site, and incrementally refines the result

set in multiple steps. The work presented in this chapter provides a means for

databases to show meaningful results to users without requiring additional effort on

their part.

76

CHAPTER IV

QUERY REFINEMENT: A

PROVENANCE-BASED FRAMEWORK

4.1 Introduction

Information extraction — the process of deriving structured information from

unstructured text — is an important aspect of many enterprise applications,

including semantic search, business intelligence over unstructured data, and data

mashups. The structured data that information extraction systems produce often

feed directly into important business processes. For example, an application that

extracts person names from email messages might load this name information into

a search index for electronic legal discovery; or it may use the name to retrieve

employee data for help desk problem determination. Because the outputs of

information extraction are so closely tied to these processes, it is essential that the

extracted information have very high precision and recall; that is, the system must

produce very few false positive or false negative results.

Most information extraction systems use rules to define important patterns in

the text. For example, a system to identify person names in unstructured text would

typically contain a number of rules like the rule in Figure 4.1. The example in the

figure is written in English for clarity; an information extraction would typically use

a rule language like JAPE [31], AQL [61], or XLog [90, 18].

In some systems, the outputs of these rules may feed directly into applications [33,

77

If a match of a dictionary of common first names occurs in the text, followed immediately
by a capitalized word, mark the two words as a “candidate person name”.

Figure 4.1: An example information extraction rule, in English.

64, 47, 31]. Other systems use rules as the feature extraction stage of various machine

learning algorithms (as in [39, 63, 82]). In either case, it is important for the rules to

produce very accurate output, as downstream processing tends to be highly sensitive

to the quality of the results that the rules produce.

Developing a highly accurate set of extraction rules is difficult. Standard practice

is for the developer to go through a complex iterative process: First, build an initial

set of rules; then run the rules over a set of test documents and identify incorrect

results; then examine the rules and determine refinements that can be made to

the rule sets to remove incorrect results; and finally repeat the process. Of these

steps, the task of identifying rule refinements is by far the most time-consuming.

An extractor can easily have hundreds of rules, and the interactions between these

rules can be very complex. When changing rules to remove a given incorrect result,

the developer must be careful to minimize the effects on existing correct results. In

our experience building information extraction rules for multiple enterprise software

products, we found that identifying possible changes for a single false positive result

can take hours.

In the field of data provenance, techniques have been developed to trace the

lineage of a tuple in a database through a sequence of operators. This lineage also

encodes the relationships between source and intermediate result tuples and the

final result. In this chapter, we bring these techniques to bear on the problem of

information extraction rule refinement. Intuitively, given a false positive result of

information extraction, we can trace its lineage back to the source to understand

exactly why it is in the result. Based on this information, we can determine what

possible changes can be made to one or more operators along the way to eliminate

78

the false positive, without eliminating true positives. Actually realizing this vision,

the central contribution of this chapter, requires addressing some challenges, as

outlined in Sec. 4.4.

Most information extraction rules can be translated into relational algebra

operations. Over such an operator graph, provenance-based analysis, developed in

Sec. 4.5, produces a set of proposed rule changes in the form of “remove tuple t

from the output of operator O”. We refer to this class of rule changes as high-level

changes. To remove a “problem” tuple from the output of a rule, the rule developer

needs to know how to modify the extraction primitives that make up the rule.

We call such changes low-level changes. (Extraction primitives include regular

expressions and filtering predicates like “is followed by”). These modifications may

in turn result in the removal of additional tuples besides the “problem” tuple, and

the developer needs to consider these side-effects in evaluating potential rule changes,

while simultaneously keeping the rules as simple and easy to maintain as possible.

In Sec. 4.6, we develop a framework for enumerating the low-level changes that

correspond to a given set of high-level changes. We also develop efficient algorithms

for computing the additional side-effects of each proposed low-level change. Using

this information, we then rank low-level changes according to how well they remove

false positives without affecting existing correct answers or complicating the rule set.

This ranked list of low-level changes is then presented to the rule developer.

We have embodied these ideas in a software system that automates the rule

refinement process and implemented it in the SystemT information extraction

system1 [30, 61, 85]. Given a set of rules, a set of false positive results that the rules

produce, and a set of correct results, our system automatically identifies candidate

rule changes that would eliminate the false positives. The system then computes

1Available for download at http://alphaworks.ibm.com/tech/systemt.

79

the overall effects of these changes on result quality and produces a ranked list of

suggested changes that are presented to the user.

The system can be also used in fully automated mode, where the highest ranked

change is automatically applied in each iteration.

We have extensively evaluated the system, and present representative results to

demonstrate its effectiveness in Sec. 4.7.

We begin with a discussion of related work in Sec. 4.2, and set up the problem

formally in Sec. 4.3.

4.2 Related Work

The field of data provenance studies the problem of explaining the existence of a

tuple in the output of a query. A recent survey [29] overviews various provenance

notions for explaining why a tuple is in the result, where it was copied from in the

source database, and how it was generated by the query. It is the latter type of

provenance, how-provenance [43], that is leveraged in our system to generate the

set of high-level changes: place-holders in the rule set where a carefully crafted

modification may result in eliminating one false positive from the output. However,

this is only the first step of our approach. In a significant departure from previous

work on data provenance, our system generates a ranked list of concrete rule

modifications that remove false positives, while minimizing the effects on the rest of

the results and the structure of the rule set.

Early work in information extraction produced a number of rule-based

information extraction systems based on the formalism of cascading regular

expression grammars. Examples include FRUMP [33], CIRCUS [64], and

FASTUS [47]. The Common Pattern Specification Language [17] provided a

standard way to express these grammars and served as the basis for other rule-based

systems like JAPE [31] and AFsT [22]. In recent years the database community

80

has developed other rule languages with syntaxes based on SQL [100, 61, 51] and

Datalog [90, 18]. The techniques that we describe in this chapter can be used

to automate the rule refinement process across all these different classes of rule

languages.

Other work has used machine learning to perform information extraction, and

a variety of systems of different flavors have been developed, ranging from entity

relation detection ([114]) to iterative IE (e.g., Snowball [11]) and open IE (e.g.,

TextRunner [111]). Researchers have employed a variety of techniques, including

covering algorithms [97], conditional random fields [63, 82], support-vector machines

[114], and mixtures of multiple learning models [39, 111]. The work that we describe

in this chapter is complementary to this previous work. Our system employs a

semi-automatic iterative process with a human in the loop, which represents a new

area of the design space for information extraction systems. This design choice

allows our system to handle highly complex rule structures and to leverage expert

input. Whereas machine learning models are generally opaque to the user, the rules

that our system produces can be understood and “debugged” by the rule developer.

Recently, [32] has shown how introducing transparency in a machine learning-

based iterative IE system by recording each step of the execution enables the

automatic refinement of the machine learning model via adjusting weights and

removing problematic seed evidence. Our work differs from [32] in that we consider

automatic refinement in the context of rule-based systems, and therefore our space

of refinements is completely different.

In practice, information extraction systems that employ machine learning

generally use rules to extract basic features that serve as the input, and our

techniques can be used to assist in the process of developing these rules. Additional

previous work has used machine learning for extraction subtasks like creating

dictionaries [86] and character-level regular expressions [66]. These techniques

81

are complementary to the work we describe in this chapter. In particular, our

work provides a mechanism for “plugging in” these algorithms as low-level change

generation modules.

Finally, [89] describes an approach for refining an extraction program by posing

a series of questions to the user. Each question asks for additional information

about a specific feature of the desired extracted data. The features considered are

pre-defined. For each question, the corresponding selection predicate is added to

the extraction program. Our work differs fundamentally from the approach of [89]

in that it automatically suggests fully-specified rule refinements based on labeled

extracted data, as opposed to asking the user to fill in the blanks in template

questions. Furthermore, consider a much broader space of refinements ranging from

adding/modifying selection/join predicates and dictionary extraction specifications,

to adding subtraction sub-queries. To the best of our knowledge, ours is the first

system for suggesting concrete rule refinements based on labeled extracted data.

4.3 Preliminaries

Different information extraction systems have different rule languages [31, 61, 90, 18].

However, most rule languages in common use share a large set of core functionality.

In this chapter, we use SQL for expressing information extraction rules in order

to describe the theory behind our system in a way that is consistent with previous

work on data provenance. Specifically, we use the SELECT - PROJECT - JOIN -

UNION ALL - EXCEPT ALL subset of SQL. Note that UNION ALL and EXCEPT

ALL are not duplicate-removing, as per the SQL standard [38].

Our use of SQL does not in any way preclude the application of our work

to other rule languages. Figure 4.3 shows some examples of some rule languages

referenced in recent work. The figure shows three different implementations of the

82

text

t A t J St ffi (555 1234) J

Dictionary file first_names.dict: anna, james, sibel, …
Dictionary file street_suffix.dict: ave, blvd, st, way,…

R1: create view Phone as
Regex(‘d{3}-\d{4}’, Document, text);

R2: create view FirstNameCand as

Input document:
“Anna at James St. office (555-1234), or James, her
assistant - 555-7789 have the details.”

Document:

match

t1: 555-1234

t0: Anna at James St. office (555-1234), or James,
her assistant - 555-7789 have the details.

R2: create view FirstNameCand as
Dictionary(‘first_names.dict’, Document, text);

R3: create view FirstName as
select * from FirstNameCand F
where Not(ContainsDict(‘street_suffix.dict’,

RightContextTok(F.match,1)));

Phone: FirstNameCand:
match

t3: Anna

FirstName:
match

t6: Anna

match

1

t2: 555-7789R4: create view PersonPhoneAll as
select Merge(F.match, P.match) as match
from FirstName F, Phone P
where Follows(F.match, P.match, 0, 60);

R5: --Create the output of the extractor

3

t4: James

t5: James

6

t7: James

PersonPhoneAll:

t8: Anna at James St. office (555-1234

t9: James, her assistant - 555-7789

t10: Anna at James St. office (555-1234),
or James, her assistant - 555-7789

create table PersonPhone(match span);
insert into PersonPhone
(select * from PersonPhoneAll A)
except all
(select A1.*

from PersonPhoneAll A1, PersonPhoneAll A2

match

t11: Anna at James St. office (555-1234

t12: James, her assistant - 555-7789

where Contains(A1.match, A2.match)
and Not(Equals(A1.match, A2.match))

);

PersonPhone:

Figure 4.2: Example extraction program, input document D, and view instances created by the
extraction program on D.

rule that we had described earlier in in Figure 4.1. Each implementation uses a

different rule language, but all three generate the same output, except in certain

corner cases. In general, information extraction rule languages often have very

different syntaxes. There are also some differences between languages in terms of

their overall expressive power [85]. However, most rule languages in common use

share a large set of core functionality. These languages define the extractor as a set

of rules with dependency relationships that can be used to construct a provenance

graph for computing high-level changes. Rules are made up of atomic operations

that can be modified, added, or deleted to create low-level changes. As such, the

high-level/low-level change framework that we define in this chapter carries over

easily to the rule languages in common use today.

83

JAPE [31] AQL [85] XLog [90, 18]

Rule: CandidatePersonName

Priority: 1

(

{ Lookup.kind == firstName }

{ Token.orthography == initialCaps }

):match

--> :match.kind = "CandidateName";

create view CandidatePersonName as

select CombineSpans(F.name, L.name) as name

from (extract dictionary FirstNameDict

on D.text as name from Document D) F,

(extract regex /[A-Z][a-z]+/

on D.text as name from Document D) L

where FollowsTok(F.name, L.name, 0, 0)

consolidate on name;

CandidatePersonName(d, f, l) :-

docs(d),

firstNamesDict(fn),

match(d, fn, f),

match(d, "[A-Z][a-z]+", l),

immBefore(f, l);

Figure 4.3: The rule from Figure 4.1, expressed in three different information extraction rule
languages

4.3.1 Extensions to SQL

To make our examples easier to read, we augment the SQL language with shorthands

for some basic information extraction primitives.

We add a new atomic data type called span for modeling data values extracted

from the input document. A span is an ordered pair 〈begin, end〉 that identifies the

region of an input document between the begin and end offsets. For clarity, we may

sometimes identify a span using its string value in addition to the begin and end

offsets, or we may simply drop the offsets when they are clear from the context.

For example, to identify the region starting at offset 0 and ending at offset 5 in the

document from Figure 4.2, we may use the notations 〈0, 5〉, or 〈0, 5〉: “Anna”, or

simply, “Anna”.

We model the input document as a table called Document with a single attribute

of type span named text. We also add several predicates, scalar functions, and table

functions to SQL’s standard set of built-in functions.

In the examples in this chapter, we augment the standard set of SQL functions

with the following text-specific functions:

1. Predicates and scalar functions for manipulating spans, used for expressing

join and selection predicates, and creating new values in the SELECT clause

of a rule; and

84

2. Table functions for performing three crucial IE tasks: regular expression

matching, dictionary matching, and deduplication of overlapping spans.

Figure 4.4 lists these text-specific additions, along with a brief description of each.

The ability to perform character-level regular expression matching is fundamental

in any IE system, as many basic extraction tasks such as identifying phone numbers

or IP addresses can be achieved using regular expressions. For our example rule

in Figure 4.3, regular expression matching is appropiate for identifying capitalized

words in the document, and is expressed, for instance, in AQL lines 5 – 6, and xLog

line 5 in Figure 4.3.

For this purpose, we have added to our language the Regex table function (refer

to Figure 4.4), which takes as input a regular expression, a relation name R, and an

attribute of type span A of R, and computes an instance with a single span-typed

attribute called match containing all matches of the given regular expression on the

A values of all tuples in R.

A second fundamental IE functionality is dictionary matching: the ability to

identify in an input document all occurrences of a given set of terms specified as

entries in a dictionary file. Dictionary matching is useful in performing many basic

extraction tasks such as identifying person salutations (e.g., “Mr”, “Ms”, “Dr”),

or identifying occurrences of known first names (e.g., refer to Figure 4.3, line 4 of

JAPE, lines 3–4 of AQL, and line 3 of xLog). The Dictionary table function serves

this purpose in our language: it takes as input the name of a dictionary file, a

relation name R, and an attribute of type span A of R, and computes an instance

with a single span-typed field called match containing all occurrences of dictionary

entries on the A values of all tuples in R.

A third component of information extraction rules is a toolkit of span operations.

Table 4.4 lists the text-based scalar functions that our system uses to implement

various operations over the span type. Note the distinction between scalar functions

85

Type Format Description

Predicate Follows/FollowsTok(span1,span2,n1,n2) Tests if span2 follows span1 within n1 to
n2 characters, or tokens

function Contains/Contained/Equals(span1,span2) Tests if span1 contains,is contained
within, or is equal to span2

MatchesRegex/ContainsRegex(r, span) Tests if span matches (contains a match
for, resp.) regular expression r

MatchesDict/ContainsDict(dict, span) Tests if span matches (contains a match
for, resp.) an entry of dictionary d

Scalar Merge(span1, span2) Returns the shortest span that com-
pletely covers both input spans

function Between(span1, span2) Returns the span between span1 and
span2

LeftContext/LeftContextTok(span, n) Returns the span containing n
chars/tokens immediately to the
left of span

RightContext/RightContextTok(span, n) Returns the span containing n
chars/tokens immediately to the
right of span

Table Regex(r, R, A) Returns all matches of regular expression
r in all R.A values.

function Dictionary(d, R, A) Returns all matches of entries in dictio-
nary d in all R.A values.

Figure 4.4: Text-specific predicate, scalar, and table functions that we add to SQL for expressing
the rules in this chapter.

that return a boolean value (e.g., Follows) and can be used as join predicates, and

scalar functions that return non-boolean values (e.g., Merge), used as selection

predicates, and to create new values in the SELECT clause of rules.

4.3.2 Example Rules

Figure 4.2 shows an example rule program, expressed in SQL, which extracts

occurrences of person names and their phone numbers. We have divided the SQL

into individual rules, labeled R1 through R5. Rules R1 through R4 define logical

views, while rule R5 materializes a table of extraction results.

Rule R1 illustrates one of the shorthands that we add to SQL: the Regex table

function. This function evaluates a regular expression over the text of one or

86

more input spans and returns a set of output spans that mark all matches of the

expression. In the case of rule R1, the regular expression phone numbers of the form

xxx− xxxx.

Rule R2 shows another addition to SQL: the Dictionary table function. Similar

to the Regex table function, Dictionary identifies all occurrences of a given set of

terms specified as entries in a dictionary file. For R2, the dictionary file contains a

list of common first names. The rule defines a single-column view FirstNameDict

containing a span for each dictionary match in the document.

Rule R3 uses a filtering dictionary that matches abbreviations for street names

on the right context of names, to filter out first names that are street names, e.g.,

“James St.”. The view definition uses two of the scalar functions that we add to

SQL: RightContextTok and ContainsDict. RightContextTok takes a span and a

positive integer n as input and returns the span consisting of the first n tokens to

the right of the input span. The ContainsDict function, used here as a selection

predicate, takes a dictionary file and a span and returns true if the span contains an

entry from the dictionary file.

Rule R4 identifies pairs of names and phone numbers that are between 0 and 60

characters apart in the input document. The view definition uses two of the scalar

functions that we add to SQL: Follows and Merge. The Follows function, used

here as a join predicate, takes two spans as arguments, along with a minimum and

maximum character distance. This function returns true if the spans are within the

specified distance of each other in the text. The Merge function takes a pair of spans

as input and returns a span that exactly contains both input spans. The select

clause in R5 uses Merge to define a span that runs from the beginning of each name

to the end of the corresponding phone number.

Finally, R5 materializes the table PersonPhone, which constitutes the output of our

extractor. It uses an EXCEPT ALL clause to filter out candidate name–phone spans

87

σtrue

π Merge(N.match, P.match) as match

⋈Follows(N.match,P.match,0,40)

σNot(ContainsDict(‘street_suffix.dict’,
RightContextTok(F.match,1)));

π *

Dictionary
‘firstName.dict’, text

Regex
‘d{3}-\d{4}’, text

Document

R2 R1

R3

R4
σtrue

π *

δ

R5

…

Figure 4.5: Canonical representation of rules in Figure 4.2.

strictly containing another candidate name–phone span. The join predicate of the

second operand of the EXCEPT ALL clause illustrates two other text-based scalar

functions: Equals, which checks if two spans are equal, and Contains, which tests

span containment. Note that the false positive t10 in PersonPhoneAll that associates

Anna with James’ phone number is filtered out by R5, since its span strictly contains

other candidate name-phone spans (i.e., from t8 and t9).

4.3.3 Canonical Rule Representation

To simplify our subsequent discussions, we shall assume a canonical algebraic

representation of extraction rules as trees of operators, such that for each rule,

there is a direct one-to-one translation to this canonical representation and back.

The canonical representation is very similar, if not identical for the SELECT -

FROM - WHERE - UNION ALL - EXCEPT ALL subset of the language, to

the representation of SQL statements in terms of relational operators. A rule in

88

the form “SELECT attributes FROM R1, . . ., Rn WHERE join predicates AND

selection predicates” is represented in the usual way as the sequence of project –

select – join operators shown below:

πattributes(σselection preds(./join preds (R1, . . . , Rn)))

When table functions like Dictionary and Regex appear in the FROM clause of a

SELECT statement, we translate these table functions to operators by the same

names.

Figure 4.5 illustrates the canonical representation of our example extractor from

Figure 4.2, where the dashed rectangles indicate the correspondence between parts

of the operator tree and rule statements. (The part corresponding to the second

operand of the EXCEPT ALL clause in rule R5 is omitted.) Note that when the

WHERE clause of a rule does not contain any selection predicates (e.g., R4), the

condition in the select operator of the corresponding canonical representation is

simply true.

4.4 Overall Framework

Given a set of examples in the output of an extractor, each labeled correct or

incorrect by the user, our goal is to generate a ranked list of possible changes to

the rules that result in eliminating the incorrect examples from the output, while

minimizing the effects on the rest of the results, as well as the rules themselves. Our

solution operates in two stages: High-level change generation (See Section 4.5) and

low-level change generation (Section 4.6).

The high-level change generation step generates a set of high-level changes of the

form “remove tuple t from the output of operator Op in the canonical representation

of the extractor”. Intuitively, removing a tuple t from the output of rule R translates

to removing certain tuples involved in the provenance of t according to the canonical

89

operator tree of R. Our solution leverages previous work in the data provenance

[29] in generating the list of high-level changes. These high-level changes have the

potential to remove all incorrect examples from the output. For example, high-level

changes for removing the tuple t10 from the output of rule R4 would be “remove

tuple (Anna, 555−7789) from the output of the join operator in rule R4”, or “remove

tuple t3 from the output of the Dictionary operator in rule R2”.

A high-level change indicates what operator to modify to remove a given tuple

from the final output. However, a high-level change does not tell how to modify the

operator in order to remove the offending tuple. High-level changes are only the first

step towards automating the rule refinement process.

If a rule developer were presented with a set of high-level changes, he or she

would need to overcome two major problems in order to translate these high-level

changes into usable modifications of the information extraction rule set.

The first problem is one of feasibility : The rule writer cannot directly remove

tuples in the middle of an operator graph; she is restricted to modifying the rules

themselves. It may not be possible to implement a given high-level change through

rule modifications, or there may be multiple possible ways to implement the change.

Suppose that the Dictionary operator in our example has two parameters: The set of

dictionary entries and a flag that controls case-sensitive dictionary matching. There

are at least two possible implementations of the second high-level change described

above: Either remove the entry James from the dictionary, or enable case-sensitive

matching. It is not immediately obvious which of these possibilities is preferable.

The second problem is one of side-effects. A single change to a rule can remove

multiple tuples from the output of the rule. If the rule developer chooses to remove

the dictionary entry for James, then every false positive that matches that entry

will disappear from the output of the Dictionary operator. Likewise, if he or she

enables case-sensitive matching, then every false positive match that is not in the

90

proper case will disappear. In order to determine the dependencies among different

high-level changes, the rule developer needs to determine how each high-level change

could be implemented and what are the effects of each possible implementation on

other high-level changes.

Just as modifying a rule to remove one false positive result can simultaneously

remove another false positive result, this action can also remove one or more correct

results. There may be instances in the document set where the the current set of

rules correctly identifies the string “James” as a name. In that case, removing the

entry James from the dictionary would eliminate these correct results. A given

implementation of a high-level change may actually make the results of the rules

worse than before.

In the second step of our solution, we go beyond the work done in data provenance

and show how to address the issues of feasibility and side-effects. We introduce the

concept of a low-level change, a specific change to a rule that implements one or

more high-level changes. Example low-level changes implementing the two high-level

changes above are “Modify the maximum character distance of the Follows join

predicate in the join operator of rule R4 from 60 to 50”, and “Modify the Dictionary

operator of rule R2 by removing entry james from dictionary file first names.dict”,

respectively.

Rather than presenting the user with a large and rather unhelpful list of high-level

changes, our system produces a ranked list of low-level changes, along with detailed

information about the effects and side-effects of each one. Logically speaking, our

approach works by generating all low-level changes that implement at least one

high-level change; then computing, for each low-level change, the corresponding set

of high-level changes. This high-level change information is then used to rank the

low-level changes.

A naive implementation of this approach would be prohibitively expensive,

91

generating huge numbers of possible changes and making a complete pass over the

corpus for each one. We keep the computation tractable with a combination of

two techniques: pruning individual low-level changes using information available at

the operator level and computing side-effects efficiently using cached provenance

information.

Since low-level changes are expressed in terms of our internal representation as

canonical operator trees, we translate them back to the level of rule statements (we

shall show that there is a direct one-to-one translation), prior to showing them to

the user. For instance, our two example low-level changes would be presented to the

user as ‘Modify the maximum character distance of the Follows join predicate in the

WHERE clause of rule R5 from 60 to 50”, and respectively, “Modify the input of the

Dictionary table function of rule R2 by removing entry ‘james’ from input dictionary

file first names.dict.” The user chooses one change to apply, and the entire process

is then repeated until the user is satisfied with the resulting rule set.

4.5 Generating High-Level Changes

Definition 14 (High-level change). Let t be a tuple in an output table V . A
high-level change for t is a pair (t′, Op), where Op is an operator in the canonical
operator graph of V and t′ is a tuple in the output of Op such that eliminating t′

from the output of Op by modifying Op results in eliminating t from V .

Intuitively, for the removal of t′ from the output of Op to result in eliminating t

from the final output, it must be that t′ contributes to generating t. In other words,

t′ is involved in the provenance of t according to the rule set. Hence, to generate all

possible high-level changes for t, we first need to compute the provenance of t. Next,

we shall first discuss how provenance is computed in our system, and then describe

our algorithm for generating high-level changes.

92

James, her assistant - 555-7789

James, her assistant - 555-7789

δ5

James, her assistant - 555-7789

π5

James, her assistant - 555-7789

σ5

James, her assistant - 555-7789

π4

James 555-7789

σ4

⋈4

555-7789

Regex1

James

π3

σ3

Dictionary2

Anna at…

James

James

R5

R4

R3

R1

R2

t10:

t12:

t7: t2:

t’10:

t’’10:

t5:

t’7:

t’’12:

t’12:

t0:

Figure 4.6: Provenance of tuple t12 from Figure 4.2.

4.5.1 Computing Provenance

Various definitions have been proposed for describing the provenance of a tuple t in

the result of a query Q: why-provenance: the set of source tuples that contribute

to the existence of t in the result, where-provenance: the locations in the source

database where each field of t has been copied from, and how-provenance: the source

tuples, and how they were combined by operators of Q to produce t. Among these,

how-provenance is the more complete version, since it generalizes why-provenance,

and “contains” where-provenance in a certain sense [29]. It is also the most suitable

in our context, since knowing which source tuples and how they have been combined

by Q to generate an undesirable output tuple t is a pre-requisite to modifying Q

in order to remove t from the result. Therefore, in this chapter we shall rely on

how-provenance extended to handle text-specific operators (e.g., Regex, Dictionary).

Given a set of rules Q and input document collection D, a conceptual procedure

for computing how-provenance at the level of the operator graph of Q is as follows.

93

Each tuple passing through the operator graph (i.e., source , intermediate, or output

tuple) is assigned a unique identifier. Furthermore, each operator “remembers”,

for each of its output tuples t, precisely those tuples in its input responsible for

producing t. This procedure can be thought of as constructing a provenance graph

for Q on D that contains an edge {t1, . . . , tn}
Op−→ t for each combination {t1, . . . , tn}

of input tuples to operator Op, and their corresponding output tuple t. This

provenance graph essentially embeds the provenance of each tuple t in the output

of Q on D. As an example, Figure 4.6 shows the portion of the provenance graph

for our example in Figure 4.2 that embedds the provenance of tuple t12. Next, we

present a procedural definition for the notion of provenance graph.

Definition 15 formalizes the notion of provenance graph used in this chapter. Note

that the intention of the formalism below is not to propose yet another definition for

provenance. In fact, when restricted to the SPJU fragment of SQL, Definition 15

corresponds to the original definition of how-provenance of [43]2. Rather, our goal is

to provide a pictorial representation of provenance that we can use in discussing the

algorithm for computing high-level changes.

Definition 15. [Provenance graph] Let Q be a set of rules and D be a document
collection. The data flow graph of Q and D, or in short, the data flow graph of
Q when D is understood from the context, is a hypergraph G(V,E), where V is a
set of hypervertices, and E is a set of hyperedges, constructed as follows. For every
operator Op in the canonical representation of Q:

• If Op = Regex(regex,A)(R), or Op = Dictionary(dict file,A)(R), then for every
t ∈ R and every output tuple t′ ∈ Op(t), V contains vertices vt, vt′ and E contains

edge vt
Op−→ vt′. We say that the provenance of t′ according to Op is t.

• If Op = πA(R), where A is a set of attributes, then for every t ∈ R and
corresponding output tuple t′ = πA(t), V contains vertices vt, vt′ and E contains

edge vt
πA−→ vt′. We say that the provenance of t′ according to πA is t.

• If Op = σC(R), where C is a conjunction of selection predicates, then for every
t ∈ R and corresponding output tuple t′ = σC(t) (if any), V contains vertices

2Note that since each tuple is assigned a unique identifier, we are essentially in the realm of set
semantics.

94

vt, vt′ and E contains edge vt
σC−→ vt′. We say that the provenance of t′ according

to σC is t.

• If Op = ./C (R1, . . . , Rn), where C is a conjunction of join predicates, then for
every t1 ∈ R1, . . . , tn ∈ Rn and corresponding output tuple t′ =./ (t1, . . . , tn)
(if any), V contains vertices vt1 , . . . , vtn and hypervertex {vt1 , . . . , vtn}, and

E contains hyperedge {vt1 , . . . , vtn}
./C−→ vt′. We say that the provenance of t′

according to ./C is {t1, . . . , tn}.
• If Op = ∪(R1, R2), then for every t1 ∈ R1 (or t2 ∈ R2) and corresponding output

tuple t′ ∈ ∪({t1}, ∅) (or respectively, t′ ∈ ∪(∅, {t2})), V contains vertices vt1 (or

vt2) and vt′, and E contains edge vt1
∪−→ vt′ (respectively, vt2

∪−→ vt′). We say
that the provenance of t′ according to ∪ is t1 (or respectively, t2).

• If Op = δ(R1, R2), then for every t ∈ R1 such that t 6∈ R2 and corresponding
output tuple t′ ∈ {t} − R2, V contains vertices vt, vt′ and E contains edge

vt
δ−→ vt′. We say that the provenance of t′ according to δ is t.

In computing the provenance graph, we use a query rewrite approach similar

to [41]. The approach of [41] is to rewrite an SQL query Q into a provenance query

Qp by recursively rewriting each operator Op in the relational algebra representation

of Q. The rewritten version preserves the result of the original operator Op, but

adds additional provenance attributes through which information about the input

tuples to Op that contributed to the creation of an output tuple is propagated.

Given Op and a tuple t in its output, the additional information is sufficient to

reconstruct exactly those tuples in the input of Op that generated t. Conceptually,

the provenance query Qp records the flow of data from input to output of Q, thus

essentially computing the provenance graph of Q for the input document collection.

The implementation of our system extends the rewrite approach of [41] to handle

text-specific operators. Extensions are straightforward and omitted.

4.5.2 Generating High-level Changes

Figure 4.7 lists our algorithm GenerateHLCs for computing a set of high-level changes,

given a set of rules Q, an input document collection D and a set of false positives in

the output of Q on D. First, the provenance graph of Q and D is recorded using

the rewrite approach outlined in Section 4.5.1. Second, for each false positive t, the

95

GenerateHLCs(G, X, D)
Input: Operator graph G of a set of rules Q, set X of false positives in the output of G
(i.e., Q) applied to input document collection D.
Output: Set H of high-level changes.
Let H = ∅.

1. Compute the provenance graph GQ,Dp of Q and D;

2. For every t ∈ X do CollectHLCs(GQ,Dp , t, H);

3. Return H.

Procedure CollectHLCs(Gp, t
′, H)

Input: Provenance graph Gp, node t′ in Gp, set of high-level changes H.
If t′ is a tuple of the Document instance, return.

Otherwise, let e: T
Op−→ t′ be the incoming edge of t′ in Gp. Do:

1. Add (t′, Op) to H;

2. If e is of type t′′
Op−→ t′, where Op ∈ {π, σ,∪, δ, Regex,Dictionary}, do

CollectHLCs(Gp, t
′′, H).

Otherwise, e is of type {t1, . . . , tn}
./−→ t′. Do CollectHLCs(Gp, ti, H), for all ti, 1 ≤ i ≤ n.

Figure 4.7: Algorithm for computing high-level changes.

algorithm traverses the provenance graph starting from the node corresponding to t

in depth-first order, following edges in reverse direction. For every edge {. . .} Op−→ t′

encountered during the traversal, one high-level change “remove t′ from the output

of Op” is being generated.

Suppose the algorithm is invoked on rules R1 to R4, with negative output tuple

t10 and input document from Figure 4.2. The algorithm traverses the provenance

graph starting from t10 thus visiting each node in the provenance of t10 (refer to

the dashed rectangle in Figure 4.6), and outputs the following high-level changes:

(t10, π4), (t′10, σ4), (t′′10, ./4), (t2, Regex1), (t7, π3), (t′7, σ3), (t5, Dict2).

4.6 Generating Low-Level Changes

In terms of the relational algebra, a low-level change is defined as the change to the

configuration of a single operator, or insertion of a new operator subtree in between

96

two existing operators. Examples include changing the numerical values used in a

join condition or a WHERE clause. Notice that the space of all low level changes is

unlimited. In order to make the problem tractable, we limit the discussion in this

chapter to low-level changes that restrict the set of results returned by the query.

This is in the same philosophy as [66] – users generally start with a query with high

recall and progressively refine it to improve the precision.

4.6.1 Producing Low-Level Changes

Given a set of high-level changes, our goal is to produce a corresponding set of

low-level changes, along with enough information about the effects of these changes

to rank them. One semi-naive way to compute these low-level changes is to iterate

over the operators in the canonical relational algebra representation of the annotator,

performing the following three steps:

1. For each operator, consider all the high-level changes that could be applied at

that operator.

2. For each such high-level change, enumerate all low-level changes that cause the

high-level change.

3. For each such low-level change, compute the set of tuples that the change removes

from the operator’s output.

4. Propagate these removals up through the provenance graph to compute the

end-to-end effects of each change.

This approach computes the correct answer, but it would be extremely slow.

This intractability stems directly from the two challenges discussed in Section 4.4:

feasibility and side-effects.

First, the feasibility problem makes step 2 intractable. Just as there could be

no feasible low-level change that implements a given high-level change, there could

easily be a nearly infinite number of them. For example, consider a high-level change

97

to remove one of the output tuples of a dictionary operator. Suppose that the

dictionary has 1000 entries, one of which produces the tuple. By choosing different

subsets of the other 999 entries, one can generate 2999 − 1 distinct low-level changes,

any of which removes the desired tuple!

We address this aspect of feasibility by limiting the changes our system considers

to a set that is of tractable size, while still considering all feasible combinations of

high-level changes at a given operator. In particular, we generate, for each operator,

a single low-level change for each of the k best possible combinations of high-level

changes; where k is the total number of changes that the system will present to

the user. We enforce these constraints through careful design of the algorithms for

generating individual types of low-level changes, as we describe in Section 4.6.2.

The side-effects problem causes problems at step 4 of the above approach.

Traversing the provenance graph is clearly better than rerunning the annotator to

compute the effects of each change. However, even if it generates only one low-level

change per operator, the overall cost of this approach is still O(n2), where n is

the size of the operator tree. Such a computation rapidly becomes intractable, as

moderately complex annotators can have thousands of operators.

We can reduce this complexity from quadratic to linear time by leveraging our

algorithm for enumerating high-level changes. The algorithm in Section 4.5.2 starts

with a set of undesirable output tuples and produces, for each input tuple, a set of

high-level changes that would remove the tuple. We can easily modify this algorithm

to remember the mapping from each high-level change back to the specific output

tuple that the change removes.

By running this modified algorithm over every output tuple, including the correct

outputs, we can precompute the end-to-end effects of any possible side-effect of a

low-level change. With a hash table of precomputed dependencies, we can compute

the end-to-end effects of a given low-level change in time proportional to the number

98

of tuples the change removes from the local operator.

Applying the optimizations described above to the semi-naive algorithm yields

the following steps for generating low-level changes.

1. Precompute the mapping from intermediate tuples to the final output tuples they

generate.

2. For each operator and each category of low-level change, compute a top-k set of

low-level changes.

3. Compute the local effects of each low-level change.

4. Use the table from step 1 to propagate these local effects to the outputs of the

annotator.

In the next section, we explain in detail how we perform step 2 efficiently for

several different types of low-level change.

4.6.2 Specific Classes of Low-Level Change

We now introduce the specific types of low-level changes that our system currently

implements, along with the techniques we use to generate these low-level changes

efficiently.

Modify numerical join parameters. This type of change targets the join

operator. We use predicate function Follows as an example for all joins based on

numerical values. Recall that Follows(span1, span2, n1, n2) returns true if span1 is

followed by span2 by a distance value in the range of [n1, n2]. Low-level changes to a

Follows predicate involve shrinking the range of character distances by moving one

or both of the endpoints.

Our approach to generate low-level changes for numerical join predicates involves

interleaving the computation of side-effects with the process of iterating over possible

numerical values. Recall that the end goal of our system is to produce a ranked list of

low-level changes, where the higher-ranked changes produce a greater improvement

99

in result quality according to an error metric. We use this ranking function to

compute a utility value for each value in the range and remove those with low utility.

In particular, we compute utility by probing each value in the range: remove it,

propagate the change to the output, and compute the change in result quality as the

utility of the value in consideration.

We now need to find the top-k sub-sequences in [n1, n2] that corresponds to

maximum summation of utility values. This problem can be solved with Kadane’s

algorithm [20] in O(nk) time, where n is the number of values, and k is the number

of ranges to find.

Remove dictionary entries. Another important class of low-level change involves

removing entries from a dictionary file so as to remove the corresponding dictionary

matches from the annotator’s input features. Our approach to this type of change

takes advantage of the fact that each dictionary entry produces a disjoint set of

tuples at the output of the Dictionary operator.

As with numerical join parameters, we interleave the computation of low-level

changes with the process of computing the effects of each change and the resulting

improvement in utility. We start by grouping the outputs of the Dictionary operator

by dictionary entry. For each dictionary entry that matches at least one high-level

change, we compute the tuples that would disappear from the final query result

if the entry was removed. We then rank the entries according to the effect that

removing that entry would have on result quality. We then generate a low-level

change for the top 1 entry, the top 2 entries, and so on, up to k entries. In addition

to the dictionary operator, this class of changes also applies, analoguously, to select

operators having a dictionary predicate such as MatchesDict().

Add filtering dictionary. This class of changes targets the select operator. In

addition to modifying, our system also generates new dictionaries and uses them

to filter spans based on the presence of dictionary matches in close proximity. We

100

produce filtering predicates by composing a span operation like LeftContextTok with

a dictionary predicate like Not(ContainsDict()) as in rule R3 (Fig. 4.2).

To generate filtering predicates our system considers the tokens to the left or

right of each span in a tuple affected by a high-level change. The union of these token

values forms a set of potential dictionary entries. We rank the effects of filtering

with these dictionary entries the same way that we rank changes involving removal

of dictionary entries: we group together tuples according to which dictionary entries

occur in the vicinity of their spans, and compute the effect of each potential entry

on end-to-end result quality.

Add filtering view. Unlike all low-level changes discussed above, which apply to an

individual operator, this last type of changes applies to an entire view. Specifically,

it involves using subtraction to add a filter view on top of an existing view V . It

removes spans from V that overlap with, contain, or are contained in some span of

the filtering view. As an example, rule R5 in Figure 4.2 implements a filtering view

on top of PersonPhoneAll. To generate filtering views, our algorithm considers every

pair of views V1 and V2 such that V1 and V2 are not descendants of one another

in the canonical representation of the ruleset. For each filter policy (OVERLAP,

CONTAINS, or CONTAINED) the algorithm identifies the tuples of V1 that are

in relationships with at least one V2 span according to the policy, and ranks the

resulting filters according to their effects on the overall end-to-end result quality.

4.7 Experiments

We developed our refinement approach on top of the SystemT [30, 85, 61] information

extraction system v0.3.6 enhanced with a provenance rewrite engine as described

in Section 4.5.1. In this section we present an experimental study of our system in

terms of performance, and quality of generated refinements.

101

4.7.1 Extraction Tasks and Rule Sets

We use two extraction tasks in our evaluation: Person (person entity extraction) and

PersonPhone (extraction of relationships between persons and their phone numbers).

We chose Person because it is a classic named-entity extraction task and there are

standard evaluation datasets available. We chose PersonPhone as an example of a

relationship extraction task.

The Person extraction rule set consists of 14 complex rules for identifying person

names by combining basic features such as capitalized words and dictionaries of first

and last names. Example rules include “CapitalizedWord followed by FirstName”,

or “LastName followed by a comma, followed by CapitalizedWord”. We have also

included rules for identifying other named-entities such as Organization, Address,

EmailAddress, that can be only used as filtering views, in order to enable refinements

commonly needed in practice, where person, organizations and locations interact

with each other in various ways (e.g., “Morgan Stanley” may be an organization, or

a person, “Georgia” may be a person, or a U.S. state).

The PersonPhone extraction rule set consists of 11 complex rules for identifying

phone/extension numbers, and a single rule “Person followed within 0 to 60 chars

by Phone” for identifying candidate person–phone relationships (as in rule R4 from

Figure 4.2). To evaluate the system on the relationship task, we use a high-quality

Person extractor to identify person names in the PersonPhone task. Note that the

system is evaluated separately on the Person task, and we focus on the relationship

extractor for the PersonPhone task.

4.7.2 Evaluation Settings

Data Sets

We used the following data sets in our experiments:

• ACE : collection of newswire reports, broadcast news and conversations with

102

Person labeled data from the ACE05 Dataset [8].

• CoNLL: collection of news articles with Person labeled data from the CoNLL 2003

Shared Task [102].

• Enron, EnronPP : collections of emails from the Enron corpus [5] annotated with

Person and respectively PersonPhone labels.

The characteristics of the datasets used in our experiments in terms of number

of documents and labels in the train and test sets are listed below.

Dataset Train set Test set
#docs #labels #docs #labels

ACE 273 5201 69 1220
CoNLL 946 6560 216 1842
Enron 434 4500 218 1969
EnronPP 322 157 161 46

We note that these datasets are realistic in practical scenarios3, as extractor

developers are not likely to examine a large number of documents, and obtaining

labeled data is known to be a labor intensive and time consuming task. (Machine

learning techniques such as active learning [101] have been used to facilitate the

latter task.)

Set Up

We developed our refinement approach on top of the SystemT [30, 85, 61] information

extraction system v0.3.6, enhanced with a provenance rewrite engine as described

in Section 4.5.1. The experiments were run on a Ubuntu Linux version 9.10 with

2.26GHz Intel Xeon CPU and 8GB of RAM. Unless otherwise stated, all experiments

are from a 10-fold cross-validation.

3Both ACE and CoNLL datasets have been used in official Named Entity Recognition competi-
tions [8, 102]

103

4.7.3 Quality Evaluation

The goal of the quality evaluation is to validate that our system generates high

quality refinements in that: 1) they improve the precision of the original rules, while

keeping the recall fairly stable, and 2) they are comparable to refinements that a

human expert would identify. To this end, we evaluate the quality of refinements

produced by our system on a variety of datasets, and we perform a user study where

a rule refinement task is presented to human experts and their actions are compared

with those suggested by our system. In our evaluation, we use the classical measures

of precision (percentage of true positives among all extracted answers), recall

(percentage of true positives extracted among all actual answers), and F1-measure

(harmonic mean of precision and recall).

Experiment 1. We use 4 workloads in this experiment: the Person task on ACE ,

CoNLL and Enron datasets, and the PersonPhone task on the EnronPP dataset. For

each workload, we run the system for k iterations starting from the baseline rule set.

After each iteration, the refinement with the highest improvement in F1-measure on

the training set is automatically applied.

Figure 4.8 shows the quality of k refined rule sets on the test set of each workload,

when k is varied from 1 to 5. Note that the quality of the baseline rule sets is as

expected in practice, where developers usually start with a query with reasonable

recall and progressively refine it to improve precision. As can be seen, our system

achieves significant improvements in F1-measure between 6% and 26% after only

a few iterations. This improvement in F1-measure does not arise at the expense

of recall. Indeed, as shown in Figures 4.8(b-c), the precision after 5 iterations

improves greatly when compared to the baseline rule set, while the recall decreases

only marginally. The F1-measure and precision plateau after a few refinements for

two reasons. First, many false positives are removed by the first few high ranked

104

Fscore after k iterations
Data Set Baseline I1 I2 I3 I4 I5

F‐score
Enron 0.479 0.65 0.71 0.728 0.732 0.737
ACE 0.429 0.459 0.519 0.512 0.516 0.514
CoNLL 0.408 0.532 0.533 0.538 0.538 0.538
EnronPP 0.423 0.518 0.526 0.53 0.53 0.53

Enron 0.335 0.536 0.633 0.656 0.713 0.727 precision
ACE 0.444 0.521 0.72 0.742 0.763 0.754
CoNLL 0.371 0.659 0.667 0.696 0.696 0.696
EnronPP 0.419 0.708 0.741 0.749 0.749 0.749

Enron 0.84013089 0.825592 0.808327 0.817753 0.75204 0.747279 recall
ACE 0.416 0.41 0.407 0.392 0.391 0.391
CoNLL 0.454 0.448 0.445 0.439 0.439 0.439
EnronPP 0.431 0.409 0.409 0.412 0.412 0.412

F‐score

0 5

0.6

0.7

0.8 (a) F1‐measure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Baseline I1 I2 I3 I4 I5

Enron

ACE

CoNLL

EnronPP

(a) F1‐measure

0 5

0.6

0.7

0.8

0.9 (c) Recall

0

0.1

0.2

0.3

0.4

0.5

Baseline I1 I2 I3 I4 I5

Enron
ACE
CoNLL
EnronPP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Baseline I1 I2 I3 I4 I5

Enron

ACE

CoNLL

EnronPP

(b) Precision

(a) F1-measure (b) Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Baseline I1 I2 I3 I4 I5

Enron

ACE

CoNLL

EnronPP

(b) Precision

0 3

0.4

0.5

0.6

0.7

0.8

0.9

Enron

(c) Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Baseline I1 I2 I3 I4 I5

Enron

ACE

CoNLL

EnronPP

(b) Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Baseline I1 I2 I3 I4 I5

Enron
ACE
CoNLL
EnronPP

(c) Recall

(c)Recall

Figure 4.8: Result Quality After Each Iteration of Refinement

refinements, therefore substantially decreasing the number of examples available in

subsequent iterations. Second, removing some of the other false positives requires

low-level changes that are not yet implemented in our system (e.g., modify a regular

expression).

Experiment 2. In this experiment we compare the top refinements generated by

our system with those devised by human experts. To this end, we conducted a user

study in which two experts A and B were given one hour to improve the rule set

for the Person task using the Enron train set. Both experts are IBM researchers

(not involved in this project) who have written over 20 information extraction

rule sets for important IBM products over the past 3 years. To ensure a fair

comparison, the experts were restricted to types of refinements supported in our

current implementation (Section 4.6.2).

105

ID Description P R F1 I1 I2

Baseline 35.2 85.0 49.8
A1,B1Filter Person by Person (CONTAINED) 57.3 83.7 68.0 1 n/a
A2 Dictionary filter on CapsPerson 70.3 83.9 76.5 4 4
A3,B4Dictionary filter on Person 71.8 83.8 77.4
A4 Filter PersonFirstLast by DblNewLine (OVERLAP) 72.6 84.0 77.9 9 5
A5 Filter PersonLastFirst by DblNewLine (OVERLAP) 72.7 84.1 78.0 9 5
A6,B2Filter PersonLastFirst by PersFirstLast (OVERLAP) 73.5 84.1 78.4 5 3
A7,B3Filter Person by Org (OVERLAP) 74.1 82.5 78.0 3 1
A8 Filter Person by Address (OVERLAP) 74.3 82.4 78.111 9
A9 Filter Person by EmailAddress (OVERLAP) 77.3 81.7 79.412 6

Table 4.1: Expert refinements and their ranks in the list of generated refinements after iterations 1
and 2 (I1, I2).

Table 4.1 shows the refinements of both experts and the F1-measure improvements

achieved on the test set for expert A. (Expert B’s refinements are a subset of A’s.)

The table also shows the rank of each expert refinement in the list automatically

generated by our system in the first iteration, and the second iteration after

applying the top-most refinement. We observed that the top refinement suggested

by the system (remove person candidates strictly contained within other person

candidates) coincides with the first refinement applied by both experts (i.e., A1 and

B1). Furthermore, with a single exception, all expert refinements appear among the

top 12 results generated by our system in the first iteration. The dictionary filter

generated in iteration 1 consisted of 12 high-quality entries incorrectly identified

as part of a person name (e.g., “Thanks”, “Subject”). It contains 27% of all

entries in corresponding refinement A2, and all entries in the filter dictionary on

person candidates of B4. Furthermore, in both iterations, the system generated a

slightly better refinement compared to A4 and A5 that filters all person candidates

overlapping with a double new line. This achieves the combined effect of A4 and

A5, while producing a refined rule set with a slightly simpler structure (a single

filter, instead of two). Based on the observations above, we believe it is reasonable

to conclude that our system is capable of generating rule refinements that are

comparable in quality to those generated by human experts.

106

4.7.4 Performance Evaluation

The goal of our performance evaluation is two-fold: to validate that our algorithm

for generating low-level changes is tractable, since it should be clear that without

the optimizations in section 6, CPU cost would be prohibitive, and to show that the

system can automatically generate refinements faster than human experts.

The table below shows the running time of our system in the first 3 iterations

with the Person rule set on the Enron dataset, when the size of the training data is

varied between 100 and 400 documents.

Train set I1 I2 I3 F1 after I3

#docs (sec) (sec) (sec) (%)

100 35.3 1.8 1.1 74.9
200 44.5 6.0 4.2 70.2
300 72.9 9.9 6.3 72.1
400 116.4 21.3 13.6 70.0

As shown above, the system takes between 0.5 and 2 minutes for the first iteration,

which includes the initialization time required for loading the rule operators in

memory, running the extractor on the training set, and computing the provenance

graph, operations performed exactly once. Once initialized, the system takes under

20 seconds for subsequent iterations. As expected, the running time in each iteration

decreases, since less data is being processed by the system after each refinement.

Also note that the F1-measure of the refined rule set after iteration 3 (refer to last

column of the table) varies only slightly with the size of the training set.

We note that in each iteration the system sifts through hundreds of documents,

identifies and evaluates thousands of low-level changes, and finally presents to the

user a ranked list of possible refinements, along with a summary of their effects and

side-effects. When done manually, these tasks require a large amount of human

effort. Recall from Experiment 2 that the experts took one hour to devise, implement

and test their refinements, and reported taking between 3 and 15 minutes per

refinement. In contrast, our system generates almost all expert’s refinements in

107

iteration 1, in about 2 minutes!

4.8 Conclusions

As we seek to leverage database technology to manage the growing tide of poorly

structured information in the world, information extraction has gained growing

importance. Most information extraction is based on painstakingly defined extraction

rules that are error-prone, often brittle, and subject to continuous refinement. This

chapter takes a significant step towards simplifying IE rule development through the

use of database provenance techniques.

Specifically, this chapter showed how to modify extraction rules to eliminate false

positives in the extraction result. Standard provenance techniques only consider

the provenance of tuples in the result set, and hence are not useful for addressing

false negatives. However, recent provenance work [26, 46, 49] has begun to develop

tools to reason about expected tuples not present in the result set. We believe these

techniques can be adapted to our framework to address false negatives in information

extraction rules as well. However, this is the subject of future work.

108

CHAPTER V

ASSISTED QUERYING BY BROWSING

5.1 Introduction

5.1.1 Motivation

Relational databases remain a indispensable resources for users, three decades after

their advent. In many situations users without formal database training are required

to use SQL to interact with a database. For example, Sloan Digital Sky Survey [9],

which hosts the largest publicly available astronomical database, employees SQL as

the primary querying means. Researchers and practitioners in astronomy are forced

to learn SQL in order to make extensive use of the database. Such scenarios exist in

other disciplines such as biology (biologists query multiple databases to investigate

biological phenomenon) and even machine learning (researchers specifies features in

SQL before submitting the workload for long-time execution).

Querying through SQL is intrinsically difficult for non-experts. It is easily

conceivable that learning and writing code in a formal language is difficult for users

who may have never written a single line of code. Two major barriers are faced by

users. First, structural uncertainty. Users first have to decide the right structure of

the results by forming joins across multiple tables, which is difficult if the database

schema is complex. Second, value uncertainty. Once the structure of the data is

determined, users have to specify complex selection conditions to find the best set

of results. This is difficult when the user is in a browsing mode and does not have a

109

clear idea of the criteria to specify. This is often the case, as evidenced by a recent

report by Google [42], according to which, “49% of consumers did not know exactly

which type of device they would purchase when the started the shopping process for

a new device”. Users browse, compare, and then decide. Both uncertainties need to

be addressed in order to help users search a database with much less effort.

In this chapter, we propose to address both structural and value uncertainty

through a new querying paradigm, Assisted Querying by Browsing (AQB). Users

never have to write a SQL query. Instead, they are presented with an initial set

of results to start browsing. To address the structural uncertainty, we present to

the user the top-k most popular join patterns. Based on the what they see, users

choose a view to work on. To address the value uncertainty, we make suggestions

on the selection predicates to apply on attributes in the view. Users provide input

by simply clicking a button of “Like” or “Dislike” for the tuples that they see.

Our system takes such input, refine the suggestions, and presents better choices of

tuples. This process continues until users are completely satisfied with the results or

suggestions are exhausted.

For ease of understanding, we use a shopping example. Consider our user Amy,

who is looking for real estate to purchase through Realtor.com. There are just too

many attributes to search in order to find the perfect house. For example, typical

attributes include price, size, property status (new construction or second-hand),

property types (house or condo), number of beds and baths, parking space, stories,

and there are more. It is overwhelming for Amy to specify all these attributes at

once - either she is uncertain about them in her own mind or she simple does not

know the available data enough to do so.

So, instead of showing a simple table of results (even HTML listing is a table),

we can show an additional column, where user can pick and choose her preference, as

in Figure 5.1. Note that in the figure we only listed a few available attributes out of

110

ID Price
(k$)

Size
(Sq Ft)

Property
Status

Property
Type

Beds Bath Like or
Dislike

231 2,195 5,400 New House 6 6

13 1,999 5,200 Recently
Sold

House 5 6

342 3,212 6,500 New House 7 7

19 1,211 3,400 Second-
hand

House 4 5

231 569 2,500 Second-
hand

Condo 3 3

765 982 3,100 New House 4 4

334 500 2,300 Recently
Sold

Condo 2 2

Figure 5.1: Example Interface

around 20 attributes available on Realtor.com. (Results can be shown with graphics,

which are omitted here for simplicity). Amy can pick and choose among the listed

ones the one that matches her ideal home the best and label it as “Like” (through

the right-most column). For those she clearly dislikes, she can label them as well.

Once a few rounds of labeling is done, the system is able to drastically improve the

suggestion based on what is learned from Amy. Under the hood, the system is using

Amy’s labeling to improve a SQL query recommendation engine to suggest the best

match for her.

Note that we are not the first to take advantage of such user feedback. By

collecting user preferences through “Like” buttons provided by social network sites,

search engines such as Bing (through Facebook) and Google (through Google +1)

provide personalized search results and improve their advertisement targeting. We

are, however, the first to propose querying a structured database directly through

browsing and labeling.

This paradigm relies to a certain degree on query logs. Logs are often available

111

and they provide valuable information on both user preference and characteristics of

the data in the database being queried. We analyze the logs to discover the most

frequently specified query operations and make query suggestions to the user based

on the analysis.

5.1.2 Challenges

Realizing the querying by browsing paradigm requires us to overcome several

challenges.

Querying Challenge The structural and value uncertainty of a query are easy

to address using SQL through specifying joins and selection predicates. How to help

non-experts achieve the same results without SQL is a major challenge.

Cold Start Challenge In the initial deployment period of a database, there is

no query log. This makes the approach of completely relying on query logs infeasible.

How do we circumvent such an obstacle and still provide users assistance?

Minimum User Effort Challenge Based on user preference on tuples, we

need to quickly identify user’s information need based on minimum user input.

Users have a low threshold of tolerance for the amount of effort to complete a task.

Specifically, users do not want to label too many tuples to get started. We need to

ask the minimum user input to meet her information needs.

5.1.3 Contributions

In this chapter, we make the following contributions:

• We propose the assisted querying by browsing paradigm for relational

databases that completely relieves the user from writing SQL. User interact

with a database directly through data items, which is much more tangible and

friendly. This addresses both structural and value uncertainty and hence the

querying challenge.

112

• We address the cold start challenge by using a set of automatically generated

queries to jump start the system. We use existing data mining techniques

to identify clusters of data and generate descriptions for the clusters. These

descriptions serve as the initial set of query logs, based on which we can make

suggestions.

• We address the minimum user effort challenge by always displaying the

most discriminating tuple to the user, which is the tuple that can maximally

differentiate one query from the others in the logs. This helps quickly identify

user’s information need and converge the suggestions.

5.2 Related Work

How to make databases usable has been attracting much interest in both academia

and industry. Jagadish et al. [50] overviewed the pain users faces using a relational

databases and outlined some research directions. One point argued in the paper

is we need to eliminate joins from user’s work. Towards the usability goal, many

querying paradigms have been proposed or improved, including form-based [54, 55]

and spreadsheet-based [67, 69, 19] approaches.

To reduce user’s effort in querying, much work has been done on autocompletion.

SnipSuggest [59] uses query logs to automatically complete user’s SQL query clauses.

This approach is shown to be highly effective in predicting frequently used clauses

such as popular joins and selection predicates. The application scenario is still

SQL-based querying and the user is required to know SQL. Qunits [75] proposes

to derive popular parametrized views from query logs, which can be matched with

user’s keyword queries. This is a keyword-based approach with limited expressive

power, and it relies heavily on query logs and hence it suffers from the cold start

problem.

Our work is related to Query by Output (QBO) [103], which induces the best

113

query from a given set of tuples. The purpose of QBO is to find a query that

produces the identical result set. Their approach, if applied in our scenario, produces

an over-fitted query that has little generalizability and hence it is not applicable.

5.3 Algorithms

5.3.1 Addressing Structural Uncertainty

Based on a query log, we follow these steps to help users identify the best structure

of query results.

1. Enumerate all possible joins from the schema by following foreign key

references. Each join is assigned to a bucket.

2. For each join that appeared in the log, assign it to the corresponding bucket

and increment the count of the bucket. For each bucket, also count the

appearances of all combinations of attribute appearances. For example, for

all joins on parts and supplier (join on part id), count the appearance of

“part name”, “part name, supplier name”, etc.

3. At query time, when a user starts to navigate a table, follow all outgoing and

incoming foreign key references to this table in the schema. Thus we produce

a list of candidate joins and pick the join with highest frequency counts.

In the third step, the results of different join patterns are shown graphically in

parallel so users can choose based on actual query results rather than on schema.

Note that in the first two steps, sometimes a join involves more than one hop in

the schema graph (multi-way join). Whether we present a one-hop join or multi-hop

join depends on their presence in the query log.

Without query log, we can use clustering-based schema summarization techniques

[112] to derive most closely related tables from schema alone.

114

5.3.2 Query Suggestion Based on Tuple Preference

In this section, we discuss how we suggest queries from the query repository to the

user based on what we learn about her preference. Note that we only address value

uncertainty, assuming that the user has decided on a structure of the result (e.g., all

joins are already specified) so that structure uncertainty has been addressed. The

goal now is to help users specify complex selection conditions.

Interaction Model

After the user decides on the joins, she is presented with an initial view V. We present

a first screen of results for V, where the result tuples are ordered by their power to

differentiate one query from another in the query repository using techniques we will

specify in Sec. 5.3.3. The user picks tuples that she has a clear preference of like

or dislike and assigns them the corresponding label. This input is processed by the

system, and two cases may happen. First, the user input so far is not enough for

the system to decide on one unique query in the query repository that matches the

user’s information need. In this case, the user is shown more tuples to label so that

she can provide further hints. Second, the system is able to uniquely locate a query

based on the input so far, and the user is informed the target query is found. Results

of that query are presented to the user.

Differentiating Power of a Tuple

Once the user decides on the structure of the results, we need to help her specify

selection conditions. Specifically, our goal is to help the user find a query that

matches her preference out of all queries in the repository. Denote the initial view as

V, we only need to consider all queries that refine V. We denote this set of queries

in the repository as Q.

Note that the differentiating power (DP) of a tuple needs to be considered in

two cases, namely, positive feedback and negative feedback. Each tuple t in V has

115

different power to distinguish one query q from others in Q. If t is a result of q, a

user’s positive feedback on t increases the likelihood of q being the right query, and

a negative feedback on t decreases the likelihood. On the contrary, if t is not a result

tuple of q, we have the exact opposite effect. If we do not know the prior likelihood

of a tuple being liked or disliked, we assume an equal likelihood.

Consider the real estate example in Figure 5.2, where we have three tuples

(t1, t2, and t3), each contains price and size attribute of a house (for simplicity of

explanation we picked two popular attributes). The values on the right upper corner

show the exact price and size of each tuple. Assume there are previous range queries

(q1, q2, and q3) issued by others each represented by a rectangle. A tuple in the

query range means that it satisfies the query. Our user, Amy, liking or disliking each

tuple promotes or demotes each query differently:

• Likes t1: both q1 and q2 receive a reward, but q2 should receive a larger reward

because it contains a smaller number of results. If Amy stops here, q2 is her

desired query. q3 receives a penalty because it has less chance of being liked.

• Likes t2: q2 gets a penalty while q1 receives a reward. q3 receives a penalty.

• Likes t3: q3 receives reward and both q1 and q2 receive a penalty because

neither matches t3.

• Dislikes t1: both q1 and q2 should be demoted, but q2 receives a bigger penalty

since Amy may still like t2. q3, on the other hand, receives a reward.

• Dislikes t2: q1 gets a penalty. Other queries receive a reward.

• Dislikes t3: q3 receives a penalty and other queries receive a reward.

From the above example, we can intuitively derive a formula for DP similar to

TF/IDF (term frequency/inverse document frequency) in information retrieval. For

116

t1

t2

t3
q2

q1

Price

Size

q3

t1 (990, 3,400)
t2 (2,900, 4,100)
t3 (5,100, 2,700)

Figure 5.2: Differentiating Power Example on Price and Size Attribute of Real Estate

query q, if tuple t is in the result set of q, the DP is inversely proportional to: i)

the number of tuples in the result set of q, and ii) the number of queries out of Q

that has t as a result tuple. We denote the two quantities as ResultSize (RS) of q

and QueryFrequency (QF) of t. DP of tuple t for query q is given by the following

formula:

DP (t, q) =
α

RS(q)×QF (t)
(5.1)

α is a tuning parameter (details in Sec. 5.5).

If t is not a result of q, if the user likes/dislikes t, we need to give q a

penalty/reward. Intuitively, if q contains a large number of tuples, it has a higher

chance of still matching user’s preference. It does not matter to q, however, the

number of queries that have t as part of the result. In this case, the DP is given by

the following formula:

117

DP (t, q) =
β

RS(q)
(5.2)

Similarly, β is also a tuning parameter.

Continuing with the example in Figure 5.2, the values of DP of reach tuple with

respect to each query are shown in Table 5.1. We have left both α and β unspecified

at the moment, but β is considerably smaller than α. As we can see in this table,

tuple t3 has the biggest maximum DP (with q3), while t1 has the smallest maximum

DP (with q1).

Table 5.1: DP of Tuples With Respect to Queries

PPPPPPPPPTuple
Query

q1 q2 q3

t1 α/4 β/2 β
t2 α/2 β β
t3 β/2 β α

Ranking Queries with Differentiating Power

The definition of differentiating power (DP) allows dynamic ranking of queries in

the repository. Initially, all queries in the log have the same score of zero. As the

user starts to label tuples, each action from the user adjusts the score of queries,

according to formulae in Section 5.3.2. The top k ranked queries are visualized to

the user, through actual query results (k is a parameter that can be specified by the

user or using a small default value such as 3).

After the user labels the first tuple, each subsequent user action triggers an

adjustment of ranking. In order to converge on the suggestion, we add a decaying

factor, γ (less than one), to the differentiating power of labeled tuples. Thus, the

i-th tuple the user labels will have their DP multiplied by γi−1. The pseudo-code for

this procedure is shown in Figure 3.

118

Algorithm 3 Procedure for Adjusting Query Ranking based on User Label

Input: Q : list of queries in the repository, each identified by its position in the
sequence

Input: T : list of tuples labeled by the user
Input: L: label provided by the user for tuples in T, in the same order
Input: RS : result set for each query in Q ; RS[q] gets the result set of query q
Input: QF : query frequency for tuples in T ; QF[t] gets query frequency of tuple t
α, β, and γ are system parameters

Output: S : score of queries in the repository, in the same order as those in Q
for s in S do
s = 0

end for
for i = 0 do

if User stops or scores of all queries are below a pre-set threshold then
Stop

else
for j = 0; j < |Q|; j + + do

if User likes T[i] then
if (T[i] is in RS[q]) then

S[j] += γi × α
RS(q)×QF (T [i])

;
else

S[j] += γi × β
RS(q)

end if
end if
if User dislikes T[i] then

if (T[i] is in RS[q]) then
S[j] -= γi × α

RS(q)×QF (T [i])
;

else
S[j] -= γi × β

RS(q)

end if
end if

end for
end if

end for

119

5.3.3 Serving Tuples for Labeling

In this section, we discuss different orders of serving tuples for users to label. This

problem concerns which tuples are shown to the users first, and how to adapt to

user’s input to dynamically adjust the next batch of tuples to show. Tuples are

presented to the user in a ranked list, where the top ranked is the one that is most

likely labeled by the user.

Proposed Solution We can treat the decision of which tuple to label first as a

decision-tree building process. Each tuple that the user labels can be considered as

a decision attribute. This decision, in effect, clusters the queries in the repository

as relevant or irrelevant, although the decision boundary is a soft rather than hard

one. In addition, unlike the approach in Query by Output [103], we are not trying

to devise a tight query that matches exactly tuples the user likes. Rather, we want

our suggestion to be able to generalize. Thus we are not using any off-the-shelf

decision-tree building algorithm. It is well-known that it is intractable to build the

smallest decision tree [87]. Like decision tree building, it is intractable to find the

best sequence of tuples to suggest to the user. Inspired by this, we devise a greedy

algorithm to choose which tuples to serve first.

Our strategy is to always choose the most differentiating tuple. For query set Q,

we denote each of its element by qi, where i ∈ [1, |Q|]. Each time the user is asked

to label a tuple, we call it an “iteration”. For each query qi, we keep a score of

ranking, which is updated after each iteration. We denote the score of query qi before

iteration k as by Sk(qi). Consider the real estate example in Figure 5.2 and Table

5.1. Our approach is to always choose the tuple that leads to the highest DP change

to any query. Continuing with the housing example, we start with tuple t3 since it

has the highest DP to q3. If user likes it, we suggest q3 after this step. Otherwise, we

suggest query tuple t2 in the next step. Since we always choose the tuple with the

maximum DP on any query, we call this approach Maximum Max-DP.

120

5.3.4 Generating the Initial Set of Queries

While query logs serve as a great source of insights into users’ query interest, they

are not always possible to obtain. This is a severe problem when a database is

just deployed. Therefore, if we can have some seed queries based on which we can

make suggestions without any query logs, our system will be much more robust and

applicable.

We solve this problem using a clustering approach. Many data sets contain

naturally formed clusters and they can be identified in advance with existing

clustering techniques. It is conceivable that those clusters can represent regions that

are of different interests to users. For example, if we cluster a real estate database,

we are likely to get clusters of high-end houses, mid-range and low-end ones. If

we can describe these clusters by their ranges in each attribute, we can use these

descriptions as the initial set of queries. For example, if the cluster of high-end

houses are described as “price > 1,500k and size > 3,000”, this description can be

used as a potential query for users who are looking for a high-end house.

So our goal is to identify clusters and their descriptions, preferably with cluster

shape being hyper-rectangles in parallel with attributes of data. The CLIQUE

algorithm [13] does exactly this.

Introduction to CLIQUE

CLIQUE partitions each dimension into intervals of equivalent length and thus it is

a grid-based clustering technique. It accomplishes two goals for us:

• Identifying subspace clusters of the highest dimensionality. It is conceivable

that we may deal with data sets of many attributes. CLIQUE applies Apriori

Property (first proposed in the seminal paper on association rule mining [14])

to find clusters in subspaces. This not only finds more meaningful clusters but

also reduces the complexity of descriptions for the clusters.

121

• Generating usable descriptions for clusters. We stress the usability because we

need the descriptions to be easy to interpret. Since GLIQUE merges connected

rectangular clusters into bigger clusters, the result clusters have axis-parallel

edges. As a result, the cluster edges can be described with simple selection

predicates. This makes the cluster descriptions ideal as initial seeding queries.

Applying CLIQUE Offline to Generate Seed Queries

When a database is just set up, we run CLIQUE offline on its data. Before doing

so, however, we need to analyze the database schema to find useful joins, because

CLIQUE is going be to performed on the join results rather than on the initial data

set. Those joins are also our best guess of what joins a user may be interested in

performing, without any query log.

We apply clustering-based schema summarization technique proposed by Yu and

Jagadish [112] to find tables that are most related. This gives us the join paths with

maximum potential interests. Once the set of joins are obtained, we perform those

joins one by one and store the results in a temporary storage space in separate tables.

For each table, we run CLIQUE to cluster the data and generate descriptions. We

accumulate all descriptions as seed queries and discard the temporary join results.

Note that this method does require quite some temporary storage and processing

time. Storage space is usually not a concern because disk space is quite affordable.

We do all processing offline, and CLIQUE is a very efficient algorithm. We do not

need to re-do this process when new data comes in, although we may need to do so

when database schema changes so significantly that existing joins are broken.

5.3.5 Dealing with Cold Items

A potential problem with our AQB paradigm is that, if a tuple is never mentioned

in any previous query, it is not covered by any query and it will never show up in

the query result. To the user, this tuple is essentially lost. We need to be sure that

122

every item in the database can be found with browsing, even if no query has ever

included the item in the result.

Our initial set of queries, generated from clustering, can potentially deal with a

portion of cold items. Note that clustering can leave outliers unclustered; however,

those outliers may not be cold items. Some data points of extreme values, although

likely to be outliers in clustering, may be frequently queried items. So it is not

necessary that clustering leaves cold items uncovered. After the clustering step, only

the outliers of clustering are uncovered. An straightforward method is to assign each

outlier to the cluster whose centroid is closest. When the query corresponding to the

cluster is suggested, we also suggest associated outliers. In this manner, all items

can be found through browsing.

Once we have accumulated queries posed by users, we can improve the assignment

by assigning outliers to the closest queries. We can expect that the probability of

a tuple being missed by all queries decreases with the number of queries in the

repository, and the distance from a tuple to its assigned query decreases. Thus the

quality of suggestions improves over time.

5.4 Scalability

Scalability is a potential problem for the AQB approach, for several reasons. First,

the number of composite tuples is large. Each join pattern corresponds to a set

of composite tuples, which means the total cardinality of composite tuples can

be a multiple of database size, depending on the database schema. To be able to

dynamically serve those tuples to the user for labeling in an interactive setting is a

challenge. Second, the set of queries may be large, and we need to quickly identify

the best query to suggest; each time a new tuple is labeled, we need to refresh the

ranking. Third, we need to efficiently maintain the relationship between a tuple

and the query that includes the tuple as part of the result. We now discuss how to

123

address those issues separately.

Composite Tuple Index We build an index similar to a join index for

composite tuples. For each join pattern, we maintain a separate index, where each

entry correspond to a composite tuple. The index entry contains record IDs to base

tuples. At run time, we can fetch the base tuples to assemble composite tuples on

the fly. In this manner, we avoid duplicating the database multiple times.

Query Repository We maintain the set of query log in a table, sorted by the

cardinality of query result. Together with the query string, we also maintain the

cardinality of the query result.

Inverted Index from Composite Tuples to Queries When a tuple is

labeled, we need to quickly identify all queries that have it as part of the query result

in order to adjust the weight we assign to the queries. We build an inverted index,

from composite tuple to queries for this purpose.

Using the query repository and inverted index, we can quickly compute the

differentiating power of tuples. However, we still face the problem of having too

many tuples to suggest, if the database is large. We take a uniform sample of all

composite tuples if the number is too large to process interactively.

5.5 Experiments

5.5.1 Experimental Settings

We run the experiments on a Macbook Pro with 2.16GHz Intel Core 2 Duo CPU,

4GB of DRAM, and MacOS 10.5.8.

Data Set and Query Log

We use the same data set and query history used in the SIGMOD paper of Chen and

Li [28]. The following two paragraphs of description are directly borrowed from [28]:

“The data set contains information on 18537 mutual funds downloaded from

124

www.scottrade.com. The dataset includes almost all available mutual funds in US

market. There are 33 attributes, 28 numerical and 5 categorical. The total data size

is 20 MB.”

“Query history: We collected query history by asking 14 users (students in

our department) to ask queries against the dataset. Each query had 0 to 6 range

conditions. The history contained 124 queries with uniform weight. Each user

asked about the same number of queries. There were six attributes “1 year return”,

“3 year return”, “standard deviation”, “minimal investment”, “expenses”, and

“manager year” in search conditions of these queries. Each query had 4.4 conditions

on average.”

Experimental Procedure

We measure the absolute measurement of user effort. We randomly select a query q

as our target query from the query log. We measure the total number of steps it takes

to reach the query through labeling result tuples, assuming that user always labels

the top suggested tuple correctly (meaning that the label increases the likelihood of

correct queries being pushed up in ranking). We repeat this step for 10 times and

report the average and variance. This gives us a measurement of the absolute steps

it takes to reach arbitrary query through labeling.

Parameter Tuning

We have to tune the scaling factors we put on the differentiating power and the

decaying factor. Like many parameters used in ranking algorithms, they are decided

by experiments - we test the performance of different combinations and choose the

one that produces the best results.

125

5.5.2 Results

User Effort Table 5.2 reports the number of steps it takes for each query to

complete. We show results for 10 individual runs, as well as mean and variance

across these runs.

Table 5.2: Absolute Measurement of User Effort
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Step Count 8 3 5 6 5 3 6 7 5 4

The mean number of steps to reach a query is 5.2, and the variance is 2.62.

Running the system is instantaneous, and the total time spent on this task solely

depends on how long a user takes to label a tuple. With an average 5.2 tuples to

label, the system can quickly converge to user’s desired query (if it exists).

5.6 Conclusion

In this chapter, we propose assisted querying by browsing for relational databases.

Compared to traditional approaches, our work completely eliminates the need of

writing SQL, which has been a huge barrier for non-expert users. In the proposed

paradigm, users are suggested some tuples to start up and through user’s feedback on

tuples we refine our suggestions until user’s information need is met. This approach

is particularly suited for situations where the user’s information is not precisely

specified in the beginning, which is often the case in a browsing scenario. Our work

is based on database schema and query log analysis, and it is resilient to cold start

of the database. Experiments show that we can quickly find results from a database

and our query suggestions are of high quality based on a small number of training

tuples.

126

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis we focus on bringing usability to database systems through the

direct manipulation paradigm. We start with a spreadsheet algebra that enables the

implementation of a direct manipulation spreadsheet query interface, through which

users directly interact with the data. This is our solution to the query specification

stage of an information seeking task. We also proposed the Assisted Querying by

Browsing paradigm, where users query a database through labeling data tuples.

Throughout query specification or after the query is completely specified, users can

review results through our MusiqLens framework, which generates representatives

from the data. This helps relieve users from having to flip through pages of results.

When the user finds undesirable results and wants to refine the query, our work in

query refinement can be applied.

The components build in the four chapters of this thesis integrate together to

form a usable system for users to access a database. The following two scenarios

demonstrate how users can better use a database through this system.

• Sam, a freshman in college, wishes to purchase a used car at a bargain price.

He is interested in Ford Focus because his family has had pleasant experiences

with the brand. Sam opens a used car database using SheetMusiq and starts

playing with the data. He filters all cars by brand “Ford” and then model

“Focus”. This eliminates unwanted brands and models, but it still gives

him too many results. He turns on the MusiqLens feature such that all cars

127

(all Ford Focus) are presented to him hierarchically. Sam is interested in

finding a good balance between price and mileage so he chooses to generate

representatives based on those two attributes. Sam can now pick cars of

different characteristics, such as those with high mileage but low price, low

mileage but high price, or somewhere in between. If this does not satisfy him,

Sam can label some results as wanted or unwanted, and ask the system to

refine the query for him. The AutoRefine project can suggest to narrow down

the results further, by suggesting filtering conditions. This process continues

until Sam’s information needs are met or the system concludes that no result

completely matches Sam’s requirement.

• Alternatively, Sam can take a different path after specifying that he wants

“Ford Focus” in SheetMusiq. He can use the assisted querying by browsing

(AQB) feature and starts picking the cars that matches his interest. AQB

suggests the most fitting query out of the query repository based on Sam’s

labeling. Sam may reach a query that completely captures his information

needs, or he can settle on a query that is an close approximation. In the

former case, he can stop; in the latter case, he can use the suggested query as

a starting point, and then performs more manipulation using SheetMusiq or

query refinement using AutoRefine.

In both scenarios, Sam is relieved from the difficulties involved with traditional

database interfaces. As a result, the daunting task of finding information from a

database becomes much easier and more rewarding.

This thesis strives to achieve a balance between intelligent agents and user-

controlled directed manipulation [70]. SheetMusiq is a realization of direct

manipulation on database querying interface, and it does not provide any additional

intelligence other than providing a contextual menu. This allows users to freely

express their queries to the database. MusiqLens shifts towards intelligent agents by

128

clustering the data first, although users still interact with it in a direct manipulation

fashion. AutoRefine takes the intelligence to another level by automatically deriving

best refinements while hiding the inner works from the user. AQB provides

suggestions based on labeling, where much intelligence is involved. As a thesis, there

is a healthy mixture of both intelligent agents and direct manipulation, which is

exactly what we set out to accomplish.

A natural future directions following this thesis is database usability on the Web.

There are millions of databases accessible from the Web. Getting things done over

the Web usually involves querying and consuming data from multiple data sources.

This means that improving usability of individual databases is just the first step; we

need to improve the usability of multiple databases at the Web scale. Information

integration approaches such as federated search and data warehousing provide solid

solutions only when the number of databases involved is small because they require

considerable manual work for each database. We cannot expect to write wrappers or

transform data for thousands of databases. Achieving the ultimate goal of making

databases over the Web usable requires a long-term effort due to the scale and

difficulty of the problem.

A second direction is to drastically improve query refinement effort. Currently,

we require users to label a large number of tuples in order to derive high-quality

refinements. While this is very useful since it can dramatically cut down refinement

time, it is not applicable in an interactive setting. We believe that active learning

techniques can be applied to reduce the number of tuples to be labeled through

selecting highly promising tuples for labeling first.

129

BIBLIOGRAPHY

130

BIBLIOGRAPHY

[1] Dabble db - online database. http://dabbledb.com/.

[2] Database usability research at university of michigan.
http://www.eecs.umich.edu/db/usable/.

[3] Navicat. http://pgsql.navicat.com/.

[4] Tableau software. http://www.tableausoftware.com/.

[5] The Enron corpus. www.cs.cmu.edu/enron/.

[6] Transaction processing performance council. TPC-H Benchmark Specification,
Version 2.6.1.

[7] Zoho db & reports. http://db.zoho.com/.

[8] Automatic Content Extraction 2005 Evaluation Dataset, 2005.

[9] Sloan digital sky survey: http://www.sdss.org/, 2010.

[10] E. Agichtein, E. Brill, S. T. Dumais, and R. Ragno. Learning user interaction
models for predicting web search result preferences. In SIGIR, pages 3–10,
2006.

[11] E. Agichtein and L. Gravano. Snowball: extracting relations from large
plain-text collections. In ACM DL, pages 85–94, 2000.

[12] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In SIGMOD
Conference, pages 94–105, 1998.

[13] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In SIGMOD
Conference, pages 94–105, 1998.

[14] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules
between sets of items in large databases. In P. Buneman and S. Jajodia,
editors, Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 26-28, 1993, pages 207–216.
ACM Press, 1993.

131

[15] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In ACM
POPL, 1979.

[16] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff. Tioga-2: A direct
manipulation database visualization environment. In ICDE, pages 208–217,
1996.

[17] D. E. Appelt and B. Onyshkevych. The common pattern specification
language. In TIPSTER workshop, 1998.

[18] N. Ashish, S. Mehrotra, and P. Pirzadeh. Xar: An integrated framework for
information extraction. In WRI Wold Congress on Computer Science and
Information Engineering, 2009.

[19] E. Bakke and E. Benson. The schema-independent database ui: A proposed
holy grail and some suggestions. In CIDR, 2011.

[20] J. L. Bentley. Programming pearls: algorithm design techniques. Commun.
ACM, 27(9):865–873, 1984.

[21] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor.
In ICML, pages 97–104, 2006.

[22] B. Boguraev. Annotation-based finite state processing in a large-scale nlp
architecture. In RANLP, pages 61–80, 2003.

[23] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query systems
for databases: A survey. J. Vis. Lang. Comput., 8(2):215–260, 1997.

[24] T. Catarci, P. Dongilli, T. D. Mascio, E. Franconi, G. Santucci, and S. Tessaris.
An ontology based visual tool for query formulation support. In ECAI, pages
308–312, 2004.

[25] T. Catarci and G. Santucci. Query by diagram: A graphical environment for
querying databases. In SIGMOD, page 515, 1994.

[26] A. Chapman and H. V. Jagadish. Why not? In sigmod, pages 523–534, 2009.

[27] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic information
retrieval approach for ranking of database query results. ACM Trans. Database
Syst., 31(3):1134–1168, 2006.

[28] Z. Chen and T. Li. Addressing diverse user preferences in sql-query-result
navigation. In SIGMOD Conference, pages 641–652, 2007.

[29] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in databases: Why, how,
and where. Foundations and Trends in Databases, 1(4):379–474, 2009.

132

[30] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and
S. Vaithyanathan. SystemT: An Algebraic Approach to Declarative
Information Extraction. In ACL (to appear), 2010.

[31] H. Cunningham. JAPE: a Java Annotation Patterns Engine. Research
Memorandum CS – 99 – 06, Department of Computer Science, University of
Sheffield, May 1999.

[32] A. Das Sarma, A. Jain, and D. Srivastava. I4E: interactive investigation
of iterative information extraction. In Proceedings of the ACM SIGMOD
Conference, pages 795–806, 2010.

[33] D. DeJong. An overview of the frump system. In W. G. Lehnert and M. H.
Ringle, editors, Strategies for Natural Language Processing, pages 149–176.
Hillsdale: Erlbaum, 1982.

[34] M. Ester, H. Kriegel, and X. Xu. A Database Interface for Clustering in Large
Spatial Databases. Inst. für Informatik, 1995.

[35] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD, pages
226–231, 1996.

[36] M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial
databases: Focusing techniques for efficient class identification. In SSD, pages
67–82, 1995.

[37] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. In PODS, 2001.

[38] I. O. for Standardization. Information technology – database languages –
sql – part 1: Framework (sql/framework). Technical report, 2003. ISO/IEC
9075-1:2003.

[39] D. Freitag. Multistrategy learning for information extraction. In ICML, 1998.

[40] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. WH Freeman San Francisco, 1979.

[41] B. Glavic and G. Alonso. Perm: Processing provenance and data on the same
data model through query rewriting. In ICDE, pages 174–185, 2009.

[42] Google. Wireless shopper 2.0. 2010.

[43] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In
pods, pages 31–40, 2007.

[44] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for
large databases. In SIGMOD Conference, pages 73–84, 1998.

133

[45] P. Hanrahan. Vizql: a language for query, analysis and visualization. In
SIGMOD, page 721, 2006.

[46] M. Herschel and M. Hernandez. Explaining Missing Answers to SPJUA
Queries. PVLDB, 2010.

[47] J. R. Hobbs, D. Appelt, J. Bear, D. Israel, M. Kameyama, and M. Tyson.
Fastus: a system for extracting information from text. In HLT ’93: Proceedings
of the workshop on Human Language Technology, pages 133–137, Morristown,
NJ, USA, 1993. Association for Computational Linguistics.

[48] M. Hua, J. Pei, A. W.-C. Fu, X. Lin, and H. fung Leung. Efficiently answering
top-k typicality queries on large databases. In VLDB, pages 890–901, 2007.

[49] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of
non-answers to queries over extracted data. PVLDB, 1(1):736–747, 2008.

[50] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and
C. Yu. Making database systems usable. In SIGMOD, 2007.

[51] A. Jain, P. G. Ipeirotis, A. Doan, and L. Gravano. Join optimization of
information extraction output: Quality matters! In icde, pages 186–197, 2009.

[52] T. J. Jankun-Kelly and K.-L. Ma. A spreadsheet interface for visualization
exploration. In IEEE Visualization, pages 69–76, 2000.

[53] B. J. Jansen and A. Spink. How are we searching the world wide web? a
comparison of nine search engine transaction logs. Inf. Process. Manage.,
42(1):248–263, 2006.

[54] M. Jayapandian and H. V. Jagadish. Automated creation of a forms-based
database query interface. PVLDB, 1(1):695–709, 2008.

[55] M. Jayapandian and H. V. Jagadish. Expressive query specification through
form customization. In EDBT, pages 416–427, 2008.

[56] S. Kandel, A. Paepcke, M. Theobald, and H. Garcia-Molina. The photospread
query language. Technical report, Stanford Univ., 2007.

[57] S. Kandel, A. Paepcke, M. Theobald, H. Garcia-Molina, and E. Abelson.
Photospread: a spreadsheet for managing photos. In CHI, pages 1749–1758,
2008.

[58] L. Kaufman and P. Rousseeuw. Finding groups in data. an introduction
to cluster analysis. Wiley Series in Probability and Mathematical Statistics.
Applied Probability and Statistics, New York: Wiley, 1990.

[59] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest:
Context-aware autocompletion for sql. PVLDB, 4(1):22–33, 2010.

134

[60] C. Koch. A visual query language for complex-value databases. ArXiv
Computer Science e-prints, 2006.

[61] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and
H. Zhu. SystemT: a system for declarative information extraction. SIGMOD
Record, 37(4):7–13, 2008.

[62] M. Kuntz and R. Melchert. Pasta-3’s graphical query language: Direct
manipulation, cooperative queries, full expressive power. In VLDB, pages
97–105, 1989.

[63] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML,
2001.

[64] W. G. Lehnert, J. McCarthy, S. Soderland, E. Riloff, C. Cardie, J. Peterson,
F. Feng, C. Dolan, and S. Goldman. Umass/hughes: description of the circus
system used for muc-5. In MUC, pages 277–291, 1993.

[65] C. Li, M. Wang, L. Lim, H. Wang, and K. C.-C. Chang. Supporting ranking
and clustering as generalized order-by and group-by. In SIGMOD Conference,
pages 127–138, 2007.

[66] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V. Jagadish.
Regular expression learning for information extraction. In EMNLP, pages
21–30, 2008.

[67] B. Liu and H. Jagadish. A spreadsheet algebra for a direct data manipulation
query interface. In ICDE, 2009.

[68] B. Liu and H. V. Jagadish. Datalens: Making a good first impression. In
SIGMOD Conference, Demonstration Track, 2009.

[69] B. Liu and H. V. Jagadish. Using trees to depict a forest. In VLDB, 2009.

[70] J. Miller, P. Maes, and B. Shneiderman. Intelligent software agents vs.
user-controlled direct manipulation: A debate (panel). In CHI Extended
Abstracts, pages 105–106, 1997.

[71] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the
clustering properties of the hilbert space-filling curve. IEEE Trans. Knowl.
Data Eng., 13(1):124–141, 2001.

[72] F. Morii. A generalized k-means algorithm with semi-supervised weight
coefficients. In ICPR (3), pages 198–201, 2006.

[73] K. Mouratidis, D. Papadias, and S. Papadimitriou. Medoid queries in large
spatial databases. In SSTD, pages 55–72, 2005.

135

[74] K. Mouratidis, D. Papadias, and S. Papadimitriou. Tree-based partition
querying: a methodology for computing medoids in large spatial datasets.
VLDB J., 17(4):923–945, 2008.

[75] A. Nandi and H. V. Jagadish. Qunits: queried units in database search. In
CIDR, 2009.

[76] R. T. Ng and J. Han. Clarans: A method for clustering objects for spatial
data mining. IEEE Trans. on Knowl. and Data Eng., 14(5):1003–1016, 2002.

[77] R. Nosofsky and S. Zaki. Exemplar and prototype models revisited: Response
strategies, selective attention, and stimulus generalization. Learning, Memory,
28(5):924–940, 2002.

[78] C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spalding,
and M. Stonebraker. Datasplash. In SIGMOD, pages 550–552, 1998.

[79] C. R. Palmer and C. Faloutsos. Density biased sampling: An improved method
for data mining and clustering. In SIGMOD Conference, pages 82–92, 2000.

[80] F. Pan, W. W. 0010, A. K. H. Tung, and J. Yang. Finding representative set
from massive data. In ICDM, pages 338–345, 2005.

[81] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional
data: a review. ACM SIGKDD Explorations Newsletter, 6(1):90–105, 2004.

[82] F. Peng and A. McCallum. Accurate information extraction from research
papers using conditional random fields. In HLT-NAACL, 2004.

[83] R. Ramakrishnan and J. Gehrke. Database management systems. McGraw-Hill
Boston, 2003.

[84] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning
system. In VLDB, pages 381–390, 2001.

[85] F. Reiss et al. An algebraic approach to rule-based information extraction. In
ICDE, 2008.

[86] E. Riloff. Automatically constructing a dictionary for information extraction
tasks. In KDD, 1993.

[87] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. 2009.

[88] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. Silva. Querying and
re-using workflows with vistrails. In ACM SIGMOD, 2008.

[89] W. Shen, P. DeRose, R. McCann, A. Doan, and R. Ramakrishnan. Toward
best-effort information extraction. In sigmod, pages 1031–1042, 2008.

136

[90] W. Shen et al. Declarative information extraction using datalog with embedded
extraction predicates. In VLDB, 2007.

[91] H. Shin and R. Nosofsky. Similarity-scaling studies of dot-pattern classification
and recognition. Journal of Experimental Psychology: General, 121(3):278–304,
1992.

[92] B. Shneiderman. A computer graphics system for polynomials. The
Mathematics Teacher, 67(2):111–113, 1974.

[93] B. Shneiderman. The future of interactive systems and the emergence of direct
manipulation. Behaviour & Information Technology, 1(3):237–256, 1982.

[94] B. Shneiderman. Direct manipulation: a step beyond programming languages.
IEEE Computer, 16(8):57–69, 1983.

[95] B. Shneiderman, D. Byrd, and W. B. Croft. Sorting out searching: A
user-interface framework for text searches. Commun. ACM, 41(4):95–98, 1998.

[96] J. Smith and J. Minda. Prototypes in the mist: The early epochs of category
learning. Learning, Memory, 24(6):1411–1436, 1998.

[97] S. G. Soderland. Learning text analysis rules for domain-specific natural
language processing. Technical report, Amherst, MA, USA, 1996.

[98] M. Spenke and C. Beilken. A spreadsheet interface for logic programming. In
CHI, pages 75–80, 1989.

[99] M. Spenke, C. Beilken, and T. Berlage. Focus: The interactive table for
product comparison and selection. In UIST, pages 41–50, 1996.

[100] S. Tata, J. M. Patel, J. S. Friedman, and A. Swaroop. Declarative querying for
biological sequences. In ICDE, page 87, 2006.

[101] C. Thompson, M. Califf, and R. Mooney. Active Learning for Natural
Language Parsing and Information Extraction. In ICML, pages 406–414, 1999.

[102] E. F. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003
Shared Task: Language-independent Named Entity Recognition. In CoNLL at
HLT-NAACL, pages 142–147, 2003.

[103] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query by output. In SIGMOD
Conference, pages 535–548, 2009.

[104] J. Ullman. Principles of database and knowledge-base systems, Vol. 1.
Computer Science Press, Inc. New York, NY, USA, 1988.

[105] J. Ullman. Principles of database and knowledge-base systems, Vol. 2.
Computer Science Press, Inc. New York, NY, USA, 1988.

137

[106] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-Yahia.
Efficient computation of diverse query results. In ICDE, pages 228–236, 2008.

[107] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A. Gupta,
L. Sheng, and S. Subramanian. Spreadsheets in rdbms for olap. In SIGMOD,
2003.

[108] A. Witkowski, S. Bellamkonda, T. Bozkaya, A. Naimat, L. Sheng, S. Sub-
ramanian, and A. Waingold. Query by excel. In VLDB, pages 1204–1215,
2005.

[109] T. Wu, X. Li, D. Xin, J. Han, J. Lee, and R. Redder. Datascope: Viewing
database contents in google maps’ way. In VLDB, pages 1314–1317, 2007.

[110] R. Xu and I. Donald Wunsch. Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645, 2005.

[111] A. Yates, M. Banko, M. Broadhead, M. J. Cafarella, O. Etzioni, and
S. Soderland. Textrunner: Open information extraction on the web. In
HLT-NAACL (Demonstrations), pages 25–26, 2007.

[112] C. Yu and H. V. Jagadish. Schema summarization. In VLDB, pages 319–330,
2006.

[113] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering
method for very large databases. In SIGMOD Conference, pages 103–114,
1996.

[114] S. Zhao and R. Grishman. Extracting relations with integrated information
using kernel methods. In ACL, 2005.

[115] M. M. Zloof. Query-by-example: the invocation and definition of tables and
forms. In VLDB, pages 1–24, 1975.

138

