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Abstract 
Understanding condensed phase equilibrium dynamics is essential to describing 

and predicting chemical reactions and their outcomes. To gain insight into 

equilibrium dynamics, ultrafast two-dimensional infrared (2DIR) spectroscopy is 

applied to metal carbonyl systems in order to observe two dynamic equilibrium 

processes: picosecond isomerization and intramolecular vibrational energy transfer.  

The picosecond isomerization between two of the different isomers of a 

fluxional metal carbonyl complex, dicobalt octacarbonyl, is characterized using 2DIR 

spectroscopy. The isomerization times are extracted from the congested spectra using 

the well characterized coherent modulation –a signature of non-exchanging signals – 

to isolate the exchange contribution to the signal. From temperature dependent 2DIR 

spectra, the temperature dependent rate constants are extracted. Analysis of the 

temperature dependent rate constants through the Arrhenius and Eyring equations 

enables the extraction of both the activation energy and the entropic contribution 

associated with the barrier crossing process. 

Using this well characterized reaction as a probe, the solvent’s influence on a 

barrier crossing process is systematically investigated. It was found that for a series of 

linear alkanes, the potential energy surface does not change as a function of the 

solvent, indicating that any changes in solvent-dependent rate constants are solely due 

to the dynamic solvent effect. Through a combination of linear FT-IR measurements 

and quantum and classical computations, the static and dynamic contributions to the 

rate constant are separated, enabling the first direct test of Kramers theory in the time 

domain on a picosecond reaction occurring on the ground electronic state. The 



xix 

 

experimental data show agreement with a simple Markovian Kramers theory for the 

isomerization rate constant’s dependence on solvent viscosity. 

Intramolecular vibrational energy redistribution (IVR) in two metal complexes, 

(Cp)2Fe2(CO)4 and its ruthenium analog, (Cp)2Ru2(CO)4, is also studied via 2DIR 

spectroscopy. The equilibrium energy transfer dynamics between different vibrational 

modes of the cis-B (Cp)2Fe2(CO)4 and the gauche-NB (Cp)2Ru2(CO)4 isomers is 

observed. Treating the energy transfer as an equilibrium process, rate constants 

associated with both the uphill and downhill transfer of vibrational energy are 

obtained. It was found that the difference in the rate constants maps to the difference 

in the energy gap between the two modes involved in IVR.  
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Chapter 1   

Introduction 

1.1 Equilibrium Dynamics 

Most reactions of interest in chemistry and biology occur in the solution phase, 

making the study of condensed phase chemical reactions and dynamics a prevailing 

topic throughout the scientific community. For example, in the absence of strong 

coupling to the environment, the rate of a reaction can be solely predicted from static 

energetic parameters.1 However, in solution the dynamic nature of the solvent may 

influence the barrier crossing process.2-5 Specifically, the solvent dynamics dictate the 

rate of a chemical reaction with the frictional forces of the solvent leading to barrier 

recrossings. Barrier crossings are not the only processes affected by the solvent; many 

other processes may also be influenced by the solvent, including energy transfer 

processes5, 6, both intramolecular and intermolecular; photochemical reactions7, 8; 

electron and proton transfer9-11; charge transfer reactions12, 13; and protein 

conformational changes14-16. Understanding the dynamic role the solvent plays in 

these processes will ultimately lead to predictions of condensed phase reaction 

dynamics. 

This thesis focuses on the study of condensed phase equilibrium dynamics. By 

applying two-dimensional infrared (2DIR) spectroscopy to fluxional metal carbonyl 

systems, we are able to directly observe equilibrium isomerization between different 

species and systematically investigate the dynamic influence of the solvent on a 

barrier crossing process occurring on the ground electronic state. Along with 
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investigating a barrier crossing process, we also explore energy transfer between 

different vibrational modes in an iron metal carbonyl complex and its ruthenium 

analog. 

1.2  Infrared Spectroscopy 

Molecular dynamics simulations can be used to predict equilibrium dynamics in 

the condensed phase, where the motion of the solute and solvent atoms are recorded 

as a function of time.17 Experimentally probing molecular dynamics requires a 

technique that has both high spatial and time resolution. Nuclear motions occur on 

the picosecond timescale, making infrared spectroscopy, where transitions have 

periods on the 10s of femtoseconds timescale, an ideal candidate for monitoring 

nuclear motions.18 Another benefit associated with infrared spectroscopy arises from 

the fact that specific groups of nuclei have distinct vibrational features that are 

sensitive to the solvent environment, whether the solvent be a hydrogen bonding 

liquid or a complex protein.19-21 These aspects make vibrational probes ideal for 

exploring solvent dynamics. 

1.3 Linear Versus Two-Dimensional Infrared Spectroscopy 

Using vibrational transitions as reporters for equilibrium dynamics results in a 

probe with high intrinsic time resolution that is sensitive to its surroundings. In 

infrared spectra, much of the dynamic information is manifested in the lineshapes of 

the peaks. There is no inherent reason why linear IR spectra cannot be used to obtain 

dynamic information; however, extracting this information is not generally possible 

without recourse to models, an approach that essentially relies on circular reasoning.  

The linear spectrum can be thought of as an ensemble average, and though 

dynamic information is contained in the lineshapes of the peaks in the spectra, the 

different contributions to the lineshapes cannot be assigned unambiguously.22, 23 

Specifically, in linear spectra homogeneous and inhomogeneous line broadening 

mechanisms cannot be distinguished.24, 25 In the condensed phase, the solute is 
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interacting with the solvent bath, and system-bath interactions can lead to 

fluctuations in the energy gap between the ground and excited states. When the 

energy gap fluctuations are very rapid the system is said to be homogeneously 

broadened (Fig. 1.1a). An inhomogeneously broadened peak is a result of different 

microscopic solvent environments; the energy gap fluctuations are slow compared to 

the experimentally probed timescale resulting in distinct local environments (Fig. 

1.1b). Fig. 1.1 compares two cartoon linear spectra that are homogeneously and 

inhomogeneously broadened. There is no obvious difference between the two line 

lineshapes in the linear spectrum. Two-dimensional spectroscopy spreads information 

contained in a linear spectrum over two frequency axes, effectively creating a 

frequency-frequency correlation map, separating homogeneous and inhomogeneous 

broadening.26, 27 Figure 1.1c-d displays the corresponding 2D spectra. An 

inhomogeneous broadened peak (Fig. 1.1d) will be elongated along the diagonal, 

indicating a correlation between excitation and detection frequencies, while a 

homogeneous broadened peak will be symmetric about the diagonal (Fig. 1.1c). It is 

Figure 1.1. Linear spectra of a homogeneously broadened peak (a) and 
inhomogeneously broadened peak (b). Two dimensional spectra of a homogeneously 
broadened peak (c) and inhomogeneously broadened peak (d). 
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important to note that these are limiting cases, and in general most real molecular 

systems will lie somewhere between the two extremes. 

Obtaining a two-dimensional spectrum requires measuring the field emitted by 

the sample following three field matter interactions, as opposed to linear 

spectroscopy, where the signal results from one field matter interaction.22 For linear 

spectroscopy, the incoming laser pulse creates a coherence, which leads to the 

emission of the signal. In two-dimensional spectroscopy, the first excitation pulse 

creates a coherence that serves to effectively label each molecule. The arrival of the 

second pulse creates either a population or an excited state coherence ending the t1 

time period and marking the beginning of the t2 time period, the waiting time. The 

system evolves during the waiting time which ends upon the arrival of the third 

excitation pulse. The third excitation pulse marks the beginning of the t3 time period 

by creating another coherence, effectively recording the final state of each molecule 

labeled during t1. A Fourier transform along t1 and t3 results in the ωexcite and ωdetect 

axes. The pulse sequence and time delays are shown in Fig. 1.2. The incoming pulses 

are on the few to 100 fs timescale allowing for the ultrafast dynamics to be directly 

probed in the time domain by varying the waiting time t2. Probing dynamics directly 

in the time domain avoids complications arising from the extraction of dynamic 

information from linear spectra in the frequency domain. In linear spectra, this 

dynamic information is typically extracted by mapping line broadening to dephasing 

models, which have been shown to not always be reliable.24, 25 

Figure 1.2 Pulse sequence. 
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So far we have considered how information contained in a linear spectrum is 

represented in a two-dimensional spectrum; however, the signal leading to the 2D 

spectrum is a result of the third order nonlinear polarization and contains more 

information than the signal resulting in the linear spectrum. Linear spectroscopy 

probes transitions between the ground and first excited state manifold while third 

order nonlinear optical spectroscopy probes transitions between the first and second 

excited state manifolds. Two-dimensional infrared spectroscopy, like infrared pump-

probe spectroscopy, can be used to observe both ground state bleaches as well as 

excited state absorptions, where the difference between the two is a measure of the 

vibrational anharamonicity. In fact, the projection of the 2D spectra on to the ωdetect 

axis is equivalent to the pump-probe spectrum.28 In comparing the 1D pump-probe 

spectrum to the 2D spectrum, the second dimension enables the direct observation 

of coupling between different transitions through the presence of crosspeaks, which 

is not directly observable from 1D pump-probe spectra.26, 27 

1.4 Two-Dimensional Spectroscopy 

There are two main experimental methods for obtaining 2D optical spectra: a 

collinear pump-probe geometry, where the signal is emitted along the same direction 

as the probe beam, and a non-collinear 2D photon echo geometry, where the signal is 

emitted in a background free direction.26 Both can be used to obtain 2D spectra.  

The first experimental 2DIR spectra were obtained using the collinear pump-

probe geometry.29 A 2D spectrum was constructed by performing a series of dynamic 

hole burning experiments, where a narrow band pump pulse excited a specific 

transition and a broad band probe was used for detection. The detection axis, 

corresponding to ωdetect from the previous section 1.3, was obtained experimentally 

by dispersing the probe pulse. The excitation axis, corresponding to ωexcite in section 

1.3, was obtained by tuning the frequency of the pump pulse via a Fabry-Perot 

interferometer. Later, a self-heterodyne pump-probe method of 2DIR spectroscopy 
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was demonstrated where two broadband pulses were used as the pump and a third 

pulse was used as a probe, and the ω1 axis was obtained by scanning t1 (the time delay 

between the two pump pulses) in the time domain and performing a Fourier 

transform to obtain the frequency axis.30 More recently, the following benefits of 

using the pump-probe geometry have been demonstrated: the “phasing problem” 

associated with obtaining absorptive spectra has been avoided31; single shot detected 

IR32 and electronic 2D spectra33 have been obtained; phase-cycling has been 

exploited to suppress certain peaks34; pulse-shaping can be used to actively control 

vibrational populations35; and a broadband probe pulse was developed to broaden the 

spectral range36.      

The non-collinear 2D photon echo method of obtaining 2D spectroscopy was 

also demonstrated in the late 1990’s and early 2000’s.37-40 In the non-collinear setup, a 

sequence of three ultrafast pulses interacts with the sample where the pulses are 

arranged in space so that the signal is emitted in a background free direction. 

Heterodyne detection is used so that both the signal phase and amplitude can be 

determined. One of the benefits to using the background-free method lies in the 

ability to isolate different Liouville pathways through phase matching. For example, 

the rephasing and nonrephasing spectra are obtained separately using the background 

free method, where for the pump-probe geometry these two different signals are 

collected simultaneously. Current advances in the background free method of 

detection include: using a chirped-pulse to upconvert the mid-IR signal to the visible 

region enabling detection via a CCD camera41, 42; the use of polarization dependent 

pulses to enhance/suppress specific peaks in the spectrum43, 44; the use of diffractive 

optics for phase stabilization required in 2D electronic spectroscopy45, 46; and the 

measurements of the relative phase between pulse pairs needed for “phasing” an 

absorptive spectrum in the non-collinear geometry.47, 48 

The use of multidimensional optical spectroscopy, whether obtained via the 

background-free geometry or the pump-probe geometry, has been established in the 
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study of molecular systems in the condensed phase.26, 49-57 In the next sections we 

focus on a few examples of 2DIR spectroscopy. First, we highlight the ability of 

2DIR spectroscopy to aid in assigning linear spectra and determine structure. We 

next focus on examples of using 2DIR spectroscopy to study equilibrium dynamics, 

such as vibrational energy redistribution, spectral diffusion and chemical exchange. 

We then briefly discuss non-equilibrium 2DIR spectroscopy and the use of modeling 

in obtaining a microscopic picture of equilibrium dynamics. 

1.4.1 Assignment and Structure 

As was previously discussed, linear spectra can be congested, making the 

unambiguous assignment of the spectral features a challenge. 2D spectroscopy can 

aid in the assignment of linear spectra. When there are two or more transitions arising 

from a single molecular species, and these transitions lie within the bandwidth of the 

incoming laser pulses, there will be crosspeaks between the corresponding diagonal 

peaks in the 2D spectrum.  

To demonstrate this point, consider the cartoon spectra in Fig. 1.3. The linear 

spectrum consists of two peaks resulting from two different species, A and B, where 

A has one absorption feature at frequency ωa and B has two absorptions at ωb’ and 

ωb’’. The linear spectrum consists of two peaks, and there is no indication that the 

Figure 1.3 The linear spectrum (left) and corresponding 2D spectrum (right) are 
shown. 
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higher frequency peak has two contributions from different species. A cartoon 2DIR 

spectrum is also shown in Fig. 1.3. The peaks lying along the diagonal correspond to 

those in the linear spectrum. The presence of crosspeaks at t2=0 ps, excitation 

immediately followed by detection, indicates that the two transitions have a common 

ground state and lie within the bandwidth of the excitation and detection pulses. We 

denote these crosspeaks as “inherent crosspeaks”. When there are two or more 

transitions lying within the bandwidth of the incoming pulse, the first laser pulse will 

create a coherence between the ground state and one of the states in the first excited 

state manifold. The second pulse could create either a ground state or an excited state 

population or an excited state coherence. The inherent crosspeaks arise from 

pathways that create a ground state population during the waiting time. Because of 

the creation of the ground state population during t2, the third incoming pulse creates 

a coherence between the ground state and any of the transitions lying within the 

bandwidth of the pulse. This will result in the appearance of a diagonal peak when 

the second coherence is created between the ground state and the same excited state 

as the first coherence. A crosspeak results when the second coherence is created 

between the ground state and a different excited state compared to the first 

coherence. 

In the cartoon spectra at t2=0 ps there are inherent crosspeaks from the two 

transitions of species B. The transition frequency of the higher frequency mode can 

be determined from the ωdetect frequency of the crosspeak. In this way the 2DIR 

spectrum can be used to effectively gain spectral resolution in the sense that the 

transition frequencies can be determined from the crosspeaks, whereas they could not 

be determined unambiguously from the linear spectrum. 

Asbury et. al. first demonstrated the ability of 2DIR spectroscopy  to aid in the 

assignment of linear spectra.58 They demonstrated this using a mixture of two metal 

carbonyl complexes, where each metal carbonyl complex has two transitions in the 

terminal carbonyl region. Four distinct transitions were present in the linear FTIR 
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spectrum, and without prior knowledge of the sample it was not obvious that there 

were two different molecular species present. For example, either all four peaks could 

arise from one molecular species or there could be four distinct species present. They 

showed, from a single 2DIR spectrum at t2=0 ps, that from the presence of inherent 

crosspeaks it was evident that there are two molecular species giving rise to the 

spectral features. More recently 2DIR spectroscopy was used to confirm the previous 

assignment of a metal-carbonyl complexes existing as multiple isomeric forms in 

equilibrium59-61 and to assign photoproducts to parent structures62-64, to name a few 

examples. 

Inherent crosspeaks arise because there are multiple transitions lying within the 

bandwidth of the incoming pulses. However, crosspeaks have also been observed in 

two-color infrared 2D spectra.65, 66 These crosspeaks arise because the two vibrations 

leading to the corresponding diagonal peaks are coupled. From the amplitudes and 

polarization dependence of the crosspeaks in a 2D spectrum, structural information 

along with the coupling strength can be obtained. For example the dicarbonyl 

compound, dicarbonylacetylacetonato rhodium (RDC), has two strongly coupled 

carbonyl stretching modes in the terminal carbonyl region. Golonzka and Tokmakoff 

determined the angle between the two transition dipole moments for each carbonyl 

units from the amplitude of the crosspeaks in the 2D spectra.67 Information on the 

structure of small peptides, such as trialanine68 and acetylproline-NH269, has also been 

obtained from the crosspeaks in 2DIR spectra.70 From crosspeaks in relaxation 

assisted 2DIR spectroscopy, information on bond connectivity and distance 

measurements can be obtained for larger molecules.71  

1.4.2 Intramolecular Vibrational Energy Redistribution 

The flow of vibrational energy can influence chemical reactions, making the 

study of vibrational energy redistribution important in determining reaction 

mechanisms and understanding dynamics.6, 72 2DIR spectroscopy can facilitate the 

observation of intramolecular vibrational energy redistribution. Monitoring the 
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waiting time dependent amplitude of crosspeaks between two coupled vibrations 

allows for the time scale of intramolecular vibrational energy redistribution to be 

determined. 

In the gas phase, IVR is a result of anharmonic coupling to lower frequency 

modes of the solute; in solution, because of the anharmonic coupling to the lower 

frequency modes of the solvent, the liquid phonon modes, IVR is typically faster.6 

Fig. 1.4 shows a representative energy level diagram for a molecule having two 

transitions in the terminal carbonyl stretching region, where the transitions are 

separated in frequency by ∆. If ∆ is less than 200 cm-1 (kT at room temperature) then 

the low frequency solvent modes, the liquid phonon modes, are significantly 

populated and act as accepting states. The liquid phonons at ∆ can act as accepting 

states when vibrational energy is transferred from the higher frequency mode to the 

lower frequency mode, assuring that energy is conserved. 

To give a few examples, 2DIR spectroscopy has been used to study 

intramolecular vibrational energy redistribution (IVR) in metal carbonyl systems.73-75 

It was found that for two different metal carbonyl systems that the solvent’s role in 

the IVR process was different. In one system it was found that the solvent hindered 

IVR73 and in another system it was found that the solvent assisted the IVR process75. 

IVR in the peptide system acetlyproline-NH2 has also been studied with 2DIR 

spectroscopy.76 

Figure 1.4 Energy level diagram demonstrating IVR process. 
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1.4.3 Spectral Diffusion 

In the condensed phase, the solute molecule is affected by the dynamics of the 

solvent. The random force exerted on the solute by the solvent can lead to 

fluctuations in the energy gap between states of the solute molecule. In Fig. 1.5a the 

change in the frequency between states 0 and 1 is plotted as a function of time where 

the width of the fluctuations is represented by ∆. The frequency-frequency 

correlation function (FFCF) can be used to characterize these fluctuations as a 

function of time (Eq. 1.1) 

01 01( ) ( ) (0)C t tδω δω=  
Eq. 1.1 

The correlation function resulting from the frequency trajectory is also plotted 

in Fig. 1.5b. In many commonly used models, the resulting FFCF will decay 

exponentially, described by Eq. 1.2 where τc is the timescale of the fluctuations.  

2( ) c

t

C t e τ
−

= ∆  
Eq. 1.2 

Solvent interactions can be probed using three pulse photon echo 

spectroscopies, where the signal is a result of the third order nonlinear polarization.77 

From waiting-time dependent 2DIR optical spectroscopies, which also measure the 

third order nonlinear polarization, the time evolution of the frequency distributions 

can be directly observed.78  

Figure 1.5 (a) Plot of the time dependent fluctuations in the frequency 
corresponding to the transition between the ground and first excited state. (b) Plot of 
the corresponding time correlation function, the frequency-frequency correlation 
function. 
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In 2D spectra, the waiting-time dependent lineshapes of the peaks are related to 

the FFCF, and hence are related to the solvent interactions.79 For 2D spectra, where 

the timescale of the frequency fluctuations, τc, is slower than the timescale probed by 

the experiment, t2, the resulting peak will be elongated along the diagonal and the 

peak is said to be inhomogeneously broadened. In Fig. 1.1, cartoon linear and 

corresponding 2D spectra are shown for both the homogeneously and 

inhomogeneously broadened cases. The corresponding 2D spectra are different even 

though the linear spectra show the same lineshapes for both cases. In the 

homogeneously broadened case, the peak is symmetric about the diagonal; the 

microscopic solvent environments are being fully sampled on the timescale being 

probed. Viewed another way, the sampling of distinct solvation environments does 

not lead to changes in the optically probed transition frequency. In the 

inhomogeneously broadened case there are distinct microscopic solvent 

environments, and each excitation frequency is correlated to a specific detection 

frequency, resulting in a peak that is elongated along the diagonal in the 2D spectra. 

For the case  of the inhomogeneously broadened peak, as the waiting time increases, 

more microscopic environments can be sampled leading to a decrease in the 

inhomogeneity, and the peak becomes more round. Eventually, when the waiting 

time is long compared to τc, the different microscopic environments will be fully 

sampled and the peak will be homogeneously broadened; the peak will be symmetric 

about the diagonal in the 2D spectrum (Fig. 1.6). The decay of inhomogeneity as a 

function of waiting-time is referred to as spectral diffusion and can be directly related 

to interactions between the solute and solvent.80  

There are several ways to map experimental observables in 2D spectra to the 

FFCF.79, 81-84 It has been shown that the measure of the ellipticity of the peak is 

identical to the FFCF.84 However, there are several other methods of obtaining the 

FFCF. One method is to use the so-called “inhomogeneous index,” which measures 

the difference in amplitude between the rephasing and nonrephasing spectra.79 
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Asbury et. al. showed that the dynamic linewidth, the waiting time dependent width of 

the diagonal peak along ωexcite, is related to the FFCF.81 Hamm used the covariance to 

determine the FFCF.82 More recently it has been shown that the inverse of the center 

line slope, where the center line slope is the node between the peak resulting from the 

ground state bleach and the peak corresponding to the excited state absorption, can 

also be used to obtain the FFCF.83 Experimentally, the study of the spectral diffusion 

in metal carbonyl systems has led to a detailed understanding of how the solute and 

solvent interact.73, 74, 85 The dynamics of water have also been studied using 2DIR 

spectroscopy to observe spectral diffusion.81, 86, 87 Insight into protein dynamics and 

mechanisms has also been gained by studying spectral diffusion via 2DIR 

spectroscopy.88 

1.4.4 Chemical Exchange 

Many fast, equilibrium, structural changes occur on the electronic ground state 

at room temperature. Studying these structural changes gives insight into equilibrium 

dynamics. Consider for example two different species A and B that interconvert on 

the picosecond timescale. The potential energy surface is shown in Fig. 1.7a, where 

species A lies lower in energy than species B and the height of the barrier is on the 

order of a few kcal/mol, corresponding to a picosecond isomerization time. A 

cartoon linear spectrum is shown in Fig. 1.7b where species A has one absorbance at 

Figure 1.6 Cartoon spectra depicting spectral diffusion. At early waiting times the 
peak is elongated along the diagonal (left) and as the waiting time increases the peak 
becomes more symmetrical (right). 
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frequency ωa and species B absorbs at frequency ωb. Assuming the oscillator strength 

is the same for both transitions, the absorbance feature corresponding to A is larger 

than  that of B due to species A being more populated because it lies lower in energy. 

From the linear spectrum we can obtain thermodynamic information on the two 

stable species. In principle the linear IR spectrum contains information on the 

interconversion between A and B in the lineshapes of the peaks in that the 

interconversion between the two species, could act as a dephasing mechanism which 

would contribute to spectral broadening. However, separating the spectral 

broadening due to exchange from other processes is not always possible in the linear 

spectrum.24, 25 Using 2DIR spectroscopy, chemical exchange can be directly observed 

as the appearance and growth of crosspeaks in the 2D spectra. 

Fig. 1.8 displays cartoon 2D spectra. At earlier waiting times, before exchange 

can take place, we see two peaks lying along the diagonal. These peaks correspond to 

the peaks in the linear spectrum. As the waiting time increases, we see the appearance 

of crosspeaks. Crosspeak AB corresponds to exciting species A, waiting some time 

corresponding to t2, and detecting species B; isomer A has converted to isomer B 

during the waiting time. We refer to these crosspeaks as “exchange crosspeaks”. 

From the waiting-time dependent amplitude of the exchange crosspeaks, the 

isomerization time can be obtained directly in the time-domain.  

Woutersen et. al. were the first to use 2DIR spectroscopy to study chemical 

exchange.89 They observed the conformation change between two different states of 

Figure 1.7 (a) 1D potential energy surface describing the isomerization between 
species A and B with the corresponding (b) linear spectrum. 
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N-methylacetamide (NMA). In methanol, NMA exists as two states having distinct 

transitions. The red-shifted transition corresponds to species where the carbonyl 

group is hydrogen bonded to the solvent, and the blue shifted transition results from 

species where the carbonyl group is free of hydrogen bonds. As the waiting time was 

increased, crosspeaks between the two states appeared, indicating that chemical 

exchange occurred. Chemical exchange has also been used to study other systems 

including rotation about a carbon-carbon single bond90; hydrogen bond migration91; 

solvent-solute complexation92; hydrogen bond formation89, 93; and fluxional metal 

carbonyl complexes.59, 60, 94  

1.4.5 Non-equilibrium 2DIR Spectroscopy 

All the previous examples have focused on applying 2DIR spectroscopy to 

equilibrium systems to study how equilibrium ensembles evolve in time. Here we 

briefly address the study of non-equilibrium systems. In studying non-equilibrium 

Figure 1.8 Cartoon 2D spectra depicting chemical exchange. (left) At early waiting 
times we see two peaks along the diagonal. (right) As the waiting time increases we see 
the appearance of crosspeaks indicating chemical exchange. 
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systems, insight on mechanistic pathways of photochemical reactions and dynamics 

of the electronic excited states can be gained.55  

Here we focus on two types of non-equilibrium 2DIR spectroscopies: transient 

2DIR (T-2DIR) and triggered exchange 2DIR (TE-2DIR) spectroscopy. In T-2DIR 

spectroscopy, a visible/UV pulse first excites the system and 2DIR spectroscopy is 

used to probe the non-equilibrium ensemble.95 For TE-2DIR spectroscopy, the 

visible/UV arrives during the waiting time in the 2DIR pulse sequence –after the first 

two IR pulses but before the arrival of the third IR pulse.64 This allows for vibrational 

modes of photoproducts to be directly mapped to vibrational modes of the reactants. 

Non-equilibrium 2DIR spectroscopy has been used to study the following 

phenomena: geminate rebinding reactions62; orientational dynamics of 

photoproducts96; photoproducts of an iron hydrogenase enzyme model compound 63; 

photoproducts mapping to parent structures64; photoswitchable proteins55, and 

protein unfolding97. 

1.4.6 Modeling 2DIR Spectroscopy 

From 2DIR spectra we can obtain transition frequencies, and timescales for 

dynamical processes, such as spectral diffusion and energy transfer. However, a 

detailed molecular understanding of these dynamic processes cannot be directly 

realized from the experimental spectra. In modeling 2DIR spectra, a detailed 

microscopic understanding of dynamical processes in the condensed phase is 

obatined.26, 98-100 The use of modeling 2DIR spectra to obtain a microscopic picture 

of dynamics has been used to understand population transfer in peptides101, 

vibrational energy transfer between amide I and amide II modes in N-

methyacetanmide102, hydrogen bonding complexes103, photodissociation of metal 

carbonyl complexes104 and intermolecular motion of water105, to name a few 

examples. 
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1.5 Thesis Outline 

This thesis focuses on the study of equilibrium dynamics in the condensed 

phase using 2DIR spectroscopy. Specifically I focus on the study of the equilibrium 

isomerization between two isomers of the fluxional metal carbonyl complex, dicobalt 

octacarbonyl, and the transfer of energy between different vibrational modes of two 

metal carbonyl complexes, iron cyclopentadienyl dicarbonyl dimer and its ruthenium 

analog.  

In chapter 2 the theoretical background of 2DIR spectroscopy is presented 

along with a detailed account of the experimental setup. The focus of chapter 3 is on 

obtaining absorptive spectra using chirped pulse upconversion 2DIR spectroscopy. 

Sum frequency mixing the mid-infrared signal with a chirped pulse centered at 800 

nm converts the signal from the mid-IR to the visible so that a CCD camera can be 

used for detection. The advantages of detecting the upconverted mid-IR signal are 

compared to the direct detection of the mid-IR signal. One of the disadvantages 

associated with the upconversion process arises from the inherent phase distortions 

due to cross-phase modulation. The procedure for correcting for these phase 

distortions is described in detail along with our technique for phasing rephasing and 

nonrephasing spectra. In chapter 4, the study of the equilibrium isomerization 

between two isomers of dicobalt octacarbonyl is described. A detailed account of our 

method used for the extraction of the exchange signal from congested spectra by 

using the quantum oscillations of inherent crosspeaks is given. Temperature 

dependent studies were also performed to determine the height of the barrier, and the 

influence of the solvent on these measurements is also discussed. In chapter 5, this 

well characterized reaction is used as a probe to determine how the solvent influences 

equilibrium chemical reaction occurring on the ground electronic state. Using classical 

and quantum mechanical computations along with linear FTIR measurements, the 

static solvent effect is separated from the dynamic solvent effect. This enables, for 

the first time, a direct test of Kramers theory in a ground electronic state in the time 
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domain. In chapter 6, the focus shifts to di-iron and di-ruthenium carbonyl 

complexes, where the ability of 2DIR spectroscopy to separate spectroscopic 

signatures from different isomeric forms is demonstrated. The transition frequencies 

associated with the different isomeric forms, which could not be determined from the 

linear FTIR spectra, were determined using 2DIR spectroscopy. Along with assigning 

the spectra, the timescale for vibrational energy transfer between different vibrational 

modes of the cis-B isomer for the iron complex and the gauche-NB isomer for the 

ruthenium complex was obtained. 
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Chapter 2  

Theory and Experimental Setup 

2.1 Overview: Chapter 2 

This section first discusses the theory behind two-dimensional spectroscopy 

followed by a description of the experimental setup used to obtain 2DIR spectra.  

2.2 Theory and Background 

In its most popularly implemented form, two-dimensional spectroscopy in 

centrosymmetric media is a background-free, four-wave mixing technique where 

three incident fields, E1, E2, and E3, having wavevectors, k1, k2, and k3, induce a 

third-order polarization (P(3)) which radiates a signal field Es with wavevector ks.1, 2 

The pulse sequence is illustrated in Fig. 2.1 where the time delays between the pulses 

are t1 and t2. The signal field that emits during t3 is measured using Fourier transform 

spectral interferometry (FTSI) by combining the emitted signal with a fully 

characterized reference field that acts as a local oscillator for heterodyne detection.3-7 

The frequency-domain spectral interferogram is Fourier transformed to the time 

Figure 2.1 Pulse sequence (left) with box beam geometry (right). 
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domain, and the complex signal peaking at the signal-local-oscillator delay ∆t is 

isolated by a numerical filter. Inverse Fourier transformation returns to the frequency 

domain, where the linear spectral phase due to the delay ∆t is subtracted, yielding the 

spectral amplitude and phase to within a constant phase offset. With the signal field 

thus determined for each value of t1—the delay between the first two pulses—

Fourier transformation with respect to t1 yields the excitation frequency axis ω1.  

Besides the background-free detection method, there are alternate strategies for 

obtaining 2DIR spectra, such as the collinear pump-probe geometry where either an 

interferometer or a pulse shaper generates the first two pulses of the three-pulse 

sequence.8-10 However, regardless of the experimental implementation, 2DIR 

spectroscopy is a third-order nonlinear optical spectroscopy.  

For third-order nonlinear optical spectroscopy the radiated signal is directly 

proportional to the third-order macroscopic optical polarization, which in turn is 

linearly proportional to the expectation value of the dipole operator over the third-

order density matrix.11 Knowing how the density matrix evolves in time after the 

three field-matter interactions, allows one to model and interpret 2D spectra. In the 

next section we address the time-evolution of the density operator. 

2.2.1 Perturbation Theory 

In the case of 2DIR spectroscopy, where the incoming electric fields are weak, 

we can treat the field-matter interaction perturbatively. The following derivation in 

this section is based on the derivation in Mukamel’s Principles of Nonlinear Optical 

Spectroscopy.11  

 The Hamiltonian describing the system of interest is given by Eq. 2.1, where 

H0 is the material Hamiltonian and Hint describes the electric field-matter interaction.  

0 int
ˆ ˆ ˆ ( )TH H H t= +  

Eq. 2.1 
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In the above equation the field-matter interaction is time-dependent due to the 

time-dependent incoming laser pulse. Making the dipole approximation, assuming the 

molecule can be described by a point dipole, Hint is given by Eq. 2.2 where E(r,t) is 

the incoming electric field and V is the dipole operator of the material. 

int
ˆ ˆ( ) ( , )H t E r t V= −  

Eq. 2.2 

The time evolution of the system is described by the Liouville equation (Eq. 

2.3), where the first term accounts for the material response and the second term 

describes the field-matter interaction. 

0

ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,T Int
d i i iH H H
dt
ρ ρ ρ ρ     = − = − −         

Eq. 2.3 

Substituting Eq. 2.2 into Eq.2.3 results in Eq. 2.4. 

0

ˆ ˆ ˆˆ ˆ, ( , ) ,d i iH E r t V
dt
ρ ρ ρ   = − −      

Eq. 2.4 

We now introduce the Liouvillian operators, L and Lint, which are sometimes 

referred to as superoperators because they act on other operators. For a general 

operator A, Eqs. 2.5-2.7 define the Liouvillian operators L, Lint, and V. 

ˆ ˆˆ[ , ]A H A=L  
Eq. 2.5 

ˆ ˆˆ( ) ( , )[ , ]t A E r t V A= −intL  
Eq. 2.6 

ˆ ˆˆ[ , ]A V A=V  
Eq. 2.7 

Using these operators, the equation of motion for the density operator (Eq. 2.4) 

can be rewritten as the following. 

ˆ ˆ ˆ( )d i i t
dt
ρ ρ ρ= − −

 
intL L  

Eq. 2.8 

2DIR spectroscopy is a four wave mixing spectroscopy where three incoming 

fields interact with the sample leading to the emission of the signal. Taking into 

account the three field matter interactions, the solution to Eq. 2.8, follows.  
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3 2

0 0 0

(3)
3 2 1 3 3 3 2 2 2 1 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

t

t t t

it d d d t p
τ τ

ρ τ τ τ τ τ τ τ τ τ τ τ= − − − −∫ ∫ ∫
int int intG L G L G L

 

Eq. 2.9 

In the above equation we have introduced the Liouville space Green function, 

G(t), given in Eq. 2.10, where θ(t) is the Heaviside step function. 

( )
( ) ( ) exp

i t
t tθ

−
= 

L
G  

Eq. 2.10 

Changing time variables so that t1=τ2-τ1, t2=τ3-τ2, and t3=t-τ3 and using Eqs. 

2.6-2.7 Eq. 2.9 can be rewritten as follows. 

(3)
3 2 1 3 2 1

0 0 0

ˆ ˆ( ) ( ) ( ) ( ) (0)it d d d t t t pρ τ τ τ
∞ ∞ ∞

= − ∫ ∫ ∫
G VG VG V

 

                   
3 3 2 3 2 1( , ) ( , ) ( , )E r t t E r t t t E r t t t t× − − − − − −  

Eq. 2.11 

The above equation describes the time dependence of the density matrix after 

three field matter interactions. The density matrix at t=0 is given by Eq. 2.12 and is 

just the equilibrium Boltzmann distribution of the states. 

ˆ

ˆ
ˆ (0)

B

B

H
k T

H
k T

e

Tr e

ρ
−

−
=

 
 
    

Eq. 2.12 

The first field matter interaction initiates the t1 time, and is accounted for by 

acting on the density operator with the dipole operator, V, multiplied by the incoming 

electric field. After the field matter interaction the system evolves in time under the 

field free Hamiltonian for the duration of t1. The second field matter interaction 

initiates the t2 time and the third field matter interaction initiates the beginning of t3. 

After each field-matter interaction the system evolves under the field free 

Hamiltonian. 
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 The macroscopic third order polarization, which is measured using 2DIR 

spectroscopy, is equivalent to the expectation value of the dipole operator (Eq. 2.13). 

(3) (3)( ) ( )P t Tr Vp t =    
Eq. 2.13 

Substituting Eq. 2.11 into the above equation (Eq. 2.13) results in the following. 

(3) (3)
3 2 1 3 2 1 3 3 2 3 2 10 0 0

( ) ( , , ) ( , ) ( , ) ( , )P t dt dt dt S t t t E r t t E r t t t E r t t t t
∞ ∞ ∞

= − − − − − −∫ ∫ ∫  
Eq. 2.14 

Where S(3) is the third order optical response function and is given by Eq. 2.15. 

3
(3)

3 2 1 1 2 3 3 2 1 2 1 1 0
ˆ ˆ ˆ ˆ( , , ) ( ) ( ) ( ) ( ), ( ) , ( ) , ( ) (0)iS t t t t t t V t t t V t t V t V tθ θ θ ρ     = + + +      

                   
 

Eq. 2.15 

Evaluating the above nested commutators results in a total of 8 terms with 4 of 

the terms being independent. Evaluating the commutators results in the following 

expression. 

3 4
(3) *

3 2 1 1 2 3 3 2 1 3 2 1
1

( , , ) ( ) ( ) ( ) ( , , ) ( , , )iS t t t t t t R t t t R t t tα α
α

θ θ θ
=

   = −    
∑

  

Eq. 2.16 

In Eq. 2.16, there are four Liouville space pathways, Rα, that are given in Eq. 

2.17-2.20. 

1 3 2 1 1 1 2 1 2 3
ˆ ˆ ˆ ˆ( , , ) ( ) ( ) ( ) (0) (0)R t t t V t V t t V t t t V ρ= + + +

 
Eq. 2.17 

2 3 2 1 1 2 1 2 3 1
ˆ ˆ ˆ ˆ( , , ) (0) ( ) ( ) ( ) (0)R t t t V V t t V t t t V t ρ= + + +

 
Eq. 2.18 

3 3 2 1 1 1 2 3 1 2
ˆ ˆ ˆ ˆ( , , ) (0) ( ) ( ) ( ) (0)R t t t V V t V t t t V t t ρ= + + +

 
Eq. 2.19 

4 3 2 1 1 2 3 1 2 1
ˆ ˆ ˆ ˆ( , , ) ( ) ( ) ( ) (0) (0)R t t t V t t t V t t V t V ρ= + + +

 
Eq. 2.20 

 In this section, we see that the third-order polarization is just the convolution 

of the incoming electric field pulses with the third order optical response function, 

and the optical response function can be written in terms of four Liouville space 
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pathways (Eq. 2.17-2.20). Accounting for the complex conjugates of the Liouville 

space pathways, there are eight contributing Liouville pathways. By not specifying the 

order of the incoming fields, there are 48 pathways contributing to the signal. 

However, in making the rotating wave approximations, neglecting the highly 

oscillatory terms, and by taking advantage of the fact that the wavevector of the signal 

can be selected, specific Liouville pathways can be chosen. In the next section we 

introduce two graphical methods used to describe the Liouville space pathways. 

2.2.2 Diagrammatic Perturbation Theory 

Diagrammatic perturbation theory can be used to keep track of the time-

evolution of the density matrix after field matter interactions. In this section, we 

describe two useful graphical methods; double sided Feynman diagrams and ladder 

diagrams.11 

For Feynman diagrams, each field interaction propagates one side of the density 

matrix, where the bra is on the left and the ket is on the right (Fig. 2.2a). Time 

increases moving up the diagram. After a field matter interaction represented by a 

horizontal line, the system is free to propagate under the field free Hamiltonian until 

the next field-matter interaction. For the ladder diagrams (Fig. 2.2b), the states are 

arranged vertically and time propagates to the right. Arrows between states indicates 

field interactions and between field interactions the system is free to propagate under 

the field free Hamiltonian. Dashed lines act to propagate the bra and solid lines act to 

propagate the ket side of the density matrix. For the ladder diagrams, arrows pointing 

Figure 2.2 Examples of a double sided Feynman diagram (a) and a ladder diagram (b). 
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up indicate absorption and arrows pointing down indicate emission, while for 

Feynman diagrams arrows pointing towards the diagram indicate absorption and 

arrows pointing away from the diagram indicate emission.  

2.2.3 2DIR Spectra 

Two phase-matching conditions are relevant for resonant 2D spectroscopy: k± 

= ± k1  k2 + k3, denoted “nonrephasing” (k+) and “rephasing” (k–). The 

terminology has its origin in the relative signs of the wave vectors k1 and k3: during 

the two evolution periods t1 and t3, the system evolves as a coherence (i.e. off-

diagonal density matrix element); for the rephasing signal, the two coherences are 

phase reversed, whereas for the nonrephasing signal they are not phase reversed. 

Thus, the rephasing signal is capable of producing an echo by rephasing an 

inhomogeneously broadened set of oscillators. It was recognized in the context of 

nuclear magnetic resonance that to measure a two-dimensional lineshape with purely 

absorptive information (i.e. free of dispersive distortions), both the rephasing and 

nonrephasing signals must be recorded and their real parts added.5, 12-14 

The double sided Feynman diagrams that give rise to the signal when both the 

wave-matching and rotating wave approximation are taken into account are shown in 

Fig. 2.311, where pathways R1 and R4 and R3* contribute to the nonrephasing signal 

and pathways R2 and R3 and R1* contribute to the rephasing signal.2, 11 In the time-

Figure 2.3 Liouville pathways contributing to the signal. 
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domain the signal is proportional to the following, where the contributing Liouville 

space pathways are depicted in Fig. 2.3.  

(3)
1 2 3 3 2 1( , , , ) Re ( , , )sS k t t t S t t t ∝    

Eq. 2.21 

A double Fourier transform along t1 and t2 results in a two-dimensional infrared 

spectrum (Eq. 2.22). 

3 31 1
1 2 3 1 3 3 2 1( , , , ) Re ( , , , ) i ti t

s sS k t dt dt S k t t t e e ωωω ω
∞ ∞

−∞ −∞

 ∝   ∫ ∫
 

Eq. 2.22 

 Experimentally, in the background-free geometry heterodyne detection is used 

so that both the amplitude and phase of the signal are measured. The intensity of the 

detected signal depends on both the signal field and the incoming local oscillator field 

(Eq. 2.23).3  

2 2 2 *2Resig LO S LO S LO sigI E E E E E E ∝ + = + +    
Eq. 2.23 

The contribution from the local oscillator is removed by Fourier transformation 

along t3, filtering the signal, and inverse Fourier transformation back to the time 

domain. In the background-free method we detect the rephasing and nonrephasing 

signals separately, so in order to obtain a 2DIR absorptive spectrum, the rephasing 

and nonrephasing signals must be added together (Eqs. 2.24-2.25).5, 12, 15 

1 2 3 1 2 3 1 2 3( , , , ) ( , , , ) ( , , , )s R s NR sS k t t t S k t t t S k t t t= +  
Eq. 2.24 

3 3 3 31 1 1 1
1 2 3 1 3 1 2 3 1 3 1 2 3( , , , ) Re ( , , ) ( , , )t ti t i t

s R NRS k t dt dt S t t t e e dt dt S t t t e eω ωω ωω ω
∞ ∞ ∞ ∞−

−∞ −∞ −∞ −∞

 = +  ∫ ∫ ∫ ∫  Eq. 2.25 

In the next section we describe the experimental setup we use to obtain 2DIR 

spectra.  

2.3 Experimental Setup 
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The experimental setup used to obtain chirped pulse upconversion 2DIR 

spectra is shown in Fig. 2.4.16-20 Two independently tuned optical parametric 

amplifiers (OPAs) are pumped with 100 fs 800 nm pulses generated by a Ti:Sapphire 

regenerative amplifier (Spectra-Physics Spitfire Pro). The signal and idler output of 

each OPA are difference frequency mixed in separate GaSe crystals to generate mid-

IR pulses (FWHM = 100 cm-1). The two mid-IR pulses are split to obtain a total of 

five pulses. The output of OPA1 is split by a beam splitter (BS1) into two beams E1 

and E2 having wavevectors k1 and k2 while the output of OPA2 is split into three 

beams, E3, E4, and ELO, having wavevectors k3, k4, and kLO, by BS2 and BS3. Pulses 

E1, E2, E3, and E4 are arranged in a box geometry (Fig. 2.1) so that the signal, ES, is 

emitted in the background free direction k± = ± k1  k2 + k3 (E4 is a tracer beam 

used for alignment purposes that is blocked during collection of the 2D spectrum). 

The first parabolic mirror (PM1) focuses the four beams at the sample and the 

second parabolic mirror (PM2) acts to collimate the beams. Three 1 meter focal 

length calcium fluoride lenses ensure the IR beams cross and focus at the same place 

at the sample. A wedged calcium fluoride window (CFW) is used to overlap the mid-

IR signal with the local oscillator which are then sum-frequency mixed with the 

chirped pulse in a slightly wedged 5% MgO doped LiNbO3 crystal. The LiNbO3 

crystal (1 cm on a side) thickness varies from 0.3 to 0.8 mm, providing a degree of 

analog gain, and minimizing back reflections which can interfere with the incoming 

Figure 2.4 Experimental setup. 
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beams leading to temporal and spectral modulations. The mid-IR signal field and 

chirped field are upconverted non-collinearly using a folded spherical mirror of 30 cm 

focal length.  The interference between the local oscillator and the signal is collected 

using a 1340x100 pixel, thermoelectrically-cooled CCD camera (Roper Scientific 

PIXIS).  

The chirped pulse is taken from the output of the regenerative amplifier before 

the entrance to the compressor; using a half-wave plate and a cube polarizer a 

fraction of the uncompressed beam is selected with typical energies ranging from 

100-300 μJ. The wave plate/polarizer combination enables another opportunity for 

analog gain when detecting weaker signals. A several-meter time delay is needed to 

temporally overlap the IR signal with the chirped pulse. To ensure that the signal is 

coincident with the same spectral component of the chirped pulse in the long time 

delay, the chirped pulse reflects off of a hollow corner cube mounted on the 

translation stage that controls the E3 pulse. As the third pulse in the 2DIR sequence 

is scanned, the chirped pulse remains locked in time, eliminating the frequency shift 

(i.e. linear temporal phase) and amplitude modulation that would accompany the time 

delay.  

A 2D spectrum is obtained by scanning the t1 axis continuously for a given 

value of t2. Two pairs of ZnSe wedges (7.3° apex angle, 25.4mm length, AR coated 

3.5-7.5 μm) are used to scan the t1 axis.21 Scanning the wedges gives a maximum t1 

delay of 12 ps which corresponds to 2.78 cm-1 resolution. For each pair of wedges, 

one is held stationary and the other is mounted to a translation stage actuated by a 

DC motor. The DC motor (Newport LTA-HS) is driven using a home-built digital 

signal processer controller; a data acquisition (DAQ) board (NI M-series) records the 

motor’s optical encoder output (resolution of 7.4 nm). The DAQ board and CCD 

camera are synchronized to the laser amplifier such that for each laser pulse the 

motor positions and spectra are saved. In order to map the encoder positions to time 

delays, the wedges are calibrated using interferograms between the upconverted 
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scatter of E1 and E2 recorded as each ZnSe wedge is scanned. The calibration of the 

wedges is discussed in detail in Chapter 3. 
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Chapter 3  

Obtaining Two-Dimensional Infrared 
Absorptive Spectra Using Chirped Pulse 

Upconversion 
 

The work presented in this chapter has been published in the following paper: 

Jessica M. Anna, Matthew J. Nee, Carlos R. Baiz, Robert McCanne, and Kevin 

J. Kubarych, “Measuring absorptive two-dimensional infrared spectra using chirped-pulse 

upconversion detection,” Journal of the Optical Society of America B, 27, 2010, 

382-393. 

 

3.1 Overview: Chapter 3  

This chapter demonstrates how to obtain two-dimensional infrared absorptive 

spectra using chirped-pulse upconversion (CPU). The benefits along with the 

disadvantages associated with using CPU for detection of the mid-infrared signal field 

are compared to the more conventional method of directly detecting the mid-infrared 

signal field using a HgCdTe (MCT). One of the drawbacks to using CPU arises from 

the inherent cross-phase modulation. The resulting distortions are revealed when a 

system has narrow spectral features or when phase sensitive spectra are desired. The 

removal of these phase distortions from all of the measurements required to obtain 

an absorptive 2DIR spectrum using CPU, including delay stage calibrations as well as 
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the requisite nonlinear signals, is demonstrated. Also, this chapter details the phasing 

procedure used to obtain absorptive spectra. This procedure is shown to operate well 

for both inhomogeneous and homogeneous broadened spectra.  

3.2 Chirped-Pulsed Upconversion 2DIR Spectroscopy 

One of the challenges in 2DIR spectroscopy lies in the detection of the emitted 

IR signal field. Most ultrafast IR spectroscopy is currently done using various 1D 

HgCdTe (MCT) arrays of 32, 64, or 128-pixels, sometimes in pairs to provide a 

reference. These detectors are costly, and are only useful in the IR, while suffering 

from complicated electronics and low intrinsic sensitivity as parameterized by the so-

called specific detectivity D*. Using CPU, we are able to circumvent this limitation by 

using sum-frequency generation (SFG) to shift the emitted IR field to the visible 

which can be detected using a silicon CCD camera mated to a conventional 

spectrometer.1-3 Specifically, we mix a highly chirped near-IR pulse centered at 800 

nm with an emitted IR signal near 5 µm. The resulting ~700 nm light is easily 

detected on a 100x1340-pixel CCD array, providing an order-of-magnitude multiplex 

advantage over a 128-pixel IR detector array. The use of a chirped pulse is primarily a 

matter of convenience: the uncompressed output of a regenerative amplifier is 

perfectly synchronized to the IR pulse, while the high degree of chirp leads to a 

narrow bandwidth that is temporally coincident with the few-picosecond IR field, 

adding minimal spectral broadening in the upconverted output. Fig. 3.1 demonstrates 

this point. Figure 3.1 shows a cartoon spectrum of the chirped pulse along with a 

narrow (green) and broad (blue) spectral feature and the corresponding Fourier 

transforms. From Fig. 3.1, it can be seen that a signal having a short dephasing time 

(broad spectral features) will be effectively upconverted with a single frequency; 

however, for signals with longer dephasing times (narrow spectral features), different 

parts of the signal will be upconverted with slightly different frequencies of the 

chirped pulse leading to the spectral phase distortions. 



44 

 

For many applications, especially those where the phase of the signal is not 

particularly important or where the IR spectral features are sufficiently broad, there is 

no need to correct for the spectral phase distortion—due to cross-phase modulation 

during the SFG process—imparted by the chirped pulse.4 However, in order to 

optimize the spectral resolution or to measure absorptive 2DIR signals the distortions 

caused by chirped-pulse upconversion are deleterious and must be corrected 

The use of a chirped pulse is primarily a matter of convenience: the 

uncompressed output of a regenerative amplifier is perfectly synchronized to the IR 

pulse, and, as is shown in Fig. 3.1 broad spectral features are not significantly 

distorted. However, it is not necessary to use a chirped pulse: a narrow-band, 

transform limited pulse could also be used to upconvert the mid-IR signal. Assuming 

that the cross-phase modulation of the SFG signal is due solely to the second-order 

upconversion process, there is no limitation of the present phase correction scheme 

to a particular magnitude or functional form of the chirped-pulse’s spectral phase—

Figure 3.1 (a) Cartoon representation of a chirped-pulse with the temporal extent of 
the broad (blue box) and narrow (green box) spectral features indicated. (b) Broad 
spectral feature with corresponding time-domain signal (c). (d) Narrow spectral 
feature with corresponding time-domain signal (e).  
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provided it is accurately measured. Since a transform-limited pulse is simply one with 

zero quadratic or higher-order spectral phase, there is no reason such a pulse could 

not be used. The only practical requirement for the mixing pulse is that it temporally 

overlaps the mid-IR signal. Since the SFG process is a time-domain product, the 

upconverted field will be the spectral convolution of the mid-IR and mixing pulses. 

Achieving maximal spectral resolution requires deconvolving the mixing pulse’s 

spectral amplitude. Indeed, the numerical manipulations of the recorded spectra 

would be identical to those described here, except that the emphasis of the correction 

would be on the temporal amplitude of the transform-limited mixing pulse since its 

phase is trivial (i.e. first order or lower). Given that upconversion using either a 

chirped or a transform-limited pulse requires the same correction, our approach 

eliminates the need to implement a spectral filter to produce a narrow-band mixing 

pulse from our 130 cm-1 bandwidth amplifier output. Also, it is important to note 

that it should be possible to increase upconversion efficiency by tailoring the chirped 

pulse duration to match the temporal extent of the mid-IR signal to be measured, 

particularly for the case of transient absorption. When using a shorter pulse, however, 

both the amplitude and phase of the SFG signal will require correction, and care must 

be taken to avoid third-order cross-phase modulation. Such an optimization has yet 

to be shown experimentally, but work is currently underway in our laboratory. It 

should also be noted that Tokmakoff et al. have implemented an alternative approach 

to using upconversion for IR signal detection without a chirped pulse that relies on 

upconverting the dispersed mid-IR light in a spectrometer.5, 6  

This chapter focuses on obtaining 2DIR spectra using the background-free 

method for detection, but there are alternate strategies to measure two-dimensional 

spectra in a modified pump-probe geometry where either an interferometer or a pulse 

shaper generates the first two pulses of the three-pulse sequence.7-9 As has recently 

been demonstrated in the visible10, the pump-probe method enables the use of a 

continuum probe.11 In the mid-IR it is more difficult to produce an ultra-broadband 

continuum, but recent progress has been made.12-15 In order for the full bandwidth of 
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the IR probe to be useful in a multichannel spectrometer, one requires a detector 

with a very large multiplex detection capability. For example, with a 4 cm-1 spectral 

resolution, a current state-of-the-art, 128-pixel MCT detector array is only able to 

cover 512 cm-1 of the IR spectrum, effectively negating the benefit of the broadband 

continuum (which can span more than 2000 cm-1). Using the full spectral coverage of 

a typical CCD camera, at 4 cm-1 resolution it is possible to cover the entire IR spectral 

range. The limitation of CPU is the phase-matched sum-frequency process, but this 

can be addressed using a thin upconversion crystal combined with increased near-IR 

intensity. Using the known material dispersion, we calculate the mixing bandwidth for 

a mid-IR field centered at 2105 cm-1 upconverted with a field centered at 800 nm to 

be 3000 cm-1 when a 0.1 mm thick LiNbO3 crystal is used at a single angle.16 Sum-

frequency bandwidth can be further extended by dithering the crystal or by using 

achromatic imaging approaches.17, 18 Further, the amplitude filtering of the 

upconverted light due to the finite phase-matching bandwidth can be calculated, 

enabling the spectra to be corrected. Since any phase shifts due to imperfect phase 

matching will be common to the signal and the local oscillator (i.e. the probe), only 

the spectral amplitude requires correction. Chirped-pulse upconversion offers an 

attractive ultra-broadband technique to record single-shot mid-IR continuum probes 

that may become a popular option for ultrafast transient IR and 2DIR spectroscopy. 

3.3 Simulated Effect of Spectral Phase Distortions 

Considering a model 2D response function the FTSI procedure is illustrated 

while demonstrating the effect of chirped pulse upconversion. Early work in 2DIR by 

Tokmakoff on a rhodium dicarbonyl (RDC) complex, dicarbonylacetylacetonato 

rhodium(I) (Fig. 3.2), provided a complete picture of the molecule’s CO vibrational 

eigenstates, along with the excited states that reveal the vibrational anharmonicity.19-23 

With knowledge of the transition energies and their associated transition dipole 

moments, it is possible to simulate nearly perfectly the measured 2DIR spectrum in a 

weakly interacting non-polar solvent such as hexane. Using the previously reported 
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analytical 2D response function20, we illustrate the added complications that arise due 

to CPU detection. The key finding is both the absolute-value rephasing signal and the 

recovered signal phase are affected by the CPU process. The distortions typically arise 

as a series of small peaks to higher frequencies of the peaks in the spectrum. Because 

the lineshapes of the peaks in the spectra are affected by the distortions, correcting 

for the cross-phase modulation is mandatory for measuring meaningful absorptive 

2D lineshapes. It is these lineshapes that contain much of the dynamical information 

that 2D spectroscopy seeks to extract.19, 24-28  

Figure 3.2 shows a schematic representation of both the FTSI and CPU 

processes. The chirped field, ECP, has a positive linear chirp due to a purely second 

order phase. The experimental value was measured by frequency-resolved sum-

frequency generation with the compressed 100-fs 800-nm pulse, and is the only 

auxiliary experimental measurement that must be performed to correct the distortion 

caused by CPU for absorption and echo spectra. Since the chirped pulse has a time-

bandwidth product of roughly 1200, it would be classified as being highly complex, 

Figure 3.2 Chirped pulse amplitude (undersampled) and phase. (top) The dashed 
rectangle shows the temporal extent of the IR fields. (bottom) Real part of the 
amplitude of the LO and the emitted echo signal for the case of t1 = t2 = 0 with the 
molecular structure of RDC shown. 
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and a challenge to measure with self-referencing methods such as frequency resolved 

optical gating or spectral phase interferometry for direct electric field reconstruction.  

Moreover, it is very easy to map out the instantaneous frequency by SFG with 

the mid-IR pulse directly within the 2D spectrometer, and such measurements yield 

the same chirp value as is obtained by SFG with an 800 nm pulse. Fitting the center 

of the resulting SFG spectrum gives the instantaneous frequency of the chirped pulse 

as a function of time since the short gate pulse is known to be centered at 800 nm. 

Fitting the variation of frequency gives a chirp rate of 0.5 cm-1/ps, which is 

equivalent to a 8.33-ps2 second-order temporal phase.1 The local oscillator (LO), ELO, 

is simulated to be advanced 10 ps relative to E3 and the signal is emitted following 

the arrival of E3. Since the dephasing times for the transitions considered here are 

long, no accounting for finite pulse durations is made except that the local oscillator 

is simulated to have a bandwidth that matches our experimental conditions (~150 

cm-1). The dotted box in the center of the chirped pulse field shows the temporal 

extent of the IR field—signal and LO—to be upconverted. Ignoring the effects of 

phase matching for the SFG process, the resulting upconverted field, ECPU, is given 

by (Eq. 3.1)4: 

Figure 3.3 (a) Sonogram of the LO and signal fields, separated in time by ∆t, 
superimposed on a cartoon sonogram of the positively chirped near-IR pulse. (b) 
Simulated sonogram of the upconverted field the dotted line indicates the linear chirp 
of the signal imparted by the chirped pulse. 
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[ ]( ) ( ) ( ) ( )CPU S LO CPE t E t E t E t= +  
Eq. 3.1 

By representing the chirped field and IR field as a sonogram (Fig. 3.3), it is clear 

that the chirp imposes a quadratic spectral phase on the upconverted field, resulting 

in a linear chirp of the echo signal. Fig 3.3a displays the chirped, signal and LO fields 

before the upconversion processes, and Fig 3.3b displays the resulting upconverted 

fields. The chirped field is given in Eq. 3.2 where ω0 is the center frequency of the 

chirped pulse and ϕ(2) is the quadratic phase of the chirped pulse, and the 

upconverted LO field is given in Eq. 3.3.4  
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i t
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−=  

Eq. 3.2 

0
, ( ) ( ) i t

LO CPU LOE t E t e ω−∝  
Eq. 3.3 

The LO is transform limited and does not vary with time. This leads to the 

desired effect: the upconverted LO field is translated in frequency without any 

significant contribution from the quadratic spectral phase of the chirped pulse, which 

is evident from Fig. 3.3b and Eq. 3.3. The signal field varies arbitrarily with time, and 

the temporal extent of the signal depends on the molecular system being studied. The 

resulting upconverted signal field is given in Eq. 3.4.4 

Along with the translation in frequency space, there is also some contribution 

from the second order quadratic phase of the chirped pulse to the echo signal. As can 

be seen from Eq. 3.4 and Fig. 3.3b the resulting upconverted echo signal has a linear 

chirp. In the experiment, the frequency of the echo signal increases as a function of 

time with a rate corresponding to 0.5 cm-1/ps. 

Analysis of a simulated spectral interferogram of the upconverted field ECPU 

and an exact IR interferogram (i.e. Es + ELO) demonstrates the effect of the chirp on 

the signal. Transforming the data to the time domain, applying a filter to remove ELO, 
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inverse Fourier transforming the filtered complex data and removal of the linear 

phase due to the time delay ∆t yields an absolute-magnitude spectrum shown in Fig. 

3.4 with the real and imaginary parts of the signal shown in Fig. 3.4b-c. Comparing 

the exact and upconverted results we see the main distortions imparted by the 

chirped pulse as small modulations to the higher frequency side of the peaks in the 

spectra. The modulations appear at higher frequencies because the chirped pulse is 

positively chirped. As depicted in Fig. 3.3 when the signal is mixed with the chirped 

pulse different parts of the signal will be upconverted with slightly different 

frequencies leading to spectral modulations. A positive chirp, will lead to distortions 

at slightly higher frequencies, while a negative chirp will lead to distortions at slightly 

lower frequencies of the peaks. For an extremely chirped pulse, the frequency of the 

mixing pulse will be practically constant over the signal range minimizing the 

distortions. Although this simulation only considers the rephasing signal, similar 

distortions will appear in the nonrephasing signal. 

3.4 Correction of Vibrational Echo Signal 

To correct the 2DIR vibrational echo signal we apply the correction to each 

interferogram collected for a given value of t1. The steps for the correction procedure 

are depicted in Figure 3.5. Each step was performed using the RDC model to 

simulate a signal that is upconverted with an 800-nm pulse with the same chirp 

characteristics as our experimental pulse. The figure shows the resulting real, 

Figure 3.4 Simulated RDC absolute value (a), real (b) and imaginary (c) parts of the 
echo signal as would be measured directly (blue) and using CPU (green). 
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imaginary and absolute values of the amplitudes for the corrected upconverted data, 

(black) and the exact simulated data (i.e. the simulated data without upconversion) 

(blue). A more detailed description of each step in the correction process follows. 

Since the detected interferograms are collected as a function of wavelength, the first 

step in the correction process is to interpolate the interferograms to be evenly spaced 

in the frequency domain, ωdet. The frequencies are then shifted to the mid-IR region, 

Ω=ωdet-ωo where ωo is the center frequency of the chirped pulse; this accounts for the 

removal of the linear temporal phase (i.e. frequency shift) contribution of the chirped 

pulse, exp( )oi tω− . The center frequency of the chirped pulse is determined by 

comparing the frequencies of the peaks along the ω3 axis to the frequencies of the 

peaks obtained from a linear FT-IR spectrum. The center frequency ωο is the 

difference between the detected frequencies along ω3 axis and the frequencies 

determined from the FT-IR. The second step is to Fourier transform with respect to 

Figure 3.5 Steps required for removal of the distortions caused by CPU using 
simulated data for the RDC system (see text for details). Blue (orange) boxes 
correspond to data in the frequency (time) domain. Final pane shows real and 
imaginary amplitudes of the signal for the corrected data (black) versus the exact 
simulation (blue). 
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Ω to the time domain (denoted by T) where a filter is applied to remove the local 

oscillator, leaving the signal field plus the added linear phase due to the signal-LO 

delay, ∆t. After removing the local oscillator, the quadratic phase of the chirped pulse, 

ΘCP, is removed from the signal by multiplying the complex signal in the time domain 

by 2 (2)exp( / 2 )iT ϕ , where φ(2) is the measured quadratic phase of the chirped pulse.4 It 

is important to note that the phase function, 2 (2)exp( / 2 )iT ϕ , is shifted so that its 

origin corresponds to the temporal origin of the signal (this is depicted in step 3 of 

Fig. 3.5) which is determined from an interferogram between the local oscillator and 

scatter from E3. Shifting the function ensures that the added linear phase from the 

signal-LO delay is not being taken into account during the chirp correction. The final 

step is to apply an inverse Fourier transform along T resulting in the corrected signal 

field. 

We have applied this correction method to a rephasing spectrum of a 3 mM 

solution of dimanganese decacarbonyl, Mn2(CO)10, in n-hexane.29 In Figure 3.6a the 

absolute value of the amplitude of a slice taken from the 2D rephasing spectrum 

along ω3 for ω1= 2015 cm-1 is shown for the corrected data (red) and the uncorrected 

data (black) and Figure 3.6b-c shows the real and imaginary amplitudes of the slice 

for the corrected and uncorrected data. Comparing the slices isolates the distortions 

of the signal due to CPU. The uncorrected data has modulations on the blue side of 

Figure 3.6 Normalized absolute value (a), real (b) and imaginary(c) amplitude of a slice 
along ω3 at ω1=2015 cm-1 for the rephasing spectrum of Mn2(CO)10 at t2=5 for corrected 
(red) and uncorrected (black) data. 
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the peaks, which is a predicted distortion from the chirped pulse whereas the 

modulations are not present in the corrected data. 

3.5 Calibration of Scanned t1 Time Delay 

In order to obtain a 2DIR spectrum, the time delay between the first two 

pulses, t1, is scanned continuously for a given t2, and a Fourier transform with respect 

to t1 results in the ωexcite axis of the 2DIR spectrum. A pair of ZnSe wedges is used to 

scan the t1 time delay.30 In order to calibrate the wedges we obtain a series of 

interferograms which have distortions imparted by the chirped pulse. In this section 

we describe both the wedge calibration procedure along with the correction 

procedure for the removal of the distortions from the interferograms. 

For each pair of wedges, one is held stationary and the other is mounted to a 

translation stage actuated by a DC motor which is used to scan the t1 axis. To map 

the motor encoder positions to time delays, the wedges are calibrated using 

interferograms between the upconverted scatter of E1 and E2 recorded as each ZnSe 

wedge is scanned. Scanning the wedges gives a maximum t1 delay of 12 ps which 

corresponds to 2.78 cm-1 resolution. For typical scans (10,000 interferograms) the 

spacing between the time points is ~1 fs; however, a minimum spacing of 0.4 fs—

limited by the slowest practical motor movement—can be obtained by scanning the 

motors at a slower rate. A moving window Fourier transform method is used to 

correct for shifts in the frequency of the pixel, which is assigned using a known 

absorption feature. Since the chirped pulse’s spectrum is roughly 130 cm-1 (FWHM) 

broad, there is an uncertainty in the upconverted signal wavelength. The tracer is used 

to set the absolute frequency of the detection axis by using spectral interference, via 

scatter, with either E1 or E2 with a molecular sample present, and then setting the 

delay to zero by nulling the fringes. With multiple bands present in the IR absorption 

spectrum, a polynomial can be used to map pixel to IR wavenumber.  

Before calibrating the wedges we first remove the distortions from the 

interferograms using a procedure very similar to the correction of the 2DIR 
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vibrational echo, with the only difference occurring in step three of Figure 3.5; the 

shifting of the phase function. The phase function, 2 (2)exp( / 2 )iT ϕ , is shifted so that 

the origin of the function corresponds to the origin of the signal, so that the linear 

phase contribution from the time delay between E1 and E2, ∆tc, is not being 

compensated in the correction. For the calibrations, the value of ∆tc will necessarily 

change for each interferogram, so at each time step ∆tc is determined by fitting the 

peak in the time domain to a Gaussian function. 

In Figure 3.7a, the absolute value of the Fourier transform of the uncalibrated 

pixel corresponding to 2015 cm-1 is shown for the uncorrected (black) and corrected 

(red) data. This comparison isolates the distortions caused by the CPU alone. 

Comparing the two, we see a narrowing of the peak due to correcting the distortions. 

Figure 3.7b shows the absolute value of the Fourier transform of the calibrated pixel 

for the corrected (red) and uncorrected (black) data. Comparing the two peaks we see 

a slight difference; however, the spectral width seems comparable for the peaks 

indicating that the calibration itself corrects for some of the spectral phase 

contributions of the chirped pulse. In both figures, the data points for the corrected 

and uncorrected peaks are not at the exact same frequency; this is inherent to the 

calibration, as the mapping of the encoder positions to time delays is slightly different 

Figure 3.7 (a) Absolute value of the Fourier transform of the uncalibrated corrected 
(red) and uncorrected (black) data for the pixel corresponding to 2015 cm-1. (b) 
Absolute value of the Fourier transform of the calibrated uncorrected (black) and 
corrected (red) data. 



55 

 

for the corrected and uncorrected peaks resulting in a slightly different frequency 

spacing. 

3.6 Correction of Pump-Probe Spectrum 

Using the background free method for detecting both rephasing and 

nonrephasing spectra, and without further measurements of the absolute phase, the 

pump-probe spectrum is required for obtaining an absorptive spectrum. In this 

section we describe the procedure for the removal of the distortions imparted by the 

chirped pulse to the pump-probe spectrum. The IR-pump/IR-probe spectrum is 

obtained by subtracting the pumped tracer absorption from the unpumped 

absorption, but before subtraction, the individual absorption spectra are 

independently corrected according to the procedure described by Lee et. al..4 The 

correction procedure is similar to Fig 3.5 with the difference lying in step 3. In step 3, 

a filter is no longer applied, and ΘCP is subtracted by multiplying the signal by
2 (2)exp( ( )* / 2 )sign T iT ϕ , that is, by the anti-symmetrized phase, which reflects the 

causality of the absorption signal. We illustrate this method using a 3 mM solution of 

Mn2(CO)10 in n-hexane. The corrected (red) and uncorrected (black) pump-probe 

spectra are shown in Fig. 3.8. Comparing the two spectra we see the distortions 

present as small peak-like features to the blue of the ground state absorptions for the 

uncorrected spectrum. These features are absent in the corrected spectrum.  

Figure 3.8 Corrected (red) and uncorrected (black) pump-probe spectra of Mn2(CO)10 

at a delay time of 5 ps. 
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3.7 Obtaining Absorptive Spectra 

After correcting for the phase distortions induced by the chirped pulse, the 2D 

absorptive spectrum can be obtained by adding the real parts of the rephasing and 

nonrephasing spectra (Eq. 3.5):24, 31 

3 3 3 31 1 1 1
1 2 3 1 3 1 2 3 1 3 1 2 3

0 0 0 0

( , , ) Re ( , , ) ( , , )i t i ti t i t
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Eq. 3.5 

Before the signals are added they must first be “phased.” Typical phasing 

procedures call for the multiplication of the signal by a phase exp( )iΦ  where 

1 3 1 3 3, ) t tω ω ω ω θ1Φ( = ∆ + ∆ + .32, 33 The two linear phase terms ω1Δt1 and ω3Δt3 account 

for distortions of the spectral phase of the signals arising from the inability to 

determine precisely the origins of t1 and t3 in Eq. 3.5. The constant phase, θ, accounts 

for the constant relative phase difference between the rephasing and nonrephasing 

signals. 

3.8 Phasing the Corrected Rephasing and Nonrephasing Signals 

Using a set of interferograms between the scatter of E1 and E2 and an 

interferogram between E3 and ELO, the origins of the t1 and the t3 axes are 

determined to within sufficient precision that the linear phase contributions in eiΦ , 

ω1Δt1 and ω3Δt3,  can be neglected. Experimentally we determine the origin of the t1 

axis (t1 = 0) from the same data used to calibrate the wedges. Each interferogram is 

transformed to the time domain, where the peak due to the interference is fit to a 

Gaussian enabling the time difference to be determined to within 1 fs. The time 

differences are then fit to a line (R2=0.995) and extrapolated to t1=0. An 

interferogram between the ELO and scatter from E3 is used to determine the 

difference in timing between E3 and the ELO to within 1 fs eliminating the need for 

the linear phase term along ω3. Using these measurements we are able to neglect the 

linear phase contributions due to the timing errors; however, the constant phase, 
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which accounts for the relative phase difference between the rephasing and 

nonrephasing spectra, still needs to be determined. To determine θR and θNR we use a 

genetic algorithm searching method with a fitness function consisting of two parts, fω3 

along ω3, and fω1, along ω1. Making use of the projection slice theorem we define fω3 to 

be minimized when the projection of the absorptive spectrum on to the ω3 axis 

equals the pump-probe spectrum.25, 34 The fω1 contribution is minimized when the 

normalized projections of the absolute value of the rephasing and nonrephasing 

spectra on to ω1 match the normalized projection of the absolute value of the 

absorptive spectrum on to ω1. The values of θR and θNR are obtained when the total 

fitness function, f = fω1+fω3, is minimized. 

Figure 3.9a displays an absorptive spectrum of a 3 mM solution of Mn2(CO)10  

in n-hexane at t2= 5 ps. The color scheme is such that blue peaks are negative, 

corresponding to ground-state bleach and stimulated emission, and red peaks are 

positive, corresponding to induced excited-state absorption. As expected, the 2DIR 

spectrum of DMDC consists of a set of nine negative peaks due to the coupling 

between the three bands observed in the linear FT-IR spectrum. Below each negative 

Figure 3.9 (a) Absorptive 2DIR spectrum of Mn2(CO)10 at t2 = 5 ps. (b) Normalized 
projections of the absolute value of the absorptive (black), rephasing (red) and 
nonrephasing (blue) spectra on to ω1. (c) Projection of the absorptive spectrum (black) 
on to ω3and the corrected pump-probe spectrum (red). 
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peak is a positive peak at lower detection frequency, corresponding to the red-shifted 

excited state absorption. It is typically the case for molecular vibrations that the 

potential gives rise to positive anharmonicity, where the transition between the first 

and second excited state is lower in energy than the transition from the ground state 

to the first excited state. Zooming in on the peaks at ω3=1980 cm-1 clearly shows the 

presence of the induced absorption peaks. The induced absorption peaks along the 

diagonal seem to be elongated; this minor effect could be due to faster dephasing or 

to the contribution of fifth order processes to the signal. The spectrum was obtained 

using the phasing procedure described above. Figure 3.9b displays the normalized 

projection of the absolute value of the correctly phased absorptive spectra on to ω1 

(black) and the normalized projection of the absolute value of the rephasing (red) and 

nonrephasing (blue) on to the ω1 axis.  Figure 3.9c shows the projection of the 

absorptive spectrum on to the ω3 axis (red) along with the corrected pump-probe 

spectrum (black). 

We have also applied the phasing procedure to rephasing and nonrephasing 

spectra that have not been corrected for CPU. Figure 3.10 shows the absorptive 

spectra of Mn2(CO)10 in n-hexane at t2=5ps obtained from the corrected (a) and the 

uncorrected (b) data. For the uncorrected data we see distortions of the lineshapes 

along with small peaks (indicated with arrows) along the ω3 axis lying at a higher 

Figure 3.10 Absorptive 2DIR spectrum with the distortions from the chirped pulse 
removed (a) and not removed (b). (c) Slice along ω3 at ω1 = 2015 cm-1 for the corrected 
(red) and uncorrected (black) data. Distortions along the ω3 axis are indicated with 
arrows. 
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frequency relative to the peaks from Mn2(CO)10. A slice along ω3 at ω1=2015 cm-1 

(Fig. 3.10c) is plotted for the corrected (red) and uncorrected (black) data with the 

distortions indicated with arrows. Since each absorptive spectrum requires only 

roughly 20 seconds of experimental acquisition time (10 s for each rephasing and 

nonrephasing scan), spectra for many waiting times can be recorded in relatively rapid 

succession. Here we test the robustness of our phasing parameters for spectra 

measured with different waiting times. The origin of t1 determined from the set of 

interferograms between E1 and E2 is approximately equivalent for each t1 as t2 is 

stepped. The reason for this reproducibility lies in our ability to return motors to the 

within ±20 encoder positions of the starting position, corresponding to ±0.1 fs. The 

origin of t3 does not change as t2 is stepped because the ELO is locked in time with E3. 

The E3/LO beam splitter is placed after the delay stage, so as t2 is scanned the 

relative timing between ELO and E3 remains constant. The values of θR and θNR, 

however, need to be determined for each t2 step. The phasing procedure described 

above is applied to each rephasing and nonrephasing spectrum for each value of t2 to 

obtain the corresponding absorptive spectrum (approximately 3 hours of processing 

time for a typical data set consisting of ~100 t2 time steps). 

To demonstrate the effects of using a pump-probe spectrum having a time 

delay different from that of t2 we obtained two absorptive spectra of Mn2(CO)12 in n-

hexane at t2 = 2 ps. For the phasing procedure we used a pump-probe spectrum with 

a time delay of 2 ps and one having a time delay of 5 ps. To compare the results, the 

projections of the absorptive spectra on to ω3 obtained from the phasing procedure 

using the pump-probe at 2 ps (red line) and the pump-probe at 5 ps (blue dots) are 

displayed in Figure 3.11a. In comparing the projections there is no visible difference 

between the projection of the absorptive spectrum obtained from the 2 ps and 5 ps 

pump-probe. A plot of the difference between the two projections (Fig. 311b) shows 

that the two projections differ by less than 1%. This insensitivity to the specific time 

delay necessarily depends on the vibrational lifetime, and will not be universal.  
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3.9 Absorptive Spectra in a Polar Solvent 

Since n-hexane is a weakly interacting non-polar solvent, the spectral features of 

the Mn2(CO)10  spectrum are particularly narrow, and provide a stringent test of the 

spectral resolution obtained using an absorptive 2D spectrum combined with CPU 

detection. Much of the chemical interest in 2DIR spectroscopy, however, concerns 

the presence of transient inhomogeneity which manifests itself as spectral diffusion. 

Due to a distribution of slightly different microscopic environments, transition 

frequencies are inhomogeneously distributed leading to a correlation between excited 

and detected frequencies, evident in a 2D spectrum as a diagonal elongation of the 

line shape for a given peak. In solution the individual sub-ensembles generally do not 

retain memory of their initial excitation frequencies indefinitely, so that increasing the 

waiting time delay t2 leads to loss of the frequency correlation. The time scale of this 

frequency memory-loss is characterized by the frequency-frequency time correlation 

function.25, 26, 35 Dissolving metal carbonyl complexes in polar solvents such as 

alcohols leads to slightly inhomogeneously broadened bands that exhibit spectral 

diffusion due to the polar solvent and the formation of hydrogen bonds.19 Figure 

3.12 shows absorptive 2DIR spectra of Mn2(CO)10 in methanol at two waiting time 

Figure 3.11 (a) The absorptive spectra of DMDC in n-hexane at t2= 2 ps were 
obtained using pump-probe spectra at 2 ps and 5 ps and the projection of the 
absorptive spectra along ω3 are shown, 2 ps pump-probe (red) and 5 ps pump-probe 
(blue). (b) The difference between the two projections is plotted.  
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delays, t2 = 200 fs and 10 ps. The slight diagonal elongation seen at 200 fs is relaxed 

by 10 ps, a time scale for memory loss that is consistent with solvation dynamics. 

Although errors in phasing the absorptive spectrum seem more obvious and 

pronounced when the spectral features are narrow, the bulk of chemical interest 

concerns the analysis of 2D lineshapes in the presence of spectral diffusion. These 

data illustrate that chirped-corrected, CPU-detected 2DIR spectroscopy functions 

equally well for a system with some degree of inhomogeneity. 

3.10 Conclusions 

In this chapter, the general procedure for the removal of the cross-phase 

modulation acquired during sum-frequency generation4 to CPU 2DIR spectroscopy 

was demonstrated and described in detail. For broad transitions and/or when phase 

sensitive measurements are not required, the correction is not necessary; however, to 

access the complete ultrafast dynamical information contained in the waiting-time 

evolution of the lineshapes, it is necessary to remove the distortions induced by the 

chirped pulse. 

Along with demonstrating how to remove these phase distortions, giving a 

detailed step-by-step procedure, the method used for obtaining absorptive spectra 

from the corrected data was also described in detail. It was shown that this method 

Figure 3.12 Absorptive 2DIR spectra of Mn2(CO)10 in methanol at (right) t2 = 
200 fs and (left) t2 = 10 ps. 
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can be used to obtain spectra in both the homogeneous and inhomogeneous 

broadened cases. Though the correction of spectra obtained using the background-

free beam geometry method of 2DIR spectroscopy was focused on, the approach can 

be applied to other implementation of 2DIR spectroscopy detected using CPU such 

as the pump-probe geometry or the hybrid frequency-time hole burning technique. 

We anticipate CPU to be an attractive method for detecting ultra-broadband mid-IR 

continuum probes in transient IR absorption and 2DIR spectroscopy.    
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Chapter 4  

Equilibrium Chemical Exchange: 
Determining Entropic and Enthalpic 

Barriers 
The work presented in this chapter has been published in the following paper: 

Jessica M. Anna, Matthew R. Ross, and Kevin J. Kubarych, “Dissecting 

Enthalpic and Entropic Barrier to Ultrafast Equilibrium Isomerization of a Flexible 

Molecule Using 2DIR Chemical Exchange Spectroscopy,” The Journal of Physical 

Chemistry A (letter), 113, 2009, 6544-6547. 

 

4.1 Overview: Chapter 4 

In this chapter 2DIR spectroscopy is used to study the dynamic equilibrium 

between the bridging and a non-bridging form of dicobalt octacarbonyl. The issue of 

extracting the rate constants to exchange from congested spectra having overlapping 

spectral features is addressed. Specifically, using the well-characterized coherent 

modulation of non-exchanging crosspeaks enables the isolation of the exchange 

contribution to the crosspeak from non-exchanging contributions. Through 

temperature dependent studies the barrier height for isomerization is extracted. An 

upper and lower limit to the barrier is obtained when the temperature dependence of 

the viscosity is accounted for. Analysis using the Eyring equation indicates a 

substantial entropic contribution to the free energy barrier (ΔS‡exp>0). Comparison to 
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quantum chemical calculations showed reasonable agreement for the activation 

energies but qualitative disagreement for the entropy of the transition state relative to 

the isomers (ΔS‡comp<0).  

4.2 Dicobalt Octacarbonyl: Study of Dynamic Equilibrium 

The equilibrium between two species is a dynamical process where reactants are 

consumed at the same rate they are regenerated. Despite the ubiquity of chemical 

equilibria, only with the development of ultrafast chemical exchange spectroscopy has 

it become possible to probe equilibrium kinetics of low-barrier reactions directly in 

the time domain.1-8 2DIR exchange spectroscopy has been applied to systems 

involving two different species such as solvent-solute complexes, free solute rotation 

about a carbon-carbon single bond, hydrogen bond formation and fluxionality. In 

this chapter we apply 2DIR exchange spectroscopy to dicobalt octacarbonyl 

[Co2(CO)8, DCO] which exists as three isomers in dynamic equilibrium.  

Dicobalt octacarbonyl is known to be an important catalyst and precursor to 

catalysts of chemical reactions including the hydroformylation9 and Pauson-Khand10 

reactions. DCO, is a flexible molecule, existing as three isomers at room 

temperature11 that interconvert on the picosecond timescale (Fig. 4.1), and thus is an 

ideal model system to track with 2DIR exchange spectroscopy. Previous theoretical 

studies have explored both relative stabilities and isomerization barriers of DCO 

finding that some of the barriers were consistent with isomerization occurring on the 

picosecond timescale.12, 13 Using 2DIR exchange spectroscopy we have directly 

observed interconversion between two of the three isomers, providing an 

Figure 4.1 Three isomers of dicobalt octacarbonyl. 
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experimental measure of the isomerization barrier. Unlike the previous 2DIR 

exchange studies that had only two molecular species present, all three isomers of 

DCO have multiple overlapping vibrational transitions that complicate the isolation 

of the exchange component. We demonstrate a method that exploits predictable 

coherent quantum mechanical modulations of certain crosspeaks in the 2DIR 

spectrum to isolate the exchange signal, while extending chemical exchange to a 

system with more than two equilibrium species. 

4.3 Linear FT-IR: Thermodynamics 

The linear FT-IR spectrum of DCO in n-hexane at 25° C is shown in Fig. 4.2. 

The peaks in green have been previously assigned to isomer I (2040, 2044 and 2070 

cm-1), the peaks in blue to isomer II (2022 and 2067 cm-1) and the peaks in orange to 

isomer III (2030 and 2057 cm-1).11 Fitting the linear FT-IR spectra to seven 

Lorentzians we obtain the areas of the peaks corresponding to the different isomers. 

Taking the ratio of the areas of the fitted peaks we can obtain the equilibrium 

constants. In a 2DIR spectrum, exchange crosspeaks grow with a rate constant that is 

the sum of the forward and reverse rate constants; the equilibrium constant is needed 

to find the separate rate constants. 

Figure 4.2 FT-IR spectrum of Co2(CO)8 in hexane is shown. The peaks in green 
at  2040, 2044 and 2070 cm-1 are assigned to isomer I. The peaks in blue at 2022 
and 2067 cm-1 are assigned to isomer II, and the peaks in orange at 2030 and 2057 
cm-1 are assigned to isomer III. 
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2DIR spectra were collected at different temperatures, requiring the 

temperature-dependent equilibrium constants in order to extract the forward and 

reverse rate constants. We obtained several temperature-dependent linear FT-IR 

spectra ranging from 19̊C to 50˚C  which are displayed in Fig. 4.3a. The plotted 

spectra are normalized to the total area. With increased temperature, the populations 

of the peaks assigned to isomer I and II decrease at different rates while the 

population of isomer III increases. Focusing on the peak centered at 2069 cm-1 (Fig. 

4.3b) we see there is an isosbestic point indicating the presence of two distinct 

species, isomer I and isomer II. Isomer I is assigned to the higher frequency 

component and isomer II to the lower frequency. From the relative areas of the fitted 

peaks corresponding to isomer I and II we obtained equilibrium constants at 14, 25, 

and 50° C of KI/II=1.13, 1.09 and 1.03.  

We also obtained the relative enthalpy and entropy of isomer II to isomer I 

from the temperature dependent equilibrium constants. The van’t Hoff equation (Eq. 

4.1) describes how the equilibrium constant depends on temperature where Keq is the 

equilibrium constant ΔH° is the change in enthalpy of the reaction and ΔS° is the 

change in entropy of the reaction.  

ln eq
H SK RT R

∆ ° ∆ °  = − +   
Eq. 4.1 

Figure 4.3 (a) Temperature dependent FT-IR spectra of Co2(CO)8 in n-hexane in terminal 
carbonyl region. (b) Focusing on the high frequency peak. 
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Fig. 4.4 plots the natural log of the equilibrium constant versus 1/T. From the 

slope of the van’t Hoff plot we obtain a ΔH°= -0.49 kcal/mol and ΔS°=-1.46 

cal/(mol•K); both the entropy and enthalpy decrease upon isomerization from 

isomer II to isomer I. 

4.4 Two-Dimensional IR Spectra 

From the linear FT-IR spectra we obtain information on the relative energy of 

the ground states; however, to obtain information on the forward and reverse rate 

constants and the height of the barrier we use 2DIR spectroscopy. Absolute value 

rephasing spectra for two different waiting times, t2, are displayed in Fig. 4.5. The 

peaks on the diagonal (ωexcite=ωdetect) are due to the fundamental transitions seen in the 

linear spectrum. Crosspeaks present at t2=0 ps indicate that the corresponding 

diagonal peaks share a common ground state and thus belong to the same isomer.  

The peaks lying along the diagonal correspond to the peaks in the linear FT-IR 

spectrum. In accord with earlier work11, peak 1 is assigned to isomer II, peaks 2 and 5 

are assigned to isomer III and peaks 3 and 4 are assigned to isomer I. Both isomer II 

and I contribute to peak 6 with isomer II lying at lower wavenumber (6a) and isomer 

I at higher wavenumber (6b). The composition of peak 6 has been confirmed by 

temperature-dependent FT-IR spectra (Fig. 4.3b). Crosspeaks 9, 10, 11 and 12 

confirm the assignment of the diagonal peaks 3, 4 and 6b to isomer I, while the 

Figure 4.4 Van’t Hoff plot using equilibrium constants determined from the relative 
total spectral amplitude for isomers I and II.  

 



71 

 

crosspeaks 7 and 8 confirm the assignment of the diagonal peaks 1 and 6a to isomer 

II. 

 The peaks in the 2D spectrum change in magnitude with increased waiting 

time. Figure 4.5 shows the amplitudes of peaks 1, 6, and 7 at 25˚C as a function of t2.  

Peak 7 is present at t2=0 ps and markedly increases in amplitude by t2=30 ps, whereas 

the diagonal peaks sim ply decay. Peaks 1, 6, and 7 were fit to a biexponential having 

the following form (Eq. 4.2): 

2 2

1 2( ) a b

t t
t tf t Ae A e

− −
= +  

Eq. 4.2 

Figure 4.5 A plot of the amplitudes of peaks 1, 6 and 7 as a function of t2 is shown. The 
inset shows the data focusing on the crosspeak along with the exchange part of the 
signal in green which was obtained from the described fitting procedure. Absolute value 
of the rephasing spectra of Co2(CO)8 in n-hexane at t2=0 ps and t2=30 ps are shown 
with the spectra normalized to the maximum amplitude. 

 

Figure 4.6 Fourier transform amplitude of t2-dependent peak 7 amplitude showing a 
peak at 46 cm-1. 
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The resulting fit parameters are given in Table 4.1. Biexponential fits of the 

diagonal peaks indicate a fast decay of 2-3 ps (1/e) and a slower decay of 30 ps. 

Crosspeak 7, first oscillates as it grows in and then decays; a Fourier transform of the 

crosspeak 7 oscillations (Fig. 4.6) yields a frequency of 46 cm-1, which equals the 

splitting between transitions 6a and 1 of isomer II, indicating an excited state 

coherence of isomer II.14 Table 4.1 also reports the fitted parameters obtained from 

fitting the t2 dependent amplitude of the peaks in 2D spectra recorded at 14 and 50 

°C to Eq. 4.2. Figure 4.7 plots the amplitude or crosspeak 7 along with the 

biexponential fit at the three different temperatures. From Fig. 4.7 it can be seen that 

as the temperature increases the crosspeak maximum shifts to smaller t2 values.  

4.5 Growth of Crosspeak 7: IVR versus Exchange 

As t2 increases, crosspeak 7 first oscillates, grows in and then decays. There are 

two possible reasons for this growth due to the fact that there are two contributions 

to diagonal peak 6, from isomer I (6b) and isomer II (6a). The growth could be due 

to chemical exchange, population transfer between different chemical species, and the 

resulting crosspeak we refer to as the exchange crosspeak. Another possibility is that 

the growth could be due to intramolecular vibrational energy redistribution (IVR), 

    A ta (ps) B tb (ps) 

14° C 

peak1 6.7E+05 1.5 3.9E+05 32 

peak6 8.6E+05 3.5 3.2E+05 32 

peak7 -1.1E+05 8.6 2.2E+05 41 

25° C 

peak1 1.2E+06 1.5 7.2E+05 33 

peak6 1.6E+06 3.3 4.0E+05 33 

peak7 -2.2E+05 6.1 4.2E+05 47 

50° C 

peak1 7.2E+05 1.6 2.8E+05 26 

peak6 9.4E+05 2.9 2.0E+05 33 

peak7 -3.4E+04 3.4 1.4E+05 39 

 

Table 4.1 Biexponential fit parameters for peaks 1, 6 and 7 at 14 25 and 50°C. 
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population transfer between different modes of the same chemical species, and the 

resulting crosspeak we refer to as the inherent crosspeak. 

To establish evidence for the assignment of an exchange component in peak 7 

we considered the difference in the temperature dependence of the diagonal and 

crosspeaks. Previous studies of IVR in metal carbonyls observed crosspeak growth 

with a rate constant similar to the fast decay of the corresponding diagonal peaks.15 In 

order that the growth of peak 7 be due to IVR among the eigenstates of isomer II—

both bright and dark—the growth of the crosspeak and IVR decay of the diagonal 

peaks should have the same temperature dependence. Fig. 4.8 plots the inverse of the 

rate constants for the fast decay of the diagonal peaks 1 and 6 and the growth of 

Figure 4.8 Temperature dependence of the fast decay component of two diagonal 
peaks and the growth component of the exchange peak 7. 

Figure 4.7 Waiting time dependent traces of peak 7 at 14, 25 and 50°C shown with 
(solid gray) a simple biexponential fit accounting for growth and decay is plotted in grey. 
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crosspeak 7 as a function of temperature. The fast decay of the diagonal peaks is 

attributed to rapid IVR. If similar IVR is responsible for the growth of the crosspeak 

7 we would expect the growth of the crosspeak and decay of the diagonal peaks to 

have the same temperature dependence. From Fig. 4.8 we see the growth has a 

greater dependence on temperature than the decay of peak 1 and 6, indicating the 

growth of crosspeak 7 is not due to IVR. Thus we assign the growth of peak 7 to 

chemical exchange between isomers II and I.  

4.6 Separation of Inherent and Exchange Contributions 

The key challenge in extracting the exchange component from crosspeak 7 is to 

remove the crosspeak contribution due to isomer II, the inherent crosspeak 

contribution. In absolute value rephasing spectra, inherent crosspeaks oscillate as a 

function of t2 at a frequency corresponding to the difference in frequency between 

the two excited states involved.14 The oscillating coherence is a delicate quantum 

mechanical condition easily disrupted by environmental fluctuations. The exchange 

process itself acts as a dephasing mechanism since once exchange occurs, the two 

states involved in the coherence are no longer eigenstates.4 We therefore take the 

presence of the coherence to indicate non-exchange—that is, the coherence is due to 

molecules that never exchange during t2. Removing the coherence from the total 

crosspeak amplitude leaves the part of the signal that is due primarily to exchange.  

To extract the exchange component for isomerization between isomer I and II 

we have focused on peak 7. The t2 time dependence of peak 7 can be modeled by 

accounting for the contribution of the exchange peak and a single non-exchange 

crosspeak; peaks 1, 3, 4 and 8 require less straightforward modeling due to multiple 

overlapping contributions.  
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4.7 Extraction of Rate Constants: Inherent and Exchange Crosspeak 

Models 

This section first gives a detailed description of the kinetic model and resulting 

solutions to the rate laws for the exchange crosspeak. Next a detailed explanation of 

the model used to describe the t2 dependence of the inherent crosspeak is given. In 

the last section, the fitting procedure used to extract the rate constants is described. 

4.7.1 Exchange Crosspeak: t2 Dependence 

To model the equilibrium chemical exchange we use a two state kinetic model 

shown in Fig. 4.9 where A represents isomer II, B represents isomer I, kf and kr are 

the forward and reverse rate constants and kV is the rate constant associated with 

vibrational population relaxation. 

The following rate laws (Eq. 4.3-4.4) are obtained from the kinetic model where 

NA and NB are the effective populations of isomers II and I. The amplitude of the  

[ ] [ ] [ ]A
f r V

dN k A k B k Adt = − + −
 

Eq. 4.3 

[ ] [ ] [ ]B
f r V

dN k A k B k Bdt = + − −
 

Eq. 4.4 

signal depends on the concentration of the species, the oscillator strengths of the 

transitions, and the tuning of the incoming pulses. To avoid accounting for these 

contributions independently, we use the effective populations. 

Figure 4.9 Kinetic model used to describe chemical exchange with corresponding 2D 
spectrum. 
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The solutions to these rate laws are given in Eq. 4.5-4.6 where NA0 is the initial 

effective population of A (NA(t=0)) and NB0 is the initial effective population of B 

(NB(t=0)) and kex=kf+kr.  

( ) ( )( )( )
0 01

( )
V ex ex exk k t k t k t

B f A f r
A

ex

e N e k N e k k
N t k

− + − + + +
= −

 

Eq. 4.5 

( ) ( )( )( )
0 01

( )
V ex ex exk k t k t k t

A r B r f
B

ex

e N e k N e k k
N t k

− + − + + +
= −

 

Eq. 4.6 

The above solutions describe how the amplitudes of the diagonal peaks and 

crosspeaks change as a function of t2. The waiting-time dependent amplitude of 

diagonal peak AA is determined by setting the initial effective population of B to zero 

(NB0=0) and the initial effective population of A to A0(NA0=A0) in Eq. 4.5. For 

diagonal peak BB, NB0 is set to B0 and NA0 is set to 0 in Eq. 4.6. For crosspeak AB 

(Fig. 4.9) NA0 is set to 0 and NB0 is set to B0 in Eq. 4.5, and for crosspeak BA (Fig. 

4.9) NA0 is set to A0 and NB0 is set to 0 in Eq. 4.6. The resulting expressions for the t2 

dependent amplitudes of the peaks in Fig. 4.9 are given in Eq. 4.7-4.10. 

( )( )
0( )

V ex exk k t k t
f r

ex

A e e k k
AA t k

− + +
=

 

Eq. 4.7 

( )( )
0( )

V ex exk k t k t
r f

ex

B e e k k
BB t k

− + +
=

 

Eq. 4.8 

( )( )
0 1

( )
V ex exk k t k t

f

ex

B e e k
AB t k

− + − +
=

 

Eq. 4.9 

( )( )
0 1

( )
V ex exk k t k t

r

ex

A e e k
BA t k

− + − +
=

 

Eq. 4.10 

4.7.2 Inherent Crosspeak: t2 Dependence  

For the inherent crosspeaks, we first determine how the crosspeak changes with 

waiting time by only accounting for dynamics of the coherences, and then we add 
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two phenomenological terms, one to account for the dephasing of the coherence and 

the other to account for overall decay of the signal due to vibrational population 

relaxation. 

For the t2 dependence of the inherent crosspeak, we are only concerned with 

contributions from the rephasing spectra, so we need only to consider contributions 

to the third-order nonlinear signal in the –k1+k2+k3 phase matched direction. 

Considering a three level system, the 8 contributing Feynman and ladder diagrams are 

shown in Fig. 4.10.16  

Considering family I first, the first interaction creates a coherence between the 

ground states and the first excited states, a and b, where the coherence evolves in 

time according to the field free Hamiltonian ( ) exp( )ij ijG t i tω= − . The result follows: 

( ) ( )[ ]
0 1 0 1

0 00 0 00

1 0 1

0
0 0 0
0 0 0

a bi t i t
a b

I

e e
t G t

ω ωµ ρ µ ρ
ρ ρµ

− − 
 

= =  
 
   

Eq. 4.11 

The second field-matter interaction returns the system to a ground state 

population. Since we are assuming that the only dynamics arise from coherences, we 

do not observe any t2 time dependence of the population. 

Figure 4.10 Double sided Feynman and wave matching energy level diagrams for the 
Liouville space pathways that contribute to the diagonal and cross-peak rephasing 
amplitude for a three-level system. Family I is on the left, and family II is on the right. 
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( ) ( ) ( )
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Eq. 4.12 

The third field-matter interaction creates a coherence between the ground and first 

excited states. 

( ) ( ) ( ) ( ) ( )
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Eq. 4.13 

The final signal is proportional to the expectation value of the dipole operator, 

( )

( ) ( ) ( ) ( )0 3 2 0 3 20 1 0 1 0 1 0 1
0 0 0 0 00 0 0 00 0 0 0 0 00 0 0 00

3

0 0

0 0 0
0 0 0

a ba b a bi t t i t ti t i t i t i t
a a a a b b b b a a b b

I

e e e e e e

Tr t Tr

ω ωω ω ω ωµ µ µ µ ρ µ µ ρ µ µ µ µ ρ µ µ ρ

µ µρ

− −− − − − + + +
 
  = =   
 
 

 

 

thus, 

( ) ( )0 3 2 0 1 0 1
0 0 0 0 00 0 0 00

a a bi t t i t i tI
a a a a b be e eω ω ωµ µ µ µ µ ρ µ µ ρ− − −= +

 

            
( ) ( )0 3 2 0 1 0 1

0 0 0 0 00 0 0 00
b a bi t t i t i t

b b a a b be e eω ω ωµ µ µ µ ρ µ µ ρ− − −+ +
 

Eq. 4.14 

From Eq. 4.14, we see that the signal is composed of the four terms shown in the 

wave-matching energy level diagrams. 

 Now we consider family II, where an excited state coherence is created during 

t2 for the pathways leading to crosspeaks. The first field matter interaction, which is 

the same as that for family I, creates a coherence.  

( ) ( )[ ]
0 1 0 1

0 00 0 00

1 0 1

0
0 0 0
0 0 0

a bi t i t
a b

II

e e
t G t

ω ωµ ρ µ ρ
ρ ρµ

− − 
 

= =  
 
   

Eq. 4.15 
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The second interaction acts from the left creating both excited state coherences and 

excited state populations, which is difference. This differs from family I, where the 

second pulse created a ground state population. 

( ) ( ) ( ) ( )
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2 10 1 0 1

2 10 1 0 1
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0 0 0
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e e e
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ρ µρ µ µ ρ µ µ ρ

µ µ ρ µ µ ρ

− −− −

−− −

 
 

 = =   
 
 

 

   

Eq. 4.16 

 

After the second interaction we see that there is some time-dependence during t2 due 

to the excited state coherences created. The third interaction creates a coherence 

between the ground state and the first excited states. 
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Eq. 4.17 

 

Again, the final signal is the trace of µρ, 

( ) ( )( )0 3 2 2 10 1 0 1
0 0 0 0 00 0 0 0 0 00

a aba bi t t i t ti t i t
a a a a a a b be e e eω ωω ωµ µ µ µ µ ρ µ µ µ µ ρ− − −− −= +

      
( ) ( )( )0 3 2 2 10 1 0 1

0 0 0 0 00 0 0 0 0 00
b abb ai t t i t ti t i t

b b b b a a b be e e eω ωω ωµ µ µ µ ρ µ µ µ µ ρ− −− −+ +
 

Eq. 4.18 

and again we recover four terms corresponding to the four wave matching diagrams.  

 The total signal is the sum of the two families of paths derived above. Since 

we are primarily concerned with the t2 dependence of a cross-peak, we now restrict 

our attention to one of the two crosspeaks in the simple three-level system model. 

 The 2D spectrum is obtained by performing a Fourier transform along t1 and 

t3 to obtain ω1(ωexcite) and ω3 (ωdetect). The crosspeak we wish to model occurs at 

ω1= ω0a and ω3= ω0b. The component of the signal associated with this crosspeak is 

the following: 

( ) ( )2 1
1 0 2 3 0 0 0 0 0 00 0 0 0 0 00; ; abi t t

a b a a b b a a b bS t e ωω ω ω ω µ µ µ µ ρ µ µ µ µ ρ−= = = +

               ( )( )2 1 2 2
0 0 001abi t t

a be ω µ µ ρ−= +  

Eq. 4.19 
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It is important to note that Eq. 4.19 does not include any decay processes. We 

did not include any processes that would lead to the dephasing of the excited state 

coherence, and we add this dephasing rate constant, kD, to the above equation. The 

result is given in equation 4.20. 

( ) ( )( )( )2 2 2
1 0 2 3 0 0 0 00; ; 1ab Di ik t

a b a bS t e ωω ω ω ω µ µ ρ+= = = +
 

Eq. 4.20 

From the above equation it can be seen that the time dependence of the excited 

state coherence is completely predictable. Fig. 4.11 plots Eq. 20. We see that the 

signal oscillates at a frequency corresponding to the difference in frequency between 

the two excited states involved. We also see from Fig. 4.11 that the signal will decay 

to one-half its amplitude at t2=0 when only the dephasing of the coherence is taken 

into account. 

It is important to note that this derivation only included t2 dynamics associated 

with coherences and that the inherent crosspeak amplitude will change according to 

all the typical mechanisms: IVR, orientational diffusion and vibrational relaxation. We 

did not include any dynamics associated with populations in our model, so in order to 

apply this model we add a decay constant to account for vibrational population 

relaxation, kV, resulting in Eq. 4.21. 

Figure 4.11 Plot of equation S11 for a coherence with a frequency in wavenumbers 
of 40 cm-1, and a damping rate kD of 0.5 ps-1. 
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( ) ( )( )( )2 2
2 2 -

1 0 2 3 0 0 0 00; ; 1ab D Vi ik t k t
a b a bS t e eωω ω ω ω µ µ ρ+= = = +

 
Eq. 4.21 

4.7.3 Fitting Procedure 

The total amplitude of crosspeak 7 will be the sum of the contributions from 

the inherent (Eq. 4.21) and exchange (Eq. 4.9) crosspeak. Adding the inherent and 

exchange contributions we obtain the following expression where ωab is the frequency 

of the oscillation of the coherence, φ is the phase of the coherence, kD is the rate 

constant for the dephasing of the coherence, kV is the rate constant associated with 

vibrational population relaxation, kex is the exchange rate constant which is the sum 

of the forward and reverse rate constants, 1 2 0 f exA =A =B k /k , and 2 2
oa ob 00B=μ μ ρ . 

Using the coherence signal to lock onto the non-exchanging part of the signal, 

we can better estimate the exchange contribution to the crosspeak. Dividing the 

signal by the long time decay and subtracting the exchange leaves only the signal due 

to the non-exchange.  

( )( ) ( )
2 2

2

-1 -1
1 2 3- -( )1 2

-

2021 ; ; 2070
1 - -ab D ex

V

i k t i k t
k t

S cm t cm A Ae e
Be B B

ω ϕ ω ω+ = =  + = +    

Eq. 4.23 

 

Since the rate of exchange is equal to the sum of the forward and reverse rate 

constant, knowing the equilibrium constant enables the separation of the forward and 

reverse rate constants.  

To obtain the values of A1, A2, and B, which are needed in Eq. 4.23), we fit 

crosspeak 7 to the following biexponential: 

1 2
1 2( ) tk tkf t Pe P e− −= − +  

Eq. 4.24 
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Eq. 4.22 
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The growth of the crosspeak is due to exchange, so P1=A1. Both the exchange and 

inherent contributions lead to the decay of the crosspeak, so P2=A2+B. Since we do 

not know the individual contributions of the inherent and exchange peak we weigh 

the two contributions by c: (1-c)P2=A2 and cP2=B. 

Fitting crosspeak 7 to Eq. 4.24 we obtain P1=-2-2x105 and P2=4.2x105 (Fig. 

4.12). For our fitting process we have two adjustable parameters; c and kf. The 

parameter c can be thought of as the percentage of signal due to non-exchange and kf 

is the forward rate constant which is related to the reverse rate constant through the 

equilibrium constant: kr=kf/Keq. We can rewrite Eq. 4.23 in terms of kf, P1, P2, and c. 
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Eq. 4.25 

Using Eq. 4.25 to fit our data, we adjust parameters c and kf to simulate our 

data. First, we vary parameter c so that the signal due to exchange is zero at t2 = 0ps. 

This assumption would neglect exchange that occurs during t1; however, for reactions 

that occur on the tens of picosecond timescale this is a valid assumption. Next we 

adjust kf so that the non-exchange signal is centered around 1. Figure 4.13 shows 

each step of the fitting process. 

Figure 4.12 Biexponential fit of crosspeak 7. 
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To check the accuracy of our fit we modeled the non-exchange process with 

the following parameters:  ωab = 1.38 THz (46 cm-1),  φ = -0.8 and kd = 0.68 ps-1. The  

model, data and residual are plotted in Fig. 4.14a. At t2=0 ps the residual is large, this 

is due to artifacts that occur at t2 = 0 ps. We also looked at the Fourier transform of 

the residual. Fig. 4.14b plots the Fourier transform of the data (blue) along with the 

Fourier transform of the residual (green). For the data, the peak at lower frequencies 

Figure 4.13 The cyan curve in the figure is the amplitude of peak seven divided by the 
long time decay; it contains both the non-exchange and exchange processes. The green 
curve is the exchange process only, a value of  c = 0.47 was chosen so that the 
exchange signal would begin at t2 = 0ps. The red curve, the non-exchange signal, was 
obtained by subtracting the green curve from the blue curve. A value of kf = 
0.077±0.007 ps-1 (1/kf=13.0±1 ps ) was chosen so the nonexchange signal was 
centered around 1. From the equilibrium constant we obtain a kr = 0.077/1.03 = 0.071 
±0.007 ps-1  (1/kr=14±1 ps). 

 

Figure 4.14 (a) The red curve is the model of the non-exchange, the green curve is 
the actual data and the blue curve is the residual. (b) The blue curve is the Fourier 
transform of the amplitude of peak 7, and the green curve is the Fourier transform of 
the residual. Comparing the two curves we see that the peak at 46 cm-1 is minimized. 
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is due to the biexponential growth and decay while the peak at 46 cm-1 is due to the 

oscillations. In the Fourier transform of the residual we see that both the growth and 

decay along with the oscillations are minimized. 

Fitting crosspeak 7 at 14, 25 and 50°C, we obtained the following rate constants 

for isomerization between the isomers. The extracted exchange contribution to the 

crosspeak is plotted in Fig. 4.15 along with the t2 dependent trace of the amplitude of 

the temperature dependent crosspeaks. The forward rate constant describes the 

process of isomer II converting to isomer I, and the reverse rate constant 

corresponds to the process of isomer I converting to isomer II. From our fitting 

procedure we obtain a rate constant of kf=0.077±0.007 ps-1 (1/kf=13±1 ps) for 

isomer II to interconvert to isomer I at 25°C. Using the equilibrium constant 

obtained from FT-IR spectra (Keq=1.09) we obtain a reverse rate constant of 

kr=0.071±0.007 ps-1 (14±1 ps) for I-to-II interconversion. Fitting data from 2D 

spectra taken at 14 and 50°C results in rate constants of kf=0.047±0.004 ps-1 (21±2 

Temperature (°C) kf (ps-1) 1/kf (ps) kr (ps-1) 1/kr (ps) 

14 0.047±0.004 21±2 0.042±0.004 24±2 

25 0.077±0.007 13±1 0.071±0.007 14±1 

50 0.139±0.021 7.0±1 0.135±0.021 7±1 

 

Figure 4.15 Waiting time dependent traces of peak 7 at 14, 25 and 50°C shown with 
(solid black) a simple biexponential fit accounting for growth and decay and (green) the 
isolated exchange component. 

 

Table 4.2 Temperature dependent rate constants for forward and reverse reactions. 
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ps) and kf=0.139±0.021 ps-1 (7.0±1 ps) for II-to-I. Reverse rate constants were 

determined to be kr=0.042±0.004 ps-1 (24±2ps) and  kr=0.135±0.021 ps-1 (7±1 ps. 

The results are summarized in Table 4.2. Direct comparison of kf to kr shows that II-

to-I interconversion is more rapid than I-to-II interconversion, consistent with a 

negative ΔG°II→I. 

4.8 Barrier Heights 

From the temperature dependent rate constants we can obtain the barrier 

height. We used both the Arrhenius (Eq. 4.26) and Eyring (Eq. 4.27) equation to 

obtain the height of the barriers, with the Eyring analysis allowing for the extraction 

of the entropic contribution to the barrier.  

aE
RTk Ae

−
=  

Eq. 4.26 

S H
B R RTk Tk e e
h

∗ ∗∆ ∆
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=
 

Eq. 4.27 

 Plotting the natural log of the rate constants versus one over the temperature 

yields an Arrhenius plot (Eq. 4.28). From an Arrhenius plot the activation energy can 

be obtained from the slope of the plot. Plotting the natural log of the rate constants 

divided by the temperature versus one over the temperature yields an Eyring plot 

(Eq. 4.29) where the activation energy (ΔH*) can be obtained from the slope and the 

change in entropy associated with the barrier crossing (ΔS*) can be obtained from the 

intercept. 
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Eq. 4.28 
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For the forward isomerization reaction, II-to-I interconversion, Figure 4.16a 

displays the Arrhenius (black) and Eyring (red) plots. From the Arrhenius plot an 

activation energy of Ea=5.4 kcal/mol and the Eyring plot yields a ΔH‡=4.8 kcal/mol 

and ΔS‡=7.2 cal/(mol•K) (1.2 kcal/mol at 298 K) for II-to-I interconversion. Figure 

4.16b displays the Arrhenius (black) and Eyring (red) plots for the reverse 

isomerization, I-to-II interconversion. From the Arrhenius plot an activation energy 

of Ea=5.8 kcal/mol was obtained and the Eyring plot yields a ΔH‡=5.2 kcal/mol and 

ΔS‡=8.4 cal/(mol•K) (2.7 kcal/mol at 298 K) for I-to-II interconversion. These 

values are similar to other ultrafast chemical exchange measurements of similar time 

scale processes, though the barrier observed here is larger than that measured for 

fluxional pseudorotation in Fe(CO)56, consistent with the larger structural 

deformation in DCO.  

It is important to note that these barrier heights do not take into account the 

temperature dependence of the solvent’s viscosity (Eq. 4.30). 

a
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η

η η

 
 
 
 =  

Eq. 4.30 

Figure 4.16 Arrhenius (black) and Eyring (red) plots for the II-to-I (a) and I-to-II (b) 
reactions. 
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Plotting the natural log of the viscosity versus one over the temperature (Fig. 

4.17) yields the activation energy associated with changing the temperature.17 From 

Fig. 4.17 we find that over the temperature range of interest, the activation barrier 

due to the viscosity for n-hexane is Eaη = 1.6 kcal/mol. 

 For barriers that are only a few kcals/mol the contribution from the viscosity 

to the activation energy associated with the barrier can be significant. Using the 

procedure described by Barbara et. al. we took into account the effect of the 

temperature dependence of the solvent’s viscosity on the activation energy required 

for isomerization.18 Barbara et. al. used the following expression to account for the 

viscosity’s temperature dependence on the rate constant where they assumed that the 

rate constants was influenced by the solvent’s viscosity (assuming the Stokes-Einstein 

equation for friction).18 

( )
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fk F eη

−
=  where ( )F c αη η −=

 

Eq. 4.31 

Combining Eq. 4.30 and Eq. 4.31 we obtain the following equation, from which 

we see that the measured activation energy is the sum of the energy associated with 

the barrier crossing process and the activation energy associated with the viscosity. 
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Eq. 4.32 

 

Figure 4.17 Plot of the ln(η) versus 1/T for hexane. 
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Assuming ideal Kramers behavior (which is discussed in detail in Chapter 5) in 

the high friction limit, α=1, we can obtain a lower limit for the activation energy 

while the Arrhenius Ea and Eyring ΔH* give an upper limit for the activation energy.18 

When Eaη is taken into account the barrier for I-to-II is Ea-Eaη=4.2 kcal/mol and for 

II-to-I Ea-Eaη=3.8 kcal/mol for the Arrhenius analysis, and for the Eyring analysis 

the barrier for I-to-II is 3.2 kcal/mol and for II-to-I interconversion the barrier is 3.6 

kcal/mol. 

 From the Eyring plot both ΔH* and ΔS* were obtained for the forward and 

reverse interconversion. From ΔH* and ΔS* we can obtain the Gibbs free energy 

change associated with interconversion. At 298 K a ΔG*= 2.70 kcal/mol for I-to-II 

interconversion and ΔG*= 2.65 kcal/mol for II-to-I interconversion were obtained. 

However, these values do not take into account the temperature dependence of the 

viscosity. Again, assuming Kramers behavior in the high friction limit, the diffusive 

Smoluchowski regime, we can write the rate constant as the following 

 where kTST is the rate constant from transition state theory, Q is the partition 

function, I is the moment if inertia, ωb, is the frequency of the barrier and ζ is the 

friction coefficient19. 

The friction coefficient was obtained from the Stokes-Einstein relationship with 

slip boundary conditions, 24 drπηζ =  where d is the hydrodynamic radius and r is the 

radius of gyration, and η is the viscosity of the solvent. Using this relationship along 

with the Eq. 4.33 and Eq. 4.30, the rate constant can be written to include the 

temperature dependence of the solvent’s viscosity. 
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Eq. 4.34 
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In the above equation ωb was obtained from DFT calculations. The imaginary 

frequency of the transition state was found to be 42.2 cm-1 which corresponds to
112s1095.72 −== xc bb νπω . From Fig. 4.17 both Eaη and ηo were obtained. To obtain 

the moment of inertia, hydrodynamic radius, and radius of gyration, we use the DFT 

calculated transition state structure. Figure 4.18a shows the transition state with one 

of the moving groups associated with the isomerization reaction circled. Assuming 

the two moving groups are spherical rotors the moment of inertia can be calculated 

using the following equation for a spherical rotor (Fig. 4.18b): 2

3
8 RmI a= .20 The mass 

is the sum of the masses of C and O and R was taken to be the distance between Co 

and the center of the C-O bond. Using R = 2.35 Å, the moment of inertia was 

calculated to be I=6.8x10-45 kg•m2. For a non-spherical moving group the values of 

the hydrodynamic radius and the radius of gyration may vary, but for a spherical 

group the values should be equivalent, d=r= 2.35 Å. Using these values and plotting 

the natural log of the rate constant divided by the temperature versus one over the 

temperature (Eq. 4.35) we can extract the ΔH*from the slope and the ΔS* from the 

intercept while accounting for the temperature dependence of the viscosity. 
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Eq. 4.35 

 

From this analysis values of ΔH*=3.60 kcal/mol and ΔS*=2.82 cal/(mol•K) 

were obtained for the I-to-II isomerization and for II-to-I isomerization ΔH*=3.18 

Figure 4.18 (a) Calculated structure of the transition state with one of the moving 
groups circled in a solid line and the substituent having mass ma circled in a dotted 
line. (b) Spherical rotor. 

ma 
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kcal/mol  and ΔS*=1.57 cal/(mol•K). Using these values a ΔG*=2.76 kcal/mol for I-

to-II interconversion and ΔG*= 2.72 kcal/mol for II-to-I interconversion were 

obtained at 298 K. 

In Fig. 4.19 the extracted experimental barriers are compared. The upper limit 

to the activation energy is shown in (black). When the temperature dependence of the 

viscosity is taken into account the barrier is lowered (purple). The Ea gives an upper 

limit to the barrier while Ea-Ea
η gives the lower limit to the enthalpic contribution to 

the barrier. Comparing the Ea and ΔG* allows one to see the effects of entropy on 

the energy required for isomerization. If Ea≈ ΔG* then the effects of entropy on the 

isomerization barrier are relatively small and an Arrhenius plot is sufficient to obtain 

the barrier. If Ea and ΔG‡ are not approximately equal to each other, the entropy 

does have a significant effect on the energy barrier and an Eyring plot can be used to 

obtain the energy barrier. When the entropy is taken into account the barrier is 

lowered (red). One reason for the large entropic contribution to the energy barrier 

could be due to the fact that the isomerization reaction induces a significant structural 

change: interconversion between bridged and unbridged isomers. 

Figure 4.19 Summary of experimental and computationally-determined energies of 
the two isomers and the transition state.  
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4.9 DFT Calculations 

We have also performed DFT calculations on isomer I, isomer II and the 

transition state connecting the two. In the previous section we have used the results 

of the DFT calculations, specifically the structure and imaginary frequency of the 

transition state, to extract barrier heights. In this section we compare both the DFT 

calculated barriers and thermodynamic properties to our experimental results. 

DFT calculations were carried out using the GAMESS package.21 Using the 

B3LYP function and 6-31G(2df) basis, we obtained the optimized structures for 

isomer I, II and the corresponding transition state. Figure 4.20 displays the calculated 

structures. For isomer I we compared the calculated bond lengths (black) to 

experimental bond lengths22 (red), the crystal structures for the other two isomers 

could not be determined. We find that isomer I lies lower in energy than isomer II 

which is consistent with our experimental results and previous computational studies 

of DCO using DFT with the B3LYP functional.12, 13 

Experimentally we have observed the direct isomerization between isomer I 

and II, as well as finding isomer I to lie lower in energy. From the calculated 

structures we find the barrier for I-to-II interconversion to be Ea=5.26 kcal/mol and 

Ea=1.05 kcal/mol for II-to-I (Table 4.3). The relative energies of the isomers are 

consistent with the previous computational studies using B3LYP12, 13, and for the I-

Figure 4.20 Optimized structure for isomer I (left) isomer II (middle) and isomer 
III(right). For isomer I, the distances in Angstroms are marked with the numbers in red 
being experimentally determined and the numbers in black are calculated values. 
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to-II barrier, the agreement with the experimental results is surprisingly good (Fig. 

4.19), but the II-to-I barrier differs by ~3 kcal/mol. 

Though the activation enthalpies are in good agreement, the entropies are not. 

Experimentally, ΔS* is found to play a role in determining the overall isomerization 

barrier; however, the DFT results found that ΔS* does not have a large effect on 

computed barriers (Table 4.3 and Fig. 4.19). Comparing computed and 

experimentally determined ΔS* we find ΔS*exp>0 while ΔS*comp<0. Computationally 

the isomerization is entropically unfavorable. The ground states being favored 

entropically stems from the fact that there are 3N-7 vibrational modes in the 

transition state while the ground states have 3N-6 vibrational modes.  Experimentally 

the isomerization is entropically favored. We believe this disagreement could be due 

to the effect of the solvent, with the solvent lowering the entropy of the ground state 

relative to the transition state. The computational results indicate that the entropy 

does not have a large effect on the barrier for I-to-II isomerization, but the barrier for 

II-to-I isomerization increases by 2 kcal/mol when the entropy is taken into account. 

Experimentally we find that entropy does have a large effect on the energy barrier, 

  ΔH‡ (kcal/mol) 
ΔS‡ 

(cal/mol•K) 
ΔG‡ (kcal/mol) 

at 298 K 

Experimental       

II→I 4.8 Eyring (5.4 Arrhenius)  7.2 2.65 

I→II 5.2 Eyring (5.8 Arrhenius)  8.4 2.70 

Experimental (account 
for viscosity)    

II→I 3.18 Eyring (3.8 Arrhenius) 1.57 2.72 

I→II 3.60 Eyring (4.2 Arrhenius) 2.82 2.76 

B3LYP       

II→I 1.05 -7.66 3.34 

I→II 5.26 -0.56 5.43 

 

Table 4.3 Thermodynamic parameters obtained from DFT calculations and 
experiments. 
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the ΔG* for isomerization, when entropy is taken into account, are approximately 

equal with ΔG*I→II being 0.1 kcal/mol greater than ΔG*II→I. Though an isolated-

molecule calculation cannot be expected to agree with a solution phase experiment, 

the reasonable enthalpy agreement suggests the solvent primarily influences the 

entropy of the molecules, perhaps by entropically stabilizing the two isomers relative 

to the transition state. 

4.10 Conclusion 

In this chapter we used 2DIR spectroscopy to probe the ultrafast equilibrium 

exchange between isomers of Co2(CO)8. Using the coherent modulation of the 

inherent crosspeak as an indicator of non-exchange, we have demonstrated that even 

in systems with complex multilevel vibrational structure it is possible to isolate the 

chemical exchange signature. Temperature dependent studies enabled separation of 

IVR from chemical exchange processes while yielding the activation barrier, Ea and 

ΔG*, for equilibrium isomerization. Comparison of Arrhenius (Ea) and Eyring (ΔG*) 

analysis shows that the entropy makes a substantial contribution to the energy 

barriers for isomerization, most likely due to the large structural changes associated 

with switching between bridging and nonbridging forms. Given the substantial 

entropic contribution the Eyring analysis indicates that the Arrhenius assumption of 

an isentropic, solvent viscosity independent reaction may be unwarranted. 

Comparison of our experimental data to DFT calculations suggests that relative to 

the isolated molecule case the solvent has a large effect on the relative free energies of 

the isomers. 
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Chapter 5  

How Solvent Influences Equilibrium 
Isomerization 

 

The work presented in this chapter has been published in the following paper: 

Jessica M. Anna and Kevin J. Kubarych, “Watching solvent friction impede ultrafast 

barrier crossings: A direct test of Kramers theory,” The Journal of Chemical Physics, 

133, 2010, 174506. 

5.1 Overview: Chapter 5 

In this chapter, the well characterized isomerization between two stable isomers 

of the metal carbonyl complex Co2(CO)8 is used to systematically investigate how the 

dynamics of the solvent influence an activated barrier crossing process. In the 

previous chapter the reaction between isomer I and II of DCO was characterized by 

developing a method for extracting the exchange signal from spectra having 

overlapping features. In this chapter, using ultrafast two-dimensional infrared (2DIR) 

chemical exchange spectroscopy the rate constants for isomerization in a series of 

linear alkane solvents and cyclohexane are extracted. These measurements facilitate a 

direct comparison with the widely-adopted Kramers theory of condensed phase 

reaction kinetics, and for the first time avoid the significant complication of 

electronic excitation to probe directly in the time domain a ground electronic state 

reaction with a well-defined transition state. Performing the reaction on a ground 

electronic state allows for the combination of experiment and computational results 
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for the removal of the non-dynamical barrier contribution to the rate constant, 

isolating the dynamical influence of solvent friction. The experimental data, 

supported with quantum and classical computations, show agreement with Kramers 

theory for the isomerization rate constant’s dependence on solvent viscosity. 

5.2 Kramers Theory 

Activated barrier crossings are a cornerstone of molecular dynamical 

phenomena. The rate of a molecular transformation can be predicted entirely from 

static energetic considerations in the absence of strong coupling to an environment. 

In the solution phase, however, where the solvent couples strongly to the reacting 

species, the rate of a chemical reaction may be influenced by the dynamic nature of 

the solvent.1-3 It has been a long standing goal of practical and theoretical chemistry 

to predict reaction rate constants in solution using simple bulk properties such as 

viscosity or polarity. The dynamical function of the solvent is to dissipate energy 

through microscopic friction, while supplying thermal excitation through collisions. 

For a molecule near the transition state of a reaction coordinate the solvent acts to 

induce recrossings back to the reactant or product well, effectively lowering the 

overall transmission through the barrier. Such recrossing is neglected by transition 

state theory (TST); the most common approach to treating the frictional solvent 

influence is due to Kramers.4 Kramers theory has been applied to the study of many 

condensed phase reactions5-19, finding particularly widespread utility in the kinetics of 

biopolymer folding, for example, where protein dynamics are slaved to solvent 

motions.11-18 

Despite its broad adoption, precise tests of Kramers theory have proven to be 

somewhat difficult due to important details of experimental implementation. In the 

past, low-barrier, ultrafast reactions could only be studied using pump-probe transient 

absorption or time-resolved fluorescence measurements, requiring that the reaction 

take place on an excited electronic surface. Computing the nuclear coordinate 

dependence of electronic excited states is still at the frontier of quantum chemistry, 
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making accurate comparisons with numerical results effectively impossible. Adding 

further to the difficulty is the lack of a unique relationship between the physically 

well-defined microscopic friction and readily available bulk viscosity. At liquid 

densities, increasing the solvent viscosity certainly hinders the reaction, but the 

precise dependence is what is sought in testing the predictions of Kramers theory, 

and there are multiple approaches to mapping macroscopic transport to microscopic 

dissipation.1, 20-24 

Current advances in ultrafast spectroscopy, particularly the development of 

two-dimensional infrared (2DIR) and its application to chemical exchange, has 

enabled us to revisit the fundamental basis of Kramers theory. 2DIR spectroscopy 

has elucidated chemical exchange phenomena in several systems including solute-

solvent complexes, free rotation about a C–C single bond, protein conformational 

changes, hydrogen bond formation, and fluxional molecules.25-30 By studying a 

reaction on the electronic ground state, robust quantum and classical computations 

can be combined with equilibrium one- and two-dimensional IR spectroscopy to 

generate a remarkably detailed picture of an activated barrier crossing in the 

condensed phase. The previous chapter characterized the isomerization reaction 

between isomer I and II of the flexible metal-carbonyl complex, Co2(CO)8, the 

cartoon representation of the isomerization reaction is shown in Fig. 5.1. In this 

chapter we use this reaction to implement the first direct test of Kramers theory in 

the time domain in a ground electronic state reaction in a series of solvents. Central 

to our analysis is the virtually complete insensitivity of the reaction energetics to 

linear alkane solvent, which enables the isolation of the dynamic friction due to the 

solvent.  

Previous frequency domain studies of Kramers behavior in electronic ground 

states have been carried out using NMR31 and Raman spectroscopy32, where 

dynamical information is inferred using models of a frequency domain spectroscopic 

observable, such as the line width. In the Raman study, for example, which 

investigated the gauche-to-trans conformational isomerization of n-butane, temperature 
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dependent line widths were analyzed with the assumption that coupling to the 

torsional reaction would serve as an additional dephasing mechanism and thus 

broaden the spectral line shape. Although reasonable, it is now well established that 

one-dimensional spectra and dephasing models are not always reliable. Indeed a 

major motivation for the development of multidimensional spectroscopy has been to 

develop refined descriptions of microscopic dynamics and how they are manifested in 

higher order spectra. In section 5.6, we also discuss complications associated with 

using temperature to study low-barrier reactions, where the viscosity, density and the 

available thermal energy change simultaneously. 

In 1940, Kramers derived a correction to transition state theory (TST) using a 

one-dimensional Langevin equation (Eq. 5.1) where a particle with position x and 

mass m is subjected to a potential V(x), with solvent dynamics modeled as a velocity 

v, dependent friction ζ, and a delta-correlated randomly fluctuating force A(t).4 

( )( ) ( ) ( )dV xmx t v t A tdx ζ= − − +

 

Eq. 5.1 

Subsequent development of linear response theory showed the friction to be 

proportional to the time integral of the fluctuating force autocorrelation function, 

providing an example of the fluctuation dissipation theorem. Assuming the timescale 

for the barrier crossing process is much slower than that of the random fluctuations 

Figure 5.1 Cartoon representation of the potential energy surface along the reaction 
coordinate. The variables are defined in the text. 
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of the solvent molecules leads to a Markovian friction, which, by definition, lacks 

memory, and can be considered to be independent of the frequency of the motion 

along the reaction coordinate. The essence of the Langevin equation is that in the 

very low friction limit, environmental interactions assist the system to surmount the 

barrier, whereas at high friction the solvent induces the system to re-cross the barrier, 

slowing the reaction. The result of Kramers’ analysis for the rate constant of a 

reaction, in the diffusion controlled regime, is given by the following equation : 

1/22

1 1
21 1 12

b
Kramers DTST DTST

b
k k Fkωβ

ω β

    = + − =         

Eq. 5.2

 

where k1DTST is the rate constant for one dimensional transition state theory, ωa is the 

frequency of the reactant well, ωb is the frequency of the barrier, β is proportional to 

the friction, Ea is the static energetic barrier, which is the energy difference between 

the transition state and the stable reactant minimum. 

 The expression for transition state theory is given in the following equation 

where Q* is the partition function associated with the transition state, the partition 

function in the dividing surface, and QA is the partition function associated with the 

reactant.33  

* aE
B RT

TST
A

k T Qk eh Q
−

=
 

Eq. 5.3

 

Considering a one-dimensional chemical reaction, the partition function 

associated with the transition state has 0 (n-1) degrees of freedom and therefore the 

partition function is equal to one. Assuming that the reactant potential well can be 

described as a harmonic oscillator having a frequency, ωa, we can write the partition 

function associated with the reactant as the following: 

2

1 1

1 1
A A

B B

A E h
k T k T

Q
e e

ω
π

= =
− −  

Eq. 5.4

 

Expanding the exponential term in a power series results in the following: 
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π ω

π= +
 

Eq. 5.5 

Combining Eq. 5.4 and 5.5 and making use of the fact that Q*=1 we can write the 

ratio of the partition functions as the following: 

*
2

A

A B

hQ
Q k T

ω
π=

 

Eq. 5.6 

Substituting Eq. 5.6 into the expression for kTST (Eq. 5.3) results in the expression for 

k1DTST:3 

1 2 2
a aE E

B A ART RT
DTST

B

k T hk e eh k T
ω ω

π π
− − = = 

   

Eq. 5.7 

Kramers result can be thought of as a correction to transition state theory where the 

variable F in Eq. 5.2 takes into account the influence of the solvent on the barrier 

crossing process. 

 The first quantitative time-domain tests of the effects of solvent friction on 

activated barrier crossings used picosecond transient spectroscopy to monitor excited 

electronic state trans-to-cis isomerization of stilbene and several derivatives.5-9, 19, 34 In 

contrast to the present work, these earlier studies required electronic excitation both 

to lower the isomerization barrier and to enable either transient absorption or 

fluorescence probes of the reaction progress. Rapid vibrational relaxation is thought 

to yield a system effectively at equilibrium with respect to the barrier crossing despite 

the inherently non-equilibrium electronic excitation. In general, precise agreement 

was not found with the simplest form of Kramers theory with a hydrodynamic 

Stokes-Einstein (SE) friction model. Experiments by multiple groups carried out in 

the diffusive regime found the solvent to be less effective than expected in hindering 

the reaction progress. Several proposals were made to account for the discrepancies 

including (1) introducing a non-Markovian friction via the Grote Hynes 

generalization20; (2) considering a multidimensional reaction coordinate21, 23; and (3) 
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using alternatives to the simple hydrodynamic model linking macroscopic viscosity to 

microscopic friction: the so-called Kramers-Hubbard model8, 19.  

Grote and Hynes generalized Kramers theory by replacing the constant friction 

ζ with a non-Markovian kernel .20 Grote-Hynes theory could be 

used to fit most of the experimental data.5-7, 9, 35 However, some experimental data 

modeled using Grote-Hynes theory led to barrier frequencies (ωb) that seemed 

unphysically low5 or to barrier frequencies that did not agree with experimentally 

predicted results7. The discrepancies in the barrier frequencies were attributed to 

errors in the nontrivial calculation of the frequency-dependent friction. Later, 

Murarka et al.36 readdressed the issue of calculating the frequency-dependent friction 

to find more reasonable barrier frequencies. Alternatively, agreement with a 

Markovian Kramers theory could be found by adopting a friction parameter due to 

Hubbard;37 derived from the molecular reorientational time of the solute. The 

Hubbard friction retains some of the microscopic details of the solute-solvent 

interactions that are presumably neglected in the bulk shear viscosity of SE theory. 

The so-called Kramers-Hubbard model fit some of the available data well, while 

yielding reasonable barrier frequencies.19 

Regardless of the specific model of dynamic friction, it is essential to highlight 

that the Kramers theory result is nearly linear in its dependence on friction, but 

retains the usual exponential energy dependence of an activated process. Thus it is 

always a concern that unexpected, non-dynamical changes to the reaction potential 

surface may dominate the dynamical contribution due to the solvent friction.  From 

an energetic perspective, any changes in the transition state solvation shell structure 

or its conformational freedom would lead to non-dynamical changes in the rate 

constant. Despite the difficulty in quantitatively reproducing Kramers theory using 

systems that appear to be tailor-made benchmarks, Kramers theory is widely accepted 

in many areas of physical, chemical and biophysical research. In this chapter we 

describe the first direct test of the dynamical nature of Kramers’ theory of activated 

dτζ τ( )v t − τ( )
0

t

∫
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barrier crossings on a well-defined, unimolecular, ground electronic state reaction 

using the powerful methodology of ultrafast two-dimensional infrared (2DIR) 

chemical exchange spectroscopy.  

5.3 2DIR Spectroscopy: Absorptive Spectra DCO 

In this chapter we present absorptive 2DIR spectra of DCO at t2= 100 fs and 

t2= 30 ps in Fig. 5.2. In the previous chapter we presented absolute value of the 

rephasing spectra. In the absorptive spectra, negative peaks (blue) are due to 

fundamental transitions (i.e. ground state bleach and stimulated emission), while the 

positive peaks (red) are due to excited vibrational state absorption. Peaks lying along 

the diagonal correspond to the peaks in the FT-IR spectra; peaks 3, 4 and 6b are 

assigned to isomer I, peaks 1 and 6a to isomer II and peaks 2 and 5 to isomer III.38 

The induced absorptions appear at slightly lower frequencies along ωdetect axis with 

respect to the diagonal peaks because of the anharmonicity of the vibrations. Peaks 

3’, 4’, and 6b’ are assigned to induced excited state absorptions of isomer I, peaks 1’ 

and 6a’ are assigned  to induced excited state absorptions of isomer II and peak 2’ is 

assigned to the induced excited state absorptions of isomer III. At early t2, crosspeaks 

 Figure 5.2 Absorptive spectra of DCO in hexane at t2 =100 fs and t2=30 ps. 

 

13 

14 
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only arise from coupled modes on the same isomer; the inherent crosspeaks present 

at t2= 200 fs confirm the assignment of the diagonal peaks illustrating the remarkable 

ability of a single 2DIR measurement to assign complex overlapping spectra arising 

from several distinct species that cannot be chemically separated—even in 

principle—due to the fact that they interconvert on a picosecond timescale. The 

negative crosspeaks are due to ground-state bleach and stimulated emission within 

the first excited state manifold while the positive crosspeaks arise because of excited-

state absorption into combination bands between the two coupled modes.  

At t2= 30 ps, crosspeaks 7 and 8 grow with respect to the diagonal peaks. Fig. 

5.3 plots the amplitudes of crosspeaks 7 (black) and 8 (red) along with the 

corresponding diagonal peaks, 1 (blue) and 6 (green) as a function of t2. Because of 

the inability to clearly separate diagonal peaks 6a and 6b, crosspeaks7 and 8 have two 

contributions: part of the amplitude is due to exchange and the remainder is due to 

the inherent crosspeak. The inherent crosspeak leads to the oscillations in the 

amplitude of the crosspeaks that arise from an excited state coherence between the 

two states of isomer II at 2022 cm-1 and 2067 cm-1, and the beat frequency is 

consistent with the 45 cm-1 energy difference.  

Figure 5.3 Plot of the negative amplitude of peaks 7 (red) , 8 (black), 1 (blue),  and 6 
(green) as a function of t2. 
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From the absolute value rephasing spectra we only see evidence of exchange 

between isomer I and II; however, looking at the absorptive spectra at later t2 times 

we do see evidence of exchange between isomers I and III and between isomers II 

and III. The appearance of crosspeaks 9, 10, 11 and 12 indicate there is exchange 

between isomers I and III, and the appearance of crosspeaks 13 and 14 suggests that 

there may be exchange between isomer II and III. Previous studies have predicted a 

linear pathway to interconversion38, 39, with experimental studies predicting that 

isomer I isomerizes to isomer II which then isomerizes to isomer III with the barrier 

between isomer II and III being very low and the barrier for II-to-I isomerization 

being ~6 kcal/mol.38 Previous computational studies predicted a different pathway to 

interconversion with isomer I converting to isomer III which then isomerizes to 

isomer II.39 These studies also predicted different barrier heights, with the barriers 

between I and II being a few kcal/mol, the barrier for III-to-II isomerization being 

~8 kcal/mol and for II-to-III being ~3 kcal/mol. From the crosspeaks in the 

absorptive 2DIR spectra we see that the assumption of a linear isomerization 

pathway is not necessarily correct; all the isomers are free to interconvert between 

each other. The crosspeaks between isomers I and III appear at later t2 times when 

compared to the crosspeaks between isomers I and II, indicating that the barrier to 

isomerization is greater for I-to-III isomerization The crosspeaks between isomers II 

and III appear at even later t2 times indicating an even higher barrier for 

interconversion.  

There is evidence of exchange between isomers III and I, isomers II and III, 

and isomer I and II; however, we focus on the exchange between isomers II and I. 

The exchange between isomers I and III and isomers II and III is slower than the 

exchange between II and I due to the fact that the barrier for isomerization between I 

and III and isomers II and III is larger. The slower exchange between isomers I and 

III and II and III leads to exchange crosspeaks that emerge at later t2 times. Also, the 

population of isomer III is lower than that of II and I leading to a smaller 

contribution to the overall signal from isomer III. For these reasons we focus on the 
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exchange between isomer II and I. To extract the rate constants for exchange 

between isomers II and I, peak 7 provides the most direct probe because it is the least 

congested peak in the spectrum, there are no overlapping contributions from excited 

state absorption, and it consists of only two contributions from the exchange and the 

inherent crosspeaks. 

We have used temperature dependent 2DIR spectra to confirm that the growth 

of crosspeak 7 is due to exchange and not solely due to intramolecular vibrational 

redistribution (IVR). Employing the model used by Cahoon et al.26, in assuming the 

rate constant for IVR is directly proportional to the population of liquid phonons at 

an energy corresponding to the energy difference between the two modes involved in 

IVR, we found the temperature dependence of the growth of crosspeak 7 to be more 

consistent with exchange than IVR. 

The rate of vibrational energy transfer between different vibrational states can 

be described by Fermi’s golden rule where ρ is the density of states, the ket 

represents the initial states, the bra represents the final states, and V is the matrix 

element that couples the initial and final states.40 

22 , ,...0 , ...1IVRk n m V s tπ ρ=
  

Eq. 5.8 

 

The occupation number of the initially excited vibrational modes is equal to 1, 

and it is assumed that the population of the other higher frequency vibrational modes 

is equal to zero. However, when considering the initial population of the lower 

frequency vibrational modes, the liquid phonons, we cannot assume that the initial 

occupation number will be equal to zero. The population of liquid phonons is given 

by Eq.5.9.41 

1

( ) 1
PE

RT
Pn T e

−
 = −    

Eq. 5.9 
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At room temperature kT=200 cm-1; if the mode being considered is less than 

200 cm-1 the initial occupation number must be accounted for. Accounting for the 

initial population of the phonon mode, Eq. 5.8 can be written as the following where 

nP is given by Eq. 5.9.40 

( )22 1IVR Pk V nπ ρ= +
  

Eq. 5.10 

Assuming that the density of states and the coupling does not significantly 

change with temperature, we can assume that the rate of IVR is directly proportional 

to the population of liquid phonons where Ep is the energy level corresponding to 

the difference in energy between the two modes involved in the IVR process: 

1

1
PE

RT
IVR Pk n e

−
 ∝ = −    

Eq. 5.11 

From Eq. 5.11, for an energy gap of 46 cm-1 between vibrational modes, we 

predict a 9% increase in the rate of the IVR constant when the temperature is 

increased from 25°C to 50°C.  

 Fig. 5.4 plots the amplitude of crosspeak 7 (from the absolute value rephasing 

spectra) at two different temperatures 25 (black) and 50°C (red). From a 

biexponential fit we find that the amplitude of crosspeak 7 grows with a rate constant 

of 0.164 ps-1 (6.1 ps) at 25°C and a rate constant of 0.294 ps-1 (3.4) at 50°C; the rate 

constant at 25°C increases by 79% when the temperature is increased to 50°C. IVR 

alone would not lead to such a large increase in the rate constant; the large increase in 

the rate constant is more consistent with exchange having a barrier of ~5 kcal/mol. 

Though it is possible that there is some IVR contribution to the temperature 

dependence of the rate constant, it is at most an order of magnitude smaller than the 

barrier contribution. 
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In order to test this further, we performed temperature-dependent 2DIR 

experiments on Rh(CO)2C5H7O2 (RDC Fig. 5.5) in hexane. RDC has been 

extensively studied by Tokmakoff et al.42, 43 and is known to exist as one isomer that  

has two IR active carbonyl modes exhibiting efficient and rapid IVR. In comparing 

the temperature dependence of the RDC crosspeaks to the temperature dependence 

of the DCO crosspeaks, we find a dramatic difference, with the growth of DCO 

crosspeak being more sensitive to temperature changes (Fig. 5.5). The comparisons 

of DCO to the IVR model and to RDC indicate that a substantial part of the growth 

of crosspeak 7 of DCO is due to exchange. 

Figure 5.4 Normalized amplitude of peak 7 of DCO at 25°C (black) and 50°C (red) 
with biexponential fits shown. 

Figure 5.5 Amplitude of the RDC crosspeak at ω1=2014 cm-1ω3=2085 cm-1 plotted as 
a function of t2 time at 12°C (black) and 42°C (red) with biexponential fits. 
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5.4 Solvent Dependent Rate Constants 

In the previous chapter we have described a method for separating the 

contribution of the exchanging crosspeak from the contribution of the inherent 

crosspeak using t2-dependent absolute-value rephasing spectra. In using absolute 

value rephasing spectra, which require half the acquisition time of absorptive spectra, 

a single t2 scan for a given solvent can be collected within one hour, limiting long-

time drift. Another benefit in using absolute-value rephasing spectra is the fact that 

the inherent crosspeaks oscillate as a function of t2, and using these oscillations we 

are able to lock onto to the inherent contribution to the crosspeak; extracting the 

exchange contribution. In this chapter, we have expanded our kinetic model to 

include both IVR and exchange processes along with molecular reorientation times, 

the latter of which were obtained from molecular dynamics simulations. The total 

signal of crosspeak 7 is the sum of the signal from the exchange crosspeak and the 

signal from the inherent crosspeak. 

  
STotal(t) = Sexchange(t) + Sinherent(t)  

Eq. 5.12 

We first describe the model we use for the exchange crosspeak then we 

describe the model used for the inherent crosspeak. 

Using the same approach as Kwak et al., the amplitude of a peak in the 

spectrum is given by Eq. 5.13 where A indicates the species, NA is the effective 

population of the species A and pA is the probability that the interacting dipole will be 

oriented at θ and ϕ at time t.44 

  
SA(t) ∝ N A(t) pA(θ,ϕ,t)  

Eq. 5.13 

The amplitude of the signal depends on the concentration of species A, the 

oscillator strength of the transition, and the tuning of the incoming pulses. In order 

to avoid accounting for each of these terms separately we use the effective 

population, which accounts for all of these contributions. The effective population 
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term and orientational term in Eq. 5.13 are treated independently for the case of the 

exchanging crosspeak and the inherent crosspeak. 

5.4.1 Exchange Crosspeak 

The kinetic model used to describe the equilibrium chemical exchange process 

is shown in Fig. 5.6. 

Considering first the effective population term, we write the set of rate laws, 

Eq. 5.14, from the kinetic model in Figure 5.6, describing how the effective 

population changes with time where kV is the rate constant associated with 

vibrational population relaxation, kf and kr are the forward and reverse rate constants, 

and NII and NI are the effective populations of isomer II and isomer I.  

  

d
dt

N II(t)
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
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







 

Eq. 5.14 

Now we discuss the molecular reorientation term. Considering the molecular 

reorientation to be diffusive, according to Debye’s theory of rotational Brownian 

motion, the probability of a dipole being oriented at θ and ϕ at time t is given by Eq. 

5.15 where DA is the rotational diffusion constant for species A, which is related to 

the molecular reorientation time (6DA=(1/τor).45, 46 

2( , , ) ( , , )A
A A

dp t D p tdt
θ ϕ θ ϕ= ∇

 

Eq. 5.15 

Figure 5.6 The kinetic model used for the exchange crosspeak along with the 
corresponding 2D spectrum.  
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It is known that the solutions to Eq. 5.15 are the spherical harmonics and are 

given by Eq. 5.16 where the angles θ and ϕ are defined in Figure 5.7.46 

( 1)
,

,
( , , ) ( , ) Al l D t

A l m
l m

p t Y eθ ϕ θ ϕ − += ∑
 

Eq. 5.16 

Assuming that the incoming light is polarized along the z-axis and neglecting the 

molecular reorientation that occurs during t1 and t3 we can write the boundary 

conditions as follows.44 

23( , ,0) cos4Ap θ ϕ θπ=
 

Eq. 5.17 

( , , ) 1Ap θ ϕ ∞ =  
Eq. 5.18 

Making use of boundary conditions and the fact that the general solutions to Eq. 5.15 

are the spherical harmonics, the solution follows.44 

  
pA(θ,ϕ,t) = 4π

4π
Y

00
+ 4π

5
2

4π
Y20e

−6DAt

 

Eq. 5.19 

Averaging over θ and φ we obtain the ensemble average and the orientational 

contribution to the signal is given by Eq. 5.20. 

64 1( ) 15 3
AD t

Ap t e−= +
 

Eq. 5.20 

Figure 5.7 The angle θ and ϕ are shown. The incoming field, E, is polarized along 
the z axis, and µ is the transition dipole moment. 
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Combining the effective population and the orientational solutions, the general 

solutions for the exchange crosspeak follows where DII and DI are the rotational 

diffusion constants for isomer II and isomer I.  

  

N II(t) pII(t)

N I(t) pI(t)


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
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V f r II
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+     − +       

Eq. 5.21 

The analytical solutions for crosspeak 7 were obtained by solving the above equations 

and setting (0) 0IIN = and (0) 1IN = for ( ) ( )II IIN t p t resulting in ( )exchangeS t .  

( ) ( ) ( )1
28 2( ) 15

exc V V

ct

k k t k t
exchange exchange

bte Sinh
S t A ae ae b

−

− + −

 
 

= − + + 
 
   

Eq. 5.22 

In the above equation, kex=kf+kr, Aexchange is the overall amplitude of the 

exchange crosspeak, 
( )3

r

f r

ka
k k

=
+

, ( ) ( )2 22II I f II I f r rb D D k D D k k k= − + + − + + + , 

and 2II I r f Vc D D k k k= + + + + . 

5.4.2 Inherent Crosspeak 

Here we treat the IVR process as an equilibrium process and the kinetic model 

in Fig. 5.8 is used to describe the process. 

Figure 5.8 The kinetic model used for the inherent crosspeak along with the 
corresponding 2D spectrum. 
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Addressing the effective population term first, we write the set of rate laws, Eq. 

5.23, from the kinetic model in Figure 5.8, describing how the effective population 

changes with time where kV is the rate constant associated with vibrational 

population relaxation, kIVR and k-IVR are the forward and reverse rate constants 

associated with IVR, and NIIa and NIIb are the effective populations of the lower 

frequency mode (IIa) and higher frequency mode (IIb) of isomer II. 
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Eq. 5.23 

We now consider the orientational contribution for the inherent crosspeak. For 

the inherent crosspeak, we account for the orientational contribution according to the 

method established by Golonzka et al..47 Assuming the two transition dipole moments 

are oriented 90° to each other, the orientational contribution to the crosspeak for the 

rephasing spectrum is given by Eq. 5.24.47 It is important to note that we are not 

accounting for orientational contributions during t1 and t3 period, only during the t2 

period. 

63 1( ) 45 9
AD t

Ap t e−= +
 

Eq. 5.24 

Combining the effective population and the orientational solutions, the general 

solutions for the inherent crosspeak follow. 
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Eq. 5.25 

 

The analytical solution for the t2 dependent amplitude of the inherent 

contribution to peak 7 is given by Eq. 5.27. It is important to note that the solution 

to the kinetic model for the inherent crosspeak was multiplied by a term that 

accounts for the t2 time dependence of the coherence created between the two modes 
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of isomer II where we have derived the t2 time dependence of the coherence in the 

previous chapter. 

( ) ( )( )1( ) (0) (0) (0) (0) *45
V IId k D t dt

inherent inherent IIa IIb IIa IIbS t A e fN gN N N ge− + + = − + +    

( ) ( )( )( )3 5 ab dII i k tD te abs e ω ϕ− + +    

Eq. 5.26 

In the above equation ωab is the frequency difference between modes IIa and IIb,  kd 

is the rate constant associated with the dephasing of the coherence and ϕ is the 

phase, Ainherent is the overall amplitude of the inherent crosspeak, IVR IVRd k k−= + , 

IVR

IVR IVR

kf
k k−

=
+

, and IVR

IVR IVR

kg
k k

−

−

=
+ . 

5.4.3 Extracted Rate Constants 

Using the results from section 5.5.1 (Eq. 5.22) and section 5.5.2 (Eq. 5.26), we 

extract the forward and reverse exchange rate constants by fitting the t2 dependent 

amplitude of crosspeak 7 to Eq. 5.27 where Sexchange(t)=Eq.  5.22 and Sinherent(t)=Eq. 

5.26. 

( ) ( ) ( )Total exchange inherentS t S t S t= +  
Eq. 5.27 

Using a multivariable least squares fitting algorithm the data was fit to Eq. 5.27 

by allowing five parameters to vary: kf, kd, ϕ, Aexchange, and Ainherent. The other 

parameters were determined through a combination of experimental and 

computational methods. 

 The effective populations of modes IIa and IIb are required for the inherent 

contribution to the crosspeak. Due to overlapping features from the three isomers of 

DCO the initial effective populations cannot be determined directly from 

experimental spectra. To obtain the effective populations we used the SPECTRON 

software package48 to simulate the individual 2D spectra of the different isomers at 

t2= 500 fs. DFT calculations were performed to obtain the transition dipole moments 
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of the IR active modes and the contribution of the individual spectra were weighted 

to reproduce the experimental absorptive spectra along with the experimental linear 

FT-IR spectra. Using the parameters that reproduced the experimental absorptive 

spectra, the effective population of modes IIa and IIb for the absolute value 

rephasing spectra were found to be NIIa(0)=0.95 and NIIb(0)=1.16. 

For both the inherent and exchange crosspeaks the molecular reorientation 

times are needed. The molecular reorientation times of isomer I and II were obtained 

from MD trajectories. Molecular dynamics simulations were used rather than 

polarization dependent pump-probe spectra due to the fact that the pump-probe 

spectra are too congested to extract anisotropies of transitions on individual isomers. 

In the terminal carbonyl region the peaks in the pump-probe spectrum have 

contributions from two or more different isomers. Previous studies on a non-

exchanging metal carbonyl system have shown good agreement between 

experimentally determined τor and the τor determined from MD simulations.49 

To obtain the molecular reorientation times, the transition dipole moments of 

the IR active terminal carbonyl stretching modes, obtained from DFT calculations, 

were projected onto the coordinates of each isomer for each frame. This allows for 

the dipole-dipole time correlation function for each vibrational mode to be 

calculated. The dipole-dipole time correlation function is related to the anisotropy of 

a species according to Eq. 5.28 where P2 is the second Legendre polynomial.50 

2 2 2
2( ) ( )  where  ( ) (0) ( )5r t C t C t P tµ µ = = ⋅ 

 

 
Eq. 5.28 

Figure 5.9 shows a plot of C2(t) for the 2069 cm-1 mode isomer I in hexane. A 

single exponential fits the data well. Fitting the data to the Eq. 5.29 gives the 

molecular reorientation time, τor. 

/
2 ( ) ortC t Ae τ−=  

Eq. 5.29 
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The molecular reorientation times of each IR active terminal carbonyl 

stretching mode for isomers I and II in the series of linear alkane solvents and 

cyclohexane were obtained in this fashion. The overall molecular reorientational 

times used were obtained by averaging the individual reorientational times of the 

modes together and are given in Table 5.1. 

To separate the forward and reverse rate constants we obtained the equilibrium 

constants from linear FTIR spectra of DCO in the different solvents. Fitting the 

peaks in the spectrum to seven Lorenzians and taking the ratios of the areas of the 

peaks corresponding to isomer I and isomer II results in the equilibrium constant. 

The equilibrium constants for the series of linear alkanes and cyclohexane follow: 

  
Isomer I 
τor(ps) 

Isomer II 
τor(ps) 

hexane 12.7 12.3 

heptane 16.3 19.0 

octane 20.7 22.7 

decane 42.7 44.0 

dodecane 57.7 84.7 

cyclohexane 31.7 26.7 

 

Figure 5.9 A plot of C(t) for highest frequency mode of isomer I in hexane (black) and 
the single exponential fit (red). 

C(t) 

Table 5.1 The molecular reorientation times of Isomer I and Isomer II for the 
series of solvents. 
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hexane Keq =1.09, heptane Keq =1.07, octane Keq =1.06, decane Keq =1.06, dodecane 

Keq =1.03 and cyclohexane Keq =1.40. 

The rate constant associated with vibrational population, kV, and the rate 

constants associated with IVR, kIVR and k-IVR, are also needed. The rate constant 

corresponding to the vibrational population relaxation was set to kV=0.02 ps-1 (50 

ps). This value was determined by fitting crosspeak 7 in the different solvents to a 

biexponential consisting of a growth and decay. Although the long time decay varied 

between 43 and 58 ps, there was not a correlation between the long time decay 

constant and the solvent. Taking the average of the long time decays for crosspeak 7 

in all the linear alkane solvents results in a rate constant corresponding to 0.02 ps-1 (50 

ps). 

For the rate constant associated with intramolecular vibrational relaxation, we 

chose to use an IVR rate of kIVR=0.01 ps-1. The timescale associated with IVR is 

thought to be longer because the normal modes involved in the IVR processes, IIa 

and IIb, involve displacement of different local carbonyl units26, with the majority of 

the motion for mode IIb being motion of the axial carbonyl units and mode IIa only 

involves motion of equatorial carbonyl units. However, in order to determine how 

the extracted rate of exchange depends on the inputted IVR rate constant, we varied 

kIVR for the linear alkanes and refit the data for six different kIVR rates corresponding 

to 3 ps, 10 ps, 20 ps, 55 ps, 100 ps, and 1000 ps. For each of the IVR rates we also 

allowed the vibrational population relaxation rate to vary by ±5 ps and the molecular 

reorientation time to vary by ±5 ps. In comparing the average rate constants obtained 

from varying the IVR rate, vibrational population relaxation rate and molecular 

reorientation time to the average rate constant obtained from setting the IVR rate to 

correspond to 100 ps the vibrational population relaxation time to correspond to 50 

ps and the molecular reorientation time to be that determined from the molecular 

dynamics simulations, we find that the resulting rate constants only vary by 0.0042 ps-

1 at most. 
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Using these parameters as inputs and allowing the forward rate constant, kf, the 

dephasing rate constant, kD, the phase of the coherence, ϕ, and the amplitudes of the 

inherent and exchange crosspeaks, Ainherent and Aexchange, to vary we fit the t2 trace of 

the amplitude of crosspeak 7 to Eq. 5.27. 

In Figure 5.10 we demonstrate our fitting process. Figure 5.10a plots the t2 trace 

of the amplitude of crosspeak 7 in hexane along with the corresponding fit to Eq. 

5.27 (black). The fit is obtained by minimizing the residual (Fig. 5.10c) along with 

minimizing the amplitude of the Fourier transform of the residual (Fig. 5.10d). From 

Fig. 5.10c it can be seen that the residual is centered around zero. In the plot of the 

Fourier transform of the residual (Fig. 5.10d black curve), we see that the peak due to 

the exponential growth and decay is minimized along with the peak at 45 cm-1 The 

resulting extracted exchange and inherent contributions to the crosspeak are plotted 

Figure 5.10 (a) The normalized amplitude of peak 7 is plotted as a function of t2 
(black). The fit is plotted in red. (b) The total fit to peak 7 is plotted in red, the 
contribution from the inherent crosspeak is plotted in blue and the contribution from 
the exchange crosspeak is plotted in green. (c) The residual is plotted. (d) The amplitude 
of the Fourier transform of the residual. 

 

 
wavenumber (cm-1) 
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in Figure 5.10b. The inherent crosspeak (blue) first oscillates and then decays while 

the exchange crosspeak (green) first grows in and then decays. 

Using this procedure we have extracted the forward and reverse rate constants 

from the absolute value rephasing spectra of DCO in the series of linear alkanes and 

in cyclohexane. The waiting time dependent rephasing spectra for each linear alkane 

solvent were taken at least twice, and the reported rate constants were obtained from 

averaging the individual rate constants. Figure 5.11 plots the amplitude of crosspeak 7 

(absolute value rephasing spectra) for the series of linear solvents; from this data the 

rate constants reported as Experiment 1 in Table 5.2 were obtained. The individual 

rate constants along with the R2 value obtained from the fitting process are given in 

Table 5.2. The error bars were obtained by allowing the rate constants to vary until 

the R2 value decreased by -0.01. From the forward rate constants the reverse rate 

constant was obtained from the equilibrium constant (kr=kf/Keq). 

Figure 5.11 The amplitude of crosspeak 7 plotted as a function of t2 time for the series 
of solvents, hexane (black) heptane (red) octane (blue) decane (green) and dodecane 
(pink). Each trace was normalized to its amplitude at 90 ps.    
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The forward isomerization time (II-to-I), 1/kf, is less than the reverse 

isomerization time (I-to-II), 1/kr, which is consistent with isomer I lying lower in 

energy than isomer II. In the linear alkane series, as the carbon chain length of the 

solvent increases the isomerization time also increases (Fig. 5.12). There are two 

possible reasons for this increase; either the solvent induces static modulations of the 

potential energy surface or the solvent causes dynamic changes by frictionally 

impeding the barrier crossing process.  

5.5 Static Versus Dynamic Solvent Effects 

One of the benefits to studying a picosecond isomerization reaction occurring 

on the ground electronic surface is that the static energetic contribution from the 

  Experiment 1 Experiment 2 Experiment 3 

  kf(ps-1) R squared kf(ps-1) R squared kf(ps-1) R squared 

hexane 0.086 ± 0.010 0.977 0.100 ± 0.012 0.990     

heptane 0.069 ± 0.007 0.980 0.092 ± 0.011 0.989 0.069 ± 0.008 0.984 

octane 0.066 ± 0.008 0.980 0.070 ± 0.008 0.992     

decane 0.042 ± 0.005 0.976 0.040 ± 0.004 0.986     

dodecane 0.026 ± 0.003 0.972 0.033 ± 0.004 0.971 0.025 ± 0.004 0.968 

cyclohexane 0.062 ± 0.006 0.866 

 

      

 

Table 5.2 The forward rate constants obtained from the fits for the series of solvents  

 

Figure 5.12 Plot of the forward (left) and reverse (right) isomerization times versus 
solvent carbon chain length. 
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solvent can be isolated from the dynamic friction using DFT calculations, MD 

simulations and linear FT-IR spectra. We first demonstrate, through the use of linear 

FT-IR spectra, that the relative energies of the isomers are invariant to linear carbon 

chain length. However, from the linear FT-IR spectra we do not gain any insight on 

how the energy of the TS is affected by the solvent. We employ both MD simulations 

and DFT calculations to determine how the solvent influences the energy of the 

transition state relative to the ground states. The entropic contribution associated 

with changing the solvent is accessed through the use of MD simulations, while DFT 

calculations are used to determine the solvent dependent activation energies. 

5.5.1 Linear FT-IR Spectra 

In the previous chapter we described the previous assignment of the linear IR 

spectrum of DCO in hexane; we briefly describe the assignment again here. The FT-

IR spectrum of DCO in hexane along with the Lorentzian fits is shown in Fig. 5.13; 

the peaks in dashed green are assigned to isomer I, dashed blue to isomer II and 

dashed orange to isomer III.  

In this section we look at the solvent dependent FT-IR spectrum of DCO. 

Figure 5.14 plots the FT-IR spectra of DCO in hexane (black), heptane (red), octane 

(blue), decane (green), dodecane (dark yellow) and cyclohexane (burgundy). Fitting 

each spectrum to 7 Lorentzains, we obtained the equilibrium constant (Keq = kf/kr) 

Figure 5.13 FT-IR spectra of DCO in hexane with the dashed green peaks assigned to 
isomer I, dashed blue to isomer II and dashed orange to isomer III. 
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from taking the ratio of the fitted areas of peaks corresponding to isomer I and 

isomer II finding that Keq only varies from 1.09 in hexane to 1.03 in dodecane for the 

linear alkanes, and for cyclohexane the equilibrium constant is 1.40. 

For the linear alkanes, the nearly overlapping FT-IR spectra show that the 

relative energies of the two isomers do not vary among the linear solvents. From the 

equilibrium constants, using Eq. 5.30 we find a difference in ∆G of only 0.03 

kcal/mol when the solvent is changed from hexane to dodecane. 

( )ln eqG RT K∆ = −  
Eq. 5.30 

This small change among the linear alkanes indicates that changing the solvent 

does not result in a static modulation of the energy of the two isomers. In comparing 

the FT-IR spectra in the linear alkanes to that of cyclohexane, it is evident that the 

relative energies of the isomers have changed. In cyclohexane ∆G =-0.20 kcal/mol, 

compared to a ∆G =-0.05 kcal/mol in hexane and ∆G =-0.02 kcal/mol in dodecane, 

isomer I is stabilized with respect to isomer II in cyclohexane compared to the linear 

alkanes. Though the relative energy of the isomers is different in the cyclic alkane 

compared to the linear alkanes, the solvent does not modulate the relative energies of 

the isomers within the series of linear alkanes. 

Figure 5.14 Normalized FT-IR spectra of DCO in the series of linear alkane solvents 
(length=6, 7, 8, 10, 12) and cyclohexane (CH). 
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5.5.2 Molecular Dynamics Simulations 

Using MD simulations we confirm the results from the FT-IR spectra and 

demonstrate the solvent does not entropically influence the energy of the different 

species within the linear alkane series.  

Molecular dynamics (MD) simulations were performed on isomer I, isomer II 

and the transition state in all the solvents using the GROMACS package.51 For each 

simulation an isomer (or transition state) was added to a cubic box containing 

between 300 to 340 solvent molecules and periodic boundary conditions were used in 

all directions. The simulations where performed using the NPT ensemble, (constant 

pressure and temperature) using the Berendsen coupling scheme to maintain a 

temperature of 298 K and a pressure of 1 bar.52 Long range electrostatic interactions 

were accounted for by using the particle-mesh Ewald (PME) summation method 

with the interaction cutoff set to 1 nm.53, 54 The nearest neighbor list was updated 

every 10 time steps, and time steps of 1 fs were taken. The length of the MD 

simulations varied depending on the solvent; for cyclohexane, hexane, heptane and 

octane 6 ns trajectories were obtained, for decane a 10 ns trajectory was obtained and 

for dodecane a 13 ns trajectory was obtained.  

The radial distribution functions were obtained using 2 ns segments taken from 

the longer trajectories. The force fields for isomer I, II and the transition state were 

constructed from DFT calculations assuming a harmonic potential for the bonds and 

angles, and atomic charges were determined from using the CHarges from 

ELectroscatic Potential (CHELP) algorithm.55 The force constants for the bonds and 

angles of the transition state were assumed to be the same as those for isomer II. The 

general AMBER force field (GAFF) was used to describe the solvent molecules.56, 57 

The structure of the geometry-optimized solvent molecule along with the atomic 

charges were obtained from DFT calculations using the B3LYP functional and the 6-

31+G(d) basis set.58, 59 
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From MD simulations we obtained RDFs (Fig. 5.15) which provide a structural 

picture of the average solvation environment around the individual isomers and the 

transition state. Fig. 5.15 shows radial distribution functions (RDFs) obtained from 

MD trajectories of the distances between the center of mass of isomer I, isomer II, or 

the transition state and all the solvent atoms for the series of linear alkanes and 

cyclohexane. There is no apparent difference between the RDFs of the isomers or the 

transition state in the series of linear alkanes; however, in comparing the linear 

alkanes to cyclohexane, the differences in the RDFs are clear and are highlighted by 

the dashed grey lines in Fig. 5.15. 

The invariance of the RDFs within the linear alkanes indicates that as the 

solvent changes the solvation environment is not altered, and since the radial 

distribution function is related to the thermodynamic properties of the system60, the 

energies of the isomers are not altered. As would be anticipated from the differences 

in the linear FT-IR spectra, there is a considerable difference between the RDFs for 

the cyclic and the linear alkanes. The RDFs show that for the series of linear alkanes 

not only are the energies of the isomers independent of the solvent, but the energy of 

the transition state is also independent of the solvent. 

Figure 5.15 Radial distribution functions for isomer I, II (shifted by -0.5), and the 
transition state (shifted by +0.5) in the series of solvents (same key as in Fig. 5.14). The 
radial distribution functions are of the distances between the center of mass of the 
solute and all of the atoms of the solvent. 
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For cyclohexane, the width of the first solvation shell is broader compared to 

the linear alkanes. We attribute this to structural aspects of the cyclohexane 

molecules. In Fig. 5.16, the probability distribution functions for above the xy plane 

and below the xy plane for isomer I and II in cyclohexane and hexane are plotted. 

The molecular axes used to define the xy planes are also shown in Fig. 5.16. For 

isomer II, we see that the distribution functions for above and below the planes are 

the same in hexane and cyclohexane. However, for isomer I in cyclohexane the 

distribution functions for above and below the xy planes are different, with the first 

solvation shell for the below-the-plane distribution function being shifted closer. For 

isomer II in cyclohexane the distribution functions for above and below the planes 

are the same. The difference for isomer I indicates that the structural aspects of 

cyclohexane are playing a role in solvation, with solvent molecules being closer to 

isomer I below the xy plane.  

Figure 5.16 Directional dependent distribution functions for isomer I and isomer II in 
hexane and cyclohexane 
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5.5.3 DFT Calculations 

DFT calculations also confirm the results from the MD simulations and the 

FT-IR spectra for the linear alkanes. Density functional theory (DFT) calculations 

were performed on Isomer I, Isomer II and the corresponding transition state using 

GAUSSIAN03.61 The calculations were performed using the B3LYP functional with 

the 6-31+G(d) basis set for the carbon and oxygen atoms and the LANL2DZ 

pseudopotential was used for the cobalt atoms, the choices of functional and basis 

sets were based on previous computational studies performed on dicobalt 

octacarbonyl by Kenny et al.62 and Aullón et al39; however, these previous calculations 

did not account for the solvent. In this study we accounted for three different 

solvents, hexane, decane and cyclohexane, using the polarized continuum model.63-65 

The transition states in hexane, decane and cyclohexane were determined and 

optimized using synchronous transit-guided quasi-Newton methods.66, 67 Performing 

a frequency calculation on the optimized transition state structures results in one 

imaginary frequency, confirming the structure is a transition state. 

Figure 5.17 The motion of the carbonyl units corresponding to the normal 
modes are indicated with arrow. 
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To determine whether the functional and basis set represent the system well; we 

compared our calculated frequencies and bond lengths to experimentally determined 

values. For hexane, the calculated vibrational frequencies, weighted by the scaling 

factor 0.9725, are shown in Table 5.3 along with the experimentally determined 

frequencies. The calculated vibrational frequencies only differ from the experimental 

values by ±5 cm-1 at most. The normal modes corresponding to the calculated 

frequencies are also shown in Fig. 5.17 with the arrows indicating the motion of the 

carbonyl units. It is important to note that the normal modes in the terminal carbonyl 

region are not part of the reaction coordinate. The motion along the reaction 

coordinate is a low frequency motion, and the coupling between the high frequency 

motions and low frequency motions is small as is indicated by the slow vibrational 

population relaxation. Comparing the metal-metal bond length of the calculated 

structure for isomer I (2.55 Å for hexane, decane and cyclohexane) to the 

experimentally determined bond length (2.53 Å)68, we see a difference of only 0.02 Å. 

In comparing the vibrational frequencies and metal-metal bond lengths we find good 

agreement between the experimental and theoretical results indicating that the basis 

  
DFT Harmonic 

Frequencies (cm-1) 
Experimental 

Frequencies (cm-1) 

Isomer I 
2044  (2183) 2042   (0.88) 

2049  (1783) 2045   (0.54) 

2070  (2104) 2071   (0.50) 

Isomer II 
2022  (2538)                
2023  (2537) 2023   (0.80) 

2063  (2808) 2068   (0.66) 

Isomer III 
2034  (2191)          

2034  (2193) 
2031  (0.39) 

2054  (2297) 2059  (0.14) 

 

Table 5.3 The calculated vibrational frequencies and intensities weighted by the 
scaling factor 0.9725 along with the experimentally determined vibrational 
frequencies and intensities are given in parentheses. 
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set and functional represent the system well. 

From the DFT calculated energies of isomers I, II and III we have obtained the 

activation energy for the forward and reverse reactions, defined in Fig. 5.1, by taking 

the difference between the energy of the transition state and the ground states. The 

results follow: Ef(hexane)= 2.35 kcal/mol, Ef(decane)= 2.39 kcal/mol, 

Ef(cyclohexane)= 2.33 kcal/mol; and Er(hexane)= 3.06 kcal/mol, Er(decane)= 3.09 

kcal/mol, Er(cyclohexane)= 3.11 kcal/mol. These values are comparable to the 

experimental values that we determined in the previous chapter. We also note that for 

the metal carbonyl system iron pentacarbonyl, previous studies by Cahoon et. al. 

(using similar basis set and functional) have reported reasonable agreement between 

their DFT computed activation energies and experimental results.26 Though it should 

be noted that they did not account for the temperature dependent viscosity in their 

Arrhenius analysis, suggesting that their experimentally determined barriers are likely 

too high.  

For the linear alkanes, as the solvent is changed from hexane to decane the 

activation energies only vary by 0.04 kcal/mol confirming that the relative energy of 

the transition state with respect to the isomers does not greatly change as the solvent 

is changed. However, if the change in experimental rate constants were due solely to 

static solvent effects, the change in Ea between hexane and decane would be 0.5 

kcal/mol, which is an order of magnitude larger than the calculated difference. Since 

the difference between Ef and Er is equivalent to the ∆HII→I we can also compare the 

DFT results to temperature dependent FT-IR spectra. In the previous chapter, we 

have determined the experimental value for ∆HII→I=-0.49 kcal/mol in hexane, which 

when compared to the DFT results, ∆HII→I=-0.72 kcal/mol, the difference is only 

0.23 kcal/mol. For cyclohexane, we have also obtained temperature dependent FTIR 

spectra of DCO between 5°C and 50°C (Fig. 5.18a). As the temperature increases the 

peaks corresponding to isomer I decrease while the peaks corresponding to isomer II 

increase. The temperature dependent equilibrium constants were obtained by fitting 
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the individual spectra, and from the equilibrium constants a van’t Hoff plot was 

constructed (Fig. 5.18b) and yielded values of ∆H°II→I=-1.69 kcal/mol and ∆S°II→I=-

5.14 cal/(mol∙K) . Comparing the experimental value ∆HII→I=-1.69 kcal/mol (DCO 

in cyclohexane) to the DFT calculated value of ∆HII→I=-0.78 kcal/mol, we see that 

the experimental value is larger with the difference between the results being 0.91 

kcal/mol. Though the experimental and calculated values of ∆HII→I do not agree 

quantitatively, the DFT calculations produce the trend observed between the linear 

alkanes and cyclohexane, with the asymmetry of the barrier being more pronounced 

in cyclohexane. One possible reason for the larger difference between the 

experimental and calculated ∆HII→I in cyclohexane could be attributed to the failure 

of the PCM to capture the structural components of cyclohexane, which are evident 

from the more structured RDFs of the different isomers in cyclohexane. 

   We have also used the DFT calculated structures to obtain the volumes of the 

isomers and the transition state, the volumes follow: isomer II=180.5 Å3; isomer 

I=174.5 Å3; and the transition state=179.1 Å3. The change in volume for isomer II to 

the transition state is ∆V=-1.4 Å3 and the change in volume for isomer I to the 

transition state is ∆V=4.6 Å3. The ∆V between isomer II and the transition state is 

Figure 5.18 (a) Temperature dependent FT-IR spectra of DCO in cyclohexane. The arrows 
indicate the change in the peaks amplitude as temperature is increased with the green arrows 
indicating isomer I and the blue arrows indicating isomer II. (b) Van’t Hoff plot. 
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negative indicating that the solvent displacement is small for this reaction. For isomer 

I to the transition state the ∆V is positive and slightly larger indicating that the 

solvent displacement might be more significant. Since the structure of the isomers are 

virtually unaffected by the solvent the ∆V is also unaffected. The ∆V is relatively 

small indicating that the amplitude of the motion is also small compared to the free 

volumes of the solvents.  

5.6 Dynamic Solvent Effect 

Combining the results from solvent and temperature dependent linear FT-IR 

spectra, MD simulations and DFT calculations, there is ample evidence that changing 

the solvent within the series of linear alkanes does not modulate the potential energy 

surface. Therefore, for the linear alkanes, the observed change in the rate constants is 

a purely dynamic solvent effect. In comparing cyclohexane to the series or linear 

alkanes, we note that there is a static modulation to the potential energy surface. In 

the next section we will first explore the dynamic solvent effects for the series of 

linear alkanes. Then, through the use of the FT-IR spectra and DFT calculations, we 

will demonstrate how to isolate the static and dynamic modulations caused by 

cyclohexane. 

5.6.1 Linear Alkanes 

In order to isolate the dynamic effect of the solvent, we remove the static 

contributions from the barrier crossing process resulting in the reduced rate constant 

given in Eq. 5.31, where kexp is the experimental rate constant and Ea is the activation 

energy.  

red exp

aE
RTk k e=  

Eq. 5.31 

To obtain the reduced rate constant the activation energy term must be 

removed. Though it is common to vary temperature in order to extract activation 

energies, in changing the temperature, the viscosity is also changed, effectively linking 
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the static and dynamic aspects of the rate constant. The viscosity’s contribution to the 

perceived barrier can also be on the order of a few kcal/mol, and for reactions taking 

place on the ps timescale, which also have barriers of only a few kcal/mol, the 

viscosity’s contribution to the barrier could be nontrivial. If the reaction is completely 

diffusive and the solvent friction is assumed to be proportional to the solvent’s 

viscosity, the temperature dependence of the viscosity can be accounted for by simply 

subtracting it from the experimentally measured activation energy.7 In the previous 

chapter, we measured the Ef=5.4 kcal/mol and Er =5.8 kcal/mol of DCO in hexane. 

Over the temperature range probed the activation energy associated with the 

temperature dependence of the viscosity was estimated to be 1.6 kcal/mol using the 

hydrodynamic model. Assuming the reaction was in the Smoluchowski limit and that 

the solvent’s friction was proportional to the viscosity we accounted for the 

contribution of the viscosity and found Ef=3.8 kcal/mol and Er=4.2 kcal/mol. 

Though we could approximate the effect of the solvent on the barrier crossing 

process, we necessarily had to assume a model for the solvent. Complications arise 

when the barrier crossing process is not in the Smoluchowski limit and/or the 

friction is not directly proportional to the viscosity, because the assumed model is no 

longer correct. Since the goal of this chapter is to test the solvent model, assuming a 

solvent model in order to obtain the activation energy is not valid. To avoid assuming 

a solvent model, we have chosen to use the activation energy determined from DFT 

calculations to calculate the reduced rate constant in the linear alkanes. 

To gain insight into the microscopic solvent dynamics affecting the barrier 

crossing process we examine the solvent dependence of kred using two friction 

models: the hydrodynamic and the Hubbard models37, given in Eqs. 5.32-5.33. 

24   hydrodynamicdr
I

πηβ =
 

Eq. 5.32 

6   Hubbardor
rxn

kT p
I

β τ=
 

Eq. 5.33 
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In the above equations, η is the macroscopic viscosity of the solvent, d is the 

diameter of the isomerizing group, r is the radius of gyration, and I is the moment of 

inertia. For the Hubbard relationship, τor is the molecular reorientation time of the 

solute (which was determined from MD simulations according to the procedure 

described in Section 5.4.3), Irxn is the moment of inertia corresponding to the motion 

along the reaction coordinate and p is a factor that accounts for the possibility that 

the isomerization friction is proportional (but not necessarily equal) to the full 

molecular orientational friction. The p factor is added to account for the fact that not 

every interaction that leads to molecular reorientation will necessarily coincide with 

the rotational motion along the reaction coordinate. It is important to note, that in 

using the Hubbard friction we are assuming that the motion along the reaction 

coordinate is rotational. For the case of DCO the motion along the reaction 

coordinate does consist of some small translations; however, the motion is mostly 

rotational. 

The reaction coordinate is not obvious from looking at the structures of isomer 

I, II and the transition state in Fig. 5.1; however, by observing the motion 

corresponding to the mode with imaginary frequency, the reaction coordinate 

Figure 5.19 (top) The projections of the transition state (pink) and isomer I (green) 
and (bottom) the projections of the transition state (pink) and isomer II (blue) onto the 
y-z, x-z, and x-y planes. 
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becomes more clear and can be thought of as a series of rotations about the x, y and 

z axis of the molecular frame. Projections of the transition state (pink) along with the 

structure of the isomer II (blue) and isomer I (green) onto the x-y, y-z, and x-z planes 

are given in Fig. 19, which suggests the reaction coordinate consists of a series of 

rotations about the x, y and z axes. The arrows point in the direction of rotation 

about the axis to obtain the transition state structure. In considering the reaction 

coordinate to consist of a series of rotations about the x, y and z axes, the moment of 

inertia for the motion along the reaction coordinate can be written as the following:  

where Ix, Iy and Iz, obtained from DFT calculations, are the principle moments of 

inertia along the x, y and z axes, and cx2, cy2 and cz2 are coefficients that account for 

an uneven distribution of motion about the x, y and z axes.  

In order to determine the coefficients in Eq. 5.34 we use a least squares fitting 

method to determine the angles of rotations, α, β and γ, about the x, y and z axes 

that minimize the difference between the transition state’s coordinates and the 

rotated coordinates of the isomer. The rotated coordinates are obtained by using the 

rotation matrices Rx, Ry, and Rz, Eq. 5.35-5.37. 

1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

xR α α
α α

 
 = − 
 
   

Eq. 5.35 

cos( ) 0 sin( )
0 1 0

sin( ) 0 cos( )
yR

β β

β β

 
 =  
 −   

Eq. 5.36 

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1
zR

γ γ
γ γ

− 
 =  
 
   

Eq. 5.37 

( ) ( ) ( )( )
1

22 2 2
rxn x x y y x zI c I c I c I= + +  

Eq. 5.34 
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The angles of rotation can be used as a measurement of the amount of 

movement about a given axis; the larger the angle, the more motion about the 

specific axis. In order to relate the resulting angles to the coefficients in Eq. 5.34, we 

represent the angles as components of a normalized vector, θ. The components of θ 

are the coefficients, cx, cy and cz in Eq. 5.34. 

Applying the fitting method to isomer II and the transition state we estimate 

the moment of inertia along the reaction coordinate to be 6.73x10-44 kg∙m2. Since the 

isomerization motion is symmetric about the Co–Co bond we only consider one half 

of the molecule. Figure 5.20a shows half the molecule of isomer II and half of the 

transition state (pink) before applying the fitting procedure. Figure 5.20b plots the 

rotated coordinates of isomer II, obtained by minimizing the difference between the 

two structures and the transition sate. Rotations alone cannot map the stable isomer 

to the transition state because the motion along the reaction coordinate is not strictly 

rigid. However, since the amount of translation is small, we can assume that most of 

the rearrangement along the reaction coordinate is due to rotation about the axes. 

Applying this same procedure to isomer I and the transition state we estimate the 

moment of inertia along the reaction coordinate to be 6.96x10-44 kg∙m2. 

The hydrodynamic model uses the macroscopic properties of the solvent and 

the size of the solute as an approximation of the friction. In contrast, the Hubbard 

Figure 5.20 (a) The transition state structure (pink) and the structure of isomer II 
before rotation. (b) The rotated structure of isomer II and the transition state structure 
(pink). 
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model uses the molecular reorientation time of the solute and the moment of inertia 

along the reaction coordinate as a measure of the friction, taking into account the 

microscopic environment sampled by the solute. In using the Hubbard and 

hydrodynamic frictional models, a Markovian friction is assumed. For low flat 

barriers, Grote-Hynes theory reduces to Kramers’s result (the frequency-dependence 

of the friction becomes unimportant); however, as the frequency of the barrier 

becomes larger, when ωb≥1013 s-1, the frequency-dependence of the friction may need 

to be considered.35, 36 For DCO, the DFT calculated barrier frequencies are ~7×1012 

s-1 which implies that the friction can be considered to be frequency independent. 

 It follows from Eq. 5.2 that the reduced rate constant is equivalent to 

F(ωa/2π) for a barrier crossing process that behaves according to Kramers theory. In 

the high friction limit, F(ωa/2π) is inversely proportional to the friction and reduces 

to the Smoluchowski result, Eq 5.38, where the variables have been previously 

defined. 

2
a b

redk ω ω
πβ

=
 

Eq. 5.38 

To determine whether the barrier crossing process is in the high friction limit, 

previous studies have fit the reduced rate constants to the following expression and 

kred=Cβ-α,6, 69, 70 assuming a hydrodynamic friction ( β ∝ η ).  

redk c αβ −=  
Eq. 5.39 

By fitting the experimental data to this equation, information on the barrier 

crossing process is gained from the value of α obtained from fit.71 A value α=1 

corresponds to a barrier crossing process that is in the high friction limit 

(Smoluchowski limit), and as α deviates from 1 the barrier crossing process is 

described by an intermediate friction.70 Our data deviate from the Smoluchowski 

result indicating the barrier crossing process is not in the high friction limit. Fig. 5.21 

shows the results of the fits of the ln(kred) versus (a) ln(η), for the hydrodynamic 
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friction where the literature values of the viscosity were used,72, 73 and (b) ln(τor), for 

the Hubbard friction along with the resulting α values obtained from the slopes of 

the fit. The barrier crossing process is not in the high-friction limit, for the 

hydrodynamic or Hubbard friction, the barrier crossing process lies within the 

intermediate friction regime being more like the high-friction limit than TST-like.  

Since the Smoluchowski limit does not hold in the present case, we fit our data 

to the full Kramers expression. Fig. 5.22 shows multivariable fits to the full Kramers 

expression, F(ωa/2π), using (a) the hydrodynamic and (b) Hubbard friction models. 

The extracted basin frequencies (defined in Fig. 5.1) are also given in Fig. 5.22 along 

Figure 5.21 Plots of ln(kred(s-1)) versus (a) ln(η(Pa∙s)) and (b) ln(τor(s)). 

Figure 5.22 Reduced rate constants with the (a) Kramers-hydrodynamic fit and the 
(b) Kramers-Hubbard fit. 
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with the other fitted parameters. In both cases, ωb was fixed with the DFT-computed 

imaginary frequency of the transition state, 35 cm-1. It is important to note that the 

imaginary frequency obtained here is slightly less than the imaginary frequency 

computed in the previous chapter. This is attributed to the fact that a different basis 

set was used to describe the system in the previous chapter, and in the previous 

chapter the solvent was not taken into account. For both models we allowed two 

parameters to vary; the value of dr2/I and the basin frequency for the hydrodynamic 

model, and for the Hubbard model the value of p and the basin frequency. Though 

the Hubbard friction yielded smaller basin frequencies, the two models gave the same 

trend, indicating a shallower potential well for isomer II than for isomer I. The 

calculated basin frequencies for isomer II are comparable to the lowest vibrational 

frequency calculated from DFT results. The calculated basin frequencies of isomer I 

are slightly higher ~100 cm-1 which is still comparable to the DFT calculated low 

frequency modes. For the hydrodynamic friction, the value of dr2/I is larger for 

isomer II than isomer I. The difference in these values is not surprising because the 

size and shape of the isomers differ, due to the fact that isomer I, having bridging 

carbonyls, has a smaller metal-metal bond length and isomer II, lacking bridging 

carbonyls, has a larger metal-metal bond. For the Hubbard friction, the value of p for 

isomer I is larger than the value of p for isomer II. Again, this is not surprising given 

the fact that the structure of isomer I and II are very different leading to different 

moments of inertia along the reaction coordinate due to the fact that the rotational 

motions along the reaction coordinate are different.    

Previous studies have found the Kramers-Hubbard model to produce better fits 

than the hydrodynamic Kramers model.19 The success of the Kramers-Hubbard 

model was apparent in solvents that deviated from the Stokes-Einstein-Debye (SED) 

relation for orientational relaxation. In the viscosity range probed here, our results 

indicate that both models yield adequate fits. Orientational diffusion times of DCO in 

the different solvents computed using MD simulations show a linear dependence on 

viscosity, which is consistent with the applicability of both friction models (Fig 5.23). 
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Since the SED equation breaks down with increased solvent size, we expect that with 

further increased carbon chain length, the isomerization time would also increase. 

Though we would anticipate agreement with the Hubbard friction, slowing the 

reaction with higher viscosity will extend the kinetics beyond the vibrational-lifetime-

limited window (~50-100 ps) available using 2DIR chemical exchange spectroscopy. 

5.6.2 Cyclic Alkane 

It could be considered fortuitous—and certainly not general—that the linear 

alkanes induce no static energetic shifts. In some sense, the motivation to use 

Kramers theory at all is to retain a simple continuum-like picture of solvation while 

adapting the parameters to suit the specific solvent system. When the solvent alters 

the energy landscape, however, verifying Kramers theory is more subtle since the 

non-dynamical contribution must be removed. In order to compare the dynamic 

solvent effect of cyclohexane to the linear alkanes, we must first account for the static 

differences in the potential energy surface.  

The parameters related to the potential energy surface in the Kramers model 

(Eq. 5.2) are the activation energy, Ea, the frequency of the basin, ωa, and the 

frequency of the barrier, ωb. Manipulating Eq. 5.2 by dividing the reduced rate 

constants by ωa and incorporating ωb into the friction yields Eq. 5.40 where B = 

Figure 5.23 Plots of the reorientation time versus viscosity. The linear alkanes are fit to 
a line, according to the SED equation. 
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β/ωb which entirely isolates the potential energy surface from the dynamic effects of 

the solvent.  

1/2221 1
2

red

a

k B
Bω

    = + −         

Eq. 5.40 

Fig. 5.24 plots Eq. 5.40 for the linear alkanes with their corresponding fits for 

the Hubbard friction. The values of ωa and p used were taken from the Hubbard fits 

(Fig. 5.22b). As can be seen from Fig. 5.24, removing the static contributions from 

the potential energy surface results in reduction of the fits to Kramers model for the 

two isomers to a single curve, with both the kred/ωa for isomer I (green circles) and 

isomer II (blue circles) lying along a single curve. Fig. 5.24 can be thought of as a 

look-up plot, if the static energetics are known and the solvent friction is known, the 

decrease in the rate constant due to the solvent impeding the barrier crossing 

processes can be determined. For the case of cyclohexane, we utilize Fig. 5.24 to 

isolate the static and dynamic contributions to the rate constant.  

For cyclohexane we only consider the Hubbard friction since the molecular 

reorientation time of DCO in cyclohexane deviates from the SED equation. Fig. 5.23 

shows the molecular reorientation of isomer I (green circles) and isomer II (blue 

circles) in the linear alkanes versus the viscosity along with the linear fit. It is apparent 

Figure 5.24 Plot of kred/ωa versus β/ωb resulting in the isolated solvent dynamics. 
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from Fig 5.23 that the molecular reorientation times of the isomer I (green square) 

and isomer II (blue square) in cyclohexane deviate from SED behavior.  

Unlike the linear alkanes, where the difference in the activation energy 

corresponds to the experimentally determined enthalpy, the experimentally 

determined enthalpy difference between the two isomers in cyclohexane is not 

equivalent to the DFT results. In order to explain the difference between the 

experimental and calculated results we compare the RDFs of the cyclic and linear 

alkanes. It is apparent from the RDFs that cyclohexane is more structured than the 

linear alkanes. One possible reason for the lack of agreement between the DFT 

calculations and the experimental results could be attributed to the inability of the 

polarized continuum model to account for the solvent structure of cyclohexane. Since 

the DFT results do not seem to capture the solute-solvent interactions for 

cyclohexane, we cannot use the activation energies to obtain the reduced rate 

constants. However, the molecular reorientation time of isomer I and II should 

account for the influence of the structured environment of the solvent molecules on 

the microscopic environment sampled by the solute. Using the reorientational time of 

isomer I and II in cyclohexane along with the results from the previous section—that 

the isomerization between isomers II and I in the linear alkanes behaves according to 

Kramers theory—the static and dynamic contributions to the rate constant can be 

isolated. Assuming that the inherent properties of cyclohexane do not lead to 

deviations from Kramers theory, when the static potential is accounted for, the 

kred/ωa for cyclohexane should also lie along the fitted curve in Fig. 5.24. 

Using the values of p determined from the fit of the linear alkanes and the DFT 

calculated frequency of the barrier in cyclohexane, 35 cm-1, the values of kred/ωa for 

cyclohexane are determined from Fig. 5.24 to be equal to 0.7149 for the forward 

reaction (blue square Fig. 5.24) and 0.5377 for the reverse reaction (green square Fig. 

5.24). 
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Using a multivariable searching algorithm the following static energetic 

parameters that result in kf,red/ωII =0.7149 and kr,red/ωI=0.5377 were obtained: 

Ef=2.4 kcal/mol ωII=26 cm-1, and Er=4.1 kcal/mol, ωI=415 cm-1. The searching 

method required initial guesses for the activation energy, for which we used the DFT 

results for cyclohexane, and for the basin frequencies we used the linear alkane results 

as initial guesses. The results form temperature dependent FT-IR spectra were also 

used in the searching method by constraining the difference between the activation 

energies to be equivalent to the experimentally determined ∆H. 

In this section we have shown that using the well characterized dynamic solvent 

dependence of the linear alkanes enables the extraction of the static energetics 

characterizing the potential energy surface corresponding to the isomerization 

between isomer II and I of DCO in cyclohexane. Using this technique, information 

on the static potential energy surface can be extracted from a single temperature 

independent t2 dependent 2DIR measurement, representing a significant step towards 

the goal of being able to predict condensed phase reaction rate constants from bulk 

dynamic properties such as viscosity and from “gas phase” enthalpy barriers. This 

technique should be applicable when the potential energy surface is not drastically 

altered by the solvent. For instance, a large increase in the barrier frequency could 

lead to a friction which may no longer lie within the Markovian regime, and a 

treatment using Grote-Hynes theory might be more appropriate. For solvents that do 

not drastically alter the potential energy surface, however, the method described here 

offers a means of extracting static energetic parameters from a single experimental 

measurement of the rate constant combined with DFT calculations and molecular 

dynamics simulations. 

5.7 Conclusion 

In solution and other dense media transition state theory is not valid since it 

cannot account for the important solvent dynamics that induce recrossing of the 

barrier separating reactants and products. Kramers theory does admit solvent 
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dynamics as frictional drag and random force fluctuations, leading to testable 

predictions provided one has a means to map bulk solvent properties to the 

microscopic friction. The test can be made even more stringent with knowledge of 

the static energetic profile of the stable basins and the transition state. In this chapter 

we have presented the first direct and systematic time-domain investigation of the 

effects of dynamic solvent friction on an equilibrium chemical reaction occurring on 

the ground electronic state. Ultrafast 2DIR chemical exchange spectroscopy has 

enabled the study of an isomerization reaction under conditions where static 

energetic changes are negligible. By isolating the dynamic solvent effects we found 

the rate constant to decrease with increased solvent viscosity according to the 

Kramers model. Using cyclohexane as an example where the energetics are solvent 

dependent, we have suggested a method for the separation of static modulations to 

the potential energy surface from the dynamic effects of the solvent. In the viscosity 

region studied, we determined that a frequency-independent, memory-less, 

Markovian friction was sufficient to describe the influence of the solvent on the 

barrier crossing process, regardless of the choice of the particular friction model. This 

behavior remains to be verified at higher viscosities, but we predict that the Kramers-

Hubbard relation will offer an adequate description of the interactions between the 

reacting species and the solvent. The validation of Kramers theory in a well 

characterized reactive system suggests that, much as it has been shown to be the case 

in the gas phase, quantitative predictions of chemical kinetics in solution are possible. 
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Chapter 6  

Intramolecular Vibrational Energy 
Redistribution: A Study of [CpFe(CO)2]2 

and [CpRu(CO)2]2 
 

The work presented in this chapter has been submitted for publication. 

Jessica M. Anna, John T. King and Kevin J. Kubarych, “Multiple Structures and 

Dynamics of [CpRu(CO)2]2 and [CpFe(CO)2]2 in Solution Revealed with Two-

Dimensional Infrared Spectroscopy,” [submitted to Inorganic Chemistry]. 

6.1 Overview: Chapter 6 

In this chapter 2DIR spectroscopy is applied to both cyclopentadienyliron 

dicarbonyl, Cp2Fe2(CO)4, and its ruthenium analog, Cp2Ru2(CO)4, in order to observe 

energy transfer in the different systems and to assign the transition frequencies of the 

individual isomers. For both metal complexes, the previous assignment of the linear 

IR spectra is confirmed, and the assignment is further refined by determining the 

transition frequencies associated with different isomeric forms of a given metal 

complex. Density functional theory (DFT) calculations were performed to obtain the 

relative energies of the different isomers of Cp2Fe2(CO)4 and Cp2Ru2(CO)4 along 

with the structures and energies of the transition states connecting the stable isomers. 

Combining the DFT and experimental results, a detailed understanding of the 

differences between the two metal complexes is obtained. Monitoring the waiting 
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time dependent amplitude of the crosspeaks in the 2DIR spectrum, provides a direct 

probe of the energy transfer dynamics between different vibrational modes. Treating 

the energy transfer as an equilibrium process enables the extraction of both the uphill 

and downhill energy transfer rate constants, and the rate constants for the two metal 

complexes are compared. 

6.2  [CpFe(CO)2]2 and [CpRu(CO)2]2: Multiple Structures and 

Dynamics 

Binulcear Cp2Fe2(CO)4, and the ruthenium analog, Cp2Ru2(CO)4, have been 

studied for over 50 years.1 One motivation for ongoing investigations of these 

complexes arises from the dynamical and structural complexity of fluxional 

interconversion between multiple isomeric forms. Earlier IR2-7, x-ray crystallography8-

12, and NMR7, 13 studies identified and characterized these different isomeric forms, 

finding that Cp2Fe2(CO)4 exists mainly as two isomers in equilibrium at room 

temperature (Fig. 6.1 top) while Cp2Ru2(CO)4 exists as four isomers (Fig. 6.1 

bottom).5-7, 13 More recently Cp2Fe2(CO)4 and Cp2Ru2(CO)4 have been studied 

because of the rich photochemistry that accompanies the presence of multiple 

isomers in equilibrium.14 

Since Cp2Fe2(CO)4 was first isolated by Piper and Wilkinson in 195515, the 

assignment of the linear IR spectrum has been debated. From the first crystal 

structure of Cp2Fe2(CO)4  it was determined that it exists in the trans-B form (Fig. 

6.1).8 However, the peaks in the solution phase linear IR spectrum could not be 

explained by the trans-B isomer alone, indicating that the solvent environment 

significantly perturbs the structure.2 In order to explain the linear IR spectrum several 

temperature and solvent dependent studies were conducted. From these studies, it 

was first suggested that the spectrum of Cp2Fe2(CO)4 could be attributed to one 

isomeric form, a distorted trans-B isomer.3 This assignment was soon challenged, and 

the peaks in the IR spectrum were attributed to a cis-B form and to a minute amount 

of a non-bridging form.4 This same study also considered the IR spectrum of 
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Cp2Ru2(CO)4 assigning the peaks to two isomeric forms: a cis-B and a cis-NB form or 

another NB rotamer.4 This assignment was also challenged, from solvent dependent 

IR spectra it was concluded that there are three isomeric forms contributing to the 

spectrum of Cp2Fe2(CO)4, a trans-B, cis-B and a negligible amount of a non-bridging 

form and for the Cp2Ru2(CO)4 complex there are four isomeric forms contributing to 

the spectrum: a trans-B, trans-NB, cis-B, and a cis-NB.5, 6 From NMR and IR studies it 

was determined that what was thought to be the cis-NB isomer of Cp2Ru2(CO)4 was 

actually the gauche-NB form.7 

Seventeen years after the first linear IR spectrum was reported for the iron 

complex, the equilibrium compositions of both the iron and ruthenium complexes 

were determined. This required several temperature and solvent dependent studies 

and though these studies assigned the peaks in the linear spectrum to have different 

contributions from different isomeric forms, the exact transition frequency and 

corresponding amplitudes of the overlapping peaks could not be determined. In this 

chapter, we demonstrate the ability of 2DIR spectroscopy to aide in the assignment 

of the linear IR spectra. From temperature independent spectra in a single solvent, 

Figure 6.1 Equilibrium structures for both Cp2Fe2(CO)4 (top) and Cp2Ru2(CO)4 
(bottom). 
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not only can we determine the composition of the peaks in the linear spectrum, but 

we can also determine the transition frequencies and amplitudes of the individual 

peaks.  

In addition to resolving the individual transition frequencies, we also explore 

the energy transfer dynamics between the different modes of the different isomeric 

forms. We observe intramolecular vibrational energy redistribution (IVR) between 

different modes of the cis-B isomer of Cp2Fe2(CO)4 and the gauche-NB isomer of 

Cp2Ru2(CO)4. We find that the rate of intramolecular energy transfer (IVR) varies 

between the two species, and that the difference in the rate maps to the difference in 

energy between the two states exchanging vibrational excitation. 

Though we see evidence of energy transfer between different modes of the 

same isomer, we do not see evidence of chemical exchange. Previous NMR studies 

were able to observe chemical exchange between the different isomers of these 

complexes.7, 13 The pathway by which chemical exchange takes place was proposed by 

Bullit, Cotton, and Marks in 1972 where interconversion between the bridging forms 

occurs through non-bridging intermediates for both Cp2Fe2(CO)4 and Cp2Ru2(CO)4.7 

An activation energy of 16.7 kcal/mol for the trans-B-to-cis-B interconversion for 

Cp2Fe2(CO)4 was also obtained. For the ruthenium complex, an activation energy was 

not obtained because it did not reach the slow exchange limit over the temperature 

range probed; however, it was suggested that the activation energy was less than 8 

kcal/mol. Bridging terminal carbonyl exchange was also observed for Cp2Fe2(CO)4 

and Cp2Ru2(CO)4 by Gasnow and Vernon.13 From NMR studies they found the 

activation energies ranged from 6.5 to 11.1 kcal/mol for the bridging terminal 

carbonyl exchange for both Cp2Fe2(CO)4 and Cp2Ru2(CO)4. They also obtained an 

activation energy of 6.5 kcal/mol for trans-NB-to-gauche-NB interconversion for 

Cp2Fe2(CO)4; however they did not observe rotation about the metal-metal bond for 

the Cp2Ru2(CO)4 complex due to the faster timescale of the interconversion 

compared to Cp2Fe2(CO)4. 2DIR spectroscopy probes processes that occur on the 

picosecond timescale; therefore, the fast interconversion between the non-bridging 
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isomers of Cp2Ru2(CO)4 should be observed with 2DIR spectroscopy. However, in 

this study we do not see evidence of chemical exchange between these two species.  

6.3  Linear FTIR Spectroscopy 

The linear FT-IR spectrum of Cp2Fe2(CO)4 in the terminal carbonyl stretching 

region is shown in Fig. 6.2a. Previous studies5 have assigned peak 1 at 1961 cm-1, to 

the trans-B isomer with a small contribution from the cis-B isomer. Peak 2, at 2006 

cm-1, was assigned to the cis-B isomer. It has also been suggested that there is a small 

contribution, a negligible amount, of the trans-NB form present. The presence of the 

trans-NB form leads to absorptive features in the linear IR spectrum at 1938 cm-1, 

1973 cm-1 and 2015 cm-1.16, 17 We do not see absorptive features at these frequencies 

in our linear FT-IR spectrum indicating that the non-bridging form is not 

significantly populated at room temperature in n-hexane. 

 The linear FTIR spectrum of Cp2Ru2(CO)4 in the terminal carbonyl stretching 

region is shown in Fig. 6.2b. Previous studies6, 7 have assigned peak 1 at 1945 cm-1 to 

the trans-NB and gauche-NB isomers. Peak 2 at 1965 cm-1 was assigned to the trans-B. 

Three components were assigned to peak 3 at 1974 cm-1; the trans-NB, gauche-NB, and 

Figure 6.2 Linear FTIR spectra of Cp2Fe2(CO)4 (a) and Cp2Ru2(CO)4 (b) in n-
hexane. Scaled DFT calculated frequencies are indicated with dashed lines and 
2DIR experimentally determined frequencies are indicated with solid lines. 
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cis-B isomers. Peak 4 at 2011 cm-1 was assigned the cis-B isomer and peak 5 at 2021 

cm-1 was assigned to the gauche-NB form. 

6.4 Structure and Energetics 

In this section we discuss the characterization of the multiple isomeric forms 

for the iron and ruthenium complex using 2DIR spectroscopy along with DFT 

calculations. We first discuss the 2DIR spectra and DFT calculations performed on 

both the metal complexes in general, and then we discuss the spectra and calculations 

for each metal complex separately in detail. 

6.4.1 2DIR spectroscopy 

In previous chapters we have extracted rate constants associated with dynamic 

processes from absolute-value rephasing 2DIR spectra. In the previous studies we 

chose to use the rephasing spectra in order to separate exchange and inherent 

crosspeak contributions by locking onto the coherent oscillations that only arise from 

inherent crosspeaks. In this chapter we choose to use the absolute-value 

nonrephasing spectra to obtain dynamic information on the iron and ruthenium 

complex. In the nonrephasing spectra the inherent crosspeaks do not oscillate as 

function of t2. Since we are extracting the rate constants associated with IVR from the 

inherent crosspeaks we use the nonrephasing spectra to avoid increasing the number 

of fitting parameters that would be required to fit the oscillations. It is also important 

to note, that we do not observe exchange in these complexes, so we do not need to 

isolate exchange and inherent crosspeak contributions. 

6.4.2 Density Functional Theory Calculations 

Previous studies have suggested the pathway for isomerization from trans-B to 

cis-B proceeds through non-bridging intermediates, trans-NB and gauche-NB.7 DFT 

calculations were performed on these isomers for both Cp2Fe2(CO)4 and 

Cp2Ru2(CO)4 and the transition states connecting the stable states specified by the 

suggested pathway.  
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The DFT calculations were performed on both Cp2Fe2(CO)4 and Cp2Ru2(CO)4 

using Gaussian03.18 All the calculations were performed using the B3LYP functional. 

For Cp2Fe2(CO)4 we used the following basis sets, which were taken from previous 

computational studies on Cp2Fe2(CO)4 performed by Schaefer et. al..19 For carbon, 

oxygen, and hydrogen we used the double-ζ plus polarization (DZP) basis sets. For 

the iron atoms we used the 14s11p6d/10s8p3d basis which was also used by Schaefer 

et. al..19 For Cp2Ru2(CO)4 we again used the DZP basis sets for the carbon, oxygen 

and hydrogen atoms. For the ruthenium atoms we used the LANL2DZ 

pseudopotential. We chose to use the pseudopotential for the ruthenium atoms based 

on previous calculations by Schaefer et. al. which compared triruthenium 

dodecacarbonyl to triiron dodecacarbonyl, where the same basis sets used for 

Table 6.1 The 2DIR experimentally determined frequencies and DFT calculated 
frequencies for both Cp2Fe2(CO)4 and Cp2Ru2(CO)4 are tabulated 

 

Exp. 
Frequencies 

(cm-1) 

DFT 
Frequencies 

(cm-1) 

Cp2Fe2(CO)4 

  trans-B 1962 1962 

cis-B 1965 1967 

 

2006 2003 

Cp2Ru2(CO)4 

  trans-B 1966 1966 

cis-B 1970 1971 

 

2011 2008 

gauche-NB 1943 1949 

 

1972 1970 

 

2021 2015 

trans-NB 1943 1946 

 

1974 1969 
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Cp2Fe2(CO)4 were also used for triiron dodecacarbonyl.20, 21 The transition states 

connecting the different isomers were determined using the synchronous transit-

guided quasi Newton methods.22, 23 For each transition state a single imaginary 

frequency was obtained and the transition states were confirmed by observing that 

the single imaginary frequency connected the two corresponding stable isomers. 

Frequency calculations were also performed. Table 6.1 displays the 

experimentally determined frequencies with the corresponding DFT calculated 

frequencies scaled by 0.9636 for Cp2Fe2(CO)4 and 0.9651 for Cp2Ru2(CO)4. The 

theoretically determined frequencies only differ from the experimentally determined 

frequencies by 6 cm-1. The scaled DFT calculated frequencies are also shown as 

dashed lines in Fig. 6.2. 

6.4.3 [CpFe(CO)2]2 :  2DIR Spectroscopy and DFT Calculations 

The absolute value of the 2DIR nonrephasing spectra of Cp2Fe2(CO)4 in 

hexane at t2=200 fs and t2=10 ps are shown in Fig. 6.3. The peaks lying along the 

diagonal, peaks 1 and 2, correspond to the two peaks in the linear FT-IR spectrum 

(Fig. 6.2). Peaks 1’ and 2’, which are shifted to slightly lower frequencies along ωdetect, 

are due to excited state absorptions and are red-shifted due to the vibrational 

anharmonicity. Peaks 3 and 4 are present at t2=200 fs and as t2 increases we see the 

appearance of peaks 4’ and 5.  

The 2DIR spectra of Cp2Fe2(CO)4 (Fig. 6.3) confirm the assignment of the 

linear IR spectra. Crosspeaks 4 and 5 are inherent crosspeaks, arising because there 

are two transitions from the cis-B isomer lying within the ~200-cm-1 bandwidth of the 

incoming 100-fs pulses. Peak 4 arises because during t1, a coherence exists between 

the ground state and the first excited state of the lower frequency cis-B mode, 

followed by a ground state population during t2, and ultimately a coherence exists 

during t3 between the ground and first excited state of the higher frequency cis-B 

mode. This final coherence radiates the signal and is detected.  
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We can obtain the transition frequency of the lower frequency mode of the cis-

B isomer from the corresponding crosspeak (crosspeak 4). The transition frequency 

of the lower frequency mode of the cis-B isomer was found to be 1965 cm-1. The 

transition frequencies determined from the 2DIR spectra are indicated in Fig. 6.2 as 

solid lines and given in Table 1. We also determined the transition frequencies 

between the first and second excited state manifolds from peaks 1’, 2’, 4’ and 3. Peaks 

1’ and 2’ are due to excited state absorptions. The difference between the shifted 

peaks and the corresponding diagonal peaks is a measure of the anharmonicity. Peak 

1’ is shifted by 15 cm-1 along ωdetect compared to peak 1 and peak 2’ is shifted by 8 

cm-1 with respect to peak 2. Peak 3 is due to a transition from the first excited state 

manifold of the cis-B isomer to the corresponding combination band. Peak 4’, which 

has the same ω3 frequency as peak 2’, arises because intramolecular vibrational energy 

transfer has occurred between the two modes of the cis-B isomer; population has 

been transferred from the lower frequency mode to the higher frequency mode 

during t2. In the next section we discuss the rate of IVR between the two modes of 

the cis-B isomer.  

Figure 6.3 Absolute-value non-rephasing spectra of Cp2Fe2(CO)4 in n-hexane at t2=200 
fs and t2=10 ps. The spectra are normalized to the maximum peak at the given t2 value. 
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Along with the transition frequencies we can also determine the relative 

magnitude of the transition dipole moments of the two modes of the cis-B isomer. In 

nonrephasing spectra, for a molecular system having two transitions, B and B’, where 

the transition dipole moments, µ, are 90˚ with respect to one another and neglecting 

dynamics that may occur during t1 and t3, the amplitude of the diagonal peak B’ is 

proportional to the transition dipole moments as described by Eq. 6.1 at t2=0.24 

2 2 2
' 2 0 ' 0 ' 0

1( 0) 615B B B BS t µ µ µ = ∝ +   
Eq. 6.1 

In nonrephasing spectra, given the same conditions stated for the diagonal 

peak, the amplitude of the inherent crosspeaks is proportional to the magnitude of 

the square of the transition dipole moments of the corresponding diagonal peaks (Eq. 

6.2).24 

2 2
' 2 0 ' 0

1( 0) 15BB B BS t µ µ= ∝
 

Eq. 6.2 

From these two expressions, it can be determined that the amplitude of the 

crosspeak will always be less than the amplitude of the weakest diagonal peak. For the 

case where one of the diagonal peaks is very weak, the initial amplitude of the 

crosspeak may not be distinguishable from the noise. However, as t2 increases the 

crosspeaks may grow in with respect to the diagonal peaks due to IVR. This could 

result in what seems like the appearance of a crosspeak at later t2 times, but is actually 

attributable to an inherent crosspeak that becomes more pronounced compared to 

the corresponding diagonal peaks due to IVR. If the amplitude of a diagonal peak is 

small, the amplitude of the corresponding crosspeak will also be small, but it may 

nevertheless be “amplified” relative to the FT-IR spectrum if the other diagonal peak 

is strong enough.  

From DFT calculation we determined that the angle between the two cis-B 

transition dipole moments is 87̊. Since the measured angle only d iffers from 90̊  by 

3˚, we can approximate the magnitude of the transition dipole moments from the 

amplitudes of crosspeak 4 and diagonal peak 2 at t2=0 ps using Eq. 6.1 and Eq. 6.2. 
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We determined, for the lower frequency mode, the magnitude of the transition dipole 

moment to be 0.74 and for the higher frequency mode the magnitude to be 1.10. 

Since the amplitude of the diagonal peak is related to the transition dipole moment by 

Eq. 6.1, the relative amplitude of the diagonal peaks can be determined. For the 

higher frequency mode the amplitude is 0.63 and the amplitude of the lower 

frequency peak is 0.16. This indicates that the contribution of the cis-B isomer to peak 

1 is small and that peak 1 is mostly attributed to the trans-B isomer.  

The results of the DFT calculations (Fig. 6.4) support our experimental results. 

The trans-B and cis-B isomers lie lowest in energy with the two non-bridging isomers 

lying higher in energy. The trans-NB isomer lies ∆G=2.34 kcal/mol higher than the 

trans-B isomer. This is consistent with previous computational studies performed on 

the trans-B, trans-NB, and cis-B isomers.19 This ∆G value is equivalent to an 

equilibrium constant of 0.02, indicating that the relative populations of the non-

bridging isomers are negligible compared to the bridging isomers, and explains why 

we do not see any signature from the trans-NB isomer in our spectra. Previous studies 

did see evidence of the trans-NB isomer, but indicated that the amount present was 

Figure 6.4 DFT calculated ground state energies of Cp2Fe2(CO)4 along with 
the corresponding transition states. The calculated ∆G (dashed lines) and ∆H 
(solid lines) are indicated. 

 



161 

 

negligibly small (<0.1%) which is also consistent with our DFT calculations. The 

equilibrium constant for the gauche-NB isomer is 0.002 leading to an even smaller 

population, and is consistent with its absence in IR studies. 

We have also calculated the activation energy associated with interconversion 

between the different stable isomers. For trans-B-to-trans-NB Ea=3.62 kcal/mol and 

for the cis-B-to-gauche-NB Ea=5.33 kcal/mol. Previous NMR studies have observed 

bridging terminal carbonyl exchange with a trans-B-to-trans-NB activation energy of 

Ea=6.5 kcal/mol.13 The study also observed exchange between the two non-bridging 

forms, with an activation energy of 6.2 kcal/mol for trans-NB-to-gauche-NB.13 This is 

comparable to the DFT calculations which predict an activation energy of 6.89 

kcal/mol. Previous NMR studies have also observed the chemical exchange between 

the two bridging forms and have determined the activation energy to be 16.7 

kcal/mol.7 From our DFT calculations, the activation energy for the trans-B-to-cis-B 

isomer is 11.28 kcal/mol, and for the reverse reaction trans-B-to-cis-B is 11.75 

kcal/mol. We offer two possible reasons for the disagreement between the 

experimental and calculated activation energies. One reason for disagreement could 

be due to the fact that the DFT calculations were performed in vacuum and do not 

take into account the influence of the solvent molecules. Another reason for the 

discrepancies could be due to the fact that the dynamic and static solvent effects were 

not taken into account in either of the previous NMR studies. One of the most 

common ways of experimentally determining the activation energy is to measure the 

rate constant as a function of temperature. However, in the condensed phase, varying 

the temperature also leads to changes in the viscosity of the solvent effectively linking 

the static and dynamic contributions to the rate constants. The activation energy 

associated with the temperature dependence of the viscosity can be on the order of a 

few kcal/mol and for barriers that are a few kcal/mol this contribution from the 

viscosity cannot be neglected and acts to lower the overall measured activation 

energy. In chapter 4 we demonstrated that for the fluxional metal carbonyl complex 

dicobalt octacarbonyl in hexane that the barrier to isomerization could have a 
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contribution of 1.6 kcal/mol from the viscosity alone. Another possibility for the 

disagreement could be due to the fact that one of the previous NMR studies used 

three different solvents in order to broaden the temperature range probed. The 

studies did not attempt to account for changes that the solvent could have on the 

potential energy surface, which if the potential energy surface was altered upon 

changing the solvent, the measured activation energy could end up being a 

combination of different barriers in the different solvents. 

6.4.4 [CpRu(CO)2]2  :  2DIR Spectroscopy and DFT Calculations 

The absolute value of the 2DIR nonrephasing spectra of Cp2Ru2(CO)4 in 

hexane at t2=150 fs and t2=10 ps are shown in Fig. 6.5. In order to highlight the 

higher frequency peaks, the incoming beams were tuned to the higher frequency 

peaks leading to skewed 2DIR spectra. Because of the tuning of the incoming beams, 

the amplitudes of the higher frequencies peaks compared to the lower frequency 

peaks in the 2DIR spectra seem larger than what would be predicted from the linear 

FT-IR spectrum. The peaks along the diagonal, peaks 1-5, correspond to the peaks in 

the linear FT-IR spectrum. Peaks 4’ and 5’ are due to excited state absorptions. Peaks 

6, 7, 8, and 9 are present at t2=150 fs and as t2 increases we see the appearance of 

peaks 11 and 10. 

The IR spectra of Cp2Ru2(CO)4 are more complex than the iron analog due to 

the significant populations of the two non-bridging isomers. For Cp2Ru2(CO)4 the 

transition frequencies for the two bridging structures are shifted to higher frequencies 

compared to Cp2Fe2(CO)4. In the 2DIR spectra of Cp2Ru2(CO)4 the trans-B isomer is 

assigned to peak 2 and the cis-B isomer is assigned to peak 4 and has a small 

contribution to peak 3. The shift to higher frequencies can be simply explained by the 

increased bond length between the carbonyl carbon atoms and the metal atom. As 

the bond length increases, the carbonyl more closely resembles a free carbonyl group, 

shifting the frequency higher. We do not observe a crosspeak between the two modes 

of the cis-B isomer; this may be due to the crosspeak being dominated by the wings of 
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diagonal peak 3. However, we still see evidence that there are two modes from the cis-

B isomer because of the presence of peak 6, which arises from transitions to the 

combination band. Though we cannot determine the transition frequency of the 

lower frequency mode of the cis-B isomer from the crosspeaks, we can use the 

information obtained from the Cp2Fe2(CO)4 complex in order to obtain the transition 

frequency. The frequency of the trans-B (1966 cm-1) and higher frequency (2011 cm-1) 

cis-B mode are shifted for the ruthenium complex; however, the spacing between the 

two modes only differs by 1 cm-1 indicating that the lower frequency cis-B mode 

should also maintain the same frequency spacing. Using this comparison we 

determined a frequency of 1970 cm-1 for the lower frequency cis-B mode. 

Cp2Ru2(CO)4 also exists as two non-bridging forms at room temperature. Peaks 

1 and 3 have some contribution from both the trans-NB and gauche-NB form and 

peak 5 is assigned the gauche-NB form alone. As was the case for Cp2Fe2(CO)4, we 

can obtain the transition frequencies of the overlapping peaks from the crosspeaks in 

the 2DIR spectra.  

Figure 6.5 Absolute-value non-rephasing spectra of Cp2Ru2(CO)4 in n-hexane at t2=150 
fs and t2=10 ps. The spectra are normalized to the maximum peak at the given t2 value. 
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Crosspeaks 9 and 10 are inherent crosspeaks arising from the two transitions of 

the trans-NB species. Peak 10 is not observed at t2=150 fs which we attribute to the 

tuning of the incoming pulses. As t2 increases peak 10 becomes more prominent 

because of IVR. From the position of crosspeak 9 the transition frequencies for the 

two modes of the trans-NB isomer are found to be 1943 cm-1 and 1975 cm-1. 

Crosspeaks 7, 8 and 11 are inherent crosspeaks arising from the three modes of the 

gauche-NB isomer. From the position of these peaks we can obtain the transition 

frequencies for the modes; 1943 cm-1, 1972 cm-1, and 2021 cm-1. We have also 

compared our experimentally determined frequencies to the DFT calculated 

frequencies. The frequencies are given in Table 6.1 and are represented graphically in 

Fig. 6.2 with the experimental frequencies indicated as solid lines and the scaled DFT 

frequencies as dashed lines. The calculated frequencies differ from the experimentally 

determined frequencies by 6 cm-1 at most. In general the relative ordering of the DFT 

calculated frequencies are correct, except for the ordering of the frequencies making 

up peak 3.  

We also obtained information on the second excited state manifold for the 

gauche-NB isomer from peak 5’. An anharmonicity of 4 cm-1 was obtained, which is 

less than the 8-cm-1 anharmonicity of the cis-B isomer. Unlike the case for 

Cp2Fe2(CO)4, we are unable to determine the relative amplitudes of the dipole 

moments for the Cp2Ru2(CO)4 complex due to the tuning of the incoming beams. 

 DFT calculations (Fig. 6.6) were performed on the isomers of Cp2Ru2(CO)4. 

Here the trans-NB species lies lowest in energy with the trans-B species lying only 

slightly higher at ∆G=0.10 kcal/mol. Previous experimental studies found that the 

trans-B species lies the lowest in energy.7 However, this energy difference is very small 

and since the calculations are performed in vacuum, the solvent interactions may be 

capable of inverting the ordering of these energies. The gauche-B isomer lies the 

highest in energy at ∆G=1.49 kcal/mol, which corresponds to an equilibrium 

constant of 0.08. Compared to the iron complex, the non-bridging species for the 
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ruthenium complex lie lower in energy. One reason for this difference is that fact that 

the metal-metal bond length in the ruthenium complex is longer than that of the iron 

complex and the increased bond length leads to reduced steric hindrance resulting in 

a decrease in energy. 

  We also calculated the activation barrier for isomerization between the 

different isomers. For bridging terminal carbonyl exchange the activation energy for 

trans-B-to-trans-NB is Ea=4.34 kcal/mol and for cis-B-to-gauche-NB the activation 

energy is Ea=4.31 kcal/mol. Previous NMR studies have determined the activation 

energy for bridging terminal carbonyl exchange to be 7.6 kcal/mol trans-B-to-trans-

NB and ~8.1 kcal/mol for cis-B-to-gauche-NB. Again we do not see quantitative 

agreement, but we do see that the difference between the two calculated energies is 

smaller than the difference in energies for the iron complex, as is the difference in 

energy between the two experimentally determined energies when compared to the 

iron complex. DFT and experiment indicate that the barrier for rotation about the 

Ru-Ru bond is lower than it is about the Fe-Fe bond, which is consistent with the 

greater Ru-Ru bond length. The increased bond length results in reduced steric 

Figure 6.6 DFT calculated ground state energies of Cp2Ru2(CO)4 along with the 
corresponding transition states. The calculated ∆G (dashed lines) and ∆H (solid lines) 
are indicated. 
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hindrance and reduced barrier to rotation about the metal-metal bond. The DFT 

calculated barrier is 3.95 kcal/mol for the trans-NB-to-gauche-NB interconversion. 

Previous NMR studies have suggested the barrier to be below 5 kcal/mol; however, 

these studies were not able to determine the barrier directly because the process was 

occurring on a timescale that was faster than could be probed with NMR.7, 13 Barrier 

heights of this magnitude generally correspond to picosecond timescales for 

interconversion, which in principle may be observable using 2DIR spectroscopy. In 

this study, however, we do not observe exchange between the two non-bridging 

forms for reasons that are discussed below. 

One impediment to observing exchange is the small equilibrium population of 

the gauche-NB isomer. To demonstrate this point we used the simple two-state kinetic 

model shown in Fig. 6.7, where we have two states A and B which interconvert with 

forward and reverse rate constants, kfor and krev, and vibrationally decay with a rate 

constant kVib. 

The solutions to this kinetic model are given in chapter 4.7.1 Eqs. 4.7-4.10, here 

we just present the solution for crosspeak AB (Fig. 6.7). 

( )( )
0 1

( )
V ex exk k t k t

f

ex

B e e k
AB t k

− + − +
=

 

Eq. 6.3 

Figure 6.7 Two-state kinetic model where species A and B interconvert with forward 
and reverse rate constants, kfor and krev, and decay due to vibrational population 
relaxation kVib. 
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Taking the derivate of Eq. 6.3, we determined the maximum amplitude that 

would be due to the exchange signal for the crosspeak at ωexcite=ωA, ωdetect=ωB (Eq. 

6.4) where kSum=kfor+krev+kVib and B0 is the initial effective population.  
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 
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Eq. 6.4 

Taking the initial effective population, B0, which we choose to use here to avoid 

accounting for the concentration, oscillator strength and tuning of the incoming 

pulses separately, to be equal to the initial amplitude of peak 5, kVib=0.050 ps-1, krev= 

0.050 ps-1 where kfor is related to krev through the equilibrium constant Keq, 

kfor=krev/Keq, where Keq=0.08 which was taken from the DFT calculations, we 

simulated the time dependent amplitudes of peaks AA, BB and AB (Fig. 6.7).  The 

simulated diagonal peaks, AA and BB, along with the crosspeak AB are plotted in 

Fig. 6.8 (left). We see that the diagonal peaks decay and that the amplitude of the 

crosspeak is much less compared to the diagonal peaks. 

From the simulated data, we are able to approximate the maximum amplitude 

of the exchange signal contributing to crosspeak 7 to be only 1.9% of the maximum 

amplitude of diagonal peak 5. Fig. 6.8 (right) plots the simulated data keeping all 

parameters the same, except for the equilibrium constant which was set to 1. As the 

Figure 6.8 (left) Plot of the waiting time dependent amplitude of diagonal peaks AA 
(purple), BB(mustard), and crosspeak AB (green) for Keq=0.08. (right) Plot of the 
waiting time dependent amplitude of diagonal peaks AA (purple), BB(mustard), and 
crosspeak AB (blue) for Keq=1. 
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energy of the species corresponding to B is lowered with respect to the species 

corresponding to A we see an increase in the amplitude of the exchange crosspeak. 

Comparing the two figures, we see that the relative populations of the two species 

affects the amplitude of exchange signal observed. 

It is important to note that the above model predicts the maximum possible 

exchange signal and that this model does not account for the redistribution of 

vibrational energy upon isomerization. If energy is not significantly distributed to the 

IR active gauche-NB mode, upon isomerization from the trans-NB form to the gauche-

NB, this would result in a decrease in the amplitude of the exchange crosspeak.  Since 

there are three other modes in the terminal carbonyl stretching region of the trans-NB 

form, with one of the three being IR active, we would not expect all of the vibrational 

energy to be redistributed to the specific gauche-NB mode corresponding to diagonal 

peak 3, and our estimate of exchange would be an overestimate. It is also important 

to note that the conjugate crosspeak, peak 8, would have more of an exchange 

contribution according to the simple model; the equation corresponding to the 

maximum amplitude of exchange signal from this crosspeak is given in the Eq. 6.5. 

0

max

Sum

for rev

k
k k

Sum
rev

Vib

Vib

kA k kS k

 
− +  

 
 =

 

Eq. 6.5 

Though we would see more exchange signal from crosspeak 8, we choose not to 

focus on crosspeak 8 because it is in the more congested region of the spectrum and 

is already being dominated by the wings of diagonal peak 3. 

6.5 Dynamics: Intramolecular Vibrational Energy Transfer 

We do not observe any evidence of exchange between the two non-bridging 

isomers of the ruthenium complex; however, we do observe intramolecular 

vibrational energy redistribution between the two higher frequency modes of the 

gauche-NB isomer for Cp2Ru2(CO)4  and between the modes of the cis-B isomer for 

Cp2Fe2(CO)4. We have chosen to study the gauche-NB modes for the Cp2Ru2(CO)4 



169 

 

complex because the crosspeak, peak 7, and corresponding diagonal peak, peak 5, are 

in the least congested region of the spectrum. To obtain the rate of IVR between the 

two trans-NB modes we would have to account for more than one process, because 

the crosspeak 9 has contributions from both the gauche-NB and trans-NB species and 

the corresponding diagonal peak 3 has contributions from three different isomers. 

For these reasons we focus on peaks 7 and 5 to isolate the rate of IVR for the gauche-

NB isomer. 

From Figs. 6.9a-b we see that for both metal complexes the diagonal peaks 

(blue) decay due to molecular reorientation, vibrational population relaxation and 

IVR. The crosspeaks (green) behave differently for the two metal complexes. For 

Cp2Fe2(CO)4 the crosspeak decays. When compared to the corresponding diagonal 

peak the extent of decay is less. This is attributed to the IVR process which 

contributes to the growth of the crosspeak. For Cp2Ru2(CO)4, the crosspeak first 

grows in and then decays. The decay is due to molecular reorientation and population 

relaxation. There are two possible origins for the signal growth, either there is 

exchange between the two non-bridging species or there is IVR between the two 

modes of the gauche-NB isomer. As discussed previously, the barrier for 

interconversion between these two species is consistent with an exchange process 

that occurs on the picosecond timescale, but that the contribution of exchange to the 

Figure 6.9 (a) Plot of the volumes of peaks 2 (blue) and 4 (green) for Cp2Fe2(CO)4 in 
n-hexane. (b) Plot of the volumes of peaks 5 (blue) and 7 (green) for Cp2Ru2(CO)4 in 
n-hexane.  
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total amplitude of the crosspeak is expected to be too small to observe given the 

limitations of our data. To show that the growth is due to IVR and not to exchange 

we first examine the excitation frequency of the crosspeak. The trans-NB isomer has a 

transition frequency of 1974 cm-1. For the growth of crosspeak 7 to be from 

exchange the peak should appear at ωexcite = 1974 cm-1 , ωdetect = 2021 cm-1. The 

excitation and detection frequencies for crosspeak 7 are ωexcite = 1972 cm-1, ωdetect = 

2021 cm-1 indicating that the growth of the crosspeak is due to IVR. If there were 

some contribution from exchange to crosspeak 7 we would expect to see a 

broadening of the crosspeak to include the excitation frequency at ωexcite = 1974 cm-1. 

We have also looked at the solvent dependence of crosspeak 7 and we found that the 

growth was not affected by the solvent. In chapter 5 it has been shown that in 

solution, 2DIR spectroscopy can be used to probe the influence of the solvent on 

isomerization reactions, with a slower exchange times obtained in solvents with 

higher viscosities. Fig. 6.10 plots the normalized volumes of crosspeak 7 in hexane 

(blue) and dodecane (green) as a function of t2. The viscosities of the two solvents 

differ by 1.1 cP, which led to a factor of 3.3 increase in the reaction time in the 

flexible metal carbonyl complex Co2(CO)8. From the traces it is obvious that the 

solvent does not influence the growth of the crosspeak, further indicating the growth 

is not due to exchange. 

Figure 6.10 The volumes of crosspeak 7 for Cp2Ru2(CO)4 in n-hexane (blue) and 
dodecane (green). 
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To extract the IVR rate constants we modeled IVR as an equilibrium process. 

The kinetic model we used is given in Fig. 6.11 where kV is the rate of population 

relaxation, τor is the molecular reorientation time, kIVR and k-IVR are the forward and 

reverse rate constants for IVR, and A1 indicates the lower frequency mode involved 

in the IVR process while A2 indicates the higher frequency mode.  

The general solutions to this kinetic model are given in Eq. 6.6 and a detailed 

explanation of the general solutions is given in chapter 5.4.2. 
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Eq. 6.6 

The analytical solutions to Eq. 6.6 for the peaks in Fig. 6.11 are given in Eqs. 6.7-

6.10. 
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Eq. 6.7 
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Eq. 6.8 
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Figure 6.11 Two-state kinetic model where modes A1 and A2 exchange vibrational 
energy with a forward and reverse rate constant, kIVR and k-IVR, and decay due to 
vibrational population relaxation, kVib, and molecular reorientation, τor. 



172 

 

12 21 12 21( ) ( )
0 0 0 0

12 1( ) (3 5 )( 2 1 ( 1 2 ) )
45

VD k k k t k k tDtA A t e e A h A g A A ge− + + + += + + − + +
 

Eq. 6.10 

In order to reduce the number of fitting parameters, we take the ratio of the 

crosspeak A1A2, Eq. 6.9, to the diagonal peak A2A2, Eq.6.8, this eliminates the 

vibrational population relaxation term. Taking the ratio of the crosspeak and diagonal 

peak, results in the following equation (Eq. 6.11) which we use to fit the data, where 

A is the amplitude of the inherent crosspeak, 6Dor=1/τor, kIVR=k-IVRexp(-∆cm-

1/207cm-1) where ∆cm-1 is the splitting between the two modes involved, NA is the 

effective initial population of mode A and NB is the effective initial population of 

mode B, g=kIVR/(kIVR+k-IVR), and h=k-IVR/(kIVR+k-IVR). 
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Eq. 6.11 

The IVR rate constants are obtained by fitting the data to Eq. 6.11 and allowing 

for the following 4 parameters to vary: A, k-IVR, NA, NB. The molecular reorientation 

times were determined from molecular dynamic simulations for the gauche-NB isomer 

for Cp2Ru2(CO)4 using the same process described in chapter 4. We have used this 

molecular reorientation time for both the Cp2Ru2(CO)4 and Cp2Fe2(CO)4 complex 

since we do not expect the molecular reorientation time to change significantly 

between the two species. Also we found that varying the molecular reorientation time 

by ± 10 ps results in the variation of the rate constants by 2% at the most.  

The ratio of the volumes of crosspeak 4 to diagonal peak 2 for the iron 

complex (a) and the ratio of crosspeak 7 to diagonal peak 5 for the ruthenium 

complex (b) along with the fits obtained from fitting to the Eq. 6.11 are shown in 

Figs. 6.12. For Cp2Fe2(CO)4, the IVR rate constants for energy exchange between the 

two modes of the cis-B isomer were determined to be k-IVR= 0.072±0.012 ps-1 (14±3 

ps) and kIVR= 0.059±0.013 ps-1 (17±5 ps). The two modes involved are shown in Fig 
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6.13. The higher frequency mode is the symmetric stretch of the terminal carbonyls 

and the lower frequency mode is the antisymmetric stretch of the terminal carbonyls. 

For Cp2Ru2(CO)4, the IVR rates between the two modes of the gauche-NB were 

determined to be k-IVR= 0.057±0.007 ps-1 (17±2 ps) and kIVR= 0.045±0.007 ps-1 

(22±4 ps). The two modes involved are shown in Fig. 6.13. The higher frequency 

mode is the symmetric stretch and the lower frequency mode is the antisymmetric 

stretch.  

For both metal complexes, we find that the IVR rate constant is slower for the 

uphill transfer compared to the downhill transfer, which is due to the weighting by 

the Boltzmann factor. We also find that for the ruthenium complex the rate of IVR is 

slightly slower compared to the iron complex. One of the main differences between 

the two metal complexes is the difference in frequency between the two modes 

involved. For Cp2Fe2(CO)4 the difference in frequency is 41 cm-1 and for 

Cp2Ru2(CO)4 it is 49 cm-1. Assuming that the rate of IVR is directly proportional to 

the population of liquid photons at an energy corresponding to the difference in 

energy between the two modes involved in IVR25, 26, we find that the rate of IVR for 

a splitting of 41 cm-1 should decrease by 18% as the splitting is increased to 49 cm-1. 

Figure 6.12 (a) Plot of the ratio of crosspeak 4 to diagonal peak 2 for Cp2Fe2(CO)4 
(green) along with the resulting fit to Eq. 6.11 (black). (b) Plot of the ratio of crosspeak 
7 to diagonal peak 5 for Cp2Ru2(CO)4 (green) along with the resulting fit to Eq. 6.11 
(black). 
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The measured IVR rate constant for Cp2Ru2(CO)4 is 21±10% slower than that of 

Cp2Fe2(CO)4. The agreement with the simple description of IVR as a barrierless 

process free of solvent-solute interactions, indicates that the linear alkane solvents do 

not modify the solvation shell environment or the associated energetics. This lack of 

solvent specificity is in stark contrast to our recent observation of solvent-hindered 

vibrational energy redistribution in metal carbonyl complexes in hydrogen bonding 

alcohols.27 The present work lays the foundation for future studies in more strongly 

interacting solvents capable of forming hydrogen bonds with the complex. 

6.6 Conclusion 

Congested linear IR spectra obscure the assignment of peaks requiring several 

solvent and temperature dependent spectra to determine the contributions from 

different species to individual spectral features. Even with such data, the exact 

transition frequencies of the contributing species may be difficult to extract 

unambiguously. In this chapter we have utilized 2DIR spectroscopy to aid in the 

interpretation of the linear FT-IR spectrum for Cp2Fe2(CO)4 and Cp2Ru2(CO)4, two 

structurally related complexes whose energetics and IR spectra differ due primarily to 

the metal-metal bond distance From the 2DIR spectrum we are able to obtain the 

transition frequencies for the individual isomers from inherent crosspeaks in the 

spectra. Combining our experimental and DFT results leads to a detailed 

Figure 6.13 The vibrational modes involved in the IVR process are shown for 
Cp2Fe2(CO)4 and Cp2Ru2(CO)4. Arrows indicate displacements of the carbonyl 
units. 
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understanding of the spectroscopic and energetic differences between these two 

metal complexes. 

Not only do the crosspeaks aid in assignment, but by monitoring the 

picosecond change in the volume of the crosspeaks as a function or waiting time we 

are able to obtain the rate of vibrational energy transfer (IVR) for both the uphill and 

downhill transfer of energy. We find the rate of IVR for the iron complex is faster 

compared to the ruthenium complex, and is consistent with an explanation based 

solely on the energy gap between the two modes, which is smaller for the iron case.  

 Though we did see energy transfer in both complexes, we did not see any 

population transfer between two distinct chemical species due to chemical exchange. 

However, the DFT calculations and previous NMR experiments suggest that it 

should be possible to observe chemical exchange between the gauche-NB and trans-

NB forms of Cp2Ru2(CO)4 on the timescale probed by 2DIR spectroscopy. We 

propose that our inability to observe exchange is due to the very small population of 

the gauche-NB form. One way to address this issue in future work would be to 

perform the experiment in solvents that stabilize the polar isomers, namely the gauche-

NB and cis-B isomers, increasing the population of the gauche-NB isomer relative to 

the trans-NB. If the relative free energies of the two isomers were equal, we predict 

that the amplitude of the exchange signal would increase by an order of magnitude 

(i.e. 10% of the maximum of diagonal peak 5 (Fig. 6.8)). Performing the experiments 

using different solvents may facilitate the observation of chemical exchange, while 

perhaps introducing a structured solvation shell environments to spatially modulate 

the reaction barrier and vibrational energy transfer. This work emphasizes the power 

that 2DIR spectroscopy has to resolve structure and dynamics in condensed phase 

systems, which is crucial information needed to understand current inorganic-based 

catalysis as well as to design future catalysts.  
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Chapter 7  

Conclusion 

7.1 General Conclusions 

Linear spectra can be congested – obscuring the assignment of spectral features. 

Because spectral features arising from different chemical species could have different 

dependencies on temperature and solvent, several solvent and temperature dependent 

studies may be performed, in order to gain insight on the assignment of linear 

spectrum. However, assignments based solely on these perturbations are not always 

accurate. For example, if two species were to have the same dipole moment, changing 

the solvent may not have a large effect on the linear spectrum, leading to the 

conclusion that only one species was present. If two species had an equilibrium 

constant of ~1, then changing the temperature would not have a large effect on the 

linear spectrum, which could also lead to incorrect interpretations. Even if one were 

to assign a congested linear spectrum using these techniques, the exact transition 

frequencies of the contributing species may be difficult to extract unambiguously. 

 Spreading the congested information contained in a linear spectrum over two 

frequency axes aids in the assignment of the peaks in the spectrum. For the metal 

carbonyl complexes Co2(CO)8, Fe2Cp2(CO)4, and Ru2Cp2(CO)4, it was demonstrated 

that 2DIR spectroscopy can be used to assign the linear spectrum. From inherent 

crosspeaks in a 2DIR spectrum, the transition frequency of a given mode can also be 

determined unambiguously as opposed to the case in linear spectrum. This 
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aspect of 2DIR spectroscopy makes it a competitive alternative for the assignment 

and characterization of chemical species. 

Along with assignment and determination of transition frequencies, 2DIR 

spectroscopy has been shown to be an effective tool in the study of equilibrium 

dynamics. Though dynamic information is contained in the lineshapes of the peaks in 

linear spectra, the abstraction of this dynamic information is not trivial.1-3 2DIR 

spectroscopy, where the signal results from the third-order nonlinear polarization, 

separates homogeneous and inhomogeneous broadening, aiding in the extraction of 

dynamic information specific to solvent-solute interactions.4, 5 

We obtain our 2DIR spectra via the chirped pulse upconversion method of 

2DIR spectroscopy, where the mid-IR signal is transferred to the visible region 

allowing for detection via a CCD camera.6 Conventionally, HgCdTe detectors are 

used for direct detection of mid-IR signals; however, these detectors can be costly; 

only detect in the mid-IR; and have a low intrinsic sensitivity compared to CCD 

cameras. Also, a 100x1340 CCD camera has an order of magnitude multiplex 

advantage over a state of the art 128 pixel HgCdTe detector, which also contributes 

to the benefits of using a CCD camera for detection. One of the disadvantages 

associated with CPU 2DIR spectroscopy arises from the inherent cross-phase 

modulation resulting from the upconversion process. However, as was demonstrated 

in chapter 3, the phase distortions resulting from the upconverion process are easily 

removed. In chapter 3 we have given a detailed procedure for the removal of these 

distortions along with a detailed description for obtaining absorptive spectra. The 

removal of these distortions is not necessary for broad transitions, but is necessary 

when the lineshapes of spectra are desired or when phase sensitive measurements are 

required. 

We have also utilized 2DIR spectroscopy to study the equilibrium dynamics of 

the three metal carbonyl complexes, Co2(CO)8, Fe2Cp2(CO)4, and Ru2Cp2(CO)4. We 

probed the dynamic equilibrium between the different isomers of Co2(CO)8. For 
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Fe2Cp2(CO)4, and its ruthenium analog, Ru2Cp2(CO)4, we observed intramolecular 

energy transfer between different vibrational modes for a given metal complex.  

Previous studies have observed chemical exchange using 2DIR spectroscopy, 

where the exchange occurred between two different species for which the peaks were 

well resolved.7-11 Studying Co2(CO)8, we furthered these studies by applying 2DIR 

chemical exchange spectroscopy to a system existing as three isomers in dynamic 

equilibrium which have overlapping spectral features. We observed evidence of 

chemical exchange between all three isomers, indicating previous suggestions of a 

linear pathway of interconversion are not strictly true. Focusing on exchange between 

two of the isomers, we characterized the picosecond isomerization. Temperature 

dependent forward and reverse rate constants were obtained from the congested 

spectra by locking onto the well characterized quantum oscillations of the inherent 

crosspeak enabling the separation of exchange and inherent crosspeak contributions 

to the signal. By modeling the waiting time dependent dynamics of overlapping 

spectral features, we demonstrated how to characterize a barrier crossing process 

from congested 2DIR spectra. From the temperature dependent rate constants, we 

extracted the height of the barrier for isomerization and found a significant entropic 

contribution to the barrier. We also highlighted the importance of the solvent in 

condensed phase measurements. Changing the temperature in order to extract the 

barrier heights, leads to changes in the viscosity of the solvent. We stressed the 

importance of including this aspect in the measurements of the barrier height, giving 

a lower and upper bound to the activation energy. 

Understanding the role solvent plays in barrier crossing processes leads to being 

able to influence the outcome of chemical reactions, whether biasing the formation 

of a specific product or altering the rate of a reaction. Using the well-characterized 

isomerization reaction between the two isomers of dicobalt octacarbonyl we probed 

how the solvent influences a barrier crossing process. We performed the first direct 

test of Kramers theory in the time-domain for an isomerization reaction occurring on 

the ground electronic state. Through a combination of quantum and classical 
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computations along with FTIR measurements, we found for a series of linear alkanes 

that the potential energy surface is not modulated, and the change in isomerization 

time is solely a dynamic solvent effect that could be modeled using Markovian 

Kramers theory. Kramers theory has been used to describe many reactions in the 

condensed phase12-26, yet it has not been systematically investigated for reactions 

occurring on the ground electronic state. We provide this systematic test, finding that 

Kramers theory is capable of predicting chemical reaction dynamics in the condensed 

phase. 

This thesis also presents the study of equilibrium dynamics of iron 

cyclopentadienyl dicarbonyl dimer (Fe2(Cp)2(CO)4) and its ruthenium analog 

(Ru2(Cp)2(CO)4). Previous NMR studies have suggested that the isomerization 

between the trans-NB and gauche-NB forms of Ru2(Cp)2(CO)4 occurs on the 

picosecond timescale.27, 28 This is also consistent with our DFT calculated barrier 

heights. However, we did not observe chemical exchange between these two species. 

We attribute the lack of chemical exchange to the relatively small population of the 

gauche-NB species at room temperature. The equilibrium constant for trans-NB to 

gauche-NB isomerization is much less than one. The trans-NB species is much more 

populated: there are ~13 trans-NB molecules for every gauche-NB molecule. From the 

kinetic model, we have shown that as the equilibrium constant approaches one, the 

exchange signal will increase. The static solvent effect could lead to alterations in the 

potential energy surface resulting in the stabilization of the gauche-NB species with 

respect to the trans-NB species. Current work is underway, in which the static solvent 

effect is being used to shift the equilibrium constant in hopes of facilitating the 

observation of chemical exchange between these two species. 

Although we do not observe chemical exchange in the ruthenium complex, we 

did observe intramolecular vibrational energy transfer. How vibrational energy is 

transferred between different modes is also important in understanding chemical 

dynamics in solution. The flow of vibrational energy can influence outcomes of 

chemical reactions29, 30, and in the condensed phase the solvent can manipulate the 
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flow of vibrational energy transfer.31, 32 We observed intramolecular vibrational 

energy transfer between two modes of the cis-B Fe2(Cp)2(CO)4 and the gauche-NB 

Ru2(Cp)2(CO)4 isomers. Treating IVR as an equilibrium process we extracted the 

timescales of IVR for both the uphill and downhill transfer of energy finding that the 

rate of energy transfer maps directly to the splitting in energy between the two modes 

involved in the IVR process.  

7.2 Future Outlooks 

This thesis demonstrated that 2DIR spectroscopy is a powerful tool for 

studying condensed phase dynamics and assigning spectra. It explored both dynamic 

equilibrium isomerization between two different isomers and intramolecular 

vibrational energy transfer.  

As was demonstrated, the presence of inherent crosspeaks makes 2DIR 

spectroscopy a powerful tool for assigning species, especially in the case where 

different species cannot be isolated, such as different isomeric forms of a given 

chemical species. Though the 2DIR experimental setup can be complicated, certain 

aspects of the apparatus are commercially available, making 2DIR spectroscopy a 

competitive tool for assigning and characterizing chemical species. 

Along with being able to characterize chemical species, 2DIR spectroscopy is 

also a powerful tool for studying condensed phase dynamics. In solution and other 

dense media, transition state theory is not valid since it cannot account for the 

important solvent dynamics that induce recrossing of the barrier separating reactants 

and products. Through our studies we have shown that Kramers theory is capable of 

making quantitative predictions of chemical kinetics in solution. Further studies of 

condensed phase reactions and solvent dynamics will lead to more accurate 

predictions of condensed phase processes. 
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