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ABSTRACT 

 

ENVIRONMENTALLY MEDIATED TRANSMISSION MODELS FOR INFLUENZA 
AND THE RELATIONSHIPS WITH METEOROLOGICAL INDICES  

 

By  

Sheng Li 

 

 
Co-Chairs: Joseph N.S. Eisenberg and James S. Koopman  
 

 High public health concerns for future influenza pandemics and ongoing avian 

influenza emerging outbreaks need extended studies on influenza.  In this dissertation, the 

impact of environmental factors on human influenza transmission was explored by using 

multiple modeling approaches.   

An environmental infection transmission system (EITS) compartmental model 

that describes the dynamics of human interaction with pathogens in the environment was 

developed.  Its environmental parameters include:  the pathogen elimination rate, µ; and 

the rate humans pick up pathogens, ρ, and deposit them, α.  The ratio, ρΝ / µ, (N equals 

population size) indicates whether transmission is density dependent (low ratio) or 

frequency dependent (high ratio), or in between.  The environmental contamination ratio, 

α / γ, where γ is the recovery rate, reflects total agent deposition per infection and 

outbreak probability.   

 The temporal dynamics of the relative importance of different influenza 

transmission modes over the course of epidemics were further studied in an EITS agent-
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based model.  The temporal variation of the relative importance of different influenza 

transmission modes is primarily attributable to the environmental dissemination and 

persistence effects of influenza virus particles in air and on surfaces.  Some model 

parameters, including movement rate, virus die off rate and surface touching rate, 

significantly alter the temporal dynamics of the relative importance of different influenza 

transmission modes.     

 A second smaller or equal-sized summer epidemic was identified in 9 of 11 years 

of study period in Hong Kong, China.  We found that a new dominant subtype strain is 

commonly associated with this second peak.  Multiple local weather variables and global 

climatic indices are statistically significantly associated with the influenza virus positive 

proportion of virus isolates, and the proportion of Influenza-like illness (ILI) case among 

all patients who visit influenza surveillance network clinics.  We found that the 

correlations between influenza morbidity and absolute humidity are the strongest among 

all weather variables.  The significant negative absolute humidity anomaly two weeks 

prior to the onset of influenza epidemics was identified.   

 These findings will provide theoretical contexts to examine the role of the 

environment in influenza transmission and scientific suggestions for improving public 

health surveillance.   
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C H APT E R  1 

I NT R ODUC T I ON T O I NF L UE NZA, I NF L UE NZA T R ANSM I SSI ON 
M ODE L S, AND T H E  R E L AT I ONSH I PS B E T W E E N C L I M AT E  AND 

I NF L UE NZA  
 
 

Influenza is a major cause of acute respiratory disease among humans and is 

associated with global pandemics and annual epidemics.  Influenza poses a serious public 

health threat and causes significant morbidity, mortality, and economic burden globally.  

In the United States, influenza is estimated to cause more than 200,000 hospitalizations 

and 36,000 deaths annually (1).  In European countries, influenza can cause similar heath 

impacts (2, 3).  In Asian regions, influenza is significantly related to respiratory and 

cardiovascular disease hospitalization (4).   

The global spread of a new swine influenza H1N1 strain in 2009 and ongoing 

spread of H5N1 avian influenza strains reveal the necessity of extended studies on 

influenza.  The influenza virus is transmitted among humans through air and fomite 

mediated contact.  In this work, the impact of environment factors was explored by using 

multiple modeling approaches.  Deterministic compartmental and agent-based modeling 

approaches were applied to develop environmental mediated influenza transmission 

models in chapter 2 and chapter 3.  Lagged correlation test and time series analysis were 

used to examine the relationship between meteorological factors and influenza in chapter 

4.  New findings about temporal dynamics of influenza dominant transmission mode and 

absolute humidity were achieved.  These findings capture previously under-recognized or 
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under-estimated perspectives which are important for population influenza transmission.  

We expect the results from this research will contribute to building a better theoretical 

basis for influenza research and intervention. 

 

INFLUENZA VIROLOGY AND EPIDEMIOLOGY  

V ir ology of I nfluenza V ir us 

Influenza is caused by RNA viruses of the family orthomyxoviridae (5).  There 

are three main types, influenza A, B, and C.   Type A influenza virus is subdivided into 

sub-serotypes based on two surface antigens: hemagglutinin (H) and neuraminidase (N).  

There are total of sixteen hemagglutinin (H) and nine neuraminidase (N) surface antigens 

(1, 6).  Some confirmed subtypes in humans include H1N1, H2N2, H3N2, H5N1 and 

H9N2.  Type A influenza virus can infect birds and mammals, and is the most virulent in 

humans, causing moderate to severe illness in all age groups.  Subtype H3N2 is 

commonly associated with greater and quicker clinical incidence peaks (3).  Type B virus 

almost exclusively infects humans and can cause milder epidemics (7).  Type C virus can 

infection humans, dogs, and pigs, but is less common than other types in humans (8, 9). 

 Influenza virus constantly evolves by mutation or reassortment (10).  Mutations 

can result in minor changes in H and N and in similar antigens.  This is called antigenic 

drift.  In contrast, reassortment causes major changes in H and N resulting in completely 

new antigens, which is called antigenic shift.  Antigenic drift might cause epidemics but 

people who were previously infected by the parent strain might still be immune to the 

novel strain (11).  Antigenic shift might cause pandemics because all people are 

susceptible to the novel strain (12). 
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Influenza virus strains can be very contagious, and some studies have shown that 

as few as 0.67 TCID50 (50% Tissue Culture Infective Dose) unit of influenza virus may 

cause infection in healthy adults (13).  Influenza viruses cannot multiply outside of live 

cells but can survive in the air and on environmental surfaces.  Both temperature and 

humidity influence its survivability (14).   

 

I nfluenza I nfection C linical C har acter istics  

Clinical manifestations of influenza infection include fever, chills, sore throat, 

coughing, muscle pains, headache, and fatigue.  Coughs, sore throat, and fever are the 

most frequent symptoms.  Influenza is almost clinically undistinguishable from many 

other acute respiratory infections.  Influenza infection has an average 1 to 2 day 

incubation period, followed by clinical symptoms usually lasting 3-7 days (1).  Infectious 

people shed virus from the second to the eighth day, and the virus peaks at the third day 

after infection (15).  The majority of infected people develops one or more symptoms and 

completely recovers without serious complication or long-term health effects (16).  The 

very young, the elderly, and immune-compromised persons may have complications (1), 

and therefore are the target population of annual influenza vaccination.   

In clinical settings, diagnosis commonly is based on clinical symptoms and not on 

laboratory tests.  All age groups are susceptible to novel strains, though adults might be 

immune to previously circulated virus strains.  Influenza infection can recur throughout 

the whole lifetime of a person due to consistent novel strains from viral mutation and 

reassortment.  
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I nfluenza T r ansmission M ode among H umans    

Previous studies have suggested evidence of multiple transmission modes for 

influenza transmission.  Some research suggests the possibility of respirable air 

transmission dominance (17, 18). Other research finds that large droplet transmission 

could be the primary influenza transmission mode (19, 20).  Contact mediated 

transmission might be also dominant in some contexts (21).  Understanding the mode 

dominance and potential temporal dynamics of mode dominance is of great public health 

significance.  The most effective intervention strategies could be determined only based 

on this knowledge. 

 

I nfluenza I nfection B ur den M easur ements    
 
 In ongoing influenza surveillance system, because of the high prevalence among 

all human age groups and the economic and technologic impracticality of etiologic 

diagnosis in reality, Influenza morbidity and mortality are commonly only examined 

among a fraction of patients who visit surveillance sentinel clinics/hospitals.  Influenza 

morbidity and mortality measurements are based on Influenza-like illness (ILI) cases and 

pneumonia and influenza (P&I) deaths respectively from influenza surveillance system.  

ILI is defined as high fever ≥38 0C plus cough or sore throat.  The proportion of 

outpatients who are diagnosed as ILI from influenza surveillance sentinel clinics and 

hospitals is common influenza morbidity indicator.  The P&I death rate or the proportion 

of deaths attributed to P&I are common influenza mortality indictor.    

Typical ILI is defined as a clinical presentation consisting of the sudden onset of 

fever >37.8 0C, plus cough or sore throat (22).  Other common symptoms include 
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headache, nasal congestion, watering eyes, body aches, muscle pain, and fatigue.  

Various etiological agents can cause ILI, including influenza virus, respiratory syncytial 

virus (RSV), streptococcus pneumoniae, haemophilus influenzae, and others (23).  ILI 

symptoms, except fever, could not reliably distinguish influenza infections from those 

caused by other etiologies (24).  P&I deaths could be also attributed to other etiologies 

besides influenza viruses.  Therefore, the major complication of influenza ILI and P&I 

indicators are sensitivity and specificity issues.  This problem can only be resolved by 

extensive viral detection from patients.  However, combinations of the ILI symptoms 

could present influenza with relative good sensitivity.  For example, more than 79% of 

influenza can be predicted by combination of fever and cough (25).  Commonly, 

influenza mortality and morbidity burden temporal patterns were estimated based on 

statistical models (26).   

 

I nfluenza Sur veillance System and Seasonality 
 
 The WHO global influenza surveillance network was established in 1952. As of 

2010, there are 135 national surveillance centers (NICs) from 105 countries and six WHO 

collaborating centers (WHO CCs) from Australia, China, Japan, United Kingdom, and 

United States.  NICs sample ILI patients and submit representative isolates to WHO CCs 

for antigenic and genetic analyses.  On average, 175,000 ILI patients and 2,000 viral 

isolates are submitted annually from this surveillance network (27).  In temperate regions 

of developed countries, such as North America, Europe and Australia, influenza sentinel 

surveillance systems have been implemented for decades (28).  In most tropical and sub-
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tropical countries, however, influenza surveillance systems have only recently been 

developed or remain non-existent.  

In the United States, the Center for Disease Control and Prevention (CDC) 

influenza surveillance system components include outpatient ILI surveillance, viral 

surveillance, mortality surveillance, and hospitalization surveillance.  The ILI 

surveillance network consists of more than 3,000 healthcare providers from 1,800 

outpatient care sites across the United States reporting more than 25 million patient visits 

each year.  Viral surveillance network includes 80 U.S. WHO collaborating laboratories 

and 60 National Respiratory and Enteric Virus Surveillance System (NREVSS) 

laboratories.  Vital statistics offices from 122 U.S. cities are on the mortality surveillance 

network.  U.S. influenza surveillance system reports weekly ILI, virus isolation, 

influenza-associated hospitalization and death (29).  

China, particularly southern China, has long been referred to as one of the 

possible global influenza epidemic centers based on influenza virus transmission among 

birds, pigs and humans (30).  Two of the three recorded influenza pandemics in human 

history, the “Asian Flu” caused by H2N2 in 1957-58 and the “Hong Kong Flu” caused by 

H3N2 strain in 1968-69, first emerged or were detected in Hong Kong and adjacent 

regions in China (31).  Hong Kong is an important component in the WHO global 

influenza surveillance network.  Hong Kong enhanced and extended its pre-existing 

influenza sentinel surveillance system after the first human H5N1 outbreak in 1997 (32).  

The Hong Kong influenza surveillance system consists of 50 private practitioners and 42 

sentinel clinics covering a population of 6.8 million.  The surveillance system reports 

weekly ILI and virus isolation year around.   
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 Influenza seasonality in temporal regions is relatively well-identified, where 

annual influenza epidemics occur in winter months for both north and south hemispheres 

(33-36).  In the U.S., the flu season usually starts in October or November and peaks 

some time from December to March (34).  Influenza seasonality in tropic/sub-tropic 

regions is still poor defined.  Annual and biannual influenza epidemics were identified in 

some years in Hong Kong (37, 38).  Although many efforts have been made the 

mechanisms underlying seasonality is not clear.  However, the obvious correlation 

between influenza seasonality and environmental effects and population behaviors were 

observed. These factors include weather, pollution, and seasonal human activities (28).  

Accurate prediction of the shape of future influenza seasons based on previous data and 

current knowledge is unavailable.  

 

I nfluenza and C limate  

Awareness of relationships between influenza and weather reaches back to early 

twentieth century in the United States (28).  In a medical book published before 200 AD 

in China, Zhang Zhongjing, one of the most famous traditional Chinese Medicine healers 

argued that what we now consider influenza-like illness is caused by cold environmental 

conditions, one of six major disease causalities (wind, coldness, hotness, humidity, 

dryness, fire) (39).   

The associations between climate and human influenza transmission are highly 

complex.  Some evidence suggests that upper respiratory tract epidemics, including 

influenza, might be associated with rapid change in temperature and sudden cold weather 

(40).  Rainfall has been associated with subtype B influenza in Singapore and a German 
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study demonstrated that air pressure is also an importance factor (41).  A recent 

laboratory study on animals showed that both temperature and relative humidity (RH) are 

associated with influenza virus survivability and transmissibility, however, absolute 

humidity (AH) might be more important than RH (42, 43).  The association between AH 

and influenza related mortality has been demonstrated in regions of the Americas (44).  

But the relationship between AH and influenza morbidity in tropic/subtropic regions has 

not been examined.  

In addition to local weather or climatic indices, several recent studies have linked 

large-scale global climate indices to influenza seasonal variability.  Viboud et al. 

examined the influence of global climate on influenza activities from 1979-2000 in 

France.  Associations between a global climatic index, the Multivariable ENSO Index 

(MEI), influenza-related mortality and ILI were found (2).  Greene et al. examined both 

local and global climatic indices in relation to P&I mortality in different climate regions 

in the United States, and found that temperature and West Pacific index were weakly 

associated with P&I in some climate regions (45).   

The underlying mechanisms by which climate variability affects influenza 

seasonal variation still remain poorly understood, especially in the tropical and sub-

tropical regions.  The potential confounders such as environmental factors, human social 

behavior, and influenza clinical classification contribute to this problem (28).  We 

explored associations between AH, global climate indices and ILI rate and virus positive 

proportion in subtropic metropolitan region, the city of Hong Kong in Chapter 4.  The 

work in chapter 4 is not intended to explore the underlying mechanisms, but rather to 
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describe the observed relationships between weather and influenza morbidity in 

tropic/subtropic regions. 

 

TRANSMISSION MODELS FOR INFLUENZA 

M athematical M odels for  I nfluenza I nfection 

Bio-mathematicians and infectious diseases epidemiologists commonly use 

deterministic compartmental models that assume instantaneous contacts with 

instantaneously thorough mixing to explore infection transmission dynamics and to 

develop public health policy (46-48).  Compartmental models can provide insight into 

transmission dynamics and policy making, and is computationally efficient.  For 

example, Chowell et al. developed a compartment model to assess the hypothetical 

intervention efficacy in the influenza pandemic of 1918 in Switzerland (49).  The 

popularity of using these models is primarily due to the availability of simple and 

powerful analytical tools.  However, compartmental models use major model 

assumptions to reduce systematic complexity.  These assumptions commonly include 

homogeneity of individual contagiousness and susceptibility, homogeneous instantaneous 

contact process for individuals, instantaneous mixing, unlimited dividable population, 

and constant contagiousness and recovery.  These model assumptions rarely hold for 

infectious diseases including influenza.  The physical environment is often not explicitly 

explored in non-vector born infections such as influenza.  Population infection 

transmission is normally a complex system, where population demography, individual 

immunity, individual social status and social connections, microbial contagiousness, 

survivability, dispersion, dose-response relationship, environmental contamination, and 
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temperature all are important (50).  Previous influenza transmission modeling studies 

normally formulated infection transmission processes as a simple probability while 

ignoring the detailed physical environmental contact processes (49).  Recent studies 

showed the environment mediates influenza transmission process from one person to 

another, and provides points for infection control (51-56).  The rational of inclusion of 

environmental mediating process in infectious disease models is to simulate more 

realistic infection transmission and to pursue intervention strategies that require activity 

via environment.   

Environmental mediation plays a very important role in human infection 

transmission.  The authors of one of the major text on infection transmission risks has 

argued that majority of human infections were acquired through the environment (e.g. 

food, water, air, fomites) and only small part of infection were acquired by direct contact, 

such as kissing, skin to skin transfer, and sexual activity (57).  Traditionally, 

environmental microbiologists have detected microbes from environmental samples and 

environmental health and environmental engineering scientists have simulated infectious 

pathogens spreading in environments by using various equation-based methods.  For 

example, computational fluid dynamics (CFD) based on different equations has been 

widely used to simulate how pathogens spread in hospital settings.  Monte Carlo 

simulation methods have been applied to simulate air fluidity with pathogens in enclosed 

health care settings (58).  

 These methods commonly only explain the instantaneous “direct risk” of 

environmental microbes at the individual level.  Population system dynamics and 

secondary transmissions caused by other infectious individuals are often not considered 
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in these models.  Influenza pathogens transmitted through the environment cause risks 

both at the individual level and at the population level.  Environmental microbial 

contaminations have direct effects on exposed individuals, but transmissible pathogens 

may also have indirect effects on population infection levels due to secondary 

transmission.  Various factors like environmental contamination level, person-

environment contact patterns can modify the real risk effect [52].  The generalizability of 

these purely direct effect models to realistic epidemic scenarios is limited because 

subsequent circulation of infection may be more important than those initially 

contaminated for most transmissible pathogens. 

Traditionally population transmission modeling and environmental modeling have 

their own refined systematic theories, and have not been integrated into a systems science 

capable of dealing with environmental factors associated with population infection 

transmission.  In Chapter 2, we integrate the compartmental deterministic transmission 

model with an environmental model to explicitly explore environment effects in the 

influenza transmission process.  The compartment models can specify media 

contamination, agent survival and media uptake. The data of environmental microbes 

provides more accurate scientific information for epidemiological modeling.  This 

population infection transmission system modeling using approaches that integrate 

diverse model forms might strengthen infection disease epidemiological theory.   

 

A gent B ased M odeling for  I nfluenza I nfection  

Agent-based models (ABM) have been widely used in ecology, social science, 

politics, economics and molecular biology (59, 60).  The rational behind ABM is that 
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individual entities interact with one another or with the external environment.  The local, 

possibly stochastic individual interactions influence global system-wide dynamics and 

patterns.  This rationale makes it suitable to study population infection transmission 

where individual heterogeneity and spatial interactions are critical. ABM is a bottom-up 

approach to mimic greater details that normally cannot be captured by compartmental 

modes.  The ABM approach allows each individual and each interaction between 

individuals to be unique and can specify contact duration and connection patterns 

between individuals, which are not possible using compartmental models.  Practically, an 

ABM approach builds a computational model of individual agents and simulates the 

system dynamics according to certain rules.  A complete ABM model includes data 

collection, model building, exploration of the model behavior, the collection of statistics, 

and validation of the model.   

ABM is a complementary to equation-based modeling (EBM) for exploring the 

complexity of a system and is more intuitive to non-mathematicians.  Especially in 

infectious disease epidemiology, we view population infection transmission as a complex 

process involving spatial and temporal organization and interactions of numerous 

elements.  ABM has been introduced to epidemiology in the 1960’s, however, it became 

more popular and was used more frequently after the 2001 anthrax bioterrorism event.  

For example, Stephen Eubank et al. developed a highly resolved agent-based simulation 

model (EpiSims) with realistic population mobility to gain insights of infectious diseases 

outbreaks (61).  Joshua M. Epstein et al. applied an ABM to simulate smallpox epidemic 

in county level and test the potential for different control strategies (62).  Longini et al. 
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constructed an AMB to test influenza control strategies (63).  All these models do not 

include detailed human and physical environment interactions.   

There is clear a shortage of knowledge regarding environmentally mediated 

influenza transmission due to individual heterogeneity.  A system of models that can 

explore more realistic human environment contact in a population is urgently needed 

when preparing for future influenza pandemics.  To effectively control influenza 

epidemics, it is critical that we consider it as a dynamic, heterogeneous, and 

environmentally-mediated process.  Heterogeneity during population transmission 

process comes from multiple sources, for example, difference in pathogens’ intrinsic 

infectivity and virulence; variability in individual exposure, individual disease pattern in 

incubation, severity and duration, differences in population level movement patterns, 

herd immunity level, population environmental exposures; and difference in venue 

characteristics.  These heterogeneities affect influenza infection risk from an 

environmental microbial exposure.   

There is a trade-off between the model complexity and the parameter 

identifiability based on available real world measurements. An overly complex model is 

difficult to analyze, and some variables may not be measured and some parameters may 

not be identifiable. On the other hand, an overly simple model may miss some important 

biological mechanisms and make incorrect inferences that are not robust to realistic 

relaxation of simplifying assumptions.  An ideal model should be simple enough to 

incorporate available data and complex enough to capture important mechanisms and not 

lead to numerous inferences that would be changed in important ways if the model had 

more realistic details. 
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In the chapter 3, we developed an agent-based transmission model which 

integrates environmental factors.  Population characteristics, social connections, pathogen 

features, and environmental factors were explicitly studied.  Temporal variation of the 

relative importance of different transmission modes were explored, which could not have 

been effectively pursued using a deterministic compartmental model.  Compartmental 

models are easier to analyze, but ABMs are a natural extension of compartmental models 

and can deal with population heterogeneity and environmental interaction better in 

influenza transmission.  This model will help test effectiveness of alternative control 

strategies in more realistic settings.  

 

OB J E C T I V E S AND H Y POT H E SE S 

Our overall objective is to explore the importance of environmental mediation 

process and environmental relevant factors in influenza population transmission.  In the 

second chapter, we evaluate the hypothesis that environmental effects can significantly 

alter population transmission processes and intervention efficacies using a deterministic 

compartmental model.  The third chapter’s hypothesis is that the dominant transmission 

mode of influenza is inconsistent during epidemics, and that an environmental dispersion 

effect and a persistence effect contribute to the temporal dynamics.  Reaching that 

inference required the use of an agent based model.  It is hypothesized in the fourth 

chapter that influenza morbidity is associated with local weather variables and global 

climate indices.  The fifth chapter summarizes the major outcomes in chapter two to four, 

and outlines potential limitations and future research directions.  
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Softwar e T ools 

In this work, Berkeley-Madonna was used to build compartmental deterministic 

models.  This software is designed to numerically solve differential equations and has 

many useful functions for drawing parameter figures and processing sensitivity analysis.  

JAVA was the primary programming language for agent based model and stochastic 

compartmental model development.  R package was used in all statistical analysis and is 

free open source statistical software.   
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C H APT E R  2 

DY NAM I C S AND C ONT R OL  OF  I NF E C T I ONS T R ANSM I T T E D 
F R OM  PE R SON T O PE R SON T H R OUG H  T H E  E NV I R ONM E NT  

 
 

INTRODUCTION 

Human infections that pass from one person to another commonly do so through 

environmental media such as air, fomites, food, hands, and water.  Infection transmission 

models for non-vector borne infections, however, rarely specify the mode of transmission 

or the vehicle that carries infection from one person to another.  Instead, most models 

assume that the dynamic details of environmental transmission can be approximated by a 

point contact process (1-5).  With the exception of sexually transmitted diseases, 

however, the environment often plays a major role in transmission, espaecially for enteric 

and respiratory diseases.  Moreover these environmental processes provide important 

points of intervention.  To promote a transmission system framework that explicitly 

accounts for environmental process dynamics, we present a transmission model with 

environmental components that mediate transmission.  We call this an environmental 

infection transmission system (EITS) model.   

A number of approaches have been presented for incorporating environmental 

processes of non-vectorborne infections in transmission models.  One approach is to 

collapse across environmental dynamics resulting in a static description of the 
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environment (6).  Another approach is to explicitly formulate environmental pathogen 

dynamics.  This has been done for water mediated transmission in deterministic (7-11) 

and stochastic (12) formulations, as well as for air and fomite mediated transmission of 

influenza (13).  We both generalize and abstract these approaches in our EITS 

framework.  

Much of the previous work on defining transmission rates in this area has focused 

on the household to define contact and to estimate transmission probabilities (14-17).  

Other attempts to define contact have relied on conversational encounters (3, 18, 19), 

direct touching (3), or simultaneous presence in a room (4, 5).  Conversational contact is 

likely relevant to airborne transmission.  Direct touching could transmit environmentally 

acquired pathogens.  Simultaneous presence of both transmission modes could generate 

vastly different transmission probabilities in different venues depending upon 

environmental conditions, human behaviors in those venues, the survival characteristics 

of the agent as it transits in air or on fomites, and the dose required to initiate infection.   

By explicitly modeling environmental processes that mediate transmission, our EITS 

models differentiate air, water, and fomite pathways of transmission (and even different 

classes of fomite transmission).  We will demonstrate how this framework provides paths 

to:  1) Developing transmission parameters that can be independently measured in 

environmental field studies, including survival rates of pathogens in the environment, 

transfer coefficient from fomites to hands, and many more; 2) Formulating transmission 

processes specific for air, water, food, and fomites in a manner that facilitates assessment 

of potential environmental control effects and the interpretation of environmental 

pathogen measurements; and 3) Developing mechanistic theory on environmentally-
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based transmission rates, analogous to how vector borne transmission rates are largely 

defined by entomological factors that are easily measured in the field.  

 

MATERIALS AND METHODS 

Model Assumptions  

We present a basic EITS model with the following assumptions:  

(1) All individuals are identical except that one is either S (completely susceptible), I 

(infected and infectious), or R (completely immune); 

(2) The total population size is constant; 

(3) The environment is a single, fixed-size, homogeneous compartment; 

(4) Humans are the only source of pathogens and individuals are uniformly exposed 

to pathogens in the environment; 

(5) In the environment, pathogens instantaneously and thoroughly mix, and do not 

replicate; 

(6) Once picked up from the environment, pathogens can instantaneously infect S at a 

rate that is independent of prior pathogen pick up;   

(7) Pathogen levels in the environment diminish via first order dynamics through pick 

up of pathogens by humans, die off, and environmental decontamination.   
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EITS Deterministic Compartmental Model  

As shown in Figure 1, our EITS deterministic compartmental model includes two types 

of state entities: 1) humans, which are divided into S, I, and R states, and 2) live 

pathogens in the environment, E.  The model is based on the following ordinary 

differential equations (ODEs): 

))(( uRISEI
dt
dE

I
dt
dR

IES
dt
dI

ES
dt
dS

+++−=

=

−=

−=

ρα

γ

γρπ

ρπ

               (Equation 1) 

 
ρ is the fraction of E picked up by each person per unit time; π is the probability that a 

susceptible individual becomes infectious per pathogen E picked up; γ is the rate per 

individual and per unit time of recovery from and acquisition of immunity to infection; α 

is the number of pathogens per unit time deposited into the environment by an infectious 

individual; and µ is the rate at which pathogens are eliminated from the environment by 

any means (naturally dying, being killed by decontamination processes, or being cleaned 

or otherwise removed from the environment).   

Berkeley Madonna is used to numerically solve the ODEs in Equation 1 (20).   

 

Stochastic Compartmental Model  

Our EITS stochastic model is Markovian.  All state entities and transmission rates 

are defined similarly to those in EITS deterministic compartmental model.  One 

difference is that the state variables (S, I, R, E) are discrete integers in the stochastic 
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model rather than continuous as in the deterministic compartmental model.  Our 

stochastic models only allow for a single event to occur at any given time; the specific 

event is randomly determined by the transition rates (Table 1).  In deterministic 

compartmental models, on the other hand, events happen continuously and 

simultaneously.  The output of these two model structures converge as initial number of 

infected individuals and environmental pathogens are large.  As these initial values 

decrease, the chance of stochastic die out increases.  This phenomenon does not occur in 

a deterministic model. 

The Gillespie algorithm (21) is applied to simulate the stochastic transmission 

process and to randomly execute a single event at variable time steps on a continuous 

time scale.  This model was coded and run in JAVA.   

 

Choice of Parameter Values 

 To illustrate the behavior of the EITS, we chose to parameterize our model for 

influenza (Table 2) such that the environment corresponds to either 1) frequently touched 

fomites that are touched by many different individuals such as door handle; 2) 

infrequently touched fomites such as floors or ledges; or 3) air inside a building.  Any 

real situation might incorporate all three of these pathways simultaneously.  We isolated 

these three conditions for the sake of clarifying the dynamics related to each condition 

separately.  The population size N, (N = S + I + R), represents the number of people in a 

public indoor venue.  We used a point estimate for the recovery rate derived from 

previous influenza models (22, 23).  Except for the recovery rate, γ, all parameters vary 

by route of transmission.  Infectivity, π, differs between air and fomite because the 
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different routes of infection, inhalation for air and touched membrane for fomites, have 

different dose response characteristics as illustrated from empirical studies (24-26).  

Estimates on environmental elimination rates, µ, are based on experimental studies in air 

(27) and on non-porous surfaces (28).  Considering the particle size distribution of 

excretions, only the smaller particles stay suspended in air and are respirable, whereas 

larger particles rapidly settle onto surfaces where they may be picked up; thus there is a 

route specific deposit rate, α, for each pathway.  We assume that frequently touched 

fomites have smaller surface areas than infrequently touched fomites, and therefore 

receive proportionally less contamination.  The deposit rate is governed by physical and 

behavioral factors such as sneezing or cough rates, deposition and aerosolization 

fractions, among others that are derived from a variety of empirical studies (29-35).  

Analogously, the pick up rate, ρ, is governed by physical and behavioral factors such as 

breathing, touching rates, and transfer efficiencies between surfaces, hands, and 

membranes (36-41).  In order to compare across the three scenarios, scenarios were 

parameterized to have the same R0.  For more parameterization details see the 

supplemental materials.   

RESULTS 

Mathematical Analysis of EITS Model Structure and Behavior 

In the EITS model, pathogens are picked up by humans at a rate, ρN, and 

eliminated from the environment at a rate, µ.  The fraction of live environmental 

pathogens picked up by humans, therefore is 

 µρ
ρ

+
=

N
Nf E                                                                 (Equation 2) 
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This fraction ranges from near zero when elimination is much larger than the pick 

up to near 1 if the pick up is much larger than elimination.  Another important metric is 

the average time pathogens persist in the environment, tE.   

tE = µρ +N
1

                                                                   (Equation 3)   

For our three environmental transmission pathways (air, frequently touched 

fomites, infrequently touched fomites), the parameter values defined in Table 2 generate 

fractions of live environmental pathogens picked up by humans of 0.01%, 99.04%, 

0.50%, respectively.  They generate average persistence times of 0.115, 0.003, 0.345 

days.  These values reflect the fact that frequently touched fomites are picked up at a high 

rate, and therefore have a low environmental persistence time compared to infrequently 

touched fomites.  Air is more similar to infrequently touched fomites with respect to 

persistence and fractional pick up.  The specific relationship between these two 

transmission routes depend on pathogen and environment specific factors. 

The basic reproductive number, R0, represents the expected number of secondary 

cases caused by introducing a single primary case into a totally susceptible population.  

As shown in supplemental materials, R0 can be written as 

 π
µρ

ρ
γ
α **

+N
N

                                                               (Equation 4) 

R0 can be considered as the product of:  1) total pathogens deposited by an 

infectious individual during his/her contagious period, γ
α

;  2) the proportion of 

pathogens picked up while still alive, µρ
ρ

+N
N

; and 3) infectivity of pathogens, π .  

Based on parameter values presented in Table 2, R0  = 1.8 for the three model scenarios.   
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When the total pickup rate is much larger than the elimination rate ( Nρ µ>> ), R0 

approaches γ
πα *  and is independent of population size N.  This results in a frequency 

dependent mass action formulation, and corresponds to a frequently touched fomite like a 

door handle or a frequently used workspace.  When total pickup rate is much smaller than 

elimination rate ( Nρ µ<< ), R0 approaches γ
π

µ
ρα ** N

 and is proportional to the 

population size N.  This corresponds to a density dependent mass action formulation, 

such as either: 1) airborne transmission with rapid thorough mixing of air; or 2) surface 

contamination where individuals infrequently touch the surface and the majority of 

agents die or are disinfected before next person touches it.  This density dependent 

formulation is similar to the case addressed by Noakes in an airborne transmission model 

(6).  Therefore, according to the ratio, ρΝ / µ, the EITS model can characterize airborne 

or fomite mediated transmission, and within fomite mediated transmission, either 

frequently or non-frequently touched surfaces.  Multiple pathways can be also be 

modeled, each with unique parameterizations. 

 

By rearranging Equation 4, we get 

 0

1

N

R N

ρ
α µπ ργ

µ

 
  
 = ⋅ ⋅ 
   + 
 

      (5)    
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This reformulation of R0 brings out two important ratios:  (ρΝ) / µ, environmental 

persistence ratio, an indicator of the importance of pick-up compared to environmental 

elimination pathogens from the environment; and α /γ, contamination ratio, a measure of 

the pathogen deposition magnitude from an infectious individual.  The condition ρΝ /µ 

>> 1 corresponds to frequently touched fomites.  Under this condition environmental 

contamination, α /γ, is more likely to be picked up than to die off.  The condition ρΝ /µ 

<< 1 corresponds to infrequently touched fomites.  Under this condition environmental 

processes attenuate pathogen levels before humans are exposed.   

These frequency and density dependent relationships can also be appreciated by 

transforming our EITS model into an instantaneous contact model corresponding to the 

classic Kermack-McKendrick SIR model (42).  To this end, we assume that the dynamics 

of E can be ignored, such that dE / dt = 0.  Under these conditions:  

     µρ
α

+++
=

)( RIS
IE  

   Substituting E into Equation (1) we have 

I
dt
dR

ISI
Ndt

dI

SI
Ndt

dS

γ

γ
µρ

απρ
µρ

απρ

=

−
+

=

+
−=

                                                             (6) 

   the term µρ
απρ

+N  is equivalent to the single transmission rate parameter in the classic 

SIR model.  The R0 of this instantaneous contact SIR model is  

0
1R N

N
απρ

ρ µ γ
  

=   +  
                  (7)  
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This is the same as that derived previously from our EITS model with 

environmental dynamics.  The Kermack-McKendrick SIR model is formulated as density 

dependent contact, and its R0 is proportional to the population size.  As in the EITS 

model, the formulation of this instantaneous contact SIR model can be considered as 

either density or frequency dependent contact based on the environmental persistence 

ratio,  ρΝ/ µ.   

 

Analyses of Dynamics of the EITS Model  

Figure 2 compares the influenza dynamics for the three EITS model scenarios 

(air, frequently touched fomites, and infrequently touched fomites) with the SIR model 

configuration shown in Equation 6.  The final cumulative incidence is similar for all three 

EITS transmission pathways and the SIR configuration, reflecting that they were all 

parameterized to have the same R0 (Figure 2A).  The SIR configuration dynamics are the 

fastest, although frequently touched fomite transmission exhibits similar dynamics.  Air 

transmission dynamics are slower and the infrequently touched fomite transmission is 

even slower.  

These dynamic differences are reflected in the different environmental persistence 

times, µρ +N
1

, for the three EITS model scenarios.  Environmental persistence time is 

greatest for the infrequently touched fomites and therefore time to peak infection 

prevalence is longer than for the other scenarios (Figure 2B).  On the other hand, 

pathogen environmental persistence time is short in the case of the frequently touched 

fomites, so the time to peak infection prevalence is the shortest.   
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The specific timing and dynamics will vary by the specific parameterization.  For 

example, decreasing the pick up rate and elimination rate by the same fraction (ρΝ / µ 

remains constant) results in slower dynamics, lower peak prevalence, and unchanged 

final cumulative incidence.  However, the general features of the EITS model are that:  1) 

environmental pathogen dynamics will slow the epidemic curve; 2) environmental 

transmission will attenuate peak incidence and prevalence; and 3) different routes of 

environmental transmission will exhibit different dynamics.  

 
Intervention Effects in the EITS Deterministic Compartment Model  

To gain insights into environment infection control dynamics, we assess two types 

of interventions.  The first affects the elimination rate parameter, µ, which corresponds to 

environmental decontamination.  The second affects the pathogen pick-up rate parameter, 

ρ.  The pick up rate, ρ, has no simple intervention analog, but could be thought of as 

either a behavioral change that decreases environmental contact, an altered transfer 

efficiency, or a dilution of the environmental surface area to be touched.  To illustrate 

intervention effectiveness in different scenarios and how interventions impact dynamics 

and risk, we examine two simple scenarios: 1) increasing the elimination rate, µ, by 25%; 

and 2) reducing the pathogen pick up rate, ρ, by 25%.  As shown in Figure 3, both 

interventions have little effect on the dynamics of epidemics for the frequently touched 

fomite scenario.  Frequently touched objects, such as doorknob handles, have a high pick-

up rate, so that a small increase in the elimination rate or decrease in the pick-up rate will 

have very little impact on transmission.  This can be also explained by noting that R0 for 

frequently touched fomites is approximately independent of both the elimination and 

pick-up rates.  For the air and the infrequently touched fomite scenarios, however, these 
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two interventions can lead to lower cumulative incidence, slower dynamics, and a smaller 

peak of live pathogens in the environment.  Although reducing pathogen pick up is more 

effective than environmental decontamination, the efforts required by these two 

interventions will affect the choice of intervention.  The reason these two interventions 

are effective for air and infrequently touched fomites is that the elimination rate and 

pickup rate are approximately proportional to R0 in these two scenarios.   

 

Stochastic Model Analyses 

The EITS stochastic model was first analyzed to explore how an environmental 

contamination event affects the probability of an outbreak.  To this end, we varied the 

initial level of environmental contamination to assess its impact on the probability of an 

outbreak occurring, defined as the proportion of simulations that resulted in attack rates > 

0.05 (simulation details defined in Figure 4).  The relationship between the outbreak 

probability and E(t=0) is sigmoidal; i.e., above a threshold contamination level, there is a 

region in which the probability of an epidemic increases exponentially with E(t=0)At 

higher initial contamination levels the probability of an outbreak levels off.  Using the 

probability of outbreak as an additional risk measure in microbial risk assessments may 

be an important complement to the currently used measures that generally rely on mean 

values. 

We also explored the influences of human contamination, through shedding from 

infectious individuals, on the dynamics of epidemics (simulation details defined in Figure 

5).  An infectious individual sheds on average α
γ

 pathogens into the environment during 

his/her contagious period.  As shown in Figure 5, when fixing R0 and the initial 



 34  

conditions, increasing the contamination ratio, γ
α

, results in an increase in the 

probability of an outbreak.  The relationship in Figure 5 holds for any proportional 

change in the elimination rate, pick up rate, and infectivity parameter values where R0 

remains constant, suggesting that as long as R0 is constant these three parameters do not 

have significant influence on the probability of an outbreak.  The reason that the 

contamination ratio can affect the probability of an outbreak, even when R0 is constant, is 

that when infectious individuals excrete fewer pathogens into the environment, reflected 

by a small contamination ratio, γ
α

, this smaller number of environmental pathogens 

have a higher chance of extinction, preventing the initiation of an outbreak.  

 

Figure 4 and 5 results also hold for both the infrequently touched fomite and air scenarios 

(data not shown).   

 

DISCUSSION 

Commonly, the mechanisms of transmission through the environment are not 

explicitly formulated in non-vector borne infectious disease population dynamic models, 

except some models that focus on enclosed hospital settings (31) or water-borne 

outbreaks (7-12).  In this paper, we present a basic conceptual framework of 

environmentally mediated population infection transmission for non-vector borne 

infectious diseases by incorporating environmental mechanisms into epidemic models.  

Using the EITS framework presented here, the transmission rate and R0 are 

formulated by well defined and measureable environmental factors, similar to how 
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vector-borne transmission is formulated using entomological factors.  Although we focus 

on air and fomite transmission, a potential generalization of this framework would be 

incorporating pathogen dynamics within different environmental settings, such as other 

vectors, food, and water.  

The adoption of an EITS framework provides a theoretical basis for 

understanding and modeling intervention efficacy in realistically detailed situations 

involving diverse venues where transmission takes place.  The parameters of the EITS 

model reflect physical events on which data can be readily gathered using newly 

developed methodologies and for which a considerable body of data and theory already 

exists.  In contrast, contact rates and transmission probabilities in specific venues are 

abstract and not feasibly measurable in most situations except in uniform places with 

repeated and prolonged contact like households.  

The EITS framework also helps identify and relax unrealistic mass action 

assumptions, such as no time passing between pathogens leaving one person and reaching 

another.  It also provides a way to conceptualize the extent to which transmission is a 

density or frequency dependent contact process (1, 2).  In reality, most transmissions 

occur between these two extremes and the EITS formulation reflects this.  As the 

environmental persistence ratio, ρN/µ, increases transmission becomes more density 

dependent and as this ratio decreases it becomes more frequency dependent.   

Another theoretically valuable focus is found in the contamination ratio, α / γ, a 

measure of the total amount of pathogens shed by infectious individuals.  This ratio and 

the magnitude of a contamination event are both indicators of the probability that an 
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outbreak will occur, suggesting that stochastic die-out is more likely when environmental 

contamination is low.     

EITS models will eventually help us define the role of different transmission 

modes in sustaining or amplifying transmission.  Multiple transmission modes have been 

recognized for many other infections than those in our example, such as cholera, hepatitis 

A, and cryptosporidiosis (43-45).  The EITS model framework provides leverage for 

using detailed environmental data and well established parameters reflecting pathogen 

characteristics to analyze different transmission modes and the role they play in endemic 

and epidemic situations.   

While including more realistic details than classic SIR models, the EITS models 

presented here are abstract in order to serve heuristic purposes. Future EITS models will 

relax current model assumptions.  The specific choices on which assumptions to relax 

will depend on the research question.  For example, with only a single environmental 

compartment, our models may not accurately capture contact patterns or pathogen 

dynamics in the environment.  In fact, our preliminary analysis pointed out that a key 

way to relax the homogeneous environment assumption is to distinguish frequently 

touched fomites from infrequently touched fomites.  Additionally, a more refined 

understanding of transmission patterns might require model structure that accounts for 

detailed contact patterns between people and the environment.   

Our simple EITS models identify key elements and important data gaps of the 

environmental infection transmission system.  They provide an initial step in motivating 

improved environmental measurements that would complement human case data and 

might be more informative and more cost-effective to gather than such data.  EITS 



 37  

models incorporating more realistic details than those presented here can be used to help 

design future environmental data collection efforts.  They also can provide a basis for 

analyzing focused environmental based interventions such as decontamination of specific 

surfaces, water, or air, as well as hygiene and sanitation efforts. 
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   Table 2.1 Event and transition rates for the EITS stochastic model 

Event Result Transition rate 

Infection (S, I, R, E)(S-1, I+1, R, E) S*ρ * E*π  

Removal (S, I, R, E)(S, I-1, R+1, E) I∗γ 

Depositing (S, I, R, E)(S, I, R, E+1) I∗α 

PathogenDecrease (S, I, R, E)(S, I, R, E-1) E*( ρ *(S+I+R)+µ) 
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Table 2.2 Parameter values for an influenza EITS model based on data from the literature  
 
Parameter 

 Parameter Estimates  
Notes* 

 Air Frequently 
Touched 
Fomite 

Infrequently 
Touched 
Fomite 

Recovery rate 
(1/day) 

γ 0.2 0.2 0.2 Based on empirical probability 
distribution  

Infectivity  π 0.0517 0.0000693 0.0000693 Based on exponential dose response 
model.  Route of transmission:  air = 
inhalation; Fomite = membrane.     

Elimination 
rate (1/day)  

µ 8.64 2.88 2.88 Loss in air comes from die-off and 
loss on fomite reflects loss on non-
porous surface.   

Deposit rate 
(pathogens / 
infected / day) 

α 693 5,244 1040,177 Contamination based on cough and 
sneezing rates.  Deposition based on 
size distribution from sneezing 
where pre-evaporative particle 
diameter < 20 µm are assumed to 
remain in air. 

Pickup (1 / 
person / day) 

ρ 0.0000877 0.297 0.0000145 Based on breathing rates and 
touching rates.  Exposure duration is 
assumed to be 8 hr/day. 

 

* References for model parameterization are in supplemental materials.  
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Table 2.3 Initial conditions and basic statistics for the EITS models 
Parameter  Airborne Frequently 

touched fomite 
Infrequently 

touched fomite 

Total population N 1,000 1,000 1,000 

Initial S S0 999 999 999 

Initial I I0 1 1 1 

Initial R R0 0 0 0 

Initial E E0 0 0 0 

Basic reproductive 
number 

R0 1.80 1.80 1.80 

Environmental 
persistence time 

tE 0.115 0.003 0.345 

Fraction of pickup from 
environment  

fE 0.010 0.990 0.005 
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Figure 2.1  A schematic representation of flow of individual (solid lines) among states 
and the flow of pathogens in the environment (dotted lines) for the EITS model 
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Figure 2.2   Cumulative incidence (A) and prevalence (B) using the EITS deterministic 
compartmental model.  EITS model scenarios include transmission through infrequently 
touched fomite (dashed line), air (doted line), and frequently touched fomite (solid line 
with square mark).  Corresponding instantaneous contact SIR model (solid line with 
triangle mark) is shown for comparison, and is close to EITS frequently touched fomite.  
R0 = 1.8 and simulations are seeded with one infectious individual.  Parameter values are 
shown in Table 2.2 
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Figure 2.3  Comparing the effectiveness of environmental decontamination (dotted line), 
decreasing environment contact (dashed line), and no intervention (solid line) using the 
EITS deterministic compartmental model for air (A), frequently touched fomite (B), and 
infrequently touched fomite (C) scenarios.  Parameter values for the “no intervention” 
scenario are shown in Table 2.  Environmental decontamination corresponds to 
increasing the elimination rate by 25%.  Decreasing environmental contact corresponds to 
decreasing the pick up rate by 25%.  
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Figure 2.4 Probability of an outbreak for different initial environmental contamination levels 
using the EITS stochastic model and the frequently touched fomite scenario.  Simulations use the 
parameter sets for the frequently touched fomite scenario shown in Table 2.  Initial conditions are 
I0 = 0, E0 = (1, 10, 26, 262, 2,622, 26,220, 52,440, 131,100, 262,200, 2,622,000). 
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Figure 2.5 Probability of an outbreak for different levels of contamination excreted per person.  
R0 are 4.0, 2.5, 1.8, and 1.3 for these four curves from top to bottom.  For each curve the 
infectivity is decreased proportionally with the contamination ratio so that R0 remains constant.  
Simulations use the parameter sets for the frequently touched fomite scenario shown in Table 2 (γ 
= 0.2, µ = 2.88, ρ = 0.2972 for all simulations).  For R0 = 1.8, [π, α] = [1.810, 0.2], [0.362, 1], 
[0.072, 5.2], [6.9e-3, 52.4], [6.9e-4, 524.4], [6.9e-5, 5,244]; for other R0 curves infectivity is 
increased or decreased proportionally and [π, α] is varied analogously.  The initial condition is I0 
= 1, E0 = 0. 
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APPENDIX 

I. Derivation of R0 for the EITS deterministic compartmental model 

To derive R0, we first evaluate the steady state conditions of the second and third 

equation from Equation 1 in the main text.  We do this by setting rates of I and E to zero:   

 

(A2)         0))((

(A1)                                 0

=+++−=

=−=

µρα

γρπ

RISEI
dt
dE

IES
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Solving equation A1 we get: 

 

(A3)                                             / γρπESI =  

 

Substituting A3 into A2 we get: 
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Simplifying A4 we get; 
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In a completely susceptible population, S approximates total population size, N, where N 

= S + I + R.  Substituting N for S and S + I + R, we get:  
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II. Parameterization of the EITS Models  

The following table is reproduced from the main text, but includes references for 

each parameter value.   

Table 2.4 Model parameters and references for each parameter value. 
  Parameter Estimates  

Parameter  Air Frequently 
Touched 
Fomite 

Infrequently 
Touched 
Fomite 

Notes 

Recovery rate 
(1/day) 

γ 0.2 0.2 0.2 Based on empirical probability 
distribution (1, 2).  

Infectivity  π 0.0517 6.93E-5 6.93E-5 Based on exponential dose response 
model.  Route of transmission: air = 
inhalation (3, 4); Fomite = 
membrane (4, 5, 6)      

Elimination 
rate (1/day)  

µ 8.64 2.88 2.88 Loss in air comes from die-off (7) 
and loss on fomites reflects loss on 
non-porous surface (8).  

Deposit rate 
(1/day) 

α 693 5,244 1,040,177 Contamination based on cough and 
sneezing rates.  Deposition based on 
size distribution from coughing 
where particles < 20 µm are 
assumed to not deposit onto 
surfaces (4, 9, 10, 11, 12, 13, 14, 
15). 

Pickup (1/day) ρ 8.765E-5 0.2972 1.445E-5 Based on breathing rates (12, 13) 
and touching rates (14, 15, 16, 17).  
Exposure duration is assumed to be 
8 hr/day 

 
 

The details of how we obtained values for each parameter shown in the above 

table are provided below. 

A. Recovery rate: 
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Recovery rate is calculated by taking the inverse of the contagious period.  Data on 

contagious period range from 3 to 7 days (1, 2).  For our simulation studies we use 5 

days. 

B.  Infectivity: 

    Using TCID50 data (the amount of virus that infects 50% of cells in tissue culture) 

from the literature, we convert TCID50 to units of HID50 (the amount of virus 

particles that infects 50% of human) by a conversion factor of 20.  The conversion 

factor is based on expert consultations, and our conclusions and inferences are 

independent to this conversion factor.  Using the HID50 we obtain infectivity 

estimates based on the Exponential Dose-Response equation.   

For the air scenario, we obtain a TCID50 estimate of 0.671, the virus dose delivered 

to respiratory epithelium that cause half of human infected, from the literature (3, 4), 

which converts to HID50 = 13.42.  The risk of infection caused by a single virus 

particle using the exponential dose-response model is therefore 0.0517.   

For fomite scenarios, we obtain a TCID50 of 500 from the literature (4, 5, 6), which 

converts to HID50 = 10000.  The risk of infection caused by a single virus particle 

using the exponential dose-response model is therefore 0.0000693.   

C.  Elimination rate: 

These parameter estimates come from the literature.  Elimination rate for air consists 

of die-off in the environment.  The die off rate in air is set at 0.36/hour (7); thus the 

daily elimination rate for air is 0.36*24 = 8.64 / day. 
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We constrain the elimination rate for fomites to die-off on non-porous surfaces.  The 

die-off on non-porous is set at 0.12/hour (8), which converts to 0.12*24 = 2.88 / day 

for both frequently and infrequently touched fomites. 

D.  Deposit rate: 

Based on the availability and quality of data on shedding particles, we assume that 

influenza virus particles are shed only via coughing and sneezing; we ignore speaking 

as a relevant transmission mode.  We obtain daily deposit rates from shedding event 

rates (coughing and sneezing), the total fluid volume per shedding event, the droplet 

particle size distribution, viral titer in nasal washings, among other expert judgments 

regarding TCID50 to virion conversion factors, and proportions of particles settling to 

frequently, infrequently and never touched fomites. 

1. Shedding event rate per person per day.  Based on cough frequency data from 

pneumonia patients (14), the cough rate is estimated to be 360 /day (4).  Using 

rhinovirus experimental data (15), the sneezing is estimated to be 11/day (4).  

The cough and sneezing frequency are not influenza specific and probably 

higher than influenza.   

2. The mean total fluid volume per cough is estimated to be 0.044 mL (9, 10) 

using a study with fairly high quality standards.  Using a second study, with 

lower quality standards which looked at both sneeze and cough particle 

distributions (13), we internally compare the cough and sneeze volumes and 

found that sneezes were 39.33 times greater in volume than coughs.  

However, we do not use this study directly to compute the actual sneeze 

volume; rather, we multiply the prior cough volume estimate of 0.044 mL by 
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39.33 to get a total sneeze volume of 1.757 mL. 

3. We use the particle size distribution of coughs (9) and sneezes (13) to 

determine the proportion of the total shedding volume that remains in the air.  

We use a pre-evaporative particle diameter cut point of 20 µm to determine 

which particles will settle out immediately and which particles will remain 

aerosolized.  The aerosol volume from one cough is estimated to be 

0.00000006 mL (9, 10, 11).   Using a similar approach as used to calculate the 

total sneeze volume, we estimate the aerosolized sneeze volume by internally 

comparing the volume of particles with pre-evaporative diameters less than 20 

µm of sneezes compared to coughs; we observe that the volume of the small 

particles is 250 times greater in sneezes than in coughs.  Then we use the prior 

aerosolized cough volume of 0.00000006 mL and multiply this by 250 to get 

an aerosolized sneeze volume of 0.000015 mL. 

4. We use data on the virus titer of nasal washings (12) to estimate the viral 

concentration of all pre-evaporative volumes of material being shed.  The 

virus titer is estimated at 185685 TCID50/mL. 

5. We use a conversion factor of 20 to go from TCID50 units to potentially 

infective virus particles.    

6. Based on expert adjustment, 0.004015% and 0.7965% of droplet particles 

greater than or equal to 20 µm are assumed to deposit on frequently touched 

fomites, infrequently touched fomites, respectively, and the remainders are 

assumed to deposit on never touched area.  
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Based on the above, we calculate the daily deposit rate for air, frequently, and 

infrequently touched fomites using the three following formulae: 

 total number of virus to air per day= 

  viral titer * viral particle conversion factor * [ (volume(coughToAir) * 

coughsPerDay ) + (volume(sneezeToAir) * sneezesPerDay) ) ] 

  185685*20*[0.00000006*360 + 0.000015*11] = 693 

 

 total number of virus to frequently touched fomites per day= 

  viral titer * viral particle conversion factor * [ (volume(coughToFreqFom) 

* coughsPerDay) + (volume(sneezetoFreqFom)*sneezesPerDay) ]  =   

  185685*20*[0.00000177*360 + 0.0000705*11] = 5244 

 

 total number of virus to infrequently touched fomites per day =  

  viral titer * viral particle conversion factor * [ 

(volume(coughToInfreqFom) * coughsPerDay) + 

(volume(sneezetoInfreqFom)*sneezesPerDay) ] 

  185685*20*[0.00035*360 + 0.014*11] = 1040177 

E.  Pickup rate: 

The pick up rate is based on the following 11 factors: 

1.  Breathing rate, estimated at 14 breath / minute (16). 

2.  Tidal volume, estimated at 0.5 liter / breathe (16). 
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3.  Deposition fraction in the respiratory tract to lung, estimated at 0.6.  The majority 

of the virus particles breathed in is in the particle diameter range of 3-10 micro-

meters, and this particle range has a fairly small range of deposition (17).  By only 

excluding the anterior nasal passage we estimate the deposition fraction in the 

remaining respiratory tract to be 60%.  This may be conservatively large.  

4.  Surface-hand touch rate, based on expert adjustment and conceptual scenarios, 

estimated at 20 time / hour for frequently touched fomites and 1 time / hour for 

infrequently touched fomites.  

5.  Fingertip surface area, based on expert adjustment, estimated to be 2 cm2. 

6.  Surface-to-hand transfer efficiency, estimated at 0.3.  This is an average of porous 

and non-porous surface values [non-porous surface = 0.5 (18), porous surface = 0.1 

(19)]. 

7.  Self inoculation rate, estimated at 15.7 contacts / hour (20). 

8.  Self-inoculation transfer efficiency from fingertip to mouth, eyes, or nose, 

estimated at 35% transfer efficiency (21). 

9.  Die off rate on hand, estimated at 55.3 / hour (8). 

10.  Exposure duration to environment, assumed to be 8 hour/day. 

11. Environment volume is scenario based.  For air we use 23000000 L; for 

frequently touched surface we use 25 cm2; and for infrequently touched surface we 

use 25700 cm2. 

 

Based on these above values, the pickup rate for air is calculated as:  
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(14 breath/minute)*(0.5 liter/23000000 liter)*0.6*(8 hour/day)*(60 minute/hour) = 

0.00008765 /day 

For frequently touched surface, the pickup rate is calculated as:  

(20 /hour)*(2 cm2 / 25 cm2)*0.3*(15.7/(15.7+55.3))*0.35*(8 hour/day) = 0.2972 /day 

For infrequently touched surface, the pickup rate is calculated as:  

 (1 /hour)*(2 cm2 / 25700 cm2)*0.3*(15.7/(15.7+55.3))*0.35*(8 hour/day) = 0.00001445 

/day 

 

III. References for Model Parameterization:  

1) Longini IM, Jr., Halloran ME, Nizam A, et al. Containing pandemic influenza with 
antiviral agents. Am J Epidemiol. 2004;159:623-633. 

 
2) Elveback LR, Fox JP, Ackerman E, et al. An influenza simulation model for 

immunization studies. Am J Epidemiol. 1976;103:152-165.  
 
3) Alford RH, Kasel JA, Gerone PJ, et al. Human influenza resulting from aerosol 

inhalation. Proc Soc Exp Biol Med. 1966;122(3):800-804. 
 
4) Atkinson MP, Wein LM. Quantifying the routes of transmission for pandemic 

influenza. Bull Math Biol. 2008;70(3): 820-867. 
 
5) Couch RB, Douglas RG Jr., Fedson DS, et al. Correlated studies of a recombinant 
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C H APT E R  3 

 T H E  T E M POR AL  DY NAM I C S OF  I NF L UE NZA  T R ANSM I SSI ON 
M ODE S DUR I NG  OUT B R E AK S 

 

 

I NT R ODUC T I ON 

Influenza is associated with pandemics and annual epidemics, and causes 

significant burden on morbidity and mortality globally [1,2].  The global spread of a new 

swine influenza H1N1 strain in 2009 and ongoing spread of H5N1 avian influenza strains 

reveal the importance of next influenza pandemic preparedness.  Various intervention 

recommendations such as vaccination, antiviral prophylaxis, school closure, social 

distancing, and border closure have been suggested for influenza pandemic preparedness 

in previous studies [3-9].  When one assesses some non-pharmaceutical interventions, 

such as mask using, hand washing and surface decontamination, disease transmission 

mode(s) should be considered.   

Multiple transmission modes have been identified for influenza in previous 

studies [8,10-13].  Through coughing and sneezing, influenza infectious individuals shed 

contagious virus particles at wide range of diameter size.  Based on virus particle size and 

environment characteristics, influenza transmission modes can be classified to four ways: 

(1) respiratory transmission, inhalation of respirable virus particles (<10 μm diameter) in 

air;  (2) inspiratory transmission, inhalation of inspirable virus particles (10 < and < 100 

μm) in air; (3) fomite mediated transmission, fingers (from contact with contaminated  
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fomites) with large virus particle (>100 μm)  touching one’s eye, nose, mouth; (4) droplet 

spray transmission, large virus particle (>100 μm) depositing directly to nearby person’s 

mucous membranes [15-17].   

Both respirable air and large droplet transmission mode have been suggested to be 

the unique dominant transmission mode [8,10-13].  Based on a theoretical transmission 

model, Spicknall et al found that all respiratory, droplet, and fomite mediated 

transmission modes can be dominant in specific scenarios [14].  However, these 

inferences arose from analyses constrained to simulated cumulative data collected at the 

end of outbreaks, and the potential temporal dynamics of the relative importance of 

different transmission modes were ignored.  Human heterogeneities, especially super 

spreaders, have proved to be important in SARS, influenza and other infections [20, 21, 

22].  However, in Spicknall’s model, human individuals were assumed to be homogenous 

[14].  Further, in Spicknall’s model, new cases are replaced by susceptible individuals 

instantaneously whenever new infections take place [14].  In this way, the Basic 

Reproductive Number (R0) can be directly observed, however, the infections caused by 

second generation cases were ignored and the final fraction of infected (FFI) 

measurement was not available  

To better understand the potential temporal dynamics of multiple influenza 

transmission modes during outbreaks, we extended Spicknall’s model to a more detailed 

environmentally mediated influenza agent-based model by incorporating super spreaders.  

This model simulates influenza outbreak inside an abstract venue such as business 

building, dormitory or house, and reports FFI measurement.  We observed the temporal 

dynamics of the relative importance of influenza transmission modes over the course of 
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outbreaks.  Then we explicitly elucidate that virus particle dissemination and persistence 

are the underlying mechanisms affecting this temporal dynamics.   

Our work was not meant to mimic realistic influenza outbreaks or to provide 

estimates of risk for public health policy decisions.  The primary aim is to introduce new 

concepts regarding previously unrecognized temporal dynamic phenomena that change 

the relative importance of different transmission modes during outbreaks.  Our work 

extends and contributes to recent efforts of understanding the relative importance of 

different influenza transmission modes [8, 14, 18, 23-25].   

 

2. M AT E R I AL S AND M E T H ODS 

2.1. T he E nvir onmentally M ediated T r ansmission M odel 

Our stochastic individual based model simulates environmentally mediated 

influenza infection transmission through respirable, inspirable, fomite mediate and 

droplet spray modes in an abstract venue.  The model components include discrete 

individuals, pathogens, and raster environment units.   

Individuals are susceptible, infectious, or recovered based on their infection 

status.  Individuals are assumed to be complete immune after being infected.  Individuals 

have a “hand” entity which mediates touching of environmental surfaces processes.  

Individuals move in venue independent of the distance and direction between the current 

location and target location.  Susceptible individuals can get infection by breathing virus 

particles in air or by touching their eye, nose, and mouth with contaminated fingers.  

Transmission mode specific exponential dose-response relationship was used to 

determine the risk of infection.  Some individuals are super spreaders who shed more 
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viral particles than others after being infected.   

Infectious individuals excrete contagious viral particles over the course of 

infection.  Influenza viral particles can stay in the air, on human’s hand, or on surfaces, 

and eventually die out.  Respirable virus particles are smallest and disseminate 

immediately to all air loci after shedding, and then stay suspended in air for long time.  

Inspirable viral particle are medium size and only disperse in current cell, and usually 

quickly settle down to surfaces.  Large viral particles commonly immediately settle down 

to surfaces or directly upon nearby individuals’ conjunctiva, mouth, or nasal mucosa 

through air.  Respirable viral particle can reach the alveolar region in the lower 

respiratory tract, but the other transmission modes primarily only infect the upper 

respiratory tract [14,18,19].   

Air and surface environment are presented by raster cells.  Pathogens are assumed 

to be evenly distributed inside environment loci.  Infectious individuals can contaminate 

the environment cells, and all individuals can pick up pathogens from surface or air loci 

via hand touching and breathing.   

For greater model detail refer to the Appendix A. 

 

2.2. Model Parameterization 

Table 3.1 summarizes the primary parameter values used in the model 

simulations.  Model parameters were primarily determined from empirical literature as 

well as expert judgment.  Parameters relevant to human behavior and venue 

characteristics are tentatively specified in a reasonably large range of values.  Based on 

parameter ranges suggested by Ispicknall et al [14], we chose four different parameter 
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value sets which lead to different transmission mode dominant scenarios: respiratory, 

droplet spray, fomite mediated, or no single transmission mode dominant case.   

The majority of model parameter values are the same in these four scenarios, such 

as recovery rate and breathing rate, but a few model parameters were parameterized 

differently.  Host density is high in droplet dominant scenario and low in respiratory 

dominant scenario.  Lower HID50 for alveolar region is low in the respiratory mode 

dominant scenario.  Upper HID50 for the upper respiratory region is low in the droplet 

spray and fomite mediated dominant scenarios.  Movement rate is high in fomite 

mediated and no single mode dominant scenarios, and is low in respirable mode 

scenarios.  Surface touching and self-inoculation rates are high in the fomite mediated 

mode dominant scenario and low in the respiratory and droplet transmission mode 

dominant scenario.  Viral death rate in air is low in respiratory transmission mode 

dominant scenario, and viral death rate on surfaces is low in fomite mediated and no 

single mode dominant scenarios.  The movement, surface touching and self-inoculation 

rates directly affect the viral particle dissemination in environment.  The viral 

inactivation rates influence the viral particle persistence in environment.  We varied these 

parameters to explore how they influence the environmental dissemination and 

persistence of virus particles and how they influence the temporal dynamics of influenza 

transmission modes in section 3.3. 

 

2.3. The I mplementation and Simulation of the M odel 

The model is implemented by applying Gillespie algorithm.  This is an event-

driven algorithm such that a single event occurs at each step of model simulations on a 
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continuous time scale.  There are total 23 types of discrete events involving shedding 

pathogens, individual movement among different venue locations, surface touching, self-

inoculation, breathing, and infection progression in the model.  The likelihoods and the 

weights of all types of events were calculated to determine which event will occur and 

when the event will occur.   

1000 independent simulation trials were conducted for each parameter set.  All 

individuals were initially susceptible except a single index case.  The model simulations 

directly report daily cumulative infection by transmission modes.  Then cumulative 

infection and the relative importance of different influenza transmission modes were 

calculated.  The relative importance of a transmission mode refers to the proportion of 

infections attributable to this mode among all infections.  

The model was programmed using standard Java libraries.  All statistical analysis 

was implemented in R package 2.10. 

 

3.  R E SUL T S  

We examine the temporal dynamics of the relative importance of different 

influenza transmission modes over the course of outbreaks in four basic modeling 

scenarios.  We then illustrate the underlying causes affecting this temporal dynamics.  

Finally, we explore the impacts of some model parameters on this temporal dynamics.  

 

3.1. The Temporal Dynamics of Influenza Transmission Modes during Outbreaks  

Based on parameter values in table 3.1, typical influenza outbreaks can be 

simulated.  The outbreaks peaked at around the second week (13-17 days), and ended 



 65 

between four and five weeks later for all four scenarios.  This is consistent with the 

duration of the influenza outbreaks observed in previous outbreak investigations [26, 27].  

The FFI was approximately 0.68 (95% CI: 0.61-0.75), a relatively high value but 

comparable to the common theoretical R0 of 1.7.  This might be partially due to the 

unrealistic complete susceptibility at the onset of outbreak.  

As shown in Figure 3.1, the environmentally mediated model simulations laed to 

the respiratory, droplet spray, fomite mediated, or no single transmission mode dominant 

outbreak scenarios.  The inspiratory transmission mode is negligible in all scenarios since 

inspirable viral particles quickly settle down to surfaces and enter fomite mediated 

transmission process.  In respiratory, droplet spray or fomite mediated mode dominant 

scenarios, the final relative importance of the dominant transmission mode was around 

60%, and the other two non-dominant transmission modes were not negligible.  In no 

single dominant transmission mode scenario, all three transmission modes were similarly 

important. 

As shown in Figures 3.1.a, the temporal variation of the relative importance of 

different influenza transmission modes over the course of outbreaks can be observed in 

all four scenarios.  The relative importance commonly increases for respiratory and 

fomite mediated modes, and decreases for the droplet spray mode, when these 

transmission modes are not negligible.  In the droplet spray, fomite mediated and no 

single transmission mode dominant scenarios (Figures 3.1.b), the relative importance of 

influenza transmission modes over the course of outbreaks vary slightly, and the 

dominant transmission mode is unique over the course of outbreaks.   

However, in the respiratory transmission mode dominant scenario, the temporal 
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variation of the relative importance of influenza transmission modes over the course of 

outbreaks is much greater (figure 3.1.b).  The absolute infection transmissions through all 

transmission modes gradually increase, but the respiratory mode transmission rises more 

to take over non-respiratory modes over the course of outbreaks (Figure 3.1.a).  The non-

respiratory transmission modes are more important during early outbreaks, but the 

respiratory mode becomes dominant later.  On average, it takes around 10.0 days for 

respiratory transmissions to rise above non-respiratory transmissions.  More than 95% of 

the rise of the relative importance of the respiratory transmission mode takes place before 

the average outbreak peak day 16.  The trade off of the relative importance is primarily 

between the respiratory and droplet spray modes, and the fomite mediated mode is 

relatively constant.  To avoid possible confounding effect on this temporal variation by 

averaging epidemics with different sizes and timings, we examined each single result 

from 1000 repeated model simulations.  We found that this temporal increase of the 

relative importance of the respiratory transmission mode occurs among more than 95% 

epidemic simulations (P<0.001, H0: No temporal rise of the relative importance of the 

respiratory mode over the course of epidemics.), although the time period between the 

simulation beginning and the moment when the respiratory mode rises above non-

respiratory modes does vary (Mean =10.0, SD=3.6).  Further, we found that in 62% of 

simulations the first transmission was from a non-respiratory mode.     

Environmental viral distribution in these four scenarios is slightly different due to 

the different model parameter values.  In the respiratory mode dominant scenario, total, 

maximum and average viral amount in air and on surface loci present a unimodal pattern 

and peak around day 20, and then gradually decreases.  The contaminated air locus 
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percent has a similar unimodal pattern but peaks (50%) around day 15.  The 

contaminated surface locus percent peaks (80%) around day 10, and then stays at a 

similar level longer.  The reason for this is that the majority (>99%) of viruses go to 

surfaces after shedding, and the viral die off on surfaces is relatively low [14].  In fomite 

mediated and no-single transmission mode dominant scenarios, environmental virus 

dissemination presents similar patterns.  In the droplet spray mode dominant scenario, the 

environmental virus distribution patterns are similar, but the peak time is relatively early 

around day 15, and more air and surface loci are contaminated during the peak period 

primarily due to the high population density.   

 

3.2. C auses of T empor al Dynamics in I nfluenza T r ansmission M odes:  Dissemination 

and Per sistence Pr ocesses  

Virus dissemination and persistence were found to be the primary underlying 

causes for the temporal dynamics of the relative importance of different influenza 

transmission modes.  

Different influenza transmission modes need different level of timing and 

physical requirements for virus being picked up by susceptible individuals.  The droplet 

spray mode needs the tightest requirements where the shedder and susceptibles must be 

co-located at the moment of shedding.  The respiratory mode needs the least requirement 

because respirable virus particles disseminate to everywhere and virus die off rate in air is 

lowest.  The fomite mediated mode needs intermediate requirements since susceptible 

individuals can move to surface contaminated loci recently inhabited by a shedder.   

Virus dissemination influences the physical requirement.  The effect of 
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dissemination on the timing of respiratory transmissions can be shown by decreasing the 

airborne dissemination.  As shown in Figure 3.2.a which presents only the respiratory 

dominant scenario, we see that when we decrease the respirable virus dissemination 

range keeping all other parameters unchanged, the rise in the relative importance of 

respiratory mode as the epidemic progresses markedly decreases.  Further, as shown in 

Figure 3.2.b, we see that dissemination does not much affect the total number of 

transmissions from respiratory infection.  The underlying reason is that the virus 

dissemination effect partially depends on the viral particle amount.  At the beginning of 

outbreaks, the single index case only sheds small amount of virus particles.  Thus virus 

particles through respirable and droplet spray modes have similar chance to reach 

susceptible individuals.  In the late stage of outbreaks, infectious individuals shed more 

viruses simultaneously and susceptible individuals decrease.  Viral particles through 

droplet spray mode could continuously spray to the same co-located individuals who 

might be already infected.   Thus the large virus particles through droplet mode can be 

“wasted” in the late stage of outbreaks.  On the other hand, respirable virus particles 

always disseminate to all loci and reach more susceptible individuals, which strengthen 

the respiratory mode relative importance.   

Virus particles persist in air or on surfaces until being picked up by co-located 

individuals or dying.  Virus persistence is related to the timing requirement and could 

increases the chance of being picked up by co-located individuals.  The effect of 

persistence can be shown by the theoretical calculation of the cumulative infection risk 

caused by different transmission modes (Figure 3.3.a).  The detailed calculation processes 

refer to appendix B.  The cumulative effect on infection risk is greatest for the respiratory 
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mode, is slight for the fomite mediated transmission mode, and is zero for the droplet 

spray mode.  The effect of persistence is partially depends on the die off rate on hands, on 

surfaces and in air.  Unrealistically eliminating the persistence process in the model can 

also present the effect of persistence.  In this case, all transmission modes will take place 

instantaneously after shedding events occur.   As shown in Figure 3.3.b, the temporal 

variation of the relative importance of different influenza transmission modes decreases 

without environmental persistence effect in the respiratory mode dominant scenario. 

 

3.3. T he I mpact of Some M odel Par ameter s on the T empor al Dynamics of the 

Differ ent I nfluenza T r ansmission M odes over  the Outbr eaks 

The absolute temporal variation level of the different influenza transmission 

modes over the course of outbreaks is influenced by some mode parameters relevant to 

virus particle dissemination and persistence.   

We examined the impact of these model parameters (human movement, surface 

touching, die off rate in air and on surfaces) on the temporal dynamics of different 

influenza transmission modes.  Since the temporal variation level of different influenza 

transmission modes is much greater in the respiratory transmission mode dominant 

scenario, we only present the results from the respiratory transmission mode dominant 

scenario here. 

 

3.3.(a). T he I mpact of H ost M ovement R ate on the T empor al Dynamics of Differ ent 

I nfluenza T r ansmission M odes over  the Outbr eaks    

The effects of host movement on the temporal dynamics of different influenza 

transmission modes were explored.  As shown in Figure 3.4.a, when host movement rate 
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decreases from 0.033 to 0.02 per minute in the respiratory mode dominant scenario, the 

cumulative infections over the course of outbreaks greatly decrease for the fomite 

mediated and droplet modes (>32.0%), but only slightly decreases for respiratory mode 

(5.0%).  The FFI for all transmission modes slightly decreases by 7.4%.  

Correspondingly, as shown in Figure 3.4.b, the final relative importance decreases for 

fomite mediated and droplet modes but increases for respiratory mode.  The temporal 

variation of different influenza transmission modes slightly decreases over the course of 

outbreaks.   

The reason for these different impacts of host movement rate on respiratory and 

non-respiratory modes is that host movement only directly influences droplet and fomite 

mediated transmission modes, but not the respiratory mode.  Host movement is the only 

way to bring susceptible individuals to co-locate with viral particles on surfaces and to 

co-locate with infectious people.  Low host movement could decrease the number of 

susceptible individuals in cells with pathogens on surface by 1) bringing less susceptible 

individuals into cell with pathogens, 2) less movement of infectious individuals to 

contaminate other cells, and 3) decreasing virus dissemination to new cell surfaces via 

surface touching.  With low movement rate, the large virus particles via droplet mode 

reach few co-located individuals, and might repeatedly spray to the same co-located 

people.  However, host movement does not directly affect the co-location between the 

respirable viral particles and susceptible people, because the respirable viral particles can 

randomly disseminate to any loci after shedding.   

The virus distribution on surfaces and in air is also altered by the decreased host 

movement rate.  As shown in Figures 3.4.c and 3.4.d, the maximum value of total virus 
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number on surfaces decrease by 20% due to lower epidemic level, but the maximum 

value of contaminated surface locus count decreases by 40%.  Correspondingly, the 

average virus count on a single contaminated surface locus increases greatly.  Due to the 

low movement rate, few people come in touch and “clean” the contaminated surfaces and 

shedders shed to less surface loci, so the viruses on surface are more localized and lead to 

highly contaminated surfaces.  On the other hand, low host movement rate does not 

directly influence instant and complete dissemination of the respirable virus 

dissemination in air, but it does lower the total air contamination level due to lower FFI.  

Therefore the total number of viruses in air, the number of contaminated air loci, and the 

average number of viruses in a contaminated air locus all decrease slightly.   

 

3.3.(b). T he I mpact of the Sur face T ouching R ate on the T empor al Dynamics of the 

R elative I mpor tance of Differ ent I nfluenza T r ansmission M odes 

We explored the effects of surface touching on the temporal dynamics of the 

different influenza transmission modes.  As shown in Figure 3.5.a, when the surface 

touching rate increases from 0.2 to 0.6 per minute, the total FFI by all transmission 

modes increases by 45.0%.  The fomite mediated mode specific FFI greatly increases by 

3.5 times, but respiratory and droplet mode specific FFI slightly decreases by 20.0% and 

10.0% respectively.  Correspondingly, as shown in Figure 3.5.b, the relative importance 

greatly increases for the fomite mediated mode, but decreases for respiratory and droplet 

modes.  The trade off of the relative importance is primarily between the cases with the 

extreme dissemination (air Vs. droplet), but the intermediate dissemination mode (fomite 

mediated) is more constant.  By increasing the surface touching rate, the model 
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simulations change from a respiratory dominant scenario to an equal respiratory and 

fomite mediated mode dominant scenario by displacing respiratory and droplet 

transmissions with fomite mediated transmissions.   

As shown in Figure 3.5.c, due to the higher infection transmission, the daily total 

viruses on surfaces and in air increase more than 2 times, and peak at a similar time.  The 

contaminated air locus count greatly increases because of more respirable viral particles 

dissemination in air and low die off in air.  The contaminated surface locus count only 

increases slightly since the majority of the surface loci have been contaminated even in 

the basic scenario with small surface touching case.        

The reason for these results is that the increase of surface touching rate directly 

strengthens absolute infection transmission and the relative importance through the 

fomite mediated mode.  On the contrary, the increased surface touching rate indirectly 

mitigates the infection transmission and the relative importance through respiratory and 

droplet modes due to competition among different transmission modes for susceptible 

persons on which to cause infection.   

 

3.3.(c). T he I mpact of the V ir us Die Off R ate in A ir  and R espir ator y M ode Specific 

Shedding R ate on the T empor al Dynamics of the Differ ent I nfluenza T r ansmission 

M odes   

 The respirable viral particle persistence partially depends on the viral die off rate 

in air and host breathing rate.  To understand the impact of the respirable viral particle 

persistence process on the temporal dynamics of the different influenza transmission 

modes, we explored the simulations where both the virus die off rate in air and the 

respirable specific shedding rate increase.    
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As shown in Figure 3.6a, when both the viral die off rate in air and the respirable 

specific shedding rate increase by 3 times in the respiratory mode dominant scenario, the 

cumulative infection transmission over the course of epidemics slightly increase for all 

transmission modes.  The total FFI through all transmission modes increases by 7.5%.  

Correspondingly, the temporal variation of the relative importance of different influenza 

transmission modes barely changes over the course of epidemics, but the absolute level of 

the temporal variation decreases (Figure 3.6.b).  The viral distribution pattern varies 

greatly as shown in Figures 3.6.c and 3.6.d.  Both the total virus particle counts in air and 

on surfaces peak at the similar time as that in basic scenario, but the peak value increases 

by 90% and 30%  in air and on surfaces respectively.  The peak value of contaminated air 

locus count increase 55% due to the increased respiratory specific shedding rate.  The 

maximum number of contaminated surface loci barely changes.    

The underlying reason for these results is that this change in model parameter 

mitigates the respirable virus particles persistence effects.  When both die off rate in air 

and respirable deposit rate increase, the respirable virus particle amount shed from 

infectious people increase but their life span in air decrease.  The total chance of expose 

to respirable virus particles for all susceptible people is similar theoretically, but the 

persistence effect of respirable virus particles decreases.   

 

 3.3.(d). T he I mpact of Super  Shedder s on the T empor al Dynamics of the R elative 

I mpor tance of Differ ent I nfluenza T r ansmission M odes  

The heterogeneity of host shedding capacity affects the relative importance of 

different transmission modes [14].  We examined how super shedders alter the temporal 
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dynamics of the relative importance of different influenza transmission modes.   

Super shedders refer to those who shed more virus particles than non-super 

shedders when they are infectious.  The total virus shedding capacity for the host 

population was assumed to be the same when there are or there are no super shedders.  To 

achieve this, the model assumes that a super shedder will shed X times more viruses than 

a non-super shedder during their infectious period, Y fraction of total population are 

super shedders, and virus amount shed from per shedding event is D when there is no 

super shedder.  Then when there are super shedders in the model, the virus amount per 

shedding event will be computed by D/(1-Y+Y*X) for non-super shedders, and X*D/(1-

Y+Y*X) for super shedders.  This was verified by the similar total virus particle amount 

shed by infectious people from simulations with and without super shedders in our 

model.  

As shown in Figure 3.7.a, in the respiratory mode dominant scenario, when 5% of 

the population are super shedders and super shedders shed 1000 times more viruses than 

non-super shedders, the chance of epidemics decrease greatly by almost 95%, since the 

single index case is usually a non-super shedder from random assignment and epidemics 

have less chance to take off.  The cumulative infection decreases for all transmission 

modes over the course of epidemics.  The average FFI greatly decreases by 50%.  The 

epidemics take off and reach peak level much earlier, and die out quickly in two weeks, 

because the epidemics are primarily caused by super shedder index cases, and the most 

infectious individuals are super shedders and the secondary cases are directly generated 

by infectious super shedder individuals.  When non-super shedders are infectious, they 

excrete much less virus particles and have low capacity to continue infection 
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transmission.  Correspondingly, as shown in Figure 3.7.b, the final relative importance of 

influenza transmission modes barely changes, but the level of the temporal variation of 

the relative importance of influenza transmission modes decreases greatly.  The changes 

in the temporal pattern of the relative importance of different transmission modes 

originate from the large number of viral particles at the beginning of epidemics, which is 

similar phenomenon as in the late stage of epidemics in the basic scenario.  With super 

shedders, there is less accumulation from multiple infected individuals over the short 

time of epidemics.  Comparing to no-super shedder scenario, more viral particles through 

droplet mode directly spray to few susceptible individuals.  The surface contamination is 

much more localized on few surfaces, and the viral particles on surfaces can be 

repeatedly picked up by few co-located individuals and shedders themselves.  Therefore, 

large size viral particles through droplet and fomite mediated modes are wasted.  The 

respirable viral particles reach more susceptible individuals by dissemination process.  

 

4.  DI SC USSI ON 

Commonly, infection transmission processes have been formulated as a simple 

probability, and the detailed physical contact processes were ignored in epidemic models 

[28,29].  Recent studies have shown that the environment significantly mediates 

influenza transmissions from one person to another [14, 20, 30].   Previous works 

normally ignored the temporal variation of different transmission modes over the course 

of outbreaks.   

In this work, analysis of an environmentally mediated agent based model has 

shown that the relative importance of different influenza transmission modes does vary 



 76 

greatly over the course of outbreaks.  Specially, even in scenarios where respiratory 

transmission mode is ultimately dominant, non-respiratory transmission modes contribute 

to more to the overall transmission at the beginning of the epidemics.   It takes about 10.0 

days for respiratory transmissions to rise above non-respiratory transmissions. 

Virus particles dissemination and persistence are found to be the underlying 

causes for these temporal dynamics of different transmission modes.  A clear evidence is 

that decreasing dissemination and persistence of virus particles mitigates the temporal 

variation level of the relative importance of different influenza transmission modes.  The 

environmental dissemination and persistence are directly relevant to the chance of co-

location between susceptible individuals and virus particles.  The environmental 

dissemination and persistence effects originate from the different model assumptions 

between small respirable virus particles through respiratory transmission mode and large 

particles through droplet spray and fomite mediated transmission modes.  First, large 

virus particles through the droplet spray mode directly spray to co-located individuals 

instantaneously at the moment of shedding.  Small respirable virus particles through 

respiratory mode and large virus particles through fomite mediated mode experience an 

intermediate environmental stage before exposure to susceptible individuals.  Second, 

during the intermediate environmental stage, small respirable virus particles reach human 

individuals much faster by instantaneous dissemination in air, while large particles reach 

individuals slowly through human movement.  Third, viruses survive greatest in air, 

medium on surface, and least on human hands.  So the cumulative effect on infection risk 

is greater for the respiratory mode, is slight for the fomite mediated transmission mode, 

and is zero for the droplet spray mode.  The zero dissemination and persistence of droplet 
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spread assumptions in our model might be slightly different from what we expect in 

reality where a droplet might reach susceptible people but take some time to be 

transferred from the place it arrives on the body to mucosal surfaces.  But the 

dissemination and persistence of the droplet spray mode is reasonably much less than 

other modes in reality, and our inference directions should not be biased by these 

assumptions.   

Further, varying some virus particle dissemination and persistence relevant mode 

parameters (host movement, surface touching, die off rate in air and respiratory shedding 

rate) alter the temporal dynamics of influenza transmission modes, which also support the 

causal hypothesis.  Super spreaders have been confirmed as one of the most important 

factors for the SARS epidemic in Hong Kong and also occur for many other pathogens 

[20,30].  The super shedders mitigate temporal dynamics of the relative importance of 

different influenza transmission modes over the course of outbreaks, although the final 

relative importance of different transmission modes barely changes.  The changes in 

temporal dynamics of different transmission modes caused by superspreader originate 

from the increased viral particles at the beginning of epidemics, which agrees to the 

explanation of the virus particles dissemination effect.  

Although our results inform environmentally mediated transmission temporal 

dynamics via all transmission modes across time, this work alone does not allow policy 

makers to make specific intervention decisions in the real world.  Changing of dominant 

transmission mode over the course of outbreaks observed here does not mean that one 

should simply exclude intervention strategies that primarily focus on late dominant 

transmission mode in the early stage of epidemics, since changing prevention emphasis 
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and strategies during the short course of an epidemic could be impractical and 

counterproductive in reality.  However, the temporal dynamics of different influenza 

transmission modes still are of great public health significance, because it reminds us that 

it is unwise to simply exclude some interventions which specifically target less important 

transmission modes at the end of epidemics.  This work is to convince people to pay 

attention to the previously un-recognized temporal dynamics of different transmission 

modes over the course of influenza epidemics, and to the potentially new direction of 

influenza researches.   

We have intentionally avoided some realistic complexities in order to make the 

mechanism clear behind what we have discovered clear.  For example, the model 

describes an unrealistic theoretical, homogeneous indoor environment.  All individuals 

stay for all time in a single venue while in fact individuals could move from one venue to 

another.  Realistic relaxation of this assumption could decrease the infection transmission 

equally through all transmission modes, but the model inference direction should be 

similar.  The host movement in this model is random teleport and uniform for all 

individuals, which is different from the reality.  The exponential dose response relation in 

this model is time independent, which might significantly differ from time dependent 

dose response [31].  But the model inferences made for a theoretical venue should be not 

biased by these assumptions.  Some model parameters were determined from limited 

sources or expert opinion,[14], it would be useful to have future studies examining 

parameters such as influenza viral particle size distribution, host environment contact 

pattern, transfer efficiency.   

This work in addition to some previous studies provide framework for 
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understanding the influenza epidemic impacts based on not only the final morbidity, but 

also the temporal dynamics.  These initial steps will hopefully allow us to eventually 

better understand transmission mode relative importance and provide better intervention 

suggestions on time. 

 
 

 

 

 

 

 



  

T able 3.1 Parameter values used to generate different transmission mode dominant scenarios 

Parameter Description Unit 

Final dominant transmission mode 

Reference 
Respirable  Droplet 

spray  
Fomite 

mediated  
No single 

dominant mode 

number of infectious seeds Person 1 1 1 1 study design dependent 

Host density  people / m2 0.33 5.60 1.40 0.8 [14] Ispickna 2010 

Inactivation rate—air Min-1 0.002 0.0024 0.004 0.0036 [32] Hemmes 1960 

Inactivation rate—surfaces Min-1 0.006 0.006 0.0002 0.001 [33] Bean 1982 

Inactivation rate—hands Min-1 0.75 0.74 0.74 0.9 [33] Bean 1982 

Rate of changing location Min-1 0.033 0.05 0.1 0.1 [14] Ispickna  2010 

Lower HID50 TCID50 0.15 0.5 0.5 0.25 [34] Alford 1966;  
[14] ispicknall 2010 

Upper HID50 TCID50 500 250 250 380 [35] Couch 1971;  
[14] ispicknall 2010 

Proportion of respirable virus 
among all viral particles 

 4.5E-6 1.4E-6 1.4E-6 1.4E-6  [36] Nicas 2005 
[37] Loudon 1967 

Proportion of inspirable virus 
among all virus particles 

 0.0095 0.0095 0.0095 0.0095  [36] Nicas 2005 
[37] Loudon 1967 

Rate of self inoculation Min-1 0.1 0.1 0.3 0.26 [38] Handley 1973 
[39] Nicas 2008  

Rate of surface touching Min-1 0.2 0.2 2.0 0.7 [14] ispicknall 2010 

Rate of breathing Min-1 16 16 16 12 [14] ispicknall 2010 

Transfer efficiency (surface to 
hand to surface) 

 0.3 0.3 0.6 0.5 [40] Sattar 2001 
[14] ispicknall 2010 

Recovery rate for infectious 
individuals 

Min-1 0.0007 0.0007 0.0007 0.0007 [36] Nicas 2005 

Shedding volume mL 0.044 0.044 0.044 0.044 [36] Nicas 2005 
[37] London 1967 

NOTE:  HID50 = quantity of virus required to cause infection in 50% of humans.   
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Figure 3.1.a. the average daily cumulative infection through different transmission modes in four different transmission mode 
dominant scenarios (A.respiratory; B.droplet spray; C.fomite meditated; D.no-single transmission mode). 
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Figure 3.1.b The average daily relative importance of different influenza transmission modes in four different mode 
dominance scenarios (A.respiratory; B.droplet spray; C.fomite meditated; D.no-single transmission mode).  
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Figure 3.2.a The impact of respirable viral particle dissemination process on the 
temporal dynamics of the relative importance of the respiratory transmission mode. (High 
dissemination: disseminate to all loci. Medium dissemination: disseminate to 8 
neighboring loci. No dissemination: disseminate to only the current occupied locus. ) 
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Figure 3.2.b. The average daily cumulative infection frequence by varying respirable 

virus particle dissemination range in the respiratory transmission mode dominant 

scenario.  (global dissemination: disseminate to all loci. local dissemination: disseminate 

to current shedder occupied locus). 

 

0

10

20

30

40

50

60

1 2 5 7 10 13 15 20 23 25 30 35

Day

C
um

ul
at

iv
e 

in
fe

ct
io

n 
fre

qu
en

ce

global dissemination; respirable mode

global dissemination; droplet spray

global dissemination; fomite mediated

local dissemination; respiratory mode

local dissemination; droplet spray

local dissemination; fomite mediated

 
 

 



 85 
 

 

Figure 3.3.a. Theoretical calculation of average secondary case generated by an index 
case through different influenza transmission modes in the respiratory transmission mode 
dominant scenario.  
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Figure 3.3.b. The relative impact of persistence of respirable virus particles on the 
temporal dynamics of the relative importance of the respiratory transmission mode. 
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Figure 3.4.a. the average daily cumulative infection by different transmission modes and 
host movement rate in the respiratory transmission mode dominant scenario. 
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Figure 3.4.b. The relative importance of different influenza transmission modes by 
varying host movement rate in the respiratory transmission mode dominant scenario. 
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Figure 3.4.c. The environmental dissemination of influenza viral particles (total viral 
particle number in air and on surfaces) by varying host movement rates in the respiratory 
transmission mode dominant scenario. (note: the unit for total viral particle number on 
surface is 106 count.) 
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Figure 3.4.d. the influenza virus contaminated air and surface locus by varying host 
movement rates in the respiratory transmission mode dominant scenario.  
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Figure 3.5.a. The average daily cumulative infection by transmission mode and surface 
touching rate in the respiratory transmission mode dominant scenario. 
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Figure 3.5.b. the relative importance of different influenza transmission modes by 
varying host surface touching rate in the respiratory transmission mode dominant 
scenarios. 
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Figure 3.5.c. the environmental dissemination of influenza viral particles (total viral 

particle number in air and on surfaces) by varying surface touching rate in the respiratory 

transmission mode dominant scenario. (note: the unit for total viral particle number on 

surface is 106 count.) 
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Figure 3.5.d. the contaminated air and surface locus count by varying surface touching 
rate in the respiratory transmission mode dominant scenario. 
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 Figure 3.6.a. The average cumulative infection over the course of epidemics by varying 
virus die off rate in air and respirable virus shedding rate in respiratory transmission 
mode dominant scenario. 
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Figure 3.6.b. The relative importance of different influenza transmission modes by 
varying virus die off rate in air and respirable virus shedding rate in the respiratory 
transmission mode dominant scenarios. 
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Figure 3.6.c. The environmental distribution of influenza viral particles (total viral 
particle number in air and on surfaces) by varying virus die off rate in air and respirable 
virus shedding rate in the respiratory transmission mode dominant scenario. (note: the 
unit for total viral particle number on surface is 106 count.) 
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Figure 3.6.d. the contaminated air or surface locus count by varying virus die off rate in 
air and respirable virus shedding rate in the respiratory transmission mode dominant 
scenario. 
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Figure 3.7.a. The average cumulative infection with 5% super shedders who shed 1000 
times more viruses than non-super shedders in host population in the respiratory 
transmission mode dominant scenario. 
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Figure 3.7.b. The relative importance of different influenza transmission modes with 5% 
super shedder who shed 1000 times more viruses than non-super shedders in the 
population in the respiratory transmission mode dominant scenarios.  
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APPENDIX A 
 
 

The Detailed E nvir onmentally M ediated T r ansmission M odel 

This is a stochastic individual based model that simulates environmentally 

mediated influenza infection transmission.  The model components include discrete 

individuals, pathogens, and raster environment units.   

 

T he Pathogens and the H uman I ndividuals 

Influenza viral particles are assumed to be uniformly identical entities, excreted 

by infected individuals.  Influenza viral particles can persist in the air, on a person’s hand, 

or on surfaces, and eventually die out in these locations based on different die off rates.  

Inspirable particles can settle onto surfaces from air and enter fomite mediated 

transmission mode.  Virus particles in air can be removed by air exchanging too.   

 

T he H uman I ndividuals 

Human individuals in this model are uniform with regard to influenza infection 

status.  All individuals are either susceptible, infectious, or recovered based on their 

infection and immunity status.  Individuals have a “hand” entity which mediates touching 

of environmental surfaces processes.  Individuals are heterogeneous regarding infectivity 

when considering super spreaders in the model.  Super spreaders are individuals who 

shed more viral particles than non-super spreaders.  Susceptible individuals become 

infectious by either breathing viral particles or by touching their eye, nose, and mouth 

with contaminated hands.  After being infected, the individuals become complete 

immune.   
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T he V enue E nvir onment 

In this model, two types of environment settings, air and surfaces, are presented 

by raster cells.  The size of environmental cells is set as 2*2*3 meter.  All environmental 

cells are similar with regard to how people contact air or surfaces.  Pathogens are 

assumed to be evenly distributed inside surface and air cells.  Infectious individuals can 

contaminate the environment cell surface where they are currently located.  Individuals 

can pick up a fraction of pathogens from a surface or air cell via hand touching and 

breathing.  Individuals are assumed to stay in the venue all the time. 

  

T he M icr obial Dose-r esponse R elationship 

An exponential dose-response model was used to calculate the risk associated 

with a given virus dose.  When we calculate the risk after individuals pick up pathogens 

from environment, risk from previously picked up pathogens are independent of the risks 

from newly picked up pathogens.  The respiratory and inspiratory transmission mode 

specific HID50 is same with a mean of 0.67 TCID50 units of virus particles.  The fomite 

mediated and droplet spray mode specific HID50 values are the same with means of 500 

TCID50 units of virus particles [14].     

 

T he Discr ete E vents in the M odel 

The model was implemented by using Gillespie algorithm, a time to event-based 

modeling simulation process.  At each simulation step, a single event is chosen and 

performed based on the likelihood of all events.  There are 23 types of events in this 

model involving shedding pathogens, individual movement, surface touching, self-
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inoculation, breathing, and infection progression.  

  

H uman I ndividual B r eathing:  Individuals breathe in certain volume of air through 

breathing event based on breathing rate parameter.  If there are pathogens in the air, we 

determine the quantity of viruses being inspired by considering the volume of air inspired 

(Volinspire) and the total air volume in current air locus (Volcell).  Then we determine the 

pathogen number that deposits in the alveoli regions to potentially cause infection based 

on a deposition efficacy parameter.  Those inspired pathogens which do not deposit in the 

alveoli are instantaneously exhaled back to air with no loss in viral viability.   The chance 

of being breathed in for virus particles in air depends on the density of virus particles in 

the current air locus (Vair), and the fraction of inhaled virus deposited to alveoli (tairDposit).   

The amount of respirable virus particles transferred to the alveolar region: 

PtoLung = Vair * (Volinspire / Volcell ) *  tairDeposit 

 

H uman Self-inoculation:  Individuals with pathogens on their hands may touch their 

own eyes, nose or mouth based on model parameter of self-inoculation rate.  Some 

proportion of the pathogens on hands will be transferred to the target mucous membranes.  

The amount of virus particles on hand being inoculated (Vinoculate) is determined by the 

amount of virus particles on hands (Vfingertip), the transfer efficiency (likelihood) from 

hand to mouth/nose/eye (thandToMouth), and to target mucus membranes (tmouthToMucus).  

 This inoculated virus quantity is:   

Vinoculate = Vfingertip * thandToMouth * tfingerToMouth. 

Shedding E vents:  Infectious individuals shed pathogens over the course of infection 
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through discrete shedding events, analogous to coughs or sneezes.  The likelihood of 

shedding event is determined by shedding rate parameter.  Each shedding event excretes 

some volume of mucous material.  This mucous has a viral concentration which varies by 

day of infection.  Therefore, the total virus amount from a single shedding event varies by 

day of infection.  The overall pathogen output starts low after being infected, rises to a 

peak on the third day of infection, and then tails off until day eight, when it is back to the 

low levels of the first day.  Some fraction of the excreted viruses is in respirable particles, 

and is assumed to disperse immediately to all environment air cells and stay aerosolized 

in air after shedding.  Some fraction of the excreted viruses is in inspirable particles, and 

is assumed to only stay in current cell and could settle down.  The remaining either spray 

to nearby individuals’ eyes, mouth and nose through droplet spray mode, or settles down 

to fomite surfaces in the shedder’s current location to enter fomite mediated mode.     

V ir us inactivation:  the loss of viability of the viruses in the model is assumed to be a 

simple first order process.  The likelihood of virus inactivation events are based on 

different die off rates in the air, on hands, or on fomite surfaces.  In addition, air 

exchange process can eliminate viruses from the air, and has same consequences as virus 

inactivation in air.  

Sur face touching:   individuals touch environment cell surfaces where they are currently 

located.  When a surface touching event occurs, viruses can be transferred from the 

surface to human fingertips or vice versa.  Once there has been pathogen transfer, we 

assume that the pathogens are evenly distributed over the surface in the given cell.  Viral 

amount on a surface locus (Asurface) and fingertips (Afingertip), the surface area of the 
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fingertips (PSurface), the surface area of the environment cell surfaces (PSurface), and the 

transfer efficiency (tsurfaceToFingertip) were used to determine the actual quantity of 

pathogens transferred as below.  

The amount of pathogens transferred to the hand is: 

PtoHand = PSurface * tsurfaceToFingertip* Afingertip  / Asurface 
 
The amount of pathogens transferred to the surface is: 
 
PtoSurface = Pfingertip * tfingertipToSurface 

 

Infection progression: influenza infectious period lasts eight days after the onset of 

infection.  To implement infection progression from day one of infection to day two and 

so forth, we use an exponential distribution between each day.  By this way, the model 

generates a distribution of infection duration and total virus excretion that corresponds to 

model assumptions and previous observations.  

 

 Movement events: in the model, individuals can change location by teleporting.  The 

likelihood of individual movement is based on the model parameter of movement rate. 

When a movement event occurs, individuals change current location to target location 

independent of the distance and direction between the current location and target 

location.  The time spent in transit was assumed to be negligible.  Based on reasonable 

parameter range suggested by Ispicknall et al, a spatial flow from one raster cell to 

another cell does not change the model simulation results, thus this unrealistic model 

assumption will not change our inference in this modeling contex [14]. 
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APPENDIX B 
 

 
This is the theoretical calculation of the cumulative infection risk via different modes 

caused by an index case repeatedly shedding events implemented in R code simulations.  

To simplify the calculation and presents easily, we ignore the host movement due to 

relative high movement rate in the mode.  When the host movement is slow, this 

calculation needs to be slightly modified to address the host movement issue, but the 

comparison among different transmission modes is similar.   

 

For the respiratory transmission mode:  

(1) N, Viral amount to respiratory mode from one shedding event, assuming that one 

TCID50 includes 100 respirable viral particles:    

 Shedding virus amount from a single shedding event (TCID50 unit) : 0.4*10^5   

 The fraction of viruses to respiratory mode: 4.5*10^-6 

viral particle number per TCID50 unit: 100 

N = 0.4*10^5  *  4.5*10^-6 * 100   =  16    

 

 (2) cumuBi, the cumulative chance of being breathed in by a co-located individual for a 

respirable virus particle after i-th breathing events during T minutes since shedding:  

Breathing event frequency during T time, i:   i <= T*16 

The chance of being removed for respirable virus particles between two continuous 

breathing events: 0.002/16 = 0.000125   

The chance of being breathed in for respirable virus particles by a single breathing 

events: 0.000042 

Bi:   The chance of being breathed in by a co-located individual for a respirable virus 

particle at i-th breathing event,  

   B1:  0.000125 

   Bi: cumprod (1-B1, 1-B2, …, 1-Bi-1) * (1-0.000125)^(i-1) * 0.000042 

So the cumuBi:  cumsum(B1, B2, …., Bi  ) 

 

(3) Ri, the cumulative infection risk caused by respirable virus particles after i-th 
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breathing events during T minutes since a single shedding event:  

Breathing event frequency during T time, i:   i <= T*16 

The chance of being co-located with a susceptible host for a respirable virus particle: 0.33 

The chance of causing infection by one respirable virus particle after being breathed in:  

0.027 

Ri = N*cumuBi*0.027*0.33 = 0.143*cumuBi   where B is determined by time period 

since shedding in (2) 
 

(4) cumuRi, the cumulative infection risk caused by respirable virus particles after i-th 

breathing events during T minutes after multiple shedding events:  

cumuRi = cumsum( R1, R2, …, Ri) 

 

For droplet spray mode: 

(1) N, Viral amount to droplet mode from one shedding event, assuming that one TCID50 

includes 100 respirable viral particles:    

Shedding virus amount from a single shedding event (TCID50 unit): 0.4*10^5   

 The fraction of viruses to respiratory mode: 3.75*10^-4 

viral particle number per TCID50 unit: 100 

N = 0.4*10^5  *  3.75*10^-4 * 100   =  1500    

 

(2) R, the infection risk through droplet mode for a co-located susceptible individual after 

one shedding event, based on exponential dose-response function:  

The transfer efficacy from mouth to upper respiratory track membrane: 0.2 

The chance of being co-located with a susceptible host for a respirable virus particle: 0.33 

R = 0.33*0.2* (1-exp(-( (-log(0.5)/50000 ) *N ) )) = 0.0041 

 

(4) cumuR, the cumulative infection risk caused by droplet mode T minutes since 

introducing the index case:  

The shedding event frequency during T minutes, j:  j <= T/5 

cumuR = cumsum(R)  
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For fomite mediated transmission mode: 

(1) N, Viral amount to the surface from one shedding event, assuming that one TCID50 

includes 100 respirable viral particles:    

 Shedding virus amount from a single shedding event (TCID50 unit) : 0.4*10^5   

 The fraction of viruses to respiratory mode:  0.9996 

The viral particle number per TCID50 unit: 100 

N = 0.4*10^5  *  0.9996 * 100   =  4000000   

 

(2) cumuBi, the cumulative chance of reaching co-located individual upper respiratory 

track for surface virus particles after i-th surface touching events during T minutes since 

shedding:  

Surface touching event frequency during T time, i:   i <= T/5 

The chance of dying for virus particles between two continuous surface touching events, 

due to high death rate on surfaces and on hands: 0.92 

The chance of being picked up and transferring to upper respiratory track membrane from 

surfaces by a single hand surface touching event: 0.000000005 

Bi:   The chance of reaching upper respiratory track membrane for virus particle at i-th 

surface touching event,  

   B1: 0.000000005 

   cumprod (1-B1, 1-B2, …., 1-Bi-1) * (1-0.92)i-1 * 0.000000005 

  cumuBi:  cumsum(B1, B2, …., Bi  ) 

 

(3) Ri, the cumulative infection risk caused by surface virus particles after i-th surface 

touching events during T minutes since a single shedding event:  

Surface touching event frequency during T time, i:   i <= T/5 

The chance of being co-located with a susceptible host for a respirable virus particle: 0.33 

HID50 for fomite mediated mode:  500  TICID50 

 

Cumulative virus particles amount reaching upper respiratory track membrane after i 

surface touching event, n :      N*cumuBi  

Ri = (1-exp(-( (-log(0.5)/50000 ) *N*cumuBi ) )) * 0.33 = 0.143*cumuBi    
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(4) cumuRi, the cumulative infection risk caused by virus particles on surfaces after i-th 

surface touching events during T minutes after multiple shedding events:  

cumuRi = cumsum( R1, R2, …, Ri) 
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CHAPTER 4 
 
TEMPORAL PATTERNS OF INFLUENZA AND RELATIONSHIPS 
WITH WEATHER VARIABLES IN HONG KONG, CHINA, 1998-

2008 
 

 
INTRODUCTION 

Influenza poses a serious public health threat through both occasional global 

pandemics and typically yearly epidemics, at least in temperate regions.  Annual 

influenza epidemics are responsible for significant morbidity, mortality, and economic 

burden on human populations globally.  In the United States, influenza is estimated to 

cause more than 114,000 hospitalizations, and 20,000 deaths annually (1).  In European 

countries, influenza also has similar substantial heath impacts (2,3).  Influenza sentinel 

surveillance systems have been functioning for decades in temperate regions such as 

North America, Europe and Australia.  Influenza seasonality in those regions is relatively 

well-identified, with annual epidemics occurring in winter months for both the northern 

and southern hemispheres (1-5).  However, in most tropical and sub-tropical countries, 

influenza surveillance systems have only recently been developed or remain non-existent.  

Influenza temporal patterns and impacts in these tropical and/or impoverished regions are 

still poor defined and are not studied enough (5-7).   

Southern China, including Hong Kong and Guangdong adjacent regions, has long been 

referred to as one of the possible global influenza epidemic centers based on influenza
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virus transmission among birds, pigs and humans (8).  Two of the three recorded 

influenza pandemics in human history, the “Asian Flu” caused by an H2N2 strain in 

1957-58 and the “Hong Kong Flu” caused by an H3N2 strain in 1968-69, emerged from 

or were first detected in Hong Kong and adjacent regions in China (9).  A significant 

fraction of WHO-confirmed new influenza virus strains were first identified in China 

(10,11).  The first human H5N1 avian influenza case was identified in Hong Kong in 

1997 (12).  Recent antigenic and genetic analyses have also shown that East Asia/South-

East Asia might be an important breeding ground for novel influenza strains that then 

travel globally to other regions (13).  Hong Kong enhanced and extended its existing 

influenza sentinel surveillance system after the first human H5N1 outbreak in 1997 (14).  

Since then, Hong Kong has been an important contributor to the WHO global influenza 

surveillance network (15).  Therefore, understanding the seasonal pattern and potential 

determinants of influenza in Hong Kong is important from both local and global 

perspectives.   

Previous studies on influenza have reported various factors that might be 

associated with influenza seasonal variation, such as virus antigenic shift and drift, 

human living in overcrowded settings, contact patterns among people, some 

environmental factors such as temperature, relative humidity (RH), and the El Nino 

Southern Oscillation (ENSO) (16-18).  Awareness of relationships between seasonal 

influenza and local weather variables reaches back to early twentieth century in the 

United States (19).  The associations between weather and human influenza transmission 

are highly complex, with some evidence suggesting that upper respiratory infection 

epidemics, including those due to influenza, might be associated with rapid change in 
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temperature and sudden cold weather (20).  Rainfall has been associated with subtype B 

influenza in Singapore and relative humidity may also be linked to influenza transmission 

in Germany and Japan (21-23).  A laboratory study on guinea pigs showed that absolute 

humidity (AH) is more significantly associated with influenza virus survivability and 

transmissibility than with temperature and relative humidity (RH) (24,25).  The 

association between AH and influenza-related mortality has been also demonstrated in 

different regions of the USA recently (26).   

Despite these and other studies, the role of local weather variables and the 

underlying mechanisms by which weather variability affects influenza seasonal variation 

still remain poorly understood, especially in the tropical and sub-tropical regions.  

Possible reasons for this problem include potential confounders such as environmental 

factors, human social behavior, and influenza clinical classification (27).  These 

confounders are difficult to be controlled in analyses when seeking causal relationships 

between weather factors and influenza patterns.  Hypothesized mechanisms include that 

weather might alter patterns of human social activity, human-to-human contact, human 

immunity relevant to Vitamin D absorption, virus survival in the environment, as well as 

virus transmissibility and coexistence with other pathogens (28-31).  Further 

investigations are needed to explore whether the relation between weather variables and 

influenza exists in various population groups across broader geographic regions, 

especially in tropical/subtropical countries.  

In addition to local weather variables, several recent studies have also linked 

influenza seasonal variability to global climate indices which represent multiple climatic 

phenomena across large geographic scales, such as atmosphere, precipitation, sea surface 
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temperature (SST) and "teleconnections".  Teleconnection refers to climate anomalies 

from geographically distant regions being related to each other.  Some important 

teleconnections in the northern hemisphere include El Niňo Southern Oscillation (ENSO), 

Pacific/North American pattern (PNA), West Pacific (WP) and Pacific Decadal 

Oscillation (PDO).  Viboud et al. examined the influence of global climate on influenza 

activities during 1979-2000 in France, demonstrating associations between the 

Multivariable ENSO Index (MEI) and influenza-related mortality and influenza-like 

illness (ILI) (16).  Greene et al. examined both local weather and global climatic indices 

in relation to pneumonia and influenza (P&I) mortality in different climate regions in the 

United States, and found that temperature and West Pacific teleconnection were weakly 

associated with P&I mortality in some climate regions (32).   

Probably the most important teleconnection is ENSO, which involves two related 

climatic phenomena: the oceanic components of El Niño and atmospheric patterns termed 

the Southern Oscillation.  El Niňo refers to higher than normal SST over the central and 

eastern equatorial Pacific Ocean, an anomaly that usually recurs every few years, lasting 

12 months or so.  Conversely, La Niña involves lower than normal SST in this ocean 

region.  ENSO significantly affects global and local year-to-year climate variability.  In 

Hong Kong, ENSO brings more rainfall in winter and spring, fewer tropical cyclones 

before June (33).  These ENSO characteristics can be measured by a weighted average of 

the main ENSO features, namely MEI, which includes SST, sea-level pressure, surface 

air temperature, total cloudiness fraction, the east-west and north-south components of 

the surface wind over the tropical Pacific (33). 
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Another teleconnetion relevant to Hong Kong is the pacific/North American 

(PNA) pattern which presents low-frequency variability in the Northern Hemisphere 

extratropics.  The PNA is related to the East Asian jet stream.  The positive phase in PNA 

is related to an enhanced East Asian jet stream; on the other hand, the negative phase in 

PNA is associated with a westward retraction of that jet stream toward eastern Asia (34).  

The PNA is associated with temperature variation in Hong Kong (35) and is strongly 

influenced by ENSO (36).   

The West Pacific (WP) teleconnection presents a primary mode of low frequency 

variability over the North Pacific region all year long.  In winter and spring, WP includes 

a north-south dipole of anomalies, one centering over the Kamchatka Peninsula and the 

other over parts of southeastern Asia including Hong Kong and the western subtropical 

North Pacific.  The strong phases of WP pattern indicate variations in the Pacific jet 

stream and are associated with unusual temperature and precipitation in the North Pacific 

region (37).   

The Pacific Decadal Oscillation (PDO) is defined by a shift in the SST pattern of 

the North Pacific Ocean, occurring on a 20- to 30-year cycle.  The positive phase PDO 

represents negative anomalies of northwest Pacific SST (38,39).  

Our study was designed to evaluate whether local weather and global climate 

indices might help predict influenza disease dynamics in the sub-tropical region of Hong 

Kong.  We analyzed temporal patterns of influenza using surveillance data from the city 

of Hong Kong, and considered the role of viral strain type/subtypes in identifying 

associations.  Our goal was to better understand how weather and climate variability 

might affect influenza transmission in the east/southeast Asian, tropic/sub-tropic region, 
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perhaps leading to better “early warning” of future epidemics, thereby strengthening 

influenza prevention not only in local regions but also in other tropical/subtropical 

regions.  

 

MATERIALS AND METHODS 

Study Area 

Located in the Southeastern China Pacific coast region (22.3oN, 114.2oE, Figure 

4.1), Hong Kong is a high-density metropolitan area with 6.8 million residents within a 

1,104 square kilometer area.   

Hong Kong has a typically sub-tropical climate with temperate weather for nearly 

half the year.  January and February are the coldest months of the year, with low 

temperatures reaching 10 oC.  March and April are pleasant spring months with 

occasional spells of high humidity and reduced visibility.  May to September are hot and 

humid months with occasional showers and thunderstorms.  Afternoon temperatures are 

often higher than 30 oC, with night temperatures near 26 oC.  Due to tropical cyclones, 

strong winds and heavy rain are common during these summer months when more than 

80% of annual rainfall (range from 130 to 300 cm.) occurs.  October to December has 

pleasant breezes, sunshine and comfortable temperatures.  Snow and tornadoes are rare in 

Hong Kong (40).  

 

Influenza Surveillance Systems in Hong Kong 

The influenza surveillance system in Hong Kong consists of 62 public-sector 

sentinel general outpatient clinics (GOPC) and 50 private-sector sentinel general 
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practitioners (GP).  This influenza surveillance network collects and reports the weekly 

number of outpatient visits for all causes, and those for ILI (defined as high fever ≥38 0C 

plus cough or sore throat).  The surveillance network, primarily GOPC, also submits 

specimens from ILI patients to the Public Health Laboratory Services Branch (PHLSB) 

for influenza virus testing (15). 

 

Influenza Morbidity Data Sources and Definitions 

Influenza morbidity is measured by both the weekly proportion of outpatient 

visits with a diagnosis of ILI (ILI proportion), and weekly proportion of samples from ILI 

patients that test positive for influenza virus.  The Hong Kong Department of Health 

(DOH) publishes online weekly and monthly proportion of ILI among all patients who 

seek treatments through GOPCs and GPs.  The weekly total number of specimens tested 

and those found positive for influenza virus were provided by Hong Kong's PHLSB.  

This weekly influenza virus positive proportion (VPP) was calculated overall, and by 

type/subtype.  In our study, the ILI proportion and VPP data from 1998 through 2008 

were analyzed.   

 

Relative Index of Weekly Influenza Transmissibility Based on ILI and VPP 

A relative measurement of weekly influenza incidence, It, can be estimated by ILI 

proportion multiplied by VPP during each specific week (41).  A modification of the ratio 

between each current week’s incidence It, to the previous week's incidence It-1, (It/It-1)u/7, 

can be considered as a relative indicator of weekly influenza transmissibility, where u is 

the influenza serial interval (the time between successive cases in a chain of transmission 
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and can be estimated by the time interval between infection and subsequent transmission) 

and equals to ~3 days (41).  The potential associations between weather variables and the 

influenza transmissibility index were explored in this study.   

 

Summarized Index of Influenza Morbidity Impact during Annual Epidemic Period 

To understand the annual influenza epidemic season variations from multiple 

perspectives, we calculated several summarized indices for each influenza epidemic 

period.  These indices included the onset date of epidemics, the duration of epidemics, 

the maximum VPP and ILI proportion, and the cumulative VPP and ILI proportion level 

during the epidemic. 

The onset of each epidemic period was determined by both dynamic linear 

modeling and CUSUM approaches based on weekly ILI proportion and VPP data (25).  

The dynamic linear modeling is a time series technique.  This approach defines an 

epidemic "alert" when the current week observed data is greater than the forecasted ILI 

based on previous nine weeks’ data.  The CUSUM method defines the epidemic onset 

date by using a running average and running variation for previous seven weeks’ data.  

Epidemics were defined whenever at least two consecutive weeks have equal or greater 

VPP or ILI proportion than that at epidemic onset period.  The length of each epidemic 

was the period of weeks with equal or higher influenza levels after the epidemic onset.  

The maximum levels of epidemic were the highest VPP and ILI proportion among the 

epidemic period.  The influenza morbidity impact was presented by the sum of all ILI 

cases or virus positive counts during the epidemic period. 

 

http://en.wikipedia.org/wiki/Time�
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Weather Data Sources and Transformations 

Both local weather variables and global climatic indices data were collected.  

Daily local weather variable data from 1998 through 2008 were provided by 

meteorologists from the Hong Kong Observatory (HKO), including mean absolute 

humidity (kg/m3), mean relative humidity (%), maximum, mean and minimum air 

temperature (oC), mean dew point temperature (oC), global solar radiation (MJ/m2), total 

daily rainfall (mm), prevailing wind direction (degree), mean wind speed (km/h), mean 

cloud cover (%), reduced visibility (hour number), and total bright sunshine (hour 

number).  Measures were averaged from several weather station records in Hong Kong.   

Daily “normal” was calculated for all variables and each day from January 1 

through December 31 by averaging all daily values for each specific date from 1998 to 

2008.  Then, anomalies for each day and for all variables were calculated by subtracting 

that day's normal from the observed daily data.  Weekly crude and anomaly values were 

calculated from daily data by simple averaging of seven days in a specific week.   

 

Global Climatic Indices 

Monthly global climatic indices for ENSO and other teleconnection patterns, 

including MEI, PNA, WP, and PDO, were downloaded online for the period 1998-2008 

(42).  

 

Correlation Analysis among ILI Proportion, Influenza VPP, Transmissibility Index 

and Weather Variables 
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Lagged and non-lagged correlations between weekly influenza measurements 

(VPP, ILI proportion and transmissibility index) and weather variables were analyzed.  

Both Pearson’s correlation and Spearman Rank correlation were applied to evaluate 

linear only and linear/polynomial correlations between two variables respectively.  Partial 

Correlations were also calculated to address the inherent collinearity among weather 

variables (e.g. in Hong Kong summers tend to be hot and humid while winters are usually 

cold and windy).  In this way, relationships between influenza and a specific weather 

variable were analyzed by controlling for cross-correlation among different weather 

variables.  

To address lagged effects more efficiently, cross-correlation maps were used to 

present and visualize various time-lags of weather associations with influenza.  The 

cross-correlation map approach proposed by Curriero et al. (43) was modified and then 

applied to analyze associations between weekly ILI proportion, VPP and weather 

variables.  First, lagged correlation/partial correlation coefficients, corr(Yi, f(Xi-a, i-b)), 

between a weekly influenza measurement Yi and a lagged climate variable Xi was 

computed by applying Pearson or Spearman correlation.  The lagged effect was 

characterized by a, b with a≧b.   a should be at least larger or equal to 17 days, based on 

the possible lagged weather effect on influenza in previous study (21).  The function f(.) 

is a summary function of climate variables.  In our study, we set this summary function as 

the average, maximum and minimum weekly weather variables.  Second, the correlation 

values were plotted on time interval lags space (lag a and b) to generate cross-correlation 

maps.  The highest and lowest correlation coefficients for each climate variable and time 

lag were output, indicating the largest potential influence of a climate variable for 
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different lagging intervals.  Multiple cross-correlation maps were generated for both VPP 

and ILI proportion.  This cross-correlation map can present results for multiple time-lag 

correlations simultaneously, an advantage over the traditional correlation test for one 

single time lag.   

 

Statistical Analyses of Epidemic Onsets and Daily Weather Variables Anomaly 

To test statistical significance of associations between weather anomalies and 

epidemic onset dates, bootstrapping test approaches were applied to daily anomalous 

climatic variables prior to epidemic onset date.  The null hypothesis in this bootstrapping 

test was that daily anomalous values for a specific weather variable preceding the 

epidemic onset date have mean zero.  We randomly sampled daily anomalous values in 

4-week blocks before the epidemic onsets for 10,000 times.  An average sample value for 

each of these 10,000 samples was calculated to create a distribution of these sampled 

average values.  Statistical significance was assessed by determining the location of the 

observed value of average climatic variable values in the distribution of 10,000 sampled 

average values.  

 

Statistical Analyses of Epidemic Summarized Indices and Global Climatic Indices 

The partial correlations between the summarized epidemic indices (epidemic 

period length, cumulative VPP and ILI proportion) and global climatic variables were 

computed.  The lagged effects of global climate variables on influenza activity were 

assessed by using global climatic data 0-3 months prior to the epidemic onset month.  
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The lagged interval showing the most significant association with influenza activity was 

identified.  

For climatic indices that produced a larger Spearman Correlation coefficient than 

Pearson’s Correlation coefficient, the associations may not be deemed linear, so quadratic 

terms were explored.   

 

ARIMA Time Series Analyses of Weekly Virus and Local Weather Variables 

Autoregressive Integrated Moving Average (ARIMA) modeling was applied to 

explore the association between weekly influenza VPP and local climatic variables.  

ARIMA models enable us to study relationships between multiple time series data 

adjusted for autocorrelation of the time series data.  Multiple time series analysis can 

explore the time dependence of the relationship between influenza and weather variables.  

Autoregression coefficients R2 and log-likelihood were reported from these analyses.  

Model validity was checked by comparing Akaike Information Criterion (AIC) and log 

likelihood.   

All statistical tests were 2-tailed, and statistically significant P-values were <0.05.  

The statistical software R (version 2.10) was used for all analyses.  

 
RESULTS 

Two annual transmission peaks were found in 9 of 11 study years, usually 

occurring during February through April and again in “early summer” (June-July).  We 

hypothesized that a new emerging predominant subtype strain might be associated with 

the second epidemic peak.  In addition, the relationships between influenza morbidity 

measurements and meteorological variables were examined.  We found that the adjusted 
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association between AH and influenza VPP was the strongest among all meteorological 

variables.  We also found significantly negative AH anomaly two weeks prior to the 

onset of influenza epidemics.   

 

Descriptive Statistics 

The patterns of weekly ILI proportion and VPP for the entire studying period 

(Figure 4.2) and by week in a year (Figure 4.3) showed complex patterns.  From the 

GOPC surveillance, the average weekly ILI proportion was 5.34 (range 1.0 to 19.7) per 

1,000 patient visits.  From GP surveillance, the average weekly ILI proportion was 46.85 

(range 22.9 to 123.0) per 1,000 patient visits (data not show).  Monthly ILI proportion 

data are summarized in Table 4.1.  In most years, a first higher peak appeared in February 

to April, and a second lower peak appears in June to August   

A median of 1,857 specimens (range 665- 5613) were collected each week for 

influenza etiology testing, primarily from sentinel hospitals.  There is influenza virus 

transmission year round.  The average weekly influenza VPP was 13.0%, ranging from 

0.3% to 51.9%.  Multiple subtypes of influenza virus strains were simultaneously co-

circulating (Table 4.2).  Among the 11 years of the study period, H3N2 was the single 

predominant strain in seven years; H3N2/H1N1 or H3N2/B predominated during three 

years; and H1N1/B was most often isolated in 1 year.  Subtype H3N2 dominant years had 

relatively higher morbidity levels than non-H3N2 dominant years.   

The annual pattern of weekly influenza VPP was slightly different from weekly 

ILI proportion pattern.  Weekly VPP seasonal swings were much more distinct than 

weekly ILI proportion.  In general, influenza VPP outside of the epidemic period was 
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much lower and even close to zero.  A larger first peak in late winter/early spring 

occurred every year.  A smaller second peak in summer was usually observed, and was 

more apparent in the VPP pattern than in ILI data (Figure 4.3).  In 9 of 11 years, a clear 

bimodal pattern of VPP was evident, with the other 2 years showing a single wide 

“plateau” epidemic peak.   

 

Influenza Epidemic Onsets and Temporal Patterns Based on Influenza Morbidity 

Onset of each epidemic period was defined by linear dynamic modeling and 

CUSUM approaches based on weekly ILI proportion and VPP.  The general results from 

these two methods were similar, but the onsets were sometimes slightly different.  During 

1998 through 2008, ILI-base analysis produced 23 epidemic periods, while there were 

only 20 epidemic periods based on VPP data as shown in Figure 4.6.  When comparing 

the epidemic onsets based on both ILI proportion and VPP, we found that the epidemic 

onsets based on VPP data commonly began 1-2 weeks earlier and the epidemic periods 

were longer than that based on ILI data.  After an epidemic took off, the VPP and ILI 

proportion quickly rose to a maximum within 3-5 weeks.  Then ILI proportion and VPP 

declined to a lower non-epidemic baseline level after a few weeks to three months (but 

extended to 7 months in 2002).  This influenza temporal pattern is different from that 

seen in temperate climate regions by the usual timing of onset (late winter/early spring), 

the shorter duration of intense transmission, and a typical second, smaller, summer 

transmission period.   

 We further explored the virus subtype classification information, and found that 

the second “summer” epidemic peak was associated with a new dominant subtype strain 
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appearance from 1998 to 2008 except the year of 2004.  Subtype H3N2 was dominant 

throughout 2004, but influenza VPP was significantly low between the first and second 

epidemic peak.  A possible new H3N2 subtype strain might have been involved with the 

second epidemic peak, but we were not able to determine this from the available subtype 

data.   

 

Local Weather Variable Data 

The local weather in Hong Kong is typical sub-tropical.  Most weather variables 

displayed a unimodal pattern over the year as shown in Figure 4.4.  Daily temperature 

averages ranged from 12.6 to 32.4 oC with the average annual temperature being 23.6 oC.  

January and February generally were the coldest months of the year, and June through 

September the hottest.  Similar to daily temperature, daily rainfall and relative humidity 

(RH) also reached a peak in summer.  Daily rainfall displayed the greatest variation in 

summer months.  Absolute humidity (AH) was lower in December and January, but 

slowly increased to peak levels in August.  Daily cloud amount only varied slightly 

during the year, peaking in spring and early summer.  Daily 60-minute wind speed was 

relatively stable throughout the year.   

 

Global Climatic Indices, 1998-2008 

Global climatic indices varied somewhat by monthly average as shown in Figure 

4.5.  Monthly MEI and PNA were, on average, similar throughout each year.  Monthly 

WP displayed two peaks in February and September.  PDO reached a low level in 
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October.  Over the 11 years of study, MEI and PDO varied at low frequency and 

displayed great variation.  WP and PNA varied at high frequency and less regularly.  

 

Weekly Local Weather Association with ILI Proportion and Influenza VPP 

A strong correlation between weekly ILI proportion and influenza VPP was found 

(r2=0.64, P<0.001), suggesting that the two show similar patterns.  However, the 

associations between local weather variables and these two influenza indicators were 

different.  

Some weather variables are temporally correlated with each other.  In Hong Kong, 

there were strong correlations among all pairs of daily variables including maximum, 

average and minimum temperature, dew point temperature, AH and radiation (all R2 ≥0.6, 

P<0.001).  There were weaker, but statistically significant correlations, among 

temperature, AH, RH, solar radiation, cloud amount, and rainfall (data not shown).  To 

adjust for these intercorrelations, partial correlations among weather variables and 

influenza VPP, ILI proportion were analyzed along with crude correlation estimates.  All 

correlations were calculated by using both Pearson and Spearman approaches, and the 

results were similar.  

The non-lagged relations between weekly weather variables and influenza were 

explored first as shown in Table 4.3.  Weekly mean wind velocity, cloud amount, and 

rainfall were significantly correlated with current week ILI proportion.  Statistically 

significant but weaker correlations between the weekly absolute humidity, radiation, dew 

point, mean temperature and current week ILI proportion were also found.  On the other 

hand, only current week dew point, rainfall, and relative humidity were significantly 
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correlated with the influenza VPP.  Adjusted correlations were generally smaller than 

crude correlations except for the case of wind speed.   

Lagged correlations between weather variables and influenza are shown in Tables 

4.4 and 4.5, and Figures 4.7 and 4.8.  AH roughly 7 weeks prior was positively correlated 

(R2 = 0.32~0.34) with both ILI proportion and influenza VPP.  The association was 

consistent in both GOPC and GP surveillance settings, and for all virus strains or for 

H3N2 stains only.  After adjusted for other weather variables, AH was the most 

significant weather variable, but the association became negative.  The reversed adjusted 

relationship might be caused by correlation between temperatures and AH measures.  

Preceding RH (0-2 weeks lagged) was also significantly correlated with both ILI 

proportion and VPP after adjusting for other weather variables, but the association was 

much weaker that of AH.  

Preceding precipitation (prior 7-12 weeks), solar radiation (1-14 weeks), and 

mean sea level pressure (10-14 weeks) were significantly correlated with both ILI 

proportion and VPP for both GOPC and GP surveillance settings and all virus strains 

classification (Tables 4.4 and 4.5).  The associations were still among the strongest 

significant ones after adjusting for other weather variables.  

Four temperature variables, preceding (3-12 week) average, maximum, minimum, 

and dew point temperature, were all significantly correlated with both ILI proportion and 

VPP at similar degree (R2 = 0.30~0.50, P<0.01).  However, after adjusting for other 

weather variables, the correlation between preceding minimum temperature and both ILI 

proportion and VPP was still consistent and strong; the correlation between preceding 

average temperature and ILI proportion and VPP still remained but was decreased; the 
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correlations between preceding maximum temperature, dew point temperature and 

influenza disappeared. 

Preceding wind (0-13 week) and cloud amount (0-14 week) were correlated with 

both ILI proportion and VPP at low level comparing to other weather variables.  After 

adjusting for other variables, the association between preceding cloud amount and 

influenza decreased.  However, the association between preceding wind and influenza 

slightly increased for VPP or significantly increased for ILI proportion.  

 

Weekly Local Weather Variable Associations with the Influenza Transmissibility 

Index 

The associations between non-lagged weekly local weather variables and 

influenza transmissibility index are slighter comparing to that based on ILI proportion or 

VPP.  Non-lagged temperature measurements (maximum, mean and minimum) and AH 

were similarly related to influenza transmissibility index (R2 = -0.21~-0.22, P<0.01).  

Statistically significant but weaker correlations between non-lagged weekly wind speed, 

radiation and influenza transmissibility index were also found (R2 = -0.13, P<0.05).   

Lagged correlations between weekly weather variables and influenza 

transmissibility index decrease compared to non-lagged ones.  Only preceding AH (prior 

4-7 weeks) was still slightly associated with influenza transmissibility (R2 = -0.10, 

P<0.05).  Similarly, all adjusted partial correlations between weekly weather variable and 

influenza transmissibility index decrease comparing to crude ones.  Only adjusted 

minimum temperature was still slightly associated with influenza transmissibility (R2 = -

0.11, P<0.05).  
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Weekly Local Weather Anomaly Association with ILI Proportion and Influenza 

VPP 

Cross-correlation map analyses demonstrated interesting patterns in anomalies of 

weekly weather variables and influenza morbidity (VPP and ILI proportion) compared to 

crude weather variables as shown in Tables 4.6-4.7 and Figures 4.9.  Non-lagged weekly 

weather variable anomalies were not significantly correlated with influenza VPP or ILI 

proportion.  However, adjusted lagged correlations between weather anomalies and 

influenza were stronger than non-lagged ones, and some were statistically significant.  

Compared to crude weather variable values, weather anomaly values for all variables 

were correlated with influenza morbidity in the same directions, but were much weaker.  

Preceding weekly AH, minimum temperature, solar radiation, and precipitation 

anomalies were consistently negatively significantly correlated with influenza VPP and 

ILI proportion based on different lag periods.  Preceding weekly wind and sea level 

pressure anomalies were consistently positively correlated with weekly influenza VPP 

and ILI proportion.  The remaining weather variables anomalies were weakly related to 

influenza morbidity, and the relationship direction changed in different surveillance 

settings or for different virus type classifications. 

 

Weekly Local Weather Anomalies and the Influenza Transmissibility Index  

To explore the potential relationship between local weather anomalies and 

influenza transmission index, correlation coefficients were developed.  The correlations 

between weekly influenza transmissibility index and weather anomalies were generally 
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weaker than those based on crude weather variables.  The most significant correlations 

were found between influenza transmissibility index and 1 week preceding anomalies of 

average and minimum temperature (R2=-0.13, P<0.01).  The second biggest and weaker 

correlation was found between influenza transmissibility index and 2 week preceding AH 

anomalies (R2=-0.093, P≈0.052). 

 

Daily Preceding Local Weather Anomalies and Epidemic Onsets  

Influenza epidemic onsets were analyzed in relation to daily local weather 

variable anomalies during 30 days before and after each onset.  Analysis of all daily 

weather variable anomalies showed associations but no statistical significance except for 

that of AH.  A period of low AH (negative anomaly) was found around two weeks prior 

to the onset of VPP-defined epidemic onsets as shown in the Figure 4.10.  This 

correlation between negative AH anomaly and epidemic onset was statistically significant 

by a bootstrapping method (P<0.01).  These results were robust when we applied the 

CUSUM and MOVING AVERAGE approaches to define the onset of epidemics.  We 

also detected an association of lower RH with epidemic onset that was not strong and 

significant as for AH.   

Similar analyses based on epidemic onsets determined from ILI proportion data 

produced correlations with negative AH, negative Temperature, negative Dew Point, 

negative Solar Radiation, and positive RH, but the same bootstrapping tests failed to 

detect statistical significance for these correlations.  The directions of association of solar 

radiation and RH with epidemic onset agree to long time believed epidemic conceptions, 

but are contrary to recent findings by Shaman et al. (26,27).   
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Monthly Global Climate Indices and Monthly VPP or ILI Proportion 

As shown in the correlation matrix in Table 4.8, monthly influenza VPP was 

positively associated with preceding 1 month WP, average preceding 2 month WP, 

average preceding 2 month PNA, average preceding 3 month PNA, current month PDO, 

and preceding 1 month PDO.  Since subtype strain H3N2 was predominant during the 

study period, we explored the correlation between H3N2 and global climate indices.  

Monthly H3N2 positive proportion was significantly positively correlated with the 

current month MEI, PNA and PDO, with preceding 1 month MEI and PDO, with average 

preceding 2 month MEIT, PDO, PNA, and with average preceding 3 month MEI, PDO, 

PNA.  Monthly H3N2 VPP also was significantly correlated with current month and 

average preceding 1, 2 and 3 month SOI in negative direction.  The monthly ILI 

proportion was significantly positively correlated with current monthly PNA and PDO, 

preceding 1 month WP and PNA, average preceding 2 month WP and PNA,  and average 

preceding 3 month WP and PNA.   

 

Global Climate Indices and Summarized Influenza Epidemic Periods 

For each epidemic period, we identified the cumulative influenza VPP and ILI 

proportion, the maximum virus positive proportion and ILI proportion, and the duration 

of epidemic period.  We averaged 1-3 month global climatic indices before epidemic 

onsets to explore the correlations with summarized epidemic impact.  As shown in Table 

4.9, significant positive correlations were found between average preceding 1, 2, 3 

months PNA and cumulative virus positive proportion, as well as length of epidemic 
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period.  ILI count in epidemic period was positively associated with average preceding 2 

and 3 month PNA.   

 

ARIMA Modeling of Influenza VPP and Local Weather Variables   

To explore if weather variables could predict the influenza morbidity variation, 

ARIMA modeling was applied to weekly VPP and weekly local weather variables.  

Weekly influenza VPP was log-transformed to stabilize the variation of the time series.  

Since some weekly influenza VPP values are close to 0, we added a small constant to 

prevent the log-transformation outliers which could ruin the analysis before taking log-

transformation.  Then the AR order, MA order and degree of non-seasonal differencing 

of ARIMA model were determined based on Auto-Correlation Function (ACF) and 

Partial Auto-Correlation Function (PACF).  No seasonal differencing was needed in this 

ARIMA effort due to weekly time resolution and non-seasonal differencing process.  The 

AR order, MA order and degree of differencing were set as 0, 3, and 1 respectively.  As 

shown in Table 4.10, the ARIMA(0,1,3) had the lowest Akaike Information Criterion 

(AIC) and was considered as a baseline model for our comparisons.  Univariate models 

with single lagged weather variables, AH, average, maximum, minimum temperature, 

dew point temperature and rainfall, improve significantly comparing the baseline model 

ARIMA(0,1,3).  Among multivariate models, ARIMA(0,1,3) with AH, minimum 

temperature, and rainfall performed the best and improve the univariate models.  Multiple 

models were compared based on AIC, Log likelihood and X2 test.  The fitted and 

observed weekly influenza VPP of this model were plotted in Figure 4.11. 

 

DISCUSSION 
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As in several previous studies (15, 47), besides the initial annual epidemics that 

usually occurred between February and April, we identified a second smaller or equal-

sized summer epidemic in 9 of 11 years in a subtropical region based on relatively longer 

time and more reliable influenza data.  The other 2 of 11 years displayed a single wide 

"plateau" epidemic pattern.  We further explored the virus subtype classification 

information, and found that the second “summer” epidemic peak was associated with a 

new dominant subtype strain appearance from 1998 to 2008 except the year of 2004.  

Subtype H3N2 was dominant throughout 2004, but influenza VPP was significantly low 

between the first and second epidemic peak.  A possible new H3N2 subtype strain might 

have been involved with the second epidemic peak, but we were not able to determine 

this from the available subtype data.  Additional analysis on subtype immunogenecity or 

subtype genetic sequencing test might help confirm this possibility in the future.  A new 

dominant influenza virus subtype and low level of host immunity to it might the primary 

driven forces for the second epidemic perk.    

We examined the potential relationships between influenza morbidity (ILI 

proportion and VPP) and meteorological variables in a subtropical metropolitan region.  

We found that local weather variables were statistically significantly associated with the 

proportion of ILI cases that tested positive for influenza virus, and the proportion of ILI 

diagnosis in outpatients visiting Hong Kong influenza surveillance sites.  We also found 

that relationships between influenza morbidity and time-lagged weather/climate variables 

were much stronger than non-lagged ones.  Our results not only extend previously 

demonstrated influenza associations with weather variables such as temperature, relative 

humidity, dew point, solar radiation, and rainfall to a new region, but also identify newly 
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recognized correlations with absolute humidity.  The association between AH and 

influenza VPP was strongest after adjusting for other weather variables in all settings.  It 

was much stronger than those for relative humidity, temperature and solar radiation.   

We also explored the associations between daily weather anomaly and epidemic 

onsets.  Significant negative daily AH anomaly two weeks prior to the onset of VPP-

defined influenza epidemics was found.  Considering the difference of how to define 

epidemic onsets, this result is similar to previous findings from Shaman et al based on 

P&I mortality data in the US (26).  However, at the weekly time scale, the AH anomaly 

was only slightly associated with a theoretical weekly influenza transmissibility index.  

This slight inconsistency might be due to the weekly averaging effect or an inappropriate 

transmissibility index.  We were not able to detect significant correlations between 

epidemic onset and daily relative humidity, temperature and radiation as Shaman did (26).  

Overall, these results based on influenza morbidity data are consistent with recent new 

findings from laboratory guinea pig studies and influenza mortality analysis in U.S. (24-

26).  

Our study is the first that we are aware of to explore the relationship between AH 

and influenza based on weekly influenza morbidity data.  Further, minimum temperature 

was consistently correlated with influenza morbidity, as was average temperature, but 

minimum temperature normally was much stronger.  Results of the relationships between 

influenza morbidity and temperature, relative humidity, rainfall and solar radiation are in 

agreement with previous studies in different geographic/climatic regions such as 

Germany, USA and Japan (22-24).   
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The underlying mechanisms for these relationships are complex and remain 

unclear.  From recent laboratory studies involving transmission in animal models, 

absolute humidity more significantly altered influenza virus survival and transmissibility 

in the environment than relative humidity or temperature (25).  Increased temperature 

might lower influenza virus infectivity by altering hemagglutinin (HA) secondary 

structure and destabilizing HA’s trimeric form (44).  Temperature seems to alter aerosol 

transmission, but not that operating through contact (45).  Rainfall might change the 

temperature, humidity and human social behavior, which could alter contact transmission.  

Also, decreased solar radiation seems to influence influenza risk by lowering human 

melatonin and vitamin D levels, thus reducing host resistance (25).  While weather 

variables might have multiple effects on influenza that involve virus survival, 

transmission, human immunity, disease expression, human contact pattern, human social 

activity (18), most epidemiological studies, including ours, cannot distinguish the direct 

biological effects of individual weather variable from human behavioral changes 

associated with weather fluctuations. 

In addition to local weather associations, global climatic indicators that operate 

over large geographic regions were also found to be associated with observed influenza 

patterns.  A significant association between the preceding three month average global 

climate index of PNA and summarized influenza epidemic impact was found in our study.  

The PNA was positively related to the East Asian jet stream which brings cold weather 

over East Asia (37).  The PNA was associated with local temperature variation in Hong 

Kong (38), possibly increasing extra-host survival of influenza virus, decreasing human 

immunity, and altering human social physical activity in public venues.  Although other 
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global climate indices such as ENSO and NAO have been associated with influenza 

morbidity and human health in temperate regions of Europe and the USA (16, 46), we 

were unable to detect these associations in our subtropical setting.  This could be due to 

the different influences of ENSO and NAO on Hong Kong's local weather, or to the 

relative small number of epidemic seasons in our data set.  Our study is the first to 

examine global climate indices and influenza in subtropical East Asian regions.  We did 

detect significant correlations between monthly influenza VPP and lagged global climate 

indices MEI, PNA, PDO, and WP.  

Changes in weather variables before the second summer epidemic peak might 

also have influenced this second period of intense transmission.  During late spring/early 

summer, increased temperature and relative humidity may have lead to lower influenza 

aerosol transmission, but not to decrease contact transmission (48).  Increased rainfall 

probably increases contact transmission by altering human social activities (50).  

Absolute humidity generally increases later than relatively humidity and peaks in August 

and September, so the lower absolute humidity in late spring may strengthen influenza 

transmission.   

In our study, both influenza VPP and ILI proportion were considered as influenza 

morbidity measurements.  The relationships between weather variables and influenza 

VPP were in the same direction as that with ILI proportion, but were stronger with VPP.  

Similar to in temperate regions, a previous study from Hong Kong found that on average 

10% of ILI cases were caused by influenza virus in residential care homes (49).  The 

influenza temporal patterns based on influenza VPP and ILI proportion were also slight 

different as we applied dynamic linear modeling to identify influenza epidemics.  Both 
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influenza VPP and ILI proportion are not true population level measurements of 

influenza morbidity.  Their values are influenced by non-influenza respiratory pathogens.  

The ILI proportion is not a highly specific index of influenza activity, and also has 

sensitivity problems.  On the other hand, influenza VPP is more sensitive, but involves 

usually less coverage of the target population.  Overall, the relationships between 

influenza morbidity and weather variables based on influenza VPP are more sensitive and 

desirable.  Even having these disadvantages, VPP and ILI proportion are still considered 

the most valid indicators of influenza morbidity based on existing influenza surveillance 

system globally (50).  The results based on influenza VPP and ILI proportion reported 

here need to be assessed by using more valid data in future research. 

Further, based on both influenza VPP and ILI proportion, Shaman et al suggested 

another relative influenza transmissibility index that might be proportional to AH (41).  

Although we did identify a significant association between weekly AH crude data and 

this influenza transmissibility index, the association becomes insignificant after adjusting 

for other weather variables.  This transmissibility index might be not appropriate to use 

for long time period where biased noise is likely to be strong.  In a short period, the noise 

is less likely to be biased as seen in previous work (41). 

Soebiyanto et al. analyzed Hong Kong influenza weekly virus positive counts 

during 2004 - 2008 from the online source and reported an association with local weather 

variables temperature, relative humidity and rainfall (51).  Influenza virus count data only 

represented the absolute reporting of positive tests, and did not consider the total sample 

size tested in a week.  However, influenza virus count data are influenced by both the 

influenza incidence and the total specimen count collected for virus isolation.  Data from 
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Hong Kong DOH which we analyzed showed that the weekly influenza specimen counts 

for virus isolation testing varied dramatically from 238 to 824 and sometime might be not 

collected proportionally to total potential ILI case population due to the laboratory 

capacity.  The total specimen count was generally greater in the first half of a year.  The 

influenza virus positive count could be a strongly biased measure of influenza morbidity 

comparing to influenza virus positive proportion.  Further, positive virus count reported 

in one week sometimes includes samples that were collected in the previous week.  

Although Soebiyanto et al. also found associations between influenza and some local 

weather variables, the associations from out study based on influenza positive proportion 

are much greater and more reliable.  Moreover, they failed to discover the importance of 

AH.    

To help explore multiple associations and co-correlation, we modified and 

improved standard cross-correlation maps by computing and displaying partial Pearson 

and Spearman correlation coefficients.  This approach helps to directly visualize adjusted 

correlation patterns.  Another major analytic approach involved ARIMA modeling of 

weekly influenza VPP with local weather variables, significantly improving the model 

prediction.  By applying ARIMA model, we could identify weather variables which were 

more likely to influence the changing rate of influenza activity.  

Non-pharmaceutical prevention hygiene such as mask use and hand washing has 

increased in Hong Kong, especially after the H5N1 avian influenza outbreak in 1997, the 

SARS outbreak in 2003, and newly swine influenza strain H1N1 in last year (15).  Also 

the effects of weather may have less impact in a high density metropolitan region like 

Hong Kong where people normally spend considerable time indoors.  Thus, consistent 
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and reliable associations between climate variables and influenza are difficult to identify 

from multiple epidemiology studies, due to possible confounders (51).  Despite these 

issues, our study was able to find strong climate associations.   

Because the majority of years in our study period were dominated by the H3N2 

subtype, we were not able to investigate the relationships between weather variables and 

different influenza virus strains.  Although human immunity status, antiviral medication 

and vaccine use could affect the association between influenza morbidity and climate 

variables, data on these factors were not available for our study.  Socioeconomic factors 

also could modify the association between weather and mortality (52).  To better 

understand this association, future analyses that include immunity status, vaccine, and 

socioeconomic factors could provide a more complete understanding of associations.  

Many weather variables tend to strongly correlated to each other.  Kalkstein et al. found 

significant relationships between synoptic weather variables and influenza-associated 

mortality (53).  Synoptic factors might be an alternative consideration in future studies 

that examine multiple weather variables simultaneously.  

In conclusion, this study is one of the first to demonstrate associations between 

influenza morbidity and local meteorological variables and in tropical/subtropical region.  

Significant associations between AH and influenza morbidity, as well as between PNA 

and influenza epidemic patterns, were identified for the first time using influenza 

surveillance data.  Our results advance understanding of the complex associations 

between weather and influenza, even though additional studies are needed to explore the 

mechanisms underlying this relationship.  Our new findings of these associations provide 

potential avenues for future studies, help develop possibilities for better early warning of 
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influenza, and strengthen our predictive capacity for temporal patterns of influenza 

transmission. 
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Table 4.1. Monthly average ILI proportion in GOPC and GP settings in Hong Kong, 
China, 1998-2008. 
 

 
Month 

ILI proportion (per 1000) 

GOPC GP 

Jan 5.71 51.34 
Feb 7.65 57.35 
Mar 7.62 58.52 
Apr 4.93 47.06 
May 5.50 49.00 
June 6.10 48.94 
July 6.44 46.75 
Aug 4.75 41.13 
Sep 4.26 42.95 
Oct 4.00 41.18 
Nov 3.85 41.06 
Dec 4.05 42.25 
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Table 4.2. Monthly average influenza virus isolation positive proportion in Hong Kong, 
China,1998-2008. 

 
Month 

Mean 
specimen size 

H3N2 strain 
positive 

proportion 

H1N1 
positive 

proportion 

B positive 
proportion 

Jan 1930.23 9.07 2.97 3.51 

Feb 2269.31 15.21 4.83 5.55 

Mar 2971.62 13.45 3.56 5.98 

Apr 2373.08 8.45 1.69 3.01 

May 2454.92 8.77 3.18 1.67 

June 2922.38 11.33 3.08 1.55 

July 3529.38 14.00 3.35 1.65 

Aug 3579.31 8.08 2.25 1.95 

Sep 3485.85 3.52 0.82 1.61 

Oct 2239.77 1.02 0.25 0.87 

Nov 2210.92 0.44 0.27 0.65 

Dec 2552.62 1.36 0.50 1.16 
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Table 4.3. Non-Lagged Pearson correlations between weekly weather variables and 
influenza VPP, ILI proportion in Hong Kong, 1998-2008. 

 
Weather 
variables 

Influenza VPP ILI proportion 

Pearson Partial Pearson Pearson Partial Pearson 

R2 P R2 P R2 P R2 P 

Max Temp -0.2 0.0001 -0.08 0.11 -0.02 0.62 0.06 0.10 

Avg Temp -0.21 0.0001 -0.08 0.09 -0.04 0.32 -0.02 0.63 

Min Temp -0.22 0.0001 -0.17 0.0005 -0.06 0.14 -0.15 0.00001 

Absolute Humid -0.11 0.03 -0.18 0.0002 0.01 0.82 -0.13 0.0001 

Relative Humid 0.31 0.0001 0.13 0.01 0.12 0.001 0.014 0.73 

Radiation -0.06 0.22 -0.12 0.01 -0.01 0.76 -0.02 0.68 

Rainfall -0.01 0.77 -0.05 0.29 -0.02 0.66 -0.04 0.29 

Dew point -0.11 0.02 0.07 0.15 -0.01 0.84 -0.07 0.09 

Cloud amount 0.28 0.0001 0.095 0.053 0.13 0.0008 0.07 0.10 
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Table 4.4. Largest lagged correlation coefficient estimates and correlation test between 

weekly influenza VPP and local weather variables in Hong Kong, 1998-2008. 

Weather 
Variables 

Pearson  Partial Pearson  Spearman  Partial 
Spearman  

lag R2 P  lag R2 P  lag R2 P  lag R2 P  

 All influenza virus strain VPP 

Abs. Humidity 7-14 -0.5 *** 7-12 0.34 *** 10-14 -0.58 *** 5-9 -0.13 *** 

Relative Humidity 0-1 0.29 *** 6-12 -0.21 *** 0-2 0.36 *** 14-14 0.21 *** 

Avg. Temp 4-12 -0.5 *** 14-14 0.1 * 9-13 -0.57 *** 3-14 0.18 *** 

Min. Temp 5-11 -0.50 *** 6-11 -0.20 *** 9-13 -0.57 *** 3-7 -0.15 *** 

Max. Temp 4-13 -0.51 *** 9-13 -0.12 ** 9-13 -0.58 *** 3-14 -0.18 *** 

Dew Point Temp 6-13 -0.49 *** 7-8 0.08 * 10-14 -0.58 *** 7-12 -0.13 ** 

Radiation 1-14 -0.53 *** 14-14 -0.12 *** 4-14 -0.54 *** 0 0.24 *** 

Rainfall 8-14 -0.47 *** 7-12 -0.2 *** 10-14 -0.54 *** 11-11 -0.13 *** 

Cloud Amount 0-2 0.33 *** 2-9 0.21 *** 0-2 0.39 *** 4-13 0.30 *** 

Wind speed 13-14 0.16 *** 2-12 -0.17 *** 13-14 0.18 *** 4-12 -0.29 *** 

Sea level Pressure 10-14 0.55 *** 14-14 0.24 *** 11-14 0.60 *** 14-14 0.24 *** 

 H3N2 subtype strain VPP 

Abs. Humidity 8-14 -0.35 *** 7-12 0.14 *** 13-14 -0.43 *** 5-9 -0.11 * 

Avg. Temp 7-11 -0.34 *** 0-13 -0.14 *** 11-13 -0.42 *** 4-7 0.09 * 

Min. Temp 7-11 -0.34 *** 7-11 -0.13 ** 10-14 -0.41 *** 4-7 0.10 * 

Max. Temp 5-14 -0.35 *** 0-14 0.08 0.052 10-14 -0.42 *** 5-12 -0.08 0.054 

Dew Point Temp 6-14 -0.33 *** 3-11 0.13 *** 13-14 -0.43 *** 11-12 -0.08 0.07 

Relative Humidity 0-2 0.22 *** 4-11 -0.18 *** 0-2 0.26 *** 14-14 0.16 *** 

Radiation 1-14 -0.39 *** 0-14 -0.20 *** 5-14 -0.37 *** 0-0 0.13 ** 

Rainfall 8-14 -0.34 *** 0-14 -0.23 *** 8-14 -0.38 *** 0-14 -0.09 * 

Cloud Amount 0-2 0.25 *** 4-9 0.11 * 0-2 0.29 *** 4-13 0.29 *** 

Wind speed 13-14 0.14 *** 0-1 0.14 *** 13-14 0.19 *** 3-12 -0.18 *** 

Sea level Pressure 10-14 0.41 *** 13-14 0.22 *** 11-14 0.46 *** 10-14 0.21 *** 
***: p<0.001, **:p<0.01, *: p<0.05  
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Table 4.5. Lagged correlation coefficient estimates and correlation significance test 
between weekly ILI proportion and local weather variables in Hong Kong, 1998-2008. 
 

Weather 
Variables 

Pearson  Partial Pearson  Spearman  Spearman 
Partial 

lag R2 P  lag R2 P  lag R2 P  lag R2 P  
 ILI proportion in GOPC setting 

Abs. Humidity 9-14 -0.32 *** 8-13 0.32 *** 13-14 -0.35 *** 0 -0.16 *** 

Avg. Temp 3-14 -0.33 *** 13-14 0.16 *** 10-14 -0.35 *** 0-12 0.18 *** 

Min. Temp 3-14 -0.33 *** 10-14 -0.32 *** 10-15 -0.36 *** 0-12 -0.24 *** 

Max. Temp 3-14 -0.33 *** 4-5 0.14 *** 10-14 -0.35 *** 0-12 -0.06 *** 

Dew Point Temp 10-10 -0.32 *** 14-14 -0.09 *** 13-14 -0.36 *** 10-14 -0.25 *** 

Relative Humidity 10-14 -0.19 *** 8-12 -0.18 *** 0- 4 0.22 *** 2- 8 -0.19 *** 

Radiation 2-14 -0.43 *** 2-6 -0.23 *** 4-14 -0.40 *** 4-14 -0.14 *** 

Rainfall 10-14 -0.29 *** 10-13 -0.20 *** 10-14 -0.34 *** 11-14 -0.15 *** 

Cloud Amount 0-5 0.28 *** 3-10 0.22 *** 0-6 0.31 *** 4-10 0.25 *** 

Wind speed 0-14 0.30 *** 0-3 0.41 *** 13-14 0.22 *** 0-2 0.32 *** 
Sea level Pressure 10-14 0.34 *** 1-6 0.18 *** 13-14 0.36 *** 13-13 0.14 *** 

 ILI proportion in GP setting 

Abs. Humidity 9-10 -0.40 *** 8-12 0.16 *** 9-11 -0.40 *** 4-10 -0.12 *** 

Avg. Temp 3-11 -0.41 *** 2-14 0.16 *** 9-10 -0.41 *** 1-14 0.20 *** 

Min. Temp 3-11 -0.41 *** 10-14 -0.22 *** 9-10 -0.42 *** 10-14 -0.23 *** 

Max. Temp 2-13 -0.40 *** 0-14 -0.13 *** 3-14 -0.41 *** 0-14 -0.13 *** 

Dew Point Temp 3-14 -0.41 *** 2-14 -0.13 *** 9-11 -0.40 *** 2-14 -0.11 *** 

Relative Humidity 9-14 -0.29 *** 10-12 -0.12 *** 9-14 -0.22 *** 5-9 -0.17 *** 

Radiation 1-14 -0.42 *** 13-14 -0.18 *** 3-14 -0.42 *** 12-14 -0.21 *** 

Rainfall 8-14 -0.30 *** 10-11 -0.11 *** 9-14 -0.36 *** 10-13 -0.15 *** 

Cloud Amount 10-14 -0.14 *** 4-9 0.23 *** 0-5 0.22 *** 2-9 0.23 *** 

Wind speed 0-1 0.12 ** 0-2 0.16 *** 14-14 0.07 0.09 0-2 0.10 * 

Sea level Pressure 8-11 0.38 *** 14-14 0.09 * 9-11 0.39 *** 3-4 -0.10 *** 
***: p<0.001, **:p<0.01, *: p<0.05  
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Table 4.6. Lagged correlation coefficient estimates and correlation test between weekly 
influenza VPP and local weather variable anomalies in Hong Kong, 1998-2008. 
 

Weather 
Variables 

Pearson  Partial Pearson  Spearman  Partial 
Spearman  

lag R2 P  lag R2 P  lag R2 P  lag R2 P  

 All influenza virus strain VPP 

Abs. Humidity 0-14 0.16 *** 5-6 -0.10 * 11-14 0.09 * 1-12 -0.16 *** 

Avg. Temp 12-14 0.09 * 4-6 0.09 * 10-14 0.09 * 3-5 0.13 ** 

Min. Temp 12-14 0.10 * 3-8 -0.10 * 10-14 0.10 * 3-5 -0.14 *** 

Max. Temp 0-2 -0.06 0.19 0-14 0.04 0.40 10-14 0.06 0.14 0-6 -0.06 0.14 

Dew Point Temp 5-14 0.15 *** 5-5 -0.06 0.14 11-14 0.12 ** 12-13 0.24 ** 

Relative Humidity 0-14 0.16 *** 5-5 0.09 * 0-14 0.09 * 11-13 -0.08 0.06 

Radiation 0-14 -0.23 *** 0-3 -0.15 *** 0-6 -0.14 *** 1-5 -0.11 *** 

Rainfall 8-11 -0.04 0.32 0-14 -0.13 ** 12-12 0.16 *** 11-11 0.16 *** 

Cloud Amount 0-12 0.25 *** 2-8 0.12 ** 1-13 0.16 *** 0-14 0.16 *** 

Wind speed 12-14 0.10 * 13-14 0.07 0.08 13-14 0.09 * 0-10 -0.12 ** 

Sea level Pressure 0-7 0.07 0.09 3-7 0.18 *** 0-11 0.07 0.08 1-12 0.15 *** 

 H3N2 subtype strain VPP 

Abs. Humidity 0-14 0.21 *** 2-14 -0.18 *** 0-2 0.05 0.22 0-10 -0.22 *** 

Avg. Temp 0-14 0.18 *** 0-13 -0.09 * 0-10 0.15 *** 7-14 -0.10 * 

Min. Temp 0-14 0.19 *** 10-10 -0.06 0.14 0-14 0.16 *** 7-14 0.11 ** 

Max. Temp 0-14 0.12 ** 0-14 0.18 *** 2-14 0.14 *** 2-13 0.14 0.054 

Dew Point Temp 0-14 0.22 *** 0-12 0.11 ** 12-14 0.06 0.16 2-13 0.16 0.07 

Relative Humidity 7-14 0.13 ** 12-14 0.10 * 3-8 -0.14 *** 5-7 -0.09 *** 

Radiation 0-14 -0.20 *** 0-14 -0.31 *** 11-13 -0.10 *** 4-7 -0.27 *** 

Rainfall 0-10 -0.12 ** 0-14 -0.15 *** 12-12 0.11 * 11-11 0.11 * 

Cloud Amount 0-12 0.16 *** 13-14 -0.12 ** 3-8 -0.08 0.06 13-14 -0.11 ** 

Wind speed 0-14 0.13 ** 0-1 0.11 * 13-14 0.13 ** 13-14 0.14 *** 

Sea level Pressure 3-11 0.18 *** 3-11 0.31 *** 0-13 0.24 *** 3-13 0.35 *** 
***: p<0.001, **:p<0.01, *: p<0.05  
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Table 4.7. Correlation coefficient estimates and correlation test between weekly ILI 
proportion and local weather variable anomalies in Hong Kong, 1998-2008. 
 

Weather 
Variables 

Pearson  Partial Pearson  Spearman  Partial 
Spearman  

lag R2 P  lag R2 P  lag R2 P  lag R2 P  

 ILI proportion in GOPC setting 

Abs. Humidity 5-14 0.20 *** 4-5 -0.14 *** 0-9 0.15 *** 3-14 -0.19 *** 

Avg. Temp 6-14 0.12 ** 6-14 0.16 *** 0-0 0.10 * 3-13 0.17 *** 

Min. Temp 1-4 -0.13 ** 10-14 -0.23 *** 0-0 0.08 0.06 3-13 -0.24 *** 

Max. Temp 6-14 0.11 ** 4-5 0.14 ** 0-0 0.11 ** 3-3 0.09 * 

Dew Point  5-14 0.17 *** 6-7 -0.12 ** 0-9 0.12 ** 1-1 -0.12 ** 

Relative Humidity 4-9 0.16 *** 6-7 0.15 *** 2-9 0.10 * 3-9 -0.10 * 

Radiation 1-14 -0.32 *** 2-5 -0.27 *** 1-14 -0.22 *** 1-5 -0.13 *** 

Rainfall 3-9 0.06 0.17 1-14 -0.13 ** 9-9 0.12 ** 0-2 -0.10 *** 

Cloud Amount 1-13 0.37 *** 4-9 0.16 ** 2-14 0.30 *** 4-11 0.19 *** 

Wind speed 0-14 0.36 *** 0-3 0.35 *** 7-14 0.30 *** 1-8 0.28 *** 

Sea level Pressure 5-14 -0.12 ** 1-5 0.21 *** 8-14 -0.14 *** 1-6 0.15 *** 

 ILI proportion in GP setting 

Abs. Humidity 2-10 -0.09 * 5-7 -0.13 ** 12-13 0.09 * 2-13 -0.16 *** 

Avg. Temp 2-5 -0.12 ** 6-14 0.14 *** 3-4 -0.09 * 2-14 0.14 *** 

Min. Temp 2-13 -0.14 *** 1-14 -0.17 *** 2-14 -0.13 ** 2-12 -0.23 *** 

Max. Temp 2-5 -0.11 ** 9-9 0.09 * 3-4 -0.07 0.09 0-14 -0.07 0.10 

Dew Point Temp 2-11 -0.13 *** 4-9 -0.12 ** 12-13 0.10 *** 11-14 0.21 *** 

Relative Humidity 9-9 -0.06 0.13 6-7 0.14 ** 12-13 0.10 * 1-9 -0.15 *** 

Radiation 1-14 -0.22 *** 2-5 -0.15 *** 3-14 -0.16 *** 12-12 0.10 *** 

Rainfall 1-3 0.04 0.30 0-13 -0.08 0.07 12-12 0.15 *** 14-14 0.14 *** 

Cloud Amount 3-13 0.23 *** 4-9 0.19 *** 4-14 0.23 *** 5-12 0.17 *** 

Wind speed 10-14 0.12 ** 14-14 0.12 ** 12-14 0.09 * 12-14 0.07 0.11 

Sea level Pressure 12-14 -0.12 ** 6-9 0.08 0.06 11-14 -0.16 *** 11-14 -0.08 * 
***: p<0.001, **:p<0.01, *: p<0.05  
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 Table 4.8. Correlation coefficient estimates and correlation test between monthly global 
climatic indices and ILI proportion, influenza VPP in Hong Kong, 1998- 2008. 
 

Weather 
Variables 

Pearson  Partial Pearson  Spearman  Partial 
Spearman  

lag R2 P  lag R2 P  lag R2 P  lag R2 P  

 ILI proportion in GOPC setting 

MEI 0-3 -0.09 0.10 1-2 0.20 * 0-0 -0.14 0.06 0-0 -0.16 0.07 

WP 1-3 0.34 *** 1-3 0.38 *** 1-3 0.31 *** 1-3 0.26 *** 

PNA 1-3 0.30 *** 1-3 0.32 *** 1-3 0.22 * 1-2 0.21 *** 

PDO 0-0 0.21 * 0-0 0.16 0.06 1-2 0.16 0.06 1-1 0.11 0.09 

SOI 1-1 -0.11 0.19 1-1 -0.16 0.06 0-0 0.15 * 0-0 0.07 0.08 

 ILI proportion in GP setting 

MEI 1-3 0.14 0.06 1-1 -0.06 0.46 1-3 -0.24 ** 1-3 -0.14 * 

WP 1-3 0.34 0.07 1-3 0.17 * 1-3 0.19 *** 1-2 0.10 0.07 

PNA 1-3 0.30 0.15 1-3 0.21 * 1-3 0.17 ** 1-3 0.12 0.12 

PDO 0-0 0.21 0.23 0-0 0.20 ** 1-3 -0.08 0.62 1-2 -0.09 0.50 

SOI 1-3 -0.09 0.18 1-1 -0.17 * 1-3 0.20 ** 1-3 0.23 *** 

 All virus strain VPP 

MEI 1-1 0.21 * 1-2 0.09 0.30 1-1 0.08 0.07 1-1 0.02 0.25 

WP 1-3 0.20 * 1-3 0.24 ** 1-3 0.18 * 1-3 0.17 * 

PNA 1-3 0.22 ** 1-3 0.18 * 0-0 0.13 ** 0-0 0.10 0.07 

PDO 0-0 0.32 *** 0-0 0.22 ** 0-0 0.29 *** 0-0 0.20 ** 

SOI 1-1 -0.20 * 1-1 -0.15 0.07 1-1 -0.12 *** 1-1 -0.10 0.08 

 H3N2 subtype VPP 

MEI 1-2 0.40 *** 1-1 0.16 0.06 1-2 0.27 ** 1-2 0.11 0.08 

WP 1-3 0.19 * 1-3 0.25 0.07 1-3 0.11 0.06 1-3 0.11 0.07 

PNA 1-2 0.20 * 1-2 0.10 0.25 0-0 0.09 >0.5 0-0 0.06 0.78 

PDO 0-0 0.36 *** 0-0 0.16 0.06 0-0 0.27 *** 0-0 0.16 0.08 

SOI 1-3 -0.38 *** 1-3 -0.15 0.07 1-3 -0.28 *** 1-3 -0.13 0.09 
***: p<0.001, **:p<0.01, *: p<0.05  
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Table 4.9. Significant statistical correlations between monthly global climatic indices and 
influenza epidemic morbidity impacts in Hong Kong, 1998-2008. 
 
Summarized 

epidemic 
variables 

PNA in preceding 
month 

Average PNA from 
preceding 2 month 

Average PNA from 
preceding 3 month 

Correlation 
coefficient 

P Correlation 
coefficient 

P Correlation 
coefficient 

P 

Duration of 
epidemics 0.578 0.039 0.646 0.017 0.637 0.019 

Cumulative 
positive virus 

proportion 
 

0.573 0.041 0.672 0.012 0.646 0.017 

Cumulative 
ILI count 0.475 0.101 0.578 0.038 0.574 0.040 
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Table 4.10.  ARIMA model coefficient estimates and summary for lagged crude weather 
variables and influenza VPP in Hong Kong, 1998-2008. 
 
 

ARIMA  
Model order 

Fit AR MA Weather variables X2 
test 

Resid
ual AIC Est. SE Est. SE Variable Est. SE  

ARIMA(0,1,0) 0.34 1003.2         
ARIMA(0,1,1) 0.33 996.2   -0.11 0.04     
ARIMA(0,1,3) 0.32 972.4   -0.16 0.04     

     0.04 0.04     
     0.19 0.04     

Univariate  
ARIMA(0,1,3) 0.31 960.1   -0.17 0.04 AH -117 38.5 ** 
     0.03 0.04     
     0.17 0.04     
ARIMA(0,1,3) 0.31 963.2   -0.17  0.04 Avg. TEMP -0.14 0.04 ** 
     0.04 0.04     
     0.17 0.04     
ARIMA(0,1,3) 0.31 960.5   -0.17 0.04 MIN TEMP -0.14 0.04 ** 
     0.03 0.04     
     0.18 0.04     
ARIMA(0,1,3) 0.31 964.8   -0.17  0.04 Max TEMP -0.14 0.04 ** 
     0.04 0.04     
     0.17 0.04     
ARIMA(0,1,3) 0.32 966.8   -0.17 0.04 DEWP -0.08 0.03 * 
     0.03 0.04     
     0.17 0.04     
ARIMA(0,1,3) 0.31 963.6   -0.16 0.04 Rainfall -0.03  0.01 ** 
     0.04 0.04     
     0.19 0.01     
Multivariate 
ARIMA(0,1,3) 0.31 955.0   -0.17  0.04 AH -42.7 48.4 * 
     0.03  0.04 MIN TEMP -0.11 0.05  
     0.18 0.04     
ARIMA(0,1,3) 0.31 952.1   -0.17  0.04 MIN TEMP -0.12 0.04 ** 
     0.03  0.04 Rainfall 0.025 0.01  
     0.18 0.04     
           
ARIMA(0,1,3) 0.31 944.1   -0.17  0.04 AH -21.7 48.9 ** 
     0.03   0.04 Min Temp 0.11 0.05  
     0.18 0.04 Rainfall -0.02 0.01  
***: p<0.001, **:p<0.01, *: p<0.05  
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Figure 4.1. The location of Hong Kong in relation to China and other countries in the 
region. 

 
 

* download and access in April, 2011.      
http://www.enchantedlearning.com/asia/china/mapquizprintout.shtml 

 
 

 

http://www.enchantedlearning.com/asia/china/mapquizprintout.shtml�


  

Figure 4.2. Weekly influenza VPP and ILI proportion in Hong Kong, China, 1998-2008. 

0

15

30

45

60

19
98

01
03

19
98

07
18

19
99

01
30

19
99

08
14

20
00

02
26

20
00

09
09

20
01

03
24

20
01

10
06

20
02

04
20

20
02

11
02

20
03

05
17

20
03

11
29

20
04

06
12

20
04

12
25

20
05

07
09

20
06

01
21

20
06

08
05

20
07

02
17

20
07

09
01

20
08

03
15

20
08

09
27

week

IL
I p

er
 1

00
0 

vi
si

ts

0

5

10

15

20

25

In
flu

en
za

 V
P

P

influenza VPP
ILI proportion

 
 

155 



  

Figure 4.3. Average weekly ILI proportion and influenza VPP in Hong Kong, China, 1998-2008. 
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Figure 4.4. Average daily local weather variables (A. temperature and rainfall; B. RH 
and AH) in Hong Kong, China, 1998-2008. 
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Figure 4.5. Monthly global climatic indices (A.MEI, PDO; B. WP, PNA) distribution 
between 1998 and 2008. 
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Figure 4.6. Influenza epidemic onsets based on weekly VPP (A) and ILI proportion (B) 
in Hong Kong, China, 1998-2008. 
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Figure 4.7. Cross correlation maps (A. Pearson approach; B, Partial Pearson approach) of 
weekly weather variables and all influenza strains VPP 
(A) 

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Average Temperature

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Minimum Temperature

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Maximum Temperature

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Dew Point Temperature

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Absolute Humidity

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Relative Humidity

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Precipitaion

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Solar Radiation

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Cloud Amount

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

60 minute mean wind

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Saturate Vapor Pressure

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

MSLP

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 
(B) 

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Average Temperature

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Minimum Temperature

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Maximum Temperature

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Dew Point Temperature

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Absolute Humidity

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Relative Humidity

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Precipitaion

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Solar Radiation

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Cloud Amount

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

60 minute mean wind

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Saturate Vapor Pressure

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

MSLP

Lag 1

La
g 

2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6



 161  

Figure 4.8. Cross correlation maps (A.Pearson approach; B. Partial Pearson approach) of 

weekly GOPC ILI proportion and weather variables.  
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Figure 4.9.  Cross correlation maps (A. Pearson approach; B. Partial Pearson approach) 
of weekly weather variable anomaly and all types of influenza VPP.  
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Figure 4.10. Influenza epidemic onset and absolute humidity anomaly in Hong Kong, China, 1998-2008.  
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Figure 4.11. Observed and fitted weekly influenza VPP in Hong Kong, China, 1998-2008. 
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CHAPTER 5 
 

REFLECTIONS ON THE POTENTIAL EFFECT OF 
ENVIRONMENT ON HUMAN INFLUENZA TRANSMISSION AND 

THE ASSOICATION BETWEEN CLIMATE AND INFLUENZA 
 

 
 

SUMMARY OF MAJOR FINDINGS AND IMPLICATIONS 

Annual influenza epidemics and potential pandemics are of great public health 

concern (1,2).  Influenza virus is transmitted among humans through the environment, 

including air and fomites.  In order to understand how human influenza virus 

transmission is environmentally mediated and to help inform the effective intervention 

strategies, we examined the role of the environment in influenza transmission, the 

temporal dynamics of the relative importance of different transmission modes, and the 

climatic factors that are associated with human influenza.  The analyses set forth in this 

dissertation contribute to these objectives.  We assess the different levels of details and 

heterogeneities by developing environmentally mediated influenza transmission models 

using mathematical compartmental models, agent-based models (ABM) and time series 

statistical models.   

Chapter 2 developed an environmentally mediated influenza infection 

transmission system (EITS) deterministic compartmental model and its stochastic 

counterpart.  This model showed that environment plays an important role in the 

influenza transmission process at population level.  Previous influenza transmission 
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models assumed an instantaneous symmetric contact processes rather than pathogen 

transmission through the environment (3,4).  Some studies considered the environmental 

effects in population infection transmission but lacked human activity details (5,6).  The 

EITS model structure is relatively novel in the sense that pathogen transmission is 

explicitly formulated by parameterizing detailed human activities in the environment.  

We found that the environmental persistence ratio (ρΝ / µ, where µ is the pathogen 

elimination rate, ρ is the rate humans pick up pathogens, and N equals population size), 

an indicator of the importance of pick-up compared to environmental elimination of 

pathogens from the environment, indicates whether transmission is density dependent 

(low ratio), frequency dependent (high ratio), or in between.  We also observed that the 

environmental contamination ratio (α / γ, where α is the pathogen deposit rate and γ is the 

recovery rate), a measure of the pathogen deposition magnitude from an infectious 

individual, reflects the probability of outbreak occurrence.  These insights provide both a 

theoretical context to examine the role of the environment in pathogen transmission and a 

framework to interpret environmental data to inform environmental interventions.   

Chapter 3 builds upon previous works by constructing a more detailed 

environmentally mediated influenza agent based model for an enclosed abstract venue 

and demonstrated the pre-unrecognized temporal dynamics of the relative importance of 

different influenza transmission modes over the course of epidemics.  We found that the 

influenza virus particle dissemination and persistence processes were associated with the 

temporal variation of the relative importance of different influenza transmission modes.  

The temporal variation of the relative importance of different influenza transmission 

modes originates from the different dissemination and persistence assumptions for 
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different transmission modes.  Changing dissemination and persistence model 

conformations can significantly influence this temporal variation.  Model parameters, 

such as movement rate, surface touching rate and virus die off rate can mediate this 

temporal variation.  These findings help convince researchers and public health policy 

makers to pay attention to the non-recognized phenomenon, and might point out new 

scientific directions for research in population based infection transmission.  

Chapter 4 examined the seasonal patterns of influenza disease in an Asian 

subtropic metropolitan region and demonstrated the associations between influenza 

morbidity and local weather variables and global climate indices.  Based on 11 years long 

time, better quality dataset, we confirmed a biannual epidemic pattern in 9 of the 11 study 

period years in Hong Kong, China.  A new predominant influenza virus strain 

replacement generally was related to the second epidemic peak generally in early summer.  

Furthermore, we found significant statistical associations between influenza morbidity 

(virus positive proportion and influenza-like illness (ILI) proportion) and local weather 

variables/global climate indices.  Absolute humidity (AH) was found to be the most 

significant one among all local weather variables.  The negative AH anomaly is 

significantly related to the onset of influenza epidemics.  This work is the first to observe 

statistical association between absolute humidity and influenza by using human influenza 

morbidity data.   

We expect the results reported in this dissertation to contribute to building a better 

scientific basis for controlling influenza epidemics and the understanding of 

environmentally mediated influenza transmission system.  By integrating environmental 

microbial transfer models into traditional population transmission dynamics, our results 
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strengthen infection disease epidemiological theory.  These new influenza models are 

more realistic than previous ones, with direct, instantaneous contact among individuals 

and environment.  Our findings concerning the importance of environment in human 

influenza transmission system, the temporal dynamics of the relative importance of 

different influenza transmission modes, and the relationship between climate and 

influenza could open new venues for influenza research.  We provided scientific 

suggestions for improving public health surveillance of environmental exposures, 

infections, diseases and outbreaks, data collection and analysis for disease control 

purposes.  Although we did not focus on specific intervention strategies, this work could 

help public health policy makers to develop influenza preparedness plans and rethink 

about the application of some non-pharmaceutical interventions such as hand washing, 

wearing masks, and environmental decontamination.  

 

POT E NT I AL  L I M I T AT I ONS 

The relevant data from our literature review were not adequate for model 

parameterization in out research.  For uninformed model parameters, such as virus die off 

rate on surfaces and in air, hand touching surface rate, transfer efficiency, and HID50 on 

upper respiratory track, we either tried the similar parameter from other pathogen studies 

or explored the wide parameter space.  If future research indicates a significant difference 

from the parameter values we use here, the relative importance of different influenza 

transmission modes might change.  Nevertheless, the observed impact of environment in 

human transmission infection and the temporal dynamics of the relative importance of 

different transmission modes should not be significantly biased. 
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The compartmental models in Chapter 2 provide useful insights but lack of details. 

The agent-based models in Chapter 3 capture a higher level of heterogeneity, but 

sometimes, it is nontrivial to explain the results.  Overall, we use an assembly of models 

from a compartmental model to an agent base model, which handled different levels of 

heterogeneity.  We believe these approaches are complementary in their ability to answer 

our research questions. 

The influenza morbidity measurements used in our work were indicators based on 

ILI subpopulations from influenza surveillance systems rather than true influenza 

prevalence or incidence based on the general population.  Sensitivity and specificity 

issues cannot be avoided when using these measurements.  However, influenza VPP and 

ILI proportions can present true influenza dynamics and are among of the best available 

influenza indicators (7).  

 

SUGGESTIONS FOR FUTURE RESEARCH 

Inclusion of Multiple Transmission Modes in Deterministic Compartmental Models 

Choice of different modeling approaches could be complex and problematic.  If 

the model is too simple, it could ignore the important aspects from reality and may lead 

to wrong inferences.  If the model is too complex, it could become impossible to 

accurately parameterize using available data (8).  The compartmental models are 

computationally efficient and can provide insights into disease transmission processes 

and suggestions for disease control strategies.  Classic compartmental models formulate 

instantaneous symmetric contact processes rather than pathogen transmission through the 

environment (3).  
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In Chapter 2, as a first step to examine the environmentally mediated influenza 

transmission theoretically, an ordinary difference equation based deterministic 

compartmental model was developed.  Although, in real world, influenza transmission 

among humans operates through multiple transmission modes simultaneously, we 

formulated each transmission mode separately for respiratory, frequently touched 

surfaces and infrequently touched surfaces transmission; in order to simplify and better 

understand each transmission mode.  To examine relative importance of different 

influenza transmission modes and to provide potential effective public health intervention 

suggestions, more detailed reality and multiple transmission modes should be 

incorporated in compartmental models for future work.  As in some previous studies on 

water-borne transmitted infections (5), multiple transmission modes models could 

simulate epidemics with more realistic assumptions, and provide better references.  

Compartmental models with multiple transmission modes enable us to study the relative 

importance of different transmission modes in a computationally efficient way comparing 

to agent-based model.  

   

Consideration of Multiple Influenza Virus Strains and Human Immunity Status in 

Deterministic Compartmental Model 

As described in Chapter 4, the temporal pattern of influenza cases can appear as a 

single unimodal peak, a single wide plateau-shaped peak, or as double peaks in 

tropic/subtropic regions due to co-circulation of different influenza virus strains.  

Influenza seasonality has been modeled in many different ways.  Seasonality of 

infectious diseases has been formulated as sinusoidal term of transmission probability 
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(9,10).  Weber et al. and Earn et al. used a time term to formulate the seasonal transition, 

and they suggested that a realistic seasonal function is more important than explicit 

modeling heterogeneous transmission (11,12).  Shamman et al. has considered a 

transmission probability based on absolute humidity (AH) to model influenza mortality in 

North America (13).  Lin et al. concluded that herd immunity can lead to sustained 

oscillations in a system with three interacting influenza A strains (14).  Hay et al. noted 

that moderate levels of cross-immunity among antigenically diverse pathogens could lead 

to sustained cyclical or chaotic dynamics (15).  However, these previous investigations 

did not include weather variables as drivers of influenza morbidity while considering data 

on multiple influenza strains.  

Future research could incorporate multiple influenza strains, seasonal weather 

drivers such as AH, and host immunity status.  This type of deterministic compartmental 

model could not only simulate the findings from real data, but also could help us 

understand whether a specific type of seasonality appears to be based on weather force 

and strain genetic variation conditions.  

 

Consideration of Heterogeneity of Environment Surfaces and Non-random 

Movement in the Agent Based Model (ABM) 

ABM is a natural extension of ODE models and may deal with population and 

environmental heterogeneity better in influenza transmission.  Influenza transmission is 

affected by multiple factors such as individual immunity status, social connection, 

pathogen features, and environmental factors.  Environmental venue factors include 

venue size and venue locus connection patterns.  Pathogen factors may involve 
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survivability, dose-response, and dispersion of virus particles.  Population factors can 

encompass population density, human picking up and depositing, and human movement 

patterns within the venue.  The EITS agent based model developed in Chapter 3 captures 

specific aspects of reality and certain degrees of heterogeneity.  However, in order to 

make the mechanism behind the temporal dynamics of the relative importance of 

different influenza transmission modes clearer, we intentionally avoided some realistic 

complexities.  Specifically, the model is limited to capture heterogeneity of surface locus 

and non-random movement patterns in reality, which could be important in determining 

the relative importance of different influenza transmission modes. 

Future environmentally mediated influenza ABMs might include these extra 

complexities.  The environmental locus could be classified as individual locus and public 

locus.  An individual locus refers to places like an individual workstation, where 

individuals spend most of their time and touch the surface at relative high frequency.  A 

public locus refers to places like cafeterias, restrooms or other sites where many people 

come and stay for a relatively short time period.  Individuals touch public locus surfaces 

at relative low frequency, but the total touching by all people on these surfaces is high.  

Individuals can move between individual locus and public locus based on their daily 

schedule.  In this way, individuals do not expose to viral particles in public place all the 

time as simulated in the ABM reported in Chapter 3.  We can study the importance of 

global and local high frequency touched surfaces as described in Chapter 2.  This model 

conformation might help to provide useful suggestions on where and how often to apply 

environmental decontamination interventions.   
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Consideration of Multiple Venues and Movement Patterns among Them in 

Influenza Agent Based Model 

The ABM developed in Chapter 3 simulates influenza infection transmission 

inside a single abstract venue such as an open office complex or conference room.  In 

reality, influenza transmission and disease epidemics happen in multiple venues such as 

schools, households, and clinics (16).  Venues usually have different roles in infection 

transmission processes.  Some venues directly connect and disseminate infection to many 

other venues, some contribute to explosive epidemics, some sustain chains of 

transmission over a longer term, others provide key bridges between venues, and some 

are dead ends that do not contribute to sustained chains of transmission.  When 

confronting emerging infections affecting multiple venues, field epidemiologists have to 

make effective public health decisions in a limited time.  These public health decisions 

regarding influenza infections usually include choosing the correct specific venues to 

control, cutting off venue connections, employing the appropriate control strategies at the 

right time, focusing on specific population groups and so on.  Potential interventions that 

have been suggested for influenza controlling include hand washing, mask use, 

environment decontamination, ultraviolet radiation, and increased airflow exchange.  

Practically, there are no clear guidelines on how to make these decisions.  Scientifically, 

the theoretical basis for investigating the choice of actions in realistic multiple venue 

settings is inadequate.   

To provide scientific suggestions regarding how to determine the most important 

venues, specific characteristics of venues and venue connection patterns, human 

movement flow among multiple venues, environmentally mediated ABMs in multiple 
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venues should be considered in future work.  This multiple venue ABM captures the 

specific aspects of reality that single venue models ignore such as venue connection 

pattern, and detailed human movement patterns among venues.  This multiple venue 

model could help clarify various theoretical venue connection patterns and evaluate 

differences in focused interventions on specific venues.  The multiple venue models 

could help us examine specific control decisions and provide principles to choose places 

where large numbers of individuals expose environmental contamination or to focus 

control on sites that act to disseminate infection to other sites.  

 

Inclusion of Weather Variable Effects in the Agent Based Infection Transmission 

Model 

The ABM developed in Chapter 3 simulates environmentally mediated influenza 

transmission in indoor environments.  The impact of weather variables on influenza 

transmission and on the outbreak probability was not considered in previous ABM.  

Previous studies and our work in Chapter 4 have shown that absolute humidity (AH) is 

associated with influenza transmissibility and influenza outbreak probability (15,17).  

Absolute humidity seems to be an important determinant of virus survival in air.  By 

including AH, temperature in environmentally mediated model analyses, we can examine 

how raising and lowering the virus survival in air affects the timing of respiratory 

transmission.  Given the delayed nature of respiratory transmission mode compared to 

droplet spray mode postulated in Chapter 3, a transient period of low absolute humidity 

might modify the temporal variation of the relative importance of different influenza 

transmission modes.     
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Consideration of Influenza Morbidity Measurement Based on Different Population 

Groups 

The work in Chapter 4 analyzed influenza morbidity data, which may have 

inaccuracies because of the diagnosis of ILI and the selective submission of isolates from 

diagnosed ILI cases that relies on physician reporting as part of the existing influenza 

surveillance system.  There are inconsistences of reporting, because physicians tend to 

over-report during epidemic periods and under-report during non-epidemic periods (18).  

Clinical symptoms and severity are different among different influenza types, and vary 

by age group.  The public health reporting system commonly captures data on individuals 

with particular behavior patterns and access to medical services in the surveillance 

system (19).  Physician-collected specimens usually have low capacity to present 

population-based disease prevalence (20).  Therefore, population-level influenza 

virological data will be better to provide more precise measures.   

However, comprehensive, ongoing population influenza viral surveillance is not 

practical and not available.  An alternative involving influenza virological surveillance, 

that covered all outpatients and inpatients with ILI in local hospitals, could be a more 

accurate data source (21).  Based on the assumptions concerning the stability and 

representability of the patient population being seen in the hospital, similar analyses 

using such hospital-based virological data might be further generalized and could be 

useful to confirm our findings.     
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