
Topics in High-dimensional Unsupervised Learning

by

Jian Guo

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2011

Doctoral Committee:

Associate Professor Elizaveta Levina, Co-Chair
Associate Professor Ji Zhu, Co-Chair
Professor George Michailidis
Professor Susan A. Murphy
Assistant Professor Qiaozhu Mei





c⃝ Jian Guo 2011

All Rights Reserved



ACKNOWLEDGEMENTS

First of all, I would particularly like to thank my advisers, Professor Elizaveta

Levina, Professor George Michailidis and Professor Ji Zhu, for their guidance and

help throughout my research. Without their valuable suggestions and support, this

dissertation could not be completed. I also thank the dissertation committee member

Professor Susan Murphy for her helpful comments. Professor Qiaozhu Mei deserves

special thanks for leading me to an exciting field about internet research. Finally,

I would express my gratitude to my wife and my parents for their constant support

and encouragement.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I. Introduction and Literature Review . . . . . . . . . . . . . . . . 1

1.1 Structure Estimation of High-dimensional Graphical Models . 1
1.2 Grouped Variable Selection for High-dimensional Data Analysis 4

1.2.1 Pairwise Variable Selection for High-dimensional Model-
based Clustering . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Sparse Principal Component Analysis . . . . . . . . 7
1.3 Organization of the Chapters . . . . . . . . . . . . . . . . . . 8

II. Joint Estimation of Multiple Graphical Models . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Estimation of Single Graphical Models . . . . . . . . . . . . . 10
2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The Joint Estimation Method . . . . . . . . . . . . 11
2.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Model Selection . . . . . . . . . . . . . . . . . . . . 14

2.4 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Simulation Settings . . . . . . . . . . . . . . . . . . 16
2.5.2 Simulation Results . . . . . . . . . . . . . . . . . . 19

2.6 University Webpages Example . . . . . . . . . . . . . . . . . 20

iii



III. Asymptotic Properties of the Joint Neighborhood Selection
Method for Estimating Categorical Markov Networks . . . . 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Application to the Senate Voting Record . . . . . . . . . . . . 32
3.5 Extension to General Markov Networks . . . . . . . . . . . . 35

IV. Estimating Heterogeneous Graphical Models for Discrete Data
with an Application to Roll Call Voting . . . . . . . . . . . . . 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Model and Estimation Algorithm . . . . . . . . . . . . . . . . 38

4.2.1 Problem Setup and Separate Estimation Method . . 39
4.2.2 Joint Estimation of Heterogeneous Networks . . . . 40
4.2.3 Algorithm and Model Selection . . . . . . . . . . . . 42

4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Analysis of the U.S. Senate voting records . . . . . . . . . . . 47
4.5 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 52

V. Graphical Models with Ordinal Variables . . . . . . . . . . . . 54

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Probit Graphical Model . . . . . . . . . . . . . . . . 55
5.2.2 Algorithm for Probit Graphical Model . . . . . . . . 57
5.2.3 Approximation of the Conditional Expectation . . . 59
5.2.4 Model Selection . . . . . . . . . . . . . . . . . . . . 63

5.3 Simulated Examples . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Computational Cost and Performance . . . . . . . . 64
5.3.2 High-dimensional Experiments . . . . . . . . . . . . 65

5.4 Application to Movie Rating Records . . . . . . . . . . . . . 70

VI. Pairwise Variable Selection for High-dimensional Model-based
Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Problem Formulation and Pairwise Fusion . . . . . . . . . . . 75

6.2.1 The Pairwise Fusion Penalty . . . . . . . . . . . . . 77
6.2.2 The Adaptive Pairwise Fusion Penalty . . . . . . . . 78
6.2.3 Model Selection . . . . . . . . . . . . . . . . . . . . 80

6.3 The Optimization Algorithm . . . . . . . . . . . . . . . . . . 80
6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 83

iv



6.5 Applications to Gene Expression Data . . . . . . . . . . . . . 88
6.5.1 The SRBCT Data . . . . . . . . . . . . . . . . . . . 89
6.5.2 PALL Data Set . . . . . . . . . . . . . . . . . . . . 90

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

VII. Sparse Fused Principal Component Analysis . . . . . . . . . . 99

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 The Model and its Estimation . . . . . . . . . . . . . . . . . 100

7.2.1 Preliminaries and Sparse Variants of PCA . . . . . 100
7.2.2 Sparse Fused Loadings . . . . . . . . . . . . . . . . 102
7.2.3 Optimization of the Objective Function . . . . . . . 104
7.2.4 Estimation of B Given A . . . . . . . . . . . . . . 105
7.2.5 Selection of Tuning Parameters . . . . . . . . . . . . 106
7.2.6 Computational Complexity and Convergence . . . . 107

7.3 Numerical illustration of SFPCA . . . . . . . . . . . . . . . . 108
7.4 Application of SFPCA to Real Datasets . . . . . . . . . . . . 111
7.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 114

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

v



LIST OF FIGURES

Figure

2.1 The common links present in all categories in the three simulated
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Receiver operating characteristic curves. The horizontal and vertical
axes in each panel are false positive rate and sensitivity, respectively.
The solid line corresponds to the joint estimation method, and the
dashed line corresponds to the separate estimation method. ρ is the
ratio of the number of individual links to the number of common links. 23

2.3 Common structure in the webpages data. Panel (A) shows the esti-
mated common structure for the four categories. The nodes represent
100 terms with the highest log-entropy weights. The area of the cir-
cle representing a node is proportional to its log-entropy weight. The
width of an edge is proportional to the magnitude of the associated
partial correlation. Panels (B)–(D) show subgraphs extracted from
the graph in panel (A). . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 “Student” and “Faculty” graphs. The light lines are the links appear-
ing in both categories, and the dark lines are the links only appearing
in one category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 “Course” and “Project” graphs. The light lines are the links appear-
ing in both categories, and the dark lines are the links only appearing
in one category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



3.1 Voting dependencies between senators estimated by the joint neigh-
borhood selection method. Each red (blue) circle represents a Re-
publican (Democratic) senator, the circle size is proportional to the
degree of the node. Senator Jeffords (the purple circle) is an inde-
pendent senator. A solid green (dashed red) link represents a posi-
tive (negative) dependence between two senators. The width of each

link is proportional to its associated |θ̂j,j′ |. For clarity, all links with
|θ̂j,j′ | ≤ 0.1 have the same width. . . . . . . . . . . . . . . . . . . . . 34

4.1 The networks used in three simulated examples. The black lines
represent the common structure, whereas the red, blue and green
lines represent the individual links in the three categories. ρ is the
ratio of the number of individual links to the number of common links. 45

4.2 Results for the balanced scenario (n1 = n2 = n3 = 200). The ROC
curves are averaged over 50 replications. ρ is the ratio between the
number of individual links and the number of common links. . . . . 46

4.3 Results for the unbalanced scenario (n1 = 150, n2 = 300, n3 = 450).
The ROC curves are averaged over 50 replications. ρ is the ratio
between the number of individual links and the number of common
links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 The common and individual structures for the Senate voting data.
The nodes represent the 100 senators, with red, blue and purple node
colors corresponding to Republican, Democrat, or Independent (Sen-
ator Jeffords), respectively. A solid line corresponds to a positive
interaction effect and a dashed line to a negative interaction effect.
The width of a link is proportional to the magnitude of the corre-
sponding overall interaction effect. For each individual network, the
links that only appear in this category are highlighted in purple. . 53

5.1 The comparison of Frobenius loss and Entropy loss over different
tuning parameters. The direct estimation, the Gibbs sampling es-
timation and the approximation estimation are represented by blue
dotted, red dashed and black solid lines. . . . . . . . . . . . . . . . 66

5.2 Illustration of the networks used in four simulated examples: scale-
free graph, hub graph, nearest-neighbor graph and block graph. . . 67

vii



5.3 The ROC curves estimated by probit graphical model (solid dark
line), the oracle model (dotted blue line) and the Gaussian model
(dashed red line). The oracle model and the Gaussian model applies
the graphical lasso algorithm to the latent data Z and the observed
data X, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 The network estimated by the probit graphical model. The nodes
represent the movies labeled by their titles. The area of a node is
proportional to its degree and the width of a link is proportional to
the magnitude of the corresponding partial correlations. . . . . . . 73

6.1 A toy example. Variable 1 is informative for separating clusters 2
and 3, and variable 2 is informative for separating clusters 1 and 2. 75

6.2 The distribution of informative variables in Simulation 1 (left) and
Simulation 2 (right). The red star indicates the position of the overall
sample mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Simulation 3. The sample sizes of clusters 1, 2, 3 and 4 are 20, 20,
200, and 200, respectively. The red star indicates the position of the
overall sample mean, and the plot is shifted to show centered data. 86

6.4 Plots of the negative logarithm p-values vs variance for SRBCT data.
The left column is the top 100 genes (largest overall variances), and
the right column is the bottom 100 genes. The upper row is negative
logarithm p-values corresponding to an F -statistics comparing four
tumor subtypes, and the lower row is the negative logarithm p-values
for the six identified clusters. Triangles denote the genes that are not
selected by the APFP method. . . . . . . . . . . . . . . . . . . . . . 95

6.5 Pairwise variable selection results for the APFP method on the SR-
BCT data with top 100 genes. Each row corresponds to a gene. Each
column corresponds to a cluster pair; for example, “1/2” indicates
clusters 1 and 2. A black (white) spot indicates that the estimated
means of the corresponding gene for the two clusters are different (the
same). For example, gene “435953” is non-informative for separating
clusters 1 and 3, 2 and 5, and 4 and 6. . . . . . . . . . . . . . . . . 96

6.6 Plots of the negative logarithm p-values vs variance for PALL data.
The left column is the top 100 genes (largest overall variances), and
the right column is the bottom 100 genes. The upper row is negative
logarithm p-values corresponding to an F -statistics comparing four
tumor subtypes, and the lower row is the negative logarithm p-values
for the six identified clusters. Triangles denote the genes that are not
selected by the APFP method. . . . . . . . . . . . . . . . . . . . . . 97

viii



6.7 Pairwise variable selection results for the APFP method on the PALL
data with top 100 genes. Each row corresponds to a gene. Each
column corresponds to a cluster pair; for example, “1/2” indicates
clusters 1 and 2. A black (white) spot indicates that the estimated
means of the corresponding gene for the two clusters are different
(the same). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1 Factor loadings of the first (left column) and second (right column)
PC vectors estimated by ordinary PCA from the true covariance (first
row), ordinary PCA from the sample covariance (second row), sparse
PCA (third row) and SFPCA (fourth row). The horizontal axis is
the variables and the vertical axis is the value of the loadings. Each
colored curve represents the PC vector in one replication. The median
loadings over 50 repetitions are represented by the black bold lines. 116

7.2 The histogram of the pairwise correlations between the height/length
variables: weight, height in shoes, height in bare feet, seated height,
lower arm length, thigh length, and lower leg length. . . . . . . . . . 117

7.3 Comparison of the first (left panel) and second (right panel) PC vec-
tors from ordinary PCA (dashed line), sparse PCA (dotted line) and
SFPCA (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 The first two eigen-images of digit “3” estimated by PCA and SF-
PCA, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

ix



LIST OF APPENDICES

Appendix

A. Joint Estimation of Multiple Graphical Models . . . . . . . . . . . . . 121

B. Asymptotic Properties of the Joint Neighborhood Selection Method for
Estimating Categorical Markov Networks . . . . . . . . . . . . . . . . 125

C. Estimating Heterogeneous Graphical Models for Discrete Data with an
Application to Roll Call Voting . . . . . . . . . . . . . . . . . . . . . . 139

x



ABSTRACT

Topics in High-Dimensional Unsupervised Learning

by

Jian Guo

Co-Chairs: Elizaveta Levina and Ji Zhu

The first part of the dissertation introduces several new methods for estimating the

structure of graphical models. Firstly, we consider estimating graphical models with

discrete variables, including nominal variables and ordinal variables. For the nomi-

nal variables, we prove the asymptotic properties of the joint neighborhood selection

method proposed by Hoefling and Tibshirani (2009) and Wang et al. (2009), which is

used to fit high-dimensional graphical models with binary random variables. We show

that this method is consistent in terms of both parameter estimation and structure

estimation and extend it to general nominal variables. For ordinal variables, we intro-

duce a new graphical model, which assumes that the ordinal variables are generated

by discretizing marginal distributions of a latent multivariate Gaussian distribution

and the relationships of these ordinal variables are described by the underlying Gaus-

sian graphical model. We develop an EM-like algorithm to estimate the underlying

latent network and apply the mean field theory to improve computational efficiency.

We also consider the problem of jointly estimating multiple graphical models which

share the variables but come from different categories. Compared with separate esti-

mation for each category, the proposed joint estimation method significantly improves

xi



performance when graphical models in different categories have some similarities. We

develop joint estimation methods both for Gaussian graphical models and for graph-

ical models for categorical variables.

In the second part of the dissertation, we develop two methods to improve inter-

pretability of high-dimensional unsupervised learning methods. First, we introduce a

pairwise variable selection method for high-dimensional model-based clustering. Un-

like existing variable selection methods for clustering problems, the proposed method

not only selects the informative variables, but also identifies which pairs of clusters

are separable by each informative variable. We also propose a new method to identify

both sparse structures and “block” structures in factor loadings in principal compo-

nent analysis. This is achieved by forcing highly correlated variables to have identical

factor loadings via a regularization penalty.
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CHAPTER I

Introduction and Literature Review

1.1 Structure Estimation of High-dimensional Graphical Mod-

els

Undirected graphical models have proved useful in a number of application areas,

including bioinformatics (Airoldi, 2007), natural language processing (Jung et al.,

1996), image analysis (Li, 2001), and many others, due to their ability to succinctly

represent dependence relationships among a set of random variables. Such models

represent the relationships between p variables X1, · · · , Xp through an undirected

graph G = (V,E), whose node set V corresponds to the variables and the edge set

E characterizes their pairwise relationships. Specifically, variables Xj and Xj′ are

conditionally independent given all other variables if their associated nodes are not

linked by an edge.

Two important types of graphical models are the Gaussian graphical model, where

the p variables are assumed to follow a joint Gaussian distribution, and the Markov

network, which captures relationships between categorical variables. In the former,

the structure of the underlying graph can be recovered by estimating the correspond-

ing inverse covariance (precision) matrix, whose off-diagonal elements are propor-

tional to the partial correlations between the variables. A large body of literature has
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emerged over the past few years addressing this issue, especially for sparse networks.

A number of methods focus on estimating a sparse inverse covariance matrix and in-

ferring the network from estimated zeros (Banerjee et al., 2008; Yuan and Lin, 2007;

Rothman et al., 2008; Friedman et al., 2008; Lam and Fan, 2009; Rocha et al., 2008;

Ravikumar et al., 2008; Peng et al., 2009). Another class of methods focuses on esti-

mating the network directly without first estimating the precision matrix (Drton and

Perlman, 2004; Meinshausen and Buhlmann, 2006). There is also some recent litera-

ture on directed acyclic graphical models (see, for example, Shojaie and Michailidis

(2010) and references therein).

For the Markov network, the estimation problem is significantly harder, since it

is computationally infeasible for any realistic size network to directly evaluate the

likelihood, due to the intractable constant (the log-partition function). Several meth-

ods in the literature overcome this difficulty by employing computationally tractable

approximations. For example, d’Aspremont et al. (2008) proposed estimating the

network structure using an ℓ1-penalized surrogate likelihood, where the log-partition

function is approximated by a log-determinant relaxation. Kolar and Xing (2008) im-

proved on this method by incorporating a cutting-plane algorithm to obtain a tighter

outer bound on the marginal polytope. Alternatively, Ravikumar et al. (2009) pro-

posed a neighborhood selection method that approximates the likelihood by a pseudo-

likelihood function, in analogy to the Meinshausen and Buhlmann (2006) method for

Gaussian graphical models, where p individual ℓ1-penalized regressions were fitted,

regressing each variable on all others, and the network structure was recovered from

the regression coefficients. Ravikumar et al. (2009) separately fit p individual penal-

ized logistic regressions, whose coefficients are used to recover the Markov network

structure. They also showed that the neighborhood selection method satisfies both

estimation consistency and model selection consistency. However, estimating pairwise

interactions by fitting p separate logistic regression leads to lack of symmetry; the

2



estimate of interaction between Xi and Xj may have a different value and even a

different sign from the interaction between Xj and Xi.

In this dissertation, we consider two general problems about graphical models.

First, we propose a new method to jointly estimate multiple graphical models. This

work was motivated by the fact that, in many applications, the data consist of several

categories that share the same variables but differ in their dependence structure. The

underlying networks have some edges in common but also have others unique to each

category. Consider, for example, the gene regulatory networks describing different

subtypes of the same cancer: there are some shared pathways across different sub-

types, and there are also links that are unique to a particular subtype. To our best

knowledge, existing graphical models are only concerned with estimating a single net-

work. In this work, we constructed an estimator that jointly estimates such Gaussian

graphical models through a hierarchical penalty function. Compared with separate

estimation, the proposed joint estimator is more effective in discovering the common

structure and in reducing the estimation variance by borrowing strength across differ-

ent categories. In addition, we also extended this idea to joint estimation of multiple

graphical models with categorical variables. In these two papers, we established the

consistency of both parameter and structure estimation in high-dimension settings

(allowing p to grow faster than n).

The second problem consider the graphical models with categorical variables,

which is a challenging task compared to fitting Gaussian graphical models both ana-

lytically and computationally. My research studies the network structure estimation

problems for two types of categorical variables: nominal variables and ordinal vari-

ables. The two types have intrinsic differences and thus we need to build different

graphical models to characterize the association structure for each specific variable

type. Markov network is a graphical model which captures associations among nomi-

nal variables and the underlying network can be estimated by solving an ℓ1-regularized

3



log-linear model likelihood. However, the estimation problem is computationally in-

feasible for large networks due to the intractable partition function in the log-linear

model likelihood. Here, we prove the asymptotic properties of an efficient approx-

imate optimization algorithm for estimating large-scale Markov networks. Another

important type of discrete variables is the ordinal variables, which have a number

of ordered levels. The ordered nature of the ordinal variable means that neither the

Markov network nor the Gaussian graphical model is appropriate for characterizing

the associations between ordinal variables. In Chapter V, we proposed a latent graph-

ical model where the observed ordinal variables are assumed to be discretized latent

continuous variables jointly following a Gaussian graphical model. It is computa-

tionally infeasible to directly estimate the proposed latent graphical model using the

Expectation-Maximization (EM) algorithm, even for modest-sized networks. In this

thesis, we overcome this limitation by developing an approximate algorithm which

can efficiently estimate large-scale graphical models with ordinal variables.

1.2 Grouped Variable Selection for High-dimensional Data

Analysis

With the accumulation of large amount of high-dimensional data, it is becoming

increasingly important to identify informative variables and improve interpretabil-

ity of high-dimensional statistical models. Most existing high-dimensional models

achieve these goals by imposing sparsity in parameters. In addition to sparsity, this

thesis seeks to improve interpretability from several other angles by introducing the

group variable selection for high-dimensional clustering and sparse principal compo-

nent analysis, respectively.
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1.2.1 Pairwise Variable Selection for High-dimensional Model-based Clus-

tering

The goal of clustering is to organize data into a small number of homogeneous

groups, thus aiding interpretation. Clustering techniques have been employed in a

wide range of scientific fields, including biology, physics, chemistry and psychology.

These techniques can broadly be classified into two categories: hierarchical methods

and partition methods (see Gordon (2008), Kaufman and Rousseeuw (1990), and ref-

erences therein). The former typically start from a dissimilarity matrix that captures

differences between the objects to be clustered and produce a family of cluster solu-

tions, whose main property is that any two clusters in the family are either disjoint or

one is a superset of the other. Various popular agglomerative algorithms, such as sin-

gle, complete and average linkage belong to this class. Partition algorithms produce

non-overlapping clusters, whose defining characteristic is that distances between ob-

jects belonging to the same cluster are in some sense smaller than distances between

objects in different clusters. The popular K-means algorithm (MacQueen, 1967) and

its variants are members of this class. A statistically motivated partition method is

model-based clustering, which models the data as a sample from a Gaussian mixture

distribution, with each component corresponding to a cluster (McLachlan and Bas-

ford, 1988). A number of extensions addressing various aspects of this approach have

recently appeared in the literature. For example, Banfield and Raftery (1993) gener-

alized model-based clustering to the non-Gaussian case, while Fraley (1993) extended

it to incorporate hierarchical clustering techniques.

The issue of variable selection in clustering, also known as subspace clustering, has

started receiving increased attention in the literature recently (for a review of some

early algorithms see Parsons et al. (2004)). For example, Friedman and Meulman

(2004) proposed a hierarchical clustering method which uncovers cluster structure on

separate subsets of variables; Tadesse et al. (2005) formulated the clustering prob-
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lem in Bayesian terms and developed an MCMC sampler that searches for models

comprised of different clusters and subsets of variables; Hoff (2006) also employed a

Bayesian formulation based on a Polya urn model; and Raftery and Dean (2006) in-

troduced a method to sequentially compare two nested models to determine whether

a subset of variables should be included or excluded from the current model. Some

recent approaches addressing variable selection are based on a regularization frame-

work. Specifically, Pan and Shen (2006) proposed to maximize the Gaussian mixture

likelihood while imposing an ℓ1 penalty on the cluster means. In addition, the means

of all clusters were required to sum up to zero for each variable. This method re-

moves variables for which all cluster means are shrunk to zero and hence regarded as

uninformative. Wang and Zhu (2007) treated the cluster mean parameters associated

with the same variable as a natural “group” and proposed an adaptive ℓ∞ penalty

and an adaptive hierarchical penalty to make use of the available group information.

Finally, Jornsten and Keles (2008) introduced mixture models that lead to sparse

cluster representations in complex multifactor experiments.

Existing variable selection methods for multi-category clustering select informative

variables in a “one-in-all-out” manner; that is, a variable is selected if at least one

pair of categories is separable by this variable and removed if it fails to separate

any of them. In many applications, however, it is useful to further explore which

categories can be separated by each informative variable. We refer to this task as

category-specific variable selection. In Chapter VI, we proposed a penalty function

for high-dimensional model-based clustering. For each variable, this penalty shrinks

the difference between all pairs of cluster centroids for each variable and identifies

clusters as nonseparable if their centroids are fused to an identical value.

6



1.2.2 Sparse Principal Component Analysis

Principal component analysis (PCA) is a widely used data analytic technique

that aims to reduce the dimensionality of the data for simplifying further analysis

and visualization. It achieves its goal by constructing a sequence of orthogonal linear

combinations of the original variables, called the principal components (PC), that have

maximum variance. The technique is often used in exploratory mode and hence good

interpretability of the resulting principal components is an important goal. However,

it is often hard to achieve this in practice, since PCA tends to produce principal

components that involve all the variables. Further, the orthogonality requirement

often determines the signs of the variable loadings (coefficients) beyond the first few

components, which makes meaningful interpretation challenging.

Various alternatives to ordinary PCA have been proposed in the literature to aid

interpretation, including rotations of the components (Jollife, 1995), restrictions for

their loadings to take values in the set {−1, 0, 1} (Vines, 2000), and construction of

components based on a subset of the original variables (McCabe, 1984). More recently,

variants of PCA that attempt to select different variables for different components

have been proposed and are based on a regularization framework that penalizes some

norm of the PC vectors. Such variants include SCoTLASS (Jollife et al., 2003) that

imposes an ℓ1 penalty on the ordinary PCA loadings and a recent sparse PCA tech-

nique (Zou et al., 2006) that extends the elastic net (Zou and Hastie, 2005) procedure

by relaxing the PCs orthogonality requirement.

While existing research addressed this problem by imposing sparsity in the factor

loadings, in Chapter VII, we explore a different way to improve interpretability of

PCA. The new method aims to capture natural “block” structures in highly corre-

lated variables. For example, the spectra exhibit high correlations within the high

and low frequency regions, thus giving rise to such a block structure. Something

analogous occurs in image data, where the background forms one natural block, and

7



the foreground one or more such blocks. In such cases, the factor loadings within the

same block tend to be of similar magnitude. The proposed method is geared towards

exploring such block structures and producing sparse loadings which are further fused

to the same value with a block, thus significantly aiding interpretation of the results.

1.3 Organization of the Chapters

The dissertation is organized as follows. Chapters II, III, IV and V study the

estimation problems in graphical models. Specifically, Chapter II introduces the joint

structure estimation method for learning multiple graphical models, Chapter III shows

the asymptotic properties of the joint neighborhood selection method for estimating

large-scale binary Markov networks, Chapter IV extends the estimator in Chapter

III to multiple graphical models, and Chapter V develops a new graphical model for

modeling the conditional dependence between ordinal variables.

The last two chapters consider group variable selection problems in unsupervised

learning. Specifically, Chapter VI develops a new model-based clustering method that

simultaneously selects the important variables and identifies the separability of the

clusters with respect to each selected variable, while Chapter VII introduces a new

sparse principal component analysis capturing the “blocking” structures in highly

correlated variables.
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CHAPTER II

Joint Estimation of Multiple Graphical Models

2.1 Introduction

The focus so far in the literature about graphical models has been on estimat-

ing a single Gaussian graphical model. However, in many applications it is more

realistic to fit a collection of such models, due to the heterogeneity of the data in-

volved. By heterogeneous data we mean data from several categories that share the

same variables but differ in their dependence structure, with some edges common

across all categories and other edges unique to each category. For example, con-

sider gene networks describing different subtypes of the same cancer: there are some

shared pathways across different subtypes, and there are also links that are unique

to a particular subtype. Another example from text mining, which is discussed in

detail in Section 2.6, is word relationships inferred from webpages. In our example,

the webpages are collected from university computer science departments, and the

different categories correspond to faculty, student, course, etc. In such cases, bor-

rowing strength across different categories by jointly estimating these models could

reveal a common structure and reduce the variance of the estimates, especially when

the number of samples is relatively small. To accomplish this joint estimation, we

propose a method that links the estimation of separate graphical models through a

hierarchical penalty. Its main advantage is the ability to discover a common struc-
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ture and jointly estimate common links across graphs, which leads to improvements

over fitting separate models, since it borrows information from other related graphs.

While in this paper we focus on continuous data, this methodology can be extended

to graphical models with categorical variables; fitting such models to a single graph

has been considered by Kolar and Xing (2008), Hoefling and Tibshirani (2009) and

Ravikumar et al. (2009).

2.2 Estimation of Single Graphical Models

Suppose we have a heterogeneous data set with p variables and K categories. The

kth category contains nk observations (x
(k)
1 , . . . ,x

(k)
nk )

T

, where each x
(k)
i = (x

(k)
i,1 , . . . , x

(k)
i,p )

is a p-dimensional row vector. Without loss of generality, we assume the observations

in the same category are centered along each variable, i.e.,
∑nk

i=1 x
(k)
i,j = 0 for all

j = 1, . . . , p and k = 1, . . . , K. We further assume that x
(k)
1 , . . . ,x

(k)
nk are an indepen-

dent and identically distributed sample from a p-variate Gaussian distribution with

mean zero, without loss of generality since the data are centered, and covariance ma-

trix Σ(k). Let Ω(k) = (Σ(k))−1 = (ω
(k)
j,j′)p×p. The log-likelihood of the observations in

the kth category is

l(Ω(k)) = −nk

2
log (2Pi) +

nk

2

[
log{det(Ω(k))} − trace(Σ̂

(k)
Ω(k))

]
,

where Σ̂
(k)

is the sample covariance matrix for the kth category, and det(·) and

trace(·) are the determinant and the trace of a matrix, respectively.

The most direct way to deal with such heterogeneous data is to estimate K in-

dividual graphical models. We can compute a separate ℓ1-regularized estimator for

each category k (k = 1, . . . , K), by solving

min
Ω(k)

trace(Σ̂
(k)
Ω(k))− log{det(Ω(k))}+ λk

∑
j ̸=j′

|ω(k)
j,j′ |, (2.1)
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where the minimum is taken over symmetric positive definite matrices. The ℓ1 penalty

shrinks some of the off-diagonal elements in Ω(k) to zero and the tuning parameter

λk controls the degree of the sparsity in the estimated inverse covariance matrix.

Problem (2.1) can be efficiently solved by existing algorithms such as graphical lasso

(Friedman et al., 2008). We will refer to this approach as the separate estimation

method and use it as a benchmark to compare with the joint estimation method we

propose next.

2.3 Methodology

2.3.1 The Joint Estimation Method

To improve estimation in cases where graphical models for different categories

may share some common structure, we propose a joint estimation method. First, we

reparametrize each off-diagonal element ω
(k)
j,j′ as ω

(k)
j,j′ = θj,j′γ

(k)
j,j′ (1 ≤ j ̸= j′ ≤ p; k =

1, . . . , K). An analogous parametrization in a dimension reduction setting was used in

Michailidis and de Leeuw (2001). To avoid sign ambiguity between θ and γ, we restrict

θj,j′ ≥ 0, 1 ≤ j ̸= j′ ≤ p. To preserve symmetry, we require that θj,j′ = θj′,j and

γ
(k)
j,j′ = γ

(k)
j′,j (1 ≤ j ̸= j′ ≤ p; k = 1, . . . , K). For all diagonal elements, we also require

θj,j = 1 and γ
(k)
j,j = ω

(k)
j,j (j = 1, . . . , p; k = 1, . . . , K). This decomposition treats

(ω
(1)
j,j′ , . . . , ω

(K)
j,j′ ) as a group, with the common factor θj,j′ controlling the presence

of the link between nodes j and j′ in any of the categories, and γ
(k)
j,j′ reflects the

differences between categories. Let Θ = (θj,j′)p×p and Γ(k) = (γ
(k)
j,j′)p×p. To estimate

this model, we propose the following penalized criterion subject to all constraints

mentioned above:

min
Θ,(Γ(k))Kk=1

K∑
k=1

[
trace(Σ̂

(k)
Ω(k))− log{det(Ω(k))}

]
+ η1

∑
j ̸=j′

θj,j′ + η2
∑
j ̸=j′

K∑
k=1

|γ(k)
j,j′| (2.2)
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where η1 and η2 are two tuning parameters. The first one, η1, controls the sparsity

of the common factors θj,j′ ’s and can effectively identify the common zero elements

across Ω(1), . . . ,Ω(K); i.e., if θj,j′ is shrunk to zero, there will be no link between nodes

j and j′ in any of the K graphs. If θj,j′ is not zero, some of the γ
(k)
j,j′ ’s, and hence

some of the ω
(k)
j,j′ ’s, can still be set to zero by the second penalty. This allows graphs

belonging to different categories to have different structures. This decomposition has

also been used by Zhou and Zhu (2010) for group variable selection in regression

problems.

Criterion (2.2) involves two tuning parameters η1 and η2; it turns out that this

could be reduced to an equivalent problem with a single tuning parameter. Specifi-

cally, consider

min
Θ,(Γ(k))Kk=1

K∑
k=1

[
trace(Σ̂

(k)
Ω(k))− log{det(Ω(k))}

]
+
∑
j ̸=j′

θj,j′ + η
∑
j ̸=j′

K∑
k=1

|γ(k)
j,j′|, (2.3)

where η = η1η2. For two matrices A and B of the same size, we denote their Schur–

Hadamard product by A · B. Then, criteria (2.2) and (2.3) are equivalent in the

following sense:

Lemma II.1. Let {Θ̂
∗
, (Γ̂

(k)∗
)Kk=1} be a local minimizer of criterion (2.3). Then,

there exists a local minimizer of criterion (2.2), denoted as {Θ̂
∗∗
, (Γ̂

(k)∗∗
)Kk=1}, such

that Θ̂
∗∗
· Γ̂

(k)∗∗
= Θ̂

∗
· Γ̂

(k)∗
for all k = 1, . . . , K. Similarly, if {Θ̂

∗∗
, (Γ̂

(k)∗∗
)Kk=1} is a

local minimizer of criterion (2.2), then there exists a local minimizer of criterion (2.3),

denoted as {Θ̂
∗
, (Γ̂

(k)∗
)Kk=1}, such that Θ̂

∗∗
· Γ̂

(k)∗∗
= Θ̂

∗
· Γ̂

(k)∗
for all k = 1, . . . , K.

The proof follows closely the proof of the Lemma in Zhou and Zhu (2010) and is

omitted. This result implies that in practice, instead of tuning two parameters η1 and

η2, we only need to tune one parameter η, which reduces the overall computational

cost.
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2.3.2 The Algorithm

First we reformulate the problem (2.3) in a more convenient form for computa-

tional purposes.

Lemma II.2. Let (Ω̂
(k)
)Kk=1 be a local minimizer of

min
(Ω(k))Kk=1

K∑
k=1

[
trace(Σ̂

(k)
Ω(k))− log{det(Ω(k))}

]
+ λ

∑
j ̸=j′

(
K∑
k=1

|ω(k)
j,j′|)

1/2, (2.4)

where λ = 2η1/2. Then, there exists a local minimizer of (2.3), {Θ̂, (Γ̂
(k)
)Kk=1}, such

that Ω̂
(k)

= Θ̂ · Γ̂
(k)
, for all k = 1, . . . , K. On the other hand, if {Θ̂, (Γ̂

(k)
)Kk=1} is a

local minimizer of (2.3), then there also exists a local minimizer of (2.4), (Ω̂
(k)
)Kk=1,

such that Ω̂
(k)

= Θ̂ · Γ̂
(k)
, for all k = 1, . . . , K.

The proof follows closely the proof of the Lemma in Zhou and Zhu (2010) and

is omitted. To optimize (2.4) we use an iterative approach based on Local Linear

Approximation (Zou and Li, 2008). Specifically, letting (ω
(k)
j,j′)

(t) denote the estimates

from the previous iteration t, we approximate (
∑K

k=1 |ω
(k)
j,j′|)1/2 ≈

∑K
k=1 |ω

(k)
j,j′|/{

∑K
k=1 |(ω

(k)
j,j′)

(t)|}1/2.

Thus, at the (t+ 1)th iteration, problem (2.4) is decomposed into K individual opti-

mization problems:

(Ω(k))(t+1) = argmin
Ω(k)

[
trace(Σ̂

(k)
Ω(k))− log{det(Ω(k))}

]
+ λ

∑
j ̸=j′

τ
(k)
j,j′ |ω

(k)
j,j′|,(2.5)

where τ
(k)
j,j′ = {

∑K
k=1 |(ω

(k)
j,j′)

(t)|}−1/2. Criterion (2.5) is exactly the sparse inverse co-

variance matrix estimation problem with weighted ℓ1 penalty; the solution can be

efficiently computed using the graphical lasso algorithm of Friedman et al. (2008).

For numerical stability, we threshold
{∑K

k=1 |(ω
(k)
j,j′)

(t)|
}1/2

at 10−10. In summary, the

proposed algorithm for solving (2.4) is:

Step 0. Initialize Ω̂
(k)

= (Σ̂
(k)

+ νIp)
−1 for all k = 1, . . . , K, where Ip is the identity
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matrix and the constant ν is chosen to guarantee Σ̂
(k)

+ νIp is positive definite;

Step 1. Update Ω̂
(k)

by (2.5) for all k = 1, . . . , K using graphical lasso;

Step 2. Repeat Step 1 until convergence is achieved.

2.3.3 Model Selection

The tuning parameter λ in (2.4) controls the sparsity of the resulting estimator. It

can be selected either by some type of Bayesian information criterion or through cross-

validation. The former balances the goodness of fit of the model and its complexity,

while the latter seeks to optimize its predictive power. Specifically, we define the

Bayesian information criterion for the proposed joint estimation method as

BIC(λ) =
K∑
k=1

[
trace(Σ̂

(k)
Ω̂

(k)

λ )− log{det(Ω̂
(k)

λ )}+ log(nk)dfk

]
,

where Ω̂
(1)

λ , . . . , Ω̂
(K)

λ are the estimates from (2.4) with tuning parameter λ and the

degrees of freedom are defined as dfk = #{(j, j′) : j < j′, ω̂
(k)
j,j′ ̸= 0}. The cross-

validation method randomly splits the data set into D segments with equal sizes. For

the kth category, we denote the sample covariance matrix using the data in the dth

segment (d = 1, . . . , D) by Σ̂
(k,d)

and the inverse covariance matrix estimated using all

the data excluding those in the dth segment and the tuning parameter λ by Ω̂
(k,−d)

λ .

Then we choose λ that minimizes the average predictive negative log-likelihood as

follows:

CV(λ) =
D∑

d=1

K∑
k=1

[
trace(Σ̂

(k,d)
Ω̂

(k,−d)

λ )− log{det(Ω̂
(k,−d)

λ )}
]
.

Cross-validation can in general be expected to be more accurate than the heuristic

Bayesian information criterion, but it is much more computationally intensive, which

is why we consider both options. We provide some comparisons between the two

tuning parameter selection methods in Section 2.5.
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2.4 Asymptotic Properties

Next, we derive the asymptotic properties of the joint estimation method, in-

cluding consistency, as well as sparsistency, when both p and n go to infinity and

the tuning parameter goes to 0 at a certain rate. First, we introduce the neces-

sary notation and state certain regularity conditions on the true precision matrices

(Ω
(1)
0 , . . . ,Ω

(K)
0 ), where Ω

(k)
0 = (ω

(k)
0,j,j′)p×p (k = 1, . . . , K).

Let Tk = {(j, j′) : j ̸= j′, ω
(k)
j,j′ ̸= 0} be the set of indices of all nonzero off-

diagonal elements in Ω(k), and let T = T1 ∪ · · · ∪ TK . Let qk = |Tk| and q = |T |

be the cardinalities of Tk and T , respectively. In general, Tk and qk depend on p.

In addition, let ∥ · ∥F and ∥ · ∥ be the Frobenius norm and the 2-norm of matrices,

respectively. We assume that the following regularity conditions hold:

(A) there exist constants τ1, τ2 such that for all p ≥ 1 and k = 1, . . . , K,

0 < τ1 < Phimin(Ω
(k)
0 ) ≤ Phimax(Ω

(k)
0 ) < τ2 < ∞

where Phimin and Phimax indicate the minimal and maximal eigenvalues;

(B) there exists a constant τ3 > 0 such that

min
k=1,...,K

min
(j,j′)∈Tk

|ω(k)
0,j,j′| ≥ τ3 .

Condition (A) is a standard one, also used in Bickel and Levina (2008) and Roth-

man et al. (2008), that guarantees that the inverse exists and is well conditioned.

Condition (B) ensures that non-zero elements are bounded away from 0.

Theorem II.3. (Consistency) Suppose conditions (A) and (B) hold, (p+q)(log p)/n =

o(1) and Λ1{(log p)/n}1/2 ≤ λ ≤ Λ2{(1+p/q)(log p)/n}1/2 for some positive constants

15



Λ1 and Λ2. Then there exists a local minimizer (Ω̂
(k)
)Kk=1 of (2.4), such that

K∑
k=1

∥Ω̂
(k)

−Ω
(k)
0 ∥F = OP

[{(p+ q) log p

n

}1/2]
.

Theorem II.4. (Sparsistency) Suppose all conditions in Theorem II.3 hold. We

further assume
∑K

k=1 ∥Ω̂
(k)

− Ω
(k)
0 ∥2 = OP (ηn), where ηn → 0 and {(log p)/n}1/2 +

η
1/2
n = O(λ). Then with probability tending to 1, the local minimizer (Ω̂

(k)
)Kk=1 in

Theorem II.3 satisfies ω̂
(k)
j,j′ = 0 for all (j, j′) ∈ T c

k , k = 1, . . . , K.

This theorem is analogous to Theorem 2 in Lam and Fan (2009). The consistency

requires both an upper and a lower bound on λ, whereas sparsistency requires consis-

tency and an additional lower bound on λ. To make the bounds compatible, we require

{(log p)/n}1/2+η
1/2
n = O({(1+p/q)(log p)/n}1/2). Since ηn is the rate of convergence

in the operator norm, we can bound it using the fact that ∥M∥2F/p ≤ ∥M∥2 ≤ ∥M∥2F .

This leads to two extreme cases. In the worst-case scenario,
∑

k ∥Ω̂
(k)

−Ω
(k)
0 ∥ has the

same rate as
∑

k ∥Ω̂
(k)

−Ω
(k)
0 ∥F and thus ηn = O{(p+ q)(log p)/n}. The two bounds

are compatible only when q = O(1). In best-case scenario,
∑

k ∥Ω̂
(k)

−Ω
(k)
0 ∥ has the

same rate as
∑

k ∥Ω̂
(k)

−Ω
(k)
0 ∥F/p1/2. Then, ηn = O{(1+ q/p)(log p)/n} and we have

both consistency and sparsistency as long as q = O(p).

2.5 Numerical Evaluation

2.5.1 Simulation Settings

In this section, we assess the performance of the joint estimation method on three

types of simulated networks: a chain, a nearest-neighbor, and a scale-free network.

In all cases, we set p = 100 and K = 3. For each k = 1, . . . , K, we generate nk = 100

independently and identically distributed observations from a multivariate normal

distribution N{0, (Ω(k))−1}, where Ω(k) is the inverse covariance matrix of the kth
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category. The details of the three simulated examples are described as follows.

In the first example, we follow the simulation setup in Fan et al. (2009) to generate

a chain network, which corresponds to a tridiagonal inverse covariance matrix. The

covariance matrices Σ(k) are constructed as follows: let the (j, j′)th element σ
(k)
j,j′ =

exp(−|sj − sj′|/2), where s1 < s2 < · · · < sp and

sj − sj−1 ∼ Uniform(0·5, 1), j = 2, . . . , p

Further, let Ω(k) =
(
Σ(k)

)−1
. The K precision matrices generated by this procedure

share the same pattern of zeros, i.e., the common structure, but the values of their

non-zero off-diagonal elements may be different. The left panel of Fig. 2.1 shows

the common link structure across the K categories. Further, we add heterogeneity

to the common structure by creating additional individual links as follows: for each

Ω(k) (k = 1, . . . , K), we randomly pick a pair of symmetric zero elements and replace

them with a value uniformly generated from the [−1,−0·5] ∪ [0·5, 1] interval. This

procedure is repeated ρM times, where M is the number of off-diagonal non-zero

elements in the lower triangular part of Ω(k) and ρ is the ratio of the number of

individual links to the number of common links. In the simulations, we considered

values of ρ=0, 1/4, 1 and 4, thus gradually increasing the proportion of individual

links.

In the second example, the nearest-neighbor networks are generated by modifying

the data generating mechanism described in Li and Gui (2006). Specifically, we

generate p points randomly on a unit square, calculate all p(p−1)/2 pairwise distances,

and find m nearest neighbors of each point in terms of this distance. The nearest

neighbor network is obtained by linking any two points that arem-nearest neighbors of

each other. The integer m controls the degree of sparsity of the network and the value

m = 5 was chosen in our study. The middle panel of Fig. 2.1 illustrates a realization
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of the common structure of a nearest-neighbor network. Subsequently, K individual

graphs were generated, by adding some individual links to the common graph with

ρ = 0, 1/4, 1, 4 by the same method as described in Example 1, with values for the

individual links ω
(k)
j,j′ generated from a uniform distribution on [−1,−0·5] ∪ [0·5, 1].

In the last example, we generate the common structure of a scale-free network

using the Barabasi–Albert algorithm (Barabasi and Albert, 1999); a realization is

depicted in the right panel of Fig. 2.1. The individual links in the kth network

(k = 1, . . . , K), are randomly added as before, with ρ = 0, 1/4, 1, 4 and the associated

elements in Ω(k) are generated uniformly on [−1,−0·5] ∪ [0·5, 1].

Figure 2.1: The common links present in all categories in the three simulated net-
works.

We compare the joint estimation method to the method that estimates each cate-

gory separately via (2.1). A number of metrics are used to assess performance, includ-

ing receiver operating characteristic curves, average entropy loss, average Frobenius

loss, average false positive and average false negative rates, and the average rate of

mis-identified common zeros among the categories. For the receiver operating charac-

teristic curve, we plot sensitivity, the average proportion of correctly detected links,

against the average false positive rate over a range of values of the tuning parameter
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λ. The average entropy loss and average Frobenius loss are defined as:

EL =
1

K

K∑
k=1

trace{(Ω(k))−1Ω̂
(k)
} − log[det{(Ω(k))−1Ω̂

(k)
}]− p ,

FL =
1

K

K∑
k=1

∥Ω(k) − Ω̂
(k)
∥2F/∥Ω(k)∥2F . (2.6)

The average false positive rate gives the proportion of false discoveries, that is, true

zeros estimated as non-zero; the average false negative rate gives the proportion of

off-diagonal non-zero elements estimated as zero; and the common zeros error rate

gives the proportion of common zeros across Ω(1), . . . ,Ω(K) estimated as non-zero.

The respective formal definitions are:

FP =
1

K

K∑
k=1

∑
1≤j<j′≤p I(ω

(k)
j,j′ = 0, ω̂

(k)
j,j′ ̸= 0)∑

1≤j<j′≤p I(ω
(k)
j,j′ = 0)

,

FN =
1

K

K∑
k=1

∑
1≤j<j′≤p I(ω

(k)
j,j′ ̸= 0, ω̂

(k)
j,j′ = 0)∑

1≤j<j′≤p I(ω
(k)
j,j′ ̸= 0)

,

CZ =

∑
1≤j<j′≤p I(

∑K
k=1 |ω

(k)
j,j′| = 0,

∑K
k=1 |ω̂

(k)
j,j′| ̸= 0)∑

1≤j<j′≤p I(
∑K

k=1 |ω
(k)
j,j′| = 0)

. (2.7)

2.5.2 Simulation Results

Figure 2.2 shows the estimated receiver operating characteristic curves averaged

over 50 replications for all three simulated examples, obtained by varying the tuning

parameter. It can be seen that the curves estimated by the joint estimation method

dominate those of the separate estimation method when the proportion of individual

links is low. As ρ increases, the structures become more and more different, and the

joint and separate methods move closer together, with the separate method eventually

slightly outperforming the joint method at ρ = 4, although the results are still fairly

similar. This is precisely as it should be, since the joint estimation method has the

biggest advantage with the most overlap in structure. In order to assess the variability
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of the two methods, we drawn the boxplots of the sensitivity of the two models with

the false positive rate controlled at 5% and the results indicate that as long as there is

a sustantial common structure, the joint method is superior to the separate method

and the difference is statistically significant.

Table 2.1 summarizes the results based on 50 replications with the tuning param-

eter selected by the Bayesian information criterion and cross-validation as described

in Section 2.3.3. In general, the joint estimation method produces lower entropy

and Frobenius norm losses for both model selection criteria, with the difference most

pronounced at low values of ρ. For the joint method, the two model selection crite-

ria exhibit closer agreement in false positive and negative rates and the proportion

of misidentified common zeros. For the separate method, however, cross-validation

tends to select more false positive links which result in more misidentified common

zeros.

2.6 University Webpages Example

The data set was collected in 1997 and includes webpages from computer science

departments at Cornell, University of Texas, University of Washington, and Uni-

versity of Wisconsin. The original data has been preprocessed using standard text

processing procedures, such as removing stop-words and stemming the words. The

preprocessed data set can be downloaded from http://web.ist.utl.pt/~acardoso/

datasets/. The webpages were manually classified into seven categories, from which

we selected the four largest ones for our analysis: student, faculty, course and project,

with 544, 374, 310 and 168 webpages, respectively. The log-entropy weighting method

(Dumais, 1991) was used to calculate the term-document matrix X = (xi,j)n×p, with

n and p denoting the number of webpages and distinct terms, respectively. Let

fi,j (i = 1, . . . , n; j = 1, . . . , p) be the number of times the jth term appears in the

ith webpage and let pi,j = fi,j/
∑n

i=1 fi,j. Then, the log-entropy weight of the jth term
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Table 2.1:
Results from the three simulated examples. S and J stand for the separate
and the joint methods, respectively. In each cell, the numbers before and
after the slash correspond to the results from selected by Bayesian informa-
tion criterion and cross-validation, respectively. EL, FL, FN , FP and CZ
are defined in equation (2.6) and (2.7). ρ: ratio of the number of individual
links to the number of common links.

Example ρ Method EL FL FN (%) FP (%) CZ (%)

Chain

0
S 20.7 / 21.9 0.5 / 0.5 0.8 / 0.1 5.7 / 21.8 14.5 / 51.0
J 12.8 / 6.6 0.3 / 0.3 0.0 / 0.0 4.3 / 0.5 7.0 / 1.2

1/4
S 21.3 / 16.6 0.5 / 0.5 41.3 / 9.0 1.3 / 18.7 3.8 / 46.0
J 9.5 / 8.7 0.3 / 0.3 15.6 / 17.6 1.7 / 0.7 3.2 / 1.4

1
S 23.0 / 17.1 0.5 / 0.5 73.7 / 24.4 0.7 / 18.8 1.9 / 46.4
J 12.5 / 12.4 0.4 / 0.4 44.2 / 45.8 1.6 / 1.1 3.0 / 2.0

4
S 29.8 / 20.2 0.6 / 0.5 97.3 / 47.5 0.1 / 19.5 0.3 / 47.8
J 20.0 / 20.7 0.5 / 0.5 75.5 / 76.2 1.9 / 1.8 3.2 / 3.0

NN

0
S 11.9 / 15.9 0.4 / 0.5 40.1 / 33.5 2.2 / 16.1 6.1 / 40.5
J 6.1 / 11.3 0.3 / 0.4 18.5 / 52.7 1.6 / 0.6 3.2 / 1.3

1/4
S 13.9 / 17.1 0.4 / 0.5 44.0 / 32.5 2.4 / 17.6 6.9 / 43.9
J 8.1 / 14.5 0.3 / 0.4 27.4 / 57.5 1.7 / 1.0 2.9 / 1.7

1
S 18.5 / 18.0 0.5 / 0.5 48.5 / 45.3 4.0 / 17.8 11.2 / 44.3
J 13.0 / 19.0 0.4 / 0.5 40.0 / 77.3 2.8 / 1.2 3.8 / 2.0

4
S 24.8 / 20.1 0.5 / 0.5 98.7 / 65.5 0.1 / 18.1 0.3 / 44.9
J 19.3 / 23.8 0.7 / 0.5 80.8 / 95.0 3.2 / 1.0 4.8 / 1.6

Scale-free

0
S 16.9 / 15.5 0.5 / 0.5 20.7 / 6.4 1.9 / 17.1 5.3 / 42.1
J 8.1 / 7.0 0.3 / 0.3 9.4 / 11.2 1.5 / 0.5 2.8 / 1.0

1/4
S 17.1 / 14.5 0.5 / 0.4 49.6 / 17.5 1.2 / 16.6 3.7 / 41.8
J 9.4 / 9.1 0.3 / 0.3 29.3 / 32.2 1.3 / 0.8 2.4 / 1.4

1
S 22.3 / 18.1 0.5 / 0.5 51.8 / 22.5 2.8 / 19.3 8.2 / 47.4
J 15.2 / 15.3 0.4 / 0.4 42.5 / 43.1 2.2 / 2.0 3.2 / 2.9

4
S 27.9 / 20.0 0.6 / 0.5 99.6 / 49.6 0.0 / 19.1 0.0 / 47.0
J 23.0 / 23.8 0.5 / 0.5 82.5 / 84.1 2.1 / 1.8 3.2 / 2.7

is defined as ej = 1+
∑n

i=1 pi,j(log pi,j)/ log n. Finally, the term-document matrixX is

defined as xi,j = ej log(1+fi,j) (i = 1, . . . , n; j = 1, . . . , p). and it is normalized along

each column. We applied the proposed joint estimation method to n = 1396 docu-

ments in the four largest categories and p = 100 terms with the highest log-entropy

weights out of a total of 4800 terms. The resulting common network structure is

shown in panel (A) of Fig. 2.3. The area of the circle representing a node is pro-

portional to its log-entropy weight, while the thickness of an edge is proportional to

the magnitude of the associated partial correlation. The plot reveals the existence of
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some high degree nodes, such as research, data, system, perform, that are part of the

computer science vocabulary. Further, some standard phrases in computer science,

such as home-page, comput-scienc, program-languag, data-structur, distribut-system

and high-perform, have high partial correlations among their constituent words in all

four categories. A few subgraphs extracted from the common network are shown in

panels (B)–(D) of Fig. 2.3; each graph clearly has its own semantic meaning, which

we loosely label as webpage generic, research area/lab and parallel programming.

The model also allows us to explore the heterogeneity between different categories.

As an example, we show the graphs for the student and faculty categories in Fig. 2.4.

It can be seen that terms teach and assist are only linked in the student category,

since many graduate students are employed as teaching assistants. On the other hand,

some term pairs only have links in the faculty category, such as select-public, faculti-

student, assist-professor and associ-professor. Similarly, we illustrate the differences

between the course and project categories in Fig. 2.5. Some teaching-related terms

are linked only in the course category, such as office-hour, office-instructor and teach-

assist, while pairs in the project category are connected to research, such as technolog-

center, technolog-institut, research-scienc and research-inform. Overall, the model

captures the basic common semantic structure of the websites, but also identifies

meaningful differences across the various categories. When each category is estimated

separately, individual links dominate, and the results are not as easy to interpret. The

graphical models obtained by separate estimation are not shown for lack of space.
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Figure 2.2: Receiver operating characteristic curves. The horizontal and vertical axes
in each panel are false positive rate and sensitivity, respectively. The
solid line corresponds to the joint estimation method, and the dashed
line corresponds to the separate estimation method. ρ is the ratio of the
number of individual links to the number of common links.
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Figure 2.3:
Common structure in the webpages data. Panel (A) shows the estimated
common structure for the four categories. The nodes represent 100 terms
with the highest log-entropy weights. The area of the circle representing
a node is proportional to its log-entropy weight. The width of an edge
is proportional to the magnitude of the associated partial correlation.
Panels (B)–(D) show subgraphs extracted from the graph in panel (A).
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Figure 2.4:
“Student” and “Faculty” graphs. The light lines are the links appearing
in both categories, and the dark lines are the links only appearing in one
category.
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Figure 2.5:
“Course” and “Project” graphs. The light lines are the links appearing
in both categories, and the dark lines are the links only appearing in one
category.
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CHAPTER III

Asymptotic Properties of the Joint Neighborhood

Selection Method for Estimating Categorical

Markov Networks

3.1 Introduction

Hoefling and Tibshirani (2009) and Wang et al. (2009) proposed a joint neighbor-

hood selection method to estimate high-dimensional Market network. This method

provides a direct solution for parameter symmetrization by estimating all the re-

gressions jointly. They simultaneously solve the p logistic regression problems and

encourages the sparsity of the interaction parameters, thus automatically ensuring

symmetry. The joint application of the ℓ1 penalty allows for a more flexible degree

distribution in the estimated graph, as explained in Section 2.3.

In this chapter, we show that the joint neighborhood selection algorithm in Hoe-

fling and Tibshirani (2009) and Wang et al. (2009) leads to consistent parameter

estimation and model selection under high-dimensional asymptotics. Moreover, we

also apply the algorithm to a very different application and finally extend the algo-

rithm to estimate graphical models with general categorical variables.

The remainder of the chapter is organized as follows. Section 3.2 reviews the struc-

ture estimation problem of Markov networks and introduce the joint neighborhood
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selection method. Section 2.4 establishes the theoretical properties of the method, in-

cluding consistency of parameter estimation and network recovery. Section 3.4 applies

the method to explore voting dependencies between senators in the 109th Congress.

An extension to Markov networks with general categorical variables is discussed in

Section 3.5.

3.2 Methodology

We focus initially on a Markov network for binary variables and discuss the exten-

sion to general categorical variables in Section 3.5. We start by setting up the problem

and also discuss the joint neighborhood selection criterion proposed by Hoefling and

Tibshirani (2009) and Wang et al. (2009).

Suppose we have p binary random variables X1, . . . , Xp, with Xj ∈ {1, 0}, 1 ≤

j ≤ p, whose joint distribution has the following probability mass function:

f(X1, . . . , Xp) =
1

Z(Θ)
exp

( p∑
j=1

θj,jXj +
∑

1≤j<j′≤p

θj,j′XjXj′

)
, (3.1)

where Θ = (θj,j′)p×p is a symmetric matrix specifying the network structure.

Note that θj,j, 1 ≤ j ≤ p, corresponds to the main effect for variable Xj, whereas

θj,j′ , 1 ≤ j < j′ ≤ p, corresponds to the interaction effect between variables Xj

and Xj′ . These θj,j′ ’s reflect the structure of the underlying network. Specifically,

if θj,j′ = 0, then Xj and Xj′ are conditionally independent given other variables

and hence their corresponding nodes are not connected. Ravikumar et al. (2009)

pointed out that one could consider only the pairwise interaction effects, since higher

order interactions can be approximately converted to pairwise ones through the intro-

duction of additional variables (Wainwright and Jordan, 2008). The partition func-

tion Z(Θ) =
∑

Xj∈{0,1},1≤j≤p exp(
∑p

j=1 θj,jXj +
∑

1≤j<j′≤p θj,j′XjXj′) ensures that the

probability mass function in (3.1) is a proper one, integrating to one.
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The structure of the partition function with its 2p terms renders optimizing (3.1)

infeasible, except in toy problems. A strategy to overcome this difficulty is to use the

pseudo-likelihood function to approximate the joint likelihood function associated

with mass (3.1). Specifically, let xi,j be the i-th realization of variable Xj, then the

pseudo-likelihood function can be written as follows:

p∏
j=1

n∏
i=1

ϕ
xi,j

i,j (1− ϕi,j)
1−xi,j , (3.2)

where ϕi,j = P(xi,j = 1|xi,k, k ̸= j; θj,k, 1 ≤ k ≤ p) = exp(θj,j +
∑

k ̸=j θj,kxi,k)/{1 +

exp(θj,j +
∑

k ̸=j θj,kxi,k)}. It can be seen that this gives rise to a logistic regres-

sion problem where the j-th variable is taken as the response and is regressed on

the remaining variables, and hence decomposes the problem into p separate logistic

regressions, which are simple to solve.

In the joint neighborhood selection method proposed, Hoefling and Tibshirani

(2009) and Wang et al. (2009) solve the following joint criterion problem:

max
Θ

p∑
j=1

n∑
i=1

[
xi,j

(
θj,j +

∑
k ̸=j

θj,kxi,k

)
− log

{
1 + exp

(
θj,j +

∑
k ̸=j

θj,kxi,k

)}]
− λ

∑
j<j′

|θj,j′ |

subject to θj,j′ = θj′,j, 1 ≤ j < j′ ≤ p. (3.3)

Notice that the penalty jointly imposes sparsity over all interaction effects, while the

tuning parameter λ controls its degree. However, this method does not lead to solving

p separate logistic problems due to the symmetry constraint θj,j′ = θj′,j. On the other

hand, it reduces the number of parameters to be estimated by half, i.e., p(p + 1)/2

for the joint method vs. p2 for the neighborhood selection method.

Hoefling and Tibshirani (2009) and Wang et al. (2009) proposed an efficient iter-

ative algorithm to solve this problem. The algorithm consists of two nested loops. In
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the outer loop, they follow the strategy in Friedman et al. (2010) to approximate the

logistic log-likelihood in (3.3) by its Taylor series expansion. Specifically, we denote

the estimate of θj,j′ in the t-th iteration by θ
(t)
j,j′ , and write

xi,j

(
θj,j +

∑
k ̸=j

θj,kxi,k

)
− log

{
1 + exp

(
θj,j +

∑
k ̸=j

θj,kxi,k

)}
≈ −1

2
w

(t)
i,j

(
y
(t)
i,j − θj,j −

∑
k ̸=j

θj,kxi,k

)2

+ C
(t)
i,j , (3.4)

where

p
(t)
i,j =

exp(θ
(t)
j,j +

∑
k ̸=j θ

(t)
j,kxi,k)

1 + exp(θ
(t)
j,j +

∑
k ̸=j θ

(t)
j,kxi,k)

,

y
(t)
i,j = θ

(t)
j,j +

∑
k ̸=j

θ
(t)
j,kxi,k −

p
(t)
i,j − xi,j

w
(t)
i,j

,

w
(t)
i,j = p

(t)
i,j (1− p

(t)
i,j ) ,

and C
(t)
i,j is some constant unrelated to Θ. We define next the following quantities:

θ = (θ1,2, . . . , θj,j′ , . . . , θp−1,p)
T ,

y∗
j = (

√
w

(t)
1,jy1,j, . . . ,

√
w

(t)
n,jyn,j)

T

,

y∗∗
j = y∗

j − ȳj,where ȳj =
1

n

n∑
i=1

√
w

(t)
i,j y

(t)
i,j ,

x∗
j = (

√
w

(t)
1,jx1,j, . . . ,

√
w

(t)
n,jxn,j)

T

,

x∗∗
j = x∗

j − x̄j,where x̄j =
1

n

n∑
i=1

√
w

(t)
i,jx

(t)
i,j . (3.5)

We further define an np× 1 column vector

X ∗∗
j,j′ = (0n

T, . . . ,0n
T, x∗∗

j′
T,︸ ︷︷ ︸ 0n

T, . . . ,0n
T, x∗∗

j
T,︸ ︷︷ ︸ 0n

T, . . . ,0n
T)T,

j-th block j′-th block

(3.6)
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where 0n is an n-dimensional column vector of zeros. X ∗∗
j,j′ consists of p blocks of

size n, where the j-th block and the j′-th block are x∗∗
j′ and x∗∗

j , respectively, and all

other blocks are zeros. Finally, let Y∗∗ = (y∗∗
1

T, . . . ,y∗∗
p

T)T (an np× 1 column vector)

and X ∗∗ = (X ∗∗
1,2, . . . ,X ∗∗

j,j′ , . . . ,X ∗∗
p−1,p) (an np× p(p− 1)/2 matrix). Then, (3.3) can

be rewritten as the following lasso problem:

min
θ

1

2
∥Y∗∗ −X ∗∗θ∥2 + λ∥θ∥1. (3.7)

In the inner loop of the algorithm, criterion (3.7) can be efficiently solved by shooting-

type algorithms (Friedman et al., 2007). Letting θ̂ be the estimate obtained from

(3.7), then for each 1 ≤ j ≤ p, the main effects θj,j’s in (3.4) are calculated as follows:

θ̂j,j =
ȳj −

∑
k ̸=j θ̂j,kx̄k

1
n

∑n
i=1

√
w

(t)
i,j

. (3.8)

In summary, the algorithm consists of the following steps:

Step 1. InitializeΘ(0) by setting θ
(0)
j,j′ = 0 for all 1 ≤ j ̸= j′ ≤ p and θ

(0)
j,j = log[pj/(1−

pj)], where pj =
∑n

i=1 xi,j/(n−
∑n

i=1 xi,j);

Step 2. Given the estimate in the t-th step, update Θ(t+1) by solving criteria (3.7)

and (3.8);

Step 3. Repeat Step 2 until convergence.

3.3 Theoretical Properties

In this section, we present the asymptotic properties of the joint neighborhood

selection method; the proofs can be found in the Appendices. Since in the Ising model

the structure of the underlying network only depends on the interaction effects, we
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focus on the variant of the model with no main effects, which gives rise to the criterion

max
θ

p∑
j=1

n∑
i=1

[
xi,j

(∑
j′ ̸=j

θj,j′xi,j′

)
− log

{
1 + exp

(∑
j′ ̸=j

θj,j′xi,j′

)}]
− λ

∑
j<j′

|θj,j′ |, (3.9)

where θj,j′ = θj′,j, 1 ≤ j < j′ ≤ p, and θ is a vector with dimension p(p−1)/2 defined

as θ = (θ1,2, . . . , θj,j′ , . . . , θp−1,p)
T.

Let θ0 be the true value of θ, and let Q0 be the population Fisher information

matrix of the model in criterion (3.9) at θ0 (refer to Appendix I for details). Further,

let

X j,j′ = (0n
T, . . . ,0n

T, xj′
T,︸︷︷︸ 0n

T, . . . ,0n
T, xj

T,︸︷︷︸ 0n
T, . . . ,0n

T)T,

j-th block j′-th block ,

(3.10)

and let X = (X 1,2, . . . ,X j,j′ , . . . ,X p−1,p). Let X (i,j) be the [(j − 1)n + i]-th row

of X and X (i) = (X (i,1), . . . ,X (i,p))
T

, and let U 0 = E(X (i)TX (i)). In addition, let

S = {(j, j′) : θ0j,j′ ̸= 0, 1 ≤ j < j′ ≤ p} be the index set of all nonzero components of

θ0, whose cardinality is denoted by q, and let Sc be the complement of S. Finally,

for any matrix W and subsets of row and column indices U and V , let W U ,V be the

matrix consisting of rows U and columns V in W , and let Λmin(·) and Λmax(·) denote

the smallest and largest eigenvalue of a matrix.

Our results rely on the following regularity conditions:

(A) Dependency: There exist positive constants τmin and τmax such that

Λmin(Q
0
S,S) ≥ τmin and Λmax(U

0
S,S) ≤ τmax ; (3.11)

(B) Incoherence: There exists a constant τ ∈ (0, 1) such that

∥Q0
Sc,S(Q

0
S,S)

−1∥∞ ≤ 1− τ . (3.12)
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Similar conditions have been assumed by Meinshausen and Buhlmann (2006), Raviku-

mar et al. (2009) and Peng et al. (2009). The most closely related conditions for binary

data are those of Ravikumar et al. (2009), but because they fit regressions separately,

their conditions are on the p×p matrices corresponding to the individual regressions,

whereas ours are on the p(p − 1)/2 × p(p − 1)/2 matrices corresponding to all the

parameters combined. These conditions can be interpreted as a bound on the amount

of dependence (A), and a bound on influence non-neighbors can have on a given node

(B). Under these conditions, we establish the following results:

Theorem III.1. (Parameter estimation). Suppose conditions (A) and (B) hold and

θ̂ is the maximizer of the criterion (3.9). If the tuning parameter λ = Cλ

√
(log p)/n

for some constant Cλ > 16(2 − τ)/τ and if n > (4/C)q3 log(p) for some constant

C < τ 2minτ
2/max{288(1− τ)2, 72}, then with probability tending to 1,

∥θ̂ − θ0∥2 ≤ M

√
q log p

n
, (3.13)

for some constant M > (2Cλ/τmin)[1 + τ/(8− 4τ)].

Theorem III.2. (Structure estimation). Under conditions of Theorem III.1, if we

further assume θ0min = min(j,j′)∈S |θ0j,j′| ≥ 2M
√
q log(p)/n, then with probability tend-

ing to 1,

θ̂j,j′ ̸= 0 for all (j, j′) ∈ S and θ̂j,j′ = 0 for all (j, j′) ∈ Sc .

The proofs of Theorems III.1 and III.2 are given in Appendix I.

3.4 Application to the Senate Voting Record

The dataset was obtained from the website of the US Congress (http://www.

senate.gov). It contains the voting records of the 100 senators of the 109th Congress

(January 3, 2005 — January 3, 2007) on 645 bills, resolutions, motions, debates and
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roll call votes that the Senate deliberated and voted on. The votes are recorded as

one for “yes” and zero for “no”. Missing values (missed votes) for each senator were

imputed with the majority vote of that senator’s party on that particular bill; the

missing votes for the Independent Senator Jeffords were imputed with the Democratic

majority vote. The number of imputed votes is fairly small, less than 5% of the total

and less than 3% of the total votes for 90% of the senators, and we do not expect

this imputation to have a significant effect on the analysis. Finally, we excluded bills

from the analysis if the ”yes/no” proportion fell outside the interval [0.3, 0.7], since the

Senate votes on many procedural and other uncontroversial motions that do not reflect

the real political dynamics in the Senate. This resulted in a total of 387 observations

(votes) on 100 variables (senators). We applied the joint neighborhood selection

method to estimate the network structure and results are shown in Figure 3.1.

A richer structure than that dictated by the presence of two political parties

emerges, with four distinct communities, two Republican and two Democratic. As

expected, the two political parties are well separated, with many positive dependence

links within their members (green solid lines) and negative links across parties (red

dashed lines). The two communities on the left side of the plot can be broadly de-

scribed as representing the cores of the two parties, although there is additional struc-

ture. For example, a number of the more liberal Democrats (Obama, Boxer, Kennedy,

Bingaman, Stabenow, Kerry, Lautenberg, Sarbanes, Mikulski, Wyden, Leahy, Dor-

gan) have the strongest negative associations with the more conservative Republicans

(Roberts, Sessions, Hutchison, Coburn, Burr, Shelby, Allen, Cornyn), mostly from

Southern states (see also related analysis of earlier congresses in Clinton et al. (2004)

and de Leeuw (2006)). Further, a number of positive associations are detected be-

tween some of the more centrist Democrats (Lieberman, Nelson, Baucus, Landrieu,

Schumer, Clinton); a detailed inspection of the votes suggests that these are mostly

due to their positions on issues of national security and the economy. Similarly, there
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Figure 3.1:
Voting dependencies between senators estimated by the joint neighbor-
hood selection method. Each red (blue) circle represents a Republican
(Democratic) senator, the circle size is proportional to the degree of the
node. Senator Jeffords (the purple circle) is an independent senator. A
solid green (dashed red) link represents a positive (negative) dependence
between two senators. The width of each link is proportional to its asso-
ciated |θ̂j,j′|. For clarity, all links with |θ̂j,j′ | ≤ 0.1 have the same width.
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is a separate cluster of moderate Republicans (Grassley, Lugar, Alexander, Warner,

Frist, Voinovich). A separate community of Republicans and Democrats emerges on

the right side of the plot. An inspection of the votes suggests that they differ from

the core members of their respective parties because of their voting record on several

issues, including national security, confirmation votes on nominations, and certain

regulatory and budget measures. Also of interest is the strong agreement between

pairs of senators coming from the same state and party (Schumer-Clinton, Murray-

Cantwell, Stevens-Murkowski, Hatch-Bennett, Collins-Snowe). Further, moderate

Republicans DeWine, Chafee and Specter and the pro-life Democrat Nelson are rep-

resented as isolated nodes, thus confirming results of previous analysis by Clinton

et al. (2004) and de Leeuw (2006) (albeit based on data from the 105th Congress).

We also note that the Senate voting record from the 109th Congress was analyzed

by Banerjee et al. (2008); however, the dataset they used turned out to have been

contaminated with many votes from earlier Congresses starting from the 1990s, which

led to a large number of missing votes for senators elected later. Since their imputa-

tion method was to impute “no” for all missing votes, the validity of their analysis is

unclear and their results cannot be directly compared to ours. Overall, our analysis

confirms known political patterns and provides new insights into the U.S. Senate’s

voting.

3.5 Extension to General Markov Networks

The joint neighborhood selection method can be extended to model general Markov

networks consisting of categorical variables. Let (xi,1, . . . , xi,p) be the i-th observa-

tion, where xi,j, 1 ≤ j ≤ p, takes values in the discrete set {1, 2, . . . , D} for some

positive integer D. Denote by z
(1)
i,j , . . . , z

(D−1)
i,j the dummy variables associated with

xi,j, i.e., z
(d)
i,j = I(xi,j = d), 1 ≤ d ≤ D − 1, where I(·) denotes the indicator function.

Notice that we omit z
(D)
i,j because it is redundant given the constraint

∑D
d=1 zi,j = 1.
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The criterion of joint neighborhood selection can be modified as follows:

max
{θ∗

j :1≤j≤p}
∪
{θ∗

j,j′ :1≤j<j′≤p}

p∑
j=1

n∑
i=1

[D−1∑
d=1

z
(d)
i,j

(
θ
(d)
j +

∑
k ̸=j

D−1∑
d′=1

θ
(d,d′)
j,k z

(d′)
i,k

)
− log

{D−1∑
d=1

exp
(
θ
(d)
j +

∑
k ̸=j

D−1∑
d′=1

θ
(d,d′)
j,k z

(d′)
i,k

)}]

− λ
∑
j<j′

√√√√D−1∑
d=1

D−1∑
d′=1

(θ
(d,d′)
j,j′ )2

subject to θ
(d,d′)
j,j′ = θ

(d,d′)
j′,j , 1 ≤ j < j′ ≤ p, 1 ≤ d, d′ ≤ D − 1.(3.14)

In (3.14), θ
(d)
j corresponds to the main effect of variable j in class d and θ

(d,d′)
j,j′ to the

interaction effect between variable j in class d and variable j′ in class d′. Further,

θ∗
j = {θ(d)j : 1 ≤ d ≤ D − 1} collects all main effects associated with variable j and

θ∗
j,j′ = {θ(d,d

′)
j,j′ : 1 ≤ d, d′ ≤ D − 1} collects all interaction effects associated with

variables j and j′. Here, we remove the edge between nodes j and j′ only if all

the elements in θ∗
j,j′ are zero. To achieve this, we use the group penalty proposed

by Yuan and Lin (2007), where all elements in θ∗
j,j′ are regarded as a group and

simultaneously estimated as zeros or nonzeros. Criterion (3.14) can be estimated by

a modified LQA-shooting algorithm, in which the inner loop is replaced by a modified

shooting algorithm for group lasso (Friedman et al., 2007).
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CHAPTER IV

Estimating Heterogeneous Graphical Models for

Discrete Data with an Application to Roll Call

Voting

4.1 Introduction

In this chapter, we focus on the case of a Markov network for binary random

variables, which generalizes easily to categorical data. An interesting application of

such networks deals with the analysis of roll call data for the United States Congress.

Such data have obviously received a lot of attention amongst political scientists (see

for example the books by (Enelow and Hinich, 1984; Matthews and J.A., 1975; Mor-

ton, 1999; Poole and Rosenthal, 1997), but has also been an application area for

statistical techniques, including principal component analysis (de Leeuw, 2006), mul-

tidimensional scaling (Diaconis et al., 2008), Bayesian models (Clinton et al., 2004)

and Gaussian graphical models (Banerjee et al., 2008). However, all such techniques

have focused on treating the votes as homogeneous, assuming all the votes represent

the same underlying relationship among senators/congressmen. However, it is well

known that there are certain subgroups of politicians whose voting behavior depends

on the issue, and who form different alliances when voting, for example, on national

security and health care. Therefore, treating votes as heterogeneous is more accurate,
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and can provide further insight into the voting behavior of different groups of sena-

tors on different issues. In our application, we focus on voting records on three types

of bills: defense and national security, environment and energy, and healthcare is-

sues. Voting on the latter category is typically more partisan than voting on defense

and national security, and thus we expect to see different connections in different

categories.

To accomplish the analysis allowing for heterogeneity, we develop a framework

for fitting different Markov models for each category that are nevertheless linked,

sharing nodes and having some common edges across all categories, while other edges

are uniquely associated with a particular category. Asymptotic properties of the

proposed estimator are also established. Note that for the Gaussian case, this problem

was considered by Guo et al. (2011), who proposed a joint likelihood based estimation

method that borrowed strength across categories.

The remainder of the chapter is organized as follows. Section 4.2 introduces the

Markov network and addresses algorithmic issues, while Section 4.5 presents asymp-

totic results. Section 4.3 illustrates the performance of the joint estimation method

using simulated data, and the US Senate’s voting record is analyzed in Section 4.4.

Some concluding remarks are drawn in Section 4.6.

4.2 Model and Estimation Algorithm

In this section, we present the Markov model for heterogeneous data, focusing on

the special case of binary variables (also known as the Ising model). The extension to

general categorical variables is briefly discussed in Section 4.6. We start by discussing

estimation of separate models for each category and then develop a model for joint

estimation.
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4.2.1 Problem Setup and Separate Estimation Method

Suppose that data have been collected on p binary variables for K categories,

with nk observations for the k-th category. Let x
(k)
i = (x

(k)
i,1 , . . . , x

(k)
i,p ) denote a p-

dimensional row vector containing the data for the i-th observation in the k-th cate-

gory and assume that it is independent observation from an exponential family with

density function:

fk(X1, . . . , Xp) =
1

Z(Θ(k))
exp

( p∑
j=1

θ
(k)
j,j Xj +

∑
1≤j<j′≤p

θ
(k)
j,j′XjXj′

)
. (4.1)

The partition function Z(Θ(k)) =
∑

Xj∈{0,1},1≤j≤p exp(θ
(k)
j,j Xj +

∑
1≤j<j′≤p θ

(k)
j,j′XjXj′)

ensures that the density function in (4.1) is a proper one, integrating to one. The

parameters θ
(k)
j,j , 1 ≤ j ≤ p correspond to the main effect for variable Xj in the k-th

category, while θ
(k)
j,j′ , 1 ≤ j < j′ ≤ p to the interaction effect between variables Xj

and Xj′ . The underlying network associated with the k-th category is determined by

the symmetric matrix Θ(k) = (θ
(k)
j,j′)p×p. Specifically, if θ

(k)
j,j′ = 0, then Xj and Xj′ are

conditionally independent in the k-th category given all the remaining variables and

hence their corresponding nodes are not connected. For each category, criterion (4.1)

is referred to as the Markov network in the machine learning literature, and as the

log-linear model in the statistics literature, where θ
(k)
j,j′ is also interpreted as the condi-

tional log-odds-ratio between Xj and Xj′ given the other variables. Although general

Markov networks allow higher order interactions (3-way, 4-way, etc), Ravikumar et al.

(2010) pointed out that one can consider only the pairwise interaction effects without

loss of generality, since higher order interactions can be converted to pairwise ones

by introducing additional variables (Wainwright and Jordan, 2008).

The simplest way to deal with such heterogenous data is to estimate K separate

Markov models. Specifically, if one further assumes sparsity for the k-th category, the

structure of the underlying graph can be estimated by regularizing the log-likelihood
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using an ℓ1 penalty:

max
Θ(k)

1

nk

nk∑
i=1

{ p∑
j=1

θ
(k)
j,j x

(k)
i,j +

∑
1≤j<j′≤p

θ
(k)
j,j′x

(k)
i,j x

(k)
i,j′

}
− log Z(Θ(k))−λ

∑
1≤j<j′≤p

|θ(k)j,j′ |. (4.2)

The ℓ1 penalty shrinks some interaction effects θ
(k)
j,j′ , 1 ≤ j < j′ ≤ p, to zero and λ

controls the degree of sparsity. However, estimating (4.2) directly is computationally

infeasible due to the nature of the partition function. To overcome this difficulty, we

adopt a pseudo-likelihood estimation method proposed in Guo et al. (2010), based

on:

max
Θ(k)

1

nk

nk∑
i=1

p∑
j=1

[
x
(k)
i,j

(
θ
(k)
j,j +

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)
− log

{
1 + exp

(
θ
(k)
j,j +

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)}]
−λ

∑
1≤j<j′≤p

|θ(k)j,j′| , (4.3)

where Θ(k) is restricted to be symmetric. Criterion 4.3 can be efficiently solved

using a modified coordinate descent algorithm introduced in Guo et al. (2010), or the

algorithm of Hoefling and Tibshirani (2009).

4.2.2 Joint Estimation of Heterogeneous Networks

We start by reparameterizing each θ
(k)
j,j′ as

θ
(k)
j,j′ = ϕj,j′γ

(k)
j,j′ , 1 ≤ j ̸= j′ ≤ p; 1 ≤ k ≤ K. (4.4)

To avoid sign ambiguities between ϕj,j′ and γ
(k)
j,j′ , we restrict ϕj,j′ ≥ 0, 1 ≤ j < j′ ≤ p.

To preserve the symmetry of Θ(k), we also require ϕj,j′ = ϕj′,j and γ
(k)
j,j′ = γ

(k)
j′,j,

1 ≤ j < j′ ≤ p and 1 ≤ k ≤ K. Moreover, for identifiability reasons, we restrict the

diagonal elements ϕj,j = 1 and γ
(k)
j,j = ω

(k)
j,j . Note that ϕj,j′ is a common factor across
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allK categories that controls the occurrence of common links shared across categories,

while γ
(k)
j,j′ is an individual factor specific to the k-th category. The proposed joint

estimation method considers maximizing the following penalized criterion:

max
{Φ(k),Γ(k)}Kk=1

K∑
k=1

1

nk

nk∑
i=1

p∑
j=1

[
x
(k)
i,j

(
θ
(k)
j,j +

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)
− log

{
1 + exp

(
θ
(k)
j,j +

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)}]
−η1

∑
1≤j<j′≤p

ϕj,j′ − η2
∑

1≤j<j′≤p

K∑
k=1

|γ(k)
j,j′ | , (4.5)

where Φ(k) = (ϕj,j′)p×p and Γ(k) = (γ
(k)
j,j′)p×p, with η1 a tuning parameter controlling

the sparsity of the common structure across the K networks. Specifically, if ϕj,j′ is

shrunk to zero, all θ
(1)
j,j′ , . . . , θ

(K)
j,j′ are also zero, and hence there is no link between

nodes j and j′ in any of the K graphs. Similarly, η2 is a tuning parameter controlling

the sparsity of links for individual categories. Due to the nature of the ℓ1 penalty,

some of γ
(k)
j,j′ ’s will be shrunk to zero, resulting in a collection of graphs with individual

differences. Note that this two-level penalty was originally proposed in Zhou and Zhu

(2010) for group variable selection in linear regression.

To simplify estimation, we convert the criterion (4.5) to an equivalent criterion

with only one tuning parameter:

max
{Θ(k)}Kk=1

K∑
k=1

1

nk

nk∑
i=1

p∑
j=1

[
x
(k)
i,j

(
θ
(k)
j,j +

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)
− log

{
1 + exp

(
θ
(k)
j,j +

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)}]

−λ
∑

1≤j<j′≤p

√√√√ K∑
k=1

|θ(k)j,j′| , (4.6)

where λ = 2
√
η1η2. The equivalence between (4.5) and (4.6) can be formalized as

follows (A ·B denotes the Schur-Hadamard element-wise product of two matrices);
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Proposition 1. Let {Θ̂
(k)
}Kk=1 be a local minimizer of (4.6). Then there exists a local

minimizer of (4.5), (Φ̂, {Γ̂
(k)
}Kk=1), such that Θ̂

(k)
= Φ̂ · Γ̂

(k)
, for all 1 ≤ k ≤ K. On

the other hand, if (Φ̂, {Γ̂
(k)
}Kk=1) is a local minimizer of (4.5), then there also exists

a local minimizer of (4.6), {Θ̂
(k)
}Kk=1, such that Θ̂

(k)
= Φ̂ · Γ̂

(k)
, for all 1 ≤ k ≤ K.

The proof of this proposition is similar to the proofs of Lemma 1 and Theorem 1

in Zhou and Zhu (2010) and is omitted here.

4.2.3 Algorithm and Model Selection

Criterion (4.6) leads to an efficient estimation algorithm based on the local lin-

ear approximation. Specifically, letting (θ
(k)
j,j′)

[t] denote the estimates from the t-

th iteration, we approximate
√∑K

k=1 |θ
(k)
j,j′ | ≈

∑K
k=1 |θ

(k)
j,j′|/

√∑K
k=1 |(θ

(k)
j,j′)

[t]|, when

θ
(k)
j,j′ ≈ (θ

(k)
j,j′)

[t]. Thus, at the (t+ 1)-th iteration, problem (4.6) is decomposed into K

individual optimization problems:

max
Θ(k)

1

nk

nk∑
i=1

p∑
j=1

[
x
(k)
i,j

(
θ
(k)
j,j +

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)
− log

{
1 + exp

(
θ
(k)
j,j +

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)}]
−λ

∑
1≤j<j′≤p

( K∑
k=1

|(θ(k)j,j′)
[t]|
)−1/2

|θ(k)j,j′| . (4.7)

Note that criterion (4.7) is a variant of criterion (4.3) with a weighted ℓ1 penalty

and hence can be solved by the JOSE algorithm in Guo et al. (2010). For numerical

stability, we threshold
√∑K

k=1 |(θ
(k)
j,j′)

[t]| at 10−10. The algorithm is summarized as

follows:

Step 1. Initialize θ̂
(k)
j,j′ ’s (1 ≤ j, j′ ≤ p; 1 ≤ k ≤ K) using the estimates from the

separate estimation method;

Step 2. For each 1 ≤ k ≤ K, update θ̂
(k)
j,j′ ’s by solving (4.7) using the JOSE algorithm
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in Guo et al. (2010);

Step 3. Repeat Step 2 until convergence.

The tuning parameter λ in (4.6) controls the sparsity of the resulting estimator

and it can be selected using cross-validation. Specifically, for each 1 ≤ k ≤ K, we

randomly split the data in the k-th category into D subsets with similar sizes and

denote the index set of the observations in the d-th subset as T (k)
d , 1 ≤ d ≤ D. Then

λ is selected by maximizing

1

D

D∑
d=1

K∑
k=1

1

|T (k)
d |

∑
i∈T (k)

d

p∑
j=1

x
(k)
i,j

{
(θ̂

(k)
j,j )

[−d](λ) +
∑
j′ ̸=j

(θ̂
(k)
j,j′)

[−d](λ)x
(k)
i,j′

}
− log

[
1 + exp

{
(θ̂

(k)
j,j )

[−d](λ) +
∑
j′ ̸=j

(θ̂
(k)
j,j′)

[−d](λ)x
(k)
i,j′

}]
,(4.8)

where |T (k)
d | is the cardinality of T (k)

d and (θ̂
(k)
j,j′)

[−d](λ) is the joint estimate of θ
(k)
j,j′

based on all observations except those in T (1)
d

∪
. . .

∪
T (K)
d , as well as the tuning

parameter λ.

4.3 Simulation Study

In this section, we evaluate the performance of the joint estimation method on

three synthetic examples, each with p = 50 variables and K = 3 categories. The

network structure in each example is composed of two parts: the common structure

across all categories and the individual structure specific to a category. The common

structures in these examples are a chain graph, a nearest neighbor graph and a scale-

free graph. These graphs are generated as follows:

Example 1: Chain Graph. A chain graph is generated by connecting nodes 1 to

p in increasing order, as shown in Figure 4.1 (A1).

Example 2: Nearest Neighbor Graph. The data generating mechanism of the
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nearest neighbor graph is adapted from Li and Gui (2006). Specifically, we

generate p points randomly on a unit square, calculate all p(p − 1)/2 pairwise

distances, and find three nearest neighbors of each point in terms of these dis-

tances. The nearest neighbor network is obtained by linking any two points

that are nearest neighbors of each other. Figure 4.1 (B1) illustrates a nearest-

neighbor graph.

Example 3: Scale-free Graph. A scale-free graph has a power-law degree distri-

bution and can be simulated by the Barabasi-Albert algorithm (Barabasi and

Albert, 1999). A realization of a scale-free network is depicted in Figure 4.1

(C1).

In each example, the network for the k-th category (k = 1, . . . , K) is created by

randomly adding links to the common structure. The individual links in different

categories are disjoint and have the same degree of sparsity, measured by ρ, the ratio

of the number of individual links to the number of common links. In particular, ρ = 0

corresponds to identical networks for all three categories. In the simulation study,

we consider ρ=0, 1/4 and 1, gradually increasing the proportion of individual links

(Figure 4.1). Given the graphs, the symmetric parameter matrix Θ(k) is generated as

follows. Each θ
(k)
j,j′ = θ

(k)
j′,j corresponding to a link between nodes j and j′ is uniformly

drawn from [−1,−0.5] ∪ [0.5, 1], whereas all other elements are set to zero. Then

we generate the data using Gibbs sampling. Specifically, suppose the i-th iteration

sample has been drawn and is denoted as (x
(k)
1 )[t], . . . , (x

(k)
p )[t]; then, in the (t+ 1)-th

iteration, we draw (x
(k)
j )[t+1], 1 ≤ j ≤ p, from the Bernoulli distribution:

(x
(k)
j )[t+1] ∼ Bernoulli

( exp(θ
(k)
j,j +

∑
j′ ̸=j θ

(k)
j,j′(x

(k)
j′ )

[t])

1 + exp(θ
(k)
j,j +

∑
j′ ̸=j θ

(k)
j,j′(x

(k)
j′ )

[t])

)
. (4.9)

To ensure that the simulated observations are close to i.i.d. samples from the target

distribution, the first 1,000,000 rounds are discarded (burn-in) and the data are col-

44



(A1) Chain: !=0

(A2) Chain: !=1/4

(A3) Chain: !=1

(B1) Nearest-neighbor: !=0

(B2) Nearest-neighbor: !=1/4

(B3) Nearest-neighbor: !=1

(C1) Scale-free: !=0

(C2) Scale-free: !=1/4

(C3) Scale-free: !=1

Figure 4.1:
The networks used in three simulated examples. The black lines represent
the common structure, whereas the red, blue and green lines represent the
individual links in the three categories. ρ is the ratio of the number of
individual links to the number of common links.

lected every 100 iterations from the sampler. In the simulation study, we consider

a balanced scenario and an unbalanced scenario. The former consists of nk = 200

observations in each category, whereas the latter has three unbalanced categories with

sample sizes n1 = 150, n2 = 300 and n3 = 450.

We compared the structure estimation results of the joint estimation method and

the separate estimation method using ROC curves, which dynamically characterize

the sensitivity (proportion of correctly identified links) and the specificity (proportion

of correctly excluded links) by varying the tuning parameter λ. Figure 4.2 shows the

ROC curves averaged over 50 replications from the three examples in the balanced

45



scenario. It can be seen that the curves estimated by the joint estimation method

dominate those of the separate estimation method when the proportion of individual

links is low. As ρ increases, the structures become more and more different, and the

joint and separate methods move closer together. This is expected, since the joint

estimation method is designed to take advantage of common structure. The results

in the unbalanced scenario exhibit a similar pattern (Figure 4.3).
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Figure 4.2:
Results for the balanced scenario (n1 = n2 = n3 = 200). The ROC curves
are averaged over 50 replications. ρ is the ratio between the number of
individual links and the number of common links.
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Figure 4.3:
Results for the unbalanced scenario (n1 = 150, n2 = 300, n3 = 450). The
ROC curves are averaged over 50 replications. ρ is the ratio between the
number of individual links and the number of common links.

4.4 Analysis of the U.S. Senate voting records

We applied the proposed joint estimation method to the voting records of the

U.S. Senate from the 109th Congress covering the period 2005-2006. The data were

obtained directly from the Senate’s website (www.senate.gov). The variables corre-

spond to the 100 senators, and the observations to the 645 votes that the Senate

deliberated and voted on during that period, which include bills, resolutions, mo-

tions, debates and roll call votes. The votes are recorded as “yes” (encoded as “1”)
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and “no” (encoded as “0”). Missing observations were replaced with the majority

vote of the senator’s party on that particular vote. The bills with a “yes/no” pro-

portion greater than 90% or less than 10% were excluded from the analysis. Three

categories of votes were extracted from bills, resolutions and motions: 1) defense and

security issues (133); 2) environment and energy issues (34); 3) health and medical

care issues (46). The tuning parameter for the proposed method was selected through

cross-validation. Following Li and Gui (2006), we used a bootstrap procedure with

the proposed estimator to evaluate the confidence of the estimated edges. We only

keep the robust edges in the estimated networks and remove those with occurrence

frequencies less than some cut-off value in the bootstrap procedure.

The network representation, depicting both the common and the individual struc-

tures with a cut-off for inclusion of 0.5, is given in Figure 4.4. The common network

estimated by the joint estimation method is shown in the top left panel of the Figure.

As expected, members of the two political parties are clearly separated. There are

many more associations between Democratic senators than Republican ones and this

pattern holds for both the common and individual structures. One possible explana-

tion may be that the Democrats were in the opposition, thus voting more like a block.

Further, the Independent senator Jeffords is very “close” to the Democratic caucus,

while the moderate Republicans Collins, Snow, Chafee and Specter (who switched

to the Democratic party in early 2009) are closely positioned together, thus confirm-

ing results of previous analyses by Clinton et al. (2004) and de Leeuw (2006) (albeit

based on data from the 105th Congress). Other interesting patterns emerging from

the analysis are that the more moderate members of two parties are located closer

to the center of their respective “clouds”’ (e.g. Warner, Voinovich, Smith on the

Republican side and Levin, Reid, Mikulski, Rockefeller on the Democratic side), the

close ties of the liberal Democrats Kennedy, Boxer and Nelson (Florida), the close

voting records of senators from the same state Murkowski and Stevens (Alaska) and
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Cantwell and Murray (Washington).

Examining the individual networks for the three categories shown in the remain-

ing panels of Figure 4.4 we note that a lot of additional positive associations amongst

Democrats emerge, primarily for defense and healthcare issue, thus indicating a

stronger ideological cohesion for these two categories. Some stable negative asso-

ciations emerge for the environment and healthcare categories.

Commenting on some selected patterns for individual senators, a strong depen-

dence can be observed between Biden and Kerry on environmental and health care

issues, but less so on defense, whereas Schumer and Clinton (Democratic senators

from New York) are in strong agreement on defense, but less so on the other two

categories. Interestingly, in general there is a lot of positive dependence among the

Democratic senators on defense and health care issues (demonstrated by the thickness

of the links), and very little on the environment, while for Republican senators the

strengths of the associations are about the same for all three categories; an excep-

tion is the strong association of Murkwoski and Stevens on environmental and energy

issues, given that they come from the oil rich state of Alaska. The overall weaker

associations on defense votes can be partially explained by the fact that a number of

them reflect some financial aspect (budget approval, appropriation, etc). In general,

the model captures the basic common structure, as well as meaningful differences

across the various categories.

4.5 Asymptotic Properties

In this section, we study the asymptotic properties of the proposed joint estimation

method. Since the structure of the underlying network only depends on the interaction

effects, we focus on a variant of the model without main effects. Specifically, for each
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k = 1, . . . , K,

max
{Θ(k)}Kk=1

K∑
k=1

1

nk

nk∑
i=1

p∑
j=1

[
x
(k)
i,j

(∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)
− log

{
1 + exp

(∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′

)}]

−λ
∑

1≤j<j′≤p

√√√√ K∑
k=1

|θ(k)j,j′| . (4.10)

We will show that the estimator in criterion (4.10) is consistent in terms of both

parameter estimation and model selection, when p and n go to infinity and the tuning

parameter λ goes to zero at some appropriate rate.

Before stating the main results, we introduce necessary notation and regularity

conditions. For each k = 1, . . . , K, denote θ(k) = (θ
(k)
1,2 , . . . , θ

(k)
j,j′ , . . . , θ

(k)
p−1,p) as a

p(p − 1)/2-dimensional vector, recording all upper triangular elements in Θ(k). Let

θ
(k)

be the true value of θ(k). Let Q
(k)

be the population Fisher information matrix of

the model in criterion (4.10) (see the Appendix for a precise definition) and let X (k)
(i)

be a matrix with p rows and p(p− 1)/2 columns, whose (j, j′)-th column is composed

of zeros except the j-th (j′-th) component being xi,j′ (xi,j). In addition, we define

U
(k)

= E[X (k)
(i)

T

X (k)
(i) ]. To index the zero and nonzero elements, let Sk = {(j, j′) :

θ
(k)
j,j′ ̸= 0, 1 ≤ j < j′ ≤ p} and Sc

k = {(j, j′) : θ
(k)
j,j′ = 0, 1 ≤ j < j′ ≤ p}, and let

S∩ =
∩K

k=1 Sk, S∪ =
∪K

k=1 Sk. The cardinalities of Sk and S∪ are denoted by qk and q,

respectively. For any matrix W and subsets of row and column indices U and V , let

W U ,V be the matrix consisting of rows U and columns V in W . Finally, let Λmin(·)

and Λmax(·) denote the smallest and largest eigenvalue of a matrix, respectively.

The asymptotic properties of the joint estimation method rely on the following

regularity conditions:

(A) Nonzero elements bounds: There exist positive constants γmin and γmax such

that

(i) min1≤k≤K min(j,j′)∈Sk
|θ(k)j,j′| ≥ γmin;
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(ii) max1≤k≤K max(j,j′)∈Sk\S∩ |θ
(k)

j,j′| ≤ γmax.

(B) Dependency: There exist positive constants τmin and τmax such that for any

k = 1, . . . , K,

Λmin(Q
(k)

Sk,Sk
) ≥ τmin and Λmax(U

(k)

Sk,Sk
) ≤ τmax . (4.11)

(C) Incoherence: There exists a constant τ ∈ (1 −
√
γmin/4γmax, 1) such that for

any k = 1, . . . , K,

∥Q(k)

Sc
k,Sk

(Q
(k)

Sk,Sk
)−1∥∞ ≤ 1− τ . (4.12)

Condition (A) enforces a lower bound on the magnitudes of all nonzero elements, as

well as an upper bound on the magnitudes of those nonzero elements associated with

individual links. Conditions (B) and (C) bound the amount of dependence and the

influence that the non-neighbors can have on a given node, respectively. Conditions

similar to (B) and (C) were also assumed by Meinshausen and Buhlmann (2006),

Ravikumar et al. (2010), Peng et al. (2009) and Guo et al. (2010). Our conditions

are most closely related to those of Guo et al. (2010), but here they are extended to

the heterogenous data setting.

Theorem IV.1. (Parameter estimation). Suppose all regularity conditions hold. If

the tuning parameter λ = Cλ

√
(log p)/n for some constant Cλ > (8−4τ)

√
γmin/(1−τ)

and if min{n/q3, n1/q
3
1, . . . , nK/q

3
K} > (4/C) log p for some constant C = min{τ 2minτ

2/288(1−

τ)2, τ 2minτ
2/72, τminτ/48}, then there exists a local maximizer of the proposed criterion

(4.10), {θ̂
(k)
}Kk=1, such that, with probability tending to 1,

K∑
k=1

∥θ̂
(k)

− θ
(k)∥2 ≤ M

√
q log p

n
, (4.13)

for some constant M > (2KCλ/τmin
√
γmin)(3− 2τ)/(2− τ).
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Theorem IV.2. (Structure selection). Under conditions of Theorem IV.1, with prob-

ability tending to 1, we have,

θ̂
(k)
j,j′ ̸= 0, for all (j, j′) ∈ Sk, k = 1, . . . , K;

θ̂
(k)
j,j′ = 0, for all (j, j′) ∈ Sc

k, k = 1, . . . , K .

Theorems IV.1 and IV.2 establish the consistency in terms of parameter estimation

and structure selection, respectively. The proofs are given in the Appendix.

4.6 Concluding Remarks

We have proposed a joint estimation method for the analysis of heterogenous

Markov networks motivated by an application on Senate voting patterns. The method

allows the estimation of the networks’ common structure by borrowing strength across

categories, and allows for individual differences. Asymptotic properties of the method

have been established. In particular, we show that the convergence rate is similar to

the rate for Gaussian graphical models in a similar context (Guo et al., 2010). The

proposed method can be extended to deal with general categorical data with more

than two levels using the strategy described in Ravikumar et al. (2010) and Guo et al.

(2010). The most interesting feature emerging from the analysis is the existence of

more stable associations for the Democrats, both in terms of the common structure

and the healthcare and defense categories.
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Figure 4.4:
The common and individual structures for the Senate voting data. The
nodes represent the 100 senators, with red, blue and purple node colors
corresponding to Republican, Democrat, or Independent (Senator Jef-
fords), respectively. A solid line corresponds to a positive interaction
effect and a dashed line to a negative interaction effect. The width of a
link is proportional to the magnitude of the corresponding overall inter-
action effect. For each individual network, the links that only appear in
this category are highlighted in purple.
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CHAPTER V

Graphical Models with Ordinal Variables

5.1 Introduction

The dependence between ordinal variables is not covered by existing graphical

models. However, data with such structure have become prevalent recently. For

example, each movie available on the Netflix website can be rated by the people

watching it. The rating is based on a five point scale and can serve as a guide

for future movie watchers. Similar online rating systems are available for books,

electronics, travel, restaurants, etc (Koren et al., 2009).

Ordinal variables are very common in survey questionnaires, where respondents

are asked to rate an item or to express their level agreement with a particular issue

under consideration. Such responses are known to be rated on a Likert scale (Babbie,

2010) and a popular model to analyze such data is the polychotomous Rasch model

(von Davier and Carstensen, 2010) that obtains interval level estimates on a contin-

uum, an idea that we explore in this work as well. Another area modeling ordinal

variables is regression analysis, where an ordinal response is fitted by a set of numer-

ical covariates. A number of estimation methods for this model exist, including the

proportional odds model (Walker and Duncan, 1967; McCullagh, 1980), the partial

proportional odds model (Peterson, 1990), the probit model (Bliss, 1935), etc. A

comprehensive review of ordinal regression is given in McCullagh and Nelder (1989)
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and O’Connell (2005).

The objective of this study is to introduce a graphical model for ordinal variables

and discuss its efficient estimation under the assumption of sparsity in the dependence

structure. The proposed model assumes that the ordinal variables are generated by

discretizing the marginal distributions of a latent multivariate Gaussian distribution

and the relationships of these ordinal variables are described by the underlying Gaus-

sian graphical model. An EM-like algorithm is developed to efficiently estimate the

latent network.

The remainder of the chapter is organized as follows. Section 5.2 presents the pro-

bit graphical model and discusses algorithmic and model selection issues. Section 5.3

evaluates the performance of the proposed method by several synthetic examples and

Section 5.4 applies the model to explore the network structure between movies from

their user ratings.

5.2 Methodology

5.2.1 Probit Graphical Model

Suppose we have p ordinal random variablesX1, . . . , Xp, whereXj ∈ {1, 2, . . . , Kj}

for some integer Kj, which is the number of the ordinal levels in variable j. In

the proposed probit graphical model, we assume that there exist p latent random

variables Z1, . . . , Zp from a joint Gaussian distribution with mean zero and covariance

matrix Σ = (σj,j′)p×p, respectively. Without loss of generality, we further assume

that Zj’s have unit variances (σj,j = 1 for j = 1, . . . , p), i.e., the Zj’s marginally

follow standard Gaussian distributions. Each observed variable Xj is discretized

from its latent counterpart Zj. Specifically, for the j-th variable (j = 1, . . . , p), we

assume that (−∞,+∞) is split into Kj disjointed intervals by a set of thresholds

−∞ = θ
(j)
0 < θ

(j)
1 < . . . < θ

(j)
Kj−1 < θ

(j)
Kj

= +∞, such that Xj = k if and only if Zj
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locates in interval [θ
(j)
k−1, θ

(j)
k ]. The distribution of Zj indicates that

Pr(Xj = k) = Pr(θ
(j)
k−1 ≤ Zj < θ

(j)
k ) = Φ(θ

(j)
k )− Φ(θ

(j)
k−1), (5.1)

where Φ(·) denotes the cumulative density function of the standard normal distribu-

tion.

Letting Ω = Σ−1 = (ωj,j′)p×p, X = (X1, . . . , Xp) and Z = (Z1, . . . , Zp), so that

the joint density function of (X,Z) can be written as:

f(X,Z | Ω,Θ) = f(Z1, . . . , Zp | Ω)

p∏
j=1

fΘ(Xj|Zj;Θ)

=
det (Ω)

(2π)p/2
exp(−1

2
ZΩZT)

p∏
j=1

I(θ
(j)
Xj−1 ≤ Zj < θ

(j)
Xj
) (5.2)

where Θ = {θ(j)k : j = 1, . . . , p; k = 1, . . . , Kj}, I(·) is the indicator function and Ω

the covariance matrix of Z1, . . . , Zp. Thus, the marginal probability density function

of the observed data is given by

f(X | Ω,Θ) = (5.3)∫
· · ·

∫
f(X, Z1 = z1, . . . , Zp = zp | Ω,Θ)dzp · · · dz1

Let xi,j and zi,j be the i-th realization of the observed variable Xj and the latent

variable Zj, respectively. Next, we consider maximizing an ℓ1-regularized marginal

log-likelihood function of the observed data as follows:

n∑
i=1

log f(xi | Ω,Θ)− λ
∑
j ̸=j′

|ωj,j′|. (5.4)

where xi = (xi,1, . . . , xi,p). The model maximizing criterion (5.4) is referred to as

probit graphical model, which is motivated by the probit regression model (Bliss, 1935)
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and the polychotomous Rasch model (von Davier and Carstensen, 2010). The tuning

parameter λ in criterion (5.4) controls the degree of the sparsity in the underlying

network. When λ is large enough, some ωj,j′ ’s can be shrunk to zeros, resulting in

the removal of the corresponding links in the underlying network. Numerically, it is

difficult to solve criterion (5.4) directly due to the existence of the integral in (5.3).

We introduce next an EM-like algorithm to estimate (5.4) in an iterative manner.

5.2.2 Algorithm for Probit Graphical Model

Criterion (5.4) depends on the parameters Θ and Ω and the latent variable Z.

The former has a closed-form estimator. Specifically, for each j = 1, . . . , p, we set

θ̂
(j)
k =


−∞, if k = 0;

Φ−1(
∑n

i=1 I(xi,j ≤ k)/n), if k = 1, . . . , Kj − 1;

+∞, if k = Kj.

(5.5)

where Φ−1 is the inverse function of the cumulative density function of standard

normal distribution. We can show that Θ̂ consistently estimates Θ. The estimation

of Ω, on the other hand, is nontrivial due to the multiple integrals in criterion (5.3).

To address this problem, we applied the EM algorithm to solving (5.4), where the

latent variables zi,j’s (i = 1, . . . , n; j = 1, . . . , p) are treated as “missing data” and are

imputed in the E-step, and the parameter Ω is estimated in the M-step.

Suppose Ω̂ is the updated estimate of Ω updated in the M-step, then the E-step

computes the conditional expectation of the joint log-likelihood given the estimates

Θ̂ and Ω̂:

Q(Ω) =
n∑

i=1

E[log f(xi,zi | Θ,Ω) | xi; Θ̂, Ω̂]

=
n

2
[log det(Θ)− trace(SΘ)− p log(2π)] (5.6)
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where zi = (zi,1, . . . , zi,p) and trace(·) is the matrix trace. Criterion (5.6) is usu-

ally referred to as Q-function in the literature. S is a p × p matrix whose (j, j′)-th

element is sj,j′ = 1/n
∑n

i=1 E(zi,jzi,j′ | xi; Θ̂, Ω̂) (1 ≤ j, j′ ≤ p). Given xi, the condi-

tional distribution of zi,1, . . . , zi,p | xi is equivalent to that of zi,1, . . . , zi,p | θ(1)xi,1−1 ≤

zi,1 ≤ θ
(1)
xi,1 , . . . , θ

(p)
xi,p−1 ≤ zi,p ≤ θ

(p)
xi,p , which the follows a truncated multivariate Gaus-

sian distribution defined on a hyper-cube [θ
(1)
xi,1−1, θ

(1)
xi,1 ] × . . . × [θ

(p)
xi,p−1, θ

(p)
xi,p ]. There-

fore, E(zi,jzi,j′ | xi; Θ̂, Ω̂) is the second moment of a truncated multivariate Gaus-

sian distribution and it can be directly estimated using the algorithms proposed by

Tallis (1961), Lee (1979) and Leppard and Tallis (1989). Nevertheless, the compu-

tational cost of these direct estimation algorithms is extremely high and thus not

suitable for even moderate size problems. An alternative approach is based on the

Markov-chain-Monte-Carlo (MCMC) method. Specifically, we randomly generate a

sequence of samples from the conditional zi | xi; Θ̂, Ω̂ using a Gibbs sampler from

a multivariate truncated normal distribution (Kotecha and Djuric, 1999) and then

E(zi,jzi,j′ | xi; Θ̂, Ω̂) is estimated by the empirical second moment of the conditional

from these samples. Although the MCMC approach is faster than the direct esti-

mation method, it is still lack of efficiency for large scale networks. To address the

computational issue, we develop an efficient approximate estimation algorithm whose

details are discussed in Section 5.2.3.

The M-step updates Ω by maximizing the ℓ1-regularized Q-function (up to a

constant and a factor):

max
Ω

log det (Ω)− trace(SΩ)− λ
∑
j ̸=j′

|ωj,j′|, (5.7)

Criterion (5.7) can be solved efficiently by a few existing algorithms such as graphical

lasso (Friedman et al., 2008) and SPICE (Rothman et al., 2008). The maximizer of

(5.7) is denoted by Ω̃. Nevertheless, the estimated covariance matrix, Σ̃ = Ω̃
−1
, does
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not necessarily possess unit diagonal elements as assumed by the probit graphical

model. Therefore, we post-process Σ̃ by scaling it to a unit-diagonal matrix Σ̂ and

update Ω̂ = Σ̂
−1
, which will be used in the E-step of the next iteration.

5.2.3 Approximation of the Conditional Expectation

Noting that when j = j′, the corresponding conditional expectation is the second

moment of the conditional zi,j | xi, i.e., E(z2i,j | xi; Θ̂, Ω̂); when j ̸= j′, we use

the mean field theory (Peterson and Anderson, 1987) to approximate E(zi,jzi,j′ |

xi; Θ̂, Ω̂) ≈ E(zi,j | xi; Θ̂, Ω̂)E(zi,j′ | xi; Θ̂, Ω̂). With this approximation, it is

sufficient to estimate the first moment E(zi,j | xi; Θ̂, Ω̂) and the second moment

E(z2i,j | xi; Θ̂, Ω̂), respectively. We need to point out that, in general, the latent

variable zi,j not only depends on xi,j, but also on all other observed variables xi,−j =

(xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,p). By applying the iterate expectation equation, we can

express the first and second moments of the conditional zi,j | xi as follows:

E(zi,j | xi; Θ̂, Ω̂) = E[E(zi,j | zi,−j, xi,j; Θ̂, Ω̂) | xi; Θ̂, Ω̂] (5.8)

E(z2i,j | xi; Θ̂, Ω̂) = E[E(z2i,j | zi,−j, xi,j; Θ̂, Ω̂) | xi; Θ̂, Ω̂] (5.9)

where zi,−j = (zi,1, . . . , zi,j−1, zi,j+1, . . . , zi,p). The interior expectation in (5.8) and

(5.9) are relatively straightforward to compute. Indeed, given parameter Ω̂, zi,1, . . . , zi,p

jointly follow a multivariate Gaussian distribution with mean zero and covariance ma-

trix Σ̂ = Ω̂
−1
. The property of Gaussian distribution shows that, given zi,−j, the con-

ditional zi,j | zi,−j follows a Gaussian distribution with mean µ̃i,j = Σ̂j,−jΣ̂
−1

−j,−jzi,−j
T

and variance σ̃2
i,j = 1− Σ̂j,−jΣ̂

−1

−j,−jΣ̂−j,j, respectively. Moreover, given the observed

data xi,j, the conditional zi,j | zi,−j, xi,j in the RHS of equation (5.8) is equivalent to

zi,j | zi,−j, θ
(j)
xi,j−1 ≤ zi,j ≤ θ

(j)
xi,j , which follows a truncated Gaussian distribution de-

fined on interval [θ
(j)
xi,j−1, θ

(j)
xi,j ]. The following lemma gives the closed-form expression
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of the first and second moments of the truncated Gaussian distribution.

Lemma V.1. Suppose that a random variable Y follows a Gaussian distribution

with mean µ0 and variance σ0. Then, for any constant t1 and t2, Y | t1 ≤ Y ≤ t2

follows a truncated Gaussian distribution defined on [t1, t2]. Let ξ1 = (t1−µ0)/σ0 and

ξ2 = (t2 − µ0)/σ0, then the first and second moments of Y | t1 ≤ Y ≤ t2 are:

E(Y | t1 ≤ Y ≤ t2) = µ0 +
ϕ(ξ1)− ϕ(ξ2)

Φ(ξ2)− Φ(ξ1)
σ0 (5.10)

E(Y 2 | t1 ≤ Y ≤ t2) = µ2
0 + σ2

0 + 2
ϕ(ξ1)− ϕ(ξ2)

Φ(ξ2)− Φ(ξ1)
µ0σ0

+
ξ1ϕ(ξ1)− ξ2ϕ(ξ2)

Φ(ξ2)− Φ(ξ1)
σ2
0 (5.11)

For more properties of the truncated Gaussian distribution, we refer the readers

to Johnson et al. (1994).

Let δi,j,k = (θ
(j)
k − µ̃i,j)/σ̃i,j, then by applying Lemma V.1 to the conditional

zi,j|zi,−j, xi,j, we obtain:

E(zi,j|zi,−j, xi,j; Θ̂, Ω̂) = µ̃i,j + ai,jσ̃i,j , (5.12)

E(z2i,j|zi,−j, xi,j; Θ̂, Ω̂) = µ̃2
i,j + σ̃2

i,j + 2ai,jµ̃i,jσ̃i,j + bi,jσ̃
2
i,j

(5.13)

where ai,j = [ϕ(δi,j,xi,j−1)−ϕ(δi,j,xi,j
]/[Φ(δi,j,xi,j

)−Φ(δi,j,xi,j−1)] and bi,j = [δi,j,xi,j−1ϕ(δi,j,xi,j−1)−

δi,j,xi,j
ϕ(δi,j,xi,j

)]/[Φ(δi,j,xi,j
)− Φ(δi,j,xi,j−1)], respectively.

Now we plug equations (5.12) and (5.13) into (5.8) and (5.9), respectively. Since

µ̃i,j, ai,j and bi,j depend on the latent variables zi,j’s, the outer expectations in (5.8)

and (5.9) depend on the following items: E(µ̃i,j | xi; Θ̂, Ω̂), E(ai,j | xi; Θ̂, Ω̂), E(bi,j |

xi; Θ̂, Ω̂) and E(ai,jµ̃i,j | xi; Θ̂, Ω̂). Note that µ̃i,j is a linear function of zi,−j and σ̃i,j

is a constant irrelevant to the latent data. For each i = 1, . . . , n and j = 1, . . . , p, the
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conditional expectation of µ̃i,j is

E(µ̃i,j | xi; θ̂, Ω̂) = Σ̂j,−jΣ̂
−1

−j,−jE(zi,−j|xi; θ̂, Ω̂)
T

(5.14)

Nevertheless, ai,j and bi,j are nonlinear functions of µ̃i,j, and thus of zi,−j. Therefore,

we consider the following approximations:

E(ai,j | xi; θ̂, Ω̂) ≈
ϕ(δ̃i,j,xi,j−1)− ϕ(δ̃i,j,xi,j

)

Φ(δ̃i,j,xi,j
)− Φ(δ̃i,j,xi,j−1)

(5.15)

E(bi,j | xi; θ̂, Ω̂) ≈
δ̃i,j,xi,j−1ϕ(δ̃i,j,xi,j−1)− δ̃i,j,xi,j

ϕ(δ̃i,j,xi,j
)

Φ(δ̃i,j,xi,j
)− Φ(δ̃i,j,xi,j−1)

(5.16)

where δ̃i,j,xi,j
= [θ

(j)
k − E(µ̃i,j | xi; θ̂, Ω̂)]/σ̃i,j. Finally, we approximate E(ai,jµ̃i,j |

xi; Θ̂, Ω̂) ≈ E(ai,j | xi; Θ̂, Ω̂)E(µ̃i,j | xi; Θ̂, Ω̂). Therefore, (5.8) and (5.9) can be

approximated by

E(zi,j | xi; Θ̂, Ω̂) ≈

Σ̂j,−jΣ̂
−1

−j,−jE(zi,−j
T | xi; Θ̂, Ω̂)

+
ϕ(δ̃i,j,xi,j−1)− ϕ(δ̃i,j,xi,j

)

Φ(δ̃i,j,xi,j
)− Φ(δ̃i,j,xi,j−1)

σ̃i,j (5.17)

E(z2i,j | xi; Θ̂, Ω̂) ≈

Σ̂j,−jΣ̂
−1

−j,−jE(zi,−j
Tzi,−j | xi; Θ̂, Ω̂)Σ̂

−1

−j,−jΣ̂
T

j,−j + σ̃2
i,j+

2
ϕ(δ̃i,j,xi,j−1)− ϕ(δ̃i,j,xi,j

)

Φ(δ̃i,j,xi,j
)− Φ(δ̃i,j,xi,j−1)

[Σ̂j,−jΣ̂
−1

−j,−jE(zi,−j
T | xi; Θ̂, Ω̂)]σ̃i,j

+
δ
(j)
i,j,xi,j−1ϕ(δ̃i,j,xi,j−1)− δ̃i,j,xi,j

ϕ(δ̃i,j,xi,j
)

Φ(δ̃i,j,xi,j
)− Φ(δ̃i,j,xi,j−1)

σ̃2
i,j (5.18)

Equations (5.17) and (5.18) establish the recursive relationships among the elements

in E(zi | xi; Θ̂, Ω̂) and E(zi
Tzi | xi; Θ̂, Ω̂), respectively. Therefore, it is natural that
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they can be estimated by an iterative procedure. Algorithm 5.2.3 summarizes the

main steps of the proposed combined estimation procedure outlined in Sections 5.2.2

and 5.2.3.

1: Initialize E(zi,j | xi; Θ̂, Ω̂) ≈ E(zi,j | xi,j; Θ̂) and E(z2i,j | xi; Θ̂, Ω̂) ≈ E(zi,j |
xi,j; Θ̂) for i = 1, . . . , n and j = 1, . . . , p;

2: Initialize sj,j′ = 1/n
∑n

i=1 E(zi,j | xi,j; Θ̂)E(zi,j′ | xi,j′ ; Θ̂) for 1 ≤ j ̸= j′ ≤ p and

sj,j = 1/n
∑n

i=1 E(zi,j | xi,j; Θ̂) for j = 1, . . . , p, then estimate Ω̂ by maximizing
criterion (5.7);
{Start outer loop}

3: repeat
4: E-step: estimate S in (5.6);

{Start inner loop}
5: repeat
6: for i = 1 to n do
7: if j = j′ then
8: Update E(z2i,j | xi; Θ̂, Ω̂) using RHS of equation (5.18) for j = 1, . . . , p;
9: else
10: Update E(zi,j | xi; Θ̂, Ω̂) using RHS of equation (5.17) for j = 1, . . . , p

and then set E(zi,jzi,j′ | xi; Θ̂, Ω̂) = E(zi,j | xi; Θ̂, Ω̂)E(zi,j′ | xi; Θ̂, Ω̂)
for 1 ≤ j ̸= j′ ≤ p;

11: end if
12: end for
13: Update sj,j′ = 1/n

∑n
i=1 E(zi,jzi,j′ | xi; Θ̂, Ω̂) for 1 ≤ j, j′ ≤ p;

14: until The inner loop converges;
15: M-step: update Ω̂ by maximizing criterion (5.7);
16: until The outer loop converges.

In Algorithm 5.2.3, Lines 1–2 initialize the expectation of the conditional zi,j | xi

and the parameter Ω̂. Lines 3–16 establish the outer loop which iteratively computes

the E-step and the M-step. In the E-step, Lines 5–14 consist of the inner loop which

recursively estimate the first and second moments of the conditional zi,j | xi. It can

be seen that the complexity of the inner loop is O(np2), which is the same as that

of the Graphical Lasso algorithm in the M-step. Therefore, the overall complexity of

Algorithm 5.2.3 is O(np2).
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5.2.4 Model Selection

In the probit graphical model, the tuning parameter λ controls the sparsity of

the resulting estimator and it can be selected using the cross validation method.

Specifically, we randomly split the observed data X into D subsets with similar sizes

and denote the index set of the observations in the d-th subset as Td (d = 1, . . . , D).

For any pre-specified λ, we denote Ω̂
[−d]

λ as a maximizer of criterion (5.4) estimated

by Algorithm 5.2.3 using all observations except those in Td. We also denote Θ̂
[−d]

and S[d] = (s
[d]
j,j′)p×p as the analogs of Θ̂ and S in Section 5.2.2 but restricted on

data in T c
d and Td, respectively. In particular, each element of S[d] is defined as

s
[d]
j,j′ = (1/|Td|)

∑
i∈Td E(zi,jzi,j′ | xi; Θ̂

[−d]
, Ω̂

[−d]

λ ) (1 ≤ j, j′ ≤ p), where |Td| is the

cardinality of Td. Given Θ̂
[−d]

and Ω̂
[−d]

λ , S[d] can be estimated by the algorithm

introduced in Section 5.2.3, i.e., the inner loop of Algorithm 5.2.3. Thus, the optimal

tuning parameter can be selected by maximizing the following criterion:

max
λ

log det(Ω̂
[−d]

λ )− trace(S[d]Ω̂
[−d]

λ )− p log(2π) (5.19)

5.3 Simulated Examples

In this section, we use two sets of simulated experiments to illustrate the per-

formance of the probit graphical model. The first set aims at comparing the com-

putational cost of the three methods estimating the Q-function in E-step, namely

the direct estimation, the MCMC estimation and the approximation algorithm. The

second set compares the performance of the probit graphical model using the approx-

imation algorithm to that of the Gaussian graphical model.
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5.3.1 Computational Cost and Performance

In this experiment, we simulate a low-dimensional data set with p = 5 variables

and n = 10 observations. Specifically, we define the underlying inverse covariance

matrix Ω as a tri-diagonal matrix with 1s on the main diagonal and 0.5 on the first

off diagonal. Then, for i = 1, . . . , n, we generate the latent data zi = (zi,1, . . . , zi,p)

from N(0,Ω−1) and discretize them as follows: for each j = 1, . . . , p, set

θ
(j)
k =



−∞, if k = 0;

Φ−1(0.2) if k = 1;

Φ−1(0.4) if k = 2;

+∞, if k = 3.

(5.20)

and xi,j =
∑3

k=1 I(zi,j ≥ θ
(j)
k ) (i = 1, . . . , n; j = 1, . . . , p), i.e., the value of xi,j is k if

it locates in interval [θ
(j)
k−1, θ

(j)
k ].

Table 5.1:
Comparison of the CPU time. “Probit-Direct”, “Probit-Gibbs” and
“Probit-Approximate” represent the probit graphical model with direct,
Gibbs sampling and approximate estimation to the second moment in E-
step. The quantities plotted correspond to the median CPU time over
different tuning parameters and the numbers in the parentheses to their
median absolute deviation.

Method CPU time in seconds
Probit-Direct 3310.21 (199.95)
Probit-Gibbs 46.17 (1.51)

Probit-Approximate 0.04 (0.03)

The probit graphical model estimated using the direct, Gibbs sampling and ap-

proximate methods is applied to this data set and the computational cost shown in

Table 5.1. We can see that the median CPU time of the approximate estimation

is only about 1/1,000 of that of Gibbs sampling and about 1/80,000 of that of the

direct estimation method. Therefore, the approximate estimation is orders of magni-

tude more efficient that its competitors and hence suitable for large scale problems.
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To evaluate the estimation performance of the competing methods we use the Frobe-

nius and entropy loss functions defined next. Given the estimate Ω̂
(k)
, the Frobenius

(FL) and the entropy loss (EL) are given by:

FL = ∥h(Ω)− h(Ω̂)∥2F/∥h(Ω)∥2F .

EL = trace(Ω−1Ω̂)− log[det(Ω−1Ω̂)]− p , (5.21)

where the function h(·) in (5.21) scales the matrix to the one with unit diagonal

elements.

The performance of the three estimation methods are shown in Figure 5.1. We

can see that the Frobenius loss of the approximate estimation is slightly higher than

those of the other two methods when the tuning parameter λ is relative small. When

λ gets larger, the losses of the direct and the Gibbs estimations increase dramatically

compared to the approximate one. It can be concluded that the approximate estima-

tion method leads to very large computational improvements with marginal sacrifices

in terms of estimation efficiency.

5.3.2 High-dimensional Experiments

In this section, we evaluate the performance of the proposed method by simulation

study. These examples simulate four types of network structures: a scale-free graph,

a hub graph, a nearest-neighbor graph and a block graph. Each network consists of

p = 50 nodes. The details of these networks are described as follows:

Example 1: Scale-free Graph. A scale-free graph has a power-law degree distri-

bution and can be simulated by the Barabasi-Albert algorithm (Barabasi and

Albert, 1999). A realization of a scale-free network is depicted in Figure 5.2

(A).

Example 2: Hub Graph. A hub graph consists of a few high-degree nodes (hubs)
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Figure 5.1:
The comparison of Frobenius loss and Entropy loss over different tuning
parameters. The direct estimation, the Gibbs sampling estimation and
the approximation estimation are represented by blue dotted, red dashed
and black solid lines.

and a large amount of low-degree nodes. In this example, we follow the sim-

ulation setting in Peng et al. (2009) and generate a hub graph by inserting a

few hub nodes into a very sparse graph. Specifically, the graph consists of three

hubs with degrees around eight, and the other 47 nodes with degrees at most

three. An example hub graph is shown in Figure 5.2 (B).

Example 3: Nearest-neighbor Graph. To generate the nearest neighbor graphs,

we slightly modify the data generating mechanism described in Li and Gui

(2006). Specifically, we generate p points randomly on a unit square, calculate

all p(p − 1)/2 pairwise distances, and find the m nearest neighbors of each

point in terms of these distances. The nearest neighbor network is obtained by

linking any two points that are m-nearest neighbors of each other. The integer

m controls the degree of sparsity of the network and the value m = 5 was

chosen in the simulation study. Figure 5.2 (C) exhibits one realization of the
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(A) Scale-free (B) Hub

(C) Nearest-neighbor (D) Block

Figure 5.2:
Illustration of the networks used in four simulated examples: scale-free
graph, hub graph, nearest-neighbor graph and block graph.

nearest-neighbor network.

Example 4: Block Graph. In this setting, we generate a block graph using a sym-

metric random adjacency matrix with two dense blocks. Specifically, the blocks

associated with nodes 1–20 and nodes 21–30 have densities 0.2 and 0.5, respec-

tively, whereas all other parts in the matrix have a density 0.02 (background

density). Figure 5.2 (D) illustrates such a random graph with two blocks.

The ordinal data sets are generated as follows. The first step is to generate

the inverse covariance matrix Ω of the latent multivariate Gaussian distribution.

Specifically, each off-diagonal element ωj,j′ is drawn uniformly from [−1,−0.5]∪[0.5, 1]
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if nodes j and j′ are linked by an edge, otherwise ωj,j′ = 0. Further, the diagonal

elements were all set to be 2 to ensure the positive definiteness. The second step

is to generate the latent data zi = (zi,1, . . . , zi,p) i.i.d. from N(0,Ω−1). Finally,

the continuous latent data zi’s are discretized into ordinal scale with three levels by

thresholding. Specifically, for each j = 1, . . . , p, we set

θ
(j)
k =



−∞, if k = 0;

Φ−1(0.1) if k = 1;

Φ−1(0.2) if k = 2;

+∞, if k = 3.

(5.22)

and set xi,j =
∑3

k=1 I(zi,j ≥ θ
(j)
k ) (i = 1, . . . , n; j = 1, . . . , p). For each example, we

tried different sample sizes: n=50, 100, 200 and 500, respectively. In each setting, we

generate 50 replicated data sets randomly.

We compare the proposed probit graphical model with two other methods. The

first one applies the graphical lasso algorithm to the ordinal data X directly and the

second one applies graphical lasso to the latent numerical data Z. We refer to the

second method as an oracle method because it simulates an ideal situation where

Z is exactly recovered. This never happens in real data analysis, but we still put

it here as a benchmark. In this work, the receiver operating characteristic (ROC)

curves was used to evaluate the accuracy of network structure estimation. The ROC

curve plots the sensitivity (the proportion of correctly detected links) against the

false positive rate (the proportion of mis-identified zeros) over a range of values of the

tuning parameter λ. In addition, the Frobenius loss and the entropy loss defined in

(5.21) and (5.21) were used to evaluate the performance of the parameter estimation.

Figure 5.3 shows the ROC curves for all simulated examples. The curves are

averaged over 50 replications. The oracle model provides a benchmark curve for each

setting (blue dotted line in each panel). When the sample size is relatively small
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(n=50, 100 or 200), it turns out that the probit model (dark solid line) dominates

the Gaussian model (red dashed line). When the sample size gets larger, the two

methods exhibit similar performance.

Table 5.2 summarizes the parameter estimation measured by the Frobenius loss

and the entropy loss. The results were averaged over 50 replications and the tuning

parameter λ was selected using the cross validation method introduced in Section

5.2.4. There is no doubt that the oracle model performs the best and its result

provides a benchmark for other competitors. It is more informative to compare the

other two models based on the observed dataX. We can see that the Frobenius losses

from the probit model are consistently lower than those from the Gaussian model.

The advantage is more significant when the sample sizes are moderate (n=100 or

200). In terms of the entropy loss, we can see that the the probit model outperforms

the Gaussian model for relative large sample sizes, such as n=200 or 500.

Table 5.2:
The Frobenius losses and entropy losses estimated by probit graphical
model, the oracle model and the Gaussian model. The oracle model and
the Gaussian model applies the Glasso algorithm to the latent data Z
and the observed data X, respectively. The results are averaged over 50
replications and the corresponding standard deviations and recorded in
the parenthesis.

Example n
Frobenius Loss Entropy Loss

Gaussian Oracle Probit Gaussian Oracle Probit

Scale-free

50 2.3 (0.12) 0.7 (0.05) 2.2 (0.13) 12.0 (0.73) 3.1 (0.29) 23.1 (1.83)
100 2.2 (0.13) 0.4 (0.08) 1.7 (0.09) 9.4 (0.68) 1.9 (0.29) 10.1 (0.45)
200 1.7 (0.12) 0.3 (0.02) 1.2 (0.04) 6.4 (0.33) 1.1 (0.10) 5.4 (0.26)
500 0.9 (0.05) 0.1 (0.01) 0.7 (0.04) 3.3 (0.19) 0.5 (0.05) 2.7 (0.19)

Hub

50 1.2 (0.06) 0.3 (0.02) 1.1 (0.04) 21.2 (1.32) 5.8 (0.70) 29.4 (1.76)
100 1.1 (0.10) 0.1 (0.01) 0.8 (0.03) 15.9 (1.03) 3.2 (0.27) 15.1 (0.64)
200 0.8 (0.05) 0.1 (0.01) 0.6 (0.01) 11.9 (0.39) 1.8 (0.23) 10.4 (0.33)
500 0.6 (0.02) 0.0 (0.00) 0.5 (0.01) 9.1 (0.16) 0.7 (0.06) 7.5 (0.16)

Nearest-neighbor

50 1.4 (0.04) 0.6 (0.02) 1.3 (0.06) 16.5 (0.80) 5.6 (0.30) 25.6 (2.04)
100 1.3 (0.08) 0.4 (0.02) 1.0 (0.02) 12.1 (0.52) 3.5 (0.36) 12.4 (0.76)
200 1.0 (0.04) 0.2 (0.01) 0.7 (0.03) 8.6 (0.32) 2.0 (0.11) 7.5 (0.17)
500 0.6 (0.03) 0.1 (0.01) 0.5 (0.02) 5.5 (0.12) 0.8 (0.02) 4.5 (0.19)

Random-block

50 1.8 (0.05) 0.7 (0.05) 1.7 (0.04) 14.8 (1.04) 4.7 (0.46) 23.5 (1.76)
100 1.6 (0.16) 0.4 (0.02) 1.3 (0.03) 10.7 (1.10) 2.9 (0.27) 11.3 (0.46)
200 1.3 (0.05) 0.2 (0.03) 0.9 (0.05) 7.2 (0.19) 1.6 (0.11) 6.3 (0.32)
500 0.7 (0.03) 0.1 (0.01) 0.6 (0.03) 4.1 (0.15) 0.7 (0.06) 3.5 (0.13)
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5.4 Application to Movie Rating Records

In the section, we applied the probit graphical model to Movielens, a data set

recording the rating scores for 1682 movies rated by 943 users. The rating scores

have five levels, where one corresponds to strong dissatisfaction and five to strong

satisfaction. In the original data matrix, more than 90% entries are missed. To

address this, we selected a sub-matrix with 193 users and 32 movies such that the

averaged proportion of missed ratings in these movies is less than 15%. Each missing

value in the selected sub-matrix is imputed by the median of those observed values

in the same column (movie).

The probit graphical model is applied to the sub-matrix and the estimated network

is illustrated in Figure 5.4. It turns out that the estimated network consists of a large

connected community as well as a few isolated nodes. The large community mainly

consists of the mass marketed commercial movies, especially those science fiction

movies. These movies usually require high budget productions and bet for success in

box-office through famous directors and stars as well as exciting visual effects. For

example, the Star War series, including Star War (1977) and its two sequels Empire

Strike Back (1980) and Return of the Jedi (1983), were directed or produced by

George Lucas; the Terminator series (1984, 1991) were directed by James Cameron;

E.T. (1982), Jurassic Park (1993) and the Indiana Jones series, including Raiders of

Lost Ark (1981) and the Last Crusade (1989), were directed by Steven Spielberg. We

can see that usually movies in the same series have strong connections (represented by

relatively wide lines in the Figure), indicating the existence of significant dependence

relationships between the ratings of these movies. Examples include the Star War

series, the Alien series, the Terminator series and the Indiana Jones series. In addition,

Raiders of the Lost Ark (1981) and Back to the Future (1985) are two hub nodes each

having 16 connections to other movies and both of them were directed or produced

by Steven Spielberg.
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On the other hand, the isolated nodes represent a family of art-oriented comedies,

which attract the audience by plot and intension rather than visual effects. Examples

include the crime comedies (Pulp Fiction (1994), Silence of the Lambs (1991) and

Fargo (1996)) and the romanic comedies (When Harry Met Sally (1989) and Princess

Bride (1987)). These art comedies do not show significant dependence neither between

each other nor with those commercial movies in the large community.
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Figure 5.3:
The ROC curves estimated by probit graphical model (solid dark line), the
oracle model (dotted blue line) and the Gaussian model (dashed red line).
The oracle model and the Gaussian model applies the graphical lasso
algorithm to the latent data Z and the observed data X, respectively.
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Toy Story (1995)

Braveheart (1995)

Apollo 13 (1995)

Star Wars (1977)

Pulp Fiction (1994)

Forrest Gump (1994)

Fugitive (1993)

Jurassic Park (1993)

Blade Runner (1982)

Terminator 2 (1991)

Dances with Wolves (1990)

Silence of the Lambs (1991)

Fargo (1996)

Independence Day (1996)

Top Gun (1986)

Monty Python and the Holy Grail (1974)

Empire Strikes Back (1980)

Princess Bride (1987)

Raiders of the Lost Ark (1981)

Aliens (1986)

Return of the Jedi (1983)

Alien (1979)

Blues Brothers (1980)

Terminator (1984)

Dead Poets Society (1989)

Groundhog Day (1983)

Back to the Future (1985)

Indiana Jones and the Last Crusade (1989)

When Harry Met Sally (1989)

Star Trek (1996)

Jaws (1975)

E.T. (1982)

Figure 5.4:
The network estimated by the probit graphical model. The nodes repre-
sent the movies labeled by their titles. The area of a node is proportional
to its degree and the width of a link is proportional to the magnitude of
the corresponding partial correlations.
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CHAPTER VI

Pairwise Variable Selection for High-dimensional

Model-based Clustering

6.1 Introduction

All the existing variable selection methods for model-based clustering choose in-

formative variables in a “one-in-all-out” manner; that is, a variable is selected if it is

informative for at least one pair of clusters and removed only if it is non-informative

for all clusters. However, in many practical situations, one may be interested in iden-

tifying which variables are discriminative for which specific pairs of clusters. A toy

example illustration of such a scenario is shown in Figure 6.1. There are three clus-

ters present in this two-dimensional data set; the first variable discriminates between

clusters 2 and 3, while the second variable discriminates between clusters 1 and 2.

We believe that such situations arise often in high-dimensional data, for example, in

data obtained from high-throughput expression technologies.

To address this problem, this paper proposes a pairwise variable selection method

for high-dimensional model-based clustering. Specifically, a pairwise fusion penalty

is introduced to penalize the difference between (all) pairs of cluster centers for each

variable and shrink the centroids of non-separable clusters to some identical value. If

all cluster centroids associated with a variable are “fused,” this variable is regarded
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Figure 6.1:
A toy example. Variable 1 is informative for separating clusters 2 and 3,
and variable 2 is informative for separating clusters 1 and 2.

as non-informative and removed from the model. Otherwise, the pairwise fusion

penalty has the flexibility of only fusing the centroids of non-separable clusters for

this variable.

The remainder of the chapter is organized as follows: Section 6.2 introduces the

pairwise fusion penalty, and Section 6.3 discusses algorithmic issues. The performance

of the proposed clustering technique on synthetic and real data is demonstrated in

Sections 6.4 and 6.5, respectively. Finally, some concluding remarks are drawn in

Section 6.6.

6.2 Problem Formulation and Pairwise Fusion

Suppose n samples have been collected on p variables and organized in a data

matrix X = (xi,j)n×p. Without loss of generality we can assume that the data are

centered for each variable, i.e.,
∑n

i=1 xi,j = 0, for all 1 ≤ j ≤ p. In model-based clus-

tering, a K-cluster problem is described by a K-component Gaussian mixture model.

Specifically, the observations xi = (xi,1, . . . , xi,p) are assumed to be independent and
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generated from the density

f(xi) =
K∑
k=1

wkϕ(xi;µk,Σk), (6.1)

where ϕ(xi;µk,Σk) denotes the Gaussian density function with mean vector µk =

(µk,1, . . . , µk,p) and covariance matrix Σk,

ϕ(xi;µk,Σk) =
1

(2π)p/2det(Σk)1/2
exp {−1

2
(xi − µk)Σ

−1
k (xi − µk)

T} . (6.2)

The “weights” wk’s (wk ≥ 0 for all 1 ≤ k ≤ K and
∑K

k=1 wk = 1) are the mixing

coefficients, capturing the contribution of the k-th cluster. We also introduce the

following notation: the mean parameters µk,j’s can be collected in a K × p matrix,

with rows corresponding to clusters and columns to variables,

µ =



µ1,1 µ1,2 · · · µ1,j · · · µ1,p

µ2,1 µ2,2 · · · µ2,j · · · µ2,p

...
...

...
...

...
...

µK,1 µK,2 · · · µK,j · · · µK,p


.

We use µk = (µk,1, . . . , µk,p) to represent the mean parameters for the k-th cluster

(k-th row vector of µ), and µ(j) = (µ1,j, . . . , µK,j)
T to represent the mean parameters

for the j-th variable (j-th column vector of µ).

The log-likelihood of the data matrix X is then given by,

log p(X|Θ) =
n∑

i=1

log
{ K∑

k=1

wkϕ(xi;µk,Σk)
}
, (6.3)

where Θ = {wk,µk,Σk}Kk=1 is the parameter set of interest. The log-likelihood (6.3)

can be maximized using an expectation-maximization (EM) algorithm, which in the

E-step imputes the cluster membership of the samples and in the M-step estimates the
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mixing coefficients, the mean parameters and the covariance matrices. The number of

clusters K can be selected using, for example, a Bayesian information criterion (BIC)

or another similar criterion. Given the estimate Θ̂, an observation x∗ = (x∗
1, . . . , x

∗
p)

is assigned to the cluster which achieves

arg max
1≤k≤K

ŵkϕ(x
∗; µ̂k, Σ̂k). (6.4)

6.2.1 The Pairwise Fusion Penalty

Since our focus here is on variables defined as informative in terms of differences in

the cluster means, we make a further simplifying assumption that the covariance ma-

trices are the same for all clusters and are diagonal, i.e.,Σk = Σ = diag(σ2
1, σ

2
2, . . . , σ

2
p)

for all 1 ≤ k ≤ K. An alternative would be to impose a shrinkage penalty on the co-

variance matrices as well as the means, as in Xie et al. (2008), and consider a variable

non-informative for a pair of clusters only if it has both the same mean and the same

covariance structure in both clusters. This does not seem to be important for the ap-

plications we have in mind, such as gene selection in expression data clustering, since

the main effects are normally contained in the means. Moreover, this is a common

assumption in high-dimensional settings, since it significantly reduces the number of

parameters to be estimated. There is also theoretical justification for estimating the

covariance matrix by a diagonal matrix for discriminant analysis in high dimensions

(Bickel and Levina, 2004). In addition, imposing an additional penalty on the vari-

ances results in a dramatic increase in computational cost, and, in our experience,

very small empirical gains.

Given our focus on pairwise variable selection, we propose maximizing the follow-

ing criterion for estimating the parameters of the Gaussian mixture model:

n∑
i=1

log
{ K∑

k=1

wkϕ(xi;µk,Σ)
}
− λ

p∑
j=1

∑
1≤k<k′≤K

|µk,j − µk′,j|, (6.5)
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where λ is a tuning parameter. We refer to
∑p

j=1

∑
1≤k<k′≤K |µk,j − µk′,j| as the

pairwise fusion penalty (PFP). The aim of the penalty is to shrink the difference

between every pair of cluster centers for each variable j. Due to the singularity of the

absolute value function, some differences are shrunken to exactly zero, resulting in

some cluster means µ̂k,j’s having identical values. Notice that we are not shrinking the

means to zero, only towards each other; zero has no special meaning here and the data

do not need to be centered. If µ̂k,j = µ̂k′,j, then variable j is considered to be “non-

informative” for separating cluster k and cluster k′, though it may be informative for

separating other clusters. Moreover, if all cluster means for a variable are shrunken

to the same value, that variable is considered non-informative for clustering purposes

and can be removed from the model.

6.2.2 The Adaptive Pairwise Fusion Penalty

To further improve on (6.5), we apply the popular adaptive penalization (Zou,

2006) by considering

n∑
i=1

log
{ K∑

k=1

wkϕ(xi;µk,Σ)
}
− λ

p∑
j=1

∑
1≤k<k′≤K

τ
(j)
k,k′|µk,j − µk′,j|, (6.6)

where τ
(j)
k,k′ are pre-specified weights. We call this version adaptive pairwise fusion

penalty (APFP). The intuition is that if variable j is informative for separating clus-

ters k and k′, we would like the corresponding τ
(j)
k,k′ to be small; thus, the difference

between µk,j and µk′,j is lightly penalized. On the other hand, for a non-informative

variable j for clusters k and k′, we would like the corresponding τ
(j)
k,k′ to be large and

hence the difference between µk,j and µk′,j is heavily penalized. In our implementa-

tion, we compute the weights from the unpenalized estimates as

τ
(j)
k,k′ = |µ̃k,j − µ̃k′,j|−1 ,
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where µ̃k,j is the estimate of µk,j without any penalization (λ = 0).

It is interesting to compare our approach to the ℓ1-regularized method proposed

by Pan and Shen (2006) and the ℓ∞-regularized method proposed by Wang and Zhu

(2007). Note that Pan and Shen (2006) proposed an ℓ1 penalty without adaptive

weights, but for a fair comparison here we use adaptive versions of all the methods.

Pan and Shen (2006) proposed to use the criterion,

n∑
i=1

log
{ K∑

k=1

wkϕ(xi;µk,Σ)
}
− λ

p∑
j=1

K∑
k=1

τ ℓ1k,j|µk,j|, (6.7)

where τ ℓ1k,j’s are adaptive weights defined as τ ℓ1k,j = 1/|µ̃k,j| for all 1 ≤ k ≤ K and

1 ≤ j ≤ p. Here µ̃k,j is the estimate from model-based clustering method without

penalty. Notice that the data are required to be centered, and the ℓ1 penalty shrinks

the individual µk,j’s towards zero (the global mean) and removes variable j from the

model if all µ̂k,j for 1 ≤ k ≤ K are set to zero. However, it cannot identify variables

that are non-informative for separating particular subsets of clusters, especially when

the common mean of these clusters is different from zero. On the other hand, the

ℓ∞-regularized criterion proposed by Wang and Zhu (2007) is

n∑
i=1

log
{ K∑

k=1

wkϕ(xi;µk,Σ)
}
− λ

p∑
j=1

τ ℓ∞j max(|µ1,j|, . . . , |µk,j|, . . . , |µK,j|), (6.8)

where the adaptive weight τ ℓ∞j = 1/max(|µ̃1,j|, . . . , |µ̃k,j|, . . . , |µ̃K,j|). Unlike the ℓ1

penalty which shrinks each µk,j individually, the ℓ∞ norm penalizes the maximum

magnitude of the cluster means for each variable. If the largest cluster mean for

variable j is shrunk to zero, then all other means for the j-th variable are automatically

zero, and the variable can be eliminated from the model. However, this penalty is

also unable to identify specific clusters that can be separated by a particular variable.
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6.2.3 Model Selection

There are two parameters to be selected, the number of clusters K and the tuning

parameter λ. We select them using a BIC-type criterion, defined by

BIC(K,λ) = −2
n∑

i=1

log
{ K∑

k=1

ŵkϕ(xi; µ̂k, Σ̂)
}
+ d log n, (6.9)

where {ŵk, µ̂k, Σ̂}Kk=1 are estimated with K clusters and the tuning parameter λ.

The degrees of freedom d are defined as the number of distinct nonzero estimates.

Specifically, d = K − 1 + p + e(µ̂), where e(µ̂) is the number of distinct nonzero

elements in {µ̂k,j}. This definition is similar to the degrees of freedom for fused

Lasso (Tibshirani et al., 2005).

6.3 The Optimization Algorithm

The optimization of the objective function (6.6) is non-trivial. As in classical

model-based clustering, we employ an EM algorithm to maximize the log-likelihood

function subject to the penalty constraint. Let ∆i,k be the indicator of whether xi is

from cluster k, that is, ∆i,k = 1 if xi belongs to cluster k, and ∆i,k = 0 otherwise.

If the missing data ∆i,k were observed, the penalized log-likelihood function for the

complete data is given by

n∑
i=1

K∑
k=1

∆i,k{logwk + log ϕ(xi;µk,Σ)} − λ

p∑
j=1

∑
1≤k<k′≤K

τ
(j)
k,k′|µk,j − µk′,j|. (6.10)

Our algorithm follows closely the EM algorithm for the standard (unpenalized)

Gaussian mixture model (McLachlan and Peel, 2002); the main difference is in esti-

mating µk,j in the M-step. The EM algorithm iterates between two alternating steps

and produces a sequence of estimates Θ̂
(t)
, t = 0, 1, 2, . . . We start with the E-step

given the current parameter estimates Θ̂
(t)
.
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E-step

In this step, we impute values for the unobserved ∆i,k by

∆̂
(t+1)
i,k = E(∆i,k|X, Θ̂

(t)
) = Pr(∆i,k = 1|X, Θ̂

(t)
) =

ŵ
(t)
k ϕ(xi; µ̂

(t)
k , Σ̂

(t)
)∑K

k′=1 ŵ
(t)
k′ ϕ(xi; µ̂

(t)
k′ , Σ̂

(t)
)
.(6.11)

Plugging them into (6.10), we obtain the so-called penalized Q-function:

QP (Θ, Θ̂
(t)
) =

n∑
i=1

K∑
k=1

∆̂
(t+1)
i,k {logwk+log ϕ(xi;µk,Σ)}−λ

p∑
j=1

∑
1≤k<k′≤K

τ
(j)
k,k′|µk,j−µk′,j|.

M-step

The goal is to update the parameter estimates via

Θ̂
(t+1)

= argmax
Θ

Qp(Θ, Θ̂
(t)
). (6.12)

Specifically,

∂Qp

∂wk

= 0 ⇒ ŵ
(t+1)
k =

1

n

n∑
i=1

∆̂
(t+1)
i,k (6.13)

∂Qp

∂σ2
j

= 0 ⇒ (σ̂
(t+1)
j )2 =

1

n

n∑
i=1

K∑
k=1

∆̂
(t+1)
i,k (xi,j − µ̂

(t)
k,j)

2, 1 ≤ j ≤ p, (6.14)

and

µ̂(t+1) = argmin
µ

1

2

n∑
i=1

K∑
k=1

{
∆̂

(t+1)
i,k

p∑
j=1

(xi,j − µk,j)
2

(σ̂
(t)
j )2

}
+λ

p∑
j=1

∑
1≤k<k′≤K

τ
(j)
k,k′ |µk,j −µk′,j|

(6.15)

The optimization of (6.15) is nontrivial and is discussed in detail next.
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Estimation of the cluster means

In general, objective function (6.15) can be transformed into a quadratic pro-

gramming problem, and solved by a commercially available package. This approach,

however, can be inefficient in practice, especially for a large number of variables p.

Thus, we propose a more efficient iterative algorithm based on the standard local

quadratic approximation (Fan and Li, 2001). Local quadratic approximation has

been used in a number of variable selection procedures and its convergence properties

have been studied by Fan and Li (2001) and Hunter and Li (2005). Specifically, we

approximate

|µ(s+1)
k,j − µ

(s+1)
k′,j | ≈

(µ
(s+1)
k,j − µ

(s+1)
k′,j )2

2|µ̂(s)
k,j − µ̂

(s)
k′,j|

+
1

2
|µ̂(s)

k,j − µ̂
(s)
k′,j| , (6.16)

where s is the iteration index (different from t, which is used to denote different itera-

tions of the EM algorithm, whereas s is used to denote iterations of the local quadratic

approximation within the M-step), and µ̂(s) are the estimates from the previous it-

eration. This approximation converts the minimization in (6.15) into a generalized

ridge (quadratic) problem, which can be solved in closed form. For example, for each

j (notice that (6.15) can be decomposed into p separate minimization problems), we

solve (iteratively over s)

min
µ

(s+1)
(j)

1

2(σ̂
(t)
j )2

n∑
i=1

K∑
k=1

∆̂
(t+1)
i,k (xi,j−µ

(s+1)
k,j )2+λ

∑
1≤k<k′≤K

τ
(j)
k,k′

(µ
(s+1)
k,j − µ

(s+1)
k′,j )2

2|µ̂(s)
k,j − µ̂

(s)
k′,j|

. (6.17)

For numerical stability, we threshold the absolute value of µ̂
(s)
k,j − µ̂

(s)
k′,j at a lower

bound of 10−10, and at the end of the iterations, set all estimates equal to 10−10 to

zero.

We note that the M-step of maximizing the penalized Q-function does not have

closed form solutions, and its maximizer is obtained iteratively. Therefore, strictly
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speaking, our algorithm is an expectation-conditional maximization (ECM) algo-

rithm (Meng and Rubin, 1993), which replaces the M-step of EM by a sequence

of conditional maximization steps, each maximizing the penalized Q-function over Θ,

but with some of its elements fixed at their previous values. By Theorem 3 in Meng

and Rubin (1993), our algorithm is guaranteed to converge to a stationary point.

6.4 Numerical Results

In this section, we illustrate the performance of the proposed pairwise variable

selection method on three synthetic examples with four clusters for Simulations 1 and

3 and five clusters for Simulation 2. We compare four methods: Gaussian mixture

model-based clustering without a penalty, the adaptive ℓ1 penalty (6.7), the adaptive

ℓ∞ (6.8) and our proposed adaptive pairwise fusion penalty (6.6). We refer to them as

“GMM”, “AL1”, “ALP” and “APFP” respectively. The non-adaptive PFP method

was also applied and is generally dominated by APFP; its results are omitted for

space considerations. In Simulations 1 and 2, the same number of observations,

i.e., 20, are generated from each cluster, while in Simulation 3, we generate different

number of observations for different clusters. The number of clustersK and the tuning

parameter λ are selected using the BIC criterion, as described in Section 6.2.3. For

benchmarking purposes, we also calculate the solution by specifying the true number

of clusters, namely K = 4 for Simulations 1 and 3 and K = 5 for Simulation 2,

and only select λ using BIC. We repeat this 50 times for each simulation and record

the average clustering error rates as compared to the true cluster labels, and average

selection rate for both informative and non-informative variables. To compute the

clustering error rates, the predicted class labels are calculated by a majority vote,

i.e., if most data points in a particular predicted cluster belong to a true cluster

k (1 ≤ k ≤ K), then all data points in this predicted cluster are labeled as k.

The performance of the EM algorithm in model-based clustering depends on the
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choice of the initial values for the parameters since the likelihood function is not

convex, and the algorithm can only converge to a local maximum. To get a good

starting value, we first fit 100 GMMs (without penalty) with different random initial

values, and use the estimate with the highest likelihood as a starting value for the

EM algorithm. In our simulations, the EM algorithm usually converged after about

100 iterations.

Table 6.1: Means of informative variables in Simulations 1–3.
Simulation Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1 & 3
1–10 2.5 0 0 -2.5 —
11–20 1.5 1.5 -1.5 -1.5 —

2
1–10 2.5 2.5 0 0 -2.5
11–20 -2.5 0 0 0 2.5
21–30 2.5 0 0 -2.5 -2.5

Simulation 1

In this scenario, there are four clusters and p = 220, with the first 20 being

informative and the remaining ones non-informative. The variables were generated

according to the following mechanism: the first 20 are independently distributed

N(µk,j, σ
2) for cluster k, whereas the remaining 200 variables are all i.i.d. N(0, 1) for

all four clusters. Table 6.1 gives the means for the first 20 variables. For example, in

cluster 1, variables 1–10 all have the same mean value 2.5, and variables 11–20 all have

the same mean value 1.5. Figure 6.2 (left panel) illustrates the distribution of the

informative variables. Notice that variables 1–10 are non-informative for separating

clusters 2 and 3, while variables 11–20 are non-informative for separating clusters 1

and 2 (as well as clusters 3 and 4). We consider two values of the common variance,

σ2 = 1 and σ2 = 4. The former creates a high “signal-to-noise ratio (SNR)” scenario,

while the latter simulates a situation where the “signal-to-noise ratio” is low.
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Figure 6.2:
The distribution of informative variables in Simulation 1 (left) and Simu-
lation 2 (right). The red star indicates the position of the overall sample
mean.

Simulation 2

A five cluster scenario is considered. There are a total of p = 230 variables with

the first 30 informative and the other 200 non-informative. Similarly to Simulation

1, the informative variables are independently distributed as N(µk,j, σ
2) for cluster

k, whereas the remaining 200 variables are all i.i.d. N(0, 1) for all five clusters.

Table 6.1 gives the mean values for the informative variables, and Figure 6.2 (right

panel) illustrates the distribution of the informative variables. Notice that variables

1–10 are non-informative for separating clusters 1 and 2, as well as clusters 3 and 4;

variables 11–20 are non-informative for separating clusters 2, 3 and 4; and variables

21–30 are non-informative for separating clusters 2 and 3, as well as clusters 4 and 5.

We, again, consider σ2 = 1 (high signal-to-noise ratio) and σ2 = 4 (low signal-to-noise

ratio).
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Simulation 3

This simulation is designed to test the proposed method on unbalanced data, i.e.,

data where clusters have different sample sizes. All the settings in this simulation

are the same as in Simulation 1 (high SNR), except that the sample size for clusters

3 and 4 has been increased to 200. Therefore, there are two small clusters (1 and

2) with 20 observations each and two large clusters (3 and 4) with 200 observations

each.
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Figure 6.3:
Simulation 3. The sample sizes of clusters 1, 2, 3 and 4 are 20, 20, 200,
and 200, respectively. The red star indicates the position of the overall
sample mean, and the plot is shifted to show centered data.

The results over 50 replications for all simulation scenarios are summarized in

Table 6.2. When the signal-to-noise ratio in Simulations 1 and 2 is high, all four

methods select the correct number of clusters and the error rates are very close to

zero. On the other hand, in the low signal-to-noise ratio setting, GMM and ALP

completely fail to select the correct number of clusters, and have a high error rate.

The performance of the AL1 and APFP methods also degrade, but both are still able

to select the correct number of clusters most of the time. Further, the error rate of
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Table 6.2:
Prediction and variable selection results for Simulations 1–3. Each table
cell gives average(SD) over 50 repetitions. “K” is the average number of se-
lected clusters, “ER” is the average clustering error rate, “ER (correctK)”
is the average error rate whenK is set to the true value rather than selected
by BIC, “Info” is the average proportion of selected informative variables,
and “Noninfo” is the average proportion of selected non-informative vari-
ables. “High SNR” corresponds to σ2 = 1, and “Low SNR” corresponds
to σ2 = 4.

Sim. (SNR) Method K ER (%) ER (correct K) Info (%) Noninfo (%)

1 (High)

GMM 3 (0) 25 (0) 0 (0) 100 (100) 100 (100)
AL1 4 (0) 0 (0) 0 (0) 100 (100) 7.1 (7.1)
ALP 4 (0) 0 (0) 0 (0) 100 (100) 2.4 (2.4)
APFP 4 (0) 0 (0) 0 (0) 100 (100) 0.5 (0.5)

1 (Low)

GMM 3 (0) 33 (4.9) 20.6 (8.5) 100 (100) 100 (100)
AL1 3.8 (0.6) 19.2 (14.9) 14.2 (10.7) 100 (100) 6 (6)
ALP 3 (0) 34.1 (14.5) 14.4 (14) 95.9 (95.9) 4 (4)
APFP 3.7 (0.6) 19.2 (16.7) 15.1 (12.6) 100 (100) 2.3 (2.3)

2 (High)

GMM 3 (0) 40 (0) 0 (0.2) 100 (100) 100 (100)
AL1 5 (0) 0 (0) 0 (0) 100 (100) 6.9 (6.9)
ALP 5 (0) 0 (0.1) 0 (0.1) 100 (100) 1.8 (1.8)
APFP 5 (0) 0 (0) 0 (0) 100 (100) 1.1 (1.1)

2 (Low)

GMM 3 (0) 40.3 (0.7) 15.3 (5.3) 100 (100) 100 (100)
AL1 4.7 (0.6) 11.7 (9.8) 8.3 (5.3) 100 (100) 10 (10)
ALP 3 (0) 40.1 (0.4) 5.8 (3) 100 (100) 5.2 (5.2)
APFP 4.7 (0.5) 11.7 (7.7) 9.2 (5.5) 100 (100) 2.4 (2.4)

3

GMM 3 (0) 4.5 (0) 0 (0) 100 (100) 100 (100)
AL1 4 (0) 0 (0) 0 (0) 100 (100) 8.1 (8.1)
ALP 3.9 (0.2) 0.3 (1.1) 0 (0) 100 (100) 5.9 (5.9)
APFP 4 (0.1) 0 (0) 0 (0) 100 (100) 0.2 (0.2)

the APFP method is comparable with that of the AL1 method. In terms of variable

selection, AL1, ALP and APFP are able to identify the informative variables, but

APFP is more effective than ALP and AL1 at removing non-informative variables.

The results for Simulation 3 are very similar to those of Simulation 1 with high SNR,

which shows that unbalanced data do not affect performance of any of the methods.

If a variable is non-informative for separating a pair of clusters, and the cor-

responding estimated means are also the same, we consider this correct “fusion”.

Table 6.3 summarizes these results. Specifically, each row in the table gives the pro-
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portion of correctly fused variables (average over 50 replications) out of the ten that

are non-informative for separating the corresponding pair of clusters (indicated in

the third column). For example, the first row shows that for the APFP method, on

average 91.6% of the variables among the first ten are correctly fused for clusters 2

and 3. It is also clear that APFP dominates both AL1 and ALP in terms of correctly

fusing the cluster means. Although AL1 and ALP can correctly fuse some cluster

means (e.g., in the first and second row), these results are artifacts. For example, in

Simulation 1, the means of clusters 2 and 3 for variables 1–10 are all equal to zero,

which happens to be the value that the ℓ1 penalty shrinks to. The same reasoning

applies to clusters 2, 3 and 4 for variables 11-20 in Simulation 2. On the other hand,

in Simulation 1, although clusters 1 and 2 (as well as clusters 3 and 4) have the same

mean value for variables 11–20, the AL1 method fails to fuse them, since their mean

value is different from zero. The ALP method only shrinks the cluster mean with

the largest magnitude, such as the means of clusters 1 and 2 and cluster 3 and 4 for

variables 11–20 in Simulation 1. We can also see that both AL1 and ALP are unable

to perform pairwise variable selection for unbalanced clusters in Simulation 3. In con-

trast to Simulation 1, the overall sample mean in Simulation 3 (red star in Figure 6.3)

does not lie at the centroid of the four cluster means. This explains why AL1 fails to

identify non-separable clusters 2 and 3 for variables 11–20 and ALP fails to identify

non-separable clusters 3 and 4, which they were able to identify in Simulation 1. The

APFP method identifies the correct structure in all these scenarios.

6.5 Applications to Gene Expression Data

In this section, we apply the pairwise fusion method to two gene microarray data

sets. To illustrate the method, we pre-select a subset of genes from each data by

ranking the genes according to their variance and only using the top 100 and bottom

100 genes. We anticipate that high variance genes are more informative than low
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variance genes for clustering purposes, although, as the results below show, this is

not always true. Notice that selection does not use any class label information. The

obtained 200 variables (genes) are centered before clustering.

6.5.1 The SRBCT Data

This data set contains the expression profiles of 2308 genes, obtained from 83

tissue samples of small round blue cell tumors (SRBCT) of childhood cancer (Khan

et al., 2001). The 83 samples are classified into four tumor subtypes: Ewing’s sarcoma

(EWS), rhabdomyosarcoma (RMS), neuroblastoma (NB), and Burkitt’s lymphoma

(BL).

The results in Table 6.4 (SRBCT) show that all these methods select six clusters

via BIC and produce the same error rate of 1.4%. Table 6.5 shows the confusion

matrix for the APFP method. Each row corresponds to a tumor subtype, and each

column to an identified cluster. It can be seen that subtype EWS is split into clusters 2

and 6, and subtype RMS into clusters 1 and 3. This result suggests possible existence

of heterogeneous structures within these two subtypes.

From Table 6.4, we can also see that both GMM and ALP select all 200 genes,

while APFP selects 92 from the top 100 genes and 66 from the bottom 100 genes,

and AL1 selects all top 100 genes and 88 from the bottom 100 genes. This is a

somewhat unexpected result. To further investigate this issue, two F -statistics and

their p-values were computed for each gene; the first one compares the four tumor

subtypes, while the second one the six identified clusters. The results are shown in

Figure 6.4. Notice that although genes with a large variance tend to be informative

(since they tend to have small p-values as shown in the left panels of Figure 6.4),

genes with a small variance are not necessarily non-informative for clustering. The

right panels in Figure 6.4 show that among the bottom 100 genes by variance there

is a number of genes with relatively small p-values, both for discriminating the true
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subtypes and the found clusters. These turn out to be the genes that are selected by

the APFP method from the bottom 100 genes. Further, the left panels in Figure 6.4

show that some of top 100 genes have large p-values. Indeed, the four genes that have

the largest p-values are not selected by APFP. Overall, Figure 6.4 provides insight

into why 66 genes are selected by the APFP method from the bottom 100 group, and

why some of the genes in the top 100 group are not selected. The selection of all the

genes by the L1 method is obviously not satisfactory.

Figure 6.5 shows the results for pairwise fusion. The rows correspond to the 92

(out of top 100) genes selected by the APFP method and the column to pairs of

clusters. There are a total of 15 pairs formed from the six identified clusters. A

black (white) spot indicates that the estimated means of the corresponding gene for

the two clusters are different (the same). For example, the gene with ID “435953”

is non-informative for separating clusters 1 and 3, as well as clusters 2 and 5, and

clusters 4 and 6. It can be seen that most genes are informative for only a subset of

clusters. Compared to the “one-in-all-out” approach, this result is more informative

for describing the functions of a gene with respect to discriminating different tumor

subtypes.

6.5.2 PALL Data Set

This data set contains gene expression profiles for 12,625 genes from 248 patients

(samples) with pediatric acute lymphoblastic leukemia (PALL), see Yeoh et al. (2002)

for more details. The samples are classified into six tumor subtypes: T-ALL (43

cases), E2A-PBX1 (27 cases), TEL-AML (79 cases), hyperdiploid>50 (64 cases),

BCR-ABL (15 cases) and MLL (20 cases). The original data had a large number

of missing intensities and the following pre-processing was applied. All intensity

values less than one were set to one; then all intensities were transformed to log-scale.

Further, all genes with log-intensities equal to zero for more than 80% of the samples
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were discarded, thus leaving 12,083 genes for further consideration. From the pre-

processed data, the top and bottom 100 genes were selected according to the overall

variance criterion described above. All variables were centered.

From Table 6.4 (PALL), we can see that GMM, AL1 and APFP methods select

12, 7 and 9 clusters, respectively, and produce comparable error rates (25%∼27%),

all of which are significantly lower than that of ALP (41.1%). Table 6.6 shows the

confusion matrix for the APFP method. Unlike the results on the SRBCT data,

the clusters discovered by APFP are generally not consistent with the six subtypes.

However, subtypes E2A-PBX1 and T-ALL are largely captured by clusters 3 and

7, most samples in subtype hyperdiploid>50 are assigned to clusters 4 and 6, while

TEL-AML is split amongst clusters 1, 2 and 9. This result suggests the possible

presence of a more complex structure in some of the subtypes.

Figure 6.6 shows the scatter plot of variance vs p-values obtained from the two

F -statistics as described above. Once again, genes with a large variance do not nec-

essarily correspond to small p-values, and vice versa. Figure 6.7 provides a detailed

illustration of the gene functions with respect to discriminating different tumor sub-

types.

6.6 Conclusions

We have developed a method for simultaneously clustering high-dimensional data

and selecting informative variables, by employing a penalized model-based clustering

framework. In particular, the proposed method penalizes the difference between the

cluster means for each pair of clusters and for each variable, which allows one to

identify and remove non-informative variables for selected subsets of clusters. This

allows to gain more insight into the function of particular variables and potentially

discover heterogeneous structures that other available methods are unable to capture.

Our numerical work suggests that this penalty proves more effective in removing non-
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informative variables than an ℓ1 penalty method, and provides better interpretation.

Possible extensions include allowing for different variances and fusing variances as

well as the means, as discussed at the start of Section 6.2.1, as well as extensions

to non-Gaussian data. Applications to problems other than clustering are another

possibility; a similar penalty for simultaneously selecting factors and collapsing levels

in ANOVA was proposed by Bondell and Reich (2009) while this paper was under

review.
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Table 6.3:
Pairwise variable selection results for Simulations 1–3. “Pair” corresponds
to non-separable cluster pairs for the variables in the corresponding row.
For example, the first row indicates that variables 1–10 are non-informative
for separating clusters 2 and 3. The numbers in the following columns show
what proportion of variables of the set are identified as non-informative
for separating a given pair of clusters by each method. The optimal value
is 10 in each case. All results are averages (SDs) over 50 repetitions.

Sim. (SNR) Variables Pair AL1(%) ALP(%) APFP(%)

1 (High)
1–10 2/3 96.6 (5.2) 0.2 (1.4) 91.6 (9.1)

11–20
1/2 0.2 (1.4) 40.8 (18.9) 91.8 (8.5)
3/4 0 (0) 42.2 (21.4) 92.2 (7.9)

1 (Low)
1–10 2/3 95.6 (9.3) 6 (21.4) 79.8 (17.6)

11–20
1/2 1 (3.0) 85 (16.2) 78.2 (21.2)
3/4 0.4 (2.0) 79.6 (14.1) 84 (13.4)

2 (High)

1–10
1/2 0.2 (1.41) 0.2 (1.41) 84.2 (12.3)
3/4 34.6 (28.1) 0.4 (2.0) 87.4 (9.7)

11–20
2/3 98 (5.0) 0.2 (1.4) 94 (8.1)
2/4 97.6 (4.8) 0.4 (2.0) 93.4 (8.2)
3/4 97.2 (4.5) 0.2 (1.4) 93.2 (8.9)

21–30
2/3 30.2 (30.1) 0.4 (2.0) 83.8 (12.1)
4/5 0 (0) 0 (0) 88.2 (10.6)

2 (Low)

1–10
1/2 0.2 (1.41) 17 (10.9) 72.4 (17)
3/4 73 (14.7) 0 (0) 74.4 (18.5)

11–20
2/3 94.8 (6.46) 0 (0) 89.2 (11.2)
2/4 95.4 (5.4) 0 (0) 89.4 (9.8)
3/4 95.4 (6.1) 0 (0) 89 (10.2)

21–30
2/3 76.8 (14.9) 0 (0) 67.8 (21.8)
4/5 0 (0) 21.2 (13.8) 74.4 (16.8)

3
1–10 2/3 0.2 (1.4) 0.4 (2.0) 94.6 (6.8)

11–20
1/2 0.2 (1.4) 60.8 (14.7) 92.6 (6.6)
3/4 0 (0) 0 (0) 96.8 (6.2)
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Table 6.4:
Clustering results for the SRBCT and PALL data sets. “Top 100” and
“Bottom 100” correspond to the number of genes that are selected from the
top 100 and bottom 100 genes respectively, as ranked by overall variance.

Data Method K Error rate (%) Top 100 (%) Bottom 100 (%)

SRBCT

GMM 6 1.4 100 100
AL1 6 1.4 100 88
ALP 6 1.4 100 100
APFP 6 1.4 92 66

PALL

GMM 12 25.7 100 100
AL1 7 24.7 94 100
ALP 5 41.1 100 100
APFP 9 27.0 89 99

Table 6.5:
Confusion matrix of the APFP method for the SRBCT data. Rows corre-
spond to tumor subtypes, and columns to identified clusters.

Subtype C1 C2 C3 C4 C5 C6
EWS 0 18 0 0 0 11
RMS 16 0 9 0 0 0
NB 1 0 0 0 17 0
BL 0 0 0 11 0 0

Table 6.6:
Confusion matrix of the APFP method for the PALL data. Rows corre-
spond to tumor subtypes, and columns to identified clusters.

Subtype C1 C2 C3 C4 C5 C6 C7 C8 C9
BCR-ABL 0 0 0 2 6 7 0 0 0
E2A-PBX1 0 0 25 0 0 1 0 1 0

hyperdiploid>50 1 1 0 35 0 24 0 2 1
MLL 1 0 2 0 13 0 0 4 0

TEL-AML 30 18 0 0 0 0 0 0 31
T-ALL 0 0 0 0 5 0 33 5 0
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Figure 6.4:
Plots of the negative logarithm p-values vs variance for SRBCT data. The
left column is the top 100 genes (largest overall variances), and the right
column is the bottom 100 genes. The upper row is negative logarithm p-
values corresponding to an F -statistics comparing four tumor subtypes,
and the lower row is the negative logarithm p-values for the six identified
clusters. Triangles denote the genes that are not selected by the APFP
method.
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Figure 6.5:
Pairwise variable selection results for the APFP method on the SRBCT
data with top 100 genes. Each row corresponds to a gene. Each column
corresponds to a cluster pair; for example, “1/2” indicates clusters 1 and
2. A black (white) spot indicates that the estimated means of the corre-
sponding gene for the two clusters are different (the same). For example,
gene “435953” is non-informative for separating clusters 1 and 3, 2 and
5, and 4 and 6.
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Figure 6.6:
Plots of the negative logarithm p-values vs variance for PALL data. The
left column is the top 100 genes (largest overall variances), and the right
column is the bottom 100 genes. The upper row is negative logarithm p-
values corresponding to an F -statistics comparing four tumor subtypes,
and the lower row is the negative logarithm p-values for the six identified
clusters. Triangles denote the genes that are not selected by the APFP
method.
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Figure 6.7:
Pairwise variable selection results for the APFP method on the PALL
data with top 100 genes. Each row corresponds to a gene. Each col-
umn corresponds to a cluster pair; for example, “1/2” indicates clusters
1 and 2. A black (white) spot indicates that the estimated means of the
corresponding gene for the two clusters are different (the same).
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CHAPTER VII

Sparse Fused Principal Component Analysis

7.1 Introduction

In this chapter, we propose another version of PCA with sparse components mo-

tivated by the following empirical considerations. In many application areas, some

variables are highly correlated and form natural “blocks”. For example, in the meat

spectra example discussed in Section 4, the spectra exhibit high correlations within

the high and low frequency regions, thus giving rise to such a block structure. Some-

thing analogous occurs in the image data, where the background forms one natural

block, and the foreground one or more such blocks. In such cases, the loadings of

the block tend to be of similar magnitude. The proposed technique is geared towards

exploring such block structures and producing sparse principal components whose

loadings are of the same sign and magnitude, thus significantly aiding interpretation

of the results. We call this property fusion and introduce a penalty that forces “fus-

ing” of loadings of highly correlated variables in addition to forcing small loadings to

zero. We refer to this method as sparse fused PCA (SFPCA).

The remainder of the paper is organized as follows: the technical development and

computing algorithm for our method are presented in Section 7.2. An illustration of

the method based on simulated data is given in Section 7.3. In Section 7.4, we apply

the new method to several real datasets. Finally, some concluding remarks are drawn
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in Section 7.5.

7.2 The Model and its Estimation

7.2.1 Preliminaries and Sparse Variants of PCA

Let X = (xi,j)n×p be a data matrix comprised of n observations and p variables,

whose columns are assumed to be centered. As noted above, PCA reduces the di-

mensionality of the data by constructing linear combinations of the original variables

that have maximum variance; i. e., for k = 1, · · · , p, define

αk = argmax
α

V ar(Xα), subject to α′
kαk = 1,α′

kαj = 0 for all j ̸= k, (7.1)

where αk is a p-dimensional vector called factor loadings (PC vectors). The projection

of the data Zk = Xαk is called the k-th principal component. The technique proves

most successful if one can use a small number k ≪ p of components to account for

most of the variance and thus provide a relatively simple explanation of the underlying

data structure. Some algebra shows that the factor loadings can be obtained by

solving the following optimization problem

α̂k = arg max
α⊥α1,...,αk−1

αT Σ̂α (7.2)

where Σ̂ = 1/n(XTX) denotes the sample covariance of the data. The solution

of (7.2) is given by the eigenvector corresponding to the k-th largest eigenvalue of

Σ̂. An alternative way to derive the PC vectors, which proves useful in subsequent

developments, is to solve the following constrained least squares problem:

min
A

∥X −XAAT∥2F , subject to ATA = IK , (7.3)
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where IK denotes a K×K identity matrix, ∥M∥F is the Frobenius norm of a matrix

M = (mi,j)n×p (∥M∥2F =
∑

i,j m
2
ij), and A = [α1, . . . ,αK ] is a p × K matrix with

orthogonal columns. The estimate Â contains the first K PC vectors, and Ẑ = XÂ

the first K principal components.

To impose sparsity on the PC vectors, Jollife et al. (2003) proposed SCoTLASS,

which adds an ℓ1-norm constraint to objective function (7.2), i.e., for any 1 ≤ k ≤ K,

solve:

max
α⊥α1,...,αk−1

αT Σ̂α , subject to ∥α∥1 ≤ t , (7.4)

where ∥α∥1 =
∑p

j=1 |αj| is the ℓ1 norm of the vector α. Due to the singularity

property of the ℓ1 norm, the constraint ∥α∥1 ≤ t shrinks some components of α to

zero for small enough values of t. Therefore, objective function (7.2) produces sparse

PC vectors. However, Zou et al. (2006) noted that in many cases, SCoTLASS fails

to achieve sufficient sparsity, thus complicating the interpretation of the results. One

possible explanation stems from the orthogonality constraint of the PC vectors that

is not fully compatible with the desired sparsity condition. Hence, Zou et al. (2006)

proposed an alternative way to estimate sparse PC vectors, by relaxing the orthog-

onality requirement. Their procedure amounts to solving the following regularized

regression problem:

argmin
A,B

∥X −XBAT∥2F + λ1

K∑
k=1

∥βk∥1 + λ2

K∑
k=1

∥βk∥22

subject to ATA = IK , (7.5)

where βk is a p-dimensional column vector and B = [β1,β2, . . . ,βK ]. The ℓ2 penalty∑K
k=1 ∥βk∥22 regularizes the loss function to avoid singular solutions, whenever n < p.

If λ1 = 0, objective function (7.5) reduces to the ordinary PCA problem and the

columns of B̂ are proportional to the first K ordinary PC vectors (Zou et al., 2006);

otherwise, the ℓ1 penalty ∥βk∥1 imposes sparsity on the elements of B̂, i.e., it shrinks
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some loadings exactly to zero. In addition, the first term in (7.5) can be written as

∥X −XBAT∥2F = ∥XA−XB∥2F + ∥A⊥∥2F

=
K∑
k=1

∥Xαk −Xβk∥2F + ∥A⊥∥2F

= n
K∑
k=1

(αk − βk)
T Σ̂(αk − βk) + ∥A⊥∥2F (7.6)

where A⊥ is any orthonormal matrix such that [A,A⊥] is a p×p orthonormal matrix.

The quantity (αk −βk)
T Σ̂(αk −βk), 1 ≤ k ≤ p measures the difference between αk

and βk. Therefore, although there is no direct constraint on the column orthogonality

in B, the loss function shrinks the difference between A and B and this results

in the columns of B becoming closer to orthogonal. Numerical examples in Zou

et al. (2006) indicate that sparse PCA produces more zero loadings than SCoTLASS.

However, both techniques cannot accommodate block structures in the variables, as

the numerical results in Section 7.3 suggest. Next, we introduce a variant of sparse

PCA called sparse fused PCA (SFPCA) that addresses this issue.

7.2.2 Sparse Fused Loadings

Our proposal is based on solving the following optimization problem:

min
A,B

∥X −XBAT∥2F + λ1

K∑
k=1

∥βk∥1 + λ2

K∑
k=1

∑
s<t

|ρs,t||βs,k − sign(ρs,t)βt,k| ,

subject to ATA = IK , (7.7)

where ∥X −XBAT∥2F =
∑n

i=1 ∥xi −ABTxi∥22; ρs,t denotes the sample correlation

between variables Xs and Xt and sign(·) the sign function. The first penalty in (7.7)

is the sum of ℓ1 norms of the K PC vectors. It aims to shrink the elements of the PC

vectors to zero, thus ensuring sparsity of the resulting solution. The second penalty
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is a linear combination of K generalized fusion penalties. This penalty shrinks the

difference between βs,k and βt,k, if the correlation between variables Xs and Xt is

positive; the higher the correlation, the heavier the penalty for on the difference of

coefficients. If the correlation is negative, the penalty encourages βs,k and βt,k to have

similar magnitudes, but different signs. It is natural to encourage the loadings of

highly correlated variables to be close, since two perfectly correlated variables with

the same variance have equal loadings. First, highly correlated variables on the same

scale pushing the loadings to the same value has the same effect as setting small

regression coefficients to 0 in lasso: fitted model accuracy is not affected much, but

interpretation is improved and overfitting avoided. Second, by definition of principal

components, the k-th PC vector maximizes the variance of
∑p

j=1 βj,kXj subject to

the orthogonality constraint. Since Xj’s are centered, one can show that this variance

equals to
∑p

j=1 β
2
j,kV ar(Xj)+2

∑
s<t βs,kβt,kCov(Xs, Xt). Thus, in order to maximize

the variance, we need the sign of βs,kβt,k to match the sign of Cor(Xs, Xt) (as far as

the orthogonality constraint will allow). Finally, note that if two variables are highly

correlated but have substantially different variances, their loadings will have different

scales and won’t be fused to the same value, which is the correct behavior for PCA on

unscaled data. If this behavior is undesirable in a particular application, data should

be standardized first (just like in regular PCA, it is the user’s decision whether to

standardize the data).

The effect of the fusion penalty, due to the singularity property of the ℓ1 norm, is

that some terms in the sum are shrunken exactly to zero, resulting in some loadings

having identical magnitudes. Therefore, the penalty aims at blocking the loadings

into groups and “fusing” similar variables together for ease of interpretation. Finally,

if ρs,t = 0 for any |t − s| > 1 and ρs,s+1 is a constant for all s, then the generalized

fusion penalty reduces to the fusion penalty (Land and Friedman, 1996; Tibshirani

et al., 2005).
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Note that one can use other types of weights in the generalized fusion penalty,

including partial correlations or other similarity measures Li and Li (2008).

7.2.3 Optimization of the Objective Function

We discuss next how to optimize the posited objective function. It is achieved

through alternating optimization over A and B, analogously to the sparse PCA

algorithm. Overall, the algorithm proceeds as follows.

The Algorithm

Step 1. Initialize Â by setting it to the ordinary PCA solution.

Step 2. Given A, minimizing the objective function (7.7) over B is equivalent to

solving the following K separate problems:

min
βk

∥Y ∗
k −Xβk∥2 + λ1∥βk∥1 + λ2

∑
s<t

|ρs,t||βs,k − sign(ρs,t)βt,k| (7.8)

where Y ∗
k = Xαk. The solution to (7.8) is nontrivial, and is discussed in Section 7.2.4.

This step updates the estimate B̂.

Step 3. Given the value of B, minimizing (7.7) over A is equivalent to solving

argmin
A

∥X −XBAT∥2 , subject to ATA = IK . (7.9)

The solution can be derived by a reduced rank Procrustes rotation (Zou et al.,

2006). Specifically, we compute the singular value decomposition (SVD) ofXTXB =

UDV T and the solution to (7.9) is given by Â = UV T . This step updates the esti-

mate Â.

Step 4. Repeat Steps 2-3 until convergence.
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7.2.4 Estimation of B Given A

Objective function (7.8) can be solved by quadratic programming. However, this

approach can be inefficient in practice; thus, we propose a more efficient algorithm–

local quadratic approximation (LQA) (Fan and Li, 2001). This method has been

employed in a number of variable selection procedures for regression and its conver-

gence properties have been studied by Fan and Li (2001) and Hunter and Li (2005).

The LQA method approximates the objective function locally via a quadratic form.

Notice that

∑
s<t

|ρs,t||βs,k − sign(ρs,t)βt,k|

=
∑
s<t

|ρs,t|
|βs,k − sign(ρs,t)βt,k|

(βs,k − sign(ρs,t)βt,k)
2

=
∑
s<t

|w(k)
s,t |(βs,k − sign(ws,t)βt,k)

2 (7.10)

where w
(k)
s,t = ρs,t/|βs,k − sign(ρs,t)βt,k| and consequently sign(w

(k)
s,t ) = sign(ρs,t).

After some algebra, one can show that (7.10) can be written as βTL(k)β, where

L(k) = D(k) − W (k), W (k) = (ws,t)p×p with diagonal elements equal to zero, and

D(k) = diag(
∑

t̸=1 |w1,t|, . . . ,
∑

t̸=p |wp,t|).

Similarly, we have ∥βk∥1 =
∑p

j=1 |βj,k| =
∑p

j=1 ω
(k)
j β2

j,k = βTΩ(k)β, where ω
(k)
j =

1/|βj,k| and Ω(k) = diag(ω
(k)
1 , . . . , ω

(k)
p ). Then, (7.8) can be written as

min
βk

∥Y ∗
k −Xβk∥22 + λ1β

TΩ(k)β + λ2β
TL(k)β. (7.11)

Notice that (7.11) takes the form of a least squares problem involving two generalized

ridge penalties; hence, its closed form solution is given by

β̂k = (XTX + λ1Ω
(k) + λ2L

(k))−1XTY ∗
k. (7.12)
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Notice that both Ω(k) and L(k) depend on the unknown parameter βk. Specifically,

LQA iteratively updates βk, L
(k) and Ω(k) as follows, which constitute Step 2 of the

algorithm.

Step 2(a). Given β̂k from the previous iteration, update Ω̂
(k)

and L̂
(k)
.

Step 2(b). Given Ω̂
(k)

and L̂
(k)
, update β̂k by formula (7.12).

Step 2(c). Repeat Steps 2(a) and 2(b) until convergence.

Step 2(d). Scale β̂k to have unit ℓ2-norm.

Note that to calculate L(k) in step 2(a), we need to calculate ws,t = ρs,t/|βk,s −

sign(ρs,t)βk,t|. When the values of βk,s and sign(ρs,t)βk,t are extremely close, ws,t is

numerically singular. In this case, we replace |βk,s − sign(ρs,t)βk,t| by a very small

positive number (e.g. 10−10); similarly, we replace |βj,k| by a very small positive

number if its value is extremely close to 0.

With the new Step 2, the algorithm has two nested loops. However, the inner

loop in Step 2 can be effectively approximated by a one step update (Hunter and Li,

2005), i.e., by removing step 2(c). In our numerical experiments, we found that this

one step update can lead to significant computational savings without minor sacrifices

in terms of numerical accuracy.

7.2.5 Selection of Tuning Parameters

The proposed procedure involves two tuning parameters. One can always use

cross-validation to select the optimal values, but it can be computationally expensive.

We discuss next an alternative approach for tuning parameter selection based on the

Bayesian information criterion (BIC), which we use in simulations in Section 7.3. In

general, we found solutions from cross-validation and BIC to be comparable, but BIC

solutions tend to be sparser.

Let Aλ1,λ2 = [αλ1,λ2

1 , . . . ,αλ1,λ2

K ] and Bλ1,λ2 = [βλ1,λ2

1 , . . . ,βλ1,λ2

K ] be the esti-

mates of A and B in (7.7), obtained using tuning parameters λ1 and λ2. Let
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σ̂2
ϵ = 1/n

∑n
i=1 ∥X − XÂÂ

T
∥2F , where the columns of Â contain the first K or-

dinary PC vectors of X. We define the BIC for sparse PCA as follows:

BIC(λ1, λ2) = ∥X −XBλ1,λ2(Aλ1,λ2)T∥2F/σ̂2
ϵ + log(n)dfSPCA (7.13)

and analogously for SFPCA

BIC(λ1, λ2) = ∥X −XBλ1,λ2(Aλ1,λ2)T∥2F/σ̂2
ϵ + log(n)dfSFPCA (7.14)

where dfSPCA and dfSFPCA denote the degrees of freedom of sparse and sparse-fused

PCA defined as the number of all nonzero/nonzero-distinct elements in Bλ1,λ2 , re-

spectively. These definitions are similar to df defined for Lasso and fused Lasso (Zou

et al., 2007; Tibshirani et al., 2005).

7.2.6 Computational Complexity and Convergence

Since XTX only depends on the data, it is calculated once and requires np2

operations. The estimation of A by solving an SVD takes O(pK2). Calculation of Ω

and L in (7.11) requires O(p2) operations, while the inverse in (7.12) is of order O(p3).

Therefore, each update in LQA is of order O(p3K), and the total computational cost

is O(np2) +O(p3K).

The convergence of the algorithm essentially follows from standard results. Note

that the loss function is strictly convex in both A and B, and the penalties are

convex in B, and thus the objective function is strictly convex and has a unique

global minimum. The integrations between Step 2 and Step 3 of the Algorithm

amount to block coordinate descent, which is guaranteed to converge for differentiable

convex functions (see, e.g., Bazaraa et al. (1993)). The original objective function

has singularities, but the objective function (7.10) obtained from the local quadratic

approximation that we are actually optimizing is differentiable everywhere, and thus
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the convergence of coordinate descent is guaranteed. Thus, we only need to make sure

that each step of the coordinate descent is guaranteed to converge. In Step 3, we are

optimizing the objective function (7.9) exactly and obtain the solution in closed form.

In Step 2, the optimization is iterative, but convergence follows easily by adapting

the arguments of Hunter and Li (2005) for local quadratic approximation obtained

from general results for minorization-maximization algorithms.

7.3 Numerical illustration of SFPCA

First, we illustrate the performance of the proposed SFPCA method on a number

of synthetic datasets described next.

Simulation 1

This simulation scenario is adopted from Zou et al. (2006). Three latent variables

are generated as follows:

V1 ∼ N(0, 290),

V2 ∼ N(0, 300),

V3 = −0.3V1 + 0.6V2 + ϵ,

where V1, V2 and ϵ are independent, and ϵ ∼ N(0, 1). Next, ten observable variables

are constructed as follows:

Xj =


V1 + ej, if 1 ≤ j ≤ 4;

V2 + ej, if 5 ≤ j ≤ 8;

V3 + ej, if j = 9, 10;

where ϵj, 1 ≤ j ≤ 10 are i.i.d. N(0, 1). The variance of the three latent variables are

290, 300 and 38, respectively. Notice that by construction, variables X1 through X4
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form a block with a constant within-block pairwise correlation of .997 (“block 1”),

while variables X5 through X8 and X9, X10 form another two blocks (“block 2” and

“block 3”, respectively). Ideally, a sparse first PC should pick up block 2 variables

with equal loadings, while a sparse second PC should consist of block 1 variables with

equal loadings, since the variance of V2 is larger than that of V1.

Zou et al. (2006) compared sparse PCA with ordinary PCA and SCoTLASS using

the true covariance matrix. In our simulation, we opted for the more realistic proce-

dure of generating 20 samples according to the above description and repeated the

simulation 50 times. PC vectors from ordinary PCA, sparse PCA and SFPCA were

computed from these simulated datasets and the results are shown in Table 7.1, along

with the ordinary PC vectors computed from the true covariance matrix. The table

entries correspond to the median and the median absolute deviation (in parentheses)

of the loadings over 50 replications. To measure the variation of the loadings within

block 1 and 2, we also calculated the standard deviation among the loadings within

these blocks and record their medians and median absolute deviations in rows “Block

1” and “Block 2”, respectively. The proportions of adjusted variance and adjusted

cumulative variance are reported as “AV (%)” and “ACV (%)”. Adjusted variance

was defined by Zou et al. (2006) as follows: let B̂ be the first K modified PC vectors.

Using the QR decomposition, we have XB̂ = QR, where Q is orthonormal and R

is upper triangular. Then the adjusted variance of the k-th PC equals R2
k,k.

The tuning parameters were selected by minimizing the Bayesian information

criterion (BIC) defined in Section 7.2.5, using a grid search over {2−10, 2−9, . . . , 210}

for λ1 and {10−3, . . . , 103} for λ2, respectively.

Table 7.1 shows that both SFPCA and sparse PCA recover the correct sparse

structure of the loadings in the first two PC vectors. The median standard deviations

within block 2 in PC 1 and block 1 in PC 2 equal to zero, which implies that SFPCA

accurately recovers the loadings within the block. In contrast, the median standard
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deviations within block 2 in PC 1 and within block 1 in PC 2 reveal that the loadings

estimated by sparse PCA exhibit significant variation.

As discussed in Section 2, the PC vectors from both sparse PCA and SFPCA are

not exactly orthogonal due to the penalties employed. To study the deviation from

orthogonality, the histogram of pairwise angles between the first four PC vectors

obtained from SFPCA was obtained (available as supplemental material). It can be

seen that the first two PCs are always orthogonal, while the fourth PC is essentially

always orthogonal to the remaining three. The third component is the most variable,

sometimes being close to the first, and at other times close to the second PC. This

distribution of angles is consistent with the structure of the simulation and in general

will be dependent on the underlying structure of the data.

Simulation 2

This example is a high-dimensional version (p > n) of simulation 1. We define

Xj =


V1 + ej, if 1 ≤ j ≤ 20;

V2 + ej, if 21 ≤ j ≤ 40;

V3 + ej, if 41 ≤ j ≤ 50;

where ϵj, 1 ≤ j ≤ 50 are i.i.d. N(0, 1). Then 20 samples were generated in each of

the 50 repetitions. The factor loadings estimated from this simulation are illustrated

in Figure 7.1. Sparse PCA and SFPCA produce similar sparse structures in the load-

ings. However, compared with the “jumpy” loadings from sparse PCA, the loadings

estimated by SFPCA are smooth and easier for interpretation.
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7.4 Application of SFPCA to Real Datasets

Drivers Dataset

This dataset provides information about the physical size and age of 38 drivers

along with a response variable, seat position in a car. (Faraway, 2004). For the

purposes of PCA, the response variable was excluded from the analysis. The eight

available variables on driver characteristics are age, weight, height in shoes, height

in bare feet, seated height, lower arm length, thigh length, and lower leg length.

All height/length variables are highly correlated (average correlation among these

variables is about 0.8) and form a natural block; hence, we expect them to have

similar loadings. SFPCA was applied to this dataset and compared its results with

those obtained from ordinary PCA and sparse PCA (Table 7.2).

It can be seen that ordinary PCA captures the block structure in the first PC, but

the factor loadings exhibit significant variation. Interestingly, the factor loadings from

sparse PCA exhibit even greater variability, while the percentage of total variance

explained by the first PC is only 55%, as opposed to 70% by ordinary PCA. On the

other hand, SPFCA exhibits good performance in terms of goodness of fit (68.7%)

and clearly reveals a single block structure in the “size” variables.

Pitprops Dataset

The pitprops dataset, introduced in Jeffers (1967), has become a classic example

of the difficulties in interpretation of principal components. In this dataset, the

sizes and properties of 180 pitprops (lumbers used to support the roofs of tunnels

in coal mines) are recorded. The available variables are: the top diameter of the

prop (topdiam), the length of the prop (length), the moisture content of the prop

(moist), the specific gravity of the timber at the time of the test (testsg), the oven-

dry specific gravity of the timber (ovensg), the number of annual rings at the top of
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the prop (ringtop), the number of annual rings at the base of the prop (ringbut), the

maximum bow (bowmax), the distance of the point of maximum bow from the top

of the prop (bowdist), the number of knot whorls (whorls), the length of clear prop

from the top of the prop (clear), the average number of knots per whorl (knots) and

the average diameter of the knots (diaknot). The first six PCs from regular PCA

account for 87% of the total variability (measured by cumulative proportion of total

variance explained).

We applied SPFCA and sparse PCA to the dataset and the results are given

in Table 7.3. The loadings from SFPCA show a sparse structure similar to that of

sparse PCA, but the first three PCs from SFPCA involve fewer variables than those of

SPCA. The equal loadings within blocks assigned by SFPCA produce a clear picture

for interpretation purposes. Referring to the interpretation in Jeffers (1967), the first

PC gives the same loadings to “topdiam”, “length”, “ringbut”, “bowmax”, “bowdist”

and “whorls” and provides a general measure of size; the second PC assigns equal

loadings to “moist” and “testsg” and measures the degree of seasoning; the third PC,

giving equal loadings to “ovensg” and “ringtop”, accounts for the rate of the growth

and the strength of the timber; the following three PCs represent “clear”, “knots”

and “diaknot”, respectively.

Meat Spectrum Data

In this section, we apply SFPCA to a dataset involving spectra obtained from

meat analysis (Borggaard and Thodberg, 1992; Thodberg, 1996). In recent decades,

spectrometry techniques have been widely used to identify the fat content in pork,

because it has proved significantly cheaper and more efficient than traditional ana-

lytical chemistry methods. In this dataset, 215 samples were analyzed by a Tecator

near-infrared spectrometer which measured the spectrum of light transmitted through

a sample of minced pork meat. The spectrum gives the absorbance at 100 wavelength
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channels in the range of 850 to 1050 nm.

The adjusted cumulative total variances explained by the first two PCs from ordi-

nary PCA, sparse PCA and SFPCA are 99.6%, 98.9% and 98.4%, respectively. Since

wavelengths are naturally ordered, a natural way to display the loadings is to plot

them against the wavelength. The plot of the first two PCs for the 100 wavelength

channels is shown in Figure 7.3.

SFPCA smoothes the ordinary PC vectors producing piece-wise linear curves

which are easier to interpret. The SFPCA results show clearly that the first PC

represents the overall mean over different wavelengths while the second PC repre-

sents a contrast between the low and high frequencies. On the other hand, the high

variability in the loadings produces by sparse PCA makes the PC curves difficult to

interpret.

USPS Handwritten Digit Data

In this example, the three PCA methods are compared on the USPS handwritten

digit data set (Hull, 1994). This data set was collected by the US Postal Service

(USPS) and contains 11,000 gray scale digital images of the ten digits at 16 × 16

pixel resolution. We focused on the digit “3” and sampled 20 images at random,

thus operating in a large p, small n setting. While BIC gave good results for most

data sets we examined, for the USPS data it tended to under shrink the coefficient

estimates. However, we found that cross-validation produced good results and was

computationally feasible, so we used five- fold cross-validation to select the optimal

tuning parameters for SPCA and SFPCA. The optimal tuning parameter for SPCA

turned out to be equal to zero, so here SPCA coincides with ordinary PCA. The

reconstructed images by the first and second principal components (“eigen-images”)

arranged in the original spatial order are shown in Figure 7.4. It can be seen that

SFPCA achieves a fairly strong fusing effect for the background pixels, thus producing
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a smoother, cleaner background image. This is confirmed by the results in Table 7.4

that give the proportion of distinct elements in the first two principal components

for PCA and SFPCA. Notice that since PCA does not impose any sparsity or fusion,

the resulting proportion is 100%, compared to those for SFPCA (35.5% and 22.7%

for the first and second PCs, respectively).

7.5 Concluding Remarks

In this paper, a method is developed to estimate principal components that cap-

ture block structures in the variables, which aids in the interpretation of the data

analysis results. To achieve this goal, the orthogonality requirement is relaxed and

an ℓ1 penalty is imposed on the norm of the PC vectors, as well as a “fusion” penalty

driven by variable correlations. Application of the method to both synthetic and real

data sets illustrates its advantages when it comes to interpretation.

The idea of sparse fused loadings is also applicable in a number of other unsu-

pervised learning techniques, including canonical correlation and factor analysis, as

well as regression analysis, classification techniques (e.g., LDA and SVM) and sur-

vival analysis (e.g., Cox model and Buckley-James model). We note that Daye and

Jeng (2009) proposed a weighted fusion penalty for variable selection in a regression

model. Unlike the generalized fusion penalty which penalizes the pairwise Manhat-

tan distances between the variables, their method penalizes the pairwise Euclidean

distances, and thus would not necessarily shrink the coefficients of highly correlated

variables to identical values. Similarly, Tutz and Ulbricht (2009) proposed a Block-

Boost method, whose penalty also tends to fuse the pairwise difference between the

regression coefficients. In particular, when these pairwise correlations are close to ±1,

the solution of BlockBoost is closed to that of Daye and Jeng (2009).
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Table 7.1:
Results for simulation 1. “PCA-T” corresponds to the ordinary PCA estima-
tion from the true covariance matrix. “PCA-S” corresponds to the ordinary
PCA estimation from the sample covariance matrix. “SPCA” represents
the sparse PCA, and “SFPCA” represents the sparse fused PCA. “AV” is
the adjusted variance, and “ACV” is the adjusted cumulative variance. The
row“Block 1” shows the standard deviation of the loadings of variables 1
to 4, and “Block 2” shows the same for variables 5 to 8. In each row, the
top entry is the median and the bottom entry in parentheses is the median
absolute deviation over 50 replications.

Loadings
PC 1 PC 2

PCA-T PCA-S SPCA SFPCA PCA-T PCA-S SPCA SFPCA

1
0.055 -0.123 0 0 0.488 0.447 0.506 0.500
(—) (0.162) (0) (0) (—) (0.032) (0.072) (0)

2
0.055 -0.127 0 0 0.488 0.444 0.492 0.500
(—) (0.161) (0) (0) (—) (0.031) (0.085) (0)

3
0.055 -0.129 0 0 0.488 0.448 0.491 0.500
(—) (0.161) (0) (0) (—) (0.033) (0.085) (0)

4
0.055 -0.125 0 0 0.488 0.442 0.493 0.500
(—) (0.159) (0) (0) (—) (0.032) (0.089) (0)

5
-0.453 0.376 0.422 0.487 0.089 0.164 0 0
(—) (0.040) (0.021) (0.015) (—) (0.131) (0) (0)

6
-0.453 0.374 0.415 0.487 0.089 0.165 0 0
(—) (0.038) (0.021) (0.016) (—) (0.133) (0) (0)

7
-0.453 0.375 0.417 0.487 0.089 0.161 0 0
(—) (0.040) (0.019) (0.015) (—) (0.133) (0) (0)

8
-0.453 0.376 0.417 0.487 0.089 0.159 0 0
(—) (0.038) (0.020) (0.015) (—) (0.127) (0) (0)

9
-0.289 0.389 0.382 0.155 -0.093 -0.015 0 0
(—) (0.025) (0.021) (0.122) (—) (0.132) (0) (0)

10
-0.289 0.389 0.388 0.155 -0.093 -0.009 0 0
(—) (0.026) (0.027) (0.119) (—) (0.127) (0) (0)

Block 1
0 0.003 0 0 0 0.002 0.064 0

(—) (0.003) (0) (0) (—) (0.002) (0.050) (0)

Block 2
0 0.001 0.014 0 0 0.004 0 0

(—) (0.001) (0.014) (0) (—) (0.003) (0) (0)

AV (%)
42.7 61.9 57.6 47.3 40.3 37.7 37.1 36.7
(—) (4.4) (1.0) (6.3) (—) (4.2) (2.2) (1.5)

ACV (%)
42.7 61.9 57.6 47.3 83.0 99.5 95.1 83.7
(—) (4.4) (1.0) (6.3) (—) (0.1) (2.7) (6.1)
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Figure 7.1:
Factor loadings of the first (left column) and second (right column) PC
vectors estimated by ordinary PCA from the true covariance (first row),
ordinary PCA from the sample covariance (second row), sparse PCA
(third row) and SFPCA (fourth row). The horizontal axis is the vari-
ables and the vertical axis is the value of the loadings. Each colored
curve represents the PC vector in one replication. The median loadings
over 50 repetitions are represented by the black bold lines.

Table 7.2: Numerical results for the drivers example.

Variables
PC 1 PC 2

PCA SPCA SFPCA PCA SPCA SFPCA
Age 0.007 0.876 0.970 1.000

Weight 0.367 0.284 0.378 0.045
HtShoes 0.411 0.139 0.378 -0.106

Ht 0.412 0.764 0.378 -0.112
Seated 0.381 0.313 0.378 -0.218
Arm 0.349 0.208 0.378 0.374 0.242
Thigh 0.328 0.247 0.378 0.125
Leg 0.390 0.341 0.378 -0.056

AV (%) 70.9 55.0 68.7 15.5 14.2 12.2
ACV (%) 70.9 55.0 68.7 86.4 69.2 80.8
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Figure 7.2:
The histogram of the pairwise correlations between the height/length vari-
ables: weight, height in shoes, height in bare feet, seated height, lower
arm length, thigh length, and lower leg length.
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Figure 7.3:
Comparison of the first (left panel) and second (right panel) PC vectors
from ordinary PCA (dashed line), sparse PCA (dotted line) and SFPCA
(solid line).

117



Table 7.3: Numerical results for the pitprops example.

Variables
PC 1 PC 2 PC 3

PCA SPCA SFPCA PCA SPCA SFPCA PCA SPCA SFPCA
topdiam 0.404 0.477 0.408 0.218 -0.207
length 0.406 0.476 0.408 0.186 -0.235
moist 0.124 0.541 0.785 0.707 0.141
testsg 0.173 0.456 0.620 0.707 0.352
ovensg 0.057 -0.177 -0.170 0.481 0.640 0.707
ringtop 0.284 0.052 -0.014 0.475 0.589 0.707
ringbut 0.400 0.250 0.408 -0.190 0.253 0.492
bowmax 0.294 0.344 0.408 -0.189 -0.021 -0.243
bowdist 0.357 0.416 0.408 0.017 -0.208
whorls 0.379 0.400 0.408 -0.248 -0.119
clear -0.011 0.205 -0.070
knots -0.115 0.343 0.013 0.092 -0.015
diaknot -0.113 0.309 -0.326 -0.308519
AV (%) 32.4 28.0 31.5 18.3 14.4 15.1 14.4 13.3 10.1
ACV (%) 32.4 28.0 31.5 50.7 42.0 46.6 65.1 55.3 56.7

Variables
PC 4 PC 5 PC 6

PCA SPCA SFPCA PCA SPCA SFPCA PCA SPCA SFPCA
topdiam -0.091 0.083 0.120
length -0.103 0.113 0.163
moist 0.078 -0.350 -0.276
testsg 0.055 -0.356 -0.054
ovensg 0.049 -0.176 0.626
ringtop -0.063 0.316 0.052
ringbut -0.065 0.215 0.003
bowmax 0.286 -0.185 -0.055
bowdist 0.097 0.106 0.034
whorls -0.205 -0.156 -0.173
clear 0.804 1.000 1.000 0.343 0.175
knots -0.301 0.600 1.000 1.000 -0.170
diaknot -0.303 -0.08 0.626 1.000 1.000
AV (%) 8.5 7.4 8.0 7.0 6.8 7.3 6.3 6.2 7.0
ACV (%) 73.6 62.7 64.7 80.6 69.5 72.0 86.9 75.8 79.0

Table 7.4:
The proportion of distinct elements in the eigen-images of digit “3” esti-
mated by PCA and SFPCA, respectively.

PC PCA (%) SFPCA (%)

1 100 35.5
2 100 22.7
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PC 1, AV=0.32

PC 2, AV=0.10

SFPC 1, AV=0.27

SFPC 2, AV=0.05

Figure 7.4:
The first two eigen-images of digit “3” estimated by PCA and SFPCA,
respectively.
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APPENDIX A

Joint Estimation of Multiple Graphical Models

In the beginning, we state some results used in the proof of Theorem II.3 that

were established in Theorem 1 of Rothman et al. (2008). We will use the following

notation: for a matrix M = (mj,j′)p×p, |M |1 =
∑

j,j′ |mj,j′|, M+ is a diagonal matrix

with the same diagonal as M , M− = M − M+, and MS is M with all elements

outside an index set S replaced by zeros. We also write M̃ for the vectorized p2 × 1

form of M , and ⊗ for the Kronecker product of two matrices. In addition, we denote

Σ
(k)
0 = (Ω

(k)
0 )−1 as the true covariance matrix of the kth category (k = 1, . . . , K).

Lemma A.1. Let l(Ω(k)) = trace(Σ̂
(k)
Ω(k)) − log {det(Ω(k))}. Then for any k =

1, . . . , K, the following decomposition holds:

l(Ω
(k)
0 +∆(k))− l(Ω

(k)
0 ) = trace{(Σ̂

(k)
−Σ

(k)
0 )∆(k)}

+(∆̃
(k)
)
T

{
1∫

0

(1− v)(Ω
(k)
0 + v∆(k))−1 ⊗ (Ω

(k)
0 + v∆(k))−1dv}∆̃

(k)
. (A.1)

Further, there exist positive constants C1 and C2 such that with probability tending to
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1

∣∣trace{(Σ̂(k)
−Σ

(k)
0 )∆(k)}

∣∣ ≤ C1

( log p
n

)1/2

|∆(k)−|1 + C2

(p log p
n

)1/2

∥∆(k)+∥F ,(A.2)

(∆̃
(k)
)
T{ 1∫

0

(1− v)(Ω
(k)
0 + v∆(k))−1 ⊗ (Ω

(k)
0 + v∆(k))−1dv

}
∆̃

(k)
≥ 1

4τ 22
∥∆(k)∥2F .(A.3)

Proof of Theorem II.3

In a slight abuse of notation, we will write Ω = (Ω(k))Kk=1, Ω0 = (Ω
(k)
0 )Kk=1, and

∆ = (∆(k))Kk=1, where∆
(k) = (δ

(k)
j,j′)p×p is defined as∆(k) = Ω(k)−Ω

(k)
0 (k = 1, . . . , K).

Let Q(Ω) be the objective function of (2.4), and let G(∆) = Q(Ω0 +∆) − Q(Ω0).

If we take a closed bounded convex set A which contains 0, and show that G is

strictly positive everywhere on the boundary ∂A, then it implies that G has a local

minimum inside A, since G is continuous and G(0) = 0. Specifically, we define A =

{∆ : (
∑K

k=1 ∥∆
(k)∥F ) ≤ Mrn}, with boundary ∂A = {∆ : (

∑K
k=1 ∥∆

(k)∥F ) = Mrn},

where M is a positive constant and rn = {(p+ q)(log p)/n}1/2.

By the decomposition (A.1) in Lemma A.1, we can write G(∆) = I1+I2+I3+I4,

where

I1 =
K∑
k=1

trace{(Σ̂
(k)

−Σ
(k)
0 )∆(k)}

I2 =
K∑
k=1

(∆̃
(k)
)
T{ 1∫

0

(1− v)(Ω
(k)
0 + v∆(k))−1 ⊗ (Ω

(k)
0 + v∆(k))−1dv

}
∆̃

(k)

I3 = λ
∑

(j,j′)∈T c

(
K∑
k=1

|δ(k)j,j′|)
1/2

I4 = λ
∑

j ̸=j′:(j,j′)∈T

{(
K∑
k=1

|ω(k)
j,j′ |)

1/2 − (
K∑
k=1

|ω(k)
0,j,j′ |)

1/2}

We first consider I1. By applying inequality (A.2) in Lemma A.1, we have |I1| ≤

122



I1,1+I1,2, where I1,1 = C1{(log p)/n}1/2
∑K

k=1 |∆
(k)−
T |1+C2{(p log p)/n}1/2

∑K
k=1 ∥∆

(k)+∥F

and I1,2 = C1{(log p)/n}1/2
∑K

k=1 |∆
(k)−
T c |1. By applying the bound |∆(k)−

T |1 ≤ q
1/2
k ∥∆(k)−

T ∥F ,

we have

I1,1 ≤ C1

(q log p
n

)1/2
K∑
k=1

∥∆(k)−
T ∥F + C2

(p log p
n

)1/2
K∑
k=1

∥∆(k)+∥F

≤ (C1 + C2)
{(p+ q) log p

n

}1/2
K∑
k=1

∥∆(k)∥F ≤ M(C1 + C2)
(p+ q) log p

n

on the boundary ∂A.

Next, since for rn small enough we have I3 ≥ λ
∑K

k=1 |∆
(k)−
T c |1, the term I1,2 is

dominated by the positive term I3:

I3−I1,2 ≥ λ
K∑
k=1

|∆(k)−
T c |1−C1

( log p
n

)1/2
K∑
k=1

|∆(k)−
T c |1 ≥ (Λ1−C1)

( log p
n

)1/2
K∑
k=1

|∆(k)−
T c |1

The last inequality uses the condition λ ≥ Λ1{(log p)/n}1/2. Therefore, I3 − I1,2 ≥ 0

when Λ1 is large enough. Next we consider I2. By applying inequality (A.3) in

Lemma A.1, we have I2 ≥ (1/4τ 22 )
∑K

k=1 ∥∆
(k)∥2F ≥ {M2/(8τ 22 )}{(p + q)(log p)/n}.

Finally consider the remaining term I4. Using condition (B), we have

|I4| ≤ λ
∑

j ̸=j′:(j,j′)∈T

∑K
k=1

∣∣∣|ω(k)
j,j′| − |ω(k)

0,j,j′|
∣∣∣(∑K

k=1 |ω
(k)
j,j′|

)1/2
+
(∑K

k=1 |ω
(k)
0,j,j′|

)1/2
≤ λ

τ
1/2
3

K∑
k=1

∑
j ̸=j′:(j,j′)∈T

|ω(k)
j,j′ − ω

(k)
0,j,j′| ≤

λ

τ
1/2
3

q1/2
K∑
k=1

∥∆(k)∥F ≤ MΛ2

τ
1/2
3

(p+ q)(log p)

n
.

The last inequality uses the condition λ ≤ Λ2{(1 + p/q)(log p)/n}1/2. Putting every-

thing together and using I2 > 0 and I3 − I1,2 > 0, we have

G(∆) ≥ I2 − I1,1 − |I4| ≥ M2 (p+ q) log p

n

( 1

8τ 22
− C1 + C2 + Λ2/τ

1/2
3

M

)
.
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Thus for M sufficiently large, we have G(∆) > 0 for any ∆ ∈ ∂A.

�

Proof of Theorem II.4

It suffices to show that for all (j, j′) ∈ T c
k (k = 1, . . . , K), the derivative ∂Q/∂ω

(k)
j,j′

at ω̂
(k)
j,j′ has the same sign as ω̂

(k)
j,j′ with probability tending to 1. To see that, suppose

that for some (j, j′) ∈ T c
k , the estimate ω̂

(k)
j,j′ ̸= 0. Without loss of generality, suppose

ω̂
(k)
j,j′ > 0. Then there exists ξ > 0 such that ω̂

(k)
j,j′ − ξ > 0. Since Ω̂ is a local minimizer

of Q(Ω), we have ∂Q/∂ω
(k)
j,j′ < 0 at ω̂

(k)
j,j′ − ξ for ξ small, contradicting the claim

∂Q/∂ω
(k)
j,j′ at ω̂

(k)
j,j′ has the same sign as ω̂

(k)
j,j′ .

The derivative of the objective function can be written as

∂Q

∂ω
(k)
j,j′

= 2{α(k)
j,j′ + βj,j′sgn(ω

(k)
j,j′)} , (A.4)

where α
(k)
j,j′ = σ̂

(k)
j,j′ − σ

(k)
j,j′ and βj,j′ = λ/(

∑K
k=1 |ω

(k)
j,j′|)1/2. Arguing as in Theorem 2 of

Lam and Fan (2009), one can show that maxk=1,...,K maxj,j′ |α(k)
j,j′| = O¶[{(log p)/n}1/2+

η
1/2
n ]. On the other hand, by Theorem II.3, we have

∑K
k=1 |ω

(k)
j,j′−ω

(k)
0,j,j′| ≤

∑K
k=1 ∥Ω

(k)−

Ω
(k)
0 ∥F = O¶(ηn) = o(1). Then for any ϵ > 0 and large enough n we have

∑K
k=1 |ω

(k)
j,j′| ≤∑K

k=1 |ω
(k)
0,j,j′| + ϵ. Then we have |βj,j′| ≥ λ/(1 +

∑K
k=1 |ω

(k)
0,j,j′|)−1/2. By assumption,

{(log p)/n}1/2 + η
1/2
n = O(λ), and thus the term βj,j′ dominates α

(k)
j,j′ in (A.4) for any

(j, j′) ∈ T c
k (k = 1, . . . , K). Therefore, sgn{(∂Q/∂ω

(k)
j,j′)|ω(k)

j,j′=ω̂
(k)

j,j′
} = sgn(ω̂

(k)
j,j′).

�
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APPENDIX B

Asymptotic Properties of the Joint Neighborhood

Selection Method for Estimating Categorical

Markov Networks

The proof of our main result is divided into many steps; Appendix I presents

the main idea of the proof by listing the important propositions and the proofs of

Theorems III.1 and III.2, whereas Appendix II contains additional technical lemmas

and proofs of the propositions. The proof bears some similarities to the proof of

Ravikumar et al. (2009) for the neighborhood selection method, who in turn adapted

the proof from Meinshausen and Buhlmann (2006) to binary data; however, there are

also important differences, since all conditions and results are for joint estimation,

and many of our bounds need to be more precise than those given by Ravikumar

et al. (2009).

The main idea of the proof is as follows. First, we introduce a restricted version

of criterion (3.9), where S is assumed known and all parameters in Sc are set to zero:

θ̃ = argmax
θ[S]

l(θ[S])− λ
∑

(j,j′)∈S

|θj,j′ |. (B.1)
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Further, we introduce sample versions of conditions (A) and (B) as follows (see be-

low for detailed definitions of Qn and Un, the sample analogues of the population

quantities Q0 and U 0):

(A′) Dependency (sample): There exist positive constants τmin and τmax such that

Λmin(Q
n
S,S) ≥ τmin and Λmax(U

n
S,S) ≤ τmax. (B.2)

(B′) Incoherence (sample): There exists a constant τ ∈ (0, 1) such that

∥Qn
Sc,S(Q

n
S,S)

−1∥∞ ≤ 1− τ. (B.3)

The proof consists of the following steps. Proposition 2 and Proposition 3 show

that, under sample regularity conditions (A′) and (B′), the conclusions of Theorems

1 and 2 hold for the solution of the restricted problem (B.1), respectively. Next,

Proposition 4 and Proposition 5 prove that the population regularity conditions (A)

and (B) give rise to their sample counterparts (A′) and (B′) with probability tending to

1. Proposition 6 gives the Karush-Kuhn-Tucker (KKT) conditions for the full problem

(3.9), and Proposition 7 shows that, with probability tending to 1, the solution of the

restricted problem (B.1) satisfies the KKT conditions of (3.9). Thus, the solution of

the restricted problem is also the solution of the original problem with probability

tending to 1 and both theorems hold.

We start by introducing additional notation. Denote the log-likelihood for the

i-th observation by

li(θ) =

p∑
j=1

xi,j

(∑
k ̸=j

θj,kxi,k

)
− log

{
1 + exp

(∑
k ̸=j

θj,kxi,k

)}
, (B.4)

The first derivative of the log-likelihood is ∇li(θ) = (∇1,2li(θ), . . . ,∇p−1,pli(θ))
T,
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where

∇j,j′li(θ) = xi,j′

{
xi,j −

exp(
∑

k ̸=j θj,kxi,k)

1 + exp(
∑

k ̸=j θj,kxi,k)

}
+xi,j

{
xi,j′ −

exp(
∑

k ̸=j′ θj′,kxi,k)

1 + exp(
∑

k ̸=j′ θj′,kxi,k)

}
. (B.5)

The second derivative of li(θ) is given by

∇2li(θ) = −X (i)Tη(i)(θ)X (i) , (B.6)

where η(i)(θ) = diag(η
(i)
1 (θ), . . . , η

(i)
p (θ)) is a p× p diagonal matrix, and

η
(i)
j (θ) =

exp(
∑

k ̸=j θj,kxi,k)

{1 + exp(
∑

k ̸=j θj,kxi,k)}2
. (B.7)

The first derivative of η
(i)
j (θ) is given by ∇η

(i)
j (θ) = ξ

(i)
j (θ)(X (i,j))

T

, where

ξ
(i)
j (θ) =

exp(
∑

k ̸=j θj,kxi,k)[1− exp(
∑

k ̸=j θj,kxi,k)]

[1 + exp(
∑

k ̸=j θj,kxi,k)]3
. (B.8)

It is easy to check that |∇j,j′li(θ)| ≤ 2, |η(i)j (θ)| ≤ 1 and |ξ(i)j (θ)| ≤ 1. For n ob-

servations, the log-likelihood, its first derivative and its second derivative are l(θ) =

1/n
∑n

i=1 li(θ), ∇l(θ) = 1/n
∑n

i=1 ∇li(θ), and ∇2l(θ) = 1/n
∑n

i=1 ∇2li(θ), respec-

tively. Then, the population Fisher information matrix of (3.9) at θ0 can be repre-

sented as Q0 = E[X (i)Tη(i)(θ0)X (i)], and its sample counterpart Qn = −∇2l(θ0) =

1/n
∑n

i=1 X
(i)Tη(i)(θ0)X (i). We also define Un = 1/n

∑n
i=1 X

(i)TX (i) as the sample

counterpart of U 0 = E(X TX ) defined in Section 2.4. Let W be any subset of the in-

dex set {1, 2, . . . , p(p−1)/2}. For any vector γ, we define γW as the vector consisting

of the elements of γ associated with W . Similarly, we define X (i)
W as the columns of

X (i) associated with W , respectively. Finally, we write δ = θ − θ0, δ̃ = θ̃ − θ0 and

δ̂ = θ̂ − θ0.
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Proposition 2. Suppose the sample conditions (A′) and (B′) hold. If the tuning

parameter λ = Cλ

√
(log p)/n for some constant Cλ > 16(2−τ)/τ and q

√
(log p)/n =

o(1), then with probability tending to 1, the optimizer of the restricted criterion θ̃

satisfies

∥θ̃ − θ0∥2 ≤ M

√
q log p

n
(B.9)

for some constant M > (2Cλ/τmin){1 + τ/(8− 4τ)}.

Proposition 3. Under conditions of Proposition 2, if we further assume θ0min ≥

2M
√
q(log p)/n, then with probability tending to 1, θ̃j,j′ ̸= 0 for all (j, j′) ∈ S and

θ̃j,j′ = 0 for all (j, j′) ∈ Sc.

Proposition 4. (Relationship between sample and population dependency) Suppose

the regularity conditions (A) hold, then for any ϵ > 0,

(i) P{Λmin(Q
n
S,S) ≤ τmin − ϵ} ≤ 2 exp{−(ϵ2/2)(n/q2) + 2 log q};

(ii) P{Λmax(U
n
S,S) ≥ τmax + ϵ} ≤ 2 exp{−(ϵ2/2)(n/q2) + 2 log q}.

Proposition 5. (Relationship between sample and population incoherence) Suppose

the regularity conditions (A) and (B) hold, then for any ϵ > 0, there exists a constant

C = min{τ 2minτ
2/288(1− τ)2, τ 2minτ

2/72, τminτ/48}, such that

P[∥Qn
Sc,S(Q

n
S,S)

−1∥∞ ≥ 1− τ

2
] ≤ 12 exp

(
− C

n

q3
+ 4 log p

)
. (B.10)

Proposition 6. (KKT conditions) The sufficient and necessary condition for θ̂ to

be a solution of problem (3.9) is

∇j,j′l(θ̂) = λsgn(θ̂j,j′), if θ̂j,j′ ̸= 0;

|∇j,j′l(θ̂)| < λ, if θ̂j,j′ = 0.
(B.11)

Moreover, this solution is unique due to the strict convexity of problem (3.9).
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Proposition 7. (The restricted solution satisfies KKT conditions) Under all condi-

tions of Proposition 3, with probability tending to 1, we have,

(i) ∇j,j′l(θ̃) = λsgn(θ̃j,j′), for all (j, j′) ∈ S;

(ii) |∇j,j′l(θ̃)| < λ, for all (j, j′) ∈ Sc.

Proof of Theorem III.1. The condition n > (4/C)q3 log(p) implies q
√
(log p)/n =

o(1). In addition, since n > (4/C)q3 log(p), we have −(ϵ2/2)(n/q2) + 2 log q → −∞

and −Cn/q3 + 4 log(p)] → −∞. Thus, by Propositions 4 and 5, the sample depen-

dency and incoherence conditions (A′) and (B′) hold with probability 1. Therefore,

Proposition 2 holds and, with probability tending to 1, the solution of the restricted

problem (B.1) satisfies parameter estimation consistency.

On the other hand, Proposition 7 shows that, with probability tending to 1, the

solution of the restricted problem θ̃ satisfies the KKT conditions in Proposition 6.

Since the criterion (3.9) is strictly convex, we conclude θ̃ is the unique solution of

(3.9), i.e., θ̂ = θ̃. This proves Theorem III.1.

�

Proof of Theorem III.2 is analogous to Proof of Theorem III.1 and is omitted.

Appendix II: Proofs of Propositions

This appendix contains several additional technical lemmas and proofs of Propo-

sitions 1-6.

Lemma B.1. [Bound on ∇l(θ0)] With probability tending to 1, ∥∇l(θ0)∥∞ ≤ C∇
√
(log p)/n

for some constant C∇ > 4.

Proof of Lemma B.1: Note that E[∇li(θ
0)] = 0, 1 ≤ i ≤ n and |∇j,j′li(θ0)| ≤ 2,

1 ≤ i ≤ n, 1 ≤ j < j′ ≤ p. By applying the Azuma-Hoeffding inequality (Hoeffding,
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1963), we get

P [|∇j,j′l(θ
0)| ≥ t] ≤ 2 exp(−nt2/8). (B.12)

Letting t = C∇
√
(log p)/n for some constant C∇ > 0, we obtain

P
[
|∇j,j′l(θ

0)| ≥ C∇

√
log p

n

]
≤ 2 exp(−C2

∇ log p/8) . (B.13)

Then, by the union-sum inequality we have

P [∥∇l(θ0)∥∞ ≥ C∇

√
log p

n
] ≤ 2 exp(−C2

∇ log p /8 + 2 log p). (B.14)

Setting C∇ > 4 establishes the lemma. �

Lemma B.2. [Bound on −δS
T[∇2l(θ0 + αδ[S])]S,SδS]m If the sample dependency

condition (A′) holds and q
√
(log p)/n = o(1), then for any α ∈ [0, 1], with probability

tending to 1,

−δS
T[∇2l(θ0 + αδ[S])]S,SδS ≥ 1

2
τmin∥δS∥22 . (B.15)

Proof of Lemma B.2: Applying the mean value theorem, we have ηj(θ
0+αδ[S]) =
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ηj(θ
0) + α∇ηj(θ

0 + α∗δ[S])
T

δ[S], for some constant α∗ ∈ (0, α). Then, we have

−δS
T[∇2l(θ0 + αδ[S])]S,SδS

=
1

n

n∑
i=1

(X (i)
S δS)

T

η(θ0 + αδ[S])(X (i)
S δS)

=
1

n

n∑
i=1

p∑
j=1

ηj(θ
0)(X (i,j)

S δS)
2

+
α

n

n∑
i=1

p∑
j=1

∇ηj(θ
0 + α∗δ[S])

T

δ[S](X (i,j)
S δS)

2

≥ −δS
T[∇2l(θ0)]S,SδS

− 1

n

n∑
i=1

p∑
j=1

|ξ(i)j (θ0 + α∗δ[S])||X (i,j)
S δS|(X (i,j)

S δS)
2 . (B.16)

The first term is bounded from below by

−δS
T[∇2l(θ0)]S,SδS ≥ Λmin(Q

n
S,S)∥δS∥22 ≥ τmin∥δS∥22 . (B.17)

To bound the second term, notice that |X (i,j)
S δS| ≤ ∥X (i,j)

S ∥∞∥δS∥1 ≤ ∥δS∥1 and

recall that |ξ(i)j | ≤ 1. Then the second term is bounded from above by

∥δS∥1
1

n

n∑
i=1

p∑
j=1

(X (i,j)
S δS)

2 ≤ τmax∥δS∥1∥δS∥22 ≤ (τmin/2)∥δS∥22 , (B.18)

since ∥δS∥1 ≤ √
q∥δS∥2 = Mq

√
(log p)/n = o(1) and thus when n is large enough,

∥δS∥1 ≤ τmin/(2τmax). Putting (B.17) and (B.18) together establishes the lemma. �

Proof of Proposition 2: The proof relies on the convex function proof method from

Rothman et al. (2008). Define

G(δS) = −[l(θ0 + δ[S])− l(θ0)] + λ(∥θ0 + δ[S]∥1 − ∥θ0∥1). (B.19)
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It can be seen from (B.1) that δ̃S = θ̃S −θ0
S minimizes G(δS). Moreover, G(0S) = 0,

thus we must have G(δ̃S) ≤ 0. If we take a ball A which contains 0S, and show that

G is strictly positive everywhere on the boundary ∂A, then it implies that G has a

local minimum inside A, since G is continuous and G(0S) = 0. Specifically, we define

A = {δS : ∥δS∥2 ≤ Man}, with boundary ∂A = {δS : ∥δS∥2 = Man}, for some

constant M > (2/τmin)[1 + τ/(8 − 4τ)]Cλ and an =
√
q(log p)/n. For any δS ∈ ∂A,

the Taylor series expansion gives G(δS) = I1 + I2 + I3, where

I1 = −[∇l(θ0)]S
T
δS ,

I2 = −δS
T[∇2l(θ0 + αδ[S])]S,SδS, for some α ∈ [0, 1] ,

I3 = λ(∥θ0 + δ[S]∥1 − ∥θ0∥1) = λ(∥θ0
S + δS∥1 − ∥θ0

S∥1) . (B.20)

Since Cλ > 16(2− τ)/τ , we have [τ/(8− 4τ)]Cλ > 4. By Lemma B.1,

|I1| ≤ ∥[∇l(θ0)]S∥∞∥δS∥1 ≤ ∥[∇l(θ0)]S∥∞
√
q∥δS∥2 ≤

τ

8− 4τ
CλMq

log p

n
.

By Lemma B.2, I2 ≥ (τmin/2)∥δS∥22 = (τmin/2)M
2q(log p)/n. Finally, by the triangu-

lar inequality |I3| ≤ λ∥δS∥1 ≤ λ
√
q∥δS∥2 = CλMq(log p)/n. Then we have

G(δS) ≥ M2 q log p

n

(τmin

2
− τCλ

4(2− τ)M
− Cλ

M

)
> 0. (B.21)

The last inequality uses the condition M > 2Cλ[1+ τ/(8−4τ)]/τmin. Therefore, with

probability tending to 1, we have ∥θ̃ − θ0∥F = ∥θ̃S − θ0
S∥F ≤ M

√
(q log p)/n.

�

Proof of Proposition 3: Since θ̃ is the solution of the restricted problem (B.1), we

have θ̃j,j′ = 0 for all (j, j′) ∈ Sc. To show θ̃j,j′ ̸= 0 for all (j, j′) ∈ S, it is sufficient to
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show

∥θ̃S − θ0
S∥∞ ≤ θ0min

2
, (B.22)

because then |θ̃j,j′| ≥ |θ̃0j,j′|− |θ̃j,j′ − θ̃0j,j′| ≥ θ0min/2 for all (j, j′) ∈ S. With probability

tending to 1, by Proposition 2 we have

∥θ̃S − θ0
S∥∞ ≤ ∥θ̃S − θ0

S∥2 ≤ M

√
q(log p)

n
.

The additional condition θ0min ≥ 2M
√

q(log p)/n implies (B.22). �

Lemma B.3. For any ϵ > 0,

(i) P [∥Qn
Sc,S −Q0

Sc,S∥∞ ≥ ϵ] ≤ 2 exp{−(ϵ2/2)(n/q2) + log(q) + log[p(p− 1)/2− q]} ,

(ii) P [∥Qn
S,S −Q0

S,S∥∞ ≥ ϵ] ≤ 2 exp{−(ϵ2/2)(n/q2) + 2 log(q)}.

Proof of Lemma B.3: We first prove claim (i). Let v
(i)
(j,j′),(h,h′) be the [(j, j

′), (h, h′)]-

th element of matrix X (i)TηX (i) −Q0. Note E(v
(i)
(j,j′),(h,h′)) = 0 and |v(i)(j,j′),(h,h′)| ≤ 1,

and let v(j,j′),(h,h′) = 1/n
∑n

i=1 v
(i)
(j,j′),(h,h′). Then

P [
∑

(h,h′)∈S

|v(j,j′),(h,h′)| ≥ ϵ] ≤
∑

(h,h′)∈S

P [|v(j,j′),(h,h′)| ≥ ϵ/q]

≤ q max
(h,h′)∈S

P [|v(j,j′),(h,h′)| ≥ ϵ/q]. (B.23)

Combining the union-sum inequality with (B.23), we have

P [∥Qn
Sc,S −Q0

Sc,S∥∞ ≥ ϵ] ≤ q
(p(p− 1)

2
− q

)
max

(h,h′)∈S
P [|v(j,j′),(h,h′)| ≥ ϵ/q]. (B.24)

Then, by the Azuma-Hoeffding inequality (Hoeffding, 1963), we have P [|v(j,j′),(h,h′)| ≥

ϵ/q] ≤ 2 exp{−(ϵ2/2)(n/q2)}, and (i) follows. The proof of (ii) is similar. �
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Proof of Proposition 4: Note that

Λmin(Q
n
S,S) = min

∥y∥2=1
[yTQ0

S,Sy + yT(Qn
S,S −Q0

S,S)y]

≥ Λmin(Q
0
S,S)− ∥Qn

S,S −Q0
S,S∥2 ≥ τmin − ∥Qn

S,S −Q0
S,S∥∞ .

Now claim (i) follows from Lemma B.3 (ii). The proof of claim (ii) is similar. �

Lemma B.4. Suppose conditions (A) and (B) hold. Then for any ϵ > 0,

P [∥(Qn
S,S)

−1 − (Q0
S,S)

−1∥∞ ≥ ϵ] ≤ 4 exp{−(τminϵ
2/8)(n/q3) + 2 log(q)}. (B.25)

Proof of Lemma B.4: Writing (Qn
S,S)

−1−(Q0
S,S)

−1 = (Q0
S,S)

−1(Q0
S,S−Qn

S,S)(Q
n
S,S)

−1

and applying norm inequalities, we have

∥(Qn
S,S)

−1 − (Q0
S,S)

−1∥∞ ≤ √
q∥(Q0

S,S)
−1(Q0

S,S −Qn
S,S)(Q

n
S,S)

−1∥2

≤ √
q∥(Q0

S,S)
−1∥2∥Q0

S,S −Qn
S,S∥∞∥(Qn

S,S)
−1∥2

≤
√
q

τmin

∥Q0
S,S −Qn

S,S∥∞∥(Qn
S,S)

−1∥2 . (B.26)

The last inequality holds because ∥(Q0
S,S)

−1∥2 = {Λmin(Q
0
S,S)}−1. In addition, we

have ∥(Qn
S,S)

−1∥2 = {Λmin(Q
n
S,S)}−1. Then by setting ϵ = τmin/2 in Proposition 4 (i),

we have

P

[∥(Qn
S,S)

−1∥2
τmin

≥ 2

τ 2min

]
= P[Λmin(Q

n
S,S)

≤ τmin

2
] ≤ 2 exp(−τ 2min

8

n

q2
+ 2 log q). (B.27)
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By replacing ϵ in Lemma B.3 (ii) with τ 2minϵ/(2
√
q), we have

P[∥Q0
S,S −Qn

S,S∥∞ ≥ τ 2minϵ

2
√
q
] ≤ 2 exp(−τ 4minϵ

2

8

n

q3
+ 2 log q) . (B.28)

Finally,

P[∥(Qn
S,S)

−1−(Q0
S,S)

−1∥∞ ≥ ϵ] ≤ P[
∥Qn

S,S∥2
τmin

≥ 2

τ 2min

]+P[
√
q∥Q0

S,S−Qn
S,S∥∞ ≥ τ 2minϵ

2
] ,

and the lemma follows. �

Proof of Proposition 5: we write Qn
Sc,S(Q

n
S,S)

−1 = T 1 + T 2 + T 3 + T 4, where

T 1 = Q0
Sc,S[(Q

n
S,S)

−1 − (Q0
S,S)

−1] ,

T 2 = (Qn
Sc,S −Q0

Sc,S)(Q
0
S,S)

−1 ,

T 3 = (Qn
Sc,S −Q0

Sc,S)[(Q
n
S,S)

−1 − (Q0
S,S)

−1] ,

T 4 = Q0
Sc,S(Q

0
S,S)

−1 .

To bound T 1, we write T 1 = Q0
Sc,S(Q

0
S,S)

−1(Q0
S,S −Qn

S,S)(Q
n
S,S)

−1. Thus,

∥T 1∥∞ ≤ ∥Q0
Sc,S(Q

0
S,S)

−1∥∞∥Qn
S,S −Q0

S,S∥∞(
√
q∥(Qn

S,S)
−1∥2) .

By condition (B), we have ∥Q0
Sc,S(Q

0
S,S)

−1∥∞ ≤ 1 − τ . By setting ϵ = τmin/2 in

Proposition 4(i), and ϵ = τminτ/(12(1− τ)
√
q) in Lemma B.3(ii), we have

P[∥T 1∥∞ ≥ τ

6
]

≤ P

[
∥Qn

S,S −QS,S∥∞ ≥ τminτ

12(1− τ)
√
q

]
+ P

[
∥(Qn

S,S)
−1∥2 ≥

2

τmin

]
≤ 2 exp

(
− τ 2minτ

2

288(1− τ)2
n

q3
+ 2 log q

)
+ 2 exp

(
−τ 2min

8

n

q2
+ 2 log q

)
. (B.29)
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To bound T 2, we write

∥T 2∥∞ ≤ ∥Qn
Sc,S −Q0

Sc,S∥∞
√
q∥(Q0

S,S)
−1∥2 ≤

√
q

τmin

∥Qn
Sc,S −Q0

Sc,S∥∞ .

By setting ϵ = τminτ/(6
√
q) in Lemma B.3 (i), we have

P[∥T 2∥∞ ≥ τ

6
] ≤ P(∥Qn

Sc,S −Q0
Sc,S∥∞ ≥ τminτ

6
√
q
)

≤ 2 exp{−τ 2minτ
2

72

n

q3
+ log q + log[p(p− 1)/2− q]}. (B.30)

To bound T 3, we set ϵ =
√

τ/6 in both Lemma B.3 (i) and Lemma B.4, so that

P[∥T 3∥∞ ≥ τ

6
] ≤ P[∥Qn

Sc,S −Q0
Sc,S∥∞ ≥

√
τ

6
]

+P[∥(Qn
S,S)

−1 − (Q0
S,S)

−1∥∞ ≥
√

τ

6
]

≤ 2 exp{− τ

12

n

q2
+ log q + log[p(p− 1)/2− q]}

+4 exp{−τminτ

48

n

q3
+ 2 log q}. (B.31)

Finally, ∥T 4∥∞ ≤ 1−τ by condition (B). Since log q ≤ 2 log p and log[p(p−1)/2−q] ≤

2 log p, we have

P[∥Qn
Sc,S(Q

n
S,S)

−1∥∞ ≥ 1− τ

2
] ≤ P[∥T 1∥∞ ≥ τ

6
] + P[∥T 2∥∞ ≥ τ

6
] + P[∥T 3∥∞ ≥ τ

6
]

≤ 12 exp
(
− C

n

q3
+ 4 log p

)
, (B.32)

where C = min{τ 2minτ
2/288(1− τ)2, τ 2minτ

2/72, τminτ/48}. �

Lemma B.5. [Bound on [∇2l(θ0 + αδ) − ∇2l(θ0)]δ] Suppose (A) holds. For any

α ∈ [0, 1],

∥[∇2l(θ0 + αδ)−∇2l(θ0)]δ∥∞ ≤ τmax∥δS∥22 . (B.33)
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Proof of Lemma B.5: We have

|{[∇2l(θ0 + αδ)](j,j′),S − [∇2l(θ0)](j,j′),S}δS|

≤ 1

n

n∑
i=1

p∑
j=1

|X (i,j)
j,j′

T

||[ηj(θ0 + αδS)− ηj(θ
0)](X (i,j)

S δS)|

≤ 1

n

n∑
i=1

p∑
j=1

|ξ(i)j (θ0 + α∗δS)|(X (i,j)
S δS)

2 ≤ 1

n

n∑
i=1

p∑
j=1

(X (i,j)
S δS)

2

≤ Λmax(U
n)∥δS∥22 ≤ τmax∥δS∥22. (B.34)

Since ∥[∇2l(θ0+αδ)−∇2l(θ0)]δ∥∞ = maxj<j′ |{[∇2l(θ0+αδ)](j,j′),S−[∇l(θ0)](j,j′),S}δS|,

the lemma follows. �

Proof of Proposition 7: By Proposition 3, with probability tending to 1 θ̃j,j′ ̸= 0

for all (j, j′) ∈ S. Since θ̃ is the maximizer of the restricted problem (B.1), with

probability tending to 1, ∇j,j′l(θ̃) = λsgn(θ̃j,j′) for all (j, j′) ∈ S, and claim (i)

follows.

To show (ii), let u = ∇l(θ̃)/λ. By (i), ∥uS∥∞ = 1. In addition, by the mean

value theorem we have

λu−∇l(θ0) = ∇2l(θ0)δ̃ = −Qnδ̃ + rn , (B.35)

where α ∈ (0, 1) and rn = [∇2l(θ0 + αδ̃) − ∇2l(θ0)]δ̃. Decomposing Qn and using

δ̃Sc = 0, we have

Qn
S,S δ̃S = −λuS + [∇l(θ0)]S + rn

S; (B.36)

Qn
Sc,S δ̃S = −λuSc + [∇l(θ0)]Sc + rn

Sc . (B.37)

The sample dependency condition implies Qn
S,S is invertible. Thus we can plug (B.36)
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into (B.37) to obtain

Qn
Sc,S(Q

n
S,S)

−1(−λuS + [∇l(θ0)]S + rn
S) = −λuSc + [∇l(θ0)]Sc + rn

Sc . (B.38)

Extracting uSc , we have

∥uSc∥∞ ≤ ∥[∇l(θ0)]Sc∥∞
λ

+
∥rn

Sc∥∞
λ

+∥Qn
Sc,S(Q

n
S,S)

−1∥∞
(
∥uS∥∞ +

∥[∇l(θ0)]S∥∞
λ

+
∥rn

S∥∞
λ

)
≤ ∥∇l(θ0)∥∞

λ
+

∥rn∥∞
λ

+∥Qn
Sc,S(Q

n
S,S)

−1∥∞(∥u∥∞ +
∥∇l(θ0)∥∞

λ
+

∥rn∥∞
λ

)

≤ 1− τ + (2− τ)(
∥∇l(θ0)∥∞

λ
+

∥rn∥∞
λ

). (B.39)

By setting C∇ = τ(8 − 4τ)Cλ in Lemma B.1, ∥∇l(θ0)∥∞/λ ≤ τ/(8 − 4τ). By

Lemma B.5, we have ∥rn∥∞/λ ≤ τmax∥δ̃S∥22/λ ≤ (τmaxM
2/Cλ)q

√
log p/n ≤ τ/(8 −

4τ), where the last inequality holds by the condition q
√
(log p)/n = o(1) when n is

sufficiently large. Thus

∥uSc∥∞ ≤ 1− τ

2
< 1 , (B.40)

and we have ∥[∇l(θ̃)]Sc∥∞ = λ∥uSc∥∞ < λ. �
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APPENDIX C

Estimating Heterogeneous Graphical Models for

Discrete Data with an Application to Roll Call

Voting

Appendix

The appendix presents the proofs of Theorems III.1 and III.2. The main idea of

the proof is closely related to Guo et al. (2010), and some strategies for dealing with

the joint estimation are borrowed from Guo et al. (2011).

We introduce notation first. For the k-th category, we define the log-likelihood as

l(θ(k)) =
1

nk

nk∑
i=1

p∑
j=1

[x
(k)
i,j (

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′)− log{1 + exp(

∑
j′ ̸=j

θ
(k)
j,j′x

(k)
i,j′)}] ,

whose first derivative and second derivative are denoted by ∇l(θ(k)) and ∇2l(θ(k)),

respectively. Note that ∇l(θ(k)) is a p(p − 1)/2-dimensional vector and ∇2l(θ(k)) is

a p(p − 1)/2 × p(p − 1)/2 matrix. Then, the population Fisher information matrix

of the model in (4.10) at θ can be defined as Q
(k)

= −E[∇2l(θ
(k)
)], and its sample

counterpart is Q̂
(k)

= −∇2l(θ
(k)
). We also write Û

(k)
= 1/n

∑n
i=1 X

(k)
(i)

T

X (k)
(i) for the

139



sample counterpart ofU
(k)

defined in Section 4.5. Let θ(k) = (θ
(k)
1,2, . . . , θ

(k)
j,j′ , . . . , θ

(k)
p−1,p)

be the same as θ(k) except that all elements in Sc
k are set to zero and write δ(k) = θ(k)−

θ
(k)

and δ(k) = θ(k)−θ
(k)
. Finally, let W be a subset of the index set {1, 2, . . . , p(p−

1)/2}. For a p(p− 1)/2-dimensional vector β, we define βW as the vector consisting

of the elements of β associated with W .

Next, we introduce a variant of criterion (4.10) by restricting all true zeros in

{θ(k)}Kk=1 to be estimated as zero. Specifically, the restricted criterion is formulated

as follows:

max
{θ(k)}Kk=1

K∑
k=1

l(θ(k))− λ
∑

1≤j<j′≤p

√√√√ K∑
k=1

|θ(k)j,j′| , (C.1)

and its maximizer is denoted by {θ̂
(k)
}Kk=1. In addition, we consider the sample

versions of regularity conditions (B) and (C).

(B′) Sample dependency: There exist positive constants τmin and τmax such that

for any k = 1, . . . , K,

Λmin(Q̂
(k)

Sk,Sk
) ≥ τmin and Λmax(Û

(k)

Sk,Sk
) ≤ τmax . (C.2)

(C′) Sample incoherence: There exists a constant τ ∈ (1−
√
γmin/4γmax, 1) such

that for any k = 1, . . . , K,

∥Q̂
(k)

Sc
k,Sk

(Q̂
(k)

Sk,Sk
)−1∥∞ ≤ 1− τ . (C.3)

For convenience of the readers, the proof of our main result is divided into two

parts: Part I presents the main idea of the proof by listing the important proposi-

tions and the proofs of Theorems III.1 and III.2, whereas Part II contains additional

technical details and proofs of propositions in Part I.
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Part I: Propositions and Proof of Theorems III.1 and III.2

The proof consists of the following steps. Proposition 8 shows that, under sample

regularity conditions (B′) and (C′), the conclusions of Theorems III.1 and III.2 hold for

the local maximizer of the restricted problem (C.1). Next, Proposition 9 proves that

the population regularity conditions (B) and (C) give rise to their sample counterparts

(B′) and (C′) with probability tending to one; hence the conclusions of Proposition 8

also hold with the population regularity conditions. Lastly, we show that the local

maximizer of (C.1) is also a local maximizer of the original model (4.10). This

is established via Proposition 10, which sets out the Karush-Kuhn-Tucker (KKT)

conditions for the local maximizer of criterion (4.10), and Proposition 11, which

shows that, with probability tending to one, the local maximizer of (C.1) satisfies

these KKT conditions.

Proposition 8. Suppose condition (A) and the sample conditions (B′) and (C′) hold.

If the tuning parameter λ = Cλ

√
(log p)/n for some constant Cλ > (8−4τ)

√
γmin/(1−

τ) and q
√
(log p)/n = o(1), then with probability tending to one, there exists a local

maximizer of the restricted criterion, {θ̂
(k)
}Kk=1, satisfying

(i)
∑K

k=1 ∥θ̂
(k)
−θ

(k)∥2 ≤ M
√

q(log p)/n for some constantM > (2KCλ/τmin
√
γmin)[(3−

2τ)/(2− τ)];

(ii) For each k = 1, . . . , K, θ̂
(k)

j,j′ ̸= 0 for all (j, j′) ∈ Sk and θ̂
(k)

j,j′ = 0 for all (j, j′) ∈ Sc
k.

Proposition 9. Suppose the regularity conditions (B) and (C) hold, then for any ϵ >

0, the following inequalities hold with probability tending to one for all k = 1, . . . , K:

(i) P{Λmin(Q̂
(k)

Sk,Sk
) ≤ τmin − ϵ} ≤ 2 exp{−(ϵ2/2)(nk/q

2
k) + 2 log qk};

(ii) P{Λmax(Û
(k)

Sk,Sk
) ≥ τmax + ϵ} ≤ 2 exp{−(ϵ2/2)(nk/q

2
k) + 2 log qk};

(iii) P[∥Q̂
(k)

Sc
k,Sk

(Q̂
(k)

Sk,Sk
)−1∥∞ ≥ 1− τ/2] ≤ 12 exp(−Cnk/q

3
k + 4 log p), for some con-

stant C = min{τ 2minτ
2/288(1− τ)2, τ 2minτ

2/72, τminτ/48}.
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Proposition 10. {θ̂}Kk=1 is a local maximizer of problem (4.10) if and only if the

following conditions hold for all k = 1, . . . , K:

∇j,j′l(θ̂
(k)
) = λsgn(θ̂

(k)
j,j′)/(

∑K
k=1 |θ̂

(k)
j,j′|)1/2, if θ̂

(k)
j,j′ ̸= 0;

|∇j,j′l(θ̂
(k)
)| < λ/(

∑K
k=1 |θ̂

(k)
j,j′|)1/2, if θ̂

(k)
j,j′ = 0.

(C.4)

Proposition 11. Under all conditions of Proposition 8, with probability tending to

one, we have, for each k = 1, . . . , K,

∇j,j′l(θ̂
(k)
) = λsgn(θ̂

(k)

j,j′)/(
∑K

k=1 |θ̂
(k)

j,j′|)1/2, for all (j, j′) ∈ Sk;

|∇j,j′l(θ̂
(k)
)| < λ/(

∑K
k=1 |θ̂

(k)

j,j′|)1/2, for all (j, j′) ∈ Sc
k.

(C.5)

Proof of Theorems III.1 and III.2

The condition min{n/q3, n1/q
3
1, . . . , nK/q

3
K} > (4/C) log p implies that, for each

k = 1, . . . , K, we have −Cnk/q
3
k +4 log p < 0 and −(ϵ2/2)(nk/q

2
k) + 2 log qk < 0 when

qk is large enough. This condition also implies q
√

(log p)/n = o(1). In addition, by

Proposition 9, the sample conditions (B′) and (C′) hold with probability tending to

one when regularity conditions (B) and (C) hold. Therefore, by Proposition 8, with

probability tending to one, the solution of the restricted problem {θ̂
(k)
}Kk=1 satisfies

both parameter estimation consistency and structure selection consistency. On the

other hand, by Proposition 11, with probability tending to one, {θ̂
(k)
}Kk=1 also satisfies

the KKT conditions in Proposition 10, thus it is a local maximizer of criterion (4.10).

This proves Theorems III.1 and III.2. �

Part II: Proofs of Propositions

Before proving the propositions, we state a few lemmas which will be used in

the proofs. These lemmas are variants of Lemmas 1, 2 and 5 in Guo et al. (2010),

adapted to the settings of the heterogenous model and thus the proofs are omitted
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here. Likewise, the proof of Proposition 9 is very similar to the proof of Propositions

3 and 4 in Guo et al. (2010) and is omitted.

Lemma C.1. For each k = 1, . . . , K, with probability tending to 1, we have ∥∇l(θ
(k)
)∥∞ ≤

C∇
√

(log p)/n for some constant C∇ > 4.

Lemma C.2. If the sample dependency condition (B′) holds and q
√

(log p)/n = o(1),

then for any αk ∈ [0, 1], k = 1, . . . , K, the following inequality holds with probability

tending to 1:

−
K∑
k=1

δ
(k)
Sk

T

[∇2l(θ
(k)

+ αkδ
(k))]Sk,Sk

δ
(k)
Sk

≥ 1

2
τmin

K∑
k=1

∥δ(k)∥22 . (C.6)

Lemma C.3. Suppose the sample dependency condition (B) holds. For any αk ∈

[0, 1], k = 1, . . . , K, the following inequality holds with probability tending to one:

∥[∇2l(θ
(k)

+ αkδ
(k))−∇2l(θ

(k)
)]δ(k)∥∞ ≤ τmax∥δ(k)∥22 . (C.7)

Proof of Proposition 8

The main idea of the proof was first introduced in this context in Rothman et al.

(2008) and has since been used by many authors. Define

G({δ(k)}Kk=1) = −
K∑
k=1

[l(θ
(k)
+δ(k))−l(θ

(k)
)]+λ

∑
1≤j<j′≤p

{(
K∑
k=1

|θ(k)j,j′+δ
(k)
j,j′ |)

1/2−(
K∑
k=1

|θ(k)j,j′ |)1/2}.

(C.8)

It can be seen from (C.1) that, {δ̂
(k)
}Kk=1 minimizes G({δ(k)}Kk=1) and G({0}Kk=1) = 0.

Thus we must have G({δ̂
(k)
}Kk=1) ≤ 0. If we take a closed set A which contains {0}Kk=1,

and show that G is strictly positive everywhere on the boundary ∂A, then it implies

that G has a local minimum inside A, since G is continuous and G({0}Kk=1) = 0.

Specifically, we define A = {{δ(k)}Kk=1 :
∑K

k=1 ∥δ
(k)∥2 ≤ Man}, with boundary ∂A =

{{δ(k)}Kk=1 :
∑K

k=1 ∥δ
(k)∥2 = Man}, for some constant M > (2KCλ/τmin

√
γmin)[(3 −
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2τ)/(2 − τ)] and an =
√

q(log p)/n. For any {δ(k)}Kk=1 ∈ ∂A, the Taylor series

expansion gives G({δ(k)}Kk=1) = I1 + I2 + I3, where

I1 = −
K∑
k=1

[∇l(θ
(k)
)]Sk

T

δ
(k)
Sk

,

I2 = −
K∑
k=1

δ
(k)
Sk

T

[∇2l(θ
(k)

+ αkδ
(k))]Sk,Sk

δ
(k)
Sk
, for some αk ∈ [0, 1] ,

I3 = λ
∑

(j,j′)∈S∪

{(
K∑
k=1

|θ(k)j,j′ + δ
(k)
j,j′ |)

1/2 − (
K∑
k=1

|θ(k)j,j′|)1/2} . (C.9)

Since Cλ > (8−4τ)
√
γmin/(1−τ), we have [(1−τ)/(2−τ)]Cλ/

√
γmin > 4. By Lemma

C.1,

|I1| ≤
K∑
k=1

∥[∇l(θ
(k)
)]Sk

∥∞∥δ(k)
Sk
∥1 ≤ [(1− τ)CλMγ

−1/2
min /(2− τ)](q log p)/n . (C.10)

In addition, by condition q
√
(log p)/n = o(1), Lemma C.2 holds and thus

I2 ≥ (τmin/2)
K∑
k=1

∥δ(k)∥22 ≥ [τmin/(2K)]M2q(log p)/n . (C.11)

Finally, by the triangular inequality and regularity condition (A),

|I3| ≤ λ
∑

(j,j′)∈S∪

K∑
k=1

||θ(k)j,j′ + δ
(k)
j,j′| − |θ(k)j,j′ ||

(
∑K

k=1 |θ
(k)

j,j′ + δ
(k)
j,j′|)1/2 + (

∑K
k=1 |θ

(k)

j,j′|)1/2

≤ (λγ
−1/2
min )

K∑
k=1

∑
(j,j′)∈S∪

|δ(k)j,j′| ≤ (λq1/2γ
−1/2
min )

K∑
k=1

∥δ(k)∥2

≤ (MCλγ
−1/2
min ){q(log p)/n} (C.12)

Then we have

G({δ(k)}Kk=1) ≥ M2 q log p

n

(τmin

2K
− (1− τ)Cλ

(2− τ)Mγ
1/2
min

− Cλ

Mγ
1/2
min

)
> 0. (C.13)
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The last inequality uses the condition M > (2KCλ/τmin
√
γmin)[(3 − 2τ)/(2 − τ)].

Therefore, with probability tending to 1, we have
∑K

k=1 ∥θ̂
(k)
−θ

(k)∥2 ≤ M
√

q(log p)/n,

and consequently claim (i) in Proposition 8 holds.

On the other hand, by the definition of θ̂
(k)
, we have θ̂

(k)

j,j′ = 0 for all (j, j′) ∈ Sc
k.

By regularity condition (A) and Proposition 8 (i), for any (j, j′) ∈ Sk, k = 1, . . . , K,

we have |θ̂
(k)

j,j′ | ≥ |θ(k)j,j′| − |θ̂
(k)

j,j′ − θ
(k)

j,j′| ≥ γmin/2 > 0, when n is large enough. �

Proof of Proposition 11

By Proposition 8, with probability tending to one, we have θ̂j,j′ ̸= 0 for all

(j, j′) ∈ Sk. Since {θ̂
(k)
}Kk=1 is a local maximizer of the restricted problem (C.1),

with probability tending to one, ∇j,j′l(θ̂
(k)
) = λsgn(θ̂

(k)

j,j′)/(
∑K

k=1 |θ̂
(k)

j,j′|)1/2, for all

(j, j′) ∈ Sk.

To show the second claim, we apply the mean value theorem and write ∇l(θ̂
(k)
) =

∇l(θ
(k)
) + r(k) − Q̂

(k)
δ̂
(k)
, where r(k) = {∇2l(θ

(k)
+ αkδ̂

(k)
) − ∇2l(θ

(k)
)}δ̂

(k)
. After

some simplifications, we have

[∇l(θ̂
(k)
)]Sc

k
= [∇l(θ

(k)
)]Sc

k
+r

(k)
Sc
k
−[Q̂

(k)

Sc
k,Sk

(Q̂
(k)

Sk,Sk
)−1]{[∇l(θ

(k)
)]Sk

+r
(k)
Sk

−[∇l(θ̂
(k)
)]Sk

}

(C.14)

and thus,

∥[∇l(θ̂
(k)
)]Sc

k
∥∞ ≤ ∥[∇l(θ

(k)
)]Sc

k
∥∞ + ∥r(k)

Sc
k
∥∞

+∥Q̂
(k)

Sc
k,Sk

(Q̂
(k)

Sk,Sk
)−1∥∞{∥[∇l(θ

(k)
)]Sk

∥∞ + ∥r(k)
Sk
∥∞ + ∥[∇l(θ̂

(k)
)]Sk

∥∞}

≤ (2− τ)∥∇l(θ
(k)
)∥∞ + (2− τ)∥r(k)∥∞ + (1− τ)∥[∇l(θ̂

(k)
)]Sk

∥∞

≤ [(1− τ)Cλ/
√
γmin]

√
(log p)/n+ (2− τ)τmaxM

2q(log p)/n

+(1− τ)λ/ min
(j,j′)∈Sk

[
K∑
k=1

|θ̂j,j′ |]1/2

≤ [2(1− τ)/
√
γmin]λ+ op(λ). (C.15)
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On the other hand, λ/[
∑K

k=1 |θ̂
(k)

j,j′|]1/2 = +∞ when (j, j′) ∈ Sc
∪. Otherwise, if (j, j′) ∈

S∪\Sk, then

λ/(
K∑
k=1

|θ̂j,j′|)1/2 ≥ λ/{
K∑
k=1

(|θ̂j,j′ − θj,j′ |+ |θj,j′|}1/2 ≥ λ/
√
γmax ≥ (2− 2τ)λ/

√
γmin .

Thus, for any (j, j′) ∈ Sc
k (k = 1, . . . , K), we have

|∇j,j′l(θ̂
(k)
)| ≤ max

1≤k≤K
max

(j,j′)∈Sc
k

|∇j,j′l(θ̂
(k)
)|

< min
1≤k≤K

min
(j,j′)∈Sc

k

λ/

√√√√ K∑
k=1

|θ̂
(k)

j,j′ | ≤ λ/

√√√√ K∑
k=1

|θ̂
(k)

j,j′| . (C.16)

�
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