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CHAPTER I

Introduction

This thesis considers computational questions about representations of algebraic

groups. Let an algebraic group G act rationally on a finite-dimensional vector space

V , that is, by a homomorphism G → GL(V ) defined by regular functions. For

example, for an algebraically closed field k, GLn(k) acts on the n× n matrices over

k by conjugation. Two related questions arise: (1) How can we tell if two points in

V lie in the same orbit? (2) What is the geometry of the quotient of V by G, that

is, of the set of orbits? Working in the algebraic category, one looks for answers in

the ring k[V ] of polynomial functions on V . Specially, invariant theory studies the

subring k[V ]G of functions that are invariant under translation by G. In 1890 David

Hilbert showed that C[V ]G is finitely generated for the classical matrix groups [19],

and in 1893 he outlined a procedure to compute its generators [20]. These results

ended an era of furious computation, and his Basis Theorem sent research on a more

astract course for the next several decades. The rise of computer technology and new

tools in commutative algebra sparked a renaissance, for example, Sturmfels modern

and more detailed formulation of Hilbert’s algorithm of 1893 [44, p. 177]. Now

computational invariant theory considers the complexity of problems in invariant

theory and develops algorithms to solve them.
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Although degree bounds for the generators of various invariant rings have been

known for decades, little is said about the cardinality of minimal generating sets.

Estimates of such would provide lower bounds for the runtime of algorithms that

compute invariants. For a semisimple group G, choose an irreducible representation

of highest weight λ, and consider the irreducible representations of highest weight

nλ. The results herein prove that as n goes to infinity, the cardinality of a minimal

set of generating invariants grows faster than any polynomial in n. The same holds

when SL2 acts on the space Vn of binary forms of degree n, the polynomials of the

form anx
n + an−1x

n−1y + · · · + a0y
n. Combinatorial methods yield sub-exponential

upper bounds for the growth of generating sets for torus invariants on the binary

forms.

On the other hand, this thesis establishes an algorithm that distinguishes orbits in

polynomial time, for any algebraic group G and finite-dimensional representation V .

Previously known algorithms take longer to run or place restrictions on the group.

This new algorithm outputs a finite set C of functions with the property that x ∈ V

is not in the orbit of y if and only if there exists a function f ∈ C such that that

f(x) 6= f(y). The functions are constructed with the polynomial operations in k[V ]

and with a new “quasi-inverse” that computes the multiplicative inverse of a function

where defined. For fixed G, the size of C and the number of steps the algorithm takes

are bounded by polynomials in the dimension of V and the degrees appearing in the

homomorphism G → GL(V ). Rings of such “quasi-regular functions” are explored

in detail, as well. Thus the problem of separating orbits has polynomial complexity.

What is more, it follows that the quasi-inverse is a sufficient generalization of the

polynomial functions to allow us to separate all orbits for any group G.



CHAPTER II

Background

2.1 Algebraic Group Actions

The objects of study are linear algebraic groups, their representations, their orbits,

and the rings of invariant polynomials on representations. Throughout, k will be an

algebraically closed field. A linear algebraic group is a group whose elements form an

affine algebraic variety (possibly not irreducible), such that the group multiplication

and the inverse operation correspond to algebraic morphisms: for example, GLn,

SLn, and other classical matrix groups. What follows is less concerned with the

structure of algebraic groups than with their representations.

A representation of a group G is a vector space V and a map ρ : G→ GL(V ). One

refers to the space V or the function ρ as a “representation of G” when the other

piece is understood. Henceforth all representations V will have finite dimension

and G is a linear algebraic group acting rationally: that is, ρ is a morphism of

varieties. A representation V is irreducible if it is nontrivial and contains no proper

subrepresentation.

The study of representations subsumes the study of group actions on varieties for

the following reason.

Proposition II.1. [6, p. 239] Let G be a linear algebraic group acting rationally on

3
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an affine variety X. Then there exists a representation V of G and a G-equivariant,

closed embedding X ↪→ V .

The orbit of a point p ∈ V is the set G · p = {g · p | g ∈ G}.

Proposition II.2. [27, p. 60] If a linear algebraic group acts rationally, then its

orbits are smooth, irreducible, and open in their closures. The boundary of an orbit

is a union of orbits of strictly smaller dimension. Thus closed orbits exist.

2.2 Invariant Subrings are Finitely Generated

IfG acts rationally on an affine varietyX over k = k, thenG acts on the coordinate

ring k[X] as follows: for f(x) ∈ k[X] and σ ∈ G, σ · f(x) = f(σ−1 · x). (Recall the

assumption k = k, though this is not always necessary). The subring in k[X] of

invariant functions is denoted k[X]G. The invariant subring is finitely generated for

the reductive groups (see below), but not for general groups. Another, more useful

sufficient condition for finite generation is linear reductiveness. An algebraic group

G is linearly reductive over k if for every rational representation V over k and every

v ∈ V G − {0} there exists a linear invariant function f ∈ (V ∗)G such that f(v) 6= 0.

For an equivalent definition, define a Reynolds operator to be a G-equivariant

linear projection R : k[X] → k[X]G. Here, a map f between sets S, T on which G

acts is called G-equivariant if f(g · s) = g · f(s) for all s ∈ S, g ∈ G. When G is

finite and char(k) - |G| or G is compact over C with a Haar measure, the Reynolds

operator is just averaging over G. Explicit formulas for other groups exist classically.

Linear reductiveness relates to the Reynold’s operator as follows.

Theorem II.3. [6, p. 46] The following are equivalent for a linear algebraic group

G over a field k:

(a) G is linearly reductive over k.
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(b) For every affine variety X over k with a G action, there exists a unique Reynolds

operator R : k[X]→ k[X]G.

(c) For every rational representation V and subrepresentation W ⊆ V , there exists

a subrepresentation W ′ ⊆ V such that V = W ⊕W ′.

(d) Every rational representation V decomposes into a direct sum of irreducible

representations V = V1 ⊕ · · · ⊕ Vn.

In 1890, Hilbert proved that C[V ]G is finitely generated for GLn, SLn, and other

classical groups [19]. In fact the existence of a Reynolds operator is sufficient to

apply the method of his proof.

Theorem II.4. [6, p. 49] If G is a linearly reductive group and V a rational repre-

sentation, then k[V ]G is finitely generated.

The result holds when a linearly reductive group acts on an affine variety X, by

finding a closed embedding i : X ↪→ V into a finite-dimensional vector space V [6, p.

48]. Indeed, any finite-dimensional, G-stable subspace W ⊆ k[X] is the image under

i∗ of a G-stable subspace Z ⊆ k[V ]. Since G is linearly reductive, Z has a unique

decomposition into subrepresentations, and i∗(ZG) = WG. Then i∗ : k[V ]G
∼→ k[X]G.

Other properties of an algebraic group G can ensure that a representation V has

k[V ]G finitely generated. Define the radical R(G) of a linear algebraic group to be

the largest, normal, connected, solvable subgroup. When the subgroup of unipotent

elements of R(G) is trivial, G is called reductive. Examples of reductive groups

include GLn, SLn, On, SOn, SPn, finite groups, tori, and any group with R(G) = {1}

[6, p. 50]. Groups in this last class are called semisimple. A linear algebraic group

is called geometrically reductive if for every rational representation V and nonzero

fixed point v ∈ V , there exists a nonconstant homogeneous f ∈ k[V ]G such that
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f(v) 6= 0. Note linear reductive implies geometrically reductive.

These three notions of reductive are related as follows. In 1963 Nagata showed

that k[X]G is finitely generated when a geometrically reductive group acts on an affine

variety X [40]. With Miyata he next showed that in characteristic zero, reductive and

linearly reductive are equivalent, and that geometrically reductive implies reductive

[41]. In 1974 Haboush responded that reductive implies geometrically reductive [15],

so that the two are equivalent. Thus the three notions are equivalent in characteristic

zero, but linear reductiveness is stronger than the others in positive characteristic:

for example, a cyclic p-group in characteristic p > 0 is geometrically reductive by not

linearly reductive [6, p. 51]. Regardless, any of the notions is sufficient for k[V ]G to

be finitely generated. On the other hand, in 1959 Nagata provided an example where

k[V ]G is not finitely generated, and in doing so found a counterexample to Hilbert’s

fourteenth problem: whether every subfield L ⊂ k(x1, . . . , xn) has L ∩ k[x1, . . . , xn]

finitely generated [39].

2.3 Highest-Weight Representations and the Ring of Covariants

The structure of an algebraic group G can help distinguish its representations.

As always, work over a field k = k, for geometric reasoning, but in this section

assume also that char(k) = 0, to avoid trivial cases. The maximal connected solvable

subgroups of G are called Borel subgroups. To distinguish the representations of

a reductive group G, choose a Borel subgroup B. A torus is an algebraic group

isomorphic to (k∗)n, that is, the diagonal subgroup of GLn(k) for some field k. Then

B can be written B = T n U , where U is a unipotent group and T is a torus. The

torus action on a representation V decomposes V into a direct sum of weight spaces.

Now, since B is connected and solvable, the Lie-Kolchin Theorem [27] guarantees
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the existence of a 1-dimensional subspace stable under the action of B. If V is

irreducible under the action of G, then this subspace V B is unique, and its weight

with respect to the chosen torus T will be the highest in the ordering on the abstract

weights of T . A generator for V B = V U is called a highest weight vector of V . The

highest weight of a representation is dominant in the root system for G. In fact,

if λ is a dominant weight, then there is a unique, irreducible representation, up to

G-equivariant isomorphism, whose highest weight is λ [27, p. 188].

If G is reductive, then its highest weight representations can be collected and

given a ring structure; the development here follows [6, p. 156]. Let G act on an

affine variety X and any finite-dimensional G-module W . Define a “covariant of X

with values in W” to be a G-equivariant morphism X → W . The set of covariants

for such X and W is denoted Mor(X,W )G, the morphisms invariant under the G-

action. Popov and Vinberg showed that Mor(X,W )G is a finitely-generated module

over k[X]G.

The module structure becomes more clear with the isomorphism

Mor(X,W )G ∼= (W ⊗ k[X])G.

Indeed, a covariant φ : X → W yields a ring homomorphism φ∗ : k[W ] → k[X], or

what is the same, φ∗ : S(W ∗) → k[X], as the symmetric algebra on W ∗ is canon-

ically isomorphic to k[W ]. Any such map is determined by its values on W ∗, and

a linear map W ∗ → k[X] determines a ring homomorphism S(W ∗) → k[X]. Thus

Mor(X,W )G ∼= Hom(W ∗, k[X])G as k[X]G-modules, and the above isomorphism fol-

lows.

Recall that to discuss highest weight representations of a reductive group G, one

fixes a Borel subgroup B, a maximal torus T ⊂ B, and a maximal unipotent subgroup

U ⊆ B such that B = T n U . If X is an affine variety with a G action, the ring of



8

U -invariant polynomials k[X]U is called the ring of covariants of X, for the following

reason: Write Vλ for the irreducible representation of G with highest weight λ, whose

λ weight space is spanned by a vector vλ. Then G · vλ spans Vλ. Recall a covariant

φ ∈ Mor(X, Vλ)
G ∼= Hom(V ∗λ , k[X])G is determined by φ∗ : V ∗λ → k[X]. If w spans

the highest weight space of V ∗λ , then φ∗ is determined by the choice of φ∗(w), which

lies in k[X]U .

Grosshans showed that if G is reductive and char(k) = 0, then a ring of covariants

k[X]U is finitely generated [14]. Now consider the ring of covariants for G on itself:

Proposition II.5. Let G be a linearly reductive group over k, and let Vλ denote an

irreducible representation of G with highest weight λ. For fixed B = T n U ⊂ G, let

U act on G by right-multiplication. Then if X(T )+ denotes the dominant weights,

k[G]U = k[G/U ] =
⊕

λ∈X(T )+

Vλ

as left G-modules. If char(k) = 0, then k[G]U is a finitely-generated ring.

Proof. If U acts on G on the right, then G/U is a quasi-affine variety, and k[G/U ] =

k[G]U . Choose a highest weight representation Vλ. Then the module of covariants of

G/U with values in Vλ is

Mor(G/U, Vλ)
G ∼= (k[G/U ]⊗ Vλ)G ∼= (k[G]U ⊗ Vλ)G.

First show that the module of covariants, on the left side above, has dimension one:

any morphism φ : G/U → Vλ is determined by the image of the identity coset

eU ∈ G/U . This element is fixed by the usual U -action on Vλ, whence φ(eU) lies in

the one-dimensional space V U
λ . Thus (k[G]U ⊗ Vλ)G also has dimension one, as does

Hom(Vλ, k[G]U)G, because dimVλ < ∞. Therefore, each Vλ occurs exactly once in

k[G]U .



9

Now, any f ∈ k[G]U lies in a finite-dimensional, G-stable subspace F . Since G

is linearly reductive, F is a direct sum of highest weight representations, and the

G-module isomorphism k[G]U =
⊕

λ∈X(T )+
Vλ is proved. Grosshans in [14] showed

that k[G]U is finitely generated for reductive G in characteristic 0.

2.4 The Categorical Quotient and Separating Invariants

When G acts rationally on an affine variety X and k[X]G is finitely generated,

write X//G to denote the variety with coordinate ring k[X]G, a notation established

in the book [6] and papers of Derksen and Kemper. Then the dominant morphism

π : X → X//G is in fact surjective, and X//G has the quotient topology; call X//G

the categorical quotient. Each fiber of π contains exactly one closed orbit, which lies

in the closure of all orbits in that fiber. One can then apply the theorem on fiber

dimension to the closed orbits to determine the dimension of invariant rings.

Since invariant polynomials are constant on orbits, they may separate the orbits

of a group action in applications. If separating orbits is the goal, though, one does

not need to compute generators for the entire invariant ring. A subset S ⊆ k[X]G is

called separating if it has the following property for every pair of points x, y ∈ X:

if there exists f ∈ k[X]G such that f(x) 6= f(y) (so f separates the orbits of x and

y), then there exists a g ∈ S such that g(x) 6= g(y). That is, the polynomials in S

separate as many orbits as the polynomials in k[X]G. When the categorical quotient

exists, if x and y have distinct closed orbits, then some invariant polynomial must

separate the orbits, so a member of a separating set must separate the orbits. More

generally, there is the following:

Theorem II.6. [6, p. 58] Let X be an affine variety and G a group of automorphisms

of k[X]. Then there exists a finite separating set S ⊂ k[X]G.



10

Proof. Let I ⊂ k[X] ⊗ k[X] be the ideal generated by the elements f ⊗ 1 − 1 ⊗ f

for all f ∈ k[X]G. Since k[X]⊗ k[X] is Noetherian, the ideal I is finitely generated.

Thus there exists a finite, generating subset

I = (f1 ⊗ 1− 1⊗ f1, . . . , fm ⊗ 1− 1⊗ fm)

with the fi ∈ k[X]G. Claim that the fi appearing here form a separating subset for

k[X]G. For proof, choose x, y ∈ X such that there exists f ∈ k[X]G with f(x) 6= f(y).

It remains to show that x and y are separated by one of the fi. Since f⊗1−1⊗f ∈ I,

one has, for some gi ∈ k[X]⊗ k[X],

f ⊗ 1− 1⊗ f =
m∑
i=1

gi(fi ⊗ 1− 1⊗ fi).

For the fixed x, y ∈ X, there is an evaluation homomorphism ϕ : k[X] ⊗ k[X] → k

defined by ϕ : g ⊗ h 7→ g(x)h(y). Applying ϕ to the above equation,

m∑
i=1

ϕ(gi) (fi(x)⊗ 1− 1⊗ fi(y)) = ϕ(f ⊗ 1− 1⊗ f) = f(x)− f(y) 6= 0.

So for some i, it follows fi(x) 6= fi(y), completing the proof.

Assume G is reductive and V is a rational representation. Then {0} ⊂ V is

always a closed orbit and an interesting point for the geometry of group actions.

The nullcone NV is defined as

NV = {v ∈ V | f(v) = 0 for all f ∈ k[V ]G+}.

That is, NV is the set of points on which all homogeneous invariants vanish, whence

NV is the fiber π−1(0) of the categorical quotient.

Lemma II.7. [6, p. 60] A point v ∈ V lies in the nullcone NV if and only if G · v

contains 0.
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A useful tool for determining if orbits are closed is the Hilbert-Mumford criterion

[20, 38]. Define a 1-parameter subgroup of an algebraic group G to be a homo-

morphism λ : k∗ → G. Sometimes the phrase “1-parameter subgroup λ” denotes

the image of the map. The following formulation follows from Kempf’s work on

instability [35]:

Theorem II.8. Let V be a rational representation of a reductive group G, and choose

v, w ∈ V . Then w ∈ G · v if and only if there exists a 1-parameter subgroup λ such

that w ∈ λ · v.

2.5 The Cohen-Macaulay Property

This property of the invariant rings of linearly reductive groups elucidates their

structure and aids computation. One can define the Cohen-Macaulay property R-

modules using the notion of depth, when R is graded or local, but the results below

focus on the graded case, taking R as an R-module. First, recall some commutative

algebra. If R = ⊕∞d=0Rd is a graded algebra over a field k = R0, then f1, . . . , fn ∈ R

are a homogeneous system of parameters if both

• f1, . . . , fn are algebraically independent over k,

• R is a finitely generated module over k[f1, . . . , fn].

In particular, dim(R) = n. Under the assumption k = k so that k is infinite, a

finitely generated graded algebra over a field always has a homogeneous system of

parameters. This fact follows from Noether’s Normalization Lemma [6, p. 61]. Now,

a sequence f1, . . . , fn ∈ R is called R-regular (or just regular) if

R/(f1, . . . , fn) 6= 0
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and multiplication by fi on R/(f1, . . . , fi−1)R gives an injective map, for i = 1, . . . , n.

One can define the Cohen-Macaulay property as follows:

Proposition II.9. [32] For a Noetherian graded algebra R over a field k = R0, the

following are equivalent:

(a) R is Cohen-Macaulay.

(b) Every homogeneous system of parameters is an R-regular sequence.

(c) If f1, . . . , fn is a homogeneous system of parameters, then R is a free module

over k[f1, . . . , fn].

(d) There exists a homogeneous system of paramaters f1, . . . , fn such that R is a

free module over k[f1, . . . , fn].

It is immediate from this definition that a polynomial ring is Cohen-Macaulay. The

property applies to invariant rings under nice group actions, thanks to the following

theorems:

Theorem II.10 (Hochster, Eagon). [23] If G is a finite, linearly reductive group

over k and V a finite dimensional, rational representation, then k[V ]G is Cohen-

Macaulay.

A finite group is linearly reductive if and only if its order is relatively prime to the

characteristic of k, with a Reynold’s operator that averages functions over translation

by the group. More generally,

Theorem II.11 (Hochster, Roberts). [24] If G is a linearly reductive group over k

and V a finite dimensional, rational representation, then k[V ]G is Cohen-Macaulay.

The next section considers a computational application of this property.
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2.6 Hilbert Functions

For an invariant ring k[V ]G of a linearly reductive group, let S = k[f1, . . . , fn]

be the subalgebra generated by a homogeneous system of parameters. Then S is

isomorphic to a polynomial ring, and there exist homogeneous g1, . . . , g` such that

k[V ]G = S · g1 ⊕ · · · ⊕ S · g`

as a free S module. Let di = deg(fi) and ej = deg(gj). Then the Hilbert series for

k[V ]G can be written as a rational function:∑
j t
ej∏

i(1− tdi)
.

Note that the decomposition of k[V ]G and the rational expression above are not

unique.

For a graded k-algebraR generated in degree one, the Hilbert polynomial describes

dimk Ri for large enough i. Because invariant rings are generated in several degrees,

more analysis is required to recover the growth rate of the Hilbert function. In

the notation of Campbell, et al. [3], let R[`, i] denote the elements of R of degree

congruent to i modulo `. Note that each R[`, i] is an R[`, 0]-submodule of R. Choose

` such that the Hilbert series for R can be written a(t)/(1−t`)n, where a(t) ∈ Z[t] and

n = dimR. Campbell, et al. show that ` can be chosen as the least common multiple

of the degrees of a homogenoeus system of parameters for R (their Proposition 3.1).

They conclude the following:

Proposition II.12. Let R be a graded, finitely generated k-algebra with R0 = k. If

R is an integral domain of dimension n, then the Hilbert polynomials of the non-

trivial modules R[`, i] have the same leading coefficient and the same degree n − 1,

for i = 0, . . . , `− 1.
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From the hypotheses of the proposition, it follows dimk Rd = O(dn−1). Hence

intuition about Hilbert polynomials applies to invariant rings generated in several

degrees.

2.7 Computation and Degree Bounds

2.7.1 Invariants of Reductive Groups

Several algorithms exist to compute generators for an invariant ring. These algo-

rithms require the acting group to be finite, linearly reductive, or reductive. Sturmfels

in 1993 filled in the details of Hilbert’s procedure for G = GLn of a century earlier

[20, 44]. The following denotes the vanishing sets, in a variety X, of polynomials or

an ideal I:

V(f1, . . . , fn) = {x ∈ X | fi(x) = 0 ∀ i}

V(I) = {x ∈ X | f(x) = 0 ∀ f ∈ I}

Hilbert observed this property of the nullcone:

Theorem II.13. [20] For a finite-dimensional representation V of G = GLn over C,

let f1, . . . , fn be homogeneous invariant polynomials such that V(f1, . . . , fn) = NV .

Then C[V ]G is a finitely generated C[f1, . . . , fn]-module.

The same statement holds for any reductive G [8, p. 226], and in either case, the

integral closure of k[f1, . . . , fn] is k[V ]G. Now, for a maximal torus T ⊂ G, the

Hilbert-Mumford criterion yields that NV,G = G · NV,T . Using this relation, Hilbert

computes generators for k[V ]T and from these the fi defining the null cone. Sturm-

fels then computes the integral closure of k[f1, . . . , fn] with multiple Gröbner basis

calculations.

Derksen’s 1999 algorithm computes generators of k[V ]G when G is linearly reduc-

tive [4], using only one Gröbner basis. Let ψ : G × V → V × V be an explicit map
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to the graph of the action, given by (g, v) 7→ (v, gv). The algorithm computes a

Gröbner for the ideal b vanishing on the closure of the image of ψ. Let I ⊂ k[V ] be

the ideal generated by a homogeneous generating set for k[V ]G. Then the projection

of b to k[V ] gives generators f1, . . . , fn for I. Applying the Reynolds operator to

each of the fi gives generators for k[V ]G. Note this algorithm requires a subroutine

to compute the Reynolds operator. Recall that for finite groups with |G| - char(k) if

char(k) > 0, the Reynolds operator is just averaging. Classical approaches for GLn

and SLn employ differential operators on k[G]; for general semisimple groups, that

is, when the radical R(G) is trivial, one employs an operator in the dual to the Lie

algebra of G [6, 4.5].

Derksen’s algorithm, though elegant, cannot produce generators when G is reduc-

tive in positive characteristic. Kemper’s 2003 algorithm [33] works for any reductive

group. He and Derksen combined and optimized their approaches in 2009 [7], provid-

ing algorithms that compute k[X]G in the case where reductive G acts on any affine

variety X and the case where G is unipotent (hence non-reductive) and connected

and X is irreducible. As an example, for Kemper’s original procedure in positive

characteristic, let A ⊆ k[V ] be a subalgebra, and define

Â = {f ∈ k[V ] | fpr ∈ A for some r ∈ Z+}

to be the purely inseparable closure of A in k[V ]. When k has characteristic zero,

define Â = A. Recall that for the action of any linear algebraic group G on a

affine variety X, there exists a finitely generated, separating subalgebra A ∈ k[X]G.

Separating and generating invariants enjoy the following relationship:

Theorem II.14. Let V be a rational representation of a reductive group G, let

A ⊆ k[V ]G be a finitely generated, separating subalgebra, and let
̂̃
A be the purely
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inseparable closure of its normalization. Then

̂̃
A = k[V ]G.

A technical lemma in the proof requires G to be reductive, and this lemma fails if

the only assumption is that k[V ]G is finitely generated.

With this fact, Kemper’s algorithm takes as input an embedding of the reductive

group G and an explicit polynomial morphism G→ GL(V ). With two Gröbner basis

calculations, it computes generators for the separating subalgebra A. Kemper then

provides a known algorithm for computing the normalization Ã and a new algorithm

for the inseparable closure
̂̃
A. These procedures require additional Gröbner bases

calculations. They output generators for k[V ]G in any characteristic. On the other

hand, Kemper provides an example where k[V ]G is finitely generated, but G is not

reductive, so k[V ]G is not integral over a separating subalgebra. In such cases, his

2003 algorithm fails.

2.7.2 Degree Bounds

The following notion of degree bound assists in computation of generators for a

graded ring R = ⊕d≥0Rd:

β(R) := min{D | R is generated by ⊕Dd=0 Rd}.

If one knows β(k[V ]G) or an upper bound for it, then one knows in which degrees

an algorithm should search for generating invariants. Starting classically, let Vd be

the k-space of degree d polynomials, that is k[x, y]d or S(V1)
d. This Vd is called the

space of binary forms of degree d. Let SL2(k) act on Vd, for any d, as follows: α β

γ δ

 · f(x, y) = f(αx+ γy, βx+ δy).
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In fact, every irreducible representation of SL2 is isomorphic to some Vd. Indeed,

let T ∼= {t | t ∈ k∗} be the diagonal torus of the Borel subgroup of upper-triangular

matrices in SL2, and let W be a representation of highest weight λ(t) = td, d an

positive integer. Then Vd has the same highest weight as W , namely, the weight of

xd ∈ Vd. So Vd and W must be isomorphic representations. Camille Jordan proved

the following [28, 29]:

Theorem II.15. Fix d ≥ 2. Then the ring of covariants of the representation

W = ⊕di≤dVdi, where each di ≤ d, is generated in degree less than d6.

In particular, β(k[Vd]
G) ≤ d6, a smaller degree bound than for any other semisimple

group. Kraft and Weyman provide a modern formulation of Jordan’s method in [36].

In 1916, Noether produced the following degree bound for finite groups such that

the characteristic of k is 0 or larger than |G| [42]. Fleischmann and Fogarty improved

her result to this modern formulation,

Theorem II.16. [11, 12, 42] Let V be any representation of a finite group G. If the

characteristic of k does not divide |G|, then β(k[V ]G) ≤ |G|.

The characteristic of k causes problems when the Reynolds operator averages poly-

nomials over their G-translations.

Recall that Hilbert’s work lead him to consider defining equations f1, . . . , fn for

the null cone NV , the set of points whose orbit closure contains 0 in a representation

V . If the fi are algebraically independent (e.g. upon application of Noether’s Nor-

malization Lemma), then they form a homogeneous system of parameters for k[V ]G.

Let σ(V ) denote the largest degree necessary for defining equations for NV . Vladimir

Popov employed the Hochster-Roberts theorem to show that if G is semisimple,

β(k[V ]G) ≤ dimV · lcm{1, 2, . . . , σ(V )},
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and he provided an intricate bound for σ(V ) [8, p. 229]. For example, for the binary

forms his result obtains σ(k[Vd]
G) = 27

32
d(d + 1)6. For other degree bounds, see Hiss

[21] and Kazarnovskii [31].

In 2001, Derksen [5] improved Popov’s degree bound:

Theorem II.17. Let G be a linearly reductive group and V a rational representation

of dimension s. Then

β(k[V ]G) ≤ max{2, 3

8
s(σ(V ))2}.

Derksen also produced a more explicit upper bound for σ(V ) by considering the

degree of the generic orbit as a variety. This method is emulated by the work

on separating orbits, below. Choose an embedding of the group G, so that its

coordinate ring is k[z1, . . . , z`]/(h1, . . . , hr) for polynomials hi. Let m = dim(G), let

M = max{deg(hi) | ∀i}, and let N denote the maximum degree of the polynomials

appearing in the representation ρ : G→ GL(V ).

Proposition II.18. In the notation above, if the kernel of ρ is finite, then

σ(V ) ≤M `−mNm.

Note that this bound is polynomial in M and N , and one would choose ` as small

as possible.

2.7.3 Invariants of Tori

The new work below considers torus invariants in particular. David Wehlau in

1993 produced degree bounds for the case that G = T is a torus of rank r [46]. Let V

be a representation of T , with dimension n and weights w1, . . . , wm. The character

group X(T ) of T is the set of algebraic homomorphism T → k∗, and it is isomorphic
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to Zr. Furthermore, X(T )⊗Z R ∼= Rr. As the weights hence correspond to points in

Rr, it makes sense to talk about the volume of the convex hull CV of the weights wi.

For a monomial xa11 · · ·xann ∈ k[x1, . . . , xn] the vector (a1, . . . , an) gives a point in

Nn. Hence a monomial is invariant if
∑

i aiwi = 0. Wehlau finds a degree bound [8,

p. 231]:

Theorem II.19. In the above notation,

β(k[V ]T ) ≤ (n− r)(r!)vol(CV ).

Sturmfels in [44, p. 19] explains an algorithm to compute k[V ]T using a Gröbner

basis, but Derksen and Kemper give an algorithm to compute generators for k[V ]T

without computing any Gröbner bases [6, p. 159]. If T has rank r, the algorithm

considers points in a sufficiently large, finite set C ⊂ Zr containing the weights of the

representation. For each w ∈ C, let Iw be the ideal generated by monomials of weight

w. The algorithm begins with the coordinate functions on V and, for each w ∈ C,

multiplies and tests monomials to produce a minimal set of (monomial) generators

for each Iw. In particular, the generators of I0 will generate k[V ]T .

When the rank of T is 1, the algorithm suggests a better degree bound for the

generators. In this case, the set C is the convex hull of the weights of the repre-

sentation V . Let m = xi1 · · ·xid be a generating invariant, and let mj = xi1 · · ·xij .

The algorithm constructs m by building on m1,m2, . . . in such a way that the mi

all have distinct weights in C. Therefore, the maximal degree of a generator is

1 + 2 ·max{|w| : w a weight of V }.
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2.8 Counting Invariants

2.8.1 SL2 Invariants

Victor Kac employs the “Luna Slice Method” to reduce questions of one repre-

sentation to a “better” representation [30]; in the article he works over k = C. Let

V be a representation of a reductive algebra group G. For a point p ∈ V , let Gp

denote its stabilizer in G, and let Tp denote the tangent space at p to the orbit G · p.

Consider Tp as a linear, Gp-stable subspace of V , and find a G-stable complement

SP with V = Sp ⊕ Tp. If G · p is closed, then G/Gp is affine, by the Matsushima

criterion [37], whence Gp is reductive. The action of Gp on Sp is a slice representa-

tion, and there exists a categorical quotient Sp → Sp//Gp. The categorical quotient

π : V → V//G restricts to Sp → V//G. Since the fibers of this map are Gp-stable, one

has a morphism πp : Sp//Gp → V//G. Kac proves the following:

Proposition II.20. In the notation above, the size of a minimal generating set for

k[V ]G is at least as large as the size of a minimal generating set for k[Sp]
Gp.

To bound from below the size of a minimal generating set for k[V ]G, one can study

a simpler slice representation Sp by choosing p wisely.

Kac considers the action of G = SL2(C) on the binary forms, chooses a slice

representation such that Gp is a finite, cyclic group, then gives a combinatorial lower

bound for the size of minimal generating sets for invariants. The combinatorial

characterization plays a central role in the new upper bounds for torus invariants

below.

To sketch Kac’s argument, first assume d is odd. Recall Vd is spanned by the
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degree-d monomials in two variables. Choose p = xd−1y + xyd−1. Then

Gp =


 ζk 0

0 ζ−k

 | ζ = e2π/(d−2), k = 1, . . . , d− 2

 .

Kac shows G · p is closed; a similar argument appears in Chapter 3 below. So Kac

considers the slice representation Sp, and he shows that a generator σ of the cyclic

group Gp acts on a basis of Sp with eigenvalues 1, ζ, ζ2, . . . , ζd−3.

Let k[Sp] = k[x0, x1, . . . , xd−3], so that σ · xi = ζixi. Then a minimal generating

set of k[Sp]
Gp consists of monomials m = xa00 · · ·x

ad−3

d−3 such that

d−3∑
i=1

ai · i ≡ 0 mod d− 2

and such that m is not divisible by another different invariant. Kac notes first that

every partition of n provides the degrees ai for such a monomial. Then he sees that

xd−2i for every i relatively prime to d− 2 is also invariant. So writing p(k) =(number

of partitions of k) and φ(k) =(number of numbers 1, . . . , k−1 relatively prime to k),

Kac counts at least p(d− 2) + φ(d− 2)− 1 generators for k[Sp]
Gp . The −1 appears

because otherwise xd−21 is counted twice. Therefore, when d is odd, this number

also provides a lower bound for the size of a minimal generating set for k[Vd]
SL2 .

The analysis proceeds similarly for even d. Now, Hardy and Ramanujan [16] (and

independently, Uspensky [45]) found the asymptotic growth rate

p(n) ∼ 1

4
√

3n
eπ
√

2n/3,

so these generating sets exhibit non-polynomial but sub-exponential growth.

In 1988, Roger Howe produced a more explicit estimates of the size of “fundamen-

tal generating sets” for Rd = k[Vd]
SL2 [25]. Let m denote the maximal homogeneous

ideal of Rd. By the Graded Nakayama Lemma, a set S ⊂ Rd generates Rd if and
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only if the image of S in Rd/m generates Rd/m. If S has minimal size, Howe calls S

a fundamental generating set. He proves the following:

Theorem II.21. Let Γd denote the number of fundamental invariants of Rd, and let

Rd(k) denote the degree-k piece of Rd. Then for fixed degree k,

(a) Γd/(dimRd(k))→ 1 as d→∞.

(b) For constants ck, the number of fundamental generators in degree k for k ≥ 4

is asymptotically 
1
2
(k!)−1ckn

k−3/(k − 3) nk even,

0 nk odd.

The paper [25] includes formulas for the ck, in terms of binomial coefficients. By

“asymptotically” Howe means “the difference between the two expressions is small

in comparison with either,” when n is large enough. He concludes “that almost all

invariants of a fixed degree are eventually fundamental.”

2.8.2 Torus and Cyclic Group Invariants

More generally, the positive integer vector solutions to an equation

n−1∑
i=1

ai · i ≡ 0 mod n

relate to torus invariants in the following way:

Proposition II.22. Let T = k∗ act on xi with weight ti. Identify Zn with the nth

roots of unity in T . The evaluation homomorphism

ev: f(x1, . . . , xn, x−n) 7→ f(x1, . . . , xn, 1)

provides a Zn-equivariant isomorphism

k[x1, . . . , xn, x−n]T → k[x1, . . . , xn]Zn .
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Proof. Surjectivity is clear. For injectivity, it suffices to show that the ideal

(x−n − 1) ⊂ k[x1, . . . , xn, xn−1].

contains no T -invariants. Recall every T -invariant is a sum of invariant monomials.

If f ∈ (x−n − 1) is a T -invariant, then half of the monomials of f have nonzero

weight, which is absurd.

John C. Harris and David Wehlau [17] consider the general problem of producing

all solutions A = (a1, . . . , ar) ∈ Nr to an equation

w1x1 + w2x2 + · · ·+ wrxr = 0 mod n,

where the wi are integers. They note that finding solutions to this equation is

equivalent to finding solutions to Kac’s equation,

x1 + 2x2 + · · ·+ (n− 1)xn−1 = 0 mod n,

and they point out that the set of solutions forms a monoid. To state their result,

they call a solution decomposable if it can be written as a sum of two non-trivial

solutions, and indecomposable otherwise. There are only finitely many indecom-

posable solutions: if, say, ai ≥ n, then one may subtract off the extremal solution

(0, . . . , n, . . . , 0) that is non-zero in the ith place.

The degree of a solution A is deg(A) =
∑
ai. The indecomposable solutions

A = (a1, . . . , an−1) (and the variable xn) correspond to generators xa11 · · ·xn−1n−1 for

k[x1, . . . , xn]Zn in the proposition above. Lastly, define the multiplicity of a solution

A to be

m(A) =
a1 + 2a2 + · · ·+ (n− 1)an−1

n
.
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The solutions with multiplicity one correspond to the partitions of n, and these

solutions are all indecomposable. Given such a solution, one can produce other inde-

composable solutions, of possibly higher multiplicity, with the following permutation

action. Let Hn = Z∗n be the group of units in the ring Zn. Then A = (a1, . . . , an−1) is

a solution if and only if hA = (ha1, . . . , han−1) is a solution. Note that A and hA will

have the same degree. In fact, Hn is the full group of automorphisms of the monoid

of solutions, but not every solution is in the orbit of a solution with multiplicity one.

So define the level of a solution A to be

`(A) = min{m(hA) | h ∈ Hn}.

Harris and Wehlau first prove the following.

Proposition II.23. Let A be a solution of multiplicity one and degree k ≥ dn/2e+1.

Then,

(a) The Hn-orbit of A contains no other solution of multiplicity one.

(b) Hn acts faithfully on the orbit of A, whence the orbit has size φ(n).

In particular, they conclude that if k ≥ dn/2e+1, then there are exactly p(n−k)φ(n)

solutions in degree k. Note that p(n−k) is the number of partitions of n into k parts.

This count provides a lower bound for the number of indecomposable solutions to∑
i aixi = 0 mod n. What is more, computing the Hn action on partitions of n

provides an efficient algorithm for computing solutions in high degree. Wehlau and

Harris further characterize these solutions as below:

Theorem II.24. The following conjectures, due to A. Elashvili, are equivalent:

(a) If A has degree ≥ bn/2c+ 2, then `(A) = 1.

(b) If k ≥ bn/2c+ 2, then there are exactly p(n− k)φ(n) solutions in degree k.
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These conjectures differ subtly from the proposition above. The proposition describes

the orbits of solutions with level one in high degree. The first conjecture claims

that in fact all solutions in high degree have level one, in which case the number of

indecomposable solutions in high degree would be known. Note that if n is odd, then

the degree requirements are the same throughout. If n is even, then the conjectures

require degree one higher than the proposition.

2.9 Algebraic Complexity

2.9.1 Complexity of Algorithms and Problems

The goal of computational invariant theory is to write algorithms to solve problems

in invariant theory, such as distinguishing orbits or computing generators of invariant

rings. To describe the complexity of a computation is to describe the number of steps

or amount of computer memory space necessary to complete the computation. One

can gain information about complexity indirectly, for example, by determining the

number of cases an algorithm must consider or determining the minimum size of an

output. When implementing an algorithm on a computer, complexity considerations

have implications for the amount of memory the algorithm uses or the time it takes

to run.

Each of these parameters (number of steps, number of cases to consider, size of

output) depends on the size of the input to the algorithm. For example, an algorithm

Γ(G, V ) to compute generating invariants may accept as input any reductive algebraic

group G and any of its representations V . The number of steps Γ requires to run

could depend on the dimensions of G and V , among other parameters. Indeed, the

word “algorithm” is often shorthand for “family of algorithms” that accept inputs

of different sizes and properties.

Thus to describe the complexity of an algorithm, one specifies which inputs con-
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tribute fixed costs of run time and memory space, and which inputs are allowed to

vary in the family. One says, for example, that Gaussian elimination can compute the

reduced row echelon form of an n×n matrix over Q with O(n3) algebraic operations

like +,−, and ×. Note that such a complexity estimate assumes all computations in

Q require the same amount of processing time. Here, the “big O” notation O(f(x))

describes the order of growth for the function f(x). One writes g(x) = O(f(x)) if

there exists x0 > 0 and a constant c ≥ 0 such that g(x) < cf(x) for all x ≥ x0, that

is, “for sufficiently large x.” For example, 5en + 4n99 + 3 log n = O(en).

One can determine the complexity of a problem with a two-part process. First, one

describes the size of the output or the number of times some particular calculation

must be made by any algorithm. This analytic work produces a lower bound, say

O(f). Then, one writes an algorithm that solves the problem, aiming for complexity

similar to O(f). The existence of such an algorithm provides an upper bound for the

complexity of the problem. The lower and upper bounds then suggest the complexity

of the problem itself.

2.9.2 Straight Line Programs

One framework that defines complexity more formally is that of straight line

programs [2]. With notation inspired by applications to algebraic geometry, let V

be a set, F a field, and let R be an F -subalgebra of the F -valued functions on V .

Let A = (a−m, . . . , a−1) ∈ Rm be a finite, ordered subset of R. Consider a tape of

cells with ai ∈ A in position i. A straight line program Γ is a finite, ordered list

of instructions Γ = (Γ0, . . . ,Γ`−1). Each instruction Γi is of the form (?; j, k) or

(?; j), where ? is an operation and j, k are positive integers referring to tape entries

in positions i − j and i − k, that is, j and k cells before i, respectively. The length

` = |Γ| measures the complexity of the computation.
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To execute Γ on input A, for i = 0, . . . , `− 1 write ai in tape position i as follows:

ai =



ai−j + ai−k if Γi = (+; j, k)

ai−j − ai−k if Γi = (−; j, k)

ai−j · ai−k if Γi = (×; j, k)

c if Γi = (const; c) for c ∈ F

ai−j if Γi = (recall; j)

where j, k < i.

The “recall” instruction of position j serves to collect relevant computations at the

end of the tape. Define the order-d output of Γ by Outd(Γ, A) = (a`−d, . . . , a`−1) ∈

Rd, where ` = |Γ|. We omit the d where convenient. A straight line program hence

defines a function Rm → Rd.

For example, the function f(x, y) = x2 +2xy+y2 in R = Q[x, y] can be computed

with the following naive straight line program. The input is (a−2, a−1) = (x, y). Here

are the instructions:

• Γ0 = (×, 2, 2)

• Γ1 = (×, 2, 2)

• Γ2 = (×, 4, 3)

• Γ3 = (const, 2)

• Γ4 = (×, 2, 1)

• Γ5 = (+, 5, 4)

• Γ6 = (+, 2, 1)

Note that the numbers in each instruction describe locations relative to the current

location on the tape, so some instructions are identical. This algorithm has length



28

7, and its entire output is

(x2, y2, xy, 2xy, x2 + y2, x2 + y2 + 2xy).

Of course, the complexity of the computation of f is 2: on the same input, let

Γ0 = (+, x, y) and Γ1 = (∗, 1, 1).

Write Γ(2) ◦ Γ(1) for the composition of two straight line programs, in which the

input of Γ(2) is Outd(Γ
(1), A) for some d depending on Γ(2). Then Γ(2) ◦Γ(1) has input

A, and we execute Γ(2) ◦ Γ(1) by concatenating the instruction lists.

Since the multiplication and division of numbers requires more memory and pro-

cessor time than addition, subtraction, and the calling of constants, one can choose

only to consider multiplications when determining lower bounds for the length of an

algorithm. On the other hand, the convention here of counting all operations yields

stronger complexity results and upper bounds. Now, programs cease to be “straight

line” when they involve “branching” from IF-THEN clauses. For these programs,

different inputs may require different run times and memory uses, because the algo-

rithm performs different steps. For these algorithms, one may define the “branching

complexity” as the total length of all branches of the tree of computations.

2.9.3 Examples

One hopes that the length or memory use of an algorithm is a polynomial function

of the size of the input, so that the algorithm remains practical for larger and larger

instances of the problem. If the length of an algorithm is polynomial in some relevant

parameters of the input, one says the algorithm is polynomial time. Of course, a

statement “algorithm Γ has complexity O(f(n))” ignores constants and constant

coefficients in the true function g(n) for the length of Γ. In an implementation

of the algorithm on a computer, these constants could lead to prohibitive memory
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requirements or run times for even small instances of the problem. So in fact the

statement “algorithm Γ has complexity O(f)” describes how the complexity of the

algorithm grows over larger inputs.

Several computations in algebra have polynomial or better complexity. For exam-

ple, if f, g ∈ k[x] have deg(fg) = d and k has sufficiently many roots of unity, then

Fast Fourier Transform algorithms can compute f · g with total complexity bounded

by O(d log d) [2, p. 33]. The Gaussian elimination algorithm to compute the reduced

row echelon form of an n×n matrix has complexity O(n3), including operations like

exchanging rows. In fact, computing the inverse, row echelon form, or determinant

of an n × n matrix can be reduced to a sequence of matrix multiplications. The

complexity of matrix multiplication then provides a total complexity bound for all

of these computations, namely, as of 1987, O(n2.38) [2, p. 420].

The complexity of Gröbner basis calculations, that is, the number of steps per-

formed to compute a Gröbner basis, is unpredictable but believed to be quite large

[10]. The essential process in computing a Gröbner basis is the normal form algo-

rithm. Dubé et al. count the number of “reductions” required to write a polynomial

f in a normal form with respect to some fixed basis G of polynomials: if L is the

number of monomials in f , then the number of reductions is bounded above by

L ·O(1)deg f . Furthermore, they prove the existence of G and f with d > L such that

the number of reductions is at least exponential in d. On the other hand, they note

that many ideals are “highly structured.” As result, the Buchberger algorithm is

practical in many examples, especially in two variables, even though its complexity

is theoretically exponential.

It must be said that the above discussion of computational complexity simplifies

some aspects of problems while overstating others. For one, an algorithm whose
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length is asymptotically polynomial may still in practice take a long time to ter-

minate. Avner Ash, who tests and develops conjectures in algebra by computing

a large number of examples with technology, puts it this way [1]: “When you say

an algorithm is polynomial time, I want to know the constants.” That is, he warns

that an algorithm with length 109n6 + 106 = O(n6) requires 4 billion steps when

n = 4. Roger Howe points out that polynomial complexity of degree 6, for example,

becomes time-consuming even for n < 100 [26]. On the other hand, Howe notes

that many large objects to compute, even sets of generating invariants, in fact have

simple descriptions. After all, the minimal generating sets for torus invariants have

size at least O(e
√
d), but one can describe them with linear integer equations.



CHAPTER III

Counting Generating Invariants of Semisimple Groups

The first chapter of new results considers the growth of minimal generating sets

for invariant rings. For an algebraically closed field k, parameterize with integers

n ≥ 0 the family of representations Vnλ with highest weight nλ. Let Sd(Vnλ)
G denote

the degree-d invariant polynomials on Vnλ. We fix d and apply a ring structure to

the collection of spaces Sd(Vnλ) for n ≥ 0, graded now by n. It turns out that

dimSd(Vnλ)
G grows like a polynomial in n whose degree is a linear function of d.

Choosing high enough d, we show that the minimal cardinality of a generating set

for k[Vnλ]
G grows faster than any polynomial in n.

The same trick works when SL2 acts on the space Vn of binary forms of degree

n. Again, dimSd(Vn)SL2 grows as a polynomial in n with degree d as large as we

want, and the minimal cardinality of a generating for k[Vn]SL2 , the invariants on the

binary forms, grows faster than any polynomial in n.

Counting generating invariants of T ⊂ SL2 reduces to the problem of counting,

for each n ≥ 1, the S ⊆ {−n,−(n− 1), . . . , n} such that
∑

a∈S a = 0 and no subset

of S has this property (the “subset sum problem”). Olson [43] proves that the size

of such S is no more than 3
√
n. In the context of monomials, this result provides

a degree bound, and one can conclude that the size of a generating set for k[Vn]T is

31
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O(e
√
n logn).

For motivation and intuition, we begin with the invariants of SL2. The Back-

ground chapter discusses results of Kac [30] and Howe [25] on the size of generating

sets for k[Vn]SL2 . The below proof that these sets must grow faster than any poly-

nomial mirrors the computations of Howe, but the equivalent result for an arbitrary

semisimple group appears to be new.

3.1 The Orbits of SL2 Acting on Binary Forms

Let k be an algebraically closed field, and assume for Sections 3.2 and 3.3 that

char(k) = 0. Consider the classical action of SL2 on the binary forms Vd of degree d.

Lemma III.1. Let X = SL2 · f be the orbit of a form f ∈ Vd.

1. If f has a factor of multiplicity ≥ d/2 and X is closed, then f has at most two

distinct roots.

2. A form f has root factor of multiplicity > d/2 if and only if f lies in the null

cone.

Proof. Only forms of even degree have roots of multiplicity d/2. Assume without

loss that xd/2 | f . Then

f = adx
d + ad−1x

d−1y + · · ·+ ad/2x
d/2yd/2.

Consider the orbit of f under the action of the diagonal torus. Then,

lim
t→0

t · f = ad/2x
d/2yd/2.

Hence if X is closed, f has only two distinct roots.
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A form f has a root of multiplicity > d/2 if and only if X contains, say,

f0 =


adx

d + · · ·+ ad/2+1x
d/2+1yd/2−1 d even

adx
d + · · ·+ a(d+1)/2x

(d+1)/2y(d−1)/2 d odd

.

Such forms comprise the null cone of T , hence lie in the null cone of SL2, by the

Hilbert-Mumford Criterion. Conversely, if f lies in the null cone of SL2, then X

contains an element in the null cone of T , hence of the above form. In particular, X

is not closed.

Lemma III.2. If the degree d ≥ 3, then the generic orbit is closed, of dimension 3.

Proof. The non-vanishing of the discriminant gives a dense open set of forms with

no double roots. Claim the orbit of such a form is closed. First consider the diagonal

torus T in SL2. The T -weight spaces of Vd are spanned by the monomials xiyd−i.

Since f has only single roots and degree at least 3, it involves monomials of both

positive and negative weight. Hence if γ : k∗ → T is a 1-parameter subgroup, then

lim
t→0

γ(t) · f does not exist.

Now let γ : k∗ → SL2 be any 1-parameter subgroup. Find σ ∈ SL2 such that σγσ−1

lies in the diagonal torus T in SL2. Noting that σ · f also has all single roots,

lim
t→0

γ(t) · f = lim
t→0

γ(t)σ−1 · σf

= σ−1 · lim
t→0

σγ(t)σ−1 · σf

which also does not exist. By the Hilbert-Mumford Criterion, the orbit of f is closed.

For d ≥ 3, we may consider any three factors of f as a triple of points in P1. From

the analysis of the complex plane, an element σ ∈ SL2 is uniquely determined by

its action on three distinct points, which it sends to a triple of distinct points. Thus

the stabilizer of f is finite, and dimSL2 · f = 3.



34

Lemma III.3. For d ≥ 3, the categorical quotient has dimVd//SL2 = d− 2.

Proof. Let π : Vd → Vd//SL2 be the categorical quotient, a surjection of irreducible

varieties. Since the generic orbit is closed of dimension 3,

3 = dimVd − dimVd//SL2 = d+ 1− dimVd//SL2.

3.2 Bounding Generating Invariants for the Binary Forms

Let V = V1 = {ax + by | a, b ∈ k} be the binary forms of degree 1 over an

algebraically closed field k. Then the space of binary forms of degree d is isomorphic

to Sd(V ), and Se(Sd(V )) is isomorphic to the space of degree-e regular functions on

Vd. That is, Se(Sd(V )) = k[Vd]e.

Proposition III.4. For V = V1 and natural numbers d, e, Se(Sd(V )) ∼= Sd(Se(V )).

Proof. The linear factorization of f ∈ Vd yields a surjective, SL2-equivariant mor-

phism of varieties π : V d � Vd. Let Sd act on Vd by permuting the factors, and let

the torus (k∗)d−1 act as follows:

(t1, . . . , td−1) · (f1, . . . , fd) = (t1f1, t
−1
1 t2f2, . . . , t

−1
d−2td−1fd−1, t

−1
d−1fd).

Then π−1(f) is a T o Sd-orbit, and we have an isomorphism

π∗ : k[Vd]
∼→ k[V d]ToSd =

 d︷ ︸︸ ︷
S(V )⊗ · · · ⊗ S(V )

ToSd .
where S(V ) is the symmetric algebra. For details, please see [6, pg. 164].

For (f1, . . . , fd) ∈ V d, write fi = (aix+biy). If c0x
d+c1x

dy+ · · ·+cdy
d ∈ Vd, then

for every j, π∗(cj) ∈ k[V d] is homogeneous of degree d in the ai, bi. Since V ∼= V ∗,
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the map π∗ gives

Se(Sd(V ))
∼→

 ⊕
∑
ei=de

Se1(V )⊗ · · · ⊗ S(V )ed

ToSd

=

 d︷ ︸︸ ︷
Se(V )⊕ · · · ⊕ Se(V )

Sd
= Sd(Se(V )).

Lemma III.5. Let R be a graded, Cohen-Macaulay domain of dimension n. If R

has Hilbert-Poincaré series
∑
a(d)td, then there is a constant c > 0 such that

lim sup
d

{
a(d)

dn−1

}
= c > 0,

and a(d)/dn−1 ≥ c for a sequence of integers d with constant difference.

Proof. Let ` be the least common multiple of the degrees of a set of generators for

R. Let R[`; i] = ⊕mRm`+i, the ring of elements of degree congruent to i modulo `.

Then from Section 4 of [3], if R is Cohen-Macaulay, then each nontrivial R[`; i] has

Hilbert polynomial Hi(m) of degree n− 1. What is more, if R is a domain, then the

leading coefficient c of each nontrivial Hi(m) is equal to that of H0(m); the constant

c is the degree of the R[`; i]. Thus there exist infinitely many d, with period at most

`, such that a(d)/dn−1 = c+O(d−1), and the result follows.

Since SL2 acts linearly on Vn, one can find generating sets for k[Vn]SL2 such that

each polynomial is homogenous. Call a subset Γ of a k-algebra R minimal of it has

minimal cardinality among all generating sets. By the graded Nakayama lemma,

every minimal, homogenous generating set has the same cardinality.

Proposition III.6. As n→∞, the size of a minimal set of generators for k[Vn]SL2

grows faster than any polynomial in n.
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Proof. Suppose Γn is a generating set for Rn := k[Vn]SL2 of minimal cardinality. Let

Γn(d) be the number of generators in Γn of degree d. If k[Vn]SL2 has Poincaré series∑
an(d)td, then for large d,

Γn(d) ≥ an(d)−
bd/2c∑
i=1

an(i) · an(d− i) = ad(n)−
bd/2c∑
i=1

ai(n) · ad−i(n).

That is, we then subtract from dimRd the number of products of elements from R<d,

assuming no relations among them. The result is a lower bound for the number of

generators in degree d. We next recall Si(Vn) = Sn(Vi) to substitute an(i) = ai(n).

Consider the sum on the far right above. Now, ai(1) = a1(i) = 0 for all n. When

i = 2, ai(2) = a2(i) is 1 or 0, as k[V2]
SL2 is generated by the discriminant. Recall

dimRn = n − 2. Thus by Lemma III.5, lim supn{a2(n)ad−2(n)/nd−5} is a constant

(albeit a function of d). Thus a2(n)ad−2(n) = O(nd−5). Similarly, for 3 ≤ i ≤ bd/2c,

ai(n) · ad−i(n) = O(ni−3 · nd−i−3) = O(nd−6). Thus in the relation

Γn(d) ≥ ad(n)−
bd/2c∑
i=1

ai(n) · ad−i(n),

if d ≥ 6, then the right-most term grows as O(nd−5) By Lemma III.5, there exists

c > 0 such that ad(n)/nd−3 ≥ c for a sequence of integers n with constant difference.

For n in this sequence, ad(n) = O(nd−3) for large n. Choosing d arbitrarily large

forces Γn(d) to grow faster than any polynomial in n.

3.3 Counting Torus Invariants

3.3.1 Applying the Grosshans Principle

Counting torus invariants on binary forms may be easier than counting SL2-

invariants. To that end, consider

Proposition III.7 (Grosshans Principle). [14] Let an algebraic group G act ratio-

nally on V , and let H ⊆ G be a subgroup. Let H and G act on k[G] by right and left



37

translation, respectively. Then

k[V ]H ∼=
(
k[G]H ⊗ k[V ]

)G
.

Proof. Consider the morphism G× V → G× V by (g, v) 7→ (g, gv). Let G×H act

on the source by (g, h) · (u, v) = (guh−1, hv) and on the target by (g, h) · (u, v) =

(guh−1, gv). Indeed, the actions of G and H commute, and the map is a (G ×H)-

equivariant isomorphism. On the left, G acts only on G, so(
(k[G]⊗ k[V ])G

)H
= k[V ]H .

On the right, H acts only on G, so(
(k[G]⊗ k[V ])H

)G
=
(
k[G]H ⊗ k[V ]

)G
.

By the equivariance of the map, we obtain two expressions for the invariants of

G×H.

Let T ⊆ SL2 be the diagonal torus, and

k[SL2] ∼= k[z11, z12, z21, z22]/(z11z22 − z12z21 − 1).

Then under the right-action of T on SL2,

k[SL2]
T ∼= k[z11z12, z11z22, z12z21, z21z22]/(z11z22 − z12z21 − 1).

Lemma III.8. There exists a SL2-equivariant surjection

k[V2]⊗ k[Vd]� k[SL2]
T ⊗ k[Vd].

Proof. Write a0x
2 + a1xy + a2y

2. For the homomorphism k[V2] = k[a0, a1, a2] �

k[SL2]
T , send

a0 7→ z11z12

a1 7→ z11z22 + z12z21 ≡ 2z11z22 − 1 ≡ 1 + 2z12z21 (z11z22 − z12z21 − 1)

a2 7→ z21z22
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Explicitly, if

σ−1 =

 α β

γ δ

 ∈ SL2,

then

σ · a0 = α2a0 + αβa1 + β2a2

σ · a1 = 2αγa0 + (αδ + βγ)a1 + 2βδa2

σ · a2 = γ2a0 + γδa1 + δ2a2

and

σ · (z11z12) = α2z11z12 + αβ(z11z22 + z12z21) + β2z21z22

σ · (z11z22) = αγz11z12 + αδz11z22 + βγz12z21 + βδz21z22

σ · (z12z21) = αγz11z12 + βγz11z22 + αδz12z21 + βδz21z22

σ · (z21z22) = γ2z11z12 + γδ(z11z22 + z12z21) + δ2z21z22.

Comparing the actions of SL2 on the generators above, it follows that the defintion

of k[a0, a1, a2]� k[SL2]
T is indeed surjective and SL2-equivariant.

Applying the Grosshans Principle,

k[V2 ⊕ Vd]SL2 �
(
k[SL2]

T ⊗ k[Vd]
)SL2 ∼= k[Vd]

T .

Kac showed that number of generating invariants for k[Vd]
SL2 is bounded below by

the size of a minimal generating set for k[Vd]
T [30]. The Grosshans Principle may

help relate torus invariants and G invariants for representations of other groups G.

3.3.2 An Upper Bound for Torus invariants

Because the following invariant subrings are generated by monomials, we say

an invariant monomial is indecomposable if it is not the product of non-constant
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invariants. Consider the action of T ∼= k∗ on a polynomial ring k[x1, . . . , xn, x−n]

defined by

t · xi = tixi.

Then the invariants are monomials of weight zero, whose positive-weight part is a

multiple of n.

Proposition III.9. The cardinality of a minimal generating set for

k[x1, . . . , xn, x−n]T is O
(
e6
√
n log 2n

)
.

Proof. A minimal generating set contains only monomials of the form xnx−n and

mxk−n, where m ∈ (x1, . . . , xn−1) is properly divisible by no monomial of weight con-

gruent to 0 modulo n. Now, Olson shows that if S ⊂ Zn has order at least 3
√
n, then a

subset of S has trivial sum [43]. Now, a minimal generating set of k[x1, . . . , xn, x−n]T

can be chosen such that each (monomial) generator properly includes no invariant.

So such a set can be chosen such that each generating monomial includes no more

than 3
√
n distinct variables.

An algorithm of Derksen and Kemper to construct torus invariants implies a

degree bound of 2n − 1 for a generating set of k[x1, . . . , xn, x−n]T , by computing

within the convex hull of the variables’ weights [6, p. 159] . This linear bound may

only hold when the torus has rank 1; Wehlau provides a more general bound in [46].

An upper bound for the number of generators in degree d is(
n

b3
√
nc

)
·
(
b3
√
nc+ d− 1

b3
√
nc − 1

)
≤ nb3

√
nc · (b3

√
nc+ d− 1)b3

√
nc−1.

The first term on the left counts ways of choosing 3
√
n variables; the second term

counts monomials of degree d with 3
√
n variables. Summing the upper bound over

degrees d up to 2n− 1 yields

O
(

(n3
√
n · (3

√
n+ 2n− 2)3

√
n
)
≤ O((2n)6

√
n) = O(e6

√
n log 2n).
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The same bound holds for invariants of the cyclic group Zn ⊂ T :

Corollary III.10. Identify Zn with the nth roots of unity in T . The evaluation

homomorphism

ev: f(x1, . . . , xn, x−n) 7→ f(x1, . . . , xn, 1)

provides a Zn-equivariant isomorphism

k[x1, . . . , xn, x−n]T → k[x1, . . . , xn]Zn .

In particular, the cardinality of a minimal generating set for k[x1, . . . , xn, x−n]Zn is

O(e6
√
n log 2n)

Proof. Surjectivity is clear. For injectivity, it suffices to show that the ideal

(x−n − 1) ⊂ k[x1, . . . , xn, xn−1].

contains no T -invariants. Recall every T -invariant is a sum of invariant monomials.

If f ∈ (x−n − 1) is a T -invariant, then half of the monomials of f have nonzero

weight, which is absurd.

Recall our initial interest in k[Vd]
T . If d = 2n is even, then this ring is isomorphic to

Bn := k[x−n, x−n+1, . . . , x0, . . . , xn]T .

Proposition III.11. The cardinality of a minimal generating set for Bn is

O
(
ne12

√
n log 2n

)
.

Proof. For r ≥ 1, let mxk−r be an invariant monomial such that

m ∈ k[xr−1, . . . , x1, x−1, . . . , x−(r−1)]



41

and m is properly divisible by no monomial of weight congruent to 0 modulo r.

Since xi and x−r+i have the same weight modulo r, Olson’s theorem yields that m

involves no more than 2 · 3
√
r distinct variables, which may occur with multiplicity.

Otherwise, if m′ divides m and m′ involves 6
√
r distinct variables, then m′ is divisible

by a monomial of weight congruent to 0 modulo r.

Recall that monomials of the form mxk−r in a minimal generating set have degree

at most 2n− 1, for any r. Since an upper bound for the number of generating mxk−r

in degree d is(
2r

6
√
r

)
·
(

6
√
r + d− 1

6
√
r − 1

)
≤ (2r)6

√
r · (6
√
r + d− 1)6

√
r−1,

summing these upper bounds up to degree 2n− 1 yields

O
(

(2r)6
√
r · (6
√
r + 2n− 2)6

√
r
)
≤ O((2n)12

√
r) = O(e12

√
r log 2n).

Repeat the argument for invariants of the form xkrm with

m ∈ k[xr−1, . . . , x1, x−1, . . . , x−(r−1)].

In either case, the weight of m determines the exponent k. Note that the num-

ber of invariants xrx−r grows linearly, and these monomials together generate the

invariants. The result follows by choosing the largest r = n.

In the invariant mxkr considered in the above proof, the monomial m may be divisible

by invariants not involving xr. Nevertheless, the upper bound holds for monomials

involving r.

Corollary III.12. The cardinality of a minimal generating set for k[Vd]
T is

(a) O(de6
√
d log 2d) for odd d,

(b) O(de12
√
d/2 log d) for even d.
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Proof. For odd d there is a T -equivariant isomorphism

k[Vd]
T ∼= k[x−d, x−d+2, . . . , x−1, x1, . . . , xd]

T ,

where all variables have odd weight. Following the argument above, the invari-

ant mxkr , say, involves no more than 3
√
r variables among the r + 1 variables

xr−2, . . . , x−(r−2) of distinct weight modulo r. Making these adjustments to the

above calculations, but retaining the degree bound 2d − 1 (from the convex hull

of the variables’ weights), yields an upper bound for the size of a minimal generating

set:

(r + 1)3
√
r · (3
√
r + 2d− 2)3

√
r ≤ O((2d)6

√
r) = O(e6

√
r log 2d).

The weight r varies from 1, 3, 5 . . . , d, and the result follows.

For even d = 2n, the isomorphism

k[Vd]
T ∼= k[x−n, x−n+2, . . . , x0, . . . , xn]T

makes way for the previous proposition.

3.4 Generator Counts of Representations Parameterized by Weight

3.4.1 The Ring of Covariants

Let G be a reductive algebraic group over a field k of characteristic 0. Fix a Borel

subgroup B = T n U , where T is a maximal torus and U is the maximal unipotent

subgroup in B. Let Vλ be the representation of G of highest weight λ with respect to

T , which is unique up to isomorphism. We will show that whne G is semisimple, the

cardinality of a minimal generating set of k[Vnλ]
G, as a function of n, grows faster

than any polynomial.

Recall that when U acts on reductive G on the right, then k[G]U = ⊕λ≥0Vλ as

graded rings, where the latter is the direct sum of the irreducible representations Vλ
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whose highest weight λ is positive. Choose a positive weight λ, and consider the

subring Rλ := ⊕n≥0Vnλ.

Lemma III.13. The ring Rλ is finitely generated, namely, if vλ∗ is the lowest weight

vector of (Vλ)
∗, then Rλ

∼= k[G · vλ∗ ].

Proof. Let vλ∗ ∈ (Vλ)
∗ be a lowest weight vector, of weight −λ, of the dual space to

Vλ. Claim Rλ = k[G · vλ∗ ]. Let f be the image of (vλ∗)
∗ in k[G · vλ∗ ]. For n ≥ 0, the

function fn has weight nλ under T and generates a G-module isomorphic to Vnλ in

k[G · vλ∗ ], whence Rλ ↪→ k[G · vλ∗ ].

To obtain the reverse inclusion, consider the orbit map G → G · vλ∗ defined by

g 7→ g · vλ∗ . Because this map is dominant, it gives rise to a G-equivariant injection

k[G · vλ∗ ] ↪→ k[G]. Consider the stabilizer in T of vλ∗ ,

Tλ∗ = {t ∈ T | t · vλ∗ = vλ∗}.

If hµ ∈ k[G · vλ∗ ] is a highest weight vector of weight µ, claim µ(Tλ∗) = {1}. First

note that if hµ(vλ∗) = 0, then hµ(T · vλ∗) = T · hµ(vλ∗) = {0}, because hµ is a weight

vector. Let U− be the opposite unipotent subgroup to U with respect to T ; then vλ∗

is U− invariant, because U− lowers the weights of T . It follows

{0} = hµ(vλ∗) = hµ(T · vλ∗) = hµ(UTU− · vλ∗)

because hµ is U -invariant as a highest weight vector. Since UTU− is dense in G,

hµ would be identically zero on G · vλ∗ , which is absurd. Thus hµ(vλ∗) 6= 0, and for

t ∈ Tλ∗ ,

µ(t)hµ(vλ∗) = t · hµ(vλ∗) = hµ(t−1 · vλ∗) = hµ(vλ∗).

Therefore µ(Tλ∗) = {1} and µ = nλ, so every irreducible G-submodule of k[G · vλ∗ ]

is one of the Vnλ.
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For comparison to the size of a generating set, note that the dimension of the Vnλ

grows as a polynomial in n:

Lemma III.14. Let r be the number of positive roots of a reductive group G. Then

dimVnλ = O(nr).

Proof. Let Φ be the set of roots of G, δ = 1
2

∑
α�0 α a sum over the positive roots,

and (·, ·) an inner product on the space spanned by Φ, preserved by the Weyl group

of reflections. Then by Weyl’s formula in [27, p. 139],

dimVnλ =

∏
α�0(nλ+ δ, α)∏

α�0(δ, α)
.

The number r of positive roots of G satisfies 2r + dimT = dimG.

3.4.2 Generic Closed Orbits in Cartesian Products

For a finite-dimensional vector space V over an algebraically closed field k, let

ρ : G→ GL(V ) be a non-trivial, rational representation of the semisimple algebraic

group G.

Lemma III.15. If G is semisimple and ρ : G → GL(V ) is a representation, then

the image of ρ lies in SL(V ). If ρ is not trivial, then dim ρ(G) ≥ 2.

Proof. The image ρ(G) of G in GL(V ) is also semisimple, and ρ(G) = [ρ(G), ρ(G)] ⊆

[GL(V ), GL(V )] = SL(V ). If ρ is non-trivial, then dim ρ(G) ≥ 1, but there are no

connected, semisimple algebraic groups of dimension 1 [27, p. 131].

Lemma III.16. For an n-dimensional vector space V , let X = P(V ). Let d ≥ n+ 1

and let SL(V ) = SLn act diagonally on Xd. If X̃d is the affine cone over Xd, then

the generic orbit of SLn acting on X̃d is closed, of dimension dimSLn.

Proof. Fixing a basis for V , let f : V d → k be the product of the (n × n)-minors of

an n × d matrix. This f defines a function on Xd and also on the affine cone X̃d.
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Choose p ∈ X̃d with f(p) 6= 0, and let [p] be its image in Xd. Then [p] defines d

points in P(V ), no n of which lie in the same hyperplane. Thus the stabilizer of [p] in

SLn is finite (namely, the scalar matrices of SLn such that the product of the entires

is 1). It follows that the stabilizer of p is finite, whence dim(SLn · p) = n2 − 1. This

dimension holds for the orbit of generic p with f(p) 6= 0.

Note that f is an invariant function on X̃d, because the SL(V ) fixes determinants.

So if q ∈ X̃d lies in the orbit closure of p, then f(q) = f(p). Thus dim(SLn·q) = n2−1

as well. Since orbits in the boundary of SLn ·p must have strictly smaller dimension,

the point q must lie in the orbit of p. Therefore, the generic orbit is closed.

Recall that Vλ is a highest-weight representation of a semisimple group G, and

R = ⊕n≥0Vnλ. Let Z = ProjR, and consider the sum of tensors over k,

C =
⊕
n≥0

d︷ ︸︸ ︷
Vnλ ⊗ · · · ⊗ Vnλ .

The dth Cartesian product of Z is

Zd = ProjC =

d︷ ︸︸ ︷
Z ×k · · · ×k Z .

As G ⊆ Aut(R), G acts rationally on Z, hence diagonally on Zd, hence on the affine

cone Z̃d.

Lemma III.17. In the above notation, if ρ : G → GL(Vλ) is an irreducible repre-

sentation of highest weight λ and d > dimVλ, then the generic orbit of G acting on

Z̃d is closed, of dimension dim ρ(G).

Proof. Suppose dimVλ = n. Note Z is a subvariety of X = P(V ∗λ ): indeed, if

k[Vλ] = k[x1, . . . , xn], then there is a surjection k[x1, . . . , xn]� ⊕m≥0Vmλ by sending

the xi onto an (n-dimensional) basis for Vλ. Thus Z̃d is a closed subvariety of X̃d,

and Z̃ spans V ∗λ because k[Z̃] contains Vλ.
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As in the proof of Lemma III.16, let f : V d
λ → k be the product of the (n × n)-

minors of an n×d matrix. Since Z̃ is irreducible and spans Vλ, the generic p ∈ Z̃d ⊆

X̃d has f(p) 6= 0. Then for generic p ∈ Z̃d, the orbit SL(Vλ) ·p is closed in X̃d. Recall

that the stabilizer SL(Vλ)p of p is a finite set of scalar matrices, whence normal. It

follows that the orbit SL(Vλ) · p is isomorphic to SL(Vλ)/SL(Vλ)p as a variety, so it

is an algebraic group. By Lemma III.15, ρ(G) is a closed subgroup of SL(Vλ) (see

[27, p. 54]), and the ρ(G) action on Vλ factors through the SL(Vλ) action. Thus for

generic p ∈ Z̃d, G · p is isomorphic to ρ(G)/ρ(G)p, the homomorphic image of an

algebraic group. Thus G · p is closed in SL(Vλ) · p, with dimension dim ρ(G). Since

G · p ⊆ Z̃d, the result follows.

3.4.3 Counting Generators

To count generating invariants for large n, we again need to understand the degree

d component of k[Vnλ]
G.

Proposition III.18. Let ρ : G → GL(Vλ) be a non-trivial, rational representation

of highest weight λ. Write Sd(Vnλ)
G ∼= k[Vnλ]

G
d , the degree-d homogeneous piece of

k[Vnλ]
G. Let m = dim ρ(G). Then there is an integer c with 1 ≤ c < m such that for

large n,

dimSd(Vnλ)
G ≤ O(ncd−1),

and when both n and d are large,

dimSd(Vnλ)
G = O(ncd−m),

Proof. Letting the symmetric group Sd permute the d factors of each n-graded piece

of ⊕
n≥0

d︷ ︸︸ ︷
Vnλ ⊗ · · · ⊗ Vnλ,
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take the categorical quotient,

Zd//Sd = Proj

(⊕
n≥0

Sd(Vnλ)

)
.

Next take the quotient by the G action on each copy of X:

(
Zd//Sd

)
//G = Proj

(⊕
n≥0

Sd(Vnλ)
G

)
.

These actions of G and Sd commute. From Lemma III.17, if d ≥ dimVλ + 1, then

the generic orbit of G acting on the cone Z̃d is closed and of dimension ρ(G) = m.

Therefore, for large enough d,

dim(Zd//Sd)//G = d · dimZ −m.

Now, Lemma III.13 yields that

dimZ + 1 = dimR = dim k[G · vλ∗ ] ≤ dim ρ(G) = m.

Let c = dimZ. Note c ≥ 1, because for large d, Z̃d contains an orbit of dimension

m > 1. Thus the Hilbert polynomial for ⊕nSd(Vnλ)G has degree cd−m for large d,

and degree bounded by cd− 1 otherwise.

As above, let k[Vnλ]
G have Hilbert-Poincaré series

∑∞
d=0 an(d)td.

Theorem III.19. Let ρ : G → GL(Vλ) be a non-trivial, rational representation of

highest weight λ. The minimal cardinality of a generating set for k[Vnλ]
G grows faster

than any polynomial in n, and hence faster than any polynomial in dimVnλ.

Proof. Let Γn denote the minimal cardinality of a generating set of k[Vnλ]
G, and let

N = dimVλ. From the proof above, if d > N , then dimSd(Vnλ)
G = O(ncd−m) for
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large n and a constant c with 1 ≤ c < m. Then for large n,

Γn ≥ an(d)−
bd/2c∑
i=1

an(i)an(d− i)

= an(d)−
N∑
i=1

an(i)an(d− i)−
bd/2c∑
i=N+1

an(i)an(d− i)

≈ an(d)−
N∑
i=1

an(i)an(d− i)−
bd/2c∑
i=N+1

nci−mnc(d−i)−m

where the approximation symbol indicates an asymptotic estimate for sufficiently

large n and d. When 1 ≤ i ≤ N and n is large, we bound an(i) = O(nci−1). Assume

d−N > N,m, so that for i ≤ N we may bound an(d− i) = O(nc(d−i)−m). Then for

such i ≤ N , we have an(i)an(d − i) = O(ncd−m−1), and we obtain that for large n

and d,

O(Γn) ≥ an(d)−N · ncd−m−1 − dncd−2m

≈ ncd−m −N · ncd−m−1 − dncd−2m

≈ ncd−m

Fixing d arbitrarily large, it follows that the size of a minimal generating set for

k[Vnλ]
G grows faster than any polynomial in n. The final assertion of the theorem

follows because, by Lemma III.14, dimVnλ grows like a polynomial in n.



CHAPTER IV

Quasi-Regular Functions

Let V be a representation of an algebraic group G over a field k = k. Then for

p ∈ V , the orbit G · p is open in its closure, and its boundary is a union of orbits.

If G · q is an orbit in the boundary of G · p, then every f ∈ k[V ]G has f(p) = f(q).

In general, polynomial invariants cannot separate p and q if G · p ∩G · q 6= ∅. Thus

if a set of more general invariant functions V → k is to separate all the orbits of a

group action, then the functions in S must be able to distinguish locally closed sets.

This chapter develops a set of such “quasi-regular” functions on an affine scheme

and explores their properties.

4.1 The Patch Topology

For any commutative ring R with 1, consider the spectrum SpecR as a set, and

endow it with the patch topology whose basis is generated by “patches” of the form

V(f),V(g)c for f, g ∈ R. The terminology comes from Mel Hochter’s 1969 paper [22],

in which he identifies properties that characterize spaces in the image of the Spec

functor. Note that this topology has more open sets than the Zariski topology. Let

QSpecR denote the space SpecR with the patch topology. Writing X = QSpecR,

for f ∈ R let Xf = V(f)c. Finite intersections of basis elements take the form

(f1, . . . , fr) ∩Xg1···gs .

49
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Thus a general element of the topology, constructed with infinite unions and finite

intersections, can be written

⋃
i∈S

(
V(fi,1, . . . , fi,ri) ∩Xgi,1···gi,ti

)
for some index set S One can further write gi,1 · · · gi,ti = gi.

Proposition IV.1. The topological space X = QSpecR is Hausdorff.

Proof. Choose distinct primes p, q of R, and find f ∈ p\q. Then p ∈ V(f), q ∈ Xf ,

and both of these sets are open.

The partition of QSpecR arising in the above proof suggests the name “‘patch topol-

ogy.” In fact, a similar proof shows that QSpecR is totally disconnected.

If R is an integral domain, denote by Q(R) its field of fractions.

Proposition IV.2. For any commutative ring R with 1, QSpecR = X is compact

under the patch topology.

Proof. This proof imitates the classical algebraic geometry proof that SpecR is quasi-

compact. Consider an open cover of X in the patch topology, with some index set

S:

X =
⋃
i∈S

(V(fi,1, . . . , fi,ri) ∩Xgi)

Let R[x] = R[xij : i ∈ S, 1 ≤ j ≤ ri], and let I ⊆ R[x] be the ideal generated by

all fijxij − gi. Claim T = R[x]/I is the zero ring. Assuming the claim is false, let

p ⊂ T be a nonzero prime ideal. Then p pulls back to a prime q ⊂ R[X] containing

every fijxij− gi. If q pulls back to a prime q′ = q∩R, then for some i ∈ S, it follows

q′ ∈ V(fi,1, . . . , fi,ri)∩Xgi , because q′ ∈ X lies in some open set in the open cover of

X.
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Since q′ = R ∩ q and q′R[x] ⊆ q, it follows that q contains both fijxij and

fijxij − gi, 1 ≤ j ≤ ri, and hence contains gi. Thus q′ = R ∩ q contains gi; a

contradiction. Therefore T = R[x]/I contains no (proper) prime ideals, proving the

claim. From I = R[x] it follows that there exists a finite subset S ′ ⊂ S and sets

S ′i = {j | 1 ≤ j ≤ ri} such that

1 =
∑
i∈S′

∑
j∈S′i

bij(x)(fijxij − gi) for some bij(x) ∈ R[xij : i ∈ S ′, j ∈ S ′i].

Also note that if bij(0) is the image of bij(x) under the surjection R[x] ↪→ R by all

xij 7→ 0, then 1 =
∑

i∈S′
∑

j∈S′i
bij(0) · gi. Thus the ideal (gi : i ∈ S ′) is all of R.

It remains to show that the desired finite subcover is

X =
⋃
i∈S′

(V(fi,1, . . . , fi,ri) ∩Xgi) .

Let p ⊂ R be a prime ideal. For n = |S ′|, write S ′ = {g1, . . . , gn}. Then upon

renumbering, we may assume g1, . . . gm 6∈ p for some m ≥ 1 and assume gi ∈ p

for i > m. We must show that for some i ≤ m, all fi,j ∈ p. Assume by way of

contradiction that for every i ≤ m there exists an associated fi,j 6∈ p. Consider the

ideal

J = (f ijxij − gi : fij 6∈ p) + (xij : m < i ≤ n, j ∈ S ′i) ⊆ (R/p)[xij : i ∈ S ′, j ∈ S ′i],

where overlines denote coset representatives modulo p, and consider the sequence

R/p ↪→ (R/p)[xij : i ∈ S ′, j ∈ S ′i]
J

↪→ Q(R/p).

Indeed, since R/p is a domain, the middle term is isomorphic to the subring of

Q(R/p) generated by R and gi/fij for i ∈ S ′, j ∈ S ′i. Since the remaining fij and

gi lie in p, the ideal J contains
∑

i∈S′
∑

j∈S′i
bij(x)(f ijxi − gi) = 1. It follows that

R/p ↪→ Q(R/p) factors through the zero ring, a contradiction. Therefore, for some
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i ≤ m, the prime p does not contain gi but does contain all fij for j ∈ S ′i. In other

words, there exists i ∈ S ′ such that p ∈ V(fi1, . . . , fi,ri) ∩Xgi for an arbitrary choice

p ∈ X, and a finite subcover exists.

4.2 Quasi-regular Functions

Let φ : R → S be a homomorphism. Then φ∗ : QSpecS → QSpecR remains a

continuous map in the patch topology by the usual pull-back of prime ideals, and the

localization φp induces an inclusion of fraction fields Q(R/φ∗(p))→ Q(S/p). Such a

homomorphism is further called a quasi-isomorphism if both

1. φ∗ is a homeomorphism in the patch topology,

2. For every p ∈ QSpecS, φp : Q(R/φ∗(p))→ Q(S/p) is an isomorphism.

Thus when constructing functions on SpecR, it suffices to do so on a quasi-isomorphic

spectrum. Some examples follow:

Proposition IV.3. For f ∈ R, the homomorphism φ : R → Rf × R/(f) by r 7→

(r/1, r + (f)) is a quasi-isomorphism.

Proof. Recall the classical spectrum of Rf × R/(f) is homeomorphic under φ∗ to

the disjoint union of the spectra of its factors. The same holds for the QSpecs:

for one thing, φ∗ restricted to each component is homeomorphic onto its respective

image. For another, the images of these components form a disjoint open cover of

QSpecR. Because φp gives the isomorphism Q(Rf × R/(f)/φ∗(p)) ∼= Q(R/p) for

every p ∈ SpecR, the result follows.

Note that the previous proposition illustrates that the QSpecs of two rings can

be quasi-isomorphic when the respective spectra are not.
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Proposition IV.4. Let Rred be the reduced ring of R. Then the natural map φ :

R→ Rred is a quasi-isomorphism.

Proof. As every prime of R contains the nilradical and φ is surjective, it follows that

φ∗ is a classical homeomorphism, hence a patch homeomorphism. Again Q(R/p) ∼=

Q(Rred/φ
∗(p)) under φp, and φ is a quasi-isomorphism.

In general, isomorphic spectra are quasi-isomorphic.

Proposition IV.5. A composition of quasi-isomorphisms is a quasi-isomorphism.

For the remainder of this section, recall that a continuous bijection of compact

Hausdorff spaces is closed, whence open.

Proposition IV.6. If ψ : R → S is a quasi-isomorphism and φ : R → T is a

homomorphism, then ϕ : T → S ⊗R T is a quasi-isomorphism.

Proof.

R
ψ //

φ

��

##G
GG

GG
GG

GG
S

��

**UUU
UUUU

UUUU
UUUU

UUUU
U

Q(R/q)

��

// Q(S/a)

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

T

##G
GG

GG
GG

GG
ϕ // S ⊗R T

∃!

**TTT
TTTT

TTTT
TTTT

T

Q(T/b) //

''OO
OOO

OOO
OOO

Q(S/a)⊗Q(R/q) Q(T/b)

∃!ttjjjj
jjjj

jjjj
jjj

Q(S ⊗R T/p)

In this proof, tensors are over R unless noted otherwise. First establish a bijection

between primes p ∈ SpecS ⊗ T and triples (q, a, b) ∈ SpecR× SpecS × SpecT such

that a, b pull back to q. Clearly any p ∈ SpecS ⊗ T produces such a triple under
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the respective pull-backs. Conversely, such a triple determines the ring

F := Q(S/a)⊗Q(R/q) Q(T/b),

which is isomorphic as a Q(R/q)-algebra to Q(T/b), because ψ−1(a) = q and R, S are

quasi-isomorphic. Now, S, T map to F by factoring through their respective residue

fields. Hence there exists a unique map S ⊗ T → F . Denote by p the pull-back to

S ⊗ T of the zero ideal in F .

In summary, p ∈ SpecS ⊗ T pulls back to a triple of the above form, and such a

triple determines a prime of S ⊗ T . On the one hand, if a triple determines a prime

of S ⊗ T by the pull back of (0) ⊂ F , then that prime must pull back to the entries

of the triple, by the commutativity of the diagram. On the other hand, assume a

prime p ∈ SpecS⊗T pulls back to the triple (q, a, b). Then as Q(S/a), Q(T/b) map

to Q(S ⊗ T/p), there exist unique maps S ⊗ T → Q(S ⊗ T/p), F ↪→ Q(S ⊗ T/p),

and S ⊗ T → Q(S ⊗ T/p) factors uniquely as

S ⊗ T → Q(S/a)⊗Q(R/q) Q(T/b) ↪→ Q(S ⊗ T/p).

Therefore the zero ideal of F pulls back to p, proving the bijection. Now, a triple

(q, a, b) provides a prime b ∈ SpecT , and as F ∼= Q(T/b), such a prime b pulls back

to a unique prime p ∈ SpecS ⊗ T that determines a triple containing b. Thus ϕ∗ is

a bijection.

What is more, the diagram shows that the inclusion S ⊗ T/p ↪→ Q(S ⊗ T/p)

factors through Q(T/b), since Q(S/a) ⊗Q(R/q) Q(T/b) ∼= Q(T/b) as noted above.

As Q(S ⊗ T/p) is the smallest field containing S ⊗ T/p, it follows that ϕp is an

isomorphism of residue fields. Finally, ϕ∗ is continuous in the patch topology and is

open as a bijection of compact Hausdorff spaces.
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The goal of quasi-isomorphisms is that one can often define functions and ho-

momorphisms on a quasi-isomorphic QSpec that do not exist on the original space.

To this end, define a quasi-homomorphism φ : R  S to be a continuous map

φ∗ : QSpecS → QSpecR together with field inclusions φp : Q(R/φ∗(p)) ↪→ Q(S/p)

such that there exists a ring T , ring homomorphism ψ : R → T , and a quasi-

isomorphism γ : S → T with the following properties:

1. φ∗ = ψ∗ ◦ (γ∗)−1,

2. For p ∈ QSpecS and q = (γ∗)−1(p), one has φp = (γq)
−1 ◦ ψq.

S

γ
��

R

φ
??
?�
?�
?�
?�
ψ // T

Note that T may not be unique. Indeed, the flexibility in choosing perhaps even

a chain of quasi-isomorphic QSpecs will aid in the following generalization of the

regular functions on SpecR.

Consider a function f on QSpecR such that for every p ∈ QSpecR, f(p) lies

in Q(R/p). Call f a quasi-regular function if there exists an associated quasi-

homomorphism φ : Z[x]  R such that φp(x) = f(p) for every p ∈ QSpecR. That

is, f is considered quasi-regular if there exists a quasi-isomorphic ring T such that

under the quasi-isomorphism γ, f is regular on T .

Proposition IV.7. The quasi-isomorphism φ above is uniquely determined by f .

Proof. Let φ, ϕ be quasi-homomorphisms associated to f . Then both define the

same map of topological spaces. If q is the pull-back of p ∈ QSpecR, then φp, ϕp :

Q(Z[x]/q) → Q(R/p) have φp(1) = 1 = ϕp(1) and φp(x) = f(p) = ϕp(x). These

assignments determine φp = ϕp uniquely. Upon recalling that the choice of the ring

T quasi-isomorphic to R need not be unique, the proof is complete.
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Proposition IV.8. For any ring R, the constant functions 0, 1 are quasi-regular

on QSpecR. If f, g, are quasi-regular functions, then f + g, f − g, fg are also quasi-

regular.

Proof. For the constant functions 0,1, define the homomorphisms Z[x] → R such

that x 7→ 0, 1, respectively. In both cases, R itself plays the role of the ring T above.

Next assume f, g are quasi-regular, with associated quasi-homomorphisms Z[x] 

R defined by

ψi : Z[x]→ Ti, x 7→ xi, i ∈ {1, 2},

respectively. It follows from Proposition IV.6 that R is quasi-isomorphic to T1⊗RT2.

Hence define

ψ : Z[x]→ T1 ⊗R T2 by x 7→ x1 ⊗ x2.

Now, the rings R, T1, T2, and T1 ⊗ T2 are pairwise quasi-isomorphic, and since the

following diagram commutes,

T1

$$II
III

III
II

R

??��������

��?
??

??
??

?
// T1 ⊗R T2

T2

::uuuuuuuuuu

the product of x1, x2 in T1 ⊗ T2 is precisely x1 ⊗ x2, which is mapped to f(p)g(p)

upon taking the residue fields at any p ∈ SpecR. The proof for f + g or f + (−g)

proceeds similarly, by sending ψ : x 7→ x1 ⊗ 1 + 1⊗ x2.

One useful construction is the quasi-inverse of a quasi-regular function:

f ?(p) =


1/f(p) f(p) 6= 0

0 f(p) = 0

.
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Proposition IV.9. If f is a quasi-regular function on QSpecR, then so is f ?.

Proof. Associated to f is a quasi-isomorphism R→ T and a homomorphism Z[x]→

T , with x 7→ g ∈ T , say. Define a new quasi-homomorphism φ : Z[x]  R by

the quasi-isomorphism γ : R → T → Tg × T/(g) = S and the homomorphism

ψ : Z[x] → S sending x 7→ (1/g, 1). Then φp(x) agrees with f ? at every point of

QSpecR.

Note further that (f ?)2f = f ?, f 2f ? = f , and (f ?)? = f , where the latter requires

the fact that, in the notation of the above proof, S(1/g,1) × S/((1/g, 1)) ∼= S(1/g,1)
∼=

Tg × T/(g).

4.3 QI-rings

To axiomatize a ring in which quasi-inverses exist as above, define a QI-ring to be

a commutative ring R with 1 on which an operation f 7→ f ? is defined and satisfies

the following for every f ∈ R:

(f ?)2f = f ? and f 2f ? = f.

It follows immediately that every element f of a QI-ring is a zero-divisor: f(1−ff ?) =

0. Furthermore, if q ∈ SpecR and f ∈ R, then q 3 f or q 3 (1− ff ?), but not both.

For an arbitrary commutative ring R with 1, define R̂ to be the ring of quasi-

regular functions on QSpecR.

Proposition IV.10. For every commutative ring R with 1, R̂ is a QI-ring.

Proof. Proposition IV.8 above shows that the quasi-regular functions form a ring.

So it remains to verify the axioms for f ? in a QI-ring, by considering the values of

f ?(p)2f(p), f(p)2f ?(p) in each Q(R/p).
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Ideals in QI-rings are closed under the operation f 7→ f ?:

Proposition IV.11. For every f in a QI-ring R,

(a) f ? ∈ (f)

(b) f ∈ (fn) for every n ≥ 1

Proof. Property (a) follows from the first axiom. For (b), induct on n: The case n = 1

is clear. If f ∈ (fn−1), then f = gfn−1 for some g ∈ R, and gfn = f · gfn−1 = f 2.

Thus (fn) 3 f 2f ? = f .

Corollary IV.12. Every ideal I of a QI-ring R is radical, and R is reduced.

Proof. If fn ∈ I, then part (b) above yields that f ∈ I. Now consider I = (0).

Corollary IV.13. Every prime ideal p of a QI-ring is maximal.

Proof. For any f not in p, consider I = (f) + p. As remarked above, one must have

(1− ff ?) ∈ p and ff ? ∈ I. Then 1 ∈ I.

In an arbitrary commutative ring with 1, every element is a quasi-regular function

on QSpecR, possibly the zero function:

Proposition IV.14. Let ψ : R→ R̂ be the homomorphism assigning every element

of R to its associated quasi-regular function. Then the kernel of ψ is the nilradical√
(0).

Proof. For every f ∈ R, f(p) is the image of f in the residue field Q(R/p). Thus

f(p) = 0 for every p ∈ QSpecR if and only if f lies in every prime ideal of R.

Lemma IV.15. Let f be a quasi-regular function on QSpecR. Then the set of points

where f = 0 is open and closed in the patch topology.
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Proof. Consider the quasi-homomorphism associated to f :

R

γ

��
Z[x]

φ
===}
=}
=}
=}
=}
ψ // T

Let ψ(x) = ξ ∈ T . For p ∈ QSpecR, find q ∈ QSpecT such that γ∗(q) = p. Then

f(p) = 0 ∈ Q(R/p) if and only if ξ 7→ 0 ∈ Q(T/q) if and only if ξ ∈ q if and only if

q ∈ V(ξ), an open and closed set in the patch topology. As γ∗ is a homeomorphism,

f vanishes on the open and closed set γ∗(V(ξ)).

Proposition IV.16. The homomorphism ψ : R → R̂ induces a homeomorphism

ψ∗ : Spec R̂→ QSpecR.

Proof. Choose a prime ideal p of R, and define mp ⊂ R̂ to be the ideal of quasi-

regular functions vanishing at p. Then mp 63 1 is proper, contains ψ(p), and is prime

because the product of two functions fg vanishes at p if and only if f(p) = 0 or

g(p) = 0 (in particular, mp is maximal). Hence the contraction of mp is a prime ideal

of R containing p.

Define the evaluation homomorphism evp : R̂ → Q(R/p) by f 7→ f(p). Then the

induced evaluation map R̂/mp → Q(R/p) is an isomorphism, and one has

R/p
ψ→ R̂/mp

∼→ Q(R/p).

To show the contraction of mp is precisely p, it remains to show that the first map

is injective. To that end, ψ sends the class of f ∈ R to its value at p as a quasi-

regular function, so the class of f lies in the kernel of ψ if and only if f ∈ p. Hence

ψ−1(mp) = p, and ψ∗ is surjective.

It suffices to show that every maximal ideal m ⊂ R̂ is the (unique, maximal) ideal

of quasi-regular functions vanishing at some point of QSpecR. Then since quasi-
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regular functions separate points of QSpecR, it would follow that ψ∗ is a continuous

bijection of compact spaces, whence open. To this end, choose m ⊂ R̂, and define

Z(m) = {p ∈ QSpecR | f(p) = 0 ∀ f ∈ m}.

Claim Z(m) is not empty: otherwise there exists an open (and closed) cover of

X = QSpecR by the images of Xfαf∗α : = V(fαf
∗
α)c for a collection of fα ∈ m. Take

a finite subcover, say X =
⋃
ψ∗(Xfif?i

)) for fi ∈ m. The intersections of elements of

this subcover are finite intersections, of the form

Xfi1f
?
i1
···fikf

?
ik

for fij ∈ m.

Write fi1f
?
i1
· · · fikf ?ik = gi. Then Xfj\Xgi = Xfj(1−gig?i ), with fj(1 − gig

?
i ) ∈ m.

Removing intersections in this way yields a disjoint cover X =
⊔
ψ∗(Xh`) for h` ∈ m.

By construction,

h`(p) =


1 p ∈ Xh`

0 otherwise.

Therefore
∑
h` ∈ m is the constant function 1, which is absurd. The claim is proven.

Finally, choose any p ∈ Z(m). It follows that m ⊆ mp, forcing equality.

Corollary IV.17. Let R be a commutative ring with finitely many prime ideals.

Then R̂ is a product of (residue) fields.

Proof. Let m1, . . . ,mn be the maximal ideals of R̂ corresponding to the prime ideals

of R. Then these are all the prime ideals of R̂. Because R̂ is reduced, ∩mi = 0,

and of course the mi are coprime in pairs. It follows that R̂ →
∏
R̂/mi defined by

f 7→ (f + m1, . . . , f + mn) is an isomorphism.

If R has infinitely many prime ideals, then R̂→
∏
R̂/mi remains an injection.
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Recall the homomorphism ψ : R → R̂ sending elements of R to quasi-regular

functions on QSpecR. Let R̃ be the smallest subring of R̂ closed under f 7→ f ? and

containing ψ(R). The following proposition shows that the quasi-regular functions

on QSpecR locally look like R̃.

Proposition IV.18. For every f ∈ R̂ and every p ∈ QSpecR, there exists a neigh-

borhood U of p and an element g ∈ R̃ such that g(q) = f(q) for every q ∈ U .

Proof. Let α = f(p) ∈ Q(R/p). Then α is a finite concatenation of sums, products,

and fractions of cosets f1, . . . , fn in R/p. This concatenation defines a straight-line

program Γ, taking the quasi-inverse operation as multiplicative inversion. Hence

define g ∈ R̃ by Γ(f1, . . . , fn), choosing coset representatives fi for each fi. It follows

that the quasi-regular function f − g ∈ R̂ has (f − g)(p) = 0, and the vanishing set

U of f − g on QSpecR is nonempty and open.

An open set V(f)∩Xg ⊆ QSpecR in the patch topology has an indicator function

in R̃:

χf,g(p) = gg?(1− ff ?)(p) =


1 p ∈ U

0 else.

Of course, finite intersections of basis elements correspond to products of indi-

cator functions. These functions allow us indeed to patch together the local R̃-

representatives of quasi-regular functions.

Proposition IV.19. R̂ = R̃

Proof. By definition, R̃ ↪→ R̂. Conversely, choose f ∈ R̂. By the previous proposi-

tion, there exists an open cover QSpecR = ∪Uα and gα ∈ R̃ such that f = gα on

Uα. As QSpecR is compact, choose a finite subcover. We may assume that the Ui

in the subcover are basis elements of the topology, and we may further assume that
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QSpecR is covered by a disjoint union tn1Wi, where each Wi is the finite intersec-

tion of some basis elements Ui. Each Wi has an indicator function χi; note χi ∈ R̃

because each Ui is a basis element of the topology. Then the quasi-regular function

g =
∑n

1 χigi equals f at every p ∈ QSpecR, and g ∈ R̃.

In particular, note that
ˆ̂
R = R̂.

Corollary IV.20. Suppose ψ∗ : Spec R̂ → QSpecR sends mp 7→ p. Then mp is

generated by p and the 1− gg? for all g 6∈ p.

Proof. Let I ⊂ R̂ be the ideal generated by p and the 1 − gg? for all g 6∈ p. Then

I ⊆ mp Choose h ∈ mp − I. Then h vanishes at p. Consider Xh ⊂ Spec R̂. For

every mq ∈ Xh (using the notation mq 7→ q ∈ QSpecR), construct χq ∈ I such that

χq(q) = 1, as follows:

1. If q ( p, then find f ∈ p− q, and set χq = ff ?.

2. Otherwise if q 6= p then find g ∈ q− p and set χq = 1− gg?.

Then Xh ⊆ ∪Xχq , for χq ∈ I. Now, Xh = V(1 − hh?) ' Spec R̂/(1 − hh?) is

compact. Thus for finitely many q, there exist aq ∈ R̂ such that the quasi-regular

function χ =
∑
aqχq equals 1 on Xh. By construction, χ ∈ I, and

χ · h(x) =


0 x ∈ V(h)

h(x) x ∈ Xh

.

Therefore h ∈ I, whence mp ⊆ I.

Lemma IV.21. If φ : R→ S is a homomorphism of commutative rings, then there

exists a unique φ : R̂→ Ŝ making the following diagram commute:

R
φ //

��

S

ψ
��

R̂
φ̂ // Ŝ
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Proof. Recall f ∈ R̂ is a straight-line program Γ(f1, . . . , fn) of QI-ring operations on

finitely many fi ∈ R, and define φ̂(f) = Γ(ψ ◦ φ(f1), . . . , ψ ◦ φ(fn)). Suppose that

g = Γ′(g1, . . . , gm) is another program for f . If p ∈ QSpecS, then φ induces

Q(R/φ−1(p)) ↪→ Q(S/p).

As both programs for f have the same image in Q(R/φ−1(p)), it follows φ̂(f)(p) =

φ̂(g)(p) ∈ Q(S/p), and φ̂ is well-defined.

This map is a homomorphism that makes the diagram commute, because addition

and multiplication are possible instructions in the program Γ. If π : R̂ → Ŝ also

makes the diagram commute, then πm = φ̂m for every prime m ∈ R̂. The two maps

then give the same injections of residue fields, so φ̂ is unique.

Proposition IV.22. Let R be a commutative ring, I an ideal, Î its extension in R̂.

Then R̂/I ∼= R̂/Î.

Proof. Under the inclusion φ : R/I → R̂/Î, each prime p ⊇ I of R is the image of

the unique maximal vanishing ideal mp ⊆ Î of R̂. As Q(R/p) ∼= Q(R̂/mp), it follows

that R/I → R̂/Î is a quasi-isomorphism. That means that every f in R̂/Î provides a

quasi-regular function on R/I, whence there exists a homomorphism α : R̂/Î → R̂/I.

Now, f ∈ R̂/Î maps to the zero function if and only if f lies in mp for every prime

p ⊇ I. Since all primes of R̂ are maximal, the radical ideal Î equals the intersection

of all such mp. Hence in fact α : R/I → R̂/Î is injective.

To prove α is surjective, we first claim that

̂̂
R/Î = R̂/Î, that is,

˜̂
R/Î = R̂/Î.

It suffices to show that if (f − g) ∈ Î, then f ? − g? ∈ Î. To that end, note

f ? − f ?gg? = (f ?)2(1− gg?)(f − g) ∈ Î
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and likewise

−g? + g?ff ? = (g?)2(1− ff ?)(f − g) ∈ Î .

Thus

f ? − g? + (g?ff ? − f ?gg?) ∈ Î ,

but also

(g?ff ? − f ?gg?) = f ?g?(f − g) ∈ Î .

So indeed f ? − g? ∈ Î, and the claim follows.

Hence choose f ∈ R̂/I, and suppose f = Γ(f1 + I, . . . , f2 + I) for some fi ∈ R and

a straight-line program Γ. By the Lemma IV.21, φ : R/I → R̂/Î induces a unique

φ̂ : R̂/I → ̂̂
R/Î = R̂/Î, and

φ̂(f) = Γ(f1 + Î , . . . , fn + Î) = Γ(f1, . . . , fn) + Î .

Of course, α : Γ(f1, . . . , fn)+Î 7→ f as a quasi-regular function on QSpecR/I, whence

α is surjective.

In the study of equivalence relation ideals, we will consider tensor products of

QI-rings.

Proposition IV.23. There is a homomorphism R̂⊗ R̂→ R̂⊗R inducing R̂⊗R '
̂̂R⊗ R̂ and natural bijections

SpecR⊗R↔ Spec R̂⊗R↔ Spec R̂⊗ R̂.
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Proof. Consider the diagram

R×R

��

// R̂× R̂

��

R⊗R
γ
��

// R̂⊗ R̂
∃! φ

zzvv
vv
vv
vv
v

ψ��

R̂⊗R
α

∃!
// ̂̂R⊗ R̂

β
oo

Here, the maps γ and ψ are the natural homomorphisms of a ring into its QI-ring.

The map α makes the lower square commute uniquely by Lemma IV.21. That lemma

also yields a commuting diagram

R
ij //

��

R⊗R
γ
��

R̂
∃!
îj

// R̂⊗R

where ij is the embedding of R into the jth factor. Hence the unique homomorphism

φ arises from the universal property of the tensor product: the triangle above φ

commutes. By construction of the îj,

φ(Γf (f1, . . . , fn)⊗ Γg(g1, . . . , gm)) = Γf (f1 ⊗ 1, . . . , fn ⊗ 1) · Γg(1⊗ g1, . . . , 1⊗ gm),

where fi, gi ∈ R and Γf ,Γg are straight-line programs of binary and q-operations.

Applying Lemma IV.21 again yields the unique homomorphism β making the lower-

right triangle commute.

Now, ψ(Γf (f1, . . . , fn) ⊗ Γg(g1, . . . , gm)) = Γf (f1, . . . , fn) ⊗ Γg(g1, . . . , gm) con-

sidered as a quasi-regular function on QSpec R̂ ⊗ R̂. To show α also makes the

lower-right triangle commute, it suffices to show that in ̂̂R⊗ R̂,

Γf (f1, . . . , fn)⊗ Γg(g1, . . . , gm) = Γf (f1 ⊗ 1, . . . , fn ⊗ 1) · Γg(1⊗ g1, . . . , 1⊗ gm),

in fact, to show this just for Γf (f1, . . . , fn)⊗ 1.
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Choose f1, . . . , fn ∈ R and a straight-line program of q-operations Γ. Let f̂ =

Γ(f1, . . . , fn) ∈ R̂. Consider f̂ ⊗ 1 ∈ R̂⊗ R̂. When we apply ψ to f̂ ⊗ 1 ∈ R̂⊗ R̂, we

consider the image as a quasi-regular function on X = QSpec R̂⊗ R̂.

If p ∈ X, then p contracts to some p1 and p2 in the first and second factor,

respectively. Let f̂(p1) = a ∈ R̂/p1 ↪→ Q(R̂⊗ R̂/p) and evaluate

Γ(fi ⊗ 1 | ∀i)(p) = b ∈ Q(R̂⊗ R̂/p).

Recalling f̂ = Γ(fi | ∀i) ∈ R̂, if a = b when Γ is a single q-operation on a single input

f1 ∈ R, then a = b for more complicated programs as well: the binary and quasi-

regular operations in Γ correspond to binary operations and inversions in Q(R̂⊗R̂/p).

Thus without loss of generality, assume f̂ = f ?. Then a = 1/f if f(p1) 6= 0, and

a = 0 otherwise. Of course, f(p1) = 0 if and only if (f ⊗1)(p) = 0. If (f ⊗1)(p) 6= 0,

then b is the inverse of f ⊗ 1 = (f ⊗ 1)(1⊗ 1) in Q(R̂⊗ R̂/p), that is, b is the inverse

of the image of f under R̂/p1 ↪→ Q(R̂ ⊗ R̂/p). Hence a = b. Tracing through the

argument, then, ψ(Γ(fi | ∀i) ⊗ 1) ∈ ̂̂R⊗ R̂ is the same quasi-regular function as

Γ(fi ⊗ 1 | i) ∈ ̂̂R⊗ R̂. Taking sums and products of elements f̂ ⊗ 1, 1⊗ ĝ ∈ R̂ ⊗ R̂,

it follows that α indeed makes the lower triangle in the main diagram commute.

To finish the proof, we show α is an isomorphism, from which follow the required

bijections of spectra. Choose Γ(fi ⊗ gi | ∀i) ∈ ̂̂R⊗ R̂. Here, fi, gi ∈ R̂, so, for

example, fi = Γfi(fij | ∀j) as a straight-line program on elements fij ∈ R. Since

ψ = α ◦ φ, we have

fi ⊗ 1 = Γfi(fij | ∀j)⊗ 1 = Γfi(fij ⊗ 1 | ∀j),

and so by composing quasi-regular functions, we may assume that fi, gi ∈ R. Con-

sider then Γ(fi ⊗ gi | ∀i) ∈ R̂⊗R. It follows immediately that α(Γ(fi ⊗ gi | ∀i) =

Γ(fi ⊗ gi | ∀i) ∈ ̂̂R⊗ R̂, and α is surjective.
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It remains to show that β ◦α is the identity on R̂⊗R. We have again α(Γ(fi⊗gi |

∀i) = Γ(fi ⊗ gi | ∀i) ∈ ̂̂R⊗ R̂, for fi, gi ∈ R. To apply the map β, we first lift each

fi, gi to R̂, to obtain lifts of the fi ⊗ gi in R̂⊗ R̂.

R̂⊗ R̂

ψ ��

φ // R̂⊗R

̂̂R⊗ R̂ β // R̂⊗R

Two lifts of fi, say, differ by some hi 7→ 0 ∈ R̂, that is, by hi in the nilradical of

R, and so hi vanishes as a quasi-regular function on QSpecR. Hence the lifts of the

fi⊗ gi will be well-defined as quasi-regular functions on QSpecR⊗R when we apply

φ. Lastly, β applies Γ to the f1⊗ g1, . . . , fn⊗ gn to obtain Γ(fi⊗ gi | ∀i). Thus β ◦α

is the identity, and in particular, α is injective. The result follows.



CHAPTER V

Polynomial Bounds for Invariant Functions Separating
Orbits

5.1 Introduction

5.1.1 Background

When a linear algebraic group G acts on an affine variety V over a field k, the

orbit of x ∈ V is the set

G · x = {g · x | ∀g ∈ G}.

Applications of invariant theory, such as computer vision, dynamical systems, and

structural chemistry, demand constructive and more efficient techniques to distin-

guish the orbits of a group action. When the group acts rationally, recall that there

exists a finitely generated subalgebra S ⊆ k[V ]G with the following property: Let

p, q ∈ V have disjoint orbit closures, and suppose there exists f ∈ k[V ]G such that

f(p) 6= f(q). Then there exists h ∈ S such that h(p) 6= h(q)[6]. We say that the

function h (and the algebra S) separates the orbit closures of p and q. Note that the

functions in S, called separating invariants, separate as many orbits as does k[V ]G.

Since G is a linear algebraic group, G · p = G · q implies G · p = G · q, because orbits

are open in their closures.

This separating subalgebra S has several weaknesses. For one, existence proofs

for S may not be constructive for all algebraic groups: Kemper’s algorithm to con-

68
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struct S assumes a reductive group [33]. Even in the constructive case, although

polynomial bounds exist for the degrees of generators for k[V ]G under the action of a

linearly reductive group [5],construction algorithms for separating invariants do not,

for general G, provide good bounds on the size of a separating subset, the degrees

of its elements, or the complexity of its computation. Kemper’s algorithm, for ex-

ample, requires two Gröbner basis calculations, a normalization algorithm, and an

inseparable closure algorithm. Domokos used polarization to cut down the number of

variables needed in separating invariants of reducible representations [9], while Kem-

per provided new bounds, when G is finite, on the required number of separating

invariants [34].

As a more serious limitation, the invariant ring k[V ]G, and hence any subalgebra,

may fail to separate orbit closures. Even when G is reductive, the polynomials in

k[V ]G can separate G · p and G · q if and only if G · p∩G · q = ∅. For example, when

the multiplicative group G = k∗ acts on A2 by scaling points, one finds k[x, y]G = k.

5.1.2 Separating Orbits with Constructible Functions

To overcome the limitations of the invariant ring, we expand the set of regular

functions on a variety to include a quasi-inverse f ? of a regular function f :

f ?(p) =


1/f(p) f(p) 6= 0

0 f(p) = 0

.

For R = k[V ], k algebraically closed, let R̂ denote the ring of constructible functions

V → k obtained by defining the quasi-inverse on R. For example, if f, g ∈ R, then

(f ? + g)? ∈ R̂. In fact, one can show that for any h ∈ R̂, there exists finitely many

locally closed sets Ei ⊆ V and fi regular on Ei such that

h =
k∑
i=1

fi · χEi
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where χEi is the characteristic function of a constructible subset Ei ⊆ SpecR.

For a given group action, we seek to write down a finite set C of invariant, con-

structible functions that separate orbits. That is, if p, q lie in different orbits, then

some function f ∈ C has f(p) 6= f(q). Even better, we would like the construction

of f at p to be reasonably simple. To measure the complexity of f , we measure

its length as a straight line program over k̂[V ], granting unit cost to all ring oper-

ations and the quasi-inverse. Of course, the evaluation of such f at p ∈ V requires

branching, but counting the operations needed to write down f serves as an analog

of classical degree bounds for invariants.

Over an algebraically closed field k, fix an embedding of an m-dimensional linear

algebraic group G ↪→ A`. Let R = k[x1, . . . , xn], let ρ : G ↪→ GLn(k) be a represen-

tation, let r be the maximal dimension of an orbit, and let N = max{deg(ρij)} be

the degree of the representation.

Theorem V.1. There is an algorithm to produce a finite set C ⊂ R̂ of invariant,

constructible functions with the following properties:

1. The set C separates orbits.

2. The size of C grows as O(n2N (`+m+1)(r+1)).

3. The f ∈ C can be written as straight line programs, such that the sum of their

lengths is O(n3N3`(r+1)+r).

Hence the problem of deciding if two points lie in the same orbit can be solved with

a polynomial number of algebraic operations in the coordinates of the points.

More explicitly, for p ∈ An consider the orbit map σp : G → An defined by

σp : g 7→ g · p. Note that G · p is defined by the polynomials in the kernel of

σ∗p : k[x1, . . . , xn] → k[G]. These polynomials amount to algebraic relations on the
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images σ∗p(x1), . . . , σ
∗
p(xn) in k[G]. One can find all such relations up to some degree

d by Gaussian elimination. The coefficients of these relations vary with p, but they

cannot in general be written as regular functions of p. We may nevertheless write

them with constructible functions, especially utilizing the fact that ff ?(p) = 1 if

f(p) 6= 0. These constructible functions form the set C. Essentially, the idempotent

constructible functions encode if-then branching into the formulas for our relations.

Now, quantifier elimination and effective Nullstellensatz algorithms can also answer

the decision problem, “Given x, y ∈ V , does there exist g ∈ G such that g · x = y?”

with slightly improved complexity bounds, but the new algorithm here offers greater

algebraic and geometric intuition and applications by producing invariant, separating

functions on V .

We proceed in four parts. First, given a matrix X encoding products of the σ∗p(xi)

and encoding I(G) = {f ∈ k[z1, . . . , z`] | f(G) = {0}}, up to some degree d, we

produce a matrix of constructible functions that gives the entries of the reduced row

echelon form of X, as functions of p. From these entries follow formulas for the kernel

vectors of X and hence relations on the σ∗p(xi). We next establish a degree bound

for the relations sufficient to generate the ideal q with V(q) = G · p. By considering

a generating set for q, we provide an algorithm that produces straight line programs

for the functions in the set C. We show that these functions separate orbits and have

polynomial length as straight line programs in k̂[V ], and we establish polynomial

bounds for their number in terms of n and the degree N of the representation.

5.2 Formulas for Reduced Row Echelon Form

5.2.1 Straight Line Programs

To measure the complexity of construcible functions, we adapt the framework of

staight line programs over a k-algebra. For a detailed, traditional treatment, see [2].
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Let V be a set, F a field, and let R be an F -subalgebra of the F -valued functions

on V . Let A = (a−m, . . . , a−1) ∈ (R̂)m be a finite, ordered subset of R̂. Consider a

tape of cells with ai ∈ A in position i. A straight line program Γ is a finite, ordered

list of instructions Γ = (Γ0, . . . ,Γ`−1). Each instruction Γi is of the form (?; j, k) or

(?; j), where ? is an operation and j, k are positive integers referring to tape entries

in positions i − j and i − k, that is, j and k cells before i, respectively. The length

` = |Γ| measures the complexity of the computation.

To execute Γ on input A, for i = 0, . . . , `− 1 write ai in tape position i as follows:

ai =



ai−j + ai−k if Γi = (+; j, k)

ai−j − ai−k if Γi = (−; j, k)

ai−j · ai−k if Γi = (×; j, k)

a?i−j if Γi = (qi; j)

c if Γi = (const; c) for c ∈ F

ai−j if Γi = (recall; j)

where j, k < i.

The “recall” instruction of position j serves to collect relevant computations at the

end of the tape. The traditional defintion of a straight line program in a k-algebra

does not include the quasi-inverse “qi” operation, but we include it here to measure

the length of the construction of an f ∈ k̂[V ]. Define the order-d output of Γ

by Outd(Γ, A) = (a`−d, . . . , a`−1) ∈ (R̂)d, where ` = |Γ|. We omit the d where

convenient. A straight line program hence defines a constructible function (R̂)m →

(R̂)d.

Write Γ(2) ◦ Γ(1) for the composition of two straight line programs, in which the

input of Γ(2) is Outd(Γ
(1), A) for some d depending on Γ(2). Then Γ(2) ◦Γ(1) has input

A, and we execute Γ(2) ◦ Γ(1) by concatenating the instruction lists.
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5.2.2 Outline of the Algorithm

Let A = (aij) be an m × n matrix over a field k. Define the triangular reduced

row echelon form (tRREF) of A to be the n× n matrix RA = (rij) whose jth row rj

is nonzero if and only if the reduced row echelon form (RREF) of A has a pivot in

column j. In that case, rj is the row of the RREF of A containing that pivot. For

example,

RREF(A) =


1 2 0

0 0 1

0 0 0

 corresponds to tRREF(A) =


1 2 0

0 0 0

0 0 1

 .

This new form simplifies the identification of pivots: the (usual) RREF of A has a

pivot in column j if and only if rjj = 1 in the tRREF.

Proposition V.2. Let (aij) be an m×n matrix with entries in any field k. Then there

exists a straight line program ΓtR of length O(mn2 + n3) such that Outn2(ΓtR, (aij))

are the entries of the triangular RREF of (aij). The program gives constructible

functions for these entries in terms of the aij.

The proposition does not require k to be algebraically closed, but we will need this

condition for the later geometric reasoning about orbits. Note also that while the

classical Gaussian elimination algorithm requires branching, the straight line program

ΓtR simulates branching in the computation of the quasi-inverse. The pseudo-code

below proves the proposition in general terms; the subsections that follow provide

specific constructions.

Algorithm V.3. Let A = (aij) be an m× n matrix.
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1. For i = 2, . . .m, if a11 = 0, exchange the first row of A with the ith row. After

these steps, either a11 6= 0, or ai1 = 0 for all i.

2. Multiply a11 by a?11, and multiply the rest of the first row by

(1− a11a?11 + a?11). This is equivalent to dividing the first row by a11 if a11 6= 0.

3. For i = 2, . . . ,m, subtract ai1 · (a11, . . . , a1n) from row i. As a result, ai1 = 0 for

all i ≥ 2.

4. Let A′ = (aij)j≥2 and A′′ = (aij)i,j≥2, as below:

A =



∗

0 A′

...

0


=



∗ · · · ∗

0

... A′′

0


Let A′′0 be the m × (n − 1) matrix formed by appending a row of zeros to the

bottom of A′′; then A′ and A′′0 have the same dimensions.

5. Define B = (1− a11) · A′ + a11 · A′′0.

6. Recursively compute the tRREF of B; call it RB, an (n− 1)× (n− 1) matrix.

7. Let RA be the n× n matrix below:

RA =


a11 · · · a1n

0 RB

0

 .

8. Let rk be the kth row of RA = (rij). For k = 2, . . . , n, subtract a1k · rk from the

first row of RA. This reduction produces the triangular RREF of A.

The following formulas specify straight line programs for the entries of the trian-

gular RREF matrix RA, and hence define ΓtR.
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5.2.3 Formulas for Gaussian Elimination

Recall that the first step of the algorithm exchanges the first row of (aij) with the

ith row if a11 = 0, for i = 2, . . . ,m. Hence for an m × n input matrix X, this step

requires m− 1 programs Ei such that Y = Outmn(Ei, X) flips the first and ith rows

if necessary. The following formulas describe the entries of Y = (yij):

y11 = x11 + (1− x11x?11)xi1

y1j = x1j + (1− x11x?11) · (xij − x1j) for all j > 1

yi1 = xi1 · x11x?11

yij = x1j + x11x
?
11 · (xij − x1j) for all j > 1

ykj = xkj for all k 6= 1, i, and for all j.

For example, the straight line program for y11 in Ei takes inputs x11 in position -2

and xi1 in position -1, and then performs the following steps:

(0) (qi; 2)

(1) (×; 3, 1)

(2) (const; 1)

(3) (−; 1, 2)

(4) (×; 1, 5)

(5) (+; 7, 1)

The formulas for the other yij have similarly obvious representations as straight line

programs. If we concatenate these programs within Ei, so that all the entries of Y

appear in various (known!) positions on the tape, then we can save the recall steps
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for the end, and we need only compute x?11, x11x
?
11, (1−x11x?11), and (xij−x1j) once.

With these efficiencies, the program Ei introduces 1 quasi-inverse, 1 call to k, 3n

additions, and 2n multiplications. Thus the concatenation of E2, . . . , Em−1 requires

2n(m−1) multiplications, 3n(m−1) additions, n−1 calls to k, n−1 quasi-inverses,

and mn recalls to collect the entries of Y in the last mn cells of the tape. Call this

concatenation ΓE; we will use it later to collect nonzero rows of a matrix.

Step (2) of the algorithm requires 1 quasi-inverse, 1 subtraction, 1 addition, n

multiplications, and n recalls.

These next formulas perform step (3), on an m× n input matrix (xij):

yi1 = 0 for all i > 1

yij = xij − x1j · xi1 · x11x?11 for all i, j > 1.

These programs require (m − 1)(n − 1) additions, (n − 1)(m − 1) multiplications,

and mn recalls. Step (5) next requires 1 subtraction, m(n− 1) additions, 2m(n− 1)

multiplications, and m(n− 1) recalls.

To perform the reductions in step (8), consider the following formula for r1j, where

j ≥ 2:

r1j := (1− rjj) · (rij + ( − r22 · r12r2,j

− r33 · r13ri3,j

− · · ·

− rj−1,j−1 · r1,j−1rj−1,j)) ,

This formula sets r1j = 0 if there is a pivot in column j, that is, if rjj = 1. Otherwise,

the formula subtracts from r1j the effects of clearing columns < j. The reduction of

r1j requires 1 call to k, j additions/subtractions, 2(j − 2) + 1 multiplications (since

j ≥ 2), and n2 recalls, so reducing the first row has total complexity O(n2).
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The above formulas specify a straight line program ΓtR such that Outn2(ΓtR, A) are

the entries of the tRREF of A. Counting the necessary operations yields asymptotic

total complexity estimates for the programs. The recursion on an m × t matrix

has total complexity O(mt + t2). Summing t from 1 to n yields total complexity

O(mn2 + n3).

5.2.4 Collecting Nonzero Rows

Lastly, the main algorithm that computes orbit closures requires a program Σ

that, given an indicator vector v of 0s and 1s, collects the rows i of a matrix such

that the ith entry of v is 1. For example, the diagonal of RA indicates the nonzero

rows of RA. Given RA and its diagonal as input, the program Σ would output an

n × n matrix whose first rank(A) rows include the traditional RREF of A. We will

never need to compute the traditional RREF in practice, because the main algorithm

runs more efficiently using RA.

Recall the algorithm ΓE that exchanges the first row of a matrix X with subse-

quent rows until the output has y11 6= 0, if possible. Define Σ as follows: for an m×n

input matrix X and an indicator m-vector v, form a new matrix X ′ by adjoining v

as a column to the left side of X:

X ′ =



v1 x11 · · · x1n

v2 x21 · · · x2n

...
...

...
...

vm xm1 · · · xmn


.

After applying ΓE to X ′, the first row of X ′ with vi 6= 0 becomes the first row of

the output Y = (yij). Record r1 := (y12, . . . , y1,n+1) and apply ΓE to the last m− 1

rows of this Y . Let Σ denote this series of m recursions of ΓE. Since ΓE applied to
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an s × (n + 1) matrix has total complexity O(sn), the procedure Σ has complexity

O(m2n). Concatenating Σ with the straight line program for the tRREF yields the

following:

Corollary V.4. Let (aij) be an m×n matrix with entries in any field k. Then there

exists a straight line program of length O(mn2 +m2n+ n3) for the (classical) RREF

(rij)of (aij). The program gives constructible functions for rij in terms of the aij.

5.2.5 Computing Kernels of Linear Maps

To compute the kernel up to degree d of a k-algebra homomorphism, one can

write the homomorphism on elements of degree ≤ d as a matrix in RREF. Finding

the kernel of a matrix R in RREF is equivalent to solving the system of equations

R · (x1, . . . , xn)T = 0: for every pivot rij, write an equation

xj = −ri,j+1xj+1 − ri,j+2xj+2 − · · · − ri,nxn.

Set each free variable equal to 1 in turn, set the other free variables to 0, and read off

the vector of values in the pivot variables. These vectors give a basis for the kernel of

R, hence of the original map. The basis is canonical because the RREF is canonical.

To compute the kernel of an m×n matrix A, we use the n×n matrix RA containing

the rows of the RREF of A: recall there is a pivot in the jth column of the RREF

if and only if the row containing that pivot is jth row of RA = (rij), if and only if

rjj = 1. Otherwise, rjj = 0.

Lemma V.5. Let RA be the n×n tRREF of a matrix A. Then there exists a straight

line program ΓK of length O(n2) such that Outn2(ΓK , RA) gives the kernel of A.

Proof. Claim that the kernel of A, is given by the following vectors φ1, . . . , φn, in
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terms of RA = (rij):

φj := (1− rjj) · (−r1j,−r2j, . . . ,
jth place︷︸︸︷

1 , . . . ,−rnj).

Indeed, recall that the kernel of a RREF matrix has one basis vector for each non-

pivot column. Namely, φj = 0 if and only if column j of the RREF has a pivot.

Otherwise, φj 6= 0, as follows: Put the free variable xj := 1. Now, rkj = 0 unless

there is a pivot in column k of the RREF. Set each pivot variable xkk equal to the

negation of the jth entry of the row containing that pivot.

Of course, rij = 0 whenever i > j, but such simplifications complicate the formulas

without improving the asymptotic complexity. As written, each φj requires 2 calls

to k, 1 addition, n scalar multiplications, and n other multiplications. Upon adding

recall instructions, computing the kernel has complexity O(n2).

5.3 Degree Bounds for Orbit Closures

We relate the degree of a variety to the degrees of polynomials that can define

that variety. By bounding the degree of an orbit closure G · p, we can bound the

degree of the defining polynomials.

Lemma V.6. Let V = V(f1, . . . , fr) have codimension m in An. Then there exist

m generic linear combinations gi =
∑
aijfj such that

W := V(g1, . . . , gm) ⊇ V

and W has codimension m.

Proof. Induct on the number r of given defining equations for V . The case r = 1,

implying m = 1, is clear. Assume the lemma holds for a variety defined by r − 1

equations, and consider V ′ = V(f1, . . . , fr−1). If V ′ still has codimension m, then the
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result follows by the induction hypothesis. Otherwise, V ′ has codimension m − 1.

By the induction hypothesis, there exist m − 1 generic linear combinations gi of

f1, . . . , fr−1 such that W ′ = V(g1, . . . , gm−1) ⊇ V ′ and W ′ has codimension m− 1.

Since W ′ is defined by m−1 equations, every component Zk of Y ′ has codimension

m−1. It follows that on each Zk, one of f1, . . . , fr is not identically zero. So for each

Zk, and for every point p ∈ Zk, we may consider the proper hyperplane Hk,p ⊂ Ar

defined by the vanishing of

x1f1(p) + x2f2(p) + . . .+ xrfr(p) ∈ k[x1, . . . , xr].

Let Hk = ∩p∈ZkHk,p. Then ∪kHk is a closed union of finitely many subspaces of

Ar. Thus for any choice of (a1, . . . , ar) in the dense set Ar − ∪kHk, the polynomial

gm =
∑
aifi is not identically zero on any Zk. Therefore Y = V(g1, . . . , gm−1, gm)

contains V and has codimension m.

Let V ⊆ An be an equidimensional affine variety of codimension m. Define the

degree of V to be

deg(V ) = #H ∩ V,

where H is a generic linear subspace of dimension m. Heintz proves a stronger version

of the following statement in [18], as well as many related results.

Proposition V.7. Let V ⊆ An be a Zariski closed subset of degree d. Then there

exists an ideal q, generated by polynomials of degree ≤ d, such that
√
q = I(V ). In

particular, V(q) = V .

Proof. It suffices to find, for every point p 6∈ V , a polynomial f of degree ≤ d such

that f vanishes on V but not at p. If V is a hypersurface, then V = V(f) with

deg(f) = deg(V ), and we are done. Otherwise, assume V has codimension greater

than 1. Without loss of generality, further assume that p is the origin.
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To find a polynomial vanishing on V but not at the origin, we project V until an

image has codimension 1. Define π : An → Pn−1 by π : (x1, . . . , xn) 7→ [x1 : . . . : xn].

Since dim π(V ) ≤ dimV < n − 1, there exists a point [L] ∈ Pn−1 − π(V ). Let

C(V ) = π−1(π(V )), the cone over π(V ). Then L = π−1([L]) has L ∩ C(V ) = {0}.

Assume without loss of generality that L is the xn-axis, and consider the projection

φ : An → An−1 along L, defined by φ : (x1, . . . , xn) 7→ (x1, . . . , xn−1). Because C(V )

is a cone, the restriction of φ to C(V ) is a finite map onto An−1. In particular, φ(V )

is closed in An−1. Since L is disjoint from V , φ(0) = 0 remains outside the closed set

φ(V ).

Continue projecting until φ : An → An−m+1 gives φ(V ) with codimension 1 (and

dimension dimV after each projection). Now, deg(φ(V )) ≤ d. Thus there exists

a polynomial f of degree ≤ d such that f vanishes on φ(V ) but f(0) 6= 0. Hence

f ◦φ(V ) = 0 but f ◦φ(0) 6= 0. As φ is defined by linear polynomials, the polynomial

f ◦ φ has degree ≤ d, and the result follows.

Now consider a linear algebraic group G acting on affine n-space. When we can

bound the degree of an orbit closure G · x, then we can produce a degree bound for

polynomials fi such that G · x = V(f1, . . . , fr). For an overview of bounds for the

degrees of orbits and the (polynomial) degrees of generating invariants, see [5].

Proposition V.8. Let G be a linear algebraic group of dimension m, embedded in

A` with ideal I(G) = (h1, . . . , hs). Set M = max{deg(hi)}.

Suppose G acts on An with representation

ρ : G→ GLn defined by ρ : g 7→ (ρij(g)),

and set N = max{deg(ρij)}. If G · x is an orbit closure with dimension r, then

deg(G · x) ≤ N rM `−m.
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Proof. Let d = deg(G · x). For a generic (n−r)-dimensional linear subspace H ⊆ An,

by definition d = #(G · x∩H). Let σ : g 7→ g ·x be the orbit map. Then the degrees

of the polynomials defining σ are bounded by N . Hence σ−1(H) = V(u1, . . . , ur) ⊆ G

has deg(ui) ≤ N and has ≥ d irreducible components.

By the first lemma above, there exist generic linear combinations fj of the gen-

erators of I(G) such that V(f1, . . . , f`−m) is a complete intersection and contains G.

Thus

σ−1(H) ⊆ V (u1, . . . , ur, f1, . . . , f`−m) ⊂ A`.

Consider the vanishing of the homogenized polynomials

V
(
u1, . . . , ur, f 1, . . . , f `−m

)
⊂ P`.

By a generalization of Bézout’s theorem (see [13], section 12.3.1 ), the number of

irreducible components of this variety is (generously) bounded by

∏
i

deg(V(ui)) ·
∏
j

deg(V(f j)) =
∏
i

deg(ui) ·
∏
j

deg(f j) ≤ N rM `−m.

This number then also bounds d.

Corollary V.9. With the hypotheses of the previous proposition, there exist polyno-

mials f1, . . . , ft such that G · x = V(f1, . . . , ft) and

deg(fi) ≤ deg(G · x) ≤ N rM `−m.

5.4 Separating Orbits

Let ρ : G ↪→ GLn act on An as in Section 3. For p ∈ An, there exists an ideal q

such that V(q) = G · p and q is generated in degree ≤ N rM `−m. We will establish

straight line programs for the orbit-separating set C by considering a generating set
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for q. We prove that these programs define invariant functions separating the orbits

of G. The length of these programs will be polynomial in the dimension n and the

degree N of the representation.

5.4.1 The Orbit Separating Algorithm

Input the embedding of G ↪→ A` and the orbit map σp : g 7→ g · p as above, which

varies with p. Let k[x1, . . . , xn] be the coordinate ring of An. Then kerσ∗p = I(G · p),

but to define G · p it suffices to compute a k-basis for kerσ∗p up to degree N rM `−m.

The elements of this k-basis generate q as an ideal.

For each i = 1, . . . , N rM `−m, the following algorithm computes a canonical k-

basis for kerσ∗p in degree ≤ i, but for each polynomial in the basis the algorithm only

outputs constructible functions (of p) that give the non-zero coefficients of monomi-

als apearing in that basis, whatever the monomials may be. Hence the algorithm

forgets the generating set of the ideal q. This forgetting allows the algorithm to have

polynomial length as a straight line program, since the number of possible monomials

grows exponentially with n.

In the most precise sense, given a point p ∈ An, the following algorithm con-

catenates straight line programs to output a G-invariant vector C over k. In fact,

each entry of C is a straight line program in terms of the coordinates of p. Thus

the algorithm prescribes a vector C of G-invariant constructible functions that sep-

arate orbits: points in distinct orbits produce distinct vectors. The proofs for the

G-invariance and orbit separation will follow.

Choose a monomial order for the monomials spanning k[z1, . . . , z`]. As a pre-

liminary calculation, compute a Gröbner basis and a k-basis for I(G) up to degree

N r+1M `−m. Let B(d) denote the set of elements of the k-basis up to degree d. Also,

for a vector w, let πt(w) denote the vector of the the first t entries of w.
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Lastly, since all computations occur in k[G], we must predict the dimension of

k[G]≤d.

Lemma V.10. Let m = dimG. There exists a function H(d), computable from a

Gröbner basis for I(G), such that H(d) = dimk k[G]≤d for all d ≥ 0, and H(d) ≤

O(dm).

Proof. Suppose R = k[G] is generated as a k-algebra by f1, . . . , fr of degree 1. Define

S = k[f1t, . . . , frt, t] ⊆ R[t], and claim Sd = R≤d · td, where S is graded by t-degree.

The inclusion ⊇ is clear, and if h ∈ Sd is a homogeneous polynomial in t, then

the coefficients of td can have R-degree no greater than d (less, for example, in the

term f1t · td−1). Let H(d) be the dth coefficient of the Hilbert series of S, which we

may compute from a Gröbner basis for I(G). Then H(d) = dimk R≤d. Since S has

dimension bounded by m + 1, the Hilbert polynomial for S has degree bounded by

m. Thus H(d) ≤ O(dm).

Algorithm V.11.

1. For j = 1, . . . , n, let vj be the vector of coefficients of σ∗p(xj) with respect to the

(ordered) monomial basis of k[z1 . . . , z`].

2. V1 := (v1, . . . , vn).

3. i := 1, C0 = ∅.

4. Put the vectors of Vi = (v1, . . . , vki), in order, in the first ki columns of a matrix

Xi; fill subsequent columns with B(iN).

5. Compute Out(ΓtR, Xi), the tRREF of Xi.

6. Compute β := Out(ΓK ,Out(ΓtR, Xi)), a basis for kerXi.
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7. Let Ci := Ci−1 ∪ {πki(v) | v ∈ β}.

8. IF N rM `−m = i, THEN output C = Ci, and STOP.

9. Let Y be the matrix whose rows are the vectors in Vi. Let D be the first ki

entries on the diagonal of the tRREF Xi.

10. Compute Y ′ := Out(Σ, {Y,D}), the rows of Y indicated by D.

11. Let Li be the first H(i) rows of Y ′.

12. IF ki = #(rows of Y) < H(i), THEN pad Li with zeros so that Li has precisely

H(i) vectors.

13. Vi+1 := Li ∪
(
{σ∗p(x1), . . . , σ∗p(xn)} · {vj ∈ Li | j > H(i− 1).}

)
.

14. i := i+ 1.

15. GOTO (4).

The final steps of each iteration require some remarks. For step (10), recall that

the nonzero entries of the diagonal D of the tRREF of Xi indicate which columns

of Xi are linearly independent. These are the image vectors the algorithm should

preserve for the next iteration, so that it can proceed with a polynomial number of

multiplications. In step (13), we multiply the σ∗p(xi) only by these newfound vectors.

Step (12) can be accomplished in the context of straight line programs because we

can predict the iteration i at which ki ≥ H(i) first occurs, independent of the choice

of p. At step (13) we multiply Li by all σ∗p(xi) because, in principle, all σ∗p(xi) could

be linearly independent modulo I(G). As i increases, the vectors in each Vi describe

the images of larger monomials xI , I a multi-index, in k[x1, . . . , xn]. The algorithm

terminates when we have considered a k-basis for the polynomials of degree up to
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N rM `−m that vanish on G · p. By the previous section, the elements of that k-basis

generate an ideal whose radical is I(G · p).

Proposition V.12. The constructible functions defined by the set C

1. are constant on the orbit of p ∈ An, and hence invariant under the usual action

g · f(x) = f(g−1 · x) for g ∈ G,

2. separate orbits.

Proof. To show that the functions defined by the straight line programs in C are

invariant, choose p ∈ An and q ∈ G · p. Let Xi(p) be the matrix produced in step

(4) of the algorithm in the ith iteration. Let XV
i (p) be the first |Vi| = ki columns of

Xi(p), that is, those containing the vectors in Vi(p). Now, XV
1 (p) and XV

1 (q) have

the same kernel, because (a) as maps k[x1, . . . , xn]1 → k[G]≤N they have the same

basis x1, . . . , xn for their domain, and because (b) the kernel of each matrix must

span I(G · p)1. Thus XV
1 (g · p) = A ·XV

1 (p) for some matrix A. In particular, XV
1 (p)

and XV
1 (q) have linearly independent columns in the same places, and hence have

the same RREF.

So letting Ci(x) denote the kernel vectors obtained on input x in the ith iteration,

we have C1(p) = C1(g · p). As well, let Li(p) denote the set (produced in step (11)

of the algorithm) containing the linearly independent columns of XV
i (p). Then we

have L1(p) = {σ∗p(xj1), . . . , σ∗p(xjr)} and L1(g · p) = {σ∗g·p(xj1), . . . , σ∗g·p(xjr)} for the

same indices j1, . . . , js.

Proceed by induction on i: we may assume XV
i (p) and XV

i (q) have the same

RREF and hence Ci(p) = Ci(q). We may also assume the columns of XV
i (p) and

XV
i (q) represent the images of the same set of monomials {xI1 , . . . , xIs}, for multi-

indicies Ij. Then the lists Vi+1(p) and Vi+1(q) also represent the images of the same
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monomials under σ∗p and σ∗q , respectively. Claim again that XV
i+1(p) and XV

i+1(q)

have the same RREF. By the induction hypothesis, the two matrices have the same

basis for their domain, and the kernel of each must span I(G · p)i+1. These facts

prove the claim, as in the base case. Thus Ci+1(p) = Ci+1(q), and the functions in C

are invariant.

To show the functions in C separate orbits, choose p, q ∈ An such that the functions

in C take the same values at both points. In particular, C1(p) = C1(q), so X1(p) and

X1(q) have the same canonical kernel. As above, it follows that X1(p) and X1(q)

have the same RREF. Two facts emerge. Crucially, the kernels of σ∗p and σ∗q have the

same canonical k-basis for their subspaces of degree-1 elements, because the matrices

XV
1 (p) and XV

1 (q) assume the same basis for the domain space k[x1, . . . , xn]1, namely,

x1, . . . , xn. We wish to prove this for all degrees i.

What is more, L1(p) = {σ∗p(xj1), . . . , σ∗p(xjs)} and L1(q) = {σ∗q (xj1), . . . , σ∗q (xjs)}

for the same indices j1, . . . , js, because XV
1 (p) and XV

1 (q) have linearly independent

columns in the same positions. Thus V2(p) and V2(q) list the images of the same set

of monomials xjxk under σ∗p and σ∗q , respectively.

Proceeding by induction, if XV
i (p) and XV

i (q) have the same RREF and list the

images of the same monomials, then XV
i+1(p) and XV

i+1(q) also list the images of

the same monomials. By the assumption Ci+1(p) = Ci+1(q), the matrices XV
i+1(p)

and XV
i+1(q) also have the same RREF. Therefore the kernels of σ∗p and σ∗q have the

same canonical k-basis for their degree-i subspaces, completing the induction. In

particular, the same ideal (f1, . . . , fs) defines G · p and G · q. Since G is a linear

algebraic group, it follows G · p = G · q, completing the proof.
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5.4.2 Complexity Bounds

The bookkeeping that follows confirms that the complexity of the orbit separating

algorithm is polynomial in n and N . First, the degree bound N rM `−m for a generat-

ing set of q requires that we compute products of N rM `−m degree-N polynomials fi

in k[z1, . . . , z`], for i = 1, . . . , N rM `−m. To this end, compute the monomials in the

zj up to degree N ·N rM `−m, with total complexity O(N `(r+1)M `(`−m)). Then multi-

ply f1f2 · · · fi and fi+1 to obtain an implicit straight-line program for the product of

i+ 1 distinct degree-N polynomials in k[z1, . . . , z`], with complexity O(22`−2i2`N2`).

For details of polynomial multiplication, see Chapter 2 of [2].

Next consider the sizes of matrices in the algorithm. Recall that for large d,

H(d) ≤ O(dm). Hence in iteration i, the matrix Xi has

ki = O (((i− 1)N)m + n · [((i− 1)N)m − ((i− 2)N)m])

columns from Vi, has |B(iN)| additional columns, and has (iN)` rows corresponding

to the monomials in k[z1, . . . , z`]≤iN . Of course, |B(iN)| = O((iN)`), so the number

of rows of Xi is O((iN)`), and the number of columns is O(n(iN)m + (iN)`) ≤

O(n(iN)`). Now, computing the tRREF of an s×t matrix has complexity O(st2+t3).

Thus the computation of tRREF(Xi) has complexity bounded by

O
(
(iN)` · n2(iN)2` + n3(iN)3`

)
= O

(
n3i3`N3`

)
.

The above count of the columns of Xi also yields that the computation of the kernel

of tRREF(Xi) has complexity O(n2i2`N2`)

In collecting the independent elements of Vi in step (10), the input to the procedure

Σ is a ki × (iN)` matrix, where

ki = O (((i− 1)N)m + n · [((i− 1)N)m − ((i− 2)N)m]) ≤ O(n(iN)m).
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On an s × t matrix, Σ has complexity O(s2t), whence step (10) has complexity

≤ O(n2(iN)2m · (iN)`).

Finally, the polynomial multiplications f1 · · · fi proceed through i = N rM `−m,

with n multiplications for each i. Their total complexity is

O
(
22`−2n(N rM `−m)2`+1N2`

)
= O

(
2`−1nN2`(r+1)+rM (`−m)(2`+1)

)
.

Of the other computations, the programs for the tRREF have the highest cost.

Summing their complexity from i = 1 to the degree bound, N rM `−m, yields the

following:

O
(
n3(N rM `−m)3`+1N3`

)
= O

(
n3N3`(r+1)+rM (`−m)(3`+1)

)
,

where, again, N is the maximum polynomial degree of the representation, M is a

degree bound for a generating set of I(G) ⊂ k[z1, . . . , z`], and under this embedding

G has dimension m. Since the embedding G ↪→ A` is fixed, we omit the constant

power of M from the asymptotic complexity.

Finally, to bound the number of relations that the algorithm computes, we sum

the column count O(n(iN)`) of the matrices Xi over all iterations i, and obtain

O
(
nN `(r+1)+rM (`−m)(`+1)

)
polynomials generating the ideal q. In iteration i, such a polynomial has ki ≤

O(n(iN)m) terms, giving a bound for the number of constructible functions that the

algorithm computes:

O
(
n2N (`+m+1)(r+1)M (`−m)(`+m+1)

)
.

By omitting the powers of M , the main theorem follows.
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