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ABSTRACT

On the theory and numerical simulation of cohesive crack propagation with
application to fiber-reinforced composites

by

Krishna Siva Shankar Rudraraju

Co-Chair’s: Krishnakumar Garikipati and Anthony M. Waas

The phenomenon of crack propagation is among the predominant modes of failure in

many natural and engineering structures, often leading to severe loss of structural in-

tegrity and catastrophic failure. Thus, the ability to understand and a priori simulate

the evolution of this failure mode has been one of the corner stones of applied me-

chanics and structural engineering, and is broadly referred to as fracture mechanics.

The work presented here focuses on extending this understanding, in the context of

through-the-thickness crack propagation in cohesive materials, through the develop-

ment of a continuum level multiscale numerical framework, which represents cracks as

displacement discontinuities across a surface of zero measure. The formal treatment

significantly derives from earlier work on numerical simulation of strong discontinu-

ities and the variational multiscale method. The resulting computational framework

is demonstrated through benchmark problems and validated by comparison with ex-

perimental observations of failure in fiber-reinforced composites.

viii



CHAPTER I

Introduction

This chapter provides an introduction to the phenomenon of cohesive crack prop-

agation and its numerical simulation. Beginning with a motivation for studying crack

propagation in materials with complex microstructures in Section 1.1, the relevant

analytical and numerical challenges are discussed in Section 1.2 and Section 1.3, re-

spectively. Then the approach adopted and the specific goals are laid out in Section

1.4 and an outline of the remainder of the dissertation is provided in Section 1.5.

1.1 Motivation

On application of external forces, the primary mode of response of a solid is the

stretching of inter-atomic bonds, which is “globally” manifested as material deforma-

tion. Understanding the resulting continuum scale kinematics and constitutive be-

havior of this deformation response, within the limit of recoverability (elastic limit),

are addressed in detail by the Theory of Elasticity [Timoshenko (1934); Truesdell

and Noll (1965); Knowles and Sternberg (1972); Marsden and Hughes (1994); Bar-

ber (2010)]. Exceeding the elastic limit leads to irreversible microstructural changes

like movement of atomic dislocations, growth of mircocracks and microvoids, or re-

sults in macroscopic configurational changes involving internal surface creation. The

phenomenological descriptions of the microstructural changes, as required by the prin-
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ciples of irreversible thermodynamics, introduce new internal variables whose evolu-

tion is the subject matter of the Theory of Plasticity [Hill (1950); Kachanov (1971);

Lubliner (1990); Simo and Hughes (1998)] for metallic solids, and Damage Mechanics

[Kachanov (1986); Krajcinovic (1989)] for materials with microcracking.

The creation of internal surfaces, referred to as cracks, do not necessarily involve

changes in the continuum constitutive response of the intact solid, but is rather a

problem of unknown or moving boundaries, driven by the external loading and reg-

ular constitutive response of the material. Such problems of evolving boundaries are

not uncommon in continuum physics, and some other examples are Stefan’s problem

of freezing in heat conduction, phase boundaries in multi-phase mixtures, and fluid

flow past bodies in the presence of shock waves. The challenge here lies in the predic-

tion of the surface formation and tracking its subsequent evolution. In the context of

cracks, this results in “global” non-linearity of the load response which, in general, is

not analytically tractable. Further, depending on the microstructure of the material,

crack formation may also manifest, in addition to the continuum elastic response, new

constitutive relations which can span across different length scales. These additional

cohesive relations between the crack face opening and its internal tractions, referred to

as traction-separation relations, lead to the more challenging class of cohesive cracks

and bridging cracks, where the crack surface may be a diffuse zone of damage rather

than a sharp boundary.

Consider the case of through-the-thickness crack propagation in fiber-reinforced

composites. Because of the different length scales associated with the microstructure

of a composite material and the resulting composite structure, a multitude of fail-

ure mechanisms can be simultaneously operative, leading to a very complex damage

progression in a composite structure. A sharp, through the thickness crack can be
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present in these composites initially, but, as soon as local damage (possibly in the

form of matrix micro-cracking) accumulates, crack blunting and distributed damage

occurs across the highly stressed areas around the initial crack tip. As this initial

crack starts to grow, a damaged zone of material (bridging zone) evolves in the wake

of the instantaneous crack tip. Thus, unlike in monolithic materials, such as metals,

there is actually no well defined “crack” that can be identified. Instead, a diffused

zone of damage is seen to advance. This distributed damage results in additional re-

sistance to advancing damage growth, largely due to fiber bridging and pullout in the

crack wake . This enhanced fracture resistance is desirable and is a major contributor

to the increased toughness of laminated composites [Cooper (1970), Aveston et al.

(1971), Aveston and Kelly (1973), Cox (1991)].

Overall, the problem of determining and evolving crack boundaries and their in-

teraction with the continuum deformation fields represents a highly nonlinear system,

with significant analytical and numerical challenges, which are briefly discussed below.

1.2 Analytical Challenges

The study of crack formation and propagation, referred to as Fracture Mechanics,

was founded in the seminal work on brittle cracks by Griffith (1921), which intro-

duced the energy-based approach to crack propagation. This was followed by major

advances in the form of a stress-intensity based approach of Irwin (1957) and soften-

ing and plastic process zone models introduced by Barenblatt (1962); Dugdale (1960),

which were further extended by Cherepanov (1967); Rice (1968). These models are

discussed in detail in Section 2.1.1. However, these theories are restricted to brittle or

ductile materials with structurally insignificant or small zones of non-linearity ahead

of the crack tip (process zones), and thus they cannot be applied directly to derive con-

ditions on crack initiation or propagation in materials characterized by large process
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zones. This latter class of materials is the focus of the research presented in this work.

Several physical mechanisms may contribute to this type of damage. Micro-

cracking, fiber bridging, coalescence of voids and other microstructural mechanisms

can give rise to a process zone that is considerably larger than that permitted for

the application of linear elastic fracture mechanics (LEFM) models. Furthermore,

the material non-linearity that is induced by these mechanisms leads to a relief of the

singular fields at the mathematically sharp crack tip, which would otherwise persist in

a strict LEFM setting of an elastic material. A new length scale, Eγ
σ2
max

, emerges that

is related to a characteristic elastic modulus E, fracture toughness γ and cohesive

strength, σmax. If this length scale is larger than any characteristic length scale in the

problem, then cohesive zone models, which embed process zone mechanics through

nonlinear traction-separation relationships across the crack faces, become important

tools for analysis [Pietruszczak and Mroz (1981); Ungsuwarungsri and Knauss (1987);

Song and Waas (1993); Schellekens and DeBorst (1993); Xu and Needleman (1994);

Camacho and Ortiz (1996)]. However determining these traction-separation rela-

tions is very challenging, and often subject to the material microstructure as will be

illustrated in Section 2.2.1 and Appendix A.

1.3 Numerical Challenges

Numerical schemes, like the finite element method (FEM), have become the main-

stay for solution of problems involving any of the broad phenomena of material de-

formation - elasticity, plasticity and damage; so it may be tempting to use traditional

finite element based discretization for problems of crack propagation. However, the

distinguishing characteristic of crack problems, in general, is the formation and prop-

agation of sharp boundaries, which are not part of the original boundary value prob-

lem. This is not an obstacle if the resulting crack path is known a priori and the
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mesh is ensured to have elemental surfaces align along possible crack surfaces; but in

practice, neither conditions are feasible. For most crack propagation problems, the

crack path is not known beforehand and has to be determined as part of the solution

process, and in structural level problems, adaptive mesh generation/realignment is

prohibitively costly. Furthermore, a standard Galerkin implementation will lead to

the introduction of spurious numerical length scales proportional to the element vol-

ume as discussed in Section 4.1.

These problems with traditional FEM implementations have been well docu-

mented for the phenomena of strain localization, which has similar kinematics to

that of crack propagation problems. Thus, it exhibits spurious mesh related length

scales [Needleman and Tvergaard (1984); Bazant (1986); Crisfield and Wills (1988);

Armero and Garikipati (1996)] and problems related to mesh alignment relative to

the localization band [Larsson et al. (1993); Ramakrishnan et al. (1994)].

As will be shown in Chapters IV and V, the multiscale formulation presented

in this thesis, involving elemental enrichment to capture the discontinuous modes

associated with crack propagation, eliminates these mesh related problems. It is also

noted that a comparable, but significantly different development, involving nodal

enrichment by partition of unity functions, like the extended finite element (XFEM)

[Moes et al. (1999); Moes and Belytschko (2002); Dolbow et al. (2001)] and Wells

and Sluys (2001) also results in mesh objective simulation of crack problems. The

differences between the two approaches will be highlighted in Chapter IV.

1.4 Adopted Approach and Goals

The primary task of this thesis is the development of a numerical framework for

cohesive crack propagation and demonstrating its effectiveness by simulating fail-
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ure through crack propagation in materials with complex microstructure like fiber-

reinforced composites. Towards this goal the following approach has been adopted:

1 Reviewing existing theories of brittle and cohesive crack propagation to deter-

mine their capabilities and limitations.

2 Developing a general approach to cohesive crack propagation involving large

process zones and also obtaining (analytically/numerically) the relevant cohe-

sive constitutive behavior of a class of fiber-reinforced composites.

3 Extending the idea of variational multiscale method presented in Hughes (1995);

Garikipati and Hughes (1998) and developing it on the lines of Garikipati (2002)

for application to cohesive crack propagation involving discontinuous kinemat-

ics.

4 Developing a class of finite elements that objectively simulate crack propagation

without introducing any spurious numerical length scales. This involves appli-

cation of non traditional discontinuous shape functions and relevant quadrature

schemes.

5 Implementation of a robust crack tracking algorithm that allows the propagation

of the discontinuity surface across elements subject to physically consistent crack

propagation directions.

6 Sufficiently benchmarking the developed numerical framework by simulating

complex crack propagation problems involving curved cracks, multiple cracks,

interacting cracks, etc.

7 Experimentally validating the theoretical and numerical approaches by com-

paring the load-displacement response and crack paths observed in large scale

bridged crack propagation in laminated fiber-reinforced composite specimens.
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It is expected that achieving these goals would be sufficient to demonstrate and

validate a physically consistent and numerically objective cohesive crack propagation

framework.

1.5 Outline

An outline of the rest of the dissertation is as follows. Chapter II reviews the clas-

sical theories of crack propagation and later developments relevant to cohesive cracks

involving large process zones. It then presents a possible description of the microme-

chanics behind bridging cracks formation in fiber-reinforced composites. In Chapter

III, the variational multiscale concept of problems involving gridscale and subgrid

scale phenomena is introduced. Then the concept is extended to cracks represented

as discontinuous displacement modes and the relevant weak formulation of the prob-

lem is derived. This formulation is then cast in a finite element framework in Chapter

IV, which begins with a discussion of the limitations of standard finite element ap-

proaches to simulate crack propagation. It then proceeds to the multiscale element

construction and development of the discretized equations and an incremental solu-

tion procedure. The analytical and numerical framework developed until this point

is validated through simulation of various crack propagation problems in Chapter

V, and by comparison with experimental observations in Chapter VI. The conclu-

sions and possible areas of future work are summarized in Chapter VII, and lastly a

framework for deriving traction-separation relations is discussed in Appendix A.
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CHAPTER II

Mechanics of Cohesive Crack Propagation

The study of crack propagation, commonly referred to as Fracture Mechanics,

has historically focused on predicting crack evolution in homogeneous materials with

brittle or quasi-brittle behavior. However, with the advent of advanced materials

like composites, which posses high stiffness, superior damage tolerance and improved

thermo-mechanical properties, the traditional approaches to simulate crack propaga-

tion are not adequate. The work presented here develops an analytical and numerical

framework to address crack propagation in one such important class of advanced ma-

terials called fiber composites, which often exhibit large process zone sizes. Towards

that goal, this chapter begins with a brief discussion of classical fracture mechanics

in Section (2.1.1). Then, an enrichment of classical ideas using the cohesive zone

approach proposed by Barenblatt (1962) is discussed in Section (2.1.2). The presen-

tation is significantly influenced by Raizer (1970). With the theoretical framework

laid out, the phenomena of toughening in materials involving large process zones is

discussed in Section (2.2) and this is extended to fiber composites in Section (2.3).

Finally the closing remarks are provided in Section 2.4.
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2.1 Crack Propagation in Cohesive Materials

2.1.1 Classical Fracture Mechanics

From the continuum viewpoint, fracture or crack formation is the creation of

new surfaces in the domain of the body. This surface creation invariably leads to

loss in the global stiffness and load-bearing ability of the material, often leading to

failure. Traditionally, either energy-based or stress-intensity based approaches have

been employed to predict this mode of failure. The energy-based theory of failure

introduced by Griffith (1921) was motivated by the inadequacy of the elastic solution

that renders singular stresses at the mathematically sharp crack tip. Subsequently,

Griffith’s work formed the basis for linear elastic fracture mechanics (LEFM). In

this section, a concise discussion of the key elements of LEFM and a subsequent

development referred to as the stress-intensity based approach will be presented.

2.1.1.1 Griffith’s Energy-Based Theory of Crack Propagation

Consider an infinite plate of uniform thickness under homogeneous tensile stress

state, σyy, produced due to the far-field application of uniform load p (= σyy) as shown

in Figure (2.1). Considering linear elasticity, the strain energy density of the body is

given by U = σ2
yy/2E

′, where E ′ is the modulus1. If a crack of length l, with traction

free faces, appears in this infinite domain, then the change in strain energy is given by

∆U = −σ2
yya(l)/2E

′, where a(l) is a positive valued function representing the effec-

tive area of stress relaxation in the vicinity of the crack. Also, their is an associated

increase in the total surface energy, ∆Π = 4lγ, where γ is the surface energy density2.

1plain-stress condition: E′ = E and plain-strain condition: E′ = E

1−ν2 , where E is the Young’s
Modulus and ν the Poisson’s ratio.

2Surface energy density or surface tension is defined as the energy required to create a surface of
unit cross sectional area in the continuum volume. From a micromechnical viewpoint, this energy
is required to overcome the surface cohesive forces.
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REMARK : Elasticity theory involves only volumetric energy and has no concept of

a surface energy; thus stand-alone application of classical elasticity can predict the

stress state around a preexisting crack, as shown by Kolosov (1909); Inglis (1913) and

Muskhelishvili (1919) but cannot yield conditions on either initiation of new cracks or

propagation of existing cracks. Griffith (1921) introduced this concept to distinguish

fracture from elasticity and thereby derive conditions for crack initiation and unstable

propagation. Of course, his presentation did not detail the micromechanics of surface

formation, and considered γ as a macroscopic material property.

y

x

2l

p

p

Figure 2.1: Crack in an infinite plate of uniform thickness.

Consider now the free energy3 of the quasi-static system, ∆F = ∆U + ∆Π, and its

derivatives are given by

δF

δl
= −σ2

yya
′(l)

2E ′ + 4γ (2.1a)

δ2F

δl2
= −σ2

yya
′′(l)

2E ′ (2.1b)

Then, for spontaneous occurrence of a crack of length 2l, which renders a new equilib-

3Referred to as potential energy in Griffith (1921)
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rium state, the free energy has to be stationary. This stationarity condition, δF
δl

= 0,

shows that the decrease in strain energy is equal to the surface creation energy, and

yields a value of critical loading, pcrit =
√

8γE ′/a′(l). It is tacitly assumed that,

during the occurrence of crack, no external work is done on the system, thus result-

ing in only internal transformation of energy. Using the exact expression for a(l) for

the plane strain condition, Griffith (1921)) obtained pcrit =
√

2γE ′/πl. Further, for

this geometry and loading conditions, a′′(l) > 0, which implies that the new equi-

librium state is unstable. Thus for p > pcrit, l increases catastrophically, and for

p < pcrit, l remains unchanged at its original value4. So the necessary condition for

crack propagation is

σ2
yya

′(l)

2E ′ ≥ 4γ (Energy-based crack propagation criterion) (2.2)

The terms − δU
δl

and δΠ
δl

are usually referred to as the energy release rate and material

resistance, and denoted by symbols G and R, respectively. In general, G and R are

functions of l, so the corresponding free energy and equilibrium conditions are

∆F = −G∆l +R∆l (2.3a)

δF

δl
= −G+R ≤ 0 (2.3b)

δ2F

δl2
= −δG

δl
+

δR

δl
> 0 (Stable propagation) (2.3c)

δ2F

δl2
= −δG

δl
+

δR

δl
< 0 (Unstable propagation) (2.3d)

Thus, Griffith’s theory, based on surface energy and the resultant stationarity

of free energy, yields an expression for critical loading for unstable crack extension.

However, analytical estimation of ∆U , the change in the strain energy, as a function of

4The crack length cannot decrease as t 7→ l(t) is a monotonically increasing mapping. This is a
physical requirement as rearrangement and relaxation of surface atoms preclude the possibility of
crack closure.
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l is only possible for simple problems. This limits the application of the energy-based

approach to complex geometries and loading conditions.

2.1.1.2 Irwin’s Stress-Intensity Based Theory of Crack Propagation

The key idea behind the stress-intensity based theory is the observation that the

near tip crack field in isotropic linear elastic materials is similar for all specimen

geometry and loading conditions, to within a constant. For the crack loading shown

in Figure (2.1), Williams (1952); Irwin (1957) obtained the crack tip opening stress

and corresponding displacement along the x-axis,

σyy =
N√
x
+O(1) (2.4a)

uyy =
4N

E ′

√

|x|+O(x3/2) (2.4b)

where O denotes the higher order terms in the asymptotic expansion of the singular

stress field. The constant N , referred to as the coefficient of stress intensity, deter-

mines the stress and strain field in the vicinity of the crack tip, and is depended on

the specimen geometry, crack dimensions and loading conditions. Having derived the

stress and strain fields, Irwin (1957) proposed the following crack closure analysis to

determine the value of the energy release rate, G.

Consider Figure (2.2), where the crack has extended by a distance δl from its

original position A to A′. Assume that the boundaries are held fixed, so that no

energy exchange takes place between the system and its surroundings due to changes

in external forces. Consider a new coordinate system (x′, y′) positioned at A. Now

apply fictitious forces on the section A− A′, such that they are just enough to close

the crack opening in this section. The magnitude of the displacement of each face

required for crack closure along this section is given by uy′y′ = uyy(x
′−δl) for small δl,

12
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Figure 2.2: Crack closure analysis to determine the energy release rate: (A) Initial crack
profile, (B) Extended crack profile, (C) Crack Closure.

and the corresponding stress along the closed section is given by σy′y′ = σyy(x
′). Using

these, the work done in achieving crack closure, which directly contributes towards

increasing the strain energy of the body, is given by

∆U = 2 · 1
2

δl∫

0

σy′y′(x
′)uy′y′(x

′) dx′ =
2πN2δl

E ′ (2.5)

Now if we assume that the fictitious forces are released, the crack tip rebounds to

A′, resulting in a −∆U change in the strain energy. So the strain energy release rate

given by G = − δU
δl

is

G =
2πN2

E ′ (2.6)

Having obtained the energy release rate from the stress-intensity based approach,

one can use Equations (2.3b), (2.3c), (2.3d) to determine the crack propagation and

stability conditions. Substituting G and R (=2γδl) into Equation (2.3b), we obtain

13



the stress-intensity based crack propagation criterion

πN2

E ′ ≥ γ (Stress-intensity based crack propagation criterion)

(2.7)

Both the energy-based criterion (Equation (2.2)) and stress-intensity based crite-

rion (Equation (2.7)) in many cases can be shown to be equivalent statements, and

this equivalence can be seen through the Equation (2.6).

The classical crack propagation approaches presented above use the linear theory

of elasticity to deliver necessary conditions for crack initiation and propagation, and in

doing so use macroscopic energy (Equation (2.1a)) or asymptotic stress field (Equation

(2.4a)) arguments, which contain solutions with infinite stress values at the crack

tip. However, in real materials, either non-linear phenomena like plasticity limit the

stress to finite values, or atomic-level phenomena like cohesive separation occur, thus

rendering the high stress values predicted by the linear theory meaningless. Further,

there is an inherent contradiction in the use of a linear theory, which by definition

is only applicable to small deformations, to predict infinite stress and strain values.

The traditional argument against these contradictions is that the volume of the zone

over which these crack tip non-linear phenomena are active (termed the process zone)

is significantly smaller compared to the volume over which the singular field terms

(varying as 1√
r
) are predominant. This assumption of a small process zone, which

implies that the “local” crack-tip non-linearities do not significantly effect the “global”

energy or stress field solutions, is central to LEFM, which deals with the application

of the above energy-based and stress-intensity based approaches.
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2.1.2 Small Process Zone and Barenblatt Cohesive Model

To address the inconsistency of infinite stresses at the crack-tip, a theory involv-

ing non-linear process zone mechanics was presented in Barenblatt (1962); Dugdale

(1960) for symmetric crack propagation in homogeneous isotropic materials. Con-

sider the physical picture of surface formation from an atomistic viewpoint. As the

body is loaded, certain points with material defects or geometric singularities undergo

significant stretching of atomic bonds, which eventually leads to loss of inter-atomic

cohesion and traction free surface creation. This transition from bond stretching to

surface creation is gradual, and thus the physical picture of the crack opening profile

should be comparable to Figure (2.3B), rather than the
√
x opening profile predicted

by LEFM theory (Equation (2.4b)). Further, the order of magnitude of the forces

involved in this zone of cohesive bond stretching and weakening (termed the cohesive

zone) can be orders of magnitude higher than the far-field stresses. Therefore the

external loading conditions and specimen geometry have little influence on the crack

profile in the cohesive zone, which is under the influence of much larger cohesive

forces. This implies

• The cohesive forces are concentrated near a small, but finite region of the con-

tinuum crack tip and drop to zero within few atomic distances from the crack

tip; this is equivalent to the small process zone assumption in LEFM.

• For a given material, the crack profile in the cohesive zone is universal (inde-

pendent of the loading, geometry and crack dimensions).

This universality condition of the crack profile, termed as the autonomy of the crack

end, is central to the theory of Cohesive Zone Model (CZM) of fracture, and states

that “in the mobile-equilibrium state, the heads of all cracks in a given material are

the same”.
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Figure 2.3: Crack opening profile due to the influence of cohesive forces in the crack
wake: (A) Crack profile obtained from classical analysis (uyy ≈ x1/2); characterized by
infinite stresses at the crack-tip, (B) Crack profile obtained in the presence of cohesive forces
(uyy ≈ x3/2); characterized by finite stresses (C) Opening stress profile at the cohesive crack
tip.

The primary argument of Barenblatt (1962) to remove the unphysical stress sin-

gularity implies Nt = 0 (Equation (2.4a)). Here Nt = N + NG, where N and NG

are the coefficients of stress intensity due to the external loading and cohesive forces,

respectively. Substituting Nt = 0 in Equation (2.4b), we are left with the crack open-

ing profile, uyy ≈ x3/2, which is depicted in Figure (2.3B). The requirement of Nt = 0

leads to the following condition for crack propagation:

N ≥ K

π
(Cohesive-model crack propagation criterion) (2.8)

and,

K2 = πE ′γ ′ (2.9a)

γ ′ =
1

2

∞∫

0

T (δ) dδ (2.9b)
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where K is the modulus of cohesion, γ ′ is the fracture toughness5 of the cohesive

zone, and T (δ) is the non-linear cohesive traction in the crack wake and δ is the crack

opening displacement which is hereafter referred to as the crack separation. Using

Equations (2.6) and (2.8), Willis (1967) showed the equivalence of LEFM based on

Griffith theory and the Barenblatt CZM model, provided that the cohesive surface

energy density is equal to the fracture toughness (γ = γ ′).

T (δ)

δ

σmax

Cohesive unloading

Figure 2.4: Schematic of a possible cohesive traction function. σmax is the maximum
opening stress value up to which the linear analysis, shown in black, is valid. Upon achieving
this value, the relevant constitutive law switches from linear elasticity to the non-linear
cohesive relationship shown in green.

A representative non-linear cohesive traction function, T (δ), which is a material

property input to CZM is shown in Figure (2.4). In real materials, however, determin-

ing T (δ) is very challenging and often material subjective. Especially, in materials

with complex microstructure, determining T (δ) involves detailed understanding of

the crack wake micromechanics. Also, the crack wake processes, involved in modern

materials, which demonstrate high fracture resistance, do not satisfy the small process

zone assumption of LEFM and CZM.

5Fracture toughness is defined as the energy required to create a traction free surface of unit cross
sectional area by overcoming all crack wake resistances due to cohesive forces, material-nonlinearities,
etc.

17



Plastic deformation

Fiber bridging
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Microcracking

Dislocation emission

Extrinsic toughening Intrinsic toughening

Crack wake process Crack tip process

Figure 2.5: Schematic of a various toughening mechanisms. In a crack propagation
scheme, crack wake (extrinsic) toughening contributes to the bridging traction-separation
relation and crack tip (intrinsic) toughening is accounted for in the cohesive traction-
separation relation.

2.2 Crack Propagation in Bridging Materials

The resistance to crack growth due to cohesive, non-linear or microstructural phe-

nomena ahead/behind the crack tip is generally referred to as toughening, and the

region over which these processes are significant is called the process zone. Figure

(2.5) depicts some of the prominent toughening phenomena observed in materials. In

traditional homogeneous materials, like monolithic metals, the toughening is localized

at the crack tip and the resulting process zone size is negligible when compared to the

crack dimensions. Further the process zone is always ahead of the crack. This allows

the direct use of LEFM or CZM methods to predict crack initiation and propagation,

due to this localized nature of the process zone. On the other hand, modern materials

with complex microstructures, like fiber composites, demonstrate exceptionally high

fracture toughness due to high crack wake bridging tractions and large process zone

sizes which are comparable to the crack dimensions, as shown in Figure 2.8. In a

composite, during crack growth, a process zone ahead of the crack and a bridging

zone in the wake of the crack, both provide toughening. This large process zone
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size implies the classical approaches to fracture cannot be directly applied. Further,

the evolutionary nature of the sizes of the cohesive zone and bridging zone limit the

application of analytical methods, and almost always requires the use of numerical

methods such as the finite element method, to solve the resulting equations.

The remainder of this chapter, and subsequent chapters will focus on developing

a numerical framework for the problem of crack propagation involving large process

zones, based on the finite element method.

TB

δ

TC

δ

Bridging Zone Cohesive Zone

Bridging Traction Cohesive Traction

Figure 2.6: Schematics of possible bridging traction-separation and cohesive traction-
separation relations.

2.2.1 Large Process Zone and Traction-Separation Models

Consider Figure (2.6) which depicts the traction-separation relations for a prob-

lem with a large bridging zone during crack growth. Since the extrinsic toughening

considered is due to traction in the fibers bridging the crack faces, this particular

crack wake toughening process is referred to as bridging toughening, and the corre-
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Figure 2.7: Schematic of possible mixed cohesive-bridging traction-separation relations (A)
Physically consistent as cohesive relation begins at finite traction, (B) Physically inconsistent
as cohesive relation begins at zero traction.

sponding materials are referred to as bridging materials.

As discussed earlier, the cohesive zone process is localized and is characterized by

sharply dropping tractions within a short distance of the crack tip. Further, since

the cohesive zone mechanisms are always subsequent to a certain amount of linear

deformation, the corresponding tractions-separation relationship should begin at a

non-zero traction value. On the other hand, the bridging zone process is distributed

over distances comparable to the crack dimension, and the tractions will start at

zero, build up and drop more gradually 6. Now the challenge is to embed these

two distinct toughening processes into a numerical framework to produce physically

consistent crack evolution. There are two possible approaches to this:

• Implement the two processes separately and use the corresponding traction-

separation relations. So a point in the crack path begins with a cohesive traction

relation and gradually transfers to a bridging traction relation.

• Determine a cumulative traction-separation relation encompassing both these

processes, and then treat the resultant non-linear constitutive relation as a

6It is noted that depending on the specific micromechanics, the starting traction in a bridging
traction-separation relationship may or may not be zero
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standard CZM T (δ) relation. However the chosen relation should be physically

consistent, as shown in Figure (2.7 A). For instance, Figure (2.7 B) shows an

inconsistent mixed traction relation.

The latter approach is numerically more appealing and widely applied. However, such

a cumulative traction-separation relation will be problem and geometry subjective as

shown in Li et al. (2005). A detailed discussion of both the above approaches can be

found in Sun and Jin (2006).

2.2.2 Cohesive Zone Model and Other Numerical Methods

Subsequent to the pioneering work by Barenblatt, the implementation of a CZM

incorporating a finite element framework lay dormant until the work of Hillerborg

et al. (1976). In parallel, other numerical techniques emerged to implement the LEFM

methodology that found favor amongst practicing engineers. Therefore a brief review

of LEFM based numerical methods is presented here, before moving to the develop-

ments in CZM.

Among fracture parameters, the strain energy release rate has been used increas-

ingly used in conjunction with LEFM. It can be computed by the virtual crack closure

technique (VCCT) [Xie and Biggers (2006b)], in conjunction with finite element anal-

ysis. This method requires a pre-existing mathematically sharp crack for initiation

and conditions of small scale yielding to hold. With negligible material non-linearity

at the crack tip (small process zone size), LEFM based approaches have been proven

to be effective in predicting crack initiation and subsequent growth [Hertzberg (1983);

Xie and Biggers (2006b,a); Xie et al. (2004, 2005); Xie and Waas (2006); Salvi et al.

(2008)]. But as discussed earlier, often crack growth in composite materials and

structures made of other quasi-brittle materials, the process zone size may be larger

than any characteristic length scale in the problem leading to situations where the
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assumptions of LEFM cease to hold [Xie et al. (2006)]. Several mechanisms like

micro-cracking, fiber bridging, coalescence of voids, etc can give rise to a process zone

that is considerably larger than what is required for assumptions of LEFM to hold.

A new length scale, l∗, emerges that is related to a characteristic elastic modulus

E, fracture toughness γ and cohesive strength, σmax, defined as, l∗2 = Eγ
σ2
max

. If l∗

is larger than any characteristic length scale in the problem, then the cohesive zone

models, which embed process zone mechanics through nonlinear traction-separation

relationships across the crack faces become an important tool for analysis.

Subsequent to the work of Hillerborg et al. (1976), the crack band model which

incorporates a characteristic length, l∗, was introduced by Bazant and Oh (1983).

Around the same time, CZM development, in the form of nonlinear spring foundations

was adopted by Ungsuwarungsri and Knauss (1987) to study crazing in polymers and

by Song and Waas (1993) to study delamination fracture in laminated composites.

Because of its versatility, CZM models became a popular choice for many fracture

problems that were studied using a FE framework as detailed in Pietruszczak and

Mroz (1981); Xu and Needleman (1994); Pandolfi et al. (1999). In order to imple-

ment a CZM in its simplest form, two parameters are required: a fracture toughness

and a cohesive strength. The choice of these parameters and how they are measured

and/or calibrated depends on the problem that is being addressed. In general, the

CZM parameters are “system” parameters and are related to the material system that

is being studied. The fracture toughness can be obtained from coupon level tests of

the material system under study, for example through Compact Tension Specimen

(CTS) test mentioned in Section 6.1. This measured toughness value in conjunction

with a CZM simulation of the test can be used to back out the cohesive strength. Al-

ternatively, both the toughness and strength can be measured from coupon level tests

for subsequent use in prediction of crack growth in other structural configurations.
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In a CZM, an existing crack starts to grow when the stress at the crack tip attains

the cohesive strength and when there is sufficient energy supplied from the system to

create new cracked area associated with the advancing crack. Thus, unlike LEFM,

which requires one parameter, a CZM strategy requires two parameters for predict-

ing crack growth. A cohesive law combines fracture energy and cohesive strength to

describe the resistance offered to crack advancement within the cohesive zone. Var-

ious postulated forms of cohesive laws (such as triangular, exponential, trapezoidal,

multi-section, etc.,) have been attempted in conjunction with CZM [Espinosa et al.

(1998); Li et al. (2005); Jin and Sun (2005); Gustafson and Waas (2009)]. These

studies, however, have shown that the form of the phenomenological cohesive law are

less important than the well-posed implementation, when CZM is used with finite

element analysis. However, a major drawback of CZM based methods is the fact

the intended crack path must be known a priori in order to place the CZM elements

appropriately in a finite element mesh. Thus, the CZM strategies are not practical

for predicting crack growth in a solid under general loading conditions.

2.3 Crack Propagation in Fiber Reinforced Composites

Fiber reinforced composites are composed of tough fibers distributed in a ma-

trix medium, thereby inheriting some structural characteristics from both the con-

stituents. Often used combinations are metal or ceramic fibers in a matrix of ceramic,

glass, polymer or intermetallics. Further, the distribution and layup of the fibers in

the matrix lead to various material architectures like short-fiber, continuous-fiber,

laminated, textile, etc. Given the huge diversity in the constituent materials and

layups, the presentation in this thesis is restricted to the extensively used class of

Carbon Fiber Reinforced Polymer (CFRP) laminated composites, hereafter referred

to as fiber composites. However, the generality of the presentation allows its potential

application to many other classes of fiber reinforced composites. The most significant
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property of this material is the high specific strength (strength per unit weight), even

in the presence of holes and notches, which are integral to any practical structure.

But high strength is of little use unless it is complimented by significantly high tough-

ness (i.e, resistance to damage and crack propagation).

Straight Crack Curved Crack

Figure 2.8: Complexity and diffused damage observed in fiber composites.

The inherent complexity of the microstructure of fiber composites, as shown in

Figure (2.8), clearly distinguish their toughening mechanisms from those of tradi-

tional monolithic matrix materials like metals. While the fibers add to the macro-

scopic toughness of the material, the fiber-matrix interfaces also present material and

geometric discontinuities which are possible sites for crack initiation and growth. De-

pending on the plane of crack propagation with respect to the material layup, crack

propagation can lead to:

• Delamination, or the occurrence of inter-lamina cracks which can lead to failure

of the laminate. This is a special case, where the cracks are “macroscopically”

planar and is usually associated with adhesive or matrix failure. This class of

problems has been extensively studied, both analytically and numerically, owing

to a priori knowledge of the crack path (Section (4.1) details the numerical

issues).

• Through-Thickness failure, or the occurrence of cracks through the laminate

such that the crack plane is not parallel to that of the lamina, involving ex-
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tensive fiber and matrix failure. This is analytically and numerically more

challenging, partly due to the complexity of micromechanics leading to failure

and comparatively more involved crack path prediction and evolution.

The work presented here seeks to address the complexity involved in through-thickness

failure, which can be argued to be more general and challenging in comparison to de-

lamination, in the context of the crack propagation problem. Further, the primary

interest in this work is not to understand the physics behind these failure phenom-

ena but rather to develop a numerical framework for predicting through-thickness

crack propagation. In the homogeneous continuum setting to be considered in this

work, all the relevant mechanics behind crack formation and propagation are char-

acterized by a traction-separation model, which is the sole constitutive input de-

termining crack evolution. However, determining the relevant traction-separation

model is major challenge in itself. Depending on the necessary material non-linearity

and mechanics complexity, one could either analytically or numerically obtain the

traction-separation models. Towards this goal, an overview of a possibly relevant

micromechanical processes of fiber pullout are presented in Section (2.3.1), and the

corresponding analytical and numerical framework is detailed in Appendix A.

2.3.1 Micromechanics

The basic phenomena which give rise to the non-linear behavior leading to failure

by through the thickness crack propagation are shown in Figure (2.9), and can be

categorized as:

• Interface failure: Initial fiber loading leading to increasing shear stress at the

fiber-matrix interface, which eventually leads to Mode-II interface crack forma-

tion.

• Interface crack propagation and frictional dissipation: Interface crack propaga-
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tion leads to relative motion between the free surfaces of the fiber and matrix,

leading to static or dynamic coulomb type frictional forces. This leads to fric-

tional dissipation with the opposing contact forces enhancing the load carrying

ability of the fibers.

• Fiber pullout : The interface crack eventually traverses the entire embedded

fiber length or the fiber breaks due to critical loading of some weak zones. This

phase is associated with loss in fiber load carrying ability due to pullout with

only the associated frictional sliding providing the resistance.

• Matrix cracking : Independent of the above fiber driven processes, the matrix

can undergo damage through microcracking, resulting in increased elastic com-

pliance and energy dissipation.

These processes together result in a diffused damage zone which microscopically is

heterogeneous and stochastic, but macroscopically is seen as a region of localized

‘crack-like’ damage as shown in Figure (2.8), and for all practical purposes will be

treated as a continuum level crack that has a traction relation which accounts for

the toughening mechanisms. As stated earlier, since the final framework is that of

a homogenized continuum, the medium through which the above micromechanical

phenomena are embedded into the continuum formulation is the traction-separation

model. The detailed presentation of the analytical and numerical framework for ob-

taining appropriate traction-separation models is given in Appendix A, where it is

demonstrated that the above phenomena correspond to different loading and unload-

ing regions of the traction-separation model. However, in this framework matrix

microcracking is neglected, as it is usually dealt with via continuum damage models

rather than a continuum cracking approach.
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Figure 2.9: Schematic depicting various modes of micromechanical damage evolution ob-
served during the process of through thickness crack propagation. The red color lines repre-
sent cracks.

2.4 Closing Remarks

A review of the classical theories of LEFM has been presented, along with the

subsequent development of the cohesive zone concept. Then the limitations of the

classical approaches to advanced cohesive materials are addressed through a discussion

of various intrinsic and extrinsic toughening mechanisms. This was followed by a

discussion of the numerical developments related to the cohesive zone models. Then

the micromechanical phenomena leading to toughening of fiber-reinforced composites

have been discussed with the relevant analytical and numerical frameworks presented
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in Appendix A. With this, the necessary analytical foundation for cohesive crack

propagation in this class of materials has been laid out, and we now proceed to the

discussion of a multiscale formulation of the crack problem.
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CHAPTER III

Multiscale Framework and Variational Formulation

3.1 Background and Variational Multiscale Concept

Physical processes spread across space and time scales are ubiquitous. Often the

complexity involved in understanding these phenomena is non-trivial and one has

to resort to empirical, phenomenological models to make them more approachable.

Further, the fidelity of these models is geared towards conforming to the ultimate

framework (analytical or numerical) used to simulate the physical phenomena. Thus,

there is a constant drive towards development of better scale-aware analytical and

numerical formulations. Focusing our attention on the related numerical develop-

ments, it is common knowledge that straightforward application of the widely used

Galerkin’s method employing standard basis functions (fourier series, finite elements,

etc.) is not a robust approach in the presence of multiscale phenomenon as certain

far-scale or sub-scale processes are not sufficiently/objectively resolved (demonstrated

in Section 4.1), which can give rise to fictitious length and time scales in the solution.

To address this issue of disparate scales in numerical schemes, a new computational

paradigm called the Variational Multiscale Method (hereafter referred to as VMM)

was introduced by Hughes (1995). Initially developed to address the question of ‘in-

trinsic time scale’ in stabilized methods like Galerkin/least-squares (GLS), Streamline

upwind/Petrov-Galerkin (SUPG) (Hughes et al. (1998)), the VMM approach resulted
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in giving a unifying perspective of many previous numerical frameworks that address

various sub-scale phenomena. One such effort from which this thesis draws inspiration

is by Garikipati and Hughes (1998, 2000), in which the process of strain localization

as a multiscale problem was presented, and a unifying picture of various scale regular-

ization based formulations like the composite damage model, crack band model and

non-local strain model were discussed. The point of departure in the current work is

the characterization of displacement discontinuity due to cracks as a ‘fine-scale’, and

its subsequent coupling to the continuum fields via micromechanical surface laws. As

a background to the presentation in this work, we briefly discuss the physical pic-

ture of the broad classification of multiscale problems introduced in Hughes (1995);

Hughes et al. (1998).

3.1.1 Grid Scale model: Large-scale and Small-scale

Consider the exterior problem of the Helmholtz operator which models wave prop-

agation in free space due to a localized source, stated as follows: For Ω ⊂ R
3 , find

u : Ω → C such that for given f : Ω → C, g : Γg → C and h : Γh → C,

Lu = f in Ω (3.1a)

u = g on Γg (3.1b)

u,n = ikh on Γh (3.1c)

lim
r→∞

r (u,r −iku) = 0 (Sommerfeld radiation condition) (3.1d)

where −L = ∆ + k2 is the Helmholtz operator, k ∈ C is the wave number, i is
√
−1 and r denotes the radial coordinate. Also let the following decomposition of the
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Figure 3.1: Decomposition of Ω into Ω and Ω′ and their boundary ΓR. Γh and Γg are the
neumann and dirichlet boundary sections of Γ.

boundary be admitted,

Γ = Γg ∪ Γh (3.2a)

∅ = Γg ∩ Γh (3.2b)

From a numerical standpoint, Equation (3.1d) presents a problem, as we cannot

handle this infinite-domain boundary condition in conventional bounded-domain dis-

cretization methods like finite elements. So a unique domain and field decomposition

is introduced to solve this problem. The decomposition is as follows

Ω = Ω ∪ Ω′ (3.3a)

∅ = Ω ∩ Ω′ (3.3b)

u = u+ u′ (3.3c)

u|Ω′ = 0, u′|Ω = 0 (disjoint additive decomposition) (3.3d)

where ΓR is the boundary between Ω and Ω′ as shown in Figure 3.1. Equation

(3.3d) results in the solution field u being decomposed into a far-field u′ and a near-

field u. The far-field u′ is numerically ‘unresolvable’ due to the boundary-condition

at infinity as in Equation (3.1d). So the approach suggested in Hughes (1995) is to

31



analytically determine u′ on the following exterior dirichlet problem,

Lu′ = f in Ω′ (3.4a)

u′ = u on ΓR (continuity condition) (3.4b)

lim
r→∞

r (u,′r −iku′) = 0 (3.4c)

and then use this solution to embed its effect into the following bounded domain

problem for u, through the continuity condition Equation (3.4b) which manifests as

Equation (3.5d),

Lu = f in Ω (3.5a)

u = g on Γg (3.5b)

u,n = ikh on Γh (3.5c)

u,n = −Mu on ΓR (3.5d)

Equation (3.5d) is what is called a Dirichlet-to-Neumann condition [Hughes (1995)]

on the boundary ΓR which separates Ω from Ω′. M is an integral operator obtained

by solving Problem (3.4) using a Green’s function approach; it embeds the far-field

phenomena into the near-field problem. The boundary-value problem in Equations

(3.5) is now solvable using a finite-domain numerical formulation like finite elements.

The field decomposition in Equation (3.3c) can be interpreted as a multiscale prob-

lem, with u′ representing the far field large scales and u representing the near field

small scales.

REMARK : Since herein the decomposition was primarily at the domain level (or in

numerical parlance, at the grid level) into Ω and Ω′, one may refer to this as a ‘grid’

scale model. This will help distinguish this model from the more useful and physically
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motivated ‘subgrid’ scale model presented in the following subsection.

3.1.2 Subgrid Scale model: Coarse-scale and Fine-scale

Now consider an abstract Dirichlet problem: For Ω ⊂ R
3 , find u : Ω → R such

that for given f : Ω → R, g : Γ → R,

Lu = f in Ω (3.6a)

u = g on Γ (3.6b)

where L is a general non-symmetric operator. Also, keeping in mind the numerical

scheme we are leading up to, we explicitly consider a variational treatment for this

problem:

For S ⊂ H1(Ω) and V ⊂ H1(Ω), whereH1(Ω) is the Sobolov space of square integrable

functions with square integrable derivatives, find u ∈ S = {v| v = g on Γ}, such that

∀ w ∈ V = {v| v = 0 on Γ},

∫

Ω

wLu dV =

∫

Ω

wf dV (3.7a)

or a(w, u) = (w, f) (3.7b)

The physical picture of the field u being addressed here is shown in Figure (3.2).

Now from a numerical standpoint, fields with such ‘fine’ variations pose a difficulty,

as the resolution of these fields becomes subjective with respect to the numerical

discretization. This is because these variations occur on physical length scales that

are usually smaller than the size of the numerical grid, and it is for this reason

that the numerical treatment of problems under this class requires a subgrid scale

model. Often in physical phenomena like turbulent flow, strain localization, phase
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Figure 3.2: Decomposition of u into coarse-scale field, u, and fine-scale field, u′.

separation and crack formation, these fluctuations 1 are at such small length scales

that the optimal discretization required in a standard Galerkin implementation is

prohibitively expensive, or even impossible. For such cases, consider the following

decomposition of u and w into coarse and fine scales,

u = u
︸︷︷︸

coarse scale

+ u′
︸︷︷︸

fine scale

(overlapping additive decomposition) (3.8a)

u = g, u′ = 0 on Γ (3.8b)

w = w
︸︷︷︸

coarse scale

+ w′
︸︷︷︸

fine scale

(overlapping additive decomposition) (3.9a)

w = 0, w′ = 0 on Γ (3.9b)

and their respective vector spaces are,

u ∈ S, u′ ∈ S ′ where S = S ⊕ S ′ (3.10a)

w ∈ V , w′ ∈ V ′ where V = V ⊕ V ′ (3.10b)

where Z = X⊕Y means Z is a function space whose elements are ordered pairs (x, y).

1In crack propagation, which is the problem of interest in this work, the fine-scale field, u′, is not
oscillatory, but rather a discontinuity. But for the abstract presentation in this section, the more
general oscillatory picture of fine-scale variations is considered.
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Further, for the stability of the formulation S and S ′ need to be linearly independent

and so must V and V ′. The uniqueness of the function space decomposition should

be explicitly enforced in the numerical procedure adopted, as will be done in Section

(3.3), through the selection of appropriate trial function space and weighting function

space. Our aim is to derive an expression for u′, the ‘unresolved’ scale, and use this

expression to eliminate u′ from the weak formulation (3.7), and then solve for u

using traditional numerical schemes. This procedure is shown below in the abstract

notation:

a(w + w′, u+ u′) = (w + w′, f) (3.11)

Using standard arguments for linearly independent w and w′, Equation (3.11) can be

decoupled as,

a(w, u) + a(w, u′) = (w, f) (3.12a)

a(w′, u) + a(w′, u′) = (w′, f) (3.12b)

One may solve Equation (3.12b) exactly to obtain an analytical relation between u′

and u as demonstrated in Hughes et al. (1998) using a Green’s function approach,

but this is only possible for very simple boundary-value problems. For more general

problems of practical interest, as shown in Section 3.4, we will have to solve it numer-

ically and obtain an approximate representation of u′ in terms of u. However, once

this is accomplished, it should be clear that we can use this relation to eliminate u′

from Equation (3.12a), solve this equation with the numerical scheme of choice to

obtain the coarse-scale, u, and use this field to recover the ‘unresolved’ fine-scale, u′,

and thus obtain the complete solution field u.

The presentation of the variational multiscale framework in this section is in-

tentionally abstract to preserve the generality; the arguments and details of some
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steps above will be significantly problem dependent. Now a detailed presentation of

this framework for the crack propagation problem follows, starting with the physical

motivation.

3.2 Cracks as Subgrid Scales: Motivation and Challenges

Physically, crack propagation is a process of configurational change by which new

surfaces are created. The creation of new surfaces is governed by surface laws, differ-

ent from the constitutive laws of the continuum. Classically, this process of surface

creation is handled by affecting changes in the numerical discretization, involving

incremental grid refinement and remeshing. However, changing the grid to reflect

the evolving domain boundaries is computationally very expensive. Instead, an al-

ternative view of cracks as displacement discontinuities in the continuum domain is

considered here. The concept of discontinuous displacement fields and the resulting

singular strains finds its mathematical treatment in the work of Temam and Strang

(1980) on BD(Ω), the space of bounded deformations for which all components of the

strain are bounded measures. This idea was used to develop a numerical framework

for the problem of strong discontinuities due to strain localization by Simo et al.

(1993), Simo and Oliver (1994) and Armero and Garikipati (1996). The physical

process of strain localization involves localized changes in the continuum constitutive

response and no new boundaries and surface laws appear, but its numerical treatment

introduced the use of the distributional framework and discontinuous basis functions,

which was adopted in Garikipati (2002) for embedding micromechanical surface laws

into a macroscopic continuum formulation, albeit in a multiscale setting. The pre-

sentation in this work follows and extends these multiscale arguments specifically for

numerical representation and evolution of cohesive cracks.

As shown in Figure (3.3), a crack opening can be mathematically represented by

a discontinuous displacement field over an uncracked body. It is not difficult to see

36



.

ΩΩ

JuKJuK

ΓcΓc

2D 3D

Figure 3.3: Representation of crack as a displacement discontinuity. JuK is the magnitude
of the displacement discontinuity which physically represents the magnitude of the crack
opening and Γc is the crack surface.

that this is rigorous and general enough to represent all possible crack geometries in

both two and three dimensional solids. However, the following numerical challenges

persist:

• Numerical representation of displacement discontinuities using smooth basis ap-

proximations introduce an artificial numerical length scale, as shown in Section

(4.1.1), and thus lead to a mesh subjective scheme. On the other hand, usage

of discontinuous basis leads to singular strains.

• Topologically, crack surfaces are zero measure sets in the domain volume. Thus

stand alone representations of them would require zero volume mesh elements,

i.e. interface elements.

In this work, a discontinuous basis is adopted and the necessary distributional

arguments will follow. The use of zero volume elements (interface elements, stan-

dard cohesive zone elements, etc.) renders the scheme subjective to the numerical

discretization, hence is not considered. Instead a variational multiscale setting is in-

37



troduced where the crack, represented by a displacement discontinuity, is seen as a

subgrid fine scale discontinuous field superposed on a coarse scale field.

3.3 Multiscale Formulation of Discontinuous Displacement

The weak formulation of the quasi-static elasticity is the point of departure for

the multiscale development. Also, the scope of the presentation is limited to the

infinitesimal strain theory of elasticity. Starting with the weak form: For S ⊂ BD(Ω)

and V ⊂ H1(Ω) , find u ∈ S = {v|v = g on Γg}, such that ∀ w ∈ V = {v|v = 0 on

Γg},

∫

Ω

∇w : σ dV =

∫

Ω

w f dV +

∫

Γh

w T dS (3.13)

where f is the body force, g and T are the prescribed boundary displacement and sur-

face traction, respectively. σ is the (Cauchy) stress tensor given by σ = C : sym(∇u),

where C is the fourth-order elasticity tensor.

REMARK 1 : As stated in the motivation above, we choose to represent cracks as

displacement discontinuities, which means u /∈ C0. This results in the strain being a

singular distribution which has a bounded measure, since u ∈ BD(Ω). However the

stress should not be a singular distribution as required by the classical jump condition

on the traction (Jσ ·nK = 0) 2. This requirement on the stress field is enforced by the

material constitutive response which ‘mollifies’ the singular strains to yield regular

stresses.

REMARK 2 : In R
1, it is much simpler to present the strain field argument, as u is

2If both ε and σ are singular distributions, then the work expression (
∫
σ : ε dV ) would be a

product of distributions, and thus mathematically and physically undefined.
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at most a discontinuity and sym(∇u) is a Dirac-delta function (a bounded measure),
∫∞
−∞ δ(x) dx = 1. It is interesting to note that in R

1, u ∈ BV (Ω) (space of bounded

variations), and BD(Ω) coincides with BV (Ω). A discussion of BD(Ω) space is be-

yond the scope of this work and interested readers are referred to Temam and Strang

(1980) for the mathematical development, and to Suquet (1981) for the treatment of

discontinuities in plasticity which have similar kinematics to that in crack propaga-

tion.

Now, following the subgrid scale model presented in Section 3.1.2, scale decom-

positions of u and w are introduced. The decompositions are qualified by requiring

that the fine scales, u′ and w′, vanish outside the neighborhood of the crack path,

which is contained in Ω′ (Figure 3.4), referred to as the microstructural or fine-scale

subdomain

u = u
︸︷︷︸

coarse scale

+ u′
︸︷︷︸

fine scale

(3.14a)

w = w
︸︷︷︸

coarse scale

+ w′
︸︷︷︸

fine scale

(3.14b)

u ∈ S = {v| v = g on Γg} (3.14c)

w ∈ V = {v| v = 0 on Γg} (3.14d)

u′ ∈ S ′ = {v| v = 0 on Ω\int(Ω′)} (3.14e)

w′ ∈ V ′ = {v| v = 0 on Ω\int(Ω′)} (3.14f)

where S = S ⊕ S ′ and V = V ⊕ V ′. Further, V and V ′ are chosen to be linearly

independent.

Given the scale decomposition of u and w, we can be split Equation (3.13) into two
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Figure 3.4: The microstructural domain, Ω′, and the crack surface, Γc. Shown in the inset
are the crack orientation vectors and the crack surface traction.

separate weak forms,

∫

Ω

∇w : σ dV =

∫

Ω

w f dV +

∫

Γh

w T dS (W) (3.15a)

∫

Ω′

∇w′ : σ dV =

∫

Ω′

w′ f dV +

∫

Γ′

h

w′ T dS (3.15b)

Now consider a crack surface, Γc, in the fine-scale subdomain (Figure 3.4). As-

suming no body force in the fine-scale subdomain, using integration by parts and

standard variational arguments, Equation (3.15b) can be reduced to,

∫

Γc

w′
σ · n dS =

∫

Γc

w′ Tc dS (W′) (3.16)

where Tc is the external traction on the crack faces. In the subsequent sections, (W)

and (W′) are referred to as the coarse scale and fine scale weak forms, respectively.
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3.4 Fine-Scale Field and Micromechanics Embedding

(W′) allows us to embed any traction based cohesive surface-law, Tc, into the

continuum formulation. Writing the traction on Γc in terms of the components T c
n

and T c
m along n and m respectively,

Tc = T c
nn+ T c

mm (3.17)

The fine scale field, u′, for crack problems is composed of a displacement disconti-

nuity , JuK, which can be expressed in terms of the components JunK and JumK along

n and m respectively,

JuK = JunK
︸︷︷︸

opening

n+ JumK
︸︷︷︸

shear

m (3.18)

JunK and JumK are referred to as the crack face opening displacement and crack face

shear displacement, respectively. Similarly, the crack face opening mode is referred

to as Mode-I and crack face shear mode is referred to as Mode-II.

In this presentation, we consider simple micromechanical surface traction laws

given by:

T c
n = T c

n0
−HnJunK (3.19a)

T c
m = T c

m0
−HmJumK (3.19b)

where T c
n0

and Hn are the Mode-I critical opening traction and Mode-I softening

modulus, and T c
m0

and Hm are the Mode-II critical shear traction and Mode-II soft-

ening modulus. Using Equations (3.17) and (3.19), u′ (characterized by JuK) can be

41



eliminated from (W), which can then be solved for u. Once u is obtained it can be

used to recover u′, thereby determining the complete displacement field. Developing

this procedure in a finite element setting is the focus of the next chapter.

3.5 Closing Remarks

In this chapter, the necessary multiscale background was introduced, and its ap-

plication to crack problems was discussed. The approach consists of treating the

discontinuous displacement field in crack problems in a distributional sense, and iden-

tifying the singular character of the strains. This treatment was then developed to

obtain the weak formulation of the coarse-scale and fine-scale problems. Then it was

shown that the fine-scale problem can be used as a vehicle to embed the cohesive

surface laws into the continuum formulation. Using this as a point of departure, the

necessary numerical framework is developed in the subsequent chapter.
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CHAPTER IV

Finite Element Implementation

With the multiscale concepts laid out, and explicit weak form expression de-

rived, we now turn our attention to the numerical implementation. In this Chapter,

the multiscale methodology is cast into a finite element formulation and the neces-

sary numerical framework, referred to as the Variational Multiscale Cohesive Method

(VMCM), is developed. First, a brief discussion of the limitations of standard finite

element basis functions is presented in Section (4.1). Then the necessary discontin-

uous shape functions are presented in Section (4.2). These enhanced basis functions

were first introduced in the works of Simo et al. (1993), Armero and Garikipati (1996)

and Garikipati (1996). Comparable, but significantly different, discontinuous basis

functions are used in the Extended Finite Element (XFEM) method introduced in

Moes et al. (1999) and applied to cohesive crack propagation in Moes and Belytschko

(2002), and in the related partition of unity method based basis functions employed in

Wells and Sluys (2001). After the multiscale shape function discussion, the finite di-

mensional weak formulation is presented in Section (4.3) and followed by the iterative

solution procedure in Section (4.4). Lastly, in Section (4.5), the closing remarks and

a brief comparison of the present multiscale framework with the Partition of Unity

Methods (PUM) is presented.
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Strong Discontinuity Weak Discontinuity

w

Figure 4.1: Schematic of displacement field in a domain containing strong and weak
discontinuities. w is the width of the diffused band.

4.1 Mesh Sensitivity of Standard Galerkin Basis

Classical Galerkin formulations for elasticity require that the basis/shape func-

tions have sufficient smoothness (at least C0) as the weak form involves gradients of

the displacement. C0 functions are sufficient to resolve the displacement field in the

elastic or hardening-plastic regime. However, in the presence of softening behavior,

deformation fields tend to localize, leading to high displacement gradients in localized

regions of the domain. Broadly, this phenomenon is referred to as either a weak dis-

continuity for diffused localization or a strong discontinuity for singular localization

as shown in Figure (4.1). In both cases, using standard basis functions invariably

lead to mesh subjective schemes. This lack of mesh objectivity is widely documented

in the literature, often in the context of strain localization phenomena that involve

softening. Cracks, which are the focus of this work, have identical kinematics to the

strong discontinuity phenomenon. However, unlike strain localization problems, the

constitutive response is based on traction-separation (force-displacement) relations

rather than stress-strain relations. Considering this difference, a brief discussion of

mesh sensitivity in the context of crack propagation simulations is now presented.

4.1.1 Pathological Mesh Dependence of Strain Localization in Softening

Materials

Consider a 1D problem of an elastic bar under tensile loading, with an elastic

modulus, E, a critical cohesive traction, T c
crit, and a cohesive softening modulus, H.
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Figure 4.2: Performance of standard Galerkin basis. (a) Comparison of the physically
expected displacement field with the displacement field obtained by node-based and element-
based numerical schemes. In each case, the crack location is marked red and the green lines
are the displacement fields. (b) Comparison of the expected and numerically obtained load
displacement responses. The red line represents the softening path of the node-based scheme,
which for a simple 1D problem is equal to the analytically expected path. The other softening
paths correspond to the element-based scheme for different values of the element length.

As the bar is loaded, the traction at some point, say Γc, reaches T c
crit and cohesive

softening occurs at that point. Clearly, there are at least two traditional methods to

handle this problem in the classical Galerkin finite element framework:

• Node-Based : If the point Γc is known a priori, then one can ensure a node

pair placement at that point, and when T c equals T c
crit, have the local nodal

forces evolve according to the given cohesive softening modulus. This is the idea

behind the widely used cohesive zone methods [Pietruszczak and Mroz (1981);

Ungsuwarungsri and Knauss (1987); Song and Waas (1993); Schellekens and

DeBorst (1993); Xu and Needleman (1994); Camacho and Ortiz (1996)]. An

extension of this idea, when Γc is not known beforehand, is to identify it as part

of the solution process and then employ re-meshing to create node pairs on Γc.

• Element-Based : The requirement of Γc being a nodal point is relaxed, and

instead the elemental volume, say Ωc
e, which contains this point is considered.

Upon reaching T c = T c
crit, the constitutive response of this element is modified
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to produce a diffused softening response which produces the expected global

load displacement response. This is the gist of the crack band model by Bazant

and Oh (1983).

These schemes and the 1D problem are depicted in Figure (4.2a) and the correspond-

ing global load displacement responses are shown in Figure (4.2b). However, both

the above methods have several limitations. The node based approach is not viable,

as in problems of practical interest, Γc is not known beforehand and re-meshing is

prohibitively expensive. The element based schemes suffer from pathological mesh

dependence which is demonstrated below in the context of the 1D problem.

Let the elastic bar be discretized into linear elements, each of length he. Consid-

ering only the post-cracking load steps, let the crack surface, Γc, be contained within

an element Ωc
e. Now the modified constitutive modulus is given by

Em(x) =







E : x ∈ Ω\Ωc
e

f(E,H) : x ∈ Ωc
e

(4.1)

where f(E,H) < 0 and hence there is energy dissipation in Ωc
e, given by D =

∫

Ωc
e
σ :

ε̇
p dV , and is graphically given by the area under the curves shown in Figure (4.2b).

Assuming the bar to be of uniform cross-section, dissipated energy is linearly propor-

tional to the element length. This implies, as he → 0, there is no dissipation and the

bar unloads elastically. Thus the energy dissipation and global load displacement re-

sponse have a pathological mesh dependence. This dependence can be fixed, at least

in 1D, by introducing a regularization or localization limiter, such as a characteris-

tic length [Bazant and Cedolin (2003)]. For 2D and 3D problems with unstructured

meshes and non-straight crack paths these schemes are more complex. Further the

basic constitutive behavior of cracks is not fully represented, as the surface-based
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Figure 4.3: Comparison of representative crack paths observed using traditional crack
propagation schemes. (A) Physically observed crack paths which are well resolved surfaces
not particularly associated with any mesh features, (B) Crack paths restricted to element
edges for node-based schemes, (C) Crack paths smeared over a finite volume for element-
based schemes.

traction-separation constitutive model associated with cracks is now replaced by a

volume-based stress-strain model, with modulus given by Equation (4.1).

4.1.2 Discretization Sensitivity of Crack Paths

Apart from the pathological mesh dependence of the global load-displacement

and energy-dissipation response, the numerical discretization also limits the crack

path and its resolvability in the traditional schemes discussed above. Consider Figure

(4.3) which compares the physically expected crack path with that obtained by using

a node-based or element-based scheme. Since cracks are driven by the local stress

state and/or non-local energetics, ideally the propagation path should be nearly in-

dependent of the domain discretization. However, the very construction of these

methods limits unbiased crack propagation. In case of node-based schemes the crack

path coincides with the element edges, so the crack path is locally limited by discrete

edge directions. In unstructured 2D/3D meshes this may lead to deviation from the

physically expected path, rendering the boundary value problem to be solved, erro-

neous. For element-based schemes, though there is no mesh restriction on the crack

path, the numerical resolution of the crack path is poor.
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Ω′
Γc

Figure 4.4: Schematic of the crack path and fine-scale domain, Ω′, representation in the
VMCM implementation.

With this review of the limitations of traditional numerical crack propagation

schemes, attention is now focused on the development of a numerical framework for

the multiscale formulation presented in Chapter III. The discussion in the follow-

ing sections of this Chapter and the simulation results presented in Chapter V will

demonstrate that the multiscale scheme circumvents the above limitations and re-

sults in mesh objective formulation for crack propagation, which schematically is

represented in Figure (4.4).

4.2 Multiscale Element Construction

The reparametrization of the fine scale discontinuous displacement field, u′, and

the development of discontinuous shape functions follows the presentation in Armero

and Garikipati (1996) and Garikipati (1996).

4.2.1 Shape Functions

We begin with the expression for the fine scale displacement field,

u′ = MΓc JuK , where MΓc = N −HΓc (4.2)
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Figure 4.5: Construction of the discontinuous multiscale shape function in 1D.

where N is a continuous basis function defined on Ω′ and HΓc is a Heaviside func-

tion which has its discontinuity on Γc. Thus, MΓc is a composite shape function

constructed by superposing a Heaviside function on a linear shape function, ensuring

that MΓc = 0 on Ω\int(Ω′). This construction is depicted in Figure (4.5) for 1D and

Figure (4.6) for 2D. A detailed construction is now presented for the constant strain

triangle element.

As shown in Figure (4.6), there are two possible constructions for triangle ele-

ments depending on the relative orientation of the normal to the crack path, n, with

respect to the outward normal of the edge not intersected by the crack, ni (shown in

Figure (4.7)). For each of these cases, N , HΓc and ∇MΓc are given by

Case-I: n.ni < 0 (Figure (4.6a))

N(x) = 1− x− xi

hi
.ni (4.3)

HΓc(x) =







0 : |(x− xΓ).n| ≤ 0

1 : |(x− xΓ).n| > 0

(4.4)
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Figure 4.6: Possible constructions of the discontinuous multiscale shape function in 2D.
n is the normal to the crack path, in the direction of the desired jump in displacement.

∇MΓc(x) = −ni

hi
− δΓc n (4.5)

Case-II: n.ni ≥ 0 (Figure (4.6b))

N(x) =
x− xi

hi
.ni (4.6)

HΓc(x) =







0 : |(x− xΓ).n| ≤ 0

1 : |(x− xΓ).n| > 0

(4.7)
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Figure 4.7: Orientation of the normal to crack path, n, with respect to the orientation of
the element.

∇MΓc(x) =
ni

hi
− δΓc n (4.8)

As can be seen from the above description, the multiscale shape function construc-

tion is more involved than traditional shape functions. In a numerical implementation,

only ∇MΓc enters the system of equations through the expression for ∇u′, which in

matrix form is given by

∇u′ = ∇MΓc JuK (4.9)

51



where,

JuK =






JuKx

JuKy






∇MΓc =
1

hi









ni
x 0

0 ni
y

ni
y ni

x









︸ ︷︷ ︸

G

−δΓc









nx 0

0 ny

ny nx









︸ ︷︷ ︸

H

G and H are the matrix representation of ni and n, respectively.

4.2.2 Numerical Quadrature

The weak form of the coarse scale and fine scale problems, given by Equations

(3.15a) and (3.16), respectively, involve different domains of integration. The coarse

scale weak form, taken element wise, is a volume integral over the elemental volume

and thus the quadrature rules used to evaluate the integral is the conventional trian-

gle quadrature scheme. However, the fine scale weak form, taken element wise, is a

surface integral over the crack path, and needs special attention.

Consider Figure (4.8), which depicts a constant JuK in linear triangles and linear

variation of JuK in higher order triangles. Depending on the order of the variation of

JuK, which affects the order of variation of stress, the appropriate order of quadrature

should be chosen. In 2D, since the crack path is a line, gauss quadrature schemes are

optimal, and therefore an n point scheme can be chosen to capture stress variations

upto order 2n. The possible 1-point and 2-point crack path integration points along

with the regular coarse scale field integration points are shown in Figure (4.9).
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REMARK : Higher order variations of JuK along Γ are possible, but may not be nec-

essary to capture the physical crack opening unless the meshes are very coarse. The

numerical simulation results presented in the following chapters considered only con-

stant distribution and the crack opening was well represented. For this case, since

the stress is also constant over linear triangle elements, a one point quadrature rule

is sufficient. This reduces Equation (3.16) to σ · n = T c which can be evaluated at

any point along the crack path within the element.

JuK

JuK
L

JuK
R

Figure 4.8: Elemenal values of the displacement discontinuity, JuK, which physically rep-
resents the crack opening. (a) Constant JuK in each element, (b) Linearly varying JuK with
JuKL on the left edge and JuKR on the right edge, leading to inter-element continuity along
Γ.

4.3 Finite Dimensional Weak Forms and Discretized Equa-

tions

In the finite dimensional setting, the problem domain is divided into non overlap-

ping elements such that Ω =
⋃nel

1 Ωh
e , where nel is the number of elements. In this

presentation linear triangle elements are considered, and thus the integration scheme

depicted in Figure (4.9a) will be sufficient. Introducing the approximate interpola-
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1-Point 3-Point

Figure 4.9: Some of the possible quadrature rules for coarse-scale and fine-scale problems
over triangle elements. (a) Linear Triangle: 1-point scheme for coarse-scale field and 1-
point for the fine-scale field. (a) Higher Order Triangle: 3-point scheme for coarse-scale
field and 2-point for the fine-scale field.

tions to the coarse-scale displacement and variation,

uh
e (ξ, η) =

3∑

A=1

NA(ξ, η)dA (4.10a)

wh
e (ξ, η) =

3∑

A=1

NA(ξ, η)cAe (4.10b)

where (ξ, η) are the iso-parametric coordinates, dA and cAe are the nodal values of the

finite dimensional coarse-scale displacement, uh, and finite dimensional coarse-scale

variation, wh, respectively. NA(ξ, η) is the Lagrangian shape function at node A with

the usual compact support, NA(ξB, ηB) = δAB. Adopting matrix notation,

u = Nd and w = N c (4.11)

∇u = Bd and ∇w = Bc (4.12)
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where B is the standard matrix form of the shape function gradients. Similarly, the

expressions for strain and stress are

ε = Bd+ (G− δΓcH) JuK (4.13a)

σ = C : (Bd+G JuK) (4.13b)

Substituting the above expressions into Equations (3.15a) and (3.16), the respec-

tive finite dimensional equations are given by

∫

Ω

BT
C : (Bd+G JuK) dV =

∫

Ω

N f dV +

∫

Γh

N T dS (4.14a)

HT
C : (Bd+G JuK) = Tc (4.14b)

where the fine-scale weak form is reduced to σ ·n = T c, as for linear triangles both σ

and JuK (and hence Tc) are constant over the element. To suit an iterative solution

procedure, the above equations are expressed as coarse-scale and fine-scale residuals,

r =

∫

Ω

BT
C : (Bd+G JuK) dV −

∫

Ω

N f dV −
∫

Γh

N T dS (4.15a)

r′ = HT
C : (Bd+G JuK)−Tc (4.15b)

Linearizing the above residuals about d and JuK and rearranging terms, we obtain

the following system of equations in (δd, δJuK),






Kūū Kūu′

Ku′ū Ku′u′











δd

δJuK




 =






−r

−r′




 (4.16)
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where,

Kūū =

∫

Ω

BT
CB dV (4.17a)

Kūu′ =

∫

Ω

BT
CG dV (4.17b)

Ku′ū = HT
CB (4.17c)

Ku′u′ = HT
CG+Hnn⊗ n+Hmm⊗m (4.17d)
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4.4 Incremental Solution Procedure

Solution steps of a VMCM implementation are listed below. In addition one would

have a crack tracking algorithm to advance the crack tip after each load increment.

initial state: d0, JuK0, ε0 and σ0

loop over load increments:

current converged state: dn−1, JuKn−1, εn−1 and σn−1

loop over iterations until ‖r‖2 < tolerance

current iteration state: dk
n−1, JuKkn−1, ε

k
n−1 and σ

k
n−1

δdk
n−1 = K−1r

dk+1
n−1 = dk

n−1 + δdk
n−1

for each cracked element:

δJuKkn−1 = K−1

u′u′(r′ −Ku′ūδd
k
n−1)

JuKk+1
n−1 = JuKkn−1 + δJuKkn−1

δεreg k
n−1 = Bδdk

n−1 +G δJuKkn−1

δσk
n−1 = C : δεreg k

n−1

ε
k+1
n−1 = ε

k
n−1 + δεkn−1

σ
k+1
n−1 = σ

k
n−1 + δσk

n−1

Tc = Tc

0
−Hnn⊗ n−Hmm⊗m

r =
∫

Ωel
BT

σ
k+1
n−1 dV −

∫

Ωel
N f dV −

∫

Γhel

N T dS

r′ = HT
σ
k+1
n−1 −Tc

static condensation:

Kel = Kūū −Kūu′K−1

u′u′Ku′ū

rel = r−Kūu′K−1

u′u′r
′

Assembly: Kel −→ K and rel −→ r

for elements ahead of current crack tip, check for crack growth (Crack Tracking):

if n.σn ≥ T c
n0
: Mode-I active

if m.σn ≥ T c
m0

: Mode-II active

if Mode-I active or Mode-II active: Form elemental G, H and Q
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Figure 4.10: Comparison of the interpolation schemes used to represent the crack surface
in the multiscale approach presented here and the various partition of unity based approaches.

4.5 Closing Remarks

A finite element framework for the two scale representation of cracks has been presented.

This implementation can sharply resolve the discontinuity surface instead of smearing the

discontinuity across the element volume, thus avoiding any spurious numerical length scales.

Also there is no mesh bias on the crack path, which leads to mesh objective crack propa-

gation and global load-displacement response, both of which will be demonstrated in the

simulations in Chapter (V). Further the seamless embedding of cohesive micromechanics

within a continuum formulation leads to a physically consistent implementation which is

validated by comparison with experimental results in Chapter (VI). The element construc-

tion presentation in this chapter has been limited to triangle elements, and can be extended
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to other 2D and 3D elements. However, for non-simplex elements the construction of the

multiscale shape function will be more involved.

For completeness, the distinction between the multiscale interpolation and partition of

unity (PUM) interpolation schemes have been depicted in Figure (4.10). As shown here,

though both methods represent the displacement discontinuity as a Heaviside function, the

advantage of the multiscale approach is the local-to-element nature of the fine scale field.

From a numerical standpoint this implies that the additional degree of freedom needed

to represent JuK do not contribute to the global solution vector, due to condensation at

elemental level, thus leaving the sparsity pattern of the global problem untouched. In

contrast, PUM methods add extra nodal degrees of freedom to represent the enhanced dis-

placement discontinuity modes and thereby increasing the global solution vector size with

crack propagation. While a more detailed comparative study of the computational com-

plexity, numerical stability and consistency are a topic for future work, interested readers

are pointed to a related study between the strong discontinuity method, from which the

multiscale method inherits its interpolation characteristics, and the PUM based extended

finite element (X-FEM) method reported by Oliver et al. (2006).
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CHAPTER V

Numerical Simulations

With the multiscale formulation and the finite element implementation developed, this

chapter presents numerical simulations of some benchmark problems and physically relevant

examples to demonstrate the effectiveness and applicability of the multiscale framework for

cohesive crack propagation. Initially mesh objectivity, which is of primary importance in

finite element based crack propagation simulations, is presented in Section (5.1). Then,

mixed mode crack propagation in some benchmark problems is discussed in Section (5.2).

Later, more complex scenarios of multiple and interacting crack are addressed in Section

(5.3) and finally, closing remarks are provided in Section (5.4).

All simulations are in 2D and assume plane stress conditions. Also, in all simulations

the crack evolves from a preexisting ’starter crack’. Further, as indicated in Section (4.4),

a crack tracking algorithm is required as part of the iterative process to evolve the crack

from one element to another. Such an algorithm should be based on a physically relevant

crack direction criterion, and may be material and microstructure subjective. In this work,

it is assumed that the crack propagates along a path that renders the shear stress to be

zero. This amounts to assuming that the crack is locally governed by a Mode-I criterion.

However, the direction criterion places no limitation on the multiscale formulation and de-

pending on the material micromechanics, any relevant direction criterion can be chosen.

It is also pointed out that apparent distortion of the elements may be seen as contra-
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dicting the infinitesimal strain assumption of linear elasticity and also potentially result in

singular jacobians for those elements. This is not the case as:

• Only the regular component of the strain needs to satisfy the infinitesimal strain

assumption, as the singular component which lead to this observed element distortion

does not contribute to the stress-strain constitutive relation (Section (3.3)).

• Since the implementation is in the reference configuration, the element distortion has

no effect on the parametric space to real space mapping.

To remove this potential confusion, the crack path elements are removed from the simula-

tion plots during post processing, except in Section (5.1) where the discussion is primarily

based on the mesh.

All the simulations were carried out using an in-house, C++ based, variational multi-

scale cohesive method (VMCM) finite element code developed by the author. A standard

Newton-Raphson scheme was used for solving the system of non-linear equations, based on

a direct solution procedure using the SuperLU library Demmel et al. (1999).

5.1 Mesh Objectivity Demonstration

The discussion in Section (4.1) highlights the mesh sensitivity of the standard finite

element implementation for simulating crack propagation. As stated previously, eliminat-

ing pathological mesh dependence of crack propagation simulations is one of the primary

motivations for the development of the multiscale framework, and this section seeks to

demonstrate the mesh objectivity of this implementation. The results presented in this sec-

tion focus on the dependence of the global load-displacement response and the crack path,

the two most important metrics from a structural viewpoint, on the mesh density.

5.1.1 Straight Crack Propagation

Consider the problem of a cohesive tension block under uniaxial tension, as shown in

Figure (5.1). Shown are the problem schematic, resulting crack paths for meshes whose den-
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sity varies over two orders of magnitude, and the corresponding global load-displacement

response. It should be sufficiently clear from this result that the traditional pathological

mesh dependence is completely absent for the case of a straight crack path. However, this

physical problem involves no crack turning, so the sensitivity of the crack path discussed

in Section (4.1.2) is not manifested here. A more complex problem involving curved crack

propagation is presented in the following subsection.

The load-displacement response in Figure (5.1 C) is physically relevant, as it indicates

that the strain energy release rate, G, and the surface energy density, γ′ (Section (2.1.1.1))

are mesh independent, because the area under the curve is equal to the energy dissipated

due to surface creation.

5.1.2 Curved Crack Propagation

Figure (5.2) shows the response of a standard Single Edge Notch Three-Point Bend

(SETB) specimen under eccentric loading conditions. Due to the unsymmetrical loading,

the crack deviates from its straight path and approaches the loading point as this is the

contour of the maximum normal tractions, and the load-displacement and crack path is

objectively simulated across all the mesh densities considered.

However, at first glance, the small variation in the load-displacement response and

crack path may suggest mesh sensitivity. This is expected, as even in the absence of cracks,

the resolution of the high stress gradients does depend to a small degree on the element

dimension, and this naturally affects the crack direction determination and consequently

the load-displacement response. Thus, these small variations are not pathological, as can

be seen from Figure (5.2 C), but an artifact associated with numerical discretization used

in the finite element method.
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Figure 5.1: Mesh objectivity demonstration for straight crack propagation. (A) Rectangular
cohesive material under uniaxial tension, (B) Displacement magnitude contours for different
mesh densities, (C) Corresponding load-displacement response. The P and ∆ values have
been normalized with fixed reference values.
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Figure 5.2: Mesh objectivity demonstration for curved crack propagation. (A) Eccentrically
loaded SETB specimen, (B) Displacement magnitude contours for different mesh densities,
(C) Corresponding load-displacement response. The P and ∆ values have been normalized
with fixed reference values. 64



5.2 Mixed Mode Crack Propagation

Mixed-mode refers to the condition where the crack face is subjected to both in plane

and out of plane tractions. In 2D, this means that the crack face is under the influence of

both Mode-I opening tractions and Mode-II shear tractions. Crack propagation involving

non-straight paths is often mixed-mode and so their will be two cohesive traction-separation

relations corresponding to normal-opening and shear-slipping modes. This section demon-

strates the mixed-mode fracture simulation capability of the multiscale implementation. As

stated earlier, the crack path elements are removed and for better visualization only the

field contours are shown, without the underlying mesh.

Figure (5.3) shows snapshots of crack propagation in a symmetrically loaded Compact

Tension (CTS) specimen. Although the mixed-mode scheme is active, the symmetry in

the specimen and loading result in near straight crack propagation with very little crack

face shear. However, the opening stress contours provide insights into the load bearing

ability of materials with large process zone sizes. As seen in the evolving contour plots,

the majority of the stress concentration is in the crack wake and this provides resistance

to crack growth. This increased resistance to crack growth can also be implied from the

corresponding load-displacement response which is flat indicating the increased fracture

toughness of this material. The crack face bridging, as evident from the stress contours,

gradually increases in size, then approaches a steady state value before shortening as the

crack approaches the specimen boundary where the compressive stress is significant due to

bending.

Figure (5.4) shows mixed-mode curved crack propagation in an eccentrically loaded

SETB specimen where the crack approaches the loading point along the contour of the

maximum normal tractions. Similarly, Figure (5.5) shows crack propagation in a rectangular

specimen with a fully constrained left end and a displacement loading at the lower right

corner. Also, it is experimentally observed that the crack propagation in laminated fiber
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reinforced composite materials is predominantly along the fiber layup direction, so the effect

of restricting the crack propagation direction in the simulations is shown in Figure (5.6),

where the crack path is restricted to the -45/0/+45/+90 fiber layup directions.
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Figure 5.3: Mixed-mode crack propagation in an symmetrically loaded CTS specimen(A)
CTS specimen, (B) Corresponding load-displacement response., (C) Evolving opening stress
σyy magnitude with crack growth. The P and ∆ values have been normalized with fixed
reference values.
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Figure 5.4: Mixed-mode crack propagation in an eccentrically loaded SETB specimen.
(A) Eccentrically loaded SETB specimen, (B) Corresponding load-displacement response,
(C) Evolving displacement magnitude with crack growth. The P and ∆ values have been
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Figure 5.5: Mixed-mode crack propagation in a rectangular specimen with the left end fully
constrained and a displacement loading at the lower right corner. Shown are the crack path
and the opening stress contours.
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Figure 5.6: Mixed-mode crack propagation with restricted crack growth directions in a
rectangular specimen with the left end fully constrained and a displacement loading at the
lower right corner. Shown are the crack path and the opening stress contours.
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5.3 Interacting and Multiple Cracks

In this subsection, complexity due to multiple cracks, interactions between cracks and

interaction with structural inclusions are addressed. It is stressed that the multiscale formu-

lation has no restriction on the number of possible cracks in a domain or on their interaction.

Consider the standard Double Edge Notch Tension (DENT) specimen crack propagation

simulation in Figure (5.7). As expected, two cracks start from notches on either side and

approach each other, and the opening stress contours show their interactions. Initially,

either crack grows independently, but as they get closer, they interact through the long

range terms of the asymptotic expansion of the crack tip stress. However, due to the small

offset in their crack paths, induced due to the numerical discretization, they pass each other.

But eventually the crack paths intersect and one branch of the combined crack becomes

predominant while the other branch relaxes. This problem also serves as an example of how

an otherwise complex crack interaction, can be clearly understood through the numerical

implementation.

Of interest in practical structures is the interaction of a crack with hard and soft inclu-

sions. Shown in Figure (5.8) is one such scenario, where a crack encounters a hard inclusion

along its path. The inclusion material has the same elastic modulus as the surrounding

material, but its cohesive strength is three orders of magnitude higher. Thus the crack

cannot propagate through the inclusion, instead bypasses the inclusion by traversing along

its boundary. Another scenario of practical interest is crack arresting. Depending on the

inclusion geometry and specimen loading, crack propagation will either be delayed or at

times completely arrested. Such analysis can potentially aid in developing materials with

artificial toughening by dispersed inclusions.
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Figure 5.7: Cohesive crack propagation in DENT specimen. (A) DENT specimen, (B)
Evolving opening stress σyy magnitude with crack growth
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Figure 5.8: Cohesive crack propagation in the presence of a hard inclusion. (A) Tension
block with hard inclusion shown in red, (B) Evolving crack path.
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5.4 Closing Remarks

In conclusion, the numerical examples in this chapter demonstrate the ability of the mul-

tiscale formulation in simulating cohesive crack propagation. The crack paths and the global

load-displacement responses obtained are numerically objective and physically consistent.

The specimens and loading scenarios considered are sufficiently complex and relevant to

practical applications, as will be further demonstrated in the next chapter on experimental

validation.
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CHAPTER VI

Experimental Validation and Analysis

While the previous chapter focused on illustrating the capabilities of the multiscale

framework, this chapter seeks to demonstrate its practical applicability by validating the

simulation results with experimental observations of crack propagation in laminated fiber

reinforced composite panels. Section (6.1) provides details of the material used and the

experimental setup. This is followed by comparison with corresponding numerical results

in Section (6.2). It is to be noted that all the experiments described here were conducted

by other collaborators, and their experimental results were used by the author to validate

the multiscale framework. Also, due to proprietary requirements, the reported cohesive

material properties and load-displacement curves were normalized.

6.1 Experimental Setup

The material used in all the experiments herein is a carbon fiber/epoxy [−45/0/ +

45/90]6s laminated fiber reinforced composite with a fiber volume fraction of 0.55, and

whose lamina and laminate properties are given in Table 6.1. The nominal thickness of

all the panels tested is 6.35 mm and their layup cross section is shown in Figure 6.1. The

tests were conducted with a loading rate of 0.01 mm/sec (0.0004 in/sec). Two types of

experiments were conducted with the following goals:

• Characterization of the laminate cohesive properties for through-the-thickness crack
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Table 6.1: Lamina and laminate properties of carbon fiber/epoxy [−45/0/+45/90]6s lam-
inated fiber reinforced composite.

Laminate Lamina
Exx: 51.5 GPa E11: 141 GPa
Eyy: 51.5 GPa E22: 6.7 GPa
Gxy: 19.4 GPa G12: 3.2 GPa

νxy: 0.32 ν12: 0.33

Figure 6.1: Cross section of the [0/45/90/− 45]6s specimen layup

propagation.

• Crack propagation case studies for validation of the multiscale framework.

Details about the various specimen geometries and their experimental setup are given in

the following two subsections.

6.1.1 Characterization of Cohesive Properties

The numerical modeling of crack propagation in this class of materials require a cohe-

sive constitutive relationship, referred to as a traction-separation law. Here we assume a

linear traction-separation law [Equation (3.19)], shown in Figure 6.2, which can be charac-

terized by an appropriate fracture toughness (GIc/GIIc) value and a corresponding cohesive

strength T c
0 . However, in this class of materials, since the crack initiates in Mode-I, which

is also the predominant load bearing mode in the crack wake, experimental characterization
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was focused primarily on obtaining the Mode-I traction-separation relationship.
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Figure 6.2: A representative linear traction-separation law. For each of the fracture modes,
T c
0 is the corresponding cohesive strength, Gc the fracture toughness and H the softening

moduli.
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Figure 6.3: (a) Compact tension specimen (CTS) configuration, (b) Double edge notch
tension (DENT) specimen configuration.

For this purpose, compact tension specimen (CTS) fracture tests were carried out to

measure the Mode-I fracture toughness. Figure 6.3(a) shows the dimensions of the specimen

used in these studies. The fracture toughness value was calculated by normalizing the area

under the experimental load-displacement curves by the total crack area. This method of
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computing the fracture toughness has been addressed in detail in Rudraraju et al. (2010).

Load was measured using a load cell mounted on the MTS test frame, and the load point

displacement was measured using an LVDT which was mounted between the loading rollers.

Double edge notched tension (DENT) tests were carried out to measure the critical

Mode-I cohesive strength. Figure 6.3(b) shows the dimensions of the specimen. This con-

figuration was selected because the stress state across the entire crack face is almost uniform

and specimen failure is instantaneous. Thus, the critical load divided by the total crack

cross section area gives a fairly accurate estimate of the critical traction across the crack

faces. It was observed that this value was independent of the specimen width.

6.1.2 Crack Propagation Case Studies

Three types of specimen geometry and loading conditions were considered to serve as

case studies for validating the simulation results:

• Symmetric Single Edge Notch Three Point Bend Tests: The SETB configuration used

in this study is shown in Figure 6.4. A notch was introduced and a knife edge was used

to introduce a sharp starter crack. The specimens were supported on rubber rollers

both at the loading and support points to minimize any local inelastic deformation.

The specimens were loaded on a specially designed loading frame with anti buckling

guide rods that prevents out of plane movement of the specimens. The specimens

were loaded using a hydraulically operated MTS testing machine and were loaded

until failure. Load was measured by a load cell and the load point displacement

was measured in between the top and bottom loading rollers using an LVDT. Five

specimen sizes with geometrically scaled planar geometry and fixed thickness were

considered. Multiple specimens of each size were tested to significantly capture the

failure response envelope.

• Eccentric Single Edge Notch Three Point Bend Tests: To induce curved crack prop-
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Figure 6.4: Single edge notch three point bend (SETB) specimen configurations used in
the crack propagation experiments. (a) Symmetric loading, (b) Eccentric loading.

agation, an eccentricity was introduced in the loading point location. The eccentric

SETB configuration is shown in Figure 6.4. The loading setup was similar to that of

the symmetric SETB specimens.

• Eccentric Compact Tension Tests: Unlike the eccentric SETB tests, the eccentricity

here was in the geometry, as shown in Figure 6.5. The notches in the center of the

CTS specimens were moved by 10 mm for first set of tests and 20 mm for the second

set of tests.

In each case, the global load-displacement response was recorded. These experimental load-

displacement curves and the observed crack paths are compared with the simulation results

in the next section.

6.2 Numerical Simulations and Comparison With Experi-

ments

All simulations here are assumed to be under ‘locally’ Mode-I conditions. The Mode-I

cohesive strength was obtained by DENT specimens as described in Section 6.1.1, and this

value was fixed for all specimen sizes and geometries simulated in this section. The Mode-I

fracture toughness in this class of materials is both size and geometry dependent, so the

fracture toughness obtained from CTS experiments in Section 6.1.1 could be used directly
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Figure 6.5: Eccentric compact tension specimen configurations used in the crack propaga-
tion experiments. (a) Eccentricity: 10mm, (b) Eccentricity: 20mm.

in the eccentric CTS simulations, but for the symmetric and eccentric SETB simulations,

the fracture toughness was computed by normalizing the area under their respective ex-

perimental load-displacement curves by the total crack area. For a detailed discussion on

this choice of Mode-I fracture toughness, readers are referred to Rudraraju et al. (2010). In

each of the simulations below, the meshes contain about ten to twenty thousand elements.

Again, the crack path elements were removed during post processing for better visualization.

Consider the first case-study of the symmetrically loaded SETB specimens whose ex-

perimental observed and numerically obtained load-displacement responses are shown in

Figure 6.6. Across the five sizes, the numerical simulations faithfully reproduce the exper-

imental load-displacement response. Usually, the crack initiates before the peak load, and

at the peak load the full bridging zone will be formed. Further crack growth leads to a drop

in the load bearing ability of the panels due to the failure of the fibers in the crack wake

leading to movement of the active bridging zone. The details of the effect of bridging zone

formation and movement on the load bearing ability of the specimens has been explained

in detail in Rudraraju et al. (2010).

Similarly, for the more complex case of eccentric SETB specimens, the numerically ob-

tained load-displacement response and its comparison with experimental results is given by
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Figure 6.7. For this class of materials, experimental load-displacement responses show sharp

drops in the post-peak load regime, which can be attributed to the cohesive heterogeneity

of this material. Since numerically the material is modeled as a homogeneous medium (with

the effective elastic and cohesive properties), the numerical model has no spatial or angular

distribution of the non-homogeneous material properties. Also, since in a cohesive material

the crack wake also possess significant load bearing ability, the numerical model only pre-

dicts a smooth load displacement response in the post-peak regime. However, as seen from

the comparison, the multiscale method captures the post-peak response fairly well, albeit

without the sharp drops.

Lastly, for the case of eccentrically loaded CTS specimens, Figure 6.8 shows the com-

parison of the global load-displacement response. Again, the global response is very similar.

The difference in the slope of the experimental and numerical curves in the linear regime of

the curve is due to some amount of crushing under the loading rollers in the experiments.

Further, Figure 6.9 shows a comparison of the experimental and numerical crack paths,

which match significantly.

6.3 Closing Remarks

From a structural viewpoint, the crack path and the effective load bearing ability of a

failed panel are of primary importance. Thus the close correlation between the experimental

and simulation results presented in the chapter provide significant validation of the practical

applicability of the multiscale methodology for simulating cohesive crack propagation.
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Figure 6.6: Load-Displacement response obtained from simulations of symmetrically loaded
Size 1-5 SETB specimens. For a particular specimen size, GL and GH represent the simu-
lations with the least and highest values of the fracture toughness obtained from the experi-
ments. The P and ∆ values have been normalized with fixed reference values.
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Figure 6.9: Comparison of experimental and numerical crack paths for eccentrically loaded
CTS specimens.
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CHAPTER VII

Conclusions and Future work

This dissertation has presented a complete framework for simulation and analysis of

cohesive crack propagation, especially for materials involving large process zones. The

broader aspects of this framework can be summarized as follows:

• Theoretical aspects: The necessary arguments for using analytically/numerically de-

termined traction-separation relations have been discussed and a possible microme-

chanical framework for fiber-reinforced composites has been presented.

• Computational aspects: A variational multiscale formulation of crack propagation as

a subgrid scale problem has been established and developed in the context of the

finite element method. All the necessary numerical machinery (weak formulations,

multiscale elements and iterative solution procedure) have been developed in com-

plete detail. The resulting computational approach has been demonstrated through

benchmark simulations and more importantly, experimentally validated.

Further, it is pointed out that this numerical framework, involving discontinuous basis func-

tions, is generic enough to be extended to a wider class of problems involving not just crack

propagation, but possible other phenomena involving micromechanical surface laws, like

frictional contact.

Several possibilities for future work suggest themselves:
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1. The work presented here is within the context of small deformations. An extension

to finite deformation is naturally of interest. It is suggested that such a development

would involve only minimal changes in the numerical framework and a possible source

of inspiration are the related elemental enrichment methods involved in simulation of

strong discontinuities which are essentially in a finite-deformation setting.

2. Another possibility is the extension to three dimensions. While the theory of crack

propagation and the multiscale formulation will essentially remain unchanged, the

multiscale element construction and crack tracking algorithms will be more challeng-

ing. Also, an extension to non-simplex elements would be helpful in broadening the

applicability.

3. An important contribution would be the study of stability and convergence of the

solution procedure involved in this class of problems with discontinuous enrichments.

Also, given the high non-linearity inherent in these problems, a comparative study

of various solver schemes will also be highly beneficial not just for crack propagation

problems but to the broader field of discontinuous enrichment.

4. Although application specific, an extension to dynamic problems would be interesting

for certain classes of problems involving high loading rates. Likewise, one may think

of a possible application to shell elements, but this would be significantly complicated

due to the introduction of rotations and possible rotational discontinuities, over the

existing displacement discontinuities.
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APPENDIX A

Analytical and numerical modeling of the

micromechanics of fiber-pullout

A.1 Introduction

The structural response of fiber-reinforced composites - a heterogeneous and discreet

material medium, are significantly different from the monolithic materials, like metals, due

to the various length scales and discreet directions of load transmission. In this study we

focus on understanding the micromechanics related to the primary load bearing constituent

of this material, the fiber. The aim is to describe the response of a fiber and its neighboring

matrix material, from initial load bearing to eventual pullout, and analytically determine

the single-fiber traction-separation relation. This understanding will then be cast into the

finite element numerical framework to demonstrate the micromechanics and to extend it

to determine continuum level traction-separation relations. It is also noted that given the

enormity of variations possible in the wider class of fiber-composites, the study presented

herein may only be directly relevant to the following material behavior:

• Linear elastic matrix (no micro cracking or damage evolution).

• Strong brittle fibers with finite embedding length (no fiber breakage).
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• Adhesive interface characterized only by the Mode-II fracture toughness. How-

ever, numerical models extend this by considering a more general complete traction-

separation relation.

With these assumptions, we develop an analytical formulation for the single-fiber pull-

out problem. This formulation is based on the analytical framework presented by Gao et al.

(1988), and many results are directly used. For the material under consideration, experi-

mental observations have shown the formation of a fiber-bridging zone, whose evolution is

schematically represented in Figure A.1. The corresponding micromechanical process are

depicted in Figure 2.9. Assuming a displacement control loading at the free fiber end, the

evolution of fiber pullout is decomposed into the following regimes:

A. Interface crack formation: Initial fiber loading, leading to enhanced shear stress in the

fiber-matrix interface, which beyond a certain threshold value of energy availability

leads to Mode-II interface crack formation.

B. Interface crack propagation and frictional contact : Mode-II crack facilitates tangential

slip at the interface during subsequent fiber loading. The slipping or tendency of

slipping leads to coulomb type frictional forces on the interface, leading to enhanced

resistance to the fiber slipping, thus increasing the fiber load carrying ability.

C. Fiber pullout : The interface crack either reaches the end of the embedded fiber length

or the fiber breaks at some weak point upon reaching the failure stress. This leads

to significant loss of fiber load bearing ability, as now only the frictional forces are

resisting the fiber movement. Further displacement increments at the free fiber end

now lead to fiber pullout.

Section A.2 describes each of these regimes and develops an analytical formulation.

Then the numerical framework and simulations are presented in A.3.
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Figure A.1: Stages involved the evolution of the bridging zone (BZ). A: Matrix cracking -
Fiber bridging, B: Bridging zone formation, C: Bridging zone propagation.

A.2 Analytical Formulation

A.2.1 Interface Crack and Frictional Contact

In order to study the fiber-matrix debonding and pullout problem, we consider a shear

lag model like geometry of a fiber-embedded in a cylindrical matrix jacket as shown in

Figure 2.9. Table (A.1) lists all parameters used in this model.

Assume that there is an initial debonded length, l formed due to formation of a mode-II

shear crack in the interface. For the debonded zone, y < l, we have the following equilibrium

conditions:

dTf

dy
= −dTm

dy
= 2πrτs (A.1)

and stress-strain relationships:

ǫf =
duf
dy

=
Tf

πr2Ef
− 2νf

Ef
q∗ (A.2)

ǫm =
dum
dy

= χ
Tm

πr2Em
− 2νm

Em
χq∗

where χ = r2/(R2 − r2) = cf/cm, and fromGao et al. (1988) we have q∗ = 1
πr2

( ανfTf−χνmTm

α(1−νf )+1+νm+2χ

)
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Table A.1: List of symbols for fiber-pullout micromechanics

Symbol Representation

r Fiber cylinder radius
R Matrix cylinder outer radius

cf , cm Fiber and matrix volume fraction
Ef , νf Fiber elastic modulus and poisson’s ratio
Em, νm Matrix elastic modulus and poisson’s ratio

α Ef/Em

l Instantaneous crack length
le Fiber embedded length
P Fiber free end load
∆ Fiber free end displacement
q0 Resin shrinkage pressure
q∗ Additional pressure at interface due to poisson contraction

Tf (y), uf (y) Fiber tensile force and displacement
Tm(y), um(y) Matrix tensile force and displacement

τs(y) Interfacial shear stress
µ Coefficient of interface friction

Now, we assume that the zero thickness interface exhibits coulomb type friction. This lets

us obtain a relationship for the interface shear stress τs, in terms of the the resin shrinkage

pressure q0, poisson contraction pressure q∗, and the friction coefficient µ.

τs = µ(q0 − q∗) (A.3)

Using the boundary conditions:

Tf (0) = P (A.4)

Tm(0) = 0

and Equations (A.1) and (A.3) we obtain the fiber and matrix forces in the debonded zone,

y < l:

Tm =
( ανf
ανf + χνm

)
(P̃ − P )(eλy − 1) (A.5)

Tf = P − Tm
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where the constants P̃ and λ are given by:

P̃ =
πr2q0
ανf

[
α(1− νf ) + 1 + νm + 2χ

]
(A.6)

λ =
2µ

r

( ανf + χνm
α(1− νf ) + 1 + νm + 2χ

)

Solving (A.2), we obtain the relative slipping between the fiber and matrix given by:

υ(y) =| uf (y)− um(y) | (A.7)

⇒ υ(y) =
P (l − y)

πr2Ef
(1− 2kνf )−

α+ χ− 2k(ανf + χµm)

πr2Ef (ανf + χµm)
νf (P̃ − P )

[ 1

λ
(eλl − eλy)− l + y

]

(A.8)

where k =
(ανf+χµm)

α(1−nuf )+1+num+2χ . Equation (A.7), gives a relation between ∆ = υ(0) and P .

This lets us obtain the load-displacement (P -∆) response in the pre-cracking regime. Now

lets shift our attention to the evolution of the interface crack length l, by considering the

energetics of Mode-II crack propagation, along the fiber-matrix interface.

A.2.2 Interface Crack Propagation

Following the crack propagation treatment in Gao et al. (1988), consider a cracked body

of volume V loaded by tractions T and τs on the surfaces ST and SF with corresponding

displacements du and dv as shown in Figure A.2. For a crack growth dA along the friction

surface SF we can obtain from energy balance considerations:

∫

ST

Tduds = gdA+

∫

SF

τsdυds+ dU (A.9)
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Figure A.2: Schematic showing the evolution of debonding crack. ST and SF are the
traction and friction surfaces.

where g is the specific work of fracture,
∫
τsdvds represents the work of friction and U is

the stored energy of the body. For an elastic system, we have

dU =

∫

ST

Tduds− 1

2

∫

SF

τsdυds (A.10)

If the traction T consists of n concentrated forces P1....Pn and the displacements λ1...λn

then (A.10) becomes:

g =
1

2

[
Σn
i=1Pi

∂∆i

∂A
−

∫

SF

τs
∂υ

∂A
ds
]

(A.11)

Let g = ζ, A = 2πrl, ds = 2πrdy and Pi(= P ) is the force applied at the fiber end. Also,

from (A.7) we can obtain υ(y) and ∆i = −uf (0). The debonding criterion is now given by:

ζ =
−P

4πr

(∂uf (0)

∂l

)
− 1

2

1∫

0

τs
∂υ(y)

∂l
dy (A.12)
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Solving Equation (A.12) by substituting uf and υ(y) we obtain,

4π2r3Ef (1 + β)ζ = (1− 2kνf )[P − (1 + β)Q]2 (A.13)

in which,

Q = Tm(l) =
ανf (P̃ − P )

ανf + γνm
(eλl − 1) (A.14)

and

β =
γ(1− 2kνm)

α(1− 2kνf )
(A.15)

Equation (A.13) is the final fiber debonding criterion showing that the debonded load

depends on debonded depth l. To obtain the debonding (Mode-II crack) initiation load P0,

we substitute l = 0, giving:

P0 = 2πr3/2
[Ef (1 + β)ζ

1− 2kνf )

]
1/2

(A.16)

Further, Equation (A.13) can be simplified to obtain an expression for the instantaneous

load P :

P (l) = P̃ (1− eλl) + P0e
−λl (A.17)

and Equation (A.7) is used to obtain the value of ∆ = υ(0) in the crack propagation regime:

∆(P ) = υ(0) =
1− 2kνf
πr2Efλ

(
[P + (P̃ − P )/K]ln(1 +

K(P − P0)

P̃ − P
)− P + P0

)
(A.18)

Equation (A.17) and (A.18), give the required relations to obtain the P -∆ response in the

post- crack initiation regime until the point of pullout initiation.
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A.2.3 Fiber Pullout

Equation (A.17) shows that the load increases monotonically with increase in the debond-

ing (crack) length, l. This ultimately culminates in one of the following two scenarios:

• l = le: That is the crack propagates over the total embedded fiber length.

• l < le but P = Pc: That is, the applied load produces a fiber tensile stress that

exceeds the fiber strength and the fiber breaks at a weak point y = lb < le.

In either case, we now make a slight change in what we mean by l. Earlier l was the length

of the crack, and in the pullout regime by l we mean the length of the fiber inside the

matrix. So, now l monotonically decreases from its pullout initiation length and ultimately

approaches zero, which means total pullout of the fiber from the matrix.

In this regime, we have the following relation for the load, P :

P (l) = P̃ (1− eλl) (A.19)

Thus Equation (A.19) shows that the load suddenly drops from the value in Equation

(A.17) for the same l, as soon as the pullout has initiated. This elucidates the existence of

a physical instability as soon as the mechanics change from crack propagation to pullout

initiation. This is due to sudden loss of the load bearing ability of the friction zone at the

crack tip which now sees a different material domain. Thus for any given fiber length in the

matrix l, we can use Equation (A.19) to obtain the load value, and Equation (A.18) still

holds for the current load value P .

Thus using Equation (A.19) and Equation (A.17), we can obtain the P -∆ response in

the pullout regime until the point of complete pullout.
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Figure A.3: Schematic of fiber-pullout load displacement response. A:Crack initiation,
A-B:Crack propagation and contact friction, B-C:Load instability, C-D:Fiber pullout.

Table A.2: Material properties for fiber-pullout micromechanics

Property Value

Ef 173 GPa
Em 3.72 GPa
νf .35
νm .39
cf .06
µ .3

A.2.4 Summary

Shown in Figure A.3 is the schematic of a typical load-displacement(P -∆) response of a

single fiber pullout. For given material properties, this load-displacement response can be

obtained using the respective P -∆ relations listed at the end of each section of the above

three regimes (Interface crack initiation and Frictional contact, Interface Crack Propagation

and Fiber Pullout). For the material characteristics listed in Table A.2, the complete P -∆

response is shown in Figure A.4.

This completes the analytical formulation. We now divert our attention to the numerical

framework developed to validate and extend the applicability of the analytical understand-

ing and formulation.
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values of interface fracture toughness ζ.

A.3 Numerical Framework and Simulations

The fiber-pullout simulations were done in the Abaqus FEA package using user elements

for fiber-matrix interface cohesive zones. To simulation the various non-linear mechanisms

(deformation, fracture, contact, friction) which are active simultaneously, the following

numerical scheme was used:

1. Fiber, Matrix (Deformation): Plane strain elements.

2. Interface (Crack Propagation): Discrete Cohesive Zone Methods (DCZM) interface

elements [Gustafson and Waas (2009)].

3. Interface (Contact and Friction): Contact elements.

With this framework, various single fiber pullout, lamina level and unidirectional coupon

level simulations were conducted, some of which are listed below:

1. Single fiber pullout model mesh (Figure A.5)

2. Single fiber pullout model fiber and matrix level shear stress contours (Figure A.6)

3. Single fiber pullout model fiber various stress contours (Figure A.7)
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Mesh Boundary Conditions

Figure A.5: Quadrilateral elements mesh and the applied boundary conditions.

4. Lamina level stress contours: Regular and Random fiber distributions (Figure A.8)

These preliminary results demonstrate the potential applicability of this numerical frame-

work for simulating micromechanics of fiber-pullout, and thereby obtaining the cohesive

traction-separation relations.
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Figure A.7: Contour plots of the tensile and shear stresses in the single fiber pullout
problem.
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Figure A.8: Comparison of the stress fields of regular and random fiber distributions.
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