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CHAPTER I

Introduction

The primary goal of this work is to describe and utilize a class of implicit algo-

rithms that are collectively known as the “distance function-based diffusion-generated

motion” (DFDGM) algorithms. These algorithms simulate the evolution of multiple

phases Σk ⊆ Ω under a class of evolution laws for the motion by curvature of the

interfaces Γk` separating phases Σk and Σ` by normal velocities of the form:

vn(Γk`) = fk`(κk`), (1.1)

where vn(Γk`) denotes the outward normal velocity from phase Σk into phase Σ`, the

fk` are affine functions, and κk` denotes the mean curvature of the interface Γk`. It

is required that
⋃

k Σk = Ω, and that

Σk ∩ Σ` = ∂Σk ∩ ∂Σ` = Γk` (1.2)

for all k 6= `. As a natural consequence, we must have that vn(Γk`) = −vn(Γ`k). This

condition prevents vaccuums (regions where no phases are present) and overlaps

(regions where multiple phases are present).

The simplest, yet still mathematically interesting case, of (1.1) is pure multiphase

motion by curvature,

vn(Γk`) = κk`, (1.3)

1
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where each point p on the interface Γk` moves with normal velocity equal to the

curvature of the interface at the point p. This normal velocity arises as L2 gradient

descent for the energy

E =
1

2

∑

k

|∂Σk|, (1.4)

where |∂Σk| denotes the length of ∂Σk in two dimensions, and the surface area of ∂Σk

in three dimensions. This energy corresponds to the total interface length (surface

area, in three dimensions) of the system, with the factor of 1/2 arising due to the

double-counting of each interface. This energy arises as the model for isotropic grain

growth, a materials science phenomenon arising when polycrystalline materials are

annealed. This application is discussed in Chapter III.

Gradient descent for (1.4) defines a natural boundary condition, known as the

Herring boundary condition [36] at triple junctions. In this simplest setting, symme-

try dictates that the interior angle of each phase at a triple junction (along a triple

line, in three dimensions) must be 120◦.

The addition of a bulk term to the normal velocity for pure curvature motion

(1.3) leads to a new model,

vn(Γk`) = κk` + λ(e` − ek), (1.5)

where λ sets the scaling between terms, and the ek are arbitrary constants assigned

to each Σk. The velocity (1.5) arises as gradient descent for the energy

E =
1

2

∑

k

|∂Σk|+ λ
∑

k

ek|Σk|, (1.6)

where |Σk| denotes the area of the set Σk in two dimensions, and volume in three

dimensions. (1.5) and (1.6) arise as a simple model for the recrystallization of poly-

crystalline materials. See Chapter IV for a full discussion of the model and simulation

results obtained using a DFDGM algorithm.
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The final case that we consider is that of unequal surface tensions: we associate

with each interface Γk` a constant surface tension γk`:

vn(Γk`) = γk`κk`. (1.7)

This more general form arises as gradient descent for a slightly different form of

energy,

E =
∑

k

∑

` 6=k

γk`|Γk`|, (1.8)

where |Γk`| denotes the length of the interface in two dimensions, and the surface area

in three dimensions. This is a more (though not completely) general description for

grain growth than (1.3) and (1.4). Numerical results demonstrating the accuracy and

consistency of the DFDGM algorithm for a special case of this motion are presented

in Section 2.3.2.

The natural Herring boundary conditions [36] arising from gradient descent for the

energy (1.8) state that the forces at a triple junction must vanish. These conditions

may be represented either in terms of the tangent vectors Tk` emanating along the

interfaces from the triple junction,

γ12T12 + γ13T13 + γ23T23 = 0, (1.9)

or, equivalently, in terms of the opening angles θk of the phases at the triple junction,

sin(θ1)

γ23

=
sin(θ2)

γ13

=
sin(θ3)

γ12

. (1.10)

See Figure 1.1 for a visualization. A condition on the choice of the γk` is that

γjk + γj` > γk`, (1.11)

for all j 6= k 6= `, to ensure that it is not energetically beneficial to laminate any Γk`

interface with a thin layer of Σj .
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Figure 1.1: A zoom-in on a triple junction. The Herring angle conditions specify that the forces at
the triple junction must vanish (1.9), and, equivalently, dictates the angles θk.

1.1 Related Algorithms

The remainder of this section will introduce a variety of algorithms used for the

simulation of motions of the type given by (1.1). We also indicate some of the

benefits and drawbacks of each. Three of these, the phase field method, the threshold

dynamics scheme, and the level set method, are precursors to the DFDGM family of

algorithms, and will thus be described in greater detail.

We will discuss several of these approaches in the context of pure two-phase cur-

vature motion, using this notation: Let Σ be a connected subset of the domain Ω.

In this case, gradient descent for the energy

E = |∂Σ| (1.12)

gives the normal velocity for the interface Γ = ∂Σ as

v(Γ) = κ. (1.13)

Finally, we introduce the DFDGM algorithm of [22] for motion by pure curvature

(1.13) and multiphase motion by curvature (1.3). Chapter II will introduce algo-

rithms for motion by (1.5) and (1.7).
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1.1.1 Front Tracking

Front tracking methods directly discretize a parameterization of the interface Γk`.

This parametrization can also be interpreted as representing the interface by a collec-

tion of points, such as the vertices of a polygon in the plane or a triangulated surface

in three dimensions. The evolution of the interface is then computed by approximat-

ing curvature and a normal direction from this discretization. These techniques have

been used to simulate multiphase mean curvature motion in both two [45, 48] and

three [48, 87] dimensions. A major advantage of these techniques is computational

efficiency, as computational resources are all devoted to the interface region. The

fundamental difficulty inherent to this approach is managing the topological changes

that abound in multiphase motions. With explicit representations of the interface, it

is difficult to determine if curves (in two dimensions) or surfaces (in three dimensions)

intersect.

In the case of pure two-phase curvature motion in two dimensions, Grayson’s

Theorem [34] states that any smooth curve evolves without developing singularities

and shrinks to a point in finite time. Thus topological changes are not a concern

in this setting, and front tracking methods may be appropriate. Even for two-

dimensional mean curvature multiphase motion, it is expected (though not fully

proven, see [55]) that interfaces interact only through junction–junction collisions.

If this conjecture is true, explicitly checking for and handling topological changes

may be manageable in this case. However, no such condition is expected to hold in

three dimensions. Even for pure two-phase curvature motion in three dimensions,

a smooth initial surface may develop singularities. For example, the well-known

“dumbbell” example (see Figure 1.2) splits into two pieces under curvature motion.

Moreover, under related models including additional driving forces, other topological
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(a) (b)

(c) (d)

Figure 1.2: The “dumbbell” splits into two pieces under pure curvature motion.

changes (for example, two smooth curves meeting away from triple junctions) become

commonplace. The recrystallization model of Srolovitz, et al. [79, 80], introduced in

Section 2.2 and carefully studied in Chapter IV, is an important example of such a

model. These events are difficult to handle using explicit techniques.

The “dumbbell” example is somewhat contrived; however, topological changes

occur naturally and frequently in multiphase motions, as well (see Figure 1.3 for an

example). Due to these difficulties, we choose to restrict our further attention to
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Figure 1.3: The collision of triple junctions and the disappearance of a phase are more easily handled
by implicit methods.

methods that represent interfaces implicitly.

1.1.2 Monte Carlo

The basic idea of Monte Carlo methods is simple. For a complete introduction in

the context of microstructural evolution in materials, the reader is referred to [43].

First, a state, s, is assigned to each location on a discrete grid, and a discrete energy,

E, approximating the continuum energy of interest is defined. Grid locations are

randomly chosen one at a time, the change in energy ∆E resulting from changing

the state of that grid location is computed, and the state change is accepted with a

probability determined by the change in energy.

As an example, consider the energy (1.6). In a Monte Carlo framework on a

uniform square grid with spacing ∆x, the states could be defined by

si = k ⇔ xi ∈ Σk, (1.14)

and the discretized approximating energy by

E(s) =
∑

i

N(i)∑

j

∆x

2
J(si, sj) (1− δ(si, sj)) +

∑

i

H(si)∆x
2, (1.15)

where i indexes all grid locations, N(i) is defined to be the 1–neighborhood of grid

location i, and δ denotes the Kronecker delta function. The first term incurs a
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penalty equal to J(si, sj) times the length of a grid cell, if neighboring cells i and j

have different states (note that the factor of 1/2 accounts for double-counting), while

the second term penalizes H(si) times the area of a grid cell. Choosing

H(si) = λek ⇔ si = k, (1.16)

and setting J(si, sj) = 1 completes the analogy with (1.6).

The Metropolis probability transition function is commonly used, and is defined

by

P(∆E) =






1 if ∆E ≤ 0,

e
−∆E
kT if ∆E > 0.

(1.17)

Here, kT is interpreted as a simulation “temperature.” The “zero-temperature” limit

of this transition function allows transitions only if ∆E ≤ 0, and is commonly used to

speed up simulations by disallowing state changes which increase the system energy.

Monte Carlo algorithms are simple to implement, and allow for the approxima-

tion of very complex energies if states are defined appropriately. However, they are

extremely slow and lack sub-grid accuracy. Furthermore, the stochastic nature of

the Monte Carlo evolution ensures that some type of averaging is needed to approx-

imate the true continuum motion. For example, the evolution of a simple circle by

mean curvature is very difficult to capture accurately using Monte Carlo methods

even on a well-resolved grid. Beyond these significant accuracy concerns, it is also

difficult to connect the Monte Carlo method with some notion of “real” time beyond

reorientation attempts. These algorithms are probably most appropriate for physical

simulations where the grid spacing is on the order of atomic spacing. Other limita-

tions of Monte Carlo methods in the context of applications such as grain growth

and recrystallization are discussed in Sections 4.3.2 and 4.4.



9

1.1.3 Phase Field

Modica and Mortola [61, 62] considered the energy

E(u) =

∫

Ω

(
ε|∇u|2 +

1

ε
W (u)

)
dx, (1.18)

where W (u) is a double-well potential, for example, W (u) = u2(u−1)2. Then, if the

set Σ is defined by Σ = {x : u(x) ≥ 1/2}, Modica and Mortola demonstrated that

(1.18) converges, up to a constant factor, to (1.12) as ε→ 0+. Gradient descent for

(1.18) in L2 is the Allen–Cahn equation [2]:

ut = ∆u− 1

ε2
W ′(u). (1.19)

Similar equations arise in the multiphase case, where the energy is given by

E(~u) =
∑

k

ε|∇uk|2 +
1

ε
W (~u)dx, (1.20)

with gradient descent given by

(uk)t = ∆uk −
1

ε2

∂W

∂uk
. (1.21)

In this case, the set Σk ≈ {x : uk(x) > 1/2}. The penalty term is often of the form

W (u) =
∏

k‖~u−~ek‖, where ~u = (u1, . . . , uk), so that W (u) = 0 if and only if exactly

one uk = 1 and the rest are equal to zero.

The phase field technique has been used extensively in simulations of curvature

motion [24, 30, 47, 51, 81]. However, there are two major difficulties with numerical

implementations of the evolution described by the PDEs (1.19) and (1.21). First,

the ε2 scaling of the two terms makes the problems stiff: Small time steps must be

taken due to the coefficient on the W ′(u) term, but the motion of the interface is

driven by the slow dynamics of the first term. Second, the interface Γ is represented

by a diffuse transition region, in which u changes values from one minimum of W to
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another. The width of this region is proportional to ε, and this transition layer must

be well-resolved to allow for accurate numerics. For example, Kim, et al. [47] report

that at least six grid points are needed in the transition layer to achieve acceptable

accuracy. Therefore, a phase needs to be on the order of at least 25 grid points across

to be moderately well-resolved.

In contrast, we demonstrate in Section 2.1.3 that we can simulate evolutions quite

accurately with phases of approximately ten grid points in each direction, and that

we can track them down to half that length with only a few percent relative error via

the DFDGM algorithms. Though there is no rigorous notion of generalized solutions

with uniqueness through topological changes, we also perform a convergence study

there showing that our simulations track grains through topological changes quite

consistently as well. The large grain size requirement imposed by the phase field

model is a serious impediment to performing very large-scale simulations.

1.1.4 Threshold Dynamics

The threshold dynamics schemes were introduced by Merriman, Bence, and Osher

[59, 60] to alleviate some of the difficulties inherent in phase field algorithms. They

can be viewed as time-splitting algorithms for the phase field PDEs (1.19) and (1.21).

In the two-phase case, one could alternate two steps: (1) evolution by the heat

equation ut = ∆u and (2) pointwise gradient descent ut = 1
ε2W

′(u). Efficient and

accurate methods are known for solving (1). Furthermore, in the limit ε → 0+, the

solution to (2) is simple for any fixed t > 0:

u(x, t) =






1 if u(x, 0) > 1
2
,

0 if u(x, 0) < 1
2
.

(1.22)
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Input: u0(x) = 1Σ0(x), discrete time step ∆t, and number of time steps jmax.
Output: Σj = {x : uj(x) = 1}, for j = 1, . . . , jmax.

For: j = 1, . . . , jmax, do steps 1–2.

1. Convolve: Let u(x,∆t) be the solution of ut = ∆u, u(x, 0) = uj(x), at time ∆t.

2. Threshold: Set

uj(x) =

{
1 if u(x,∆t) > 1

2 ,

0 otherwise.

Algorithm 1.1: Threshold Dynamics for two-phase curvature motion.

Input: u0
k(x) = 1Σ0

k
(x), for k = 1, . . . , kmax, discrete time step ∆t, and number of time

steps jmax.
Output: Σj

k = {x : uj
k(x) = 1}, for k = 1, . . . , kmax and j = 1, . . . , jmax.

For: j = 1, . . . , jmax, do steps 1–2 for k = 1, . . . , kmax

1. Convolve: Let uk(x,∆t) be the solution of ut = ∆u, u(x, 0) = uj
k(x), at time ∆t.

2. Threshold: Set

uj
k(x) =

{
1 if uk(x,∆t) = max` u`(x,∆t),

0 otherwise.

Algorithm 1.2: Threshold Dynamics for multiphase curvature motion.

These results suggest the scheme of Algorithm 1.1, which approximates the evolution

of an input set Σ0 by mean curvature motion (1.13).

Algorithm 1.1 has a very simple extension to the multiphase case, described in

Algorithm 1.2. In this case, let the domain Ω be partitioned into an initial set of

phases Σ0
k. Then Algorithm 1.2 describes the threshold dynamics evolution for the

normal velocity (1.3). The extension is obviously equivalent to Algorithm 1.1 in the

two-phase case, and is shown in [57] to generate the correct, symmetric angles at

triple junctions.

The threshold dynamics scheme is unconditionally stable, so that accuracy is the

only concern in choosing the size of the time step ∆t. It is also fast, with only

O(M logM) complexity, where M is the total number of grid points used (M = mN
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for a square grid with m grid points in each direction in N dimensions). As with

the phase field method, the interfaces Γk` are implicitly represented. This allows

for changes in topology (which occur frequently in the multiphase evolution) to be

handled naturally, a major advantage over front tracking-type techniques.

However, the threshold dynamics algorithm has many notable drawbacks, as well.

It is quite inaccurate on uniform grids. Also, if the time step is small with respect to

grid resolution ∆x, ∆t ≈ (∆x)2, the interface will not be able to move. This is due

to the represention u(x) = 1Σ(x). As u is 0 or 1 at each grid point at the beginning

of each time step, it is not possible to interpolate to locate the interface with any

subgrid resolution. Ruuth explored threshold dynamics on non-uniform, adaptively

refined grids [73] to alleviate these problems; however, it is much easier to work on

uniform grids. The Fast Fourier Transform can be applied to perform convolution on

uniform grids easily, but the extension to non-uniform grids is nontrivial. Esedoḡlu,

Ruuth, and Tsai proposed a new algorithm that replaced the characteristic function

by the signed distance function to allow for interpolation with subgrid accuracy [22].

This method is described in Section 1.2.

1.1.5 Level Sets

Level set methods are popular for interface motion problems. For any two-phase

interface motion problem, one can define a level set function φ with the property

that

φ(x) > 0 ⇔ x ∈ Σ. (1.23)

The zero-level set of φ coincides with the boundary ∂Σ. Then basic level set theory

explains that the solution φ(x, t) of the partial differential equation

φt = vn|∇φ|, (1.24)
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with the initial condition

φ(x, 0) = φ0(x), (1.25)

where φ0(x) corresponds to an initial interface Γ0, gives the evolution of the interface

Γ under normal velocity vn.

For a level set function, curvature is simply the divergence of the outward-pointing

unit normal vector,

κ = −∇ ·
( ∇φ
|∇φ|

)
, (1.26)

where the negative sign arises as a consequence of the chosen sign convention. Thus

(1.24)–(1.26) provide a simple prescription for a level sets algorithm for two-phase

motion by curvature. Topological changes are again handled naturally.

In the multiphase case, the sets Σk can each be represented by level set functions

φk, and the evolution can be constrained so that exactly one φk is positive away from

interfaces. Zhao et al. [96] present an implementation of the level sets method for

multiphase motion of the form (1.1). However, in this work, the condition that ex-

actly one φk is positive at every spatial location is imposed as a pointwise constraint,

which leads to stiffness. The DFDGM algorithms are also closely related to level set

techniques but resolve this problem.

1.2 Distance Function-Based Diffusion-Generated Motion

The distance function-based diffusion-generated motion (DFDGM) algorithm for

two-phase curvature motion was originally proposed by Esedoḡlu, Ruuth, and Tsai

[22]. It can be thought of as either a modification of the threshold dynamics algorithm

or of the level set method for motion by curvature.

The major hallmark of the DFDGM algorithms is their reliance on the signed
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Input: Signed distance function d0 to ∂Σ0, discrete time step size ∆t, and number of time
steps jmax.
Output: Signed distance functions dj , for j = 1, . . . , jmax.

For: j = 1, . . . , jmax, do steps 1–2.

1. Convolve: Compute A(x) := K∆t ∗ dj−1, where K∆t is

K∆t = G∆t or K∆t =
1

4

(
4G 3

2
∆t −G3∆t

)
,

and G∆t is the fundamental solution of the heat equation:

G∆t(x) =
1

(4π∆t)
N

2

e−
|x|2

4∆t .

2. Redistance: Set dj(x) to be the signed distance function to the zero-level set of
A(x).

Algorithm 1.3: DFDGM of [22] for two-phase curvature motion.

distance function dΣ(x), defined by

dΣ(x) =






dist(x,Σc) if x ∈ Σ,

−dist(x,Σ) if x ∈ Σc,

(1.27)

where dist(x, S) = infy∈S|x− y|.

The two-phase algorithm is simple. Similar to threshold dynamics, two operations

are alternated: Convolution of the signed distance function with a radially symmetric

kernel, and a redistancing operation which reconstructs the signed distance to the

zero-level set of the convolution output. See Algorithm 1.3 for details.

The signed distance function may be thought of as a particular type of level set

function, with the restriction that dΣ(x) satisfies the eikonal equation,

|∇dΣ| = 1, (1.28)

everywhere that the gradient of dΣ is well-defined. Indeed, the basic equations for

curvature motion in the level set framework, (1.24) and (1.26), reduce to the heat

equation, φt = ∆φ in the case that |∇φ| = 1. Convolution of φ(x, 0) with the
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Figure 1.4: The function
(
1Σ − 1

2

)
(blue) provides no subgrid information about the location of the

interface. In one dimension, the signed distance function (dΣ)(red) can be interpolated
to exactly capture the interface location.

fundamental solution of the heat equation, G∆t, gives the solution to (1.28), φ(x,∆t).

Then, the second step of Algorithm 1.3 generates the signed distance function to the

zero-level set of this new solution.

The DFDGM algorithm is also quite similar to the threshold dynamics algorithm.

The characteristic functions of threshold dynamics are replaced by the signed distance

function. The second step of Algorithms 1.1 and 1.3 serve the same purpose: Return

the convolution outputs to the form needed as input to the next step (a characteristic

function and a signed distance function, respectively), while preserving the location

of the interface. The major improvement of the DFDGM algorithms over threshold

dynamics algorithms is the additional subgrid accuracy attainable with the signed

distance function, as shown in Figure 1.4.

The extension of the DFDGM algorithm to multiphase motion by mean curvature

(1.3) was also proposed in [22], and is reproduced for completeness as Algorithm 1.4.

The following notation is used: Let the domain Ω be partitioned into an initial set

of phases Σ0
k, k = 0, . . . , kmax. The set of points contained in the kth phase at time

t = j∆t will be denoted as Σj
k. The signed distance function to the boundary ∂Σj

k is
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Input: Signed distance functions d0
k, for k = 1, . . . , kmax,

discrete time step size ∆t, and number of time steps jmax.
Output: Signed distance functions dj

k, for k = 1, . . . , kmax and j = 1, . . . , jmax.

For: j = 1, . . . , jmax, do steps 1–3 for k = 1, . . . , kmax.

1. Convolve: Compute Ak(x) := K∆t ∗ dj−1
k , where K∆t is

K∆t = G∆t or K∆t =
1

4

(
4G 3

2
∆t −G3∆t

)
,

and G∆t is the fundamental solution of the heat equation:

G∆t(x) =
1

(4π∆t)
N

2

e−
|x|2

4∆t .

2. Redistribute: Construct Bk(x) = (Ak(x)−max` 6=k A`(x))/2 to remove overlaps and
vacuums from the previous step.

3. Redistance: Set dj
k(x) to be the signed distance function to the zero-level set of

Bk(x).

Algorithm 1.4: DFDGM of [22] for multiphase curvature motion.

denoted as dj
k. Full details are provided in Section 2.1.

The evolution generated by Algorithm 1.4 can be shown to generate motion by

mean curvature along smooth interfaces and to enforce the symmetric Herring angle

condition at triple junctions in two dimensions (and hence also along triple lines in

three dimensions) [22]. The key results are summarized here for completeness.

1.2.1 Consistency along Smooth Interfaces

Let Γ = ∂Σ be smooth, and rotate and translate Σ so that Γ crosses the origin

and may be locally described by a function g(x) with g′(0) = 0, as in Figure 1.5

Then dΣ(x, y) may be expressed in terms of the curvature κ and its derivatives by

the expansion:

dΣ(x, y) =y +
1

2
κ(0)x2 +

1

6
κx(0)x3 − 1

2
κ2(0)x2y

+
1

24

(
κxx(0)− 3κ3(0)

)
x4 − 1

2
κ(0)κx(0)x3y +

1

2
κ3(0)x2y2 (1.29)

+O
(
(
√
x2 + y2)5

)
.
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Figure 1.5: Setup for smooth interface consistency check.

The expansion (1.29) is convolved with the Gaussian

Gt(x, y) =
1

4πt
e−

x2+y2

4t (1.30)

to obtain

(dΣ ∗Gt)(0, y) = y + κ(0)t− κ2(0)yt+
1

2

(
κxx(0) + κ3(0)

)
t2 +O(t3), (1.31)

for y = O(t), demonstrating that the normal velocity of the interface at (0, 0) is vn =

κ(0) +O(t). Thus Algorithms 1.3 and 1.4 are expected to be first-order accurate in

time. Versions of Algorithm 1.3 with higher-order accuracy in time are also presented

in [22].

1.2.2 Consistency at Triple Junctions

Let three C2 curves meet at a triple point at the origin. In a small neighborhood

of the origin, these curves will appear to determine three sectors, as shown in Figure

1.6. An explicit formula for the signed distance to a sector S defined by

S =

{
(x, y) : y < tan

(
3π

2
− θ
)

and y < tan

(
3π

2
+ θ

)
x

}
(1.32)
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(a) (b)

Figure 1.6: A triple junction (a) looks like the meeting of three sectors (b) in a small neighborhood
of the junction.

is given by

dΣ(x, y) =






−x cos θ − y sin θ if x ≥ 0 and y ≤ x tan θ,

x cos θ − y sin θ if x ≤ 0 and y ≤ −x tan θ,

−
√
x2 + y2 if y ≥ |x| tan θ.

(1.33)

The convolution of (1.33) with (1.30) results in

(dΣ ∗Gt)(x, y) =

√
t

π

(
θ − π

2
− cos θ

)

+
1

2π

(
4 cos3 θ − π sin θ − 2θ sin θ − 6 cos θ

)
y

+
1√
t

1

16
√
π

(2θ − 4 cos θ − sin 2θ − π) x2 (1.34)

+
1√
t

1

16
√
π

(sin 2θ + 2θ − π) y2 +O

(√
x2 + y2

3

t

)
.

This expansion can be rotated appropriately for each sector of Figure 1.6, and leads

to the following observations, made in [22]:

• If θ1 = θ2 = θ3 = π
3
, then the triple junction moves with speed at most O(1) in

a time step of size ∆t.
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• If |θj − π
3
| = O(1) for any j ∈ {1, 2, 3}, then the triple junction moves with

speed at least O(∆t−
1
2 ) in a time step of size ∆t.

Furthermore, the authors define the mapping T such that

T




θ1

θ2



 =




θ̄1

θ̄2



 , (1.35)

where (θ1, θ2) are the angles of the sectors input to a single step of Algorithm 1.4,

and (θ̄1, θ̄2) are the resulting angles, and observe that

T




π/3

π/3



 =




π/3

π/3



+O(
√

∆t), (1.36)

and

(DT )




π/3

π/3



 ≈




−0.31 0

0 −0.31



 , (1.37)

so the mapping T is a contraction about (π/3, π/3)T . Thus Algorithm 1.4 imposes

the natural Herring angle conditions at triple junctions with O(
√

∆t) error.

1.3 Summary

The DFDGM algorithm presented in Section 1.2 constitutes the basis for the new

work presented in this thesis, much of which has been published as [19–21] or is

currently in preparation for submission. Chapter II will introduce extensions and

modifications of this basic algorithm allowing for more general motions of the form

1.1. Chapters III and IV demonstrate applications of the algorithms to materials

science, for the simulation of grain growth and recrystallization.



CHAPTER II

Distance Function-Based Diffusion-Generated Motion

Algorithms

The original DFDGM algorithm of Esedoḡlu, Ruuth, and Tsai [22] is presented

in Section 1.2. Here, the algorithm is significantly refined and extended. It is made

appropriate for many-phase (hundreds of thousands of phases) simulations of pure

curvature motion, and extended to more general velocities of the form (1.1). These

new algorithms and numerical tests verifying the accuracy and suggesting the con-

vergence of the algorithms to certain known solutions are presented here.

2.1 Algorithm for Many-Phase Pure Curvature Motion

Algorithm 1.4 uses one distance function per phase. The first improvement to

the algorithm proposed in this work stems from the observation that a single phase

can contain many connected components. Rather than maintaining two phases for

spatially separated components, we can maintain both — or many — components in a

single phase. Furthermore, if we demand that only components which are sufficiently

far apart share the same phase, component mergings will not occur, and potential

interactions that could occur during the convolution step will be negligible.

20
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2.1.1 Algorithm

The first extension of Algorithm 1.4 is for the same motion, but allows the use

of the same distance function for multiple phases. This improvement allows for

simulations containing over 100,000 components initially to be performed using only a

limited number of distance functions. Empirically, we observe that 32 signed distance

functions in two dimensions and 64 in three dimensions are more than sufficient;

however, the algorithm can introduce new signed distance functions as necessary.

The setting for this algorithm is slightly different than the previous one. We begin

with n0 components Σ0
` for ` = 1, . . . , n0, but initialize only kmax signed distance

functions, d0
k with k = 1, . . . , kmax, where kmax ≤ n0. These d0

k have the property

that they are the signed distance function for a collection of disjoint components,

and the union of these collections consists of all the components. As the algorithm

proceeds, it must check to be sure that this disjointness property is maintained. If it

appears that it is about to fail (i.e. two distinct components in one of the collections

become too close), various components will need to be reassigned to different distance

functions and if need be a new distance function will be introduced. We call this

operation swapping. A crucial point is that kmax � n0 unless one considers some

pathological initial conditions. Even then, since the evolutions considered here are

regularizing with a preference towards components with small isoperimetric ratios,

kmax is expected and observed to be fairly small at subsequent times during the

evolution.

The computational complexity of Algorithm 2.1 is formally O(kmaxM logM),

where kmax is the number of level set functions used, and M is the total number

of grid points in each set. For a single signed distance function, both the convolution

step and the redistancing operation are O(M logM). The algorithm is second-order
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Input: Signed distance functions d0
k to ∂Σ0

k, for k = 1, . . . , kmax, discrete time step ∆t,
and number of time steps jmax.
Output: Signed distance functions dj

k, for k = 1, . . . , kmax and j = 1, . . . , jmax.

For: j = 1, . . . , jmax, do steps 1–4 for k = 1, . . . , kmax.

1. Convolve: Compute Ak(x) := K∆t ∗ dj−1
k , where K∆t is

K∆t = G∆t or K∆t =
1

4

(
4G 3

2
∆t −G3∆t

)
,

and G∆t is the fundamental solution of the heat equation:

G∆t(x) =
1

(4π∆t)
N

2

e−
|x|2

4∆t .

2. Redistribute: Construct Bk(x) = (Ak(x)−max` 6=k A`(x))/2 to remove overlaps and
vacuums from the previous step.

3. Redistance: Set Ck(x) to be the signed distance function to the zero-level set of
Bk(x).

4. Swap: If necessary swap appropriate components between signed distance functions
Ck(x) to ensure that all the components associated to given signed distance func-
tion remain well separated. Redistance around swapped components and denote the
resulting signed distance functions as dj

k.

Algorithm 2.1: DFDGM for multiphase curvature motion with swapping.

accurate in space and first-order accurate in time away from triple points. At triple

points, analysis and experiment in [22] suggest that the error is O(
√

∆t).

2.1.2 Details

We now describe the steps of the above algorithm in more detail in the fully

discrete setting. For convenience, the formulas are written down in the 2D setting,

but extend trivially to all dimensions.

Convolution

We define the convolution kernels G∆t and K∆t in terms of the space–discretized

solution to the heat equation ut = uxx+uyy. Suppose the grid discretizes [0, 1]2, with

equal grid spacing (∆x = ∆y). Let ui,j(t) be the space–discretized approximation to
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u(x, y, t) at (i∆x, j∆y, t). Using centered differencing in space, we obtain:

d

dt
ui,j(t) =

1

∆x2
((ui+1,j − 2ui,j + ui−1,j) + (ui,j+1 − 2ui,j + ui,j−1)) . (2.1)

Apply the discrete Fourier transform in space to obtain,

d

dt
ûr,s =

2

∆x2
(cos(2πs∆x) + cos(2πr∆x)− 2) ûr,s. (2.2)

Given initial data ûr,s(t), this ODE has solution ûr,s(t+ ∆t)

ûr,s(t+ ∆t) = ûr,s(t) exp

(−2∆t

∆x2
(2− cos(2πr∆x)− cos(2πs∆x))

)
. (2.3)

Therefore the discrete heat equation (2.1) has solution ui,j(t + ∆t) = ui,j ∗ (G∆t)i,j

where ∗ denotes the discrete convolution and (G∆t)i,j is defined via its discrete Fourier

transform:

(Ĝ∆t)r,s = exp

(−2∆t

∆x2
(2− cos(2πr∆x)− cos(2πs∆x))

)
. (2.4)

Finally, we implement a Richardson extrapolation–like procedure to improve the

accuracy of the kernel, (as described in [22]), and define:

K∆t =
1

3

(
4G 3

2
∆t −G3∆t

)
. (2.5)

Redistribution

The convolution step gives diffusion generated motion along simple interfaces,

but may create overlaps or vacuums at junctions where multiple interfaces meet. To

enforce the desired no–overlap / no–vacuum condition, we apply a comparison step

to obtain the updated level set functions

Bk(x) =
1

2
(Ak(x)−max{A` : ` 6= k}) , (2.6)

This formulation guarantees that exactly one of the Bk(x) (for k = 1, . . . ,M) is posi-

tive at any given location x. Furthermore, this procedure ensures that the symmetric

Herring angle condition is maintained at all triple points [22].
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Redistancing

At each time step, we need to compute the signed distance function Ck to a

union Ξk of disjoint components; we need the distance function only in a tubular

neighborhood of the boundary ∂Ξk of Ξk. The width of the tubular neighborhood

is proportional to the kernel width, which in turn is proportional to
√

∆t. We make

use of a two–phase redistancing algorithm that depends only on the input values

Bk(x) = 1
2
(Ak(x) − max{A` : ` 6= k}) at grid points within two grid points of the

interface. For the remainder of the discussion of redistancing, we drop the subscript

k for convenience, as each set is updated independently of the others.

Define the set of boundary points β to be

β = {(i, j) : (|sgn(Bi+1,j)− sgn(Bi−1,j)|+ |sgn(Bi,j+1)− sgn(Bi,j−1)|) > 0} , (2.7)

where Bi,j = B(i∆x, j∆y) and

sgn(x) =






1 if x > 0,

0 if x = 0,

−1 if x < 0.

(2.8)

These boundary values are set initially to respect the condition that |∇C| = 1, while

moving the interface as little as possible. Specifically, we set

Cij =
Bij

|∇Bij|
, ∀(i, j) ∈ β. (2.9)

Typically, the centered difference approximation is appropriate for |∇Bij|, but does

not work well on small components. See Figure 2.1 for an illustration in one dimen-

sion. The solid line is the exact signed distance function to the thick bar shown at

the bottom of the plot. The dashed line shows the centered difference approxima-

tion to the gradient of the signed distance function at the indicated point. Upwind
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Figure 2.1: Failure of centered differencing on small components. The thick black line indicates the
set Σ = {x : d(x) > 0}. The slope of the dashed line indicates the centered difference
approximation to |∇d|1 at the specified point. The upwind differencing finds |∇d|2=1,
the correct value for |∇d|.

differencing is only first–order accurate in general, but gives a more accurate value

for the gradient at this point. We define

|∇Bij|1 =

√(
Bi+1,j − Bi−1,j

2∆x

)2

+

(
Bi,j+1 − Bi,j−1

2∆y

)2

, (2.10)

|∇Bij|2 =

([
max

( |Bi+1,j − Bi,j|
∆x

,
|Bi,j − Bi−1,j|

∆x

)]2

+

[
max

( |Bi,j+1 − Bi,j|
∆y

,
|Bi,j − Bi,j−1|

∆y

)]2
)1/2

, (2.11)

and define

|∇Bij| =






|∇Bij|1 if 1
2
|∇Bij |2 ≤ |∇Bij|1 ≤ 2|∇Bij|2,

|∇Bij|2 otherwise.

(2.12)

We fix the values Cij for all (i, j) ∈ β, and first generate a first–order in space ac-

curate approximation of the signed distance function using fast sweeping as described

in [85, 95]. Then we perform an iterative second–order accurate method (described

in [72]) for a limited number of iterations on this output. The input B(x) may be far

from a distance function near junctions. Performing the fast sweeping initially al-

lows us to perform only a limited number of iterations with the second–order method,

which is the most time–intensive part of the algorithm.
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Swapping

The swapping step allows each signed distance function to store many components

safely. Without this step, it would be necessary to maintain each individual compo-

nent in a separate set to guarantee that coalescence could not occur. For example, in

a calculation performed on a 40962 grid, we begin with over n0 = 160, 000 components

and use only kmax = 32 sets to track them all. The algorithm introduces new signed

distance functions if needed to ensure that inter–component spacing is maintained.

In our experience, the algorithm typically does not require more than kmax = 32 sets

in two dimensions, and not more than kmax = 64 sets in three dimensions. As the

network evolves we find it will rarely, if ever, introduce new signed distance func-

tions. Without the savings of both memory and computational time permitted by

this additional step (allowing the number of sets, kmax, to satisfy kmax � n0, the

total number of components), such a large scale computation would be impossible.

Our approach, described below, is similar to that of Krill and Chen [51]. They

reassign components to prevent any particular component from being maintained in

the same set as any of its nearest or second–nearest neighbors. We, instead, make

sure that any two components described by the same signed distance function are

not too close (we will be more precise shortly). This distinction is significant for

our algorithm, as spatial separation is key to prevent distinct components, described

by the same signed distance function, from interacting during the convolution step

(the width of the kernel is of course related to the time step size, which can be large

thanks to the unconditional stability of the proposed algorithms).

To describe this algorithm we must first outline some notation. Let the set Ξk =

{x : dk(x) > 0} correspond to a collection of disjoint components. We say that two

components, say, Σa and Σb, in Ξk are τ–close if their union is completely contained
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(a) (b) (c)

Figure 2.2: (a) Part of a network. (b) Overlay of the boundary of dn+ 1

2 > 0 (solid line) and

dn+ 1

2 > −τ (dotted line) on the signed distance function dn+ 1

2 . (c) Same for dn+1 after
a component is removed and dn+1 is recalculated.

in the same connected component of {x : dk(x) > −τ} (which is trivially checked

by comparing the (−τ)–super level set membership of any two grid points belonging

to Σa and Σb). We choose τ > 0 to be proportional to
√

∆t to prevent distinct

components in Ξk from interacting during the convolution step. See Figure 2.2 for

illustration of the selection process. The swapping step of Algorithm 2.1 is described

in greater detail in Algorithm 2.2.

2.1.3 Numerical Convergence Tests

In this section, two types of numerical results are presented. First, we display

the convergence of our algorithm to an exact solution known for two–phase motion,

demonstrate that we match a known solution well in three–phase motion, and show

that exact formulae for the evolution of the area of the phases are satisfied. Finally,

we examine the spatial and temporal convergence of our algorithm in a multiphase

case with many topological changes for which no exact solution is known.
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Input: Signed distance functions Ck(x), for k = 1, . . . , kmax.
Output: Updated signed distance function dn

k (x), for k = 1, . . . , kmax.

Do steps 1–2 for k = 1, . . . , kmax.

1. Initialize dj
k = Ck.

2. While there are at least two components in any dj
k that are τ–close, select any τ–close

pair of components in dj
k∗ , and perform steps (a)–(e).

(a) Select the smaller component from the pair (measured by the number of grid
points contained in each component). Let dG(x) be the signed distance function
to the boundary of the selected component and define the set X = {x : dG(x) >
−τ}.

(b) Find a dj
` , such that ` 6= k∗ and dj

`(x) ≤ −τ ∀ x ∈ X . If such a set cannot be

found, increment kmax ← kmax + 1, initialize dj
kmax

= −τ , and select ` = kmax.

(c) Add the component to dj
` by setting dj

`(x) = dG(x) ∀ x ∈ X .

(d) Remove this same component from dj
k∗ by setting dj

k∗ = −τ ∀x ∈ X .

(e) Redistance dj
k∗ and dj

` on the set X .

Algorithm 2.2: Swapping for Step 4 of Algorithm 2.1.

Convergence to Exact Solutions in Two Phase Motion

We begin by verifying that our algorithm accurately simulates two phase motion

by mean curvature on the simplest examples in two and three dimensions: the circle

and the sphere. In each case, the motion reduces to the simple ordinary differential

equation,

ṙ(t) = κ =
−C
r
, (2.13)

where C = 1 for the circle and C = 2 for the sphere. Eq. (2.13) has the solution

r(t) =
√
r(0)2 − 2Ct. (2.14)

In our tests, we chose r(0) = .25. For the circle, we took as our stopping time

t? = 3/128, and for the sphere t? = 3/256, so that the exact solution has r(t?) = .125.

While the evaluation of the curvature is second–order accurate in space and time,

the method as a whole is expected to show linear convergence in both space and
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Resolution Iterations r (t?) % Error Exact Redist Result % Error
8× 8 7 0.143812 15.0493% 0.068539 45.1687%

16× 16 15 0.124301 0.5595% 0.112370 10.1040%
32× 32 30 0.123497 1.2022% 0.123544 1.1649%
64× 64 60 0.123918 0.8653% 0.124435 0.4520%

128× 128 120 0.124246 0.6110% 0.124562 0.3501%
256× 256 240 0.124585 0.3323% 0.124751 0.1996%
512× 512 480 0.124797 0.1627% 0.124870 0.1043%

1024× 1024 960 0.124900 0.0800% 0.124934 0.0532%
2048× 2048 1920 0.124952 0.0383% 0.124966 0.0268%

Table 2.1: Convergence check: Motion by curvature of a circle.

Resolution Iterations r (t?) % Error Exact Redist Result % Error
8× 8× 8 7 0.153862 23.0896% 0.113474 9.2212%

16× 16× 16 15 0.128935 3.1484% 0.120004 3.9964%
32× 32× 32 30 0.124040 0.7682% 0.123044 1.5648%
64× 64× 64 60 0.123881 0.8951% 0.124010 0.7923%

128× 128× 128 120 0.124289 0.5688% 0.124481 0.4150%
256× 256× 256 240 0.124627 0.2988% 0.124735 0.2121%

Table 2.2: Convergence check: Motion by curvature of a sphere.

time. This is due to the time integration, which operates under the assumption

that curvature remains constant through each iteration. See Tables 2.1 and 2.2

for numerical results. The results labeled “Exact Redist Result” were obtained by

replacing the distance function at the redistancing step by the exact distance function

for a circle or sphere with the same 0—level set at each step. We note that the linear

convergence rate is strongly indicated by the exact redistancing results for resolutions

≥ 256 × 256 for the circle and ≥ 64 × 64 × 64 for the sphere. Our redistancing

technique causes some cancellations of error at low resolutions, but follows the linear

convergence trend shown by the exact redistancing results well at higher resolutions.

Comparison to Known Profile in Three Phase Motion

In this test of three phase motion, we choose homogenous Neumann boundary

conditions and consider a T–junction initial condition as shown in Figure 2.3. It

was shown in [30] that there is an exact solution for this initial T–junction geometry

consisting of a steady profile moving at constant speed. The profile is given for
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0 ≤ x ≤ 0.5 by:

y(x, t) =
3

π
log
(
cos
(πx

3

))
+ (y0 − vt), (2.15)

where v is the velocity of the profile and y0 is determined by the initial location of

the T–junction. Figure 2.3 shows the close agreement between the predicted profile

where vt was chosen to match the computed profile at x = 0. These results were

computed on a 128×128 grid. In (a), the predicted profile and computed profiles are

indistinguishable. Parts (b), (c), and (d) zoom in successively on the final computed

profile and the associated prediction. We see that the results differ by less than 10−3

for all x. The triangular “split” in the profile seen in the zoomed views is purely a

visualization artifact.

Convergence of Area Calculations

The von Neumann area law [86] states that, under multiphase motion by curvature

(1.3), the area A of a phase with n triple junctions evolves through time with

dA

dt
=
π

3
(n− 6). (2.16)

Thus phases with less than six sides shrink, and phases with more than six sides

grow. This result applies only in two spatial dimensions; a much more complicated

result was recently found in three dimensions [54].

In [22], the authors apply Algorithm 1.4 to the initial condition shown in Figure

2.4 as the grid and time step are refined. The results are summarized in Table 2.3

and are suggestive of the O(
√
t) error at triple junctions suggested by (1.36).

Convergence of Multiphase Motion

There are no explicit solutions available for the evolution of a general network,

especially through topological changes. Furthermore, there is no rigorous notion
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Figure 2.3: (a) Interface shown at various times in evolution (solid). The exact profile is overlaid
(dotted) once a constant profile is attained. (b), (c), (d) Successive zoom in to the
computed profile (solid) and exact profile (dotted). The triangular region visible in (c)
and (d) is a visualization artifact.
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Figure 2.4: Initial condition for overlapped circle area convergence tests. The von Neumann law
predicts that dA/dt = −4π/3 for the partial circles. Table 2.3, reproduced from [22],
demonstrates the convergence to this prediction as the grid and time step are refined.

Simulation ∆t nt Relative Error Order
32× 32 1/1920 30 3.91% —
64× 64 1/3840 60 2.07% 0.918

128× 128 1/7680 120 1.28% 0.693
256× 256 1/15360 240 0.84% 0.608
512× 512 1/30720 480 0.53% 0.664

Table 2.3: Input parameters and relative error in time rate of area change for overlapped circles
test. Time step indicated by ∆t, nt indicates the number of time steps used, and Order
calculated as log2((previous relative error)/(current relative error)).
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of a weak solution with uniqueness through such events. However, it is reasonable

to expect that at least the statistical descriptors of the network (for example, the

distribution of component sizes) to be eventually independent of further spatial or

temporal resolution under refinement. To test this expectation, we choose an initial

condition containing 11, 217 components and sample on grids of 1024×1024, 2048×

2048 and 4096 × 4096, refining the discretization in both space and time. We keep

the ratio between ∆x and ∆t constant to refine both spatial discretization and the

effective sampling rate of the Gaussian kernel. Table 2.4 describes the simulations.

The simulation runs for total time 80/10242. Approximately 6000 components

disappear during this evolution, corresponding to many thousands of topological

transitions (i.e. elimination of edges). Less than half the original number of com-

ponents remain at the end of the simulation. The number of components remaining

after each simulation varies (shown in Table 2.4), but this is not a good measure

of the convergence, because there is a lower limit on the size of components that

can be accurately represented by a given time step. Instead, it is more appropriate

to look at statistical quantities (such as the distribution of component sizes) and

the actual microstructure resulting from the simulations. These are shown in Fig-

ure 2.5. The histogram of component sizes demonstrates that each simulation has a

very similar distribution of component sizes for components with areas larger than

approximately 10−4. The deviation in the total number of components remaining in

each of the simulations can be attributed almost fully to the differences in the first

bin alone (corresponding to the smallest grains) of the histogram.

A small section of the microstructure is shown in Figure 2.5(c), one twenty–

fifth of the entire computational domain for each simulation. There are very few

differences between the evolution with ∆x = 1/4096 and with ∆x = 1/2048. There
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Simulation ∆x ∆t nt n(nt ·∆t)
1024× 1024 1/1024 0.8/10242 100 5177
2048× 2048 1/2048 0.4/10242 200 5286
4096× 4096 1/4096 0.2/10242 400 5398

Table 2.4: Input parameters and final number of components for simulations testing convergence of
multiphase motion. nt indicates the number of time steps used, and n(nt ·∆t) indicates
the number of components remaining at the end of the simulation.

are considerably more differences between these simulations and the result with ∆x =

1/1024, but even there, the majority of the microstructure exactly matches that

computed at higher resolutions. The agreement between the results is remarkable

considering the great disparity between the initial condition (Figure 2.5(b)) and

the simulation results and the thousands of topological changes occurring in the

evolution.

2.2 Algorithm for Motion by Curvature Plus Constant Velocity

As discussed in Chapter I, the addition of a constant velocity term to (1.3) gives

a new model (1.5) with significantly different properties. Only a small modification

to Algorithm 2.1 is needed to adapt the algorithm (1.5). For completeness, the

adapted algorithm is presented as Algorithm 2.3. Only the update step differs from

that of Algorithm 2.1. The algorithm is applied to simulations of recrystallization in

polycrystalline materials in Chapter IV.

2.3 Algorithms for Weighted Curvature Motion

The original DFDGM algorithm (Algorithm 2.1) is demonstrated to be accurate,

efficient, and unconditionally stable for equal surface tensions (γk` = 1 ∀k, l) in

Chapter III. Furthermore, it is shown in [22] that this algorithm imposes the Herring

angle conditions [36], which require in this special case that the opening angle of each

grain at a triple junction must be 120◦.
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Figure 2.5: Multiphase motion convergence test results. Each test was run for total time 80/10242.
∆x = 1/1024, ∆t = 0.8/10242 corresponds to blue, ∆x = 1/2048, ∆t = 0.4/10242

corresponds to green, and ∆x = 1/4096, ∆t = 0.2/10242 corresponds to red in (a)
and (c). (a) The histogram of component sizes for the various simulations. Note that
significant differences in the histograms occur only for very small components. (b) A
subsection of the initial condition for these simulations containing 1/25 of the simulation
domain. Approximately 6000 components disappear between this state and the final
states pictured in (c), corresponding to many thousand topological transitions. (c) The
same subsection of the domains at time 80/10242. Note that the agreement between
the red and green microstructure is better than the agreement between blue and either
red or green microstructure.
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Input: Signed distance functions d0
k, for k = 1, . . . , kmax, discrete time step size ∆t, and

number of time steps jmax.
Output: Signed distance functions dj

k, for k = 1, . . . , kmax and j = 1, . . . , jmax.

For: j = 1, . . . , jmax, do steps 1–4 for k = 1, . . . , kmax.

1. Update: Compute Ak(x) := K∆t ∗ dj−1
k − 2λ∆tek, where K∆t is

K∆t = G∆t or K∆t =
1

4

(
4G 3

2
∆t −G3∆t

)
,

and G∆t is the fundamental solution of the heat equation:

G∆t(x) =
1

(4π∆t)
N

2

e−
|x|2

4∆t .

2. Redistribute: Construct Bk(x) = (Ak(x)−max` 6=k A`(x))/2 to remove overlaps and
vacuums from the previous step.

3. Redistance: Set Ck(x) to be the signed distance function to the zero-level set of
Bk(x).

4. Swap: If necessary swap appropriate components between signed distance functions
Ck(x) to ensure that all the components associated to given signed distance func-
tion remain well separated. Redistance around swapped components and denote the
resulting signed distance functions as dj

k.

Algorithm 2.3: DFDGM for multiphase motion by curvature plus bulk velocity.
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It is easily shown that replacing K∆t by Kγk∆t in Algorithm 2.1 leads to normal

velocities of the form

vn(Γk`) =
γk + γ`

2
κk`, (2.17)

however, no simple modification of Algortihm 2.1 enforces the physically-correct

Herring angle conditions (1.9-1.10) for this setup where γk` = (γk + γ`)/2. In the

remainder of this section, we first describe an idea of Almgren, Taylor, and Wang [3]

based on minimizing motions, then describe our DFDGM algorithm based on this

idea for normal velocities of the form (2.17), and finally, extend the algorithm to the

more general motion of (1.7).

2.3.1 Algorithm for γk` = (γk + γ`)/2

The Almgren-Taylor-Wang algorithm for approximating the motion by mean cur-

vature of an interface [3] requires the solution of a variational problem at each

time step. This algorithm is generalized to multiphase motion by curvature in

[13, 23, 82, 83]. We use the simple formulation described in [23]. The variational

problem

~Σj+1 = argmin
~Σ,

S

k Σk=Ω
Σk∩Σ`=∅ ∀k 6=`

M∑

k=1

{

γk(Length of Σk) +
1

∆t

∫

ΣkMΣj
k

|dj
k(x)|dx

}

, (2.18)

where M denotes the symmetric difference operator for two sets, is solved to ad-

vance the solution ~Σj = (Σj
1, . . . ,Σ

j
M ) by a time step ∆t to the new solution ~Σj+1 =

(Σj+1
1 , . . . ,Σj+1

M ). Almgren, Taylor, and Wang [3] prove that the solution of this vari-

ational problem generates the normal velocity (2.17) and satisfies the Herring angle

conditions (1.9) and (1.10). As shown in [23], the formulation (2.18) is equivalent to:

~Σj+1 = argmin
~Σ,

S

k Σk=Ω
Σk∩Σ`=∅ ∀k 6=`

M∑

k=1

{
γk(Length of Σk)−

1

∆t

∫

Σk

dj
k(x)dx

}
. (2.19)
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Input: Signed distance functions d0
k and weights γk, for k = 1, . . . , kmax, discrete time step

size ∆t, number of time steps jmax, inner discrete time step δt, and number of inner time
steps τmax.
Output: Signed distance functions dj

k, for k = 1, . . . , kmax and j = 1, . . . , jmax.

For j = 1, . . . , jmax, do steps 1–3:

1. For k = 1, . . . , kmax, set dj,0
k = dj−1

k .

2. For τ = 1, . . . , τmax and k = 1, . . . ,M , do steps (a)–(c):

(a) Update: Perform either update U1 or U2, where
U1: Compute

Ak(x) =

{(
dj,τ−1

k

)∧
R(ξ, ζ)−1

}∨

+
δt

∆t
dj,0

k , (2.20)

where

R(ξ, ζ) = 1 +
2γδt

∆x2
(2− cos(2πξ)− cos(2πζ)) , (2.21)

·∧ and ·∨ indicate the discrete two-dimensional Fourier and inverse Fourier trans-
forms, respectively, ∆x is the grid spacing, δt is an “inner” time step associated
with the minimization of (2.19) and ξ and ζ are the Fourier variables.
U2: Compute

Ak(x) =

{(
dj,τ−1

k +
δt

∆t
dj,0

k

)∧(
δt

∆t
+R(ξ, ζ)

)−1
}∨

. (2.22)

(b) Redistribute: Construct Bk(x) = (Ak(x) −max` 6=k A`(x)) /2 to remove over-
laps and vacuums from the previous step:

(c) Redistance: Set dj,τ
k (x) to be the signed distance function to the zero-level set

of Bk(x).

3. Set dj
k(x) = dj,τmax

k (x).

Algorithm 2.4: DFDGM for motion by weighted mean curvature, with additive surface tensions.

We solve the sub-problem (2.19) at each time step via diffusion generated motion,

to obtain Algorithm 2.4, for motion by (2.17).

The motivation for (2.20) and (2.22) is as follows: The normal velocity

vn(Γk) = γkκ+
1

∆t
dj

k (2.23)

arises as gradient descent for the unconstrained version of (2.19). The PDE

dt = γ∇2d+
1

∆t
F (2.24)
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will generate this normal velocity for the level sets of a signed distance function

d = dk, and where we denote γ = γk, and F = dj
k.

For update U1, we split the right-hand side operator. We solve the discretized

system for dt = γ∇2d implicitly via the discrete Fourier transform for the solution

dn+1/2,

dn+1/2 − dn

δt
= γ∇2dn+1/2, (2.25)

which simplifies to

(1− γδt∇2)dn+1/2 = dn, (2.26)

with solution

dn+1/2 =
{
(dn)∧R(ξ, ζ)−1

}∨
, (2.27)

where R(ξ, ζ) is given by (2.21), then explicitly add the bulk term to generate the

updated solution dn+1:

dn+1 = dn+1/2 +
δt

∆t
F. (2.28)

For update U2, we observe that adding a new term of the form −(1/∆t)d does not

affect the velocity of d at the interface (where d = 0), but, when handled implicitly,

stabilizes the numerical update of the solution:

dn+1 − dn

δt
= γ∇2dn+1 +

1

∆t
F − 1

∆t
dn+1, (2.29)

which simplifies as

(
1 +

δt

∆t
− γδt∇2

)
dn+1 = dn +

δt

∆t
F, (2.30)

and has a solution similar to (2.27), as displayed in (2.22).

As in the standard diffusion-generated motion algorithm, step (b) serves to enforce

the constraints
⋃

k Σk = D and Σk ∩ Σ` = ∅, k 6= `, and to ensure that the correct
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(constrained) normal velocity

vn(Γk`) =
γk + γ`

2
κ+

1

∆t

dj
k + dj

`

2
(2.31)

is attained. Step (c) ensures that the following update step receives signed distance

functions as input, which is necessary to generate the correct normal velocity.

2.3.2 Numerical Results

To verify Algorithm 2.4, we consider an initial condition of two overlapped circles

(Σ1 and Σ2) on a background third phase Σ3. The γi are chosen via (2.35) so that

γ13 = γ23 = 1 and γ12 ∈ (0, 2), to respect (1.11). Then (1.10) can be evaluated to

find that

θ3 = 2π − 2 acos(−γ12/2), (2.32)

and a generalized version of the von Neumann relation (2.16) gives the time rate of

change of area for the circular phases to be

dA

dt
= 2π − θ3 − 2π = −2 acos(−γ12/2). (2.33)

We perform three sets of tests, with γ12 = 1/2, 1
√

2, respectively. Initial conditions

are chosen so that the initial area of each circular phase is 0.18 and to satisfy (2.32).

See Figure 2.6 to see sample initial conditions and final states for each surface tension.

The evolution is simulated for t = [0, 1
128

]. The grid and time step are refined

as described in Table 2.5, and 25 tests are performed at each resolution / surface

tension combination. Initial conditions are rotated and translated for each test to

mitigate grid effects. The change area of the circular phases is calculated at the end

of each simulation and results are averaged to generate the relative errors presented

in Table 2.5.

The results of Table 2.5 indicate that the algorithm is accurate, even for moderate

resolution. Indeed, though larger time steps are taken than in the results using
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(a) (b) (c)

Figure 2.6: Sample initial conditions and final configurations for overlapping circle tests. Surface
tensions are (a) γ12 = 1/2, (b) γ12 = 1, and (c) γ12 =

√
2.

Grid Size ∆t nt γ12 = 0.5 γ12 = 1 γ12 =
√

2
32× 32 1/1280 10 6.0541% 1.2328% 2.7305%
64× 64 1/2560 20 1.2946% 1.0811% 1.7712%

128× 128 1/5120 40 0.3672% 0.8108% 1.0643%
256× 256 1/10240 80 0.3414% 0.5082% 0.5146%
512× 512 1/20480 160 0.3295% 0.3417% 0.1279%

Table 2.5: Relative error in measured dA/dt for overlapping circles. Column labeled as γ12 = x
gives the relative error in measured dA/dt for given surface tension. Results are very
accurate, but do not show a clear indication of convergence.

Algorithm 1.4 presented in Table 2.3, relative errors are smaller. However, the current

results do not indicate the nice convergence rate seen in Table 2.3. It is possible that

the algorithm used to measure areas is not accurate enough to demonstrate the

convergence of the method.

For this specialized problem, the evolution of the Γ13 and Γ23 interface can be

simulated very accurately using an explicit representation of the interface. At the

boundaries, endpoints of the interfaces are constrained to lie along the initial Γ12

interface and to respect the angle condition (2.32). Explicit solutions were calculated

using front tracking techniques with 10, 000 points initially (additional points were

added to reparameterize the curve whenever the gap between the boundary points

and their neighbors grew large) and two million time steps to simulate the evolution

for t = [0, 1
128

].
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γ12 = 0.5 γ12 = 1 γ12 =
√

2
Grid Size dist(Γ13, X) Order dist(Γ13, X) Order dist(Γ13, X) Order
32× 32 1.0579× 10−2 — 1.0739× 10−2 — 1.1504× 10−2 —
64× 64 5.1555× 10−3 1.0370 5.3616× 10−3 1.0019 5.6943× 10−3 1.0145

128× 128 2.5806× 10−3 0.9984 2.6988× 10−3 0.9904 2.8675× 10−3 0.9897
256× 256 1.3001× 10−3 0.9891 1.3466× 10−3 1.0030 1.4290× 10−3 1.0048
512× 512 6.6157× 10−4 0.9746 6.8884× 10−4 0.9671 7.1392× 10−4 1.0011

Table 2.6: Distance between Γ13 and exact solution X . ∆t and nt are the same as
in Table 2.5. dist(Γ13, X) is measured by (2.34), and Order is calculated as
log2((dist at previous grid size)/(dist at current grid size)). Linear convergence is ob-
served.

We take this parameterized curve X(s) to be the exact solution and measure the

distance between the exact solution and the solution Γ13 computed via Algorithm

2.4 as

dist(Γ13, X) =

∫

X

|d1(x)|ds. (2.34)

The results are ensemble averaged over the 25 runs and presented in Table 2.6.

Linear convergence of Γ13 to X in this sense is clearly indicated. The numerical

results presented here for the numerical convergence of Algorithm 2.4 to the motion

of (2.17) demonstrate good accuracy on moderately refined grids and provide strong

suggestion that this algorithm creates the desired motion.

2.3.3 Algorithm for Arbitrary γk`

Algorithm 2.4 limits the choice of γk` in (1.7) to γk` = (γk + γ`)/2. The real goal

is to allow for γk` to be chosen arbitrarily, up to simple conditions such as (1.11).

We begin by noting that in the three-phase case, arbitrary surface tensions γ12, γ13,

and γ23 can be mapped to γ1, γ2, γ3 so that γ12 = (γ1 + γ2)/2, etc., by the mapping:





γ1

γ2

γ3




=





1 1 −1

1 −1 1

−1 1 1









γ12

γ13

γ23




. (2.35)
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Thus, the algorithm of Section 2.3.1 is sufficient to generate three-phase motion with

arbitrarily chosen surface tensions.

For k-phase motion, we note that there is, in general, no assignment of surface

tensions γk so that the arbitrary γk` can be written as γk` = (γk + γ`) /2. Instead,

a proposed numerical approach is to attempt to solve the Almgren, Taylor, and

Wang optimization problem at each physical time step by performing alternating

minimization over triples of adjacent grains T = {T1, T2, T3} using the correct surface

tensions γk defined by (2.35). As each triple is updated, we take care to enforce the

condition

ΣT1
∪ ΣT2

∪ ΣT3
= Σ′

T1
∪ Σ′

T2
∪ Σ′

T3
, (2.36)

that is, that the region covered by the union of the input sets ΣTi
matches the region

covered by the union of the output sets Σ′
Ti

after this triple is updated. Algorithm

2.5 describes this extension.

We make two important observations about Algorithm 2.5. First, while the loop

over triples of adjacent grains proceeds, two sets of signed distance functions must

be maintained — both the data from the beginning of the time step, {Dk}, and the

current data {dj
k}. The data {Dk} is maintained so that the updated set Σj

k cannot

move too far from the set Σj−1
k at the previous outer time step, while the more

current data {dj
k} is used as the starting point for the inner update. Second, the

redistribution step is the minimum of the standard (three-phase) redistribution step

and a new term, (dj,τ−1
k − dβ), which ensures that condition (2.36) is fulfilled. This

algorithm is a generalization of Algorithm 2.4 to try to allow for normal velocities

of the more general form (1.7). It has not been carefully tested, and currently is

included only as an indication of how such a generalization might be achieved. Much

work remains to be done before this algorithm can be seriously presented as a good



44

Input: Signed distance functions d0
k for k = 1, . . . , kmax, surface tensions γk` for

k, ` = 1, . . . , kmax and ` 6= k, discrete time step size ∆t, number of time steps jmax, inner
discrete time step δt, and number of inner time steps τmax.
Output: Signed distance functions dj

k, for k = 1, . . . , kmax and j = 1, . . . , jmax.

For j = 1, . . . , jmax, do steps 1–3:

1. For k = 1, . . . , kmax, set Dk = dj−1
k and dj

k = dj−1
k .

2. For each triple of adjacent grains T = {T1, T2, T3}, do steps (a)–(d):

(a) Define dβ = −Dist
(
Σj

T1
∪Σj

T2
∪Σj

T3

)
.

(b) Apply Equation (2.35) to compute γT1
, γT2

, and γT3
from γT1T2

, γT1T3
, and γT2T3

.

(c) For τ = 1, . . . , τmax, and k = T1, T2, T3, do steps (i)–(iii):

i. Update: Perform either update U1 or U2, where
U1: Compute

Ak(x) =

{(
dj,τ−1

k

)∧(
1 +

2γkδt

∆x2
(2− cos(2πξ)− cos(2πζ))

)−1
}∨

+
δt

∆t
Dk,

(2.37)
and
U2: Compute

Ak(x) =

{(
dj,τ−1

k +
δt

∆t
Dk

)∧(
1 +

δt

∆t
+

2γkδt

∆x2
(2− cos(2πξ)− cos(2πζ))

)−1
}∨

.

(2.38)

ii. Redistribute: Construct

Bk(x) = min

(
Ak(x) −max

` 6=k
A`(x), dj,τ−1

k − dβ

)
/2 (2.39)

to remove overlaps and vacuums from the previous step:

iii. Redistance: Set dj,τ
k (x) to be the signed distance function to the zero-level

set of Bk(x).

(d) Set dj
k(x) = dj,τmax

k (x).

Algorithm 2.5: DFDGM for motion by weighted mean curvature.
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candidate for the evolution defined by (1.7).



CHAPTER III

Application: Isotropic Grain Growth

Grain growth is an important process by which the microstructure of a polycrys-

talline material (including most metals and ceramics) evolves during manufactur-

ing processes. Statistical measures of the resultant microstructure affect important

macroscale properties of the material, such as its conductivity and brittleness. Manu-

facturing processes must typically be tuned to provide for an optimal blend of desired

material properties; however, performing such tuning experimentally is costly and

time consuming. As a result, simulations of grain growth have been attempted us-

ing a variety of numerical techniques. Several common techniques are described in

Section 1.1.

Grain growth occurs when polycrystalline materials are annealed. The well-known

model for grain growth [9,35,63] gives the normal velocity (outward from phase Σk)

of the interface Γk` by

vn(Γk`) = µγk`κk`, (3.1)

Here, µ denotes the boundary mobility, γk` the grain boundary energy per unit area

for the interface Γk`, and κk` the mean curvature of the boundary separating two

grains. We use the convention that if phase Σk is a spherical grain of radius r

surrounded by phase Σ`, then κk` = −2/r.

46
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Here, we specialize to the case where all surface tensions are constant and equal:

γ = γk`, often called “isotropic grain growth.” The theory for this extension is

complete in two dimensions in the absence of topological events. Additional study of

topological events such as the division of four junctions following grain disappearence

is still incompletely developed. Here, we nondimensionalize the normal velocity using

the mean initial grain radius 〈r0〉, derived from the mean initial grain volume 〈V0〉 by

〈r0〉 = (3〈V0〉/(4π))1/3. We define the nondimensionalized curvature as κ?
k` = 〈r0〉κk`.

We further nondimensionalize the velocity as vn(Γk`) = V · v?
n(Γk`), with velocity

V = 〈r0〉/T and time T = 〈r0〉2/(µγ), so that

v?
n(Γk`) = κ?

k`. (3.2)

Note that this equation matches (1.3) exactly.

As shown in [68] and [96], this nondimsionalized normal speed arises as gradient

descent for the nondimensional energy

E? =
∑

k<`

(area of Γk`). (3.3)

We note that the time scale T is chosen so that t? = 1/4 is the time required

for an isolated grain of radius 〈r0〉 to disappear under pure curvature motion in

the nondimensional system. Hereafter, we drop the ? notation and refer solely to

the nondimensionalized quantities, e.g. the nondimensionalized energy E? will be

referred to as E.

Algorithm 2.1 is used for the simulations in this chapter. We present large-scale

two- and three-dimensional simulations of grain growth, far beyond the scale of

simulations presented previously. These simulations are performed on a parallelized

version of the code executing on a large cluster. The results are analyzed in great
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detail and compared to numerous theoretical predictions, results from experiments

and smaller simulations performed with various numerical methods.

The two-dimensional simulation of grain growth is presented in Section 3.1. Statis-

tics including the mean grain area, and number of edges and relative grain size dis-

tributions are computed and compared with theoretical results. A large-scale sim-

ulation of three-dimensional grain growth is presented and analyzed in Section 3.2.

The initial condition contains over 130, 000 fully resolved grains, and the evolution

is simulated until only about 14, 000 remain. We present various statistics collected

throughout this simulation. In particular, we demonstrate the anticipated self-similar

character of the grain size distribution as it evolves in time. Furthermore, our re-

sults show good agreement with other three-dimensional predictions for grain growth,

such as power law growth of the mean grain volume, and three-dimensional version

of the Aboav–Weaire law [1, 89] and the Mullins extension of the two-dimensional

von Neumann–Mullins relationship [64].

3.1 Two-Dimensional Simulation

We concern ourselves with the standard case, in which all interfaces move with

normal velocity equal to the curvature of the interface. In future work we will

investigate varying surface tensions and bulk energies. As previously shown in [22],

this algorithm naturally imposes the symmetric angle condition (all triple junctions

meet at 120◦ angles).

We let Ω = [0, 1]2, and discretize this domain with ∆x = ∆y = 1/4096. We use

periodic boundary conditions, which is natural as the interactions between grains

are short–ranged. Our initial condition contains 166,927 grains, and was obtained

by constructing the Voronoi diagram for random points with a uniform distribution
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in the computational domain; this is common practice for the initialization of grain

growth simulations. We take 1,500 time steps with time step ∆t = .8/40962, at

the end of which 11,217 grains remain and the evolution of the system has slowed

considerably. (An adaptive time stepping strategy would therefore be prudent, and

is entirely feasible given the unconditional stability of our algorithms, but this was

not carried out: All experiments in this work were generated using uniform time

steps). We maintain just 32 sets to track all the grains throughout this evolution,

though the algorithm is able to add new sets whenever needed. For snapshots of the

evolution, see Figure 3.1. These all show 1/64 of the full grain pattern. Figure 3.2

shows the final full grain pattern. Earlier time steps contain too many grains for the

full pattern to be viewable on a single page.

Recall that the energy of the system is given by

E =
∑

k<`

(length of Γk`)

in two spatial dimensions (and by summing the interfacial area in three dimensions).

In terms of the signed distance functions dk(x), this energy can be written in terms

of the Dirac delta function, δ, as

E =
1

2

kmax∑

k=1

∫

Ω

δ(dk(x))dx.

The factor 1/2 arises since this formula counts interfaces two times. We can discretize

E, in two space dimensions, as

E =
∆x2

2

∑

k

∑

i,j

δ̃(dk(xi, yj)). (3.4)

We use a first–order discretization of the delta function, δ̃, as proposed in [75].

The discrete version of Eq. (3.4) in three dimensions is similar. The energy, E, is

evaluated at each iteration and found to be strictly decreasing at every time step.
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Figure 3.1: One 512×512 section of the full 4096×4096 grid. (a) Initial condition, N(0) = 166, 927,
(b) after 100 iterations, N(100) = 97, 000, (c) after 500 iterations, N(500) = 30, 842,
(d) after 1500 iterations, N(1500) = 11 217.
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Figure 3.2: The full grain pattern after 1500 iterations for the simulation with N(0) = 166, 927
grains initially. At the time shown, N(1500) = 11, 217 grains remain.
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Figure 3.3: (a) The energy E decreases at every time step. (b) The number of grains N(t) decreases
such that (c) average grain area 〈a〉 grows linearly.

See Figure 3.3(a). Note that our method handles topological changes naturally, and

that the energy of the system decreases even as more than 150,000 grains disappear

throughout 1,500 iterations.

Several analytical approaches predict the mean grain radius 〈r〉 to grow as 〈r〉 ≈

Ct1/2 (for example, see [26, 39, 53]). In normal grain growth, characterized by self–

similarity of the distribution of r/〈r〉, it immediately follows that the average grain

area 〈a〉 is predicted to grow linearly as a function of time. We compute the average

grain area as

〈a〉 =
1

N(t)
,

where N(t) is the number of grains surviving at time t, and see linear growth following

a short relaxation time. This relaxation time is due to the initial condition, which

we chose to be the Voronoi diagram for points distributed uniformly at random

throughout the domain. Such an initial condition contains very few small grains and

does not respect the Herring angle condition. Initially the evolution corrects the

angle conditions and some time must pass before the smallest grains are found in

the correct proportion so as to allow the mean grain area to increase linearly. See

Figure 3.3, (b) and (c).
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Two other measures of interest are the relative grain area distribution and the

number of edges distribution, as defined in [49]. Let G(n, t) be the proportion of

grains with n grain boundaries at time t, and F (ξ, t)dξ be the number of grains

with relative area in [ξ, ξ + dξ] at time t, with ξ = a/〈a〉. Normal grain growth is

characterized by the self–similarity of F as t varies. See Figure 3.4, which suggests

that F is approximately self–similar for t ≥ 300∆t.

Figure 3.5 shows the evolution of the number of edges distribution. Note that the

maximum of this distribution is initally at 6 sides, then shifts to 5 sides and back

to 6 sides as the evolution proceeds. This behavior was seen in multiple simulation

runs. The number of edges distribution is of general interest and has been reported

for both simulations [29, 45, 49, 74] and experiments [28]. The maximum has been

found at both 5 and 6 sides. It is not known if this distribution should be self–similar

through time as the relative grain area distribution is predicted to be.

3.2 Three-Dimensional Simulation

In this section, a large-scale simulation of normal grain growth in three dimensions

is described and a wide variety of statistical measures on the resulting microstructure

are reported. Here, and in subsequent simulations, we choose to set the mean initial

grain volume 〈V0〉 = 1. The simulation begins with 133,110 grains in the domain

Ω = [0, 82.306]3 with periodic boundary conditions. The evolution runs for time

t = 6.2021, allowing for over 90% of the initial grains to disappear. Ω is discretized

as a regular cubic lattice of size 512 × 512 × 512, and three hundred time steps

are taken, ensuring adequate spatial and temporal resolution. The coarsening rate

is shown to agree well with theoretical predictions. The grain size distribution is

calculated; it exhibits self-similarity. This distribution is compared with a number of
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Figure 3.4: Relative area probability densities at 100, 200, . . . , 1500 iterations. G(n, 100∆t) is
dotted, G(n, 200∆t) is dashed, and the rest are plotted as solid lines.
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Figure 3.5: (a) Number of edges distribution at 100, 200, . . . , 1500 iterations. (b)–(d) Number of
edges distribution at 100, 600, and 1500 iterations. The proportion of grains with 6
edges falls off to a minimum at 600 iterations, then rises again through the end of the
simulation.
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different predictions from the literature. In addition, average numbers of grain edges,

faces, and corners are computed and compared with other computational approaches

and experimental data.

3.2.1 Qualitative Microstructure

We present a three-dimensional simulation with an initial condition containing

133,110 grains. The initial condition is taken to be the Voronoi diagram for 133,110

seeds placed uniformly at random in the computational domain Ω. Figure 3.6(a)

shows a single grain of average size taken from the simulation at t = 6.2021. At

this time, 〈r〉 = 2.11 and 〈V 〉 = 39.40, indicating that mean grain radius has more

than doubled the initial value and the mean grain volume is over 9 times the initial

mean grain volume. The grain appears to be very well resolved. Its faces, edges, and

corners are easy to see. The faces are smooth, and most appear to be concave. Thus

this particular grain, which is of average size at this stage in the evolution, must be

growing due to the curvature of its interfaces. Overall, the grain resembles what is

observed in real materials, such as the beta brass grain shown in Figure 3.6(b).

The coarsening of the grain pattern is demonstrated by Figure 3.7. Here we

display the grains intersecting the x = 0, y = 0 and z = 82.306 surfaces in the initial

condition (a) and after 300 iterations (b). Different colors correspond to different

grains. By volume, the average grain at the end of the simulation is nearly ten times

as large as the average grain at initial condition. In Figure 3.8 we show all the grains

from five of the sixty-four total set functions Ξ at t = 2.0674 and t = 6.2021. There

is a great variability in the size of grains seen in this figure, from grains contained

within a single grid cell (equivalent radius r ≈ 0.08) which are about to disappear,

to grains with radius r ≈ 4.

Cross-sections of successive slices at t = 6.2021 are shown in Figure 3.9(a). Com-
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(a) (b)

Figure 3.6: (a) Two views of a single grain (corresponding to a 180◦ rotation in the xy-plane) chosen
from the evolution after 300 iterations. This grain has nondimensional size 〈r〉 = 2.11,
equal to the average grain size at this point in the evolution. The grain is very well
resolved, with faces, edges, and corners all easily distinguished. (b) A single grain of
beta brass, approximately 2 cm in diameter, from the collection of W.W. Mullins. The
photograph is due to K. Barmak and D. Kinderlehrer. The grain compares well to the
simulated grain shown in (a).

(a) (b)

Figure 3.7: Visualization of the grain pattern (a) at initial condition and (b) after 300 iterations.
The initial condition contains 133,110 grains. At t = 6.2021, 14,150 grains remain.



58

(a) (b)

Figure 3.8: Grains from five of sixty-four level set functions in the simulation with initially 133, 110
grains, after (a) t = 2.0674 and (b) t = 6.2021. There are 54,197 and 14,150 total grains
(in all sixty-four sets), respectively. Only a subset of grains is shown, as otherwise the
entire volume would be filled.

pare to Figure 3.9(b), showing results from a fully two-dimensional simulation, in

which all three junctions must have 120◦ angles. The cross-sectional views also fea-

ture more grains that are long in one dimension and short in the other as compared

to the two-dimensional simulation results, where grains tend to be more regularly

shaped.

3.2.2 Energetics

It is shown in [48] that, at least in the absence of topological changes, the surface

energy E given by (3.3) decreases in time under mean curvature motion subject to the

Herring angle condition at junctions. It is natural to expect that E would continue

to decrease even through topological changes (critical events). We verified that our

numerical scheme respects this fundamental behavior by evaluating the energy at

every time step. We note that the energy E can be written in terms of the signed
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Figure 3.9: (a) A cross-sectional slice taken from simulation at t = 6.2021. The full slice is shown at
left and zoomed in on at right. The curved nature of the interfaces is easily seen. The
angles observed at triple junctions need not be 120◦ as the cross-section need not be
oriented along the triple lines. (b) Two-dimensional simulation results. Triple junctions
all meet at 120◦ angles and grain are more equiaxed, in contrast to the results seen in
three-dimensional cross-section in (a).



60

distance functions dk(x) and the Dirac delta function, δ(x), as the following sum of

integrals over the computational domain Ω:

E =
1

2

kmax∑

k=1

∫

Ω

δ(dk(x))dx. (3.5)

The factor of 1
2

arises as this formula counts each interface twice. We discretize E as

E =
∆x2

2

∑

k

∑

i,j,`

δ̃(dk(xi, yj, z`)). (3.6)

We utilize a first-order discretization of the delta function, δ̃, following [75]. The

energy E is measured at each time step and is found to decrease monotonically

at every time step (see Figure 3.10(a)) even as the evolution naturally handles the

topological changes involved in the disappearance of over 100,000 three-dimensional

grains through t = 6.2021. The evolution of the number of grains is shown in Figure

3.10(b). After a short transition period (approximately t = 0.4), the number of grains

in the system decreases steadily. Notice that even during this transition period, the

energy of the system is decreasing quickly. The explanation for this transition period

seen in the number of grains is that the initial condition is approximately Voronoi and

so there are very few small grains present initially, as demonstrated in the distribution

shown in Figure 3.12(a). The system must evolve significantly before many grains

are small enough to disappear.

3.2.3 Grain Growth Rate and Grain Size Distribution

The average grain size, 〈RV 〉, and the grain size distribution function, f(RV /〈RV 〉),

are probably the most important statistical quantities used to characterize an isotropic

polycrystalline material. Texture distributions are also of primary importance for

anisotropic polycrystalline materials, but texture is not considered in this model.

Here, RV = (3V/4π)1/3 where V is the volume of a grain. Analytical approaches
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Figure 3.10: (a) The energy E =
∑

i<j(area of Γij) decreases monotonically at every iteration.
(b) The number of grains N undergoes a short transition phase of slow decrease then
decreases steadily from an initial value N(0) = 133, 110 to a final value of N(6.2021) =
14, 150.

[26,39,53], experimental results (as reported in [4]), and simulation results, e.g. [4,87],

suggest that the average grain radius 〈RV 〉 exhibits power law growth as a function

of time: 〈RV 〉 ≈ Ctn, for t large. Analytically, the prediction n = 1/2 has been

made using a variety of considerations. The experimental results reported in [4] find

1/4 ≤ n ≤ 1/2. In their own simulation, [4] report that n = 0.48 ± 0.04 for fits to

long-time data (obtained by discarding data from the initial transition phase of the

simulation). In [87], the authors show approximately linear long-time dependence

of 〈RV 〉2 on t. This simulation contains just 1000 grains initially, so the statisti-

cal precision of this measure is low. Furthermore, three-dimensional simulations via

front tracking require that explicit assumptions be made on the types of topological

changes that can occur.

As normal grain growth is characterized by the self-similarity of the distribution

of RV /〈RV 〉, it follows that 〈V 〉 ∝ t3n. In Table 3.1, we fit 〈V 〉 to the function atb +c,

where c ≈ 〈V0〉 and mollifies the effect of the initial grain size distribution on the

fit. The fits are quite tight, with all reliability factors < 0.7%. Equating b = 3n, we
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Time Interval a b c χ1 χ2 χ3

0 < t ≤ 6.2021 2.105 1.550± .004 3.8617 3.79× 10−3 2.98× 10−3 2.29× 10−3

1.0337 < t ≤ 6.2021 2.220 1.524± .003 3.608 4.38× 10−3 2.28× 10−3 2.18× 10−3

2.0674 < t ≤ 6.2021 2.260 1.515± .005 3.496 4.86× 10−3 1.88× 10−3 1.57× 10−3

3.1010 < t ≤ 6.2021 2.241 1.517± .013 3.5144 6.05× 10−3 3.22× 10−3 2.89× 10−3

Table 3.1: c
onfidence interval] Fit of the data 〈V (t)〉, taken from the specified time interval, to atb + c. b is
given with 95% confidence interval. The reliability factor χ ≡∑i |xobs

i − xcalc
i |/∑i |xobs

i |, where
obs denotes the observed value and calc denotes the calculated value from the fitted function. χ1

gives the reliability factor computed over the interval 0 < t ≤ 6.2021, χ2 over the interval
1.0337 < t ≤ 6.2021, and χ3 over the interval 2.0674 < t ≤ 6.2021.
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Figure 3.11: The average grain volume 〈V 〉 compared to the best-fit power function atb +c fitted by
non-linear least squares to the data from 2.0674 < t ≤ 6.2021 (see Table 3.1). Aside
from the brief transition period, the fit is indistinguishable from the simulation results.

find that our simulation predicts 0.501 ≤ n ≤ 0.518 with 95% confidence. The fit of

2.260t1.515 + 3.496 to 〈V 〉 is plotted in Figure 3.11.

The grain size distribution function f(RV /〈RV 〉) is defined by

f(ξ)dξ = Proportion of grains with normalized radius RV /〈RV 〉 ∈ [ξ, ξ + dξ).

(3.7)

In Figure 3.12, we show histograms for this distribution at a variety of stages in the

simulation. The distribution changes greatly throughout the evolution. The initial

condition is approximately the Voronoi diagram for a randomly distributed set of

points. The initial distribution of grain sizes is very narrow and sharply peaked.

The distribution flattens out rapidly and appears to approach a self-similar state,
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Figure 3.12: The distribution of RV /〈RV 〉 is shown at various times. (a) The distribution at t = 0
(blue), t = 1.0337 (green), and t = 2.0674 (red). The distribution is initially quite
narrow but rapidly broadens. (b) At t = 2.0674, 4.1347, 6.2021. The distributions at
t = 4.1347 and 6.2021 are slightly wider than at t = 2.0674 and exhibit self-similarity.
(c) At t = 4.1347, 5.1684, and 6.2021, the grain size distributions appear to be self-
similar, as expected in the long-term, though the number of grains in the system
decreases from 24,395 to 14,150 in this timespan. Note that the scale in (a) differs
from that in (b) and (c).

characteristic of normal grain growth. This self-similar distribution appears to be

attained by approximately t = 4.1347 and is maintained thereafter, through over

10,000 grain disappearance events to the end of the simulation.

Another way to assess the self-similarity of the distribution of the grain size dis-

tribution function across iterations is to look at the evolution of the central moments

of the various distributions obtained. For these distributions, the first moment is by

definition 1 and the first central moment is always 0. The variance and skewness

(E[(X − E[X])j], for X = RV /〈RV 〉 and j = 2 and 3, respectively) are plotted in

Figure 3.13. These measures appear to be approximately constant for t ≥ 4.1347,

agreeing with the visual impression of self-similarity obtained from Figure 3.12(c).

Many closed-form distributions have been suggested as appropriate fits for the

distribution f(R/〈R〉), including the Louat distribution [53], the Hillert distribution

[39], the Rios distribution (a modification of the Hillert distribution) [70], the Weibull

distribution (for two-dimensional grain growth) [25], and the log–normal distribution
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Figure 3.13: The variance (solid) and skewness (dashed) of the distribution of RV (t)/〈RV (t)〉 are
compared across iterations. While the variance of the distribution in particular changes
rapidly early in the evolution, the variance and the skewness of the distribution are
approximately constant for t ≥ 4.1347, demonstrating the self-similarity of the distri-
bution.

Grain size log–normal generalized Louat Hillert Rios Weibull
measure µ σ χ α χ χ ν χ β χ
RA 0.074 0.574 0.335 0.685 0.152 0.389 2.14 0.221 2.07 0.171
RV 0.056 0.417 0.282 0.741 0.330 0.128 3.34 0.031 2.80 0.104

Table 3.2: Least squares best-fit parameters and reliability factor χ for simulation data at t = 6.2021
(with 14,150 grains) to various distributions. The Rios distribution, with ν = 3.34, fits
the fully three-dimensional data very well. The observations made from two-dimensional
cross-sections do not fit any of the distributions as well, but are best predicted by the
generalized Louat distribution, with α = 0.685. Note that the Weibull distribution does
not fit the simulation distribution of RA/〈RA〉 well, as the grain size distributions for
two-dimensional growth and cross-sections of three-dimensional grain growth are known
to disagree (for example, in [19]).

(for the distribution of grain radii in cross-sections of three-dimensional experiments)

[26]. These distributions are compared to the distribution of RV /〈RV 〉 in Figure

3.14(a). The Rios distribution, with ν = 3.34, appears to fit our simulation data the

best. The log–normal and Louat distributions fit quite poorly, showing the wrong

behavior near RV /〈RV 〉 = 0, for large RV /〈RV 〉, and also peaking at RV /〈RV 〉 < 1,

all in disagreement with the simulation results. The Weibull and Hillert distributions

show a better fit but can be seen both visually and by reliability factor (Table 3.2)

to be inferior to the fit of the Rios distribution.

We also fit these distributions to data from cross-sections of the three-dimensional

simulation. This is of interest as experimentally it is difficult to slice materials



65

thinly enough for the experiments to be two-dimensional in nature, though carefully

conducted thin film experiments are possible for polycrystalline grains of sufficient

size. Recent progress in x-ray and and focused ion beam techniques have made

measurement of grain volumes more feasible. However, it is still easiest to take

cross-sections of three-dimensional grains and measure areas and effective radii in

cross-section. Defining RA =
√
A/π, where A is the area of a grain in cross-section,

we generate the distribution of RA/〈RA〉 from the simulation data at t = 6.2021. We

take 512 cross-sections of constant z-value and aggregate the grain slice area data

across all these cross-sections to create the simulation distribution. These cross-

sections contain a total of 368,138 two-dimensional grain slices. In Figure 3.14(b),

we fit this distribution to the closed-form distributions discussed previously. None

of these distributions fit the cross-sectional data as well as the Rios distribution fit

the fully three-dimensional data taken from grain volumes. The Louat distribution

fits the data the best with α = 0.685 but with a reliability factor of χ = 0.152. For

comparison, the Rios distribution fits the three-dimensional data with χ = 0.031.

The distribution of RA/〈RA〉 is seen in Figure 3.14 to be much flatter and wider

than the distribution of RV /〈RV 〉, reemphasizing the importance of interpreting

these distributions separately.

3.2.4 Topology

Interesting topological characteristics of the grain network include the number of

faces, corners and edges of individual grains in three dimensions, and the number of

edges of grains viewed in cross-section. Such characteristics have been the subject

of numerous experimental studies (e.g. [15, 40, 69, 93, 94]). Here we compare the

topological measures extracted from our large 3D simulation to those obtained from

experimental data as well as to those from other simulations. In all the following
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Figure 3.14: (a) Comparison of the distribution of RV /〈RV 〉 at t = 6.2021 (with 14,150 grains)
to least squares best-fit predictions to Louat, log–normal, Hillert, Rios and Weibull
distributions. Note that the Louat, log–normal and Weibull distributions predict the
peak of the distribution to occur at RV /〈RV 〉 < 1, while the simulation distribution
peaks to the right of 1. The peak of Hillert’s distribution occurs at RV /〈RV 〉 = 9/8,
agreeing well with our simulation results. However, the Hillert’s distribution predicts
a higher peak and narrower distribution than we find in the normal grain growth
phase. The Rios distribution is a modification of the Hillert distribution and matches
the simulation results well. (b) Comparison of the distribution of RA/〈RA〉 at 300
iterations (with 368,138 grains taken from the 512 cross-sections of constant z-value)
to least squares best-fit predictions under the same distributions. In cross-section,
the data best fits the generalized Louat distribution, though the fit is not tight. The
distribution is much flatter and wider for cross-sectional data than for the full three-
dimensional data.
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results, we take data from t = 6.2021. At this time, 14,150 grains remain. In the

512 cross-sections of constant z-value, there are a total of 368,138 grain slices.

Unlike front tracking methods, methods using implicit representation of surfaces

do not explicitly track topological features. The locations of these features are still

well-defined: A location x is on a face, edge, or corner if for every ε > 0, there

exist m = 2, 3 or 4, respectively, distinct subsets c1, . . . , cm and locations x1, . . . , xm

satisfying |xi − x| < ε and dci
(xi) > 0. The numerical implementation which allows

association of topological descriptors to individual grains is described below. In

order to count faces, corners and edges of individual grains at any fixed time T in

the evolution, each grid point in the discretization is assigned a value from the set

{1, . . . , N(T )} corresponding to the grain at that location. The number of faces

of grain i is then the number of unique identifiers different from i contained in a

1-neighborhood of the set of grid points that have identifier i. Counting corners is

more challenging. In three dimensions, corners are characterized as being locations

where four or more grains come together. We denote the set of all such locations

as C. Because adjacent grid locations may, as part of a highly resolved corner, be

marked as each being such a location, we take the number of connected components

of C (as opposed to simply the number of points in C) within a single grain to be the

number of corners possessed by that grain. However, this procedure will cause two

corners connected by a short edge to be counted as one. To alleviate this problem,

we subdivide the grid twice before applying the above procedure (so that a grid of

size n× n× n is subdivided to size 4n× 4n× 4n before counting vertices). Having

thus counted the number f of faces and the number c of corners as described above,

we appeal to the well-known formula c − e + f = 2 of Euler to infer the number e

of edges of each grain. This formula holds for all polyhedra that are topologically
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equivalent to the sphere, which appears by inspection to be true for all the grains in

our simulations of grain growth.

Data for the mean number of edges per face, mean number of faces, and mean

number of corners is presented in Table 3.3 and compared to other simulations, to

data reported for some regular polyhedrally-based grain models, and experimental

results. The summary statistics vary some with the simulation technique. Ours are

well within the range of values found with other simulation techniques (though the

other simulations were smaller and must be less statistically valid whether due to

a smaller number of grains or the potential effects of ensemble averaging). Regular

polyhedra such as the pentagonal dodecahedron and the tetrakaidecahedron have

been proposed as space-filling approximations for grain shapes [46,58,76,92], though

experimentally it is well-known that grains come in a variety of shapes and sizes.

The tetrakaidecahdron matches the mean values we found well, but cannot explain

more complex features of grain growth, such as the grain size distribution function

(3.7). The Voronoi model is generated by distributing seeds uniformly at random and

growing crystals simultaneously and isotropically from these seeds. The Johnson–

Mehl model grows crystals isotropically but allows for varying nucleation times [58].

Both these models ignore grain boundary motion due to interface curvature, hold-

ing grain boundaries stationary once crystals meet. These are in fact models for

primary recrystallization, a different annealing phenomenon occurring when cold-

worked metals are annealed. The experimental data contains a wide range of values,

clearly demonstrating the difficulty of computing these measures in three dimensions

and also suggesting that other higher-order effects (such as variable surface tension

and mobility due to grain boundary misorientation and inclination) play an impor-

tant role in the evolution of polycrystalline grain systems. In future work, we will



69

2〈e〉/〈f〉 〈f〉 〈c〉 Reference
Simulation 5.12 13.79 23.52

Potts model Monte Carlo simulation 5.14 12.85 22.19 [4]
Potts model Monte Carlo simulation — 13.7 — [90]

Vertex dynamics 5.01 13.8 — [91]
Phase field simulation 5.07 13.7 23.1 [51]

Surface Evolver simulation 5.05 13.5 22.6 [88]
Pentagonal dodecahedron 5 12 20 [77]

Tetrakaidecahedron 5.143 14 24 [76, 92]
Voronoi model 5.27 15.54 27.07 [58]

Johnson–Mehl model 5.10 13.27 22.56 [58]
Austenite grains — 12.6–13.4 — [52]

1015 α–iron grains — 12.1 — [94]
30 β-brass grains 5.142 14.5 24.852 [15]
β-brass grains 4.92 11.16 — [40]

100 Al–Sn alloy grains 5.06 12.48 21.04 [93]

Table 3.3: Summary of topological data for simulations, regular polyhedra, and experiments.
2〈e〉/〈f〉 gives the mean number of edges per face, while 〈f〉 and 〈c〉 give the mean
number of faces and corners, respectively. In [52], the authors report that 〈f〉 increases
as a function of annealing time, through 50 minutes.

investigate extending our algorithm so that such effects can be simulated.

In Figure 3.15, we plot the frequency with which grains with f faces occur. The

distribution is skewed towards grains with many faces. The peak occurs at f = 12

faces and the mean number of faces is 〈f〉 = 13.79. It is natural to expect that larger

grains will have more faces, on average. However, the exact nature of this relationship

is unknown. Figure 3.16 shows the relationship between the mean value of RV /〈RV 〉

for grains with f faces and f , as determined from our simulation data. We also

compare with measurements made by Rhines and Patterson [69] on aluminum, by

Zhang, et al. [94], on α-iron, and with simulation data generated by Anderson, et

al. [4], using a Potts model and kinetic Monte Carlo techniques. The fit, particularly

to the data for aluminum, is quite good and appears to describe the experimental

data better than the linear fit posited in [4]. The simulation results of Anderson, et

al., do appear to fit the measurements of Zhang, et al., well for small f , but poorly

for large f .
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Figure 3.15: The proportion of grains with a given number of faces is plotted (solid circles). The
peak occurs at f = 12 faces. Experimental data from [94] is also plotted (triangles).
Note that this experimental data predicts a smaller mean number of faces (12.1) than
other experimental and simulation data. See Table 3.3.

Stable corners occur where three triple lines come together on the surface of a

grain. Under the assumption that every corner is stable, 3c = 2e. Together with

Euler’s formula, we can then calculate the number of corners and edges as a function

of the number of faces f as c(f) = 2(f − 2) and e(f) = 3(f − 2). This prediction of

a linear relationship between c and f is plotted in Figure 3.17(a) against the values

obtained from our simulation data, suggesting acceptable accuracy in our algorithm

for counting corners and that our method does produce stable corners. Note that

Figure 3.15 illustrates that very few grains have less than 4 or more than 30 faces,

so small inaccuracies in the count or the presence of only a few unstable corners will

cause the small deviations from the prediction shown.

The three-dimensional version of the Aboav–Weaire law [1, 89], proposed by Ed-

wards and Pithia in [18] provides a relationship between the number of faces f

exhibited by a grain and the mean number of faces of its neighboring grains, Mf :

Mf = 〈f〉 − 1 +
〈f〉+ µf

f
, (3.8)
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Figure 3.16: The relationship between the number of faces f and the mean value of RV /〈RV 〉 for
grains with f faces is plotted (solid circles) and compared to (a) measurements for
Al [69], reproduced from [4], (b) measurements reconstructed from serial sections of
α-iron [94], (c) simulation data of Anderson, et al. [4]. In (d), all three are shown for
comparison, with Al data marked by triangles, α-iron data by stars, and Anderson, et
al. simulation data by squares.
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where µf is the variance of f . Following Wakai, et al., [87], we plot the mean value of

〈fMf〉 against f and find the linear relationship predicted by Edwards and Pithia,

but find the best linear fit to be fMf = 13.6f + 25.4. This is in good agreement

with the results of Wakai, et al., who found fMf = 13.3f + 23.4. Based on their

experimental data, Zhang, et al. [94] found fMf = 13.97f + 12.61. Equation (3.8)

predicts fMf = 12.8f + 37.7, using the values of 〈f〉 and µf determined by our

simulation data. Thus simulation, experiment, and theory for the three-dimensional

Aboav–Weaire law agree well up to an additive constant. See Figure 3.17(b) for

simulation data and best fit line.

In two dimensions, the well-known von Neumann–Mullins relationship [63] states

that grains with more than six sides grow, and grains with fewer than six sides shrink:

dA

dt
=
π

3
(n− 6), (3.9)

where n is the number of sides of the grain. Mullins [64] proposed the following

relationship for three dimensions, relating the mean growth rate of three-dimensional

grains to their number of faces f :

〈
1

RV

dV

dt

〉
= F (f)G(f), (3.10)

where

F (f) =
π

3
− 2 tan−1

(
1.86
√
f − 1

f − 2

)
(3.11)

and

G(f) = 5.35f 2/3

(
f − 2

2
√
f − 1

− 3

8
F (f)

)−1/3

. (3.12)

In Figure 3.17(c), we plot the simulation results for 〈(dV/dt)/RV 〉, taken from

5.9953 ≤ t ≤ 6.2021. For t = 6.0367, 6.0780, 6.1194 and 6.1607, and δt = 0.0413

we approximate dV/dt = (V (t + δt) − V (t − δt))/(2δt). The simulation results fol-

low the same curve as the predictions but appear to differ by a constant additive
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value of approximately 2.2. Our simulation results agree well with those of Wakai,

et al. [87] (using Surface Evolver, a front-tracking software package), and Weygand

and Bréchet [91] (via vertex dynamics). Other generalizations have been proposed

by [90] and [38]. The Weaire relationship gives a linear relationship between f and

〈(dV/dt)/RV 〉 which does not appear to fit the data presented here or in other simu-

lations well. The Hilgenfeldt relationship agrees closely up to a scaling constant with

the von Neumann–Mullins extension for 10 and greater faces and is thus not shown.

Recently, MacPherson and Srolovitz [54] published a generalization of the von

Neumann–Mullins relationship to three dimensions; however the quantities involved

in their formula (mean width and total edge length) are not topological in nature, un-

like the two-dimensional von Neumann–Mullins relation. Furthermore, mean width

is quite difficult to calculate for grains. Simplifications are known for convex poly-

hedra ( [12]) and for regular polyhedra ( [32]), but grains are irregular and may

possess both convex and concave faces. We elect to compare only to the Mullins

generalization, which is a topological relationship depending only on the number of

faces f .

3.3 Discussion

Algorithm 2.1 is applied to to two- and three-dimensional simulations of isotropic

grain growth. This approach naturally captures the Herring condition at triple junc-

tions. In addition, numerical evidence unequivocally shows that the energy of the

simulated system decays, even through topological changes. The efficiency of this

algorithm allows us to compute the accurate evolution of over 130,000 grains until

less than 15,000 grains remain. To the best of our knowledge, this evolution con-

tained at least twice as many grains as any other currently published to date. In
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Figure 3.17: (a) There appears to be a linear relationship between the number of faces f and the
mean number of corners among grains with f faces, suggesting that simulation corners
are the stable meeting points of triple lines. (b) 〈fMf〉, the mean of the product of the
number of faces of a grain and the mean number of faces of its neighbors grows linearly
as a function of f , matching well with the simulation results of Wakai, et al. [87]. (c)
Comparison of the number of faces, f , to the mean growth rate 〈(dV/dt)/RV 〉 for
grains with f faces. Simulation data from 5.9953 ≤ t ≤ 6.2021 is plotted. The three-
dimensional von Neumann-Mullins prediction is plotted as a solid line for comparison.

the next largest simulation, [81], the authors implement a phase field model initially

containing 50,000 grains on a 512 × 512 × 512 grid. Grains have an average initial

size of approximately 14 × 14 × 14 grid points, with a diffuse interface width ε of

3 grid points. This suggests that the initial resolution of their system is quite low.

We are able to verify, with greater confidence, that the coarsening rate for normal

grain growth is 〈r〉 ∼ t1/2 and that the grain size distribution function is self-similar.

We are also able to provide accurate average values of the number of edges, corners

and faces of individual grains. We observe that in many cases these are in agree-

ment with experimental results. This provides further validation that approximately

normal grain growth is present in experimental settings.



CHAPTER IV

Application: Recrystallization

Recrystallization is an important process for microstructural development in poly-

crystals, occurring when cold-worked metals are annealed. This process has been

studied for over seventy years. Burke and Turnbull [11] gave a classic review of re-

crystallization in 1952. For a more recent review, see, e.g., Doherty et al. [17]. The

cold work stores energy in the form of dislocations which are then eliminated by the

growth of undeformed recrystallized grains. Recrystallization occurs in the process-

ing of metals, both as a deliberate attempt to improve macroscale properties (such

as ductility) and as a byproduct of other processing steps. As such, it is important

to develop numerical techniques to simulate this phenomenon well.

In this chapter, our focus is on careful numerics for a simple model of recrystalliza-

tion, so that inherent, genuine features of the model can be understood in isolation

from potential numerical artifacts that plague certain popular algorithms. We con-

sider the simple, but influential, model of Srolovitz et al. [79, 80]. We present an

analysis of the role of parameters in this model, and carry out detailed, large-scale,

fully resolved simulations using Algorithm 2.3. We accomplish the following:

1. Determine the dependence of growth behavior of nuclei on distribution of nu-

cleus sizes and nucleation rate for the model of Srolovitz et al.

75
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2. Compare and contrast with Monte Carlo simulation results of [79, 80].

3. Simulate physical parameter regimes for this model unachievable with previous

numerical methods in both two and three dimensions.

4. Show the formation of a very fine structure of elongated grains at the completion

of recrystallization, unlike any other results from simulations of the model of

Srolovitz et al.

5. Demonstrate agreement of our simulations with the growth behavior analysis

we perform in Section 4.2.3, which describes the role played by the parameters

of the nucleation and recrystallization models we employ in determining the

resulting microstructure.

6. Show good agreement with some pre-existing theoretical predictions.

4.1 Recrystallization and Nucleation Models

The recrystallization and nucleation models studied in this work are identical to

the models used in the landmark papers [79, 80] by Srolovitz et al. Recrystallized

grains are differentiated from unrecrystallized grains by a lower bulk energy. In three

dimensions, the total energy of the system is given by:

E = γ
∑

k<`

(area of Γk`) + ρ
∑

k

ek(volume of Ξk), (4.1)

where Ξk denotes a grain indexed by k, Γk` denotes the interface between grains Ξk

and Ξ`, γ denotes the grain boundary energy per unit area, ρ denotes the stored

energy per unit volume, and ek is a dimensionless parameter measuring the density

of dislocations within the grain Ξk. For simplicity, we set ek = 1 for unrecrystallized

grains and ek = 0 for recrystallized grains, though both the model and our imple-
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mentation allow for varying dislocation densities. Normal grain growth occurs in the

case that ek is equal for all grains.

For the energy given by Equation (4.1), the normal velocity (outward from col-

lection k) of the interface Γk` can then be written as

vn(Γk`) = µ (γκk` + ρ(e` − ek)) . (4.2)

Here, µ denotes the grain boundary mobility. κk` denotes the curvature of the in-

terface Γk`, with the convention that if Σk were a single spherical grain of radius

r surrounded by a grain Σ`, then κk` = −2/r. The natural, energy-minimizing

boundary condition is the Herring angle condition [36]. For constant γ, the Herring

condition states that triples of grains (along triple lines in three dimensions and at

triple junctions in two dimensions) meet with symmetric 120◦ opening angles. Com-

monly accepted values for the stored energy and the grain boundary energy densities

are ρ = 10MPa and γ = 0.5 J/m2 (see, for example, the texts of Gottstein and

Shvindlerman [33], page 130, and Humphreys and Hatherly [41], page 8). When

recrystallization nuclei are on the length scale of 0.05µm (so that κ ≈ 2× 107m−1),

these two contributions to the normal velocity are on the same scale. However, at all

length scales, the curvature term always has a definite, O(1) effect on the evolution

of the system. This effect is described further in Section 4.2.1.

We nondimensionalize the normal velocity using the mean initial grain radius 〈r0〉,

derived from the mean initial grain volume 〈V0〉 by 〈r0〉 = (3〈V0〉/(4π))1/3. We define

the nondimensionalized curvature as κ?
k` = 〈r0〉κk`. Then

vn(Γk`) =
µγ

〈r0〉
(κ?

k` + λ(e` − ek)) , (4.3)

with

λ = 〈r0〉ρ/γ. (4.4)
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λ is a dimensionless parameter which weights the relative contribution of the curva-

ture and bulk energy terms. λ then may be interpreted as choosing the physical size of

the unrecrystallized grains by 〈ro〉 = λ·0.05µm, for the physical values of ρ and γ dis-

cussed previously. We further nondimensionalize the velocity as vn(Γk`) = V ·v?
n(Γk`),

with velocity V = 〈r0〉/T , and time T = 〈r0〉2/(µγ), so that

v?
n(Γk`) = κ?

k` + λ(e` − ek). (4.5)

The normal velocity given by Equation (4.5) agrees with Equation (1.5) and arises

as gradient descent for the energy of Equation (1.6) We note that the time scale

T is chosen so that t? = 1/4 is the time required for an isolated spherical grain

of radius 〈r0〉 to disappear under pure curvature motion. Hereafter, we drop the ?

notation and refer solely to the nondimensionalized quantities, e.g. the energy E?

will be referred to as E. The majority of the simulations presented in this work

are in two dimensions. In this case, the energy of Equation (1.6) still applies, with

“area” replaced by “length” and “volume” by “area.”

An important feature of all recrystallization models is nucleation. In this respect,

too, we shall follow the models proposed in [79] in which each spatial location is

equally likely to be chosen as a nucleation site for a circular (spherical, in three

dimensions) grain with a size probabilistically determined (but chosen to be small

relative to the mean grain size). We observe that heterogeneities in the recrystal-

lization pattern can arise as a consequence of the dynamics in certain length scales

(in agreement with [80]). Further we shall consider two possible models for the nu-

cleation, namely site-saturated and continuous. For site-saturated recrystallization

a fixed number of grains are nucleated at the initial time and at random locations,

while for continuous recrystallization grains are nucleated at a constant temporal

rate at randomly chosen locations.
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Since the work of Srolovitz et al. in [79, 80], more elaborate models for recrystal-

lization have been proposed and implemented (for example, [42, 56, 65, 66]). These

models include features such as modeling of the nucleation process in greater detail,

inclusion of texture-dependent grain boundary mobility and energies, and spatially

dependent stored energies. Extending our numerical algorithms to such models is

a direction for future work. However, our improved capacity to faithfully simulate

partial differential equation (PDE) models of the form of Equation (4.5) using Algo-

rithm 2.3 already sheds new light on simulations of recrystallization. The properties

of our algorithm allow for large-scale simulations far beyond those already performed,

in physical parameter regimes that other algorithms cannot attain.

4.2 Importance of Surface Tension to the Model

In this section, we explain how the surface tension term in Equation (4.5) always

makes a significant contribution to the evolution of the system, even when the bulk

energy term would seem to dominate (i.e. as λ → ∞). We discuss three major

consequences:

1. In the absence of surface tension, it has been demonstrated by Reitich and

Soner [68] that the evolution is not uniquely defined. In Section 4.2.1, we

discuss two possible solutions for a given initial condition under pure bulk energy

motion. Reitich and Soner note that one of these solutions naturally arises from

Equation (4.5) as λ→∞ (with time appropriately rescaled).

2. For any choice of λ, no matter how large, the surface tension and bulk energy

contributions of Equation (4.5) are comparable at some length scale, possibly

at the length scale on which nucleation occurs in primary recrystallization. We

discuss the relationship between λ and critical sizes for nuclei survival in Section
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4.2.2.

3. The terms “homogeneous” and “heterogeneous nucleation” are used in [79,80] to

describe the resulting spatial arrangement of surviving nuclei in simulations of

primary recrystallization. We emphasize that nuclei are always placed uniformly

at random among unrecrystallized sites; any “heterogeneities” in the location

of surviving nuclei are determined by the parameters of the nucleation and

evolution models of [79, 80] at we discuss here. In Section 4.2.3, we present

analytical predictions for the location of successful nuclei as a function of λ

(which scales the surface tension and bulk energy terms of Equation (4.5)) and

distribution of nuclei sizes.

4.2.1 Importance of Curvature for Large λ

In the absence of the surface tension term in Equation (4.5), there is no need for

the evolution to respect the Herring angle condition. However, Reitich and Soner [68]

demonstrate that the evolution is not uniquely defined in this case. For example,

consider Figure 4.1 in the case of pure bulk energy motion. Let e1 = 0 and e2 =

e3 = 1, so that set Σ1 (as labelled in Figure 4.1(a)) grows symmetrically into sets

Σ2 and Σ3. Figure 4.1(b) shows two potential solutions. The original interfaces Γ12

and Γ13 move outwards in their respective normal directions with constant velocity

λ. Between the dotted lines, the classical solution does not exist. There is more than

one reasonable way to propagate the solution in this region. The red path connects

the unique regions by a circular arc. We call this the arrival time dynamics solution,

and was proposed and investigated by Taylor in [82]. On the other hand, the blue

path indicates another possible solution to gradient flow under pure bulk energy.

Unlike in arrival time dynamics, this one maintains the initial angle at the triple
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λ = 8 λ = 16 λ = 32
∆x nt Yf % Err. C.R. Yf % Err. C.R. Yf % Err. C.R.
1/32 50 0.5630 3.28% — 0.6259 6.04% — 0.7323 7.62% —
1/64 100 0.5599 2.72% 0.27 0.6094 3.25% 0.90 0.7090 4.21% 0.86
1/128 200 0.5539 1.60% 0.76 0.6016 1.92% 0.76 0.6989 2.72% 0.63
1/256 400 0.5504 0.97% 0.72 0.5973 1.20% 0.68 0.6922 1.73% 0.65
1/512 800 0.5485 0.61% 0.67 0.5947 0.76% 0.67 0.6881 1.13% 0.62

Table 4.1: Errors in approximating the vanishing surface tension limit using diffusion gen-
erated motion. The grid discretizes [0, 1]2 with steps of ∆x, and nt denotes
the number of time steps used to simulate the total time 5/1024. Yf denotes
the final vertical position of the interface. % Err. denotes the percentage er-
ror from the predicted location. C.R. denotes the convergence rate, computed as
log2(Error using n/2 grid points/Error using n grid points).

junction throughout the evolution. In [68], Reitich and Soner show that this second

solution arises as the limit of unique (well-defined) flows under the interfacial velocity

of Equation (4.5) in the limit that λ → ∞ (and with time appropriately rescaled).

In other words, this second solution, called the vanishing surface tension limit, is the

one selected from among multiple possible solutions. We maintain that the vanishing

surface tension limit solution is the appropriate physical solution for grain boundary

motion, as some surface tension must always be present, though it may be dominated

by other effects. Given the O(1) difference between these two candidate solutions,

it is worth repeating that the surface tension plays a defining role on the dynamics

even in the limit that bulk energy effects would seem to dominate, as observed in,

e.g., the late stages of recrystallization.

In the recent paper [10], the authors claim to simulate pure bulk energy motion

using a finite elements implementation of the level set method. Their method seems

to capture the arrival time dynamics solution (the red arc in Figure 4.1(b)) described

above; see, e.g., Figure 7 in [10]. In this section, we demonstrate that with our

algorithm — diffusion generated motion — we capture the vanishing surface tension

limit by taking large values of λ in Equation (4.5). Figure 4.2 shows the convergence
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Figure 4.1: The initial condition in (a) evolves by pure bulk energy motion. Two possible solutions
to the non-unique motion are shown in (b), one in red, the other in blue. The red curve,
consisting of a circular arc connecting two straight line segments, depicts the arrival

time dynamics solution. The blue curve, which maintains the original angle condition
at the triple junction throughout the evolution, represents the vanishing surface tension

solution of Reitich and Soner [68]. Thus, even in the limit λ→∞, the mere presence of
curvature effects (which always dominate in a small enough neighborhood of the triple
junction) has O(1) effect on the dynamics regardless of how large λ is in Equation
(4.5), thereby selecting a specific pure bulk energy motion solution from a multitude of
possibilities in the limit λ→∞.
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Figure 4.2: Comparisons with the vanishing surface tension limit (a translation of the black initial
curve) as ∆x and ∆t are refined in our algorithm for motion by Equation (4.5) with
(a) λ = 8, (b) λ = 16, and (c) λ = 32. The computed solution at successively higher
resolutions are shown in blue, cyan, green, magenta, and red, respectively.
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of our algorithm as ∆x, ∆t → 0 as λ = 8, 16, and 32. Table 4.1 contains the

convergence test data. The predictions for the final locations of the interface were

calculated by finding the intersection of the two lines determined by advancing the

interfaces Γ12 and Γ13 with velocity λ for the simulation time 5/1024. These values

were calculated to be 0.5451, 0.5902 and 0.6804, for λ = 8, λ = 16, and λ = 32,

respectively. These simulations are quite accurate, with relative errors under 5%

for n = 64 grid points and under 2% for n = 256 grid points. The grid discretizes

[0, 1]2. We note that λ acts as a stiffness parameter: increasing λ requires increased

computational effort for fixed accuracy. Even in the extreme case, λ = 32, the

triple junction moves only between 0.5 and 0.75 on the vertical axis, suggesting that

good accuracy is achieved for motions using only about one–fourth the available

grid points in each direction. The convergence rate is sublinear but agrees well with

convergence rates seen at triple junctions for pure curvature motion via the same

algorithm in [22].

Furthermore, the surface tension plays a decisive role even in the limit that it

vanishes in determining the characteristic shape of recrystallized nuclei growing along

pre-existing grain boundaries. Rather than the nucleus appearing as a growing circle

overlapping the pre-existing boundary (as in solutions computed in [10]), the nucleus

takes on an elongated shape along the boundary, as in Figure 4.3. This shape can be

derived as a self-similar solution for pure bulk energy motion respecting the Herring

angle condition at triple junctions. It is described as a function of the circular sector

radius r by:

y(x; r) =






±
√
r2 − x2, |x| ≤

√
3r
2

±
√

3
(
x±

√
3r
2

)
± r

2
,

√
3r
2
≤ |x| ≤ 2r√

3

(4.6)

This shape is independent of the choice of λ: as long as a nucleus along a pre-
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(a) (b)

Figure 4.3: Any initial shape which is sufficiently large for the choice of λ will grow; and as the
ratio λ/κ→ ∞ will approach the characteristic shape described by Equation (4.6). In
contrast, arrival time dynamics predict the asymptotic shape to be a disk, demonstrating
again the O(1) difference between the two possible definitions of a solution. The initial
condition is zoomed in on in (a). Later times in the evolution are shown in (b), with
the characteristic shape of circular arcs connected by line segments seen clearly.

existing boundary survives and grows, it will penetrate the existing unrecrystallized

grains. The aspect ratio of the shape is 2 :
√

3. In contrast, the arrival time

dynamics solution has the disk as its characteristic shape, regardless of the pre-

existing structure beneath the nucleus. We demonstrate that our algorithm evolves

towards the self-similar solution even from a highly complex initial condition that

does not respect the boundary conditions, as shown in Figure 4.3.

4.2.2 Critical Nuclei

For the model considered in this work, the curvature term contributes at the same

order as the bulk energy term on the length scale 1/λ; this is just a simple fact of the

scaling in Equation (4.5). One of the appealing attributes of this model developed

by Srolovitz et al. in [79, 80] is the potential for capturing various recrystallization

phenomena, e.g. homogeneous or heterogeneous nucleation, through the effect sur-
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face tension may play at the scale of the smallest recrystallized embryos. An exact,

though unstable, stationary solution is easily determined from Equation (4.5) for

any λ. These critical nuclei are those with constant curvature κ = −1/λ away from

triple junctions, with 120◦ angles at all triple junctions. Thus the stationary bound-

ary must always be the union of circular arcs. As in the case of pure bulk growth, the

stationary shapes have aspect ratios independent of λ. We consider three cases: (1)

a nucleus contained entirely within another grain, (2) lying on a grain boundary, and

(3) lying on a triple junction. We further assume that the nucleus is small compared

to the original grains and make the two following approximating assumptions: the

pre-existing grains have straight boundaries, and the nucleus lies with its centre on

the grain boundary or triple junction, as appropriate.

Case (1) is trivial: The grain is a circle of radius r = 1/λ, with area A1(λ) = πλ−2.

For case (2), assume the grain boundary lies along the line y = 0. Then the shape is

implicitly represented as






x2 +
(
y + 1

2λ

)2
= λ−2, y > 0,

x2 +
(
y − 1

2λ

)2
= λ−2, y < 0,

(4.7)

with area A2(λ) =
(

2π
3
−

√
3

2

)
λ−2. Finally, we may rotate the triple junction of case

(3) so that the grain boundaries emanate along the rays θ = π/2, 7π/6 and 11π/6.

This shape is given by:






(
x+ 1

2λ

)2
+
(
y + 1

2
√

3λ

)2

= λ−2, θ ∈ (−π
6
, π

2
),

(
x− 1

2λ

)2
+
(
y + 1

2
√

3λ

)2

= λ−2, θ ∈ (π
2
, 7π

6
),

x2 +
(
y − 1√

3λ

)2

= λ−2, θ ∈ (7π
6
, 11π

6
),

(4.8)

with area A3(λ) =
(

π−
√

3
2

)
λ−2. These shapes are shown in Figure 4.4. Note the
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(a) (b) (c)

Figure 4.4: The critical shapes corresponding to cases 1 (grain interior), 2 (grain boundary) and 3
(triple junction), respectively. The shapes are independent of λ, while their areas scale
with λ−2.

constant curvature in smooth regions and that the Herring condition is satisfied at

triple junctions.

We define the critical grain radii to be the effective grain radius of the critical

shape, Ri =
√
Ai(λ)/π, and calculate these from to be:

Ri =






1
λ
, i = 1,

√
2/3−

√
3/(2π)

λ
, i = 2,

√
1/2−

√
3/(2π)

λ
, i = 3.

(4.9)

Thus R2 ≈ .6253/λ and R3 ≈ .4736/λ, for any choice of λ. We conclude that for fixed

λ, the critical grain size necessary for nucleus survival is smallest at triple junctions,

moderate at grain boundaries, and largest in grain interiors. This observation has

been verified experimentally and in simulations by numerous previous authors.

4.2.3 Parameter Regimes

In this section, we give a complete classification of the role of parameters in the

nucleation and recrystallization model used here and in the work of Srolovitz et

al. [79, 80] with regard to their effect on the type of recrystallization (homogeneous
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or heterogeneous) that results. The understanding developed here will guide our

numerical experiments with the model in subsequent sections.

Let R be the (random) size of a circular nucleus, given by some distribution fR,

and let Ti be the event that a nucleus touches exactly i different grains (corresponding

to the cases of Section 4.2.2). To approximate the conditional probability P(Ti|R =

r), we note the following facts:

• The total area of the nondimensionalized domain Ω is |Ω| = πN0, where N0 is

the initial number of unrecrystallized grains.

• Assuming grains are approximately circular, the total boundary length is πN0,

as each individual grain has boundary length 2π, and each segment of grain

boundary is counted by two grains.

• One implication of the von Neumann area law [63] is that the mean number of

triple junctions along the boundary of one grain must be 6. Thus the number

of triple junctions in the system must be 2N0, as each triple junction is counted

by three grains.

• A nucleus of radius r must have its centre within r units of a grain boundary

or a triple junction in order to be touching 2 or 3 different grains, respectively.

We define Ωi ⊂ Ω, for i = 1, 2, 3, to be region where a nuclei of radius r touches

exactly i pre-existing grains. Thus Ω3, the region in which a grain of radius r must

be centred to touch a triple junction, has |Ω3| ≈ 2N0 · πr2. Similarly, we conclude

from the total boundary length that |Ω2 ∪ Ω3| ≈ πN0 · 2r. Since Ω2 ∩ Ω3 = ∅, we
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conclude that

P(Ti|R = r) ≈






1− 2r, i = 1,

2(r − r2), i = 2,

2r2, i = 3,

(4.10)

if nuclei are placed uniformly at random within Ω.

Further let G be the event that a given nucleated grain grows. Numerically, we

find that the critical radii for initially circular nuclei are very close to the values

found analytically for the critical shapes described in Section 4.2.2:

Ri ≈






1
λ
, i = 1,

.642
λ
, i = 2,

.484
λ
, i = 3.

(4.11)

To further validate this numerical result, we consider nuclei which are initially cir-

cular. In this case, we can give an upper bound on the critical radii as R2 ≤ 2/(3λ)

and R3 ≤ 1/(2λ). This follows from the expression for the rate of change of area of

a recrystallizing grain Σ:

dA

dt
=
π

3
(Ne − 6) + λPer(Σ), (4.12)

where Ne is the number of edges (equivalently, the number of neighboring grains)

of grain Σ. The isoperimetric inequality guarantees that if dA/dt ≥ 0 for some

time interval [0, t?], then Per(Σ(t?)) ≥ Per(Σ(0)), as the circular initial condition has

minimal perimeter among all shapes with area ≥ A(0). Thus, choosing the critical

radii above guarantees that dA/dt ≥ 0 for all subsequent times. Equation (4.12)

shows that the critical nucleus size depends only on the perimeter of the nucleus and

the number of grains neighboring the nucleus; but is independent of where on the
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(a) (b)

Figure 4.5: The critical grain size for circular nuclei is found analytically and numerically to be
independent of where on the nucleus the grain boundary crosses, either (a) at nucleus
centre, or (b) near the edge of the nucleus.

nucleus the triple junctions occur. We numerically verified that the critical grain

size is minimally affected by varying where the nucleus touches the grain boundary

or triple junction, finding a difference of approximately 0.2% in critical grain radii

for circles nucleated with their centres at the grain boundary (as in Figure 4.5(a))

as compared to circles nucleated so that the grain boundary is near the edge of the

nucleus (see Figure 4.5(b)).

Therefore we have

P(G ∩ Ti|R = r) =






P(Ti|R = r), r > Ri

0, r < Ri,

(4.13)

where Ri is given by Equation (4.11). Then we can compute

P(G ∩ Ti) =

∫ ∞

−∞
P(G ∩ Ti|R = r)fR(r)dr =

∫ ∞

Ri

P(Ti|R = r)fR(r)dr. (4.14)

It is surely of interest to describe the locations of nuclei that will survive in this

model. The conditional probabilities describing the distribution of surviving nuclei
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locations is given by:

P(Ti|G) =
P(G ∩ Ti)∑3
i=1 P(G ∩ Ti)

. (4.15)

An instructive first case is to suppose that the nucleation radius R is deterministic,

i.e. fR(r) = δ(r − µ), where δ denotes the Dirac delta. Then there are four cases:

1. µ > R1 > R2 > R3: Grain grow regardless of where they are placed, and

P(Ti|G) =






1− µ, i = 1,

2(µ− µ2), i = 2,

2µ2, i = 3.

(4.16)

2. R1 > µ > R2 > R3: Grains only grow along grain boundary or at triple

junctions, with

P(Ti|G) =






0, i = 1,

1− µ, i = 2,

µ, i = 3.

(4.17)

3. R1 > R2 > µ > R3: Grains grow only at triple junctions. P(T3|G) = 1.

4. R1 > R2 > R3 > µ: Grains do not grow. Recrystallization cannot occur in the

absence of of phenomena beyond the scope of the approximations made here (for

example, the presence of quadruple or higher-order junctions, severely kinked

grain boundaries, or interactions between nuclei).

These cases partition the µ–R1 parameter space into four regions, as shown in Figure

4.6.

More generally, one might suppose that the grain radii are approximately normally

distributed with some mean µ and variance σ2. Taking care to ensure that R > 0,
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Figure 4.6: The µ–R1 parameter space for deterministic nucleation sizes divides into four regions
describing whether the recrystallization is homogeneous (equally likely to occur any-
where throughout D), heterogeneous (along grain boundaries), heterogeneous (only at
triple junctions), or will not occur (as R1 increases for constant µ, respectively). On
(a) linear and (b) logarithmic axes.

we define the nonnegative normal distribution N̄ by

fX(x) =






1
Φ(µ/σ)

(
1√

2πσ2
exp

(
−(x−µ)2

2σ2

))
, x ≥ 0,

0, x < 0,

(4.18)

if X ∼ N̄(µ, σ2), where Φ(x) is the cumulative distribution function for the standard

normal distribution, N(0, 1). Suppose R ∼ N̄(µ, σ2). Then we calculate that

P(G ∩ Ti) ≈






1

Φ(µ/σ)

{
(1− 2µ)

[
1− Φ

(
R1 − µ
σ

)]

− σ
√

2

π
exp

(−(R1 − µ)2

2σ2

)}
,

i = 1,

1

Φ(µ/σ)

{
2(µ− µ2 − σ2)

[
1− Φ

(
R2 − µ
σ

)]

+ σ

√
2

π
(1− R2 − µ) exp

(−(R2 − µ)2

2σ2

)}
,

i = 2,

1

Φ(µ/σ)

{
2(µ2 + σ2)

[
1− Φ

(
R3 − µ
σ

)]

+ σ

√
2

π
(R3 + µ) exp

(−(R3 − µ)2

2σ2

)}
,

i = 3.

(4.19)

We visualize the effects of parameter choice in the µ–R1 plane for various values of

σ in Figure 4.7. Compare to Figure 4.6(b). Increasing σ increases the probability
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Figure 4.7: The µ–R1 parameter space for (a) σ = 10−8, (b) σ = 10−6 and (c) σ = 10−4. Increasing
σ increases the likelihood of large nucleations, allowing a greater part of the region
to support homogeneous nucleation. The contours bounding other regions move in a
similar fashion.

of nucleations with R > µ, allowing homogeneous nucleation to prevail even for

µ < R1. In the regions of parameter space where µ and R1 are much larger than σ,

the behavior is as predicted in the deterministic case.

Figures 4.6 and 4.7 show that there are two very distinct parameter regimes:

µ � σ, and µ � σ. In the first, µ � σ, there is a wide range of values R1 for

which heterogeneous nucleation (nuclei survival primarily along grain boundaries)

may occur. In contrast, when µ � σ, nuclei radii are essentially deterministic, and

the parameter regime in which heterogeneous nucleation may occur is much more

narrow. In this case, there must be a close relationship between R1 and µ in order

for heterogeneous nucleation to occur. As heterogeneous nucleation is frequently

observed in practice, it appears reasonable that either σ � µ or that there is indeed

a close physical relationship between µ and R1 = 1/λ.

4.3 Comparison to Previous Work

For the recrystallization model studied here, there are very few theoretical pre-

dictions available compared with, e.g., models of normal grain growth. Primary

among the known results is the theory of Johnson and Mehl [44], Avrami [6–8],
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and Kolmogorov [50] (JMAK) for the kinetics of the recrystallized volume fraction

F . The JMAK theory is briefly discussed in Section 4.3.1. In contrast, there is

an abundance of numerical simulation studies of recrystallization in the literature.

Many of the most recent numerical works focus on incorporating additional features

such as texture dependence and physically-based nucleation models. Our focus is

different: we stay with the simple model of Srolovitz et al., and explore instead the

difference that fully resolved numerics — as opposed to additional physics — makes.

Once again, this is in the interest of separating numerical issues (possibly artifacts)

from modeling issues. As such, in Section 4.3.2 we compare our numerical results

with prior simulations of the Srolovitz model, in particular with the Monte Carlo

simulations contained in the original papers [79, 80].

4.3.1 JMAK Theory

A normal interface velocity of the form given by Equation (4.5), in the limit

λ→∞, is in keeping with the JMAK theory. This theory is based on the assumption

that each nucleated grain grows outward with constant normal velocity, which occurs

in our system by neglecting the curvature term, and is approximated by choices

of length scale with grains sufficiently large that the bulk energy term dominates

the interfacial energy term in Equation (4.5). The JMAK model has associated

theoretical results in this limit, predicting the recrystallized volume fraction F to be

a sigmoidal function of time, t, in the form

F (t) = 1− exp(−ktp), (4.20)

where k and p are constant. The parameter p can be predicted given the nucleation

technique and the dimensionality of the evolution ( [14], page 542).
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4.3.2 Monte Carlo Simulations

A variety of numerical techniques have been employed previously in simulations

of recrystallization. Chief among them are the Monte Carlo Potts [79, 80] and cel-

lular automata [37] techniques. Both have well-known shortcomings (see, for exam-

ple, [41], page 422, and [43], page 102). More recently, there are hybrid methods

that combine the two [71], as well as a level sets-based implementation [10] of pure

bulk energy (recrystallization) dynamics, disregarding angle conditions. The seminal

works [79, 80] by Srolovitz et al. both introduced the models we study in this work

and carried out Monte Carlo simulations in two dimensions. As an important first

step in verifying our algorithms, we demonstrate in this section reasonable agreement

between our results and those of [79, 80] in certain parameter regimes. However, we

have also observed important differences; we believe these are due to the benefits

of our improved numerics and constitute the content of Section 4.4, where they are

extensively reported and discussed.

In [79,80], the authors introduce the parameters H and J , corresponding to scal-

ings for stored (bulk) energy and interfacial energy. They use the ratio H/J in place

of our nondimensionalized parameter λ, with the correspondence

λ =
H

J

√
〈g〉
π
, (4.21)

where 〈g〉 is the mean number of grid points per grain in the initial (unrecrystallized)

microstructure. Every simulation in [79] and [80] uses the same initial microstructure,

with 〈g〉 ≈ 43 and approximately 930 initial unrecrystallized grains, resulting in

λ ≈ 3.7H/J . The nuclei were taken to be 1 site for H/J = 5 and 3, and 3 sites

for H/J = 2, 1.5, 1 and 0.5 on a 200 × 200 triangular grid. These correspond to

nondimensionalized areas of 0.0730 and 0.2191, respectively, with equivalent radii



95

of 0.1525 and 0.2641 (recall that the mean equivalent radius of an unrecrystallized

grain is 1). These parameter choices are plotted in Figure 4.8 on the µ–R1 parameter

space as discussed in Section 4.2.3. Note that for λ = 7.4 and 5.55 (corresponding

to R1 = 0.1351 and R1 = 0.1802, respectively), the parameter choices fall in the

homogeneous nucleation range under our analysis. Srolovitz et al. characterize these

parameter choices (for them, H/J = 2 and 1.5, with 3 site nuclei) as heterogeneous

nucleation. The model of Section 4.2.3 suggests that the effects seen in [80] for these

parameter choices are an effect of the Monte Carlo simulation technique rather than

an outcome determined by the model of Equation (1.6).

We will now focus on the simulations of site-saturated nucleation performed in

[79,80]. Our simulations were performed for 200, 100, 50, 20, 10 and 5 nuclei at λ =

18.5 and λ = 11.1, and for 2000, 1000, 500, and 200 nuclei at λ = 7.4, 5.55, 3.7, and

1.85, agreeing with the simulations of [79,80]. Figure 4.9 examines the microstructure

for 200 nuclei, with radius µ = 0.2641. Figure 4.9(a) shows part of the microstructure

at t = 0, immediately after 200 nuclei are added to the domain. Figures 4.9(b) and (c)

show the microstructure for λ = 7.4 and λ = 5.55 at t = 0.557. In these simulations,

it is clear that all nuclei are growing, agreeing with the prediction of homogeneous

growth shown in Figure 4.8. For λ = 3.7, the chosen nucleation size is very near the

border of homogeneous growth and grain boundary-dominated growth. It can be seen

in Figure 4.9(d) that for this parameter choice, grains nucleated in grain interiors

remain approximately stationary, while grains nucleated on grain boundaries and

at triple junctions grow. Note that the theory of Section 4.2.3 does not account

for the rate at which grains grow or shrink, or impingement between nucleating

grains. In these simulations, impingement will occur before some of the nuclei in

grain interiors disappear. In Figure 4.9(e), grains which nucleate in grain interiors
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Figure 4.8: The deterministic µ–R1 parameter space with the simulations of [79, 80] marked. λ =
18.5, 11.1, 7.4, 5.55, 3.7 and 1.85 correspond to circle, square, triangle, star, diamond
and x markers, respectively. Note that the simulations with λ = 7.4 and 5.55 correspond
to homogeneous nucleation for this model, not heterogeneous nucleation as is found by
the Monte Carlo simulations.

disappear quickly, with all completely gone by t = 0.1115. Grains which nucleated

along grain boundaries persist longer but again have all vanished by t = 0.2229.

At this time only recrystallizing grains which nucleated at triple junctions remain,

agreeing with the prediction shown in Figure 4.8 for λ = 1.85.

Figure 4.10 demonstrates the time evolution of the recrystallized area fraction

F for simulations of site-saturated recrystallization with varying values of λ ∈

[1.85, 18.5] and varying numbers of recrystallization nuclei (from 5 to 2000), cor-

responding precisely to the parameter choices of Figures 6 and 7 in [79] and those of

Figures 8 and 9 in [80]. The essential features of our plots match the corresponding

ones in [79,80]. Figure 4.10(b) visualizes the Avrami exponent p of Equation (4.20).

The JMAK prediction can be rearranged as log(− log(1− F )) = p log t+ log k, sug-

gesting that these plots should have slope p on logarithmic axes, where p is predicted

to be 2 for two-dimensional site-saturated nucleation ( [14], page 542). Triangles

with slope 2 are inset on the Avrami plots and agree well with the trends of the
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Figure 4.9: Snapshots of microstructure for site-saturated nucleation, with 200 nuclei of radii 0.2641
and varying λ. (a) Nuclei immediately after nucleation. (b) λ = 7.4 at t = 0.0557. (c)
λ = 5.55 at t = 0.0557. In both (b) and (c), all nuclei survive and grow: homogeneous
nucleation. (d) λ = 3.7 at t = 0.0557, 0.1115, and 0.2229, respectively. Nuclei crossing
grain boundaries and triple junctions clearly grow, while nuclei in grain interiors appear
to remain approximately stationary. (e) λ = 1.85 at the same times as (d). Nuclei away
from triple junctions all disappear quickly.
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Figure 4.10: (a) The recrystallized area fraction F for λ = 18.5, 11.1, 7.4, 5.55, 3.7 and 1.85, respectively. The curves correspond to 200, 100, 50,
20, 10, and 5 nuclei (from left to right) in the first two plots, and to 2000, 1000, 500, and 200 nuclei in the last three. Corresponds to
Figure 6 of [79] and Figure 8 of [80]. (b) The Avrami plots for the same experiments, corresponding to Figure 7 of [79] and Figure 9
of [80]. The slope of two is predicted for two-dimensional site-saturated nucleation.
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Figure 4.11: (a) The evolution of the average recrystallized grain area 〈A〉 through time for λ = 18.5
and 11.1, respectively. The slope of two is predicted by the growth rate of a circle
under pure bulk energy motion. Corresponds to Figure 8 of [79]. (b) The grain size
distribution function for recrystallized grains for λ = 3.7 and 2000 site-saturated nuclei
at F = 0.9. (c) The distribution of number of edges per grain for the same conditions
as (b). (d) The mean normalized size of Ne sided grains for the same conditions as
(b). (b), (c) and (d) correspond to Figures 10, 11, and 12 of [80], respectively.

plots at intermediate times. Note that the JMAK prediction is approximate for this

model, neglecting the influence of curvature, which is strongest on small recrystal-

lizing grains, present early in the evolution.

The evolution of the mean recrystallized grain area for simulations with λ = 18.5

and 11.1 is shown in Figure 4.11(a). As expected (see, for example, [79]), 〈A〉 in-

creases with t2 at intermediate times, when the effect of curvature on recrystallized

grain size is small but the recrystallized grains do not impinge on each other fre-

quently. At later times in the evolution, the mean growth rate of recrystallized

grains slows due to impingement. This plot agrees well with Figure 8 of [79] up to
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scaling factors in time and total area.

Figure 4.11(b) gives the grain size distribution function for recrystallized grains in

the simulation with λ = 3.7 and 2000 site-saturated nuclei at the time when an area

fraction of F = 0.9 is reached, while Figure 4.11(c) gives the distribution of Ne sided

recrystallizing grains, and Figure 4.11(d) gives the mean normalized size of Ne sided

grains for these same conditions. The plots should be compared to Figures 10, 11,

and 12 of [80]: the parameters of our and their simulations matched exactly. Some

differences are striking. For example, we find the peak of the topological (number of

edges) distribution to fall at Ne = 5 (Figure 4.11(c)), while Figure 11 of [80] shows

the peak of this distribution to fall at Ne = 4. Our results find a much smaller

proportion of four-sided grains than any of five-, six- or seven-sided grains.

Figure 4.11(d) displays an approximately linear relationship between the topo-

logical class (number of edges) of a grain and the mean normalized grain radius for

grains of that topological class, in disagreement with the simulation results of [80],

which show some nonlinearities for small and large Ne (see Figure 12 of [80]). Also,

the peak of the grain size distribution is to the right of 1 in the present simulations

(Figure 4.11(b)), while it is to the left of 1 in the Monte Carlo simulations. However,

the sample size is small and the distributions are not well resolved, so one must be

cautious in making conclusions about the cause of these observations. The major

observation made in [80] about Figure 10 of that work holds in Figure 4.11(b): the

maximum grain size is not more than twice the mean among recrystallizing grains.

In contrast, this ratio is seen in grain growth to be between 2.5 and 3.

Following [79, 80], we also perform simulations under continuous nucleation con-

ditions. At each time step, we nucleate grains at locations uniformly chosen in the

microstructure, but remove nuclei placed at already-recrystallized locations. Thus
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the effective nucleation rate declines as recrystallization proceeds due to the decrease

in area available for nucleation. It is difficult to relate our nondimensionalized time

to the Monte Carlo steps of [79,80], as it is well known that some type of calibration

must be performed to link Monte Carlo time to physical time (see, for instance, the

discussion in [43], page 102). Based on the simulation times reported in this work

and in [79,80] for site-saturated nucleation, we make the approximation that 1 nucle-

ation per Monte Carlo step is roughly equivalent to 112.1 nucleations per unit time

in our simulations.

Figure 4.12 displays the evolution of the recrystallized area fraction F in our

simulations of continuous nucleation for choices of the parameter λ and the nucleation

rate dn/dt, that correspond to those of Figures 11 and 12 of [79] and Figures 18 and

19 of [80]. In each case, it appears that the predicted Avrami exponent of 3 is

approximately attained in the later stages of the simulation. Note that particularly

for few nucleations per unit time and small λ, the Avrami plots are quite jagged

early in the evolution. This is an effect of the small number of recrystallized nuclei

present at this time in the simulation and the importance of the curvature term in

delaying or preventing the growth of some nuclei (particularly for λ = 3.7 or 1.85,

which correspond to the heterogeneous nucleation regime).

In [79,80], the authors report that the recrystallized grain size for F = 0.95 varies

with nucleation rate approximately as (dn/dt)−2/3, in agreement with theoretical

predictions of [31]. If we compare Figure 14 of [79] and Figure 15 of [80] to our

Figure 4.13, then it is apparent that our simulations show good agreement with this

prediction. Note that the last two data points for λ = 18.5 and 11.1 have areas

averaged for less than 50 surviving recrystallized grains — such a small number of

surviving grains is insufficient to expect close fit to statistical predictions.
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Figure 4.12: (a) The recrystallized area fraction F for λ = 18.5, 11.1, 7.4, 5.55, 3.7 and 1.85, respectively. The curves correspond to 5607, 1121, 224,
112, 56, and 22 nucleations per unit time (from left to right) in the first two plots, and to 3364, 1121, 336, 112, and 37 nucleations per
unit time in the last three. Corresponds to Figure 11 of [79] and Figure 18 of [80]. (b) The Avrami plots for the same experiments,
corresponding to Figure 12 of [79] and Figure 19 of [80]. The slope of three is predicted for two-dimensional continuous nucleation.
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Figure 4.13: Comparison of the mean recrystallized grain size 〈A〉 at F = 0.95 to the nucleation
rate dn/dt. λ = 18.5, 11.1, 7.4, 5.55, 3.7 and 1.85 correspond to circle, square, triangle,
star, diamond and x markers, respectively.

4.4 Benefits of Diffusion-Generated Motion

As already mentioned, the work of Srolovitz et al. in [79, 80] and of Hesselbarth

and Göbel in [37] represent some of the major contributions to the field. There is a

long list of more recent works that add further physical details (such as texture) to

the models and extend the simulations to three dimensions (for example, [27, 67]),

but the basic Monte Carlo techniques remain largely the same. It is important to be

aware of some basic limitations of the Monte Carlo technique applied in [79, 80]:

• For small λ, [79, 80] cannot produce the appropriate stationary shapes seen in

Figure 4.4, with aspect ratio independent of λ.

• For large λ, grain boundaries become rough, though the PDE description of the

model does not predict this behavior.

• Monte Carlo techniques are most appropriate for simulating atomistic-scale in-

teractions. Recrystallization is often studied on the micrometer scale and so

would require prohibitively expensive computation for each grid point to re-

solve the atomistic scale.
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• The lattice definition (e.g. square or triangular) and neighborhood definition

affect the results of Monte Carlo simulations, as noted in [5].

In Figures 1 and 2 of [80], the authors demonstrate that nuclei grow along grain

boundaries but not out into the bulk of unrecrystallized grains for small values of

the parameter H/J in their Monte Carlo simulations. However, we have shown

in Section 4.2.2 that the critical grain shapes have aspect ratios independent of λ

for this model: the shapes described in [80] are artifacts of the algorithm, not the

model. In particular, we believe that they are a consequence of performing zero

temperature simulations. For sufficiently small H/J in Monte Carlo simulations,

it is never energetically favourable to change a single site from unrecrystallized to

recrystallized if less than half the neighboring sites are already recrystallized. For

certain parameter choices, it will be energetically favourable for growth to occur

only along the grain boundary but not out into the unrecrystallized grain bulk.

This observation is independent of the grid resolution and the overall size of the

recrystallized grain which is attempting to grow. In contrast, Figure 4.3 shows

that, under the diffusion-generated motion algorithm, any initial nucleus which is

sufficiently large for the choice of λ will grow and evolve towards the critical shape

described by Equation (4.6).

In [79], the authors forthrightly admit that rough boundaries arise from the growth

of a circular grain for large H/J . Figure 4.3 demonstrates that no such difficulty

arises for diffusion generated motion with precisely corresponding parameter choices.

Though the initial shape is very irregular, it quickly relaxes to a shape with smooth

boundary and maintains smooth boundaries away from triple junctions as λ/κ→∞.

These observations suggest that the Monte Carlo model has limitations for both large

and small values of H/J . However, diffusion generated motion successfully obtains
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the correct behaviors in both situations.

The two-dimensional simulations of [79, 80] are performed on 200 × 200 grids.

In three dimensions, [67] work on a 30 × 30 × 30 grid, and [27] work on a grid of

100 × 100 × 100 with 822 initial grains. In Sections 4.4.1 and 4.4.2, we perform

much larger simulations in both two and three dimensions while at the same time

having full benefit of subgrid resolution. These simulations take as initial condition

a number of unrecrystallized grains generated by normal grain growth starting from

Voronoi initial data. The parameters for our two-dimensional simulations are chosen

to agree with physically relevant length scales and surface tensions and bulk ener-

gies. In three dimensions, computational constraints prevent us from obtaining the

proper scaling between unrecrystallized grains and recrystallizing nuclei (while hav-

ing several unrecrystallized grains fit into the computational domain). We nucleate

grains with mean radius 〈rn〉 = 0.0378, so that nuclei are approximately 5×10−5 the

volume of unrecrystallized grains initially. The vast majority of the nuclei disappear

quickly. We are able to see the influence of the angle conditions and surface tension

on the microstructure (which always play a role at junctions and at small scales even

when vanishingly small, as discussed in previous sections), resulting in grains which

are clearly faceted as seen in experiments. In contrast, other numerical algorithms

fail to show this clear faceting. The pure bulk energy phase field simulations of

Bernacki et al. fail to respect the angle conditions (for example, see Figure 8 of [10])

and recrystallizing grains tend to be circular until collision with other recrystallizing

grains. Monte Carlo simulations necessarily generate grains with rough boundaries,

as discussed in [79], which also produces less clearly faceted grains.

As the discretization of a continuum (PDE) model, we believe that diffusion gen-

eration motion is more appropriate for simulating evolutions at the micrometre scale
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than the inherently atomistic Monte Carlo method. As such, our simulations can

more cleanly reproduce theoretical predictions of the PDE model (4.5) used in this

work. For example, the diffusion generated motion simulations correctly find the

appropriate nucleation regimes for parameters in µ–R1 space, while the Monte Carlo

simulations fail to do so (see Figure 4.8). Furthermore, the diffusion generated mo-

tion algorithm performs correctly on a simple uniform grid and requires no definition

of the neighborhood surrounding a grid point.

4.4.1 Large Scale Two-Dimensional Simulations

We present three large-scale simulations of recrystallization in two dimensions.

Each simulation is initialized with sixteen unrecrystallized grains on a domain that

corresponds to Ω = [0, 4
√
π]2 in our nondimensionalized setting. In each simula-

tion, tens of thousands to millions of recrystallized grains are nucleated, with initial

sizes thousands of times smaller than the existing grains. The first two simulations

are performed under site-saturated nucleation conditions, designed to demonstrate

the ability of our algorithm to efficiently simulate recrystallization with physically-

relevant parameter choices and to allow for comparison to the analysis of Section

4.2.3. The third simulation is performed under the conditions of continuous nucle-

ation. Here, only 26 of over four million nuclei survive to the end of recrystallization,

as the mean nucleus size is much smaller than the critical nuclei sizes described by

Equation (4.9). The variation seen in grain sizes at the completion of recrystalliza-

tion is primarily due to the differing nucleation times of the surviving grains. In

contrast, the variation in grain sizes seen in the simulation with site-saturated nucle-

ation is due primarily to differences in time of impingement along pre-existing grain

boundaries.
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Site-Saturated Nucleation I

In the first simulation we make physically reasonable choices for the sizes of re-

crystallizing nuclei and unrecystallized grains. We choose λ = 577.73, and nucle-

ate 42,095 grains. The radii of nuclei are normally distributed with mean 〈rn〉 =

3.55× 10−4 and standard deviation σn = 7.09 × 10−5. This choice of parameters is

well within the heterogeneous nucleation regime, as R1 = 1.73 × 10−3. Using the

values γ = 0.5 J/m2 and ρ = 10MPa discussed in Section 4.1, 〈r0〉 = 28.9µm, and

the mean recrystallizing nucleus size is 〈rn〉 = 0.01µm: recrystallizing nuclei are a

factor of 104 smaller than unrecrystallized grains. This wide range of length scales is

necessary for curvature effects to be significant for recrystallizing nuclei while main-

taining physical sizes for unrecrystallized grains. With these parameter choices, by

the time a recrystallized nucleus reaches a size comparable to that of a pre-existing

grain, the effect of surface tension will be negligible away from junctions (where angle

conditions will still be maintained): along facets, the bulk energy term will dominate

the dynamics.

We evolve until the nuclei completely cover Ω at t = 1.73× 10−3. At that time,

there are 245 surviving recrystallized grains. The vast majority of nucleated grains

disappear almost immediately in the evolution. Figure 4.14 displays the agreement

of this simulation with JMAK predictions. The recrystallized area fraction F evolves

sigmoidally in time and the Avrami plot of t against − log(1− F (t)) appears to be

approximately linear on logarithmic axes. The slope of the line in the Avrami plot

is approximately 2, agreeing with the prediction in [14] (page 542) for site-saturated

homogeneous nucleation. There is a visible decrease in − log(1− F ) at early times.

This is due to the large number of nuclei that are nucleated but disappear almost

immediately.
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Figure 4.14: Recrystallization kinetics for two dimensional site-saturated nucleation with physically
relevant parameters. (a) The fraction of recrystallized area F evolves sigmoidally in
time, as expected. (b) The Avrami plot is approximately linear throughout the bulk of
the evolution and demonstrates the expected slope of 2 for site-saturated homogeneous
nucleation in two dimensions. The initial decrease in the Avrami plot is due to the
fast disappearance of many nucleated grains that do not survive.

For λ = 577.73, a circular recrystallizing grain contained within a single pre-

existing grain must have its radius r be at least 0.05µm in order to remain station-

ary. Smaller grains that are not touching each other or crossing grain boundaries will

shrink and disappear. Recrystallizing nuclei crossing grain boundaries or touching

other recrystallizing nuclei benefit both from the additional energy removed from the

system (due to elimination of part of the original boundaries) and from the natural

boundary conditions which take effect immediately, quickly forming the character-

istic shape described in Section 4.2.1. This preference is displayed clearly in Figure

4.15(a), where at time t = 1.07 × 10−4, the surviving nuclei are primarily located

along grain boundaries. Note that by this time the surviving recrystallized grains

(which appear quite tiny) have already grown considerably from their initial embry-

onic state — the embryos are too small to display on this Figure 4.15(a). At this

time, we also observe that large numbers of recrystallized grains that survive along

existing grain boundaries contact their neighbors as they grow, and as a result of
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this crowding recrystallized grains tend to form elongated shapes which eventually

penetrate deep into the bulk of unrecrystallized grains (see Figure 4.15(b), at time

t = 4.90×10−4). When the evolution is complete, at t = 1.73×10−3, there are many

elongated grains because the majority of surviving recrystallized grains nucleated

at grain boundaries, and there are many more surviving recrystallized grains (245)

than there were unrecrystallized grains originally (16). The Herring angle condition

is maintained for the recrystallized grain pattern. This is difficult to see when the

entire simulation domain Ω is viewed (Figure 4.15(c), top), as the surface tension

term is negligible in comparison to the bulk energy term at the O(1) scale with our

choice of parameters. On smaller scales (same figure, zoomed in at bottom), the

mere presence of the tiny surface tension introduces curvature into grain boundaries

right near the junctions to maintain the Herring angle condition.

Site-Saturated Nucleation II

In this simulation, we choose parameters to predict even more severe heterogeneity

than in the simulation of Section 4.4.1. We set λ = 288.87, and nucleate 162,070

grains. The radii of nuclei are normally distributed with mean 〈rn〉 = 2.13 × 10−3

and standard deviation σn = 2.13× 10−4. Here, using the values γ = 0.5 J/m2 and

ρ = 10MPa determines that 〈r0〉 = 14.4µm, and the mean recrystallizing nucleus

size is 〈rn〉 = 0.03µm. These parameters are chosen to support successful nucleation

along grain boundaries and at triple junctions while discouraging the survival of

nuclei in pre-existing grain interiors. The number of grains expected to survive

is higher than in the previous simulation. We evolve until the nuclei cover Ω at

t = 5.12× 10−3. At this time, there are 542 surviving recrystallized grains.

The simulation described in Section 4.4.1 approached the limit of the grid res-

olution. The mean nuclei radius was just 1.23 grid cells. This simulation further
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Figure 4.15: Microstructure of two-dimensional site-saturated nucleation simulation I, with phys-
ically relevant parameters. (a) At time t = 1.07 × 10−4, with F = 0.05. Surviving
nuclei are heavily concentrated along grain boundaries. The originally-circular nuclei
are clearly taking the characteristic shape described in Section 4.2.1. (b) At time
t = 4.90 × 10−4, with F = 0.56. The concentration of surviving nuclei along the
original grain boundaries leads to elongated recrystallizing grains as recrystallization
continues. (c) Recrystallization is complete at time t = 1.73× 10−3. Many elongated
recrystallized grains are present because most surviving nuclei originated along grain
boundaries. Close inspection reveals that recrystallized grain boundaries meet at 120◦

angles though this cannot be easily seen when viewing the entire simulation domain.
At this level, the evolution is dominated by the bulk energy motion. Full simulation
domain shown at top, with zoom-in below.
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refines the grid, takes larger recrystallizing nuclei to improve resolution in the initial

stages of the simulation, and decreases the value of λ. These changes allow for com-

parison with the theoretical predictions of Section 4.2.3, which depend on accurate

computations for grains near the critical sizes. We discretize the initial condition on

a 8192× 8192 grid. After the surviving recrystallized grains grow to sufficient size,

we coarsen the grid to 4096 × 4096 and take larger time steps. No impact on the

kinetics of recrystallization were detected.

The analysis of Section 4.2.3 is rough, yet Equations (4.15) and (4.19) make

excellent predictions for this simulation. Indeed, these equations indicate that nuclei

should only survive along grain boundaries or at triple junctions, with 99.5% of

surviving nuclei originally nucleating along grain boundaries and the remainder at

triple junctions. Visual inspection of Figure 4.16 indicates that a few nuclei survive

in the grain interior, but that the vast majority of survivors are indeed along grain

boundaries and triple junctions. The analysis predicts that 0.02% of the nuclei should

survive, agreeing reasonably well with the simulated survival rate of 0.033% at the

end of recrystallization.

Figure 4.16 shows the microstructure of the evolution at various times throughout

the simulation. As noted, the majority of grains survive along grain boundaries and

at triple junctions. In Figure 4.16(a), at time t = 7.79 × 10−5, F = 9.9 × 10−3.

The zoom-in indicates that the growing grains tend towards the characteristic shape

shown in Figure 4.3. Figures 4.16(b), (c) and (d) correspond to t = 2.40 × 10−4

and F = 0.086, t = 5.51 × 10−4 and F = 0.26, and t = 5.13 × 10−3 and F =

1, respectively. As in the prior simulation, it can be seen that the Herring angle

condition is maintained, though these boundary conditions are difficult to visualize

on the scale of the full simulation (Figure 4.16(d)).
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Figure 4.16: Microstructure of two-dimensional site-saturated nucleation simulation II, with higher
surviving grain density along pre-existing grain boundaries. (a) At time t = 7.79 ×
10−5, with F = 9.9 × 10−3. (b) At time t = 2.40 × 10−4, with F = 0.086. Nuclei
are beginning to impinge along grain boundaries, while some unimpinged grains can
still grow in all directions. (c) At time t = 5.51 × 10−4, F = 0.26. All nuclei except
those in grain interiors have impinged along the pre-existing grain boundaries and can
grow along only one dimension. (d) Recrystallization is complete at t = 5.13× 10−3.
Many elongated recrystallized grains are present because most surviving nuclei origi-
nated along grain boundaries. Full simulation domain shown at top, with successive
magnification below.
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As recrystallization proceeds, grains begin to impinge upon each other along grain

boundaries and grow primarily normal to the boundaries between pre-existing grains.

Thus the recrystallized grains tend to be quite elongated. Figure 4.17(a) shows the

distribution of a generalized measure of eccentricity computed among grains surviv-

ing at the completion of recrystallization. The generalized eccentricity is computed

as the ratio of radius computed from perimeter, RP = (Perimeter)/2π, to radius

computed from area, RA =
√

(Area)/π. Many of the grains remaining at the end

of recrystallization have high eccentricity, greater than that of a rectangle with side

length ratio of 10 : 1. The most eccentric grains had eccentricity comparable to

a rectangle with side length ratio of 20 : 1. The mean grain eccentricity is 1.58,

with standard deviation 0.41. In contrast, grain eccentricities were calculated for

fifty smaller simulations of normal grain growth, each starting with approximately

10, 000 grains initialized as Voronoi data and concluding with approximately 1, 000

grains. For these simulations of normal grain growth, the final mean grain eccentric-

ity is 1.06, with standard deviation 0.03.

Figure 4.17 compares the evolution of the recrystallized area fraction (F ) with

JMAK predictions. The recrystallized area fraction F is expected to be a sigmoidal

function of time. In this simulation, the sigmoidal tails are asymmetric (Figure

4.17(b)). This effect is due to the multiple growth regimes clearly seen in the Avrami

plot (Figure 4.17(c)). The prediction for site-saturated homogeneous nucleation is a

slope of 2 [14] (page 542). This slope is seen early in the evolution, before nucleated

grains begin to impinge upon each other in significant numbers. Later in the evo-

lution, nucleated grains show significant impingement along the pre-existing grain

boundaries, but are still free to grow along the normal direction to the grain bound-

aries. In Figure 4.17(c), the left triangle has a slope of 2, while the right triangle is
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Figure 4.17: (a) The ratio of RP = (Perimeter)/2π to RA =
√

(Area)/π reveals that many grains
are very elongated. For comparison, the value of RP /RA is shown for a circle and
for rectangles with side length ratios of 1, 3, 10, and 20. (b) Recrystallization kinet-
ics for two dimensional site-saturated nucleation with physically relevant parameters.
The fraction of recrystallized area F evolves approximately sigmoidally in time. Two
growth regimes are seen in the Avrami plot (c). The expected slope of 2 predicted
for site-saturated homogeneous nucleation prevails initially. At later times, nuclei im-
pinge along pre-existing grain boundaries but are free to grow in the direction normal
to these boundaries. The data in this region is numerically fit to a slope of 1.355.

fit locally to the data with a slope of 1.355.

After recrystallization concludes, the simulation reduces to normal grain growth

(since the bulk energy terms in (4.5) vanish). Because surface tension is negligible

away from triple junctions compared to the now exhausted bulk energy driving forces

once the grains reach this scale, the evolution of the system becomes extremely slow

and therefore the time step has to be increased in the simulation. We continue to

coarsen the grid as the grain growth proceeds, allowing for computational efficiency

with larger time steps. In doing so, we ensure that the mean grain width along the

minor axis of the elongated grains remains well-resolved throughout the coarsening

process. The final grid size is 1024 × 1024. Recrystallization concludes at time

t = 5.13 × 10−3, with 542 surviving nuclei. Grain growth is performed until just

52 grains remain, at time t = 3.50 × 10−1. A computation over such a long time

period would be computationally infeasible without the grid and time step coarsening

made possible by the large size of the surviving grains in the system, as well as the
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t # Grains R(t)max 〈R(t)〉 ψ(t) 〈RP /RA〉
5.13× 10−3 542 9.89× 10−2 2.10× 10−2 4.70 1.582
8.76× 10−2 161 1.40× 10−1 3.78× 10−2 3.72 1.196
1.76× 10−1 92 1.62× 10−1 4.97× 10−2 3.25 1.148
2.62× 10−1 66 1.75× 10−1 5.95× 10−2 2.93 1.138
3.50× 10−1 52 1.87× 10−1 6.68× 10−2 2.80 1.132

Table 4.2: Data for maximum grain size, mean grain size, and their ratio, ψ(t) demonstrates that
while R(t)max increases, ψ(t) decreases. ψ̇(t) > 0 is a condition for abnormal grain
growth as defined by Detert [16]. The mean grain eccentricity 〈RP /RA〉 is also seen to
decrease.

unconditional numerical stability of our algorithms.

Figure 4.18 shows the evolution of the same microstructure from the simulation

of Figure 4.16 beyond the fully recrystallized configuration shown in part (d) of that

figure. More precisely, Figure 19(a), (b), and (c) show the solution, which evolves

effectively via normal grain growth starting from Figure 4.16(d), at approximately

quarter, half, and final times of the full computation. During this time, the elongated

grains disappear or become more equiaxed. The few very large grains evident in the

microstructure at the end of primary recrystallization continue to grow. Detert [16]

defines abnormal grain growth as being characterized by an increase in maximum

grain size that is much faster than the increase in mean grain size. Specifically, the

function

ψ(t) =
R(t)max

〈R(t)〉 (4.22)

must be increasing. In this evolution, R(t)max is increasing, but ψ(t) is decreasing.

Values at various stages in the evolution are shown in Table 4.2. This simulation

result agrees with the conclusion of simulations in [78], and analysis in [84], in which

the authors suggest that abnormal grain growth cannot occur under pure curvature

motion, regardless of the initial grain size distribution. Instead, abnormal grain

growth must result from additional factors such as the presence of second-phase

particles, texture, or other surface effects ( [41], page 316).
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Figure 4.18: The evolution of the microstructure during grain growth following primary recrystal-
lization at (a) t = 8.76×10−2, (b) t = 1.76×10−1, and (c) t = 3.50×10−1. Elongated
grains tend to become more equiaxed. The unusually large grains continue to grow,
but the mean grain size grows faster. This evolution does not correspond to abnormal
grain growth.

Table 4.2 also displays the evolution of the mean grain eccentricity, 〈RP/RA〉.

This value is also seen to decrease as normal grain growth proceeds. At the con-

clusion of the grain growth simulation, there are too few grains present to make

statistically significant claims about the convergence of the grain size distribution

to the self-similar distribution expected for normal grain growth (and which has

been numerically observed by many authors in dedicated simulations). However,

the decay of both the maximum relative grain size ψ(t) and the mean grain eccen-

tricity towards values seen for normal grain growth (calculated as 2.212 and 1.06,

respectively, for 50 simulations of normal grain growth from Voronoi initial data of

approximately 10,000 grains until approximately 1,000 grains remain, via diffusion

generated motion) suggests that this evolution is not significantly different that what

is observed in typical simulations of normal grain growth, despite the highly unusual

initial condition of extremely directionally-correlated and elongated grains.
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Continuous Nucleation

The parameters in our continuous nucleation simulation have been chosen so that

the vast majority of nuclei disappear quickly. Specifically, our parameters were:

µ = 4.15 × 10−3 and σ = 1.21 × 10−3, with λ = 72.22, corresponding to R1 =

1.39× 10−2, chosen so that R1 lies eight standard deviations above the mean, with

R2 four standard deviations above the mean, and R3 approximately two standard

deviations above the mean. The nucleation rate is set to 3.5 × 108 nucleations per

unit time. Throughout the full simulation, approximately 4.4 million grains are

nucleated, but most do not survive.

The values γ = 0.5 J/m2 and ρ = 10MPa determine that the mean unrecrystal-

lized grain size for this simulation is 〈r0〉 = 3.61µm and the mean recrystallized nu-

cleus size is 〈rn〉 = 0.015µm. Thus the unrecrystallized grains are somewhat smaller

than often seen in experiment, but within an order of magnitude of the proper size.

From Equations (4.15) and (4.19), we predict that no nuclei should survive away

from grain boundaries, and that 43.5% of surviving nuclei are predicted to fall along

grain boundaries, with the remaining 56.5% at triple junctions. This prediction is

borne out well by Figure 4.19, though it is difficult to tell whether some surviving

nuclei were touching grain boundaries at the time of nucleation. Further, we calcu-

late P(G) ≈ 4.13 × 10−6. With 4.4 million total nucleations, the basic analysis of

Section 4.2.3 predicts that approximately 18 of the nuclei will survive. Although our

analysis in Section 4.2.3 does not account for continuous nucleation in any way — in

particular, the changing proportion of grain boundaries in the simulation domain D

is unaccounted for — and yet agrees quite well with the simulation result, in which

there are 26 grains present when nucleation completes.

The final microstructure seen in Figure 4.19 is quite different than that seen in
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Figure 4.15, where the simulations took place under site-saturated nucleation. There

are far fewer survivors due to the differing parameter choices. The surviving grains

tend to be more equiaxed in this simulation because the density of surviving nuclei

along grain boundaries is much lower. Final recrystallized grain sizes vary greatly

in both simulations, but the mechanisms behind this variation differ. In the site-

saturated case, the variation is due to the variation in times when impingement

occurs between recrystallizing grains along the pre-existing grain boundary. In the

continuous case, the variation is explained primarily by the different times at which

the surviving nuclei were nucleated.

Figure 4.20 demonstrates the evolution of the recrystallized area fraction F through

time. The Avrami plot in Figure 4.20(b) clearly shows a long transition period before

the expected Avrami exponent, 3, emerges. In this case, the initial increase in the

plot is because nuclei are being added to the system (increasing F at a constant rate)

faster than the nuclei present disappear due to surface tension effects (decreasing F

at a rate approximately proportional to the number of nuclei present), until a suffi-

cient number of nuclei are present for these competing effects to find an equilibrium.

F remains approximately constant from t = 5× 10−5 to t = 7.5× 10−4. Only after a

few nuclei successfully begin to grow does the Avrami exponent achieve the predicted

value.

4.4.2 Three-Dimensional Recrystallization

In three dimensions, our simulation begins with 216 unrecrystallized grains. The

domain is Ω = [0, 9.67]3, discretized on a 256 × 256 × 256 grid, λ = 12.407, and

the final time for the simulation is t = 0.1713. Spherical recrystallized grains are

nucleated with normally distributed radii, with mean 〈rn〉 = 0.0378 and standard

deviation σn = 0.0094. 243,872 nuclei are placed in the simulation domain D.
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Figure 4.19: Microstructure from two-dimensional simulation with continuous nucleation. (a) At
t = 4.55× 10−3, with F = 0.05. All growing nuclei are located along grain boundaries
or at triple junctions, as predicted. Many tiny nuclei can be seen throughout the
microstructure. These nuclei have recently been nucleated but are not large enough to
survive. (b) F = 0.15 at t = 7.07× 10−3. Four new nuclei have successfully initiated
visible growth since (a). All are quite small relative to the recrystallized grains that
were also present in (a). (c) F = 0.50 at t = 1.25 × 10−2. Successful nuclei are of a
wide variety of sizes, due to their varying nucleation times. Compare to Figure 4.15(b),
where the nucleated grains are much closer in size, and size differences appear to be
primarily due to impingement. (d) Recrystallization is complete at t = 2.92 × 10−2.
The resultant grains are of a wide variety of sizes and shapes due to inhomogeneities
in nucleation locations and varying nucleation times.
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Figure 4.20: (a) The recrystallized area fraction F evolves sigmoidally as expected for the large-scale
simulation of continuous nucleation in two dimensions. (b) The Avrami plot shows a
long initial transition period in which nuclei are continuously placed in the microstruc-
ture but disappear at the same rate due to their small sizes and corresponding high
curvatures. The expected Avrami exponent, 3, is seen at later times.

In this case, taking the physically relevant parameter choices γ = 0.5 J/m2 and

ρ = 10MPa, we find that the mean unrecrystallized grain radius is 0.62µm and

the mean recrystallized grain radius is 0.0234µm. The mean unrecrystallized grain

radius is unphysically small. A significantly larger grid and the attendant mem-

ory requirements would be necessary to simulate three-dimensional recrystallization

for this many (approximately 200) physically realistic unrecrystallized grains while

maintaining the unrecrystallized nucleus size.

Just as in two dimensions, the three-dimensional simulations agree well with the

JMAK predictions, as shown in Figure 4.21. In three dimensions, the predicted

Avrami slope is 3 for site-saturated nucleation. Figure 4.22 shows the evolution of

the microstructure as evolution progresses. At t = 5.02 × 10−2, recrystallization is

10% complete. The surviving recrystallized grains are still much smaller on average

than the unrecrystallized grains. 50% recrystallization occurs at t = 8.45 × 10−2.

By this time, there are fewer surviving recrystallizing grains (158) than unrecrystal-

lized grains (216), so the recrystallizing grains are slightly larger on average at 50%
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Figure 4.21: Recrystallized volume fraction F and Avrami plot for three-dimensional site saturated
nucleation. (a) F evolves sigmoidally in time, as expected. (b) The Avrami plot
is approximately linear throughout the bulk of the evolution and demonstrates the
expected slope of 3 for site-saturated homogeneous nucleation in three dimensions.

recrystallization. At all stages of the evolution, the recrystallizing grains are visibly

faceted, consistent with the Herring angle condition even though as before surface

tension is negligible compared to bulk energy along the faces of the recrystallizing

grains by the time they have grown to be comparable to the length scale of the initial

grain network.

Figure 4.23 compares the evolution of mean grain volume and mean number of

faces for recrystallized and unrecrystallized grains through time. Early in the evolu-

tion, the recrystallizing grains are very small and have few faces as compared to the

unrecrystallized grains. The bulk energy term allows some of the recrystallization

nuclei to grow despite their small size and low number of faces. It is demonstrated

in Section 3.2.4 that, for normal grain growth, a grain with few faces is likely to be

a shrinking grain, in agreement with the inexact three-dimensional extension of the

von Neumann–Mullins prediction given in [64].
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(a)

(b)

Figure 4.22: (a) Surface planes at F = 0.1, F = 0.5, and F = 1, respectively. Recrystallizing grains
are shown in shades of yellow, unrecrystallized grains in shades of green. (b) Subsets of
grains are shown at the same points in the evolution. Note that recrystallizing grains
are clearly faceted, and that at early times, recrystallizing grains appear to have fewer
faces on average than the unrecrystallized grains.
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Figure 4.23: (a) Mean volume of recrystallized grains (circles) and of unrecrystallized grains (tri-
angles) through time. (b) Mean number of faces among recrystallized (circles) and
unrecrystallized (triangles) grains through time. Early in the evolution, recrystallized
grains are quite small and are likely to meet less grains than the larger unrecrystallized
grains. The bulk energy evolution causes the recrystallized grains to grow on average
despite their smaller sizes and numbers of neighbors until the situation is reversed at
later times.

4.5 Discussion

We apply the algorithm developed in [19, 22] based on diffusion generated mo-

tion of signed distance functions to simulations of recrystallization in two and three

dimensions. The use of this algorithm allows for fully-resolved simulations of the

PDE-based version of the recrystallization model introduced in the seminal works of

Srolovitz et al. [79, 80]. Due to the computational efficiency and subgrid resolution

of this algorithm, we obtained previously unseen levels of detail in our simulations.

This detail allows for the identification of some numerical artifacts in the Monte

Carlo simulations of [79, 80], and thus for separation of these artifacts from features

inherent to the model.

Section 4.2 presents new analysis of the model. In particular, it is shown that

surface tension effects are always important, even when the surface tension is van-

ishingly small in comparison to the bulk energy driving force. It is demonstrated that
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our algorithm capably captures the O(1) effect described even for vanishingly small

surface tensions and displays good agreement with the classification of parameter

regimes presented here.

New simulations of recrystallization under this model are presented, with physically-

relevant parameter choices. These parameter regimes could not be approached via

the standard Monte Carlo method. For certain parameter choices in this range, we

obtain microstructures at the conclusion of recrystallization composed primarily of

extremely elongated grains. A simulation of three-dimensional grain growth is also

presented. Though computational constraints prevent this simulation from taking

physically-relevant parameters, good agreement with JMAK predictions is still ob-

tained.



CHAPTER V

Conclusion

This dissertation extends, implements, and utilizes a class of algorithms for sim-

ulating multiphase motions with interfacial normal velocities of the form (1.1) and

the natural Herring angle conditions (1.9) and (1.10) at triple junctions. These al-

gorithms are collectively known as the “distance function-based diffusion-generated

motion” (DFDGM) algorithms. Major advantages of the DFDGM algorithms are

listed here, and discussed more completely next.

• Interfaces are implicitly represented, allowing topological changes to be handled

naturally.

• The algorithms are absolutely stable, making accuracy the only constraint on

the choice of the discrete time step ∆t.

• DFDGM algorithms are highly accurate on uniform grids.

• The efficiency of the algorithms allows for very large simulations in both two

and three dimensions to be performed.

The interfaces Γk` are implicitly represented as the zero-level set of signed distance

functions by the DFDGM algorithms, allowing topological changes (triple junction

collisions and phase disappearance events, for example) to be handled naturally,
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unlike explicit, front tracking-type methods. This is a sharp representation of the

interface, unlike phase field methods, which have a diffuse boundary layer represent-

ing the interface. This diffuse boundary layer must be resolved by the discretized

grid, limiting the scale of simulations possible via phase field methods.

The absolute stability of the DFDGM algorithms is inherited from the close con-

nection between the DFDGM algorithms and the threshold dynamics scheme of

Merriman, Bence, and Osher [59,60], and is a major advantage over phase field and

level set schemes. Large time steps ∆t may be taken, with accuracy as the only

concern. Front tracking, level sets, and phase field methods will all become numer-

ically unstable if too large of time steps (with respect to the spatial discretization)

are taken with typical standard time discretization methods.

The use of the signed distance function in the DFDGM algorithms allows for much

greater accuracy than the threshold dynamics scheme is capable of, due to the subgrid

accuracy that can be achieved by interpolating the value of the signed distance

function. Interpolation is not possible in the threshold dynamics scheme due to

the lack of continuity of the characteristic function. Furthermore, careful numerical

convergence tests presented in Chapter II suggest the convergence of the algorithms

to exact solutions where these are known (particularly, away from topological events),

and also demonstrate the accuracy of the algorithm on small, uniform grids. The

computational complexity of the DFDGM algorithms for isotropic grain growth and

recrystallization is just O(M logM) per time step, where M is the total number of

grid points used. This is the same as the threshold dynamics scheme; the scaling of

the computational complexity is not affected by the use of signed distance functions

and the need to perform redistancing operations. The accuracy and efficiency of the

algorithms and the efficient parallel implementation of the algorithms allows for very
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large simulations in the context of grain growth and recrystallization to be performed

in both two and three dimensions.

Beyond the development and verification of the DFDGM algorithms, a second

major contribution of this work is the application of these algorithms to large-scale

simulations of isotropic grain growth and recrystallization. These important mate-

rials science phenomena are simulated using Algorithms 2.1 and 2.3, respectively.

The simulation results are discussed in great depth in Chapters III and IV. Good

agreement is seen with theoretical predictions, experimental results, and, where ap-

plicable, prior simulations.

The well-resolved three-dimensional simulation of isotropic grain growth presented

is considerably larger than any other that we are aware of. Visually, the resulting

microstructure compares well with real polycrystalline grains. We verify that the

grain size distribution function is self-similar through time, and that the mean grain

size scales with time as expected. The self-similar grain size distribution is shown to

match well with the Rios distribution [70], a modification of the Hillert distribution

[39]. Topological measures, including the number of faces, edges and corners per

grain, are computed and compared to various simulations, models, and experimental

results.

The work on the recrystallization model of Srolovitz, et al. [79,80] combines analyt-

ical results with simulation. We separate characteristics of the model from numerical

artifacts contained in previous simulations and demonstrate the ability of Algorithm

2.3 to perform simulations displaying the correct model properties. We also present

results of a large-scale two-dimensional simulation of recrystallization featuring a

previously unseen microstructure containing primarily very elongated grains.
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An important step towards the full model for anisotropic grain growth is the un-

equal surface tension case, with normal velocity given by (1.7). The full model allows

the surface tension γk` to vary spatially, for example, depending on the direction of

the local unit normal vector to the interface Γk`. In this work, we present Algorithm

2.4 and numerical results suggesting the convergence of this algorithm in the special

case where the surface tensions are additive (2.17). A possible extension of Algo-

rithm 2.4 to the general unequal surface tension case is presented as Algorithm 2.5,

though there is much work yet to be done in verifying this algorithm.

As a whole, the work presented in this dissertation clearly demonstrates the utility

of the DFDGM algorithms for motions of the type described by (1.1). These algo-

rithms are demonstrated to be accurate and very efficient. They have been applied

with great success to simulations of isotropic grain growth and recrystallization. A

matter of ongoing work is the extension of this class of algorithms to simulations of

grain growth with unequal surface tensions.
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[20] Elsey, M., Esedoḡlu, S., and Smereka, P. Large scale simulation of normal grain growth
via diffusion generated motion. Proc. R. Soc. Lond. A 467 (2011), 381–401.
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