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ABSTRACT

Throughput Scaling and Data Gathering in Wireless Networks

by

Awlok S. Josan

Chair: David L. Neuhoff

In this dissertation we investigate three problems associated with wireless networks.

First, we examine throughput scaling in random access communication networks. We

consider extended networks, that is, networks in which the number of nodes and the

area increases such that the density of nodes remains constant. Franceschetti et al.

have recently shown that per-node throughput in a geographically expanding, ad hoc

wireless network with Θ(n) randomly distributed nodes and multihop routing can

be increased to Ω( 1√
n
) from the Ω( 1√

n ln n
) scaling demonstrated in the seminal paper

of Gupta and Kumar. In this dissertation we explore the dependence of this inter-

esting result on the new features it introduced: (1) capacity-based link transmission

bit-rates, rather than positive bit-rates when and only when signal-to-interference-

and-noise ratio lies above a threshold; (2) hierarchical routing through communal

highways, instead of separate routes for each source-destination pair; and (3) cell-

based routes based on percolation rather than on straight lines. It is shown that

throughput Ω( 1√
n
) can be attained with a system, without highways, that uses per-

colation to establish, for each source-destination pair, a set of routes within a narrow

routing corridor. It is also shown that throughput Ω( 1√
n
) can be attained with the
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threshold link-rate model, provided that transmission powers are permitted to grow

with n. The conclusions are that the improved throughput scaling is principally due

to the percolation-based routing, which enables shorter hops and, consequently, less

interference, and that the benefit of the capacity link-rate model is simply to permit

the power to remain bounded, even as the network expands.

The second problem we examine is that of the reliability efficiency trade-off in

wireless sensor networks. In these networks, in comparison to independent coding,

distributed lossless coding of correlated sources offers the potential for sizable re-

ductions in coding rates. However, since the decoder performs joint decoding of all

sources, it is highly sensitive to encoder failures, as the loss of even one encoder

may result in failure to decode all sources. To increase reliability in case of encoder

failures, this dissertation considers distributed coding schemes such that decoding

of one source depends only on encoded data from a subset of other sources. While

the reliability efficiency trade-off was introduced and studied in earlier work, in this

dissertation the problem is cast in a rigorous formulation. We also introduce a new

class of schemes, which we call flexible, in comparison to previous schemes which are

called rigid. The efficiency of these schemes is measured in terms of average rate, and

the reliability in terms of loss factor, which is the expected fraction of sources lost

at the decoder. In order to evaluate the average rates of these schemes, the Slepian-

Wolf lossless source coding theorem is extended to the case where encoders may fail.

Several new flexible coding schemes are introduced and the trade-off between the

reliability and efficiency of these schemes is analyzed. It is also found that flexible

schemes generally outperform rigid.

The final problem investigated is sensor placement and real time data gathering in

wireless sensor networks. Here, each sensor observes samples of an underlying random

process at a given location and communicates the observations to the collector. The

collector then estimates the process over the entire network region. One question con-
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cerns the optimal placement of N sensors in order to minimize the mean squared error

in reconstruction. While sampling has been extensively studied and many questions

have been answered, this question has not. It is shown that for a one-dimensional

Markov process with exponential autocorrelation, uniform placement of sensors is op-

timal. Next, we propose a simple algorithm for collection of data in a one-dimensional

network. In this case, the underlying field is modeled as a spatio-temporal random

process. In order to provide good reconstruction of the field, we want data from a

large number of sensors, to get good spatial granularity, and small delay, so that the

data is still useful in estimating the current field. However, since each sensor com-

petes for time-slots to transmit to the collector, placing a large number of sensors,

while improving spatial coverage, results in large delay for much of data. On the other

hand, placing a smaller number of sensors while reducing delay, results in poor spatial

coverage. Thus, there exists a trade-off between the number of sensors and the delay

suffered by data. This suggests that there exists an optimal density of nodes that

minimizes the error in reconstruction. We show that for a stationary process with a

separable correlation model that is exponential in both spatial and temporal domain,

the optimal density of sensors over a fixed area increases with increasing temporal

correlation and decreases with increasing spatial correlation.
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CHAPTER I

Introduction

1.1 Motivation

Wireless networks have become a major part of our daily lives. Examples of

wireless networks include cellular phone networks, wi-fi, sensor networks, etc. Some

of these networks have infrastructure, such as cellphone towers, that form a backbone

and all data is routed through the backbone. In this scenario, if two users want to

communicate, data travels from the first user to the cellphone tower through a wireless

channel, then between two towers, either through a wireless channel or through a

wired backbone, and finally to the second user through another wireless channel.

These networks typically have powerful towers with large computing power and big

antennas. The end users on the other hand, have comparatively smaller computing

power and smaller antennas. On the other extreme are wireless ad hoc networks,

in which users self-organize to form a connected network. In this kind of network,

users communicate with each other using others to relay their data. Hence, in these

networks all data communication is peer-to-peer. In typical wireless ad hoc networks,

the difference in computing and communication capabilities of different nodes is much

smaller compared to networks with infrastructure. In the middle of these extremes

are hybrid networks. These networks have some limited infrastructure in the form of

powerful nodes or wired backbone. However, in these networks data communication
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happens both peer-to-peer between the less powerful nodes and also between the

users and the backbone. Networks in which every source communicates to the same

common destination are called many-to-one, while those in which every node can act

as a destination are called one-to-one. IN a similar fashion, there also exist networks

in which each node communicates to a multitude of other nodes. These networks are

generally called one-to-many or many-to-many depending on how many nodes are

transmitting. In this dissertation, we focus on one-to-one and many-to-one networks.

The final classification that we consider in this dissertation is whether the networks

are structured to perform some specific task at a central location or whether they

are structured to provide communication between any two nodes. Sensor networks,

which are usually constructed to measure some underlying physical phenomenon, fall

under the former category. On the other hand, cellular networks are constructed to

provide communication capabilities between any two users.

In this dissertation, we will concentrate on two specific kinds of wireless networks:

random access wireless ad hoc networks, as in Figure 1.1, and field gathering wireless

sensor networks, as in 1.2. The “random” term in the random access wireless ad hoc

networks refers to the choice of destination for each node. In these networks each

node acts as a source of data. The node may want to communicate to any one of

the other nodes in the network. Thus, the number of destinations in the network is

on the same order as the number of users. Field gathering wireless sensor networks,

which fall under the many-to-one wireless network classification, are structured to

perform a specific task. Typically, these networks are constructed to measure some

physical phenomenon, such as temperature, over a geographical region. These net-

works consists of a fixed number of nodes, each sensing the underlying phenomenon

at its location. Each node then communicates is measurements to a central location,

called the collector, either directly or by using other nodes as relays. Thus, each node

in one of these networks has the same destination.
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s
d

Figure 1.1: Random Access Wireless Ad-hoc Network. Source s communicates its
data to the destination d using other nodes as relays.

1.2 Random Access Wireless Ad Hoc Networks

A random access wireless ad hoc network consists of a fixed number of users/nodes,

spread over some geographical area. These nodes may be static or mobile. Each node

in the network randomly chooses a destination to which it wants to communicate

data. Communication between each source-destination is done in a multihop fashion

using other nodes as relays.

Since these networks do not require an infrastructural support they can be used

for battlefield deployment [1]. Another potential application is automated highway

systems [2] in which cars communicate with each other to maintain safe distance

from each other. These networks also have potential uses in disaster recovery where

response teams need to communicate with each other [3]. These networks also have

uses where a number of robots cooperatively work on some given task.

1.2.1 Challenges

In this section we study some of the challenges faced in designing random access

wireless ad hoc networks.

Since random access wireless communication networks do not have any central

control, there are a variety of problems that arise when designing and analyzing these

networks. Some of the typical issues that designers face when constructing these

3



networks are:

• Connectivity: Since these networks are self-organizing, an important issue that

arises is whether each node can communicate with all other nodes, either directly

or by using some other nodes as relays.

• Routing: In order for two nodes to communicate with each other, there needs

to be a route, that is, a sequence of other nodes that can act as relays between

the two nodes.

• Transmission Power: In order for a node to communicate with another node,

it needs to transmit at high enough power. However, if all nodes transmit at

high power there will be a lot of interference at the receiver. So the choice of

transmission power is important in providing connectivity in the network.

• Scheduling: As stated before, in order to ensure successful transmissions from a

transmitter to its intended receiver, we need to limit interference at the receiver

from all other simultaneous transmissions. This means that all nodes cannot

transmit simultaneously. Thus, there need to be strategies that allow nodes to

decide when to transmit so that all of them, or at least a large percentage, are

successful.

Two important metrics used to measure performance of random access networks

are throughput and delay. Throughput is the number of bits per second that each

node can transmit to its destination. Delay is the amount of time for the bits to travel

from the source to the destination. In this dissertation, we focus on throughput and

not delay. There are multiple factors that impact the attainable throughput of an

ad hoc network. Some of the main ones are: the number of nodes, the position of

the nodes, distances between nodes, the choices of sources and destinations, that is,

which nodes are communicating with which others etc. As a result of this dependence
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on a wide variety of factors, computing the exact number of bits that a source can

send to its destination is extremely hard.

1.2.2 Throughput Scaling

As a first step to finding the throughput of these networks, Gupta and Kumar [4]

posed the throughput scaling problem. They investigated how the maximum attain-

able throughput of networks with a large number of users changed as the number of

users in the network increased. The throughput of an ad hoc network is dependent

on how many of the users can simultaneously transmit data to their receivers, how

frequently they can transmit, and how many bits they try to transmit when sched-

uled to transmit. The data being transmitted by a user might be its own or it might

be data that is being relayed for another user. Typically there will exist a trade-off

between the number of users transmitting simultaneously and the number of bits

each of them can transmit. The success of a transmission from a transmitter to a

receiver depends on the interference from all other simultaneously transmitting nodes

at a receiver. The lower the interference at a receiver, the better the chance of the

transmission being successful. Thus, in order to improve the throughput of wireless

ad hoc networks, we need to reduce the interference at each receiver. However as

more users get added to the network, the interference within the network increases,

as each new user wants to communicate data to its destination. There are multiple

methods to reduce interference, two of which were employed by Gupta and Kumar.

First, instead of communicating directly to its destination which may be far away, the

source relays its data through a series of short hops using other nodes as relays. In

this case, since transmissions need to take place over shorter distance, each transmit-

ter can use a lower transmission power. This reduces interference at other receivers

and allows more simultaneous transmissions to take place. Second, instead of all the

nodes in the network simultaneously transmitting, there is a time division multiple
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access (tdma) sharing scheme, called a schedule, that allows only a limited set of

transmitters to transmit in a given time-slot. This reduces both the interference at

various receivers in the network, and also the number of simultaneous transmission

that can take place. Designing the overall system requires finding routes from each

source to its destination and setting up tdma schedules to ensure that each user in the

network gets to successfully transmit at a satisfactory rate. In this dissertation, we

give a constructive routing and scheduling strategy to analyze performance of large

scale random access communication network.

1.2.3 Contributions: Analysis of Throughput Scaling

In Chapter II, we analyze the problem of throughput scaling in random access

communication networks. These networks consist of a large number of users/sources,

each wanting to communicate with a randomly chosen destination. We wish to find

the maximum number of bits that each source can transmit to its destination. How-

ever, the random placement of users makes this an incredibly hard problem. As

stated previously, Gupta and Kumar posed an interesting abstraction of this prob-

lem, in which they analyzed how the attainable throughput of these networks changed

as the number of users grew. The answer to this question holds strong implications

in designing a network. If the throughput is independent of the number of nodes in

a network, it would mean that we could design large scale networks without suffering

any ill effects in terms of decrease in throughput. Gupta and Kumar came up with a

constructive scheme that showed that a scaling of Ω
(

1√
n lnn

)
bits/slot was achievable.

That is there exists a constant c such that for large enough n the throughput of the

network is higher than c√
n lnn

. More recently, Franceschetti et al. [5] showed that this

throughput scaling could be improved to Ω
(

1√
n

)
. Along with some minor changes in

the underlying network model, the three major changes that their work introduced

were:
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1. A capacity-based transmission rate model instead of a threshold-based model.

Under their model, a transmitter could transmit to its intended receiver at

rate equaling the Shannon capacity of the channel. Under the threshold-based

model, transmissions were successful only if the receiver signal to interference

and noise ratio (SINR) was above a fixed threshold.

2. A highway based routing scheme instead of a semi-straight line routing. In their

routing scheme, they construct a number of horizontal and vertical highways.

The data from each source is first relayed to a node on a horizontal highway.

The data then travels first along the horizontal highway and then a vertical

highway. From a node close to the destination on the vertical highway, it is

finally relayed to the destination. This was in contrast to the routing scheme

used by Gupta and Kumar which connected the source and destination by a

straight line and used nodes withing a certain fixed distance of the line as relays.

3. The final significant difference between the models was the use of percolation

to construct the above mentioned highways. These highways are a sequence of

nodes, where each pair of nodes is called a hop. In this case, the data from

from source to destination takes hops that are of significantly different length.

In particular, the first hop from the source to a relay node on the horizontal

highway (and the last hop from the relay node on a vertical highway to the

destination) is a lot longer compared to hops on the highways. In contrast, in

the scheme Gupta and Kumar proposed all the hop lengths were of a similar

length. The hop lengths in their scheme were longer than the highway hops but

shorter than the hop from source to relay node in Franceschetti.

In this dissertation, we construct a routing and scheduling scheme that achieves

the throughput Ω(1/
√

n) without a hierarchical highway structure and by using mul-

tiple routes for each source destination pair that lie in a narrow corridor. We also
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illustrate the impact of each one of the major changes described above. We show

that the improvement in throughput is only due to the use of percolation to con-

struct routes from each source to its destination. Since most hops on these paths

have shorter lengths as compared to Gupta-Kumar, it allows more nodes in the net-

work to simultaneously transmit, thereby improving throughput. We also show that

the benefit of using the capacity-based model is that it allows the use of finite power

at each node, that is, power does not increase as the size of the network increases.

However, it requires the use of a more powerful receiver, as the receiver now needs to

decode at extremely low SINRs. Finally, we show that there is no benefit achieved

from using a highway based routing scheme instead of a semi-straight line routing.

1.3 Field Gathering Wireless Sensor Networks

Advances in hardware technology and wireless networking have made the pos-

sibility of low-cost, low-power and inexpensive wireless sensor networks (WSNs) a

reality. For an overview of these networks see [6, 7]. Of particular interest are field

gathering WSNs, Figure 1.2. These networks use a number of sensors deployed over

a geographical area, called the network region, to measure some underlying natural

phenomenon. The sensors measure the field at their location and then communicate

their data to a central location, called the collector. The communication may done

either directly by each sensor, or by making use of other sensors as relays. The col-

lector, on receiving data from the nodes in the network, makes an estimate of the

field in the entire network region. These networks have a vast array of applications,

examples include:

• Habitat Monitoring [8]: Sensor networks can be used for habitat monitoring in

order to study biodiversity and the bio-complexity. These networks can provide

data at spatial granularity much better than that achieved using remote sensing
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Figure 1.2: Many-to-one Wireless Sensor Networks. Each source communicates its
data to the base-station.

satellites.

• Hazard Monitoring [9]: Self-organizing sensor networks can be deployed in haz-

ard monitoring such as the current nuclear plant failure in Fukishima, Japan.

These sensor spread in the vicinity of the plant can measure the radiation level

and transmit to a central location.

• Soil Moisture [10]: Sensor networks are deployed to measure soil moisture. This

data has potential uses in adaptive irrigation in agriculture or for calibration

and validation of data gathered using remote sensing satellites.

• Parking [11, 12]: Sensors deployed into parking spots in a city can inform drivers

the closest open parking spots.

• Battlefield Monitoring [13]: These networks in a battlefield can be used to detect

and track enemy movement.

• Structure Health Monitoring [14]: Sensors embedded in civilian structure such

as bridges can be used to measure beam-fatigue which would give early indica-

tions of failure.

For more applications of these networks see [15, 16, 17, 18, 19].
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Figure 1.3: Typical size of a sensor node in comparison with a US quarter dollar.
Image Courtesy Russ Nelson.

1.3.1 Challenges

Many of the challenges faced in designing WSNs arise from the fact that the

sensor nodes have limited capabilities in terms of available power, transmission range,

computing power etc. The limited capabilities are a direct consequence of their small

size, see Figure 1.3. In order to understand the problems that we face in designing

these networks, we first look at the different components of a sensor node and the

functions that they perform.

A wireless sensor node, block diagram shown in Figure 1.4, typically consists of

parts capable of performing the following functions:

• Sensing: This functionality in a node is performed by sensors and actuators.

These produce a measurable response depending on the physical conditions that

the node is trying to measure. Depending on the application these sensors can

be active or passive. For example, in temperature monitoring the sensors would

generally be passive, where as in battlefield detection a sensor might use active

sonar or radar sensors.
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Figure 1.4: Typical components of a sensor node.

• Computing: The computing on a node usually consists of an ADC, a micro-

controller and, optionally, a general purpose microprocessor. The ADC is used

to convert the analog signal received from the sensor into a digital form, so that

it be used in computations and can be transmitted easily. The micro-controller

is used to control the sensor and the radio. For example, it determines when

the radio should transmit and when to turn it off. The microprocessor may

perform some computation on the sensed observation such as compressing the

observations. These computations may be performed on the data obtained from

its own sensors alone or in combination with data received from other nodes.

• Communication: Each node consists of a radio comprising of a transmitter and

a receiver. The radio is used to communicate the data that originates at the

node to the collector, either directly or by relaying it to another node. This

radio is also used to receive and relay data for other nodes in the network.In

most WSNs, communication of data is the most power hungry part of operation.

• Power: In order to perform all the above functions some amount of power is

required. Since the nodes are not connected to a central location, this power has

to come from an on board power source. Each node usually has a small battery

to provide power. Some sensors also have an energy harvesting mechanism to

recharge the battery.
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• Storage: Nodes also have memory to provide data storage capabilities. The

node may store its own past data or data received from other nodes in this

memory.

1.3.2 Data Compression

One of the major limiting factors in the performance of wireless sensor networks

is the amount of power available at each node. Power is required for all three of the

operations that a typical sensor node performs: sensing, computation and communi-

cation. However, power required for the three operations is usually quite different.

The biggest drain on power is usually the radio used for communication. The energy

used for sensing, while depending on the type of sensor, is negligible for most passive

sensors. The energy used in computation, while once again depending on the type of

node, is quite small as compared to that used for communication. As an example, for

some of the commercially available sensor nodes, “the energy spent in transmitting

one bit of information is the same as that required by the microprocessor to execute

approximately one thousand instructions [20, 21]”, Croce et al [22]. Since replacing

the batteries on these sensors in most applications would be physically hard and cost

prohibitive, it is important to reduce the amount of data that each node needs to

transmit.

There are multiple ways of reducing the amount of data that has to be transmitted

to the collector, one of the obvious being data compression. The simplest method for

compressing data in WSNs is where each node uses source coding to compress its own

data without taking into consideration data at other nodes. Assuming that we have

a fixed ADC at each node and the underlying probability distribution of the field is

known, this can be done by using a coding scheme, such as scalar quantization followed

by Huffman lossless coding [23, 24]. In case the source distribution is unknown

universal source coding techniques [24, 25] may be employed. In many scenarios,
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the observations obtained at different nodes are also correlated. For example, if

a sensor network is deployed to sense a temperature field, the readings obtained

at sensors that are physically close together will be very similar. The correlation

between observations at different nodes can also be exploited to compress data in

multiple ways. As an example, consider the scenario, where node i communicates its

observations to the collector using node j as a relay. Since node j has access to node

i’s data, it can conditionally encode [26] its own data given node i’s observation. The

collector upon receiving bits from both nodes, first decodes node i’s data. Then using

bits it received from node j and node i’s data it decodes node j’s data. Thus, in this

case node j can reduce the number of bits it has to transmit to the collector.

Next, consider the scenario, where all nodes communicate their data directly to

the collector without relaying. In this scenario, the observations made at one sensor

are available only to the collector and not to any other sensor. In this case, since the

collector has access to encoded data from all sensor nodes, the correlations between

nodes can still be exploited by using distributed coding [24, 27]. In distributed coding,

each encoder encodes its data independently. However, the decoder jointly decodes

data from all nodes. In fact, assuming fixed ADCs at each node, the nodes can

compress their data so that the sum of the number of bits communicated to the

collector is the same as would have been in the case where every nodes data was

available at every other node. In addition, distributed coding used with relaying to

avoid decoding and re-encoding at each relay node.

1.3.3 Contributions: Reliability Efficiency Trade-off in Distributed Cod-

ing

As mentioned previously, transmission of data is one of the biggest drains on the

battery of a sensor node and thus, we would want the sensors to transmit the smallest

number of bits possible. In sensor networks where the observations at different sensors

13



are correlated we can use distributed coding [27, 28] to reduce the rate at which each

node transmits to the collector. In distributed coding, each node encodes its data

independently. However, the collector jointly decodes data from all nodes. While the

independent encoding of the data is extremely useful in WSNs, the joint decoding

is an onerous requirement as it requires data from all nodes to be available at the

decoder. In many practical WSNs data from some of the nodes may not reach the

collector. This could happen, for instance, if the battery at a sensor node runs out of

power, or if the channel conditions are such that a node is unable to transmit to the

collector. Since loss of data from even one of the nodes could result in the decoder not

being able to decode data for any of the nodes, the system is extremely vulnerable to

node failures.

Marco and Neuhoff [29] introduced a framework for increasing robustness (reliabil-

ity) of lossless distributed coding schemes at the expense of an increase in the coding

rate, i.e. decreased efficiency. They measured the reliability of a scheme in terms of

loss factor which is the number of encoders whose data cannot be reconstructed at

the decoder, and the efficiency in terms of average rate. They propose a number of

distributed coding schemes and analyzed the trade-off in average rate and loss factor.

Of the schemes proposed, they found that Master-Slave offered performed the best in

terms of average rate at a given loss factor.

In Chapter III of this dissertation, we cast the reliability-efficiency problem in a

rigorous framework. In order to analyze distributed coding schemes in the presence

of node failures, we extend the Slepian-Wolf lossless source coding theorem to the

case where some of the encoders may fail. More significantly, we propose a new

class of distributed coding schemes which we call flexible, as compared to the earlier

schemes which can all classified as rigid. We view the decoder as being composed

of a number of sub-decoders, one corresponding to each node. In rigid schemes,

corresponding to each sub-decoder is a fixed subset of nodes. The sub-decoder can
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successfully decode only if encoded descriptions from all nodes in that subset are

received. In flexible schemes, corresponding to a sub-decoder are multiple subsets of

nodes. If encoded descriptions from all nodes in any one of these subsets are received,

the sub-decoder can decode successfully. We analyze the new schemes in terms of

average rate and robustness to node failures, i.e. loss factor. Finally, we provide

numerical results for a one-dimensional network sensing a stationary Gauss-Markov

process. It is seen that the flexible schemes generally outperform the rigid schemes

by substantial amounts. Also, only the flexible schemes can achieve the lower bound

on the loss factor for rates significantly smaller than the scheme where no distributed

coding is used. Thus, flexible schemes can be highly efficient in terms of compressing

data, while being robust to node failures.

1.3.4 Sensor Placement and Data Gathering

Another question in designing field gathering WSNs is where to place the sensors

in the network region. Recall that the collector makes a reconstruction of the field in

the entire network region, whereas observations from only those points where sensors

are placed are available. This results in distortion in reconstruction. In the case of a

given fidelity criteria, such as mean squared error (MSE), to measure distortion and

a given fixed number of sensors, the question is where to place the sensors in order to

optimize the reconstruction with respect to the given fidelity criteria. This optimal

placement would generally be dependent on spatial correlation characteristics of the

underlying field.

More generally, given a target MSE with which we want to reconstruct the field,

the question becomes, how many nodes do we place and where should we place them.

Also, in case the nodes are using lossy coding on the digitized data after the ADC,

at what rate should each node encode its data. In general the more sensors we place,

the lower the MSE. However, it might be the case that for certain placements the

15



nodes need to transmit at a higher rate to achieve the target MSE.

Once the sensor positions are fixed, the question arises how to collect data from

each of them. In many practical networks, all sensor will not be able to communicate

there data to the collector simultaneously. This could be for a multitude of reasons,

for example, in a slotted time system the collector may be able to receive data from

only one sensor in each time slot. Since sensors now compete for time-slots to transmit

data to the collector, placing a large number of sensors would cause much of the data

to suffer a large delay. On the other hand placing a smaller number of sensors might

not give good spatial coverage.

1.3.5 Contributions: Optimal One Dimensional Sensor Placement and

Real Time Data Gathering

In Chapter IV we investigate the sensor placement and data gathering problem in

wireless sensor networks. In this problem that we consider, we have a fixed number

of sensors that we want to place over in a one-dimensional network of fixed area. We

model the underlying field being measured as a stationary random process. Each

sensor takes a measurement of this process at its location and communicates the ob-

servation to the collector. The collector, on receiving data from all the nodes, makes

an estimate of the process in the entire network region. We use mean squared error,

integrated over the entire network region, as our performance measure. We wish to

find an optimal placement of the sensors, if it exists, where optimal means that it

minimizes the mean squared error. This problem has very strong relation to sam-

pling theory, and a lot of results in literature are available on similar problems. If the

underlying field is modeled as a band-limited, signal the Shannon-Nyquist theorem

[30, 31], also known as Whittaker-Kotelnikov-Shannon (WKS) theorem, says that the

signal can be reconstructed from uniformly placed samples taken at a frequency that

is twice the maximum frequency present in the signal. The theorem also has been
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extended to band-limited random processes by Balakrishnan [32]. However, the avail-

able literature for non-bandlimited random processes is very sparse. This elementary

problem of placing a fixed number of sensors in a one-dimensional interval of fixed

length has no known optimal solution. We show that for a one-dimensional Markov

process with exponential correlation the optimal placement of sensors is uniform.

Having placed the sensors uniformly over the network region we propose a data

gathering algorithm for real-time reconstruction of underlying process. For the real-

time data gathering problem, we model the underlying field as a spatio-temporal

random process. We assume a slotted-time system under which the each node can

transmit to and receive data from its neighbors once during each time slot. The

collector makes an estimate of the process over the entire network region in each time

slot. We consider the simplest possible data gathering model for a one-dimensional

network that captures the trade-off between the increasing number of sensors and

delay. In our algorithm, each sensor linearly combines its own data to the data it is

relaying for other sensors and relays the combined data to a neighboring sensor that is

closer to the collector. We observe that under the constraint that each node can only

communicate with its neighbor there exists an optimal density of nodes for the data

gathering when the network region is one-dimensional. This density increases with

increasing temporal correlation and decreases with increasing spatial correlation.

1.4 Dissertation Organization

As stated before, in this dissertation we examine three problems that afflict wire-

less networks. Chapter II examines the performance of random access wireless ad hoc

networks, and Chapters III and IV investigate problems that are more specific to a

subclass of wireless networks called field gathering wireless sensor networks. Specifi-

cally, Chapter III investigates the reliability efficiency trade-off, and Chapter IV ex-

plores the sensor placement and data gathering problems in wireless sensor networks.
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Each of the above three chapters has its own introduction and list of references. Req-

uisite notation is introduced in each of the chapters separately, too, thereby making

each chapter self-contained.
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CHAPTER II

Throughput Scaling in Random Wireless

Networks: A Non-Hierarchical Multipath Routing

Strategy

2.1 Introduction

The problem of asymptotic scalability of throughput in wireless networks has

been investigated extensively under different assumptions on the network models. In

their seminal work Gupta and Kumar [1] posed the problem of asymptotic scalability

of random wireless networks and demonstrated that in dense networks a per-node

throughput Ω(1/
√

n lnn) was achievable as the number of nodes in the network, n,

goes to infinity. Equivalently, it can be said that throughput scaling of order 1/
√

n ln n

is attainable. It can be easily shown that this achievability result also holds for

extended networks, that is, networks whose area is expanding such that the density

of nodes remains constant. Further work in the area under different network models

can be found in [2, 3, 4, 5, 6]. Recently Franceschetti et al[7] recently showed that

this achievable per-node throughput may be increased. Specifically, they considered

an extended network with approximately n randomly distributed nodes and multihop

routing, and demonstrated that achievable per-node throughput can be increased to
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Ω( 1√
n
).

Compared to [1], the construction used in [7] introduced several new features. The

first is a capacity-based link transmission rate formula as a function of the received

signal-to-interference noise ratio (SINR), instead of the threshold-based binary rate

model used in [1], where a positive bit-rate B is attainable when the SINR is above

some threshold, and zero otherwise. (The former requires coding at each hop, while

the latter does not.) The second is a routing hierarchy for data delivery in which

data from a source is first delivered (via a single hop) onto a nearby highway – one

of a system of communal highways, each with a horizontal and a vertical segment.

The data is then multihopped along the highway (horizontally then vertically), and

finally delivered from the highway to the destination in a single hop. By contrast,

the method used in [1] is a simple shortest path type of routing, where a straight

line is drawn connecting the source and the destination, and nodes along this line are

selected to relay the data, forming an approximately straight line path. The third

difference introduced in [7] is the use of percolation theory to construct the highways

that serve as the main routing fabric in the network. Indeed, [7] is the first paper to

use percolation theory to establish network throughput results.

The primary interest of the present chapter is to understand which of the above

contribute to the increase in per-node throughput in a fundamental way, i.e., to

understand the dependence of this new result on the above new features. The conclu-

sion of this chapter is that the improved throughput scaling is principally due to the

percolation-based routing, which enables shorter hops and, consequently, less interfer-

ence. More precisely, the hops along the highways have bounded lengths that do not

increase as the network expands. This would not have been possible if one were to use

shortest path routing, the existence of which then invokes a connectivity requirement

that would force the hop size to increase as the network expands. As another benefit

this chapter shows an alternate construction to achieve the 1√
n

throughput scaling.
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This conclusion is established by showing that throughput Ω( 1√
n
) can be attained

by a system that does not employ highways, but rather uses percolation to establish,

for each source-destination (s-d) pair, a set of Θ(log n) disjoint routes within a narrow

routing corridor running from source to destination. Thus with this multipath routing

structure, highways and routing hierarchy are not essential. In addition, it is shown

that throughput Ω( 1√
n
) can be attained with the original threshold transmission bit-

rate model, provided the transmission powers of the nodes are permitted to grow with

n. Thus, the benefit of the capacity bit-rate model is simply to permit the power to

remain bounded, even as the network expands. However, under the capacity bit-

rate model the receiver’s at the nodes have to be powerful in the sense that they

need to be able to decode even when the SINRs are extremely low. Thus, using the

the threshold based model asks for more powerful transmitters whereas the capacity

bit-rate model asks for more powerful receivers. This emphasizes the importance of

percolation based routing. Also, the multiplicity of routes, though each route can be

dedicated to one s-d pair.

Better throughput may be attainable if one considers hierarchical cooperation [8],

mobility [9, 10, 11], beamforming antennas [12] or hybrid networks [13, 14, 15] but it

is nevertheless interesting to understand what throughput is attainable with simple

systems that employing homogeneous node with omni-directional antennas that can

only perform dumb relaying.

The remainder of the chapter is organized as follows, Section 2.2 introduces the

system and the transmission rate models we use. Section 2.3 gives our main result

and an overview of the proof. The formal proof follows in sections 2.4, 2.5, 2.6 and

2.7 which formalize the path construction, transfer rates, rates for delivery/draining

and rates for intermediate hops, respectively. We finally finish the proof in 2.8 and

provide concluding comments in 2.9.
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2.2 Background and System Model

We consider a random extended network with nodes distributed over a disk An ⊂

R2, called the network region, whose radius
√

n increases with n. We assume that

nodes are placed randomly according to a Poisson point process of unit intensity over

R2. Let S denote the set of node positions produced by the Poisson process, and

let Sn denote the subset of nodes lying in An. Each node in Sn serves as a source

of bits that it wishes to communicate to a destination, chosen randomly from the

remaining nodes within the An. (A node may serve as a destination for more than

one source.) Let Pn denote the set of s-d pairs, which we consider to constitute the

random extended network. The number of nodes in Sn, equivalently pairs in Pn, is

a random variable Nn with expected value πn. We are concerned with events that

happen in the network region An with high probability, that is, probability tending

to one as n → ∞. We use the following version of the order notation, which is

commonly used [7, 16] in analyzing asymptotic scalability. We will say that a non-

negative sequence of random variables Xn is probabilistically Θ(yn), or Θp(yn) for

short, when yn is a non-negative sequence and there exist constants c1 and c2 such

that Pr(c1yn ≤ Xn ≤ c2yn) → 1 as n → ∞. Probabilistically O(yn), Op(yn) and

probabilistically Ω(yn), Ωp(yn) are defined similarly. We also use the short hand wpa

one if an event occurs with probability approaching one as n approaches infinity.

As shown in Lemma 12, Nn is probabilistically Θ(n). To simplify analysis, we

assume that the nodes in S outside An are available for relaying data between a

source and its destination, though we will only make use of nodes within O(lnn) of

the disk. Note that since the radius of the disk is Θ(
√

n), the disk outside the network

region is extremely small.

Communication is done with multihop relaying in slots of some duration ∆ sec-

onds, which remains fixed throughout. There is a transmitter, receiver and omnidi-
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rectional antenna at each node. All transmitters use a common power Pn, which we

get to choose and which may depend upon n. We assume that node j receives the

transmission from node i with power Pnη(dij), where η(·) is a propagation (or power

attenuation) model and dij is the Euclidean distance between nodes i and j. Gupta

and Kumar [1] used the following propagation model,

η(d) =
1

dα
, (2.1)

where α > 2 is the propagation loss exponent. However, as d → 0 the received

power under this model grows to infinity. Hence, we refer to the above model as the

unbounded propagation model. To avoid the unrealistic assumption of received power

being higher than transmitted power, we use the bounded propagation model,

η(d) =
e−γd

(1 + d)α
(2.2)

where either γ > 0, α ≥ 0, or γ = 0 and α > 2 are constants that depend on the

channel conditions. For γ = 0 this model reduces to the one used by Dousse et al.

[17] and Arpacioglu and Haas [18].

For any given system Pn, the aim is design a communication protocol that allows

each source to communicate bits to its destination at as high rate as possible. A

simple protocol might be where each source communicates directly to its destination

in a single hop. However, in this case simultaneous transmissions interfere at the

receiver, resulting in a low rate. Thus, in order to improve the rate, we design a

multi-hop system.

For a given network of s-d pairs Pn, a system Σn is characterized by a set of routes

and a link schedule. A route for a given s-d pair is a sequence of nodes from s to d.

Each pair of successive nodes in a route is considered a hop or link. On each link,

one node acts as a transmitter and the other as a receiver. A node may lie on more
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than one route and a pair of nodes may be a link on several different routes. The

link schedule determines the links over which transmissions take place in a given time

slot, the power at which the transmitters transmit and the number of bits transmitted

over the links.

In designing a system, we first choose one or more routes for every (s, d) ∈ Pn.

For a given (s, d) pair, let qi,s,d = (l1i,s,d, l
2
i,s,d,..., l

mi
i,s,d) denote its ith route, where lji,s,d

is the jth link on the route. Let Q(s, d) = {q1,s,d, q2,s,d,..., qm,s,d} denote the set of

routes for a given s-d pair, and let Q = {Q(s, d) : (s, d) ∈ Pn} denote the set of all

routes in the system. Also, let L denote the set of all the links in the system. A

link-schedule with period pls, denoted LSpls
, is characterized by a sequence of sets

(LS1, LS2,..., LSpls
), where LSk is a set of triplets, each indicating a link transmission

in the kth slot. Specifically, (l, P, b) indicates that transmitter of link l ∈ L transmits

b bits at power P with the goal of reaching the receiver for link l.

In the design approach used in this chapter and in [7], each route is composed

of: a draining link from source to an intermediate node, a sequence of intermediate

or trunk links between intermediate nodes and a delivery link from an intermediate

node to the destination. Corresponding to the different types of links, we split the link

schedule into three phases: draining, trunk and delivery. While designing the routes,

we fix in advance an upper bound, dphase, to the length of links in each phase. Fixing

such an upper bound for each phase, allows us to fix a common power, P phase, used

for every transmission in that phase. As we will see later, this considerably simplifies

obtaining an achievable bound on the number bits, bphase, that can be successfully

transmitted over links in a phase.

In order to design the link-schedule for one of these phases, we first design a cell-

based periodic tdma schedule. We partition the network into square cells of fixed

area and design the tdma schedule such that one node in each cell, transmitting

at power P phase, can successfully transmit bphase bits to any receiver that is within
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distance dphase of the transmitter in one time slot. The tdma schedule, denoted

T phase
p , is characterized by power P phase, number of bits bphase and a sequence of sets

(T1, T2,..., Tp), where Tk is the set of cells in which nodes can transmit in time slot k.

Each set Tk is chosen such that the interference at each of the intended receivers is

limited. This allows the transmission from each transmitting node to its receiver to

be successful, i.e., the link transmission is successful. Since each cell may have more

than one link originating from it, we construct the link-schedule by concatenating

multiple periods of the tdma schedule. We refer to each period of the tdma schedule

as an epoch. The number of epochs in the link-schedule is the maximum number

of links that originate from a single cell. Then, every link in every cell is assigned

precisely to one epoch of the tdma schedule. Indeed, if link l in cell ce is assigned

to the kth epoch of the tdma schedule, then transmissions over l take place in the

time slots assigned to ce in epoch k. Now, having designed the link-schedule for each

of the three phases, the system link-schedule is a time-shared combination of these.

That is, we concatenate adr, atr and ade periods of draining, trunk and delivery trunk

link-schedules, respectively, where the integers adr, atr and ade are chosen so that the

same number of bits are transmitted over each link within one period of the system

link-schedule.

In order to evaluate the bits/slot that each source can transmit to its destinations,

we will need a concept of link-bit potential and several notions of throughput. Let T

be a set of simultaneously transmitting nodes (no schedule is presumed). The link bit-

potential BPi,j is the maximum number of bits that can be successfully transmitted

in one slot, when a node i ∈ T transmits to a node j, not necessarily in T , in the

presence of interfering transmissions from the other nodes in T .

We consider two models for link bit-potential based on received signal to interfer-

ence and noise ratio (SINR). As in [1, 2, 5, 7] and many other papers, the SINR when

node j receives data from node i in the presence of transmissions from the nodes in
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T is

SINRij =
Pn η(dij)

N0 +
∑

k∈T
k 6=i

Pn η(dkj)
,

where N0 represents the power in received background noise.

Capacity Link Bit-Potential Model: In this model, which was used in [7], the

link bit-potential equals the capacity of an additive Gaussian channel with signal-to-

noise ratio equal to SINRi,j , i.e.,

BPij =
1

2
ln(1 + SINRij) , (2.3)

Threshold Link Bit-Potential Model In this model, which has been more

commonly used in throughput analysis of wireless networks [1, 19, 20, 21], the link-

rate is

BPij =






B if SINRij ≥ τ

0 else
, (2.4)

where τ is some pre-determined threshold and B > 0 is a number less than the

capacity given in (2.3).

We now give few different notions of throughput. Given a link-schedule LS, a

throughput for a link, is a rate in bits/slot, averaged over the link-schedule, at which

bits get transmitted over the link, i.e., it is the link bit-potential multiplied by the

number of times the link appears in the schedule divided by the period of the schedule.

Note that the link-throughput for a given link l can either be evaluated for the phase

in which l belongs or for the overall system schedule. Given a link-schedule LS for

the system, the throughput for a route is the minimum of link-throughputs of all the

links in the route. The throughput of an s-d pair is the sum of throughputs of all its

routes. The (overall, per-node) throughput of a system, denoted T (Pn, Pn,LSn), is

the minimum throughput among all s-d pairs in Pn.
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In the seminal paper [1], it was shown that for a network where n nodes are

distributed randomly in the network region An, a square of area 1, under the threshold

link-rate and unbounded propagation models, for each n, there exists a way designing

systems for Pn such that throughput is Ωp(1/
√

n ln n). Since the network region was

of area 1 the above was a dense network. However, it has been shown [21] that

the same throughput is achievable in the case of expanding network where An is a

circle of area n under the threshold link-rate model and the bounded or unbounded

propagation model.

2.3 Main Result

The principal result of [7] is, essentially, that in extended networks, throughput

Ωp(1/
√

n) is attainable when the capacity link bit-potential model is assumed. It

was also shown that the power Pn can be set to a constant that does not depend

on n or Pn. The proof used a system of communal highways whose existence was

demonstrated using percolation theory. The following theorem, which is the main

result of this chapter, restates this result. However, we provide a proof that does

not employ communal highways, though it does use a percolation approach similar

to that in [7]. In addition, the theorem shows that the same throughput scaling is

attainable with the threshold link bit-potential model, provided Pn is permitted to

grow without bound.

Theorem 1 Consider the bounded propagation model (2.2), either link bit-potential

model, and for each n a random extended network Pn parametrized by n. There exists

b > 0 and for each n there exists Pn > 0 and a collection Πn of source-destination

pair sets such that

Pr(Pn ∈ Πn) → 1 as n → ∞ , (2.5)

and for all sufficiently large n and each Pn ∈ Πn, there is a tdma schedule Sn that
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when used with power Pn has throughput

T (Pn, Pn, Sn) ≥ b√
n

. (2.6)

Moreover, for the capacity link bit-potential model, Pn can be set to an arbitrary

positive value P that does not vary with n, whereas for the threshold link bit-potential

model, it is necessary and sufficient that Pn grows without bound as n → ∞.

As mentioned in the introduction, one concludes from this theorem that it is

percolation, rather than highways, that permit throughput scaling to increase from

Ωp(1/
√

n lnn) to Ωp(1/
√

n), and that the benefit of the capacity link bit-potential

model is to permit the the power to remain constant, even as the network expands.

We now give an overview of the proof, details of which are in subsequent sections.

We partition the design of the system into two parts. First we design the routes such

that each route for each s-d pair has the proper hop lengths. We will then show that

each link on each of these routes can sustain adequate link-throughput.

First, Section 2.4 shows, essentially, that for each source-destination pair (s, d) ∈

Pn, one can find Θp(ln n) nearly disjoint routes (the routes might have a few nodes

in common), each composed of three segments and the following properties:1

1. The first segment is a single draining hop from the source to a node, called

a receptor, on a trunk which is a sequence of short hops having nodes in the

vicinity of both s and d. In its second segment, the route continues along

the trunk in the direction of the destination until it reaches a node, called the

deliverer, from which the destination can be reached in one delivery hop, which

constitutes the final segment of the route.

1We said “essentially” because uniform bounds to the number of routes will actually be needed.
Specifically, with Mn denoting the minimum number of routes found for an s-d pair in Pn, then
we actually need Mn = Θp(lnn). The theorem and lemma statements to follow will make this
clear. However, to streamline the discussion, we will not mention again the need for uniformity in
paraphrased statements such as this.
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2. The Θp(ln n) trunks for (s, d) traverse a narrow, rectangular routing corridor

of width Θ(ln n) that contains both s and d. The trunk hop lengths are O(1).

Indeed, they are uniformly bounded by a constant independent of n, Sn and

Pn.

3. The draining and delivery hops have length O(ln n), due to the fact that the

trunks, s and d lie within the routing corridor of width Θ(lnn).

To demonstrate the attainability of throughput Ωp(1/
√

n), it will suffice to demon-

strate that for any Pn there exists a link-schedule such that for each s-d pair in Pn,

each of its Θp(ln n) routes sustain a route-throughput of Ωp(1/(
√

n ln n)) for that

pair. To do this we will show that each link in Q can sustain a link-throughput of

Ωp(1/(
√

n ln n)).

In the draining phase, each node sends its originating data a distance of O(lnn)

to a receptor on each of the Θp(lnn) trunks in its routing corridor. In order to

calculate the link-throughput, we first find the rate, averaged over the tdma schedule

at which a node can transmit to its receiver(s). We call this the node-rate. Theorem

5, which generalizes Theorem 3 of [7], will be used to show the existence of a tdma

draining schedule that attains node-rate Ω(1/na)2, where a < 1/2, from each source

to each of its receptors. In Section 2.6, using this tdma schedule, we construct the

draining link-schedule under which each draining link can achieve a link-throughput

of Ω(1/(na ln n)).

In the trunk phase, for each s-d pair, the trunk nodes relay data from the receptor

to the deliverer with a sequence of hops of length O(1). In this case, Theorem 5 can

be used to show the existence of a tdma schedule such that each trunk node attains

a node-rate of Ω(1). In Appendix 2.C that the maximum number of routes on which

a given node can lie is Op(
√

n ln n). Therefore, its Ω(1) node-rate needs to be shared

2No subscript p here.
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among Op(
√

n ln n) links. We can thus construct a trunk link-schedule under which

each trunk link can sustain a link-throughput of Ωp(1/
√

n ln n).

Next, for the delivery phase, Lemma 9 and Corollary 10, are used to demonstrate

the existence of a tdma delivery link-schedule such that each delivery-link can sustain

a link-throughput Ωp(1/(na(ln n)2).

Finally in Section 2.8 we combine the link-schedules for the three phases and

show that every link can sustain a throughput of Ωp(1/(
√

n ln n). Thus, there are

Ωp(ln n) routes for each source-destination pair, each sustaining a throughput of

Ωp(1/(
√

n ln n)). Therefore, each (s, d) ∈ calPn has a throughput Ωp(lnn)×Ωp(1/(
√

n lnn)) =

Ωp(1/
√

n), which is the desired result.

A summary of the remainder of this chapter follows. Section 2.4 uses percolation

theory to construct suitable trunks; Section 2.5 presents the theorems for achievable

node-rates; Section 2.6 establishes the phase link-throughputs attainable in the drain-

ing and delivery phases; Section 2.7 establishes the phase link-throughput attainable

in the trunk phase; Section 2.8 completes the proof of the main result; and finally

Section 2.9 makes concluding remarks.

2.4 Trunk Construction via Percolation

In this section, we show that as n → ∞, for every s-d pair in Pn there exist

Ωp(ln n) suitable trunks. By suitable we mean that the closest node on the path to

the source on the trunk is O(lnn), likewise for the destination and each intermediate

hop has length O(1). Here the probability is taken over the random placement of the

nodes using the Poisson point process and the random s-d assignments. We use a

percolation approach similar to that used in [7] to establish the existence of highways.

For more on percolation theory see [22] and [23].

Before going into details we give a brief overview of the trunk construction. First,

we cover the the entire network region An with rectangular corridors whose dimensions
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are, roughly speaking, Θ(
√

n) × Θ(ln n). The coverage of network region is such

that for any two points in the network region there exists at least one corridor that

contains both points. Note that as n increases these corridors become extremely

narrow as compared to their length. Nevertheless, by individually tessellating each

one of these corridors we show that there exist Ωp(ln n) disjoint path traversing the

corridor lengthwise. Each path is a sequence of hops from one node to another,

such that the length of each hop on each path is O(1). By construction every s-d

pair lies in at least one routing corridor, and the paths in one of these corridor will

be used as trunks for the routes from s to d. Finally, we modify these paths slightly

based on global tessellation, reasons for which will become clear in Section 2.5. While

causing the paths to no longer be disjoint, this modification makes the calculation of

attainable node-rate for each node on the trunk tractable.

We now describe the trunk construction in detail. Fix constants c, κ > 0 to be

chosen later. Given n, consider a rectangle, illustrated in Figure 2.3(a), of length ln

and width wn given by

ln = 2
√

n +
√

2cǫ1,n

wn =
√

2c

(
κ ln

ln√
2c

+ ǫ2,n

)
, (2.7)

where 0 < ǫ1,n, ǫ2,n < 1 are chosen such that ln/
√

2c and wn/
√

2c are integers. Note

that, ln is Θ(
√

n) and wn is Θ(ln n). One of the narrow ends of the rectangle is labeled

left and the other right. We wish to overlay the network region with a number of these

rectangles such that for every pair of points in the network there exists a rectangle

that contains both of them. We refer to such rectangles as routing corridors, as the

trunks for any given s-d pair will mainly lie in one of these.

Divide the circumference of the network region An into Na =
⌈

2π
√

n
wn

⌉
arc segments

of length at most wn as shown in Figure 2.1. For every pair of arcs, place a routing
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Figure 2.1: Routing corridors to cover the network region. The boundary of the
network region is divided into arcs of size wn. For each pair of arcs a
corridor covering the two arcs is placed such that its center is as close to
the center of network region as possible.

corridor such that the entire length of both arcs is contained in the corridor and that

the center of the corridor is as close to the center of the network region as possible.

Such a placement is always possible as the length of the arc segment at most equals

the width of the corridor. Also, it can be easily seen that placing the center of the

corridor closest to center of the network region uniquely specifies its location. And

while this unique specification is not essential, it helps later in bounding the delivery

and draining hop lengths.

Since there exists a routing corridor for every pair of arcs, the total number of

routing corridors is

Nn =
Na(Na − 1)

2
≤
(

2π
√

n

wn

+ 1

)2

= O

(
n

(ln n)2

)
.

We claim that the above placement of routing corridors ensures that for any two

points in the network region there exists at least one corridor that contains both of

them. For any two points in the network region, extend the line joining them to
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Figure 2.2: Routing corridor for a given s-d pair.

the intersect the boundary of An. This line will intersect two arc segments on the

boundary. Since this pair of arc segments is contained in a routing corridor, so will

the originally chosen points.

Closely following the percolation arguments in [7], we next show that each rout-

ing corridor contains Ωp(ln n) disjoint trunks. Tessellate each routing corridor with

diamonds (i.e., rotated squares) with side length c, as is illustrated in Figure 2.3(a).

Note that for any given diamond,

Pr(diamond contains at least one node) = 1 − e−c2 , p .

Draw horizontal edges across half the diamonds and vertical edges across the others

in the manner shown with dotted lines in Figure 2.3(b). An edge is considered open

if it lies in a diamond containing at least one node, and closed otherwise. A path is

a sequence of connected edges, horizontal or vertical. A path is said to be open if it

contains only open edges. Because each edge in an open path indicates the existence

of a node within a diamond and because successive edges indicate nodes in adjacent
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(a) Tessellation of a rectangular routing corridor
with diamonds of side length c.

(b) Paths crossing the routing corridor from left
to right are composed from horizontal and vertical
edges, shown as dashed lines.

Figure 2.3: Routing corridor setup for s, d.

diamonds, an open path indicates the existence of a route with hops of length at most
√

5c, formed by taking one node from each diamond corresponding to each edge.

The theorem below shows that as n → ∞ there are Ωp(ln n) disjoint open paths

crossing any routing corridor lengthwise. With a small modification to be discussed

later, these will form the basis of the trunks for the given (s, d) pair.

Assume that the corridors covering the network region are indexed 1 to Nn, and

let Bn,i,m,c denote the event that there exist at least m disjoint open c-paths that cross

the ith routing corridor lengthwise. The following theorem, whose proof is contained

in that of Theorem 5 of [7], is based on percolation theory.

Theorem 2 Given c >
√

ln 6 and κ > 0, then for any β > 0 and any integer i,

Pr(Bn,i,m,c) ≥ 1 − 4

3
(6(1 − p))ǫ2,n

(
p

1 − p

)βǫ2,n
(

ln√
2c

+ 1

)(
ln√
2c

)a

(2.8)

where m = βwn and a = βκ ln
(

p
1−p

)
+ κ ln(6(1 − p)).
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Note that part of the routing corridor will lie outside the network region and the

paths whose existence the above theorem has demonstrated may make use of nodes

that lie outside An. However, the final s-d routes do not make use of any nodes

outside the network.

The following corollary uses the union bound to establish that as n → ∞, there

are Ωp(lnn) disjoint paths simultaneously in each one of the Nn corridors covering

An.

Corollary 3 Given c >
√

ln 6 + 3/κ and κ > 0, there exists a strictly positive con-

stant β(c, κ) such that

Pr(∩Nn
i=1Bn,i,m,c) → 1 as n → ∞ (2.9)

where m = β(c, κ)wn.

Proof:

Since the number of routing corridors, Nn, is O(n/(lnn)2), there exists b, n0 such

that, Nn ≤ bn/(ln n)2 , bn for n > n0. Then for n > n0 and any β > 0,

Pr(∩Nn
i=1Bn,i,m,c) ≥ Pr(∩⌈bn⌉

i=1 Bn,i,m,c) = 1 − Pr(∪⌈bn⌉
i=1 Bc

n,i,m,c)

≥ 1 −
⌈bn⌉∑

i=1

Pr(Bc
n,i,m,c) = 1 − ⌈bn⌉(1 − Pr(Bn,i,m,c))

≥ 1 − ⌈bn⌉ ·
4

3
(6(1 − p))ǫ2,n

(
p

1 − p

)βǫ2,n
(

ln√
2c

+ 1

)(
ln√
2c

)a

≥ 1 −
[

4b

3
(6(1 − p))ǫ2,n

(
p

1 − p

)βǫ2,n

(
ln√
2c

+ 1

)(
ln√
2c

)a(
n

(ln n)2
+ 1

)]
,

where m = βwn, the second inequality uses the union-bound, and the third uses

Theorem 2 with a as defined in the theorem. Since ln is Θ(
√

n), the above expression
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goes to one as n tends to infinity if the exponent of n, 1/2+a/2+1, is less than zero.

This happens if and only if βκ ln(p/(1 − p)) + κ ln(6(1 − p)) + 3 < 0. The facts that

κ > 0 and c >
√

ln 6 + 3/κ imply that κ ln(6(1 − p)) + 3 < 0. We can then choose

β = β(c, κ) small enough such that β(c, κ)κ ln(p/(1 − p)) + κ ln(6(1 − p)) + 3 is less

than 0. This results in Pr(∩Nn
i=1Bn,i,m,c) → 1 as n → ∞, completing the proof of the

corollary. �

The next corollary uses the paths demonstrated in the previous corollary to con-

struct routes for each s-d pair in Pn.

Corollary 4 Given κ > 0 and c >
√

ln 6 + 3/κ, there exists a strictly positive con-

stant β(c, κ) > 0 such that with probability approaching one for each s-d pair in Pn

there exist m = β(c, κ)wn disjoint routes in some routing corridor such that the dis-

tances of the receptor from the source and deliverer from the destination are O(lnn)

and every intermediate hop has length at most
√

5c.

Proof: For any given s-d pair, consider the line joining the s, d positions and extend it

to intersect the circumference of An. Consider the routing corridor that encompasses

each of the arcs intersected by the line (see Figure 2.2). Give κ > 0, c >
√

6 + 3/κ,

according to Corollary 3, there exists β(c, κ), such that there are β(c, κ)wn disjoint

open paths that cross the routing corridor lengthwise. Now consider the part of the

routing corridor that lies within the network region. Since there are β(c, κ)wn disjoint

open paths that cross the routing corridor lengthwise, there will be β(c, κ)wn disjoint

open paths in the truncated region as well. For each path in the routing corridor,

designate the node closest to s on the truncated path as receptor and the node closest

to d on the truncated path as the deliverer. Since the width of the routing corridor is

wn, it easily follows from the triangle inequality that the distance of the receptor from

s is less than wn +
√

2c, which is O(lnn). A similar argument holds for the distance

of the deliverer from d. Also, the length of any intermediate hop on any s-d route is
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at most
√

5c. Thus, we show that for any s-d pair in Pn there exist β(c, k)wn routes,

with distance of the receptor from s being O(lnn), likewise for d and the deliverer,

and the length of each intermediate hop on each of these routes is at most
√

5c. �

Before we end this section, we modify these routes slightly, so that relay nodes

come from a single global tessellation of the entire network instead of a different

tessellation for every routing corridor. As we will see in the next section, this makes

the calculation of achievable node-rates tractable. Overlay the network region by

a tessellation of squares of side c. If a square contains one or more nodes that lie

in the network region, we designate one of them as the relay node for that square.

For a square that contains no nodes that lie in the network region, no relay node is

designated. Note that the distance of the designated relay node from any other node

in the same square is at most
√

2c. Given any of the routes shown in Corollary 4, we

modify it slightly by replacing any node i on the path that is not a designated relay

node, by the designated relay node of the square that contains i. Using the triangle

inequality we easily see that the length of the modified intermediate hop is at most

(
√

5 +
√

2)c. Also, the draining and delivery hop lengths for the modified paths can

be at most (wn +
√

2c)+
√

2c = O(ln n). Note that while the original s-d routes were

all disjoint, the modified routes may have some nodes in common. However, for any

given s-d pair we can bound the number of routes on which any relay node lies. Any

square in the global tessellation can at most intersect 9 squares of the tessellation of

any given routing corridor. Thus a relay node may lie on at most 9 routes for that

s-d pair. Finally, note that since wn is Θ(ln n), for large n there exists a constant φ

such the the number of modified routes is at least φ lnn.
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2.5 Attainable Node-Rates

As stated in the overview of the proof, we divide the time slots into three phases:

draining, delivery and relay. We want to establish achievable link-throughputs for

each one of these phases. In order to do this, we first establish node-rates, which

are rates at which the nodes can successfully transmit to all receivers within a fixed

distance via suitable tdma schedules. Then in the subsequent two sections we use

these node-rates to find achievable link-throughputs. These will be established with

the aid of several theorems presented here, which are variations and extensions of

Theorem 3 and Corollary 1 of [7].

These theorems do not involve the sources, destinations or routes. Instead, here

we try to establish the simultaneously achievable node rates when a set of transmitters

satisfy a local density constraint and all receivers are at most distance d from their

transmitters. The node-rate depends on the distance of the receiver from the trans-

mitter and also the local density. A higher density implies either higher interference

at the receiver if all the transmitters are transmitting or use of more time-slots if we

want to time-share, both of which reduce achievable node-rate. We will subsequently

use these theorems in order to find phase link-throughputs for the routes we designed

in Section 2.4.

Tessellate ℜ2 with squares of side c. If there is one transmitting node in each cell,

then this places a local density constraint as in any circle of area πc2 the maximum

number of transmitters is 9 and in a circle of area 2πc2 there is at least one transmitter.

In order to limit interference at the receiver we time-share using a tdma schedule.

Given a power P > 0 and link bit-potential r a tdma schedule, denoted S, is a

sequence of sets of cells S1, S2,..., Sp such that during time slot i one node in each cell

in Si transmits at power P and link rate r.

Theorem 5 Given c > 0, consider the tessellation of ℜ2 into c × c square cells with
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exactly one transmitting node in each square. Assume the bounded propagation model

given by (2.2) with parameters α, γ and the capacity link bit-potential model (2.3) with

noise power No. Then for any P > 0 there exists a constant ZC > 0 depending on

c, α, γ, P/No such that for any d ≥ 0 there exists a link bit-potential r and a tdma

schedule S under which each node achieves a node rate ZC min
{
1, e−γd/d2+α

}
to all

receivers that are within Euclidean distance d of the node.

This theorem differs from Theorem 3 of [7] in that it is stated in terms of Eu-

clidean distance between transmitters and receivers rather than counting the number

of intermediate cells separating them. This leads to a different exponent. Moreover,

it is stated in a way that makes it clear that there is a constant ZC that applies for

all d ≥ 0. Note that the different transmitters may be transmitting to the same re-

ceivers. As long as the interference at the receiver is limited using the tdma schedule,

the transmissions will be successful. The proof given below is based to a considerable

degree on the proof in [7].

Proof: Given propagation model parameters α, γ, noise power No, a tessellation of

ℜ2 into c × c square cells, and P > 0, let do denote the unique value such that

e−γdo/d2+α
o = 1, and let

Ψ =
∞∑

i=1

i

(i − 1/2)α
e−γc(i−1) (2.10)

Note that 0 < do ≤ 1 and that Ψ < ∞ when either γ > 0 or γ = 0 and α > 2, which

are the requirements for the propagation model. We will prove the theorem with

ZC =
1

2

1
(

2
c

+ 3
do

)2 ln

(

1 +
1

No

P
+ 8Ψ

2α

)

.

We first establish the attainability of node-rate ZC e−γd/d2+α for all d ≥ do. Let

us therefore fix d ≥ do. As illustrated in Figure 2.4, partition ℜ2 into super-squares,
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Figure 2.4: The partition into kc × kc super-squares, shown with k = 4. The shaded
square in the center marks the cell where the transmitting node is lo-
cated. The receiver is located within distance d of the transmitter. The
cells marked ”1” contain the eight nearest interfering transmitters. Those
marked ”2” contain the next 16 nearest interfering transmitters.

each composed of k2 cells, where

k =

⌈
2d

c
+ 2

⌉
.

Index the cells in each super-square in raster order. Consider the periodic tdma

schedule with period k2 such that in the ith slot of each period, from the cell in each

super-square indexed by i, the transmitter in this cell transmits with power P at link

bit-potential

(
2

c
+

3

do

)2

ZC
e−γd

dα
=

e−γd

dα

1

2
ln

(
1 +

1
No

P
+ 8Ψ

2α

)
. (2.11)

We will show that at any receiver within distance d of one of the transmitters, the

SINR is large enough to support the link bit-potential given in (2.11), i.e.,

1

2
ln(SINR + 1) ≥ e−γd

dα

1

2
ln

(
1 +

1
No

P
+ 8Ψ

2α

)
. (2.12)
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Since the node-rate is the link bit-potential divided by k2, it will directly follow that

the attainable node-rate is at least

(
2

c
+

3

do

)2

ZC
e−γd

dα

1

k2
≥

(
2

c
+

3

do

)2

ZC
e−γd

dα

1
(

2d
c

+ 3
)2

≥
(

2

c
+

3

do

)2

ZC
e−γd

d2+α

1
(

2
c

+ 3
do

)2

= ZC
e−γd

d2+α
(2.13)

which will complete the proof of the theorem.

Accordingly, as illustrated in Figure 2.4, consider a transmitter and receiver at

most d apart in Euclidean distance. Note that there is one interfering transmitter in

each cell of the other super-squares with the same index as the cell containing given

transmitter. With PS and PI denoting, respectively, the power received from the

intended and the interfering transmitters,

SINR =
PS

N0 + PI

. (2.14)

Since the Euclidean distance between the transmitter and receiver is at most d

PS ≥ Pη(d) = P min

{
1,

e−γd

dα

}
= P

e−γd

dα
, (2.15)

where the last equality uses the facts that d ≥ do and do ≤ 1.

Next, to bound the interfering power, note that, as illustrated in Figure 2.4, the

closest 8 interferers to the receiver are at distance kc−d−c or more, the next closest 16

interferers are at distance 2kc− d− c or more, and so on. The power from interfering
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nodes can thus be upper bounded as

PI ≤
∞∑

i=1

8iPη(ikc − d − c) ≤
∞∑

i=1

8iP
e−γ(ikc−d−c)

(ikc − d − c)α

= 8P
e−γd

cαkα

∞∑

i=1

i

(i − d+c
kc

)α
e−γkc(i− 2d+c

kc
)

≤ 8P
e−γd

cαkα

∞∑

i=1

i

(i − 1
2
)α

e−γc(i−1) = 8PΨ
e−γd

cαkα
(2.16)

≤ 8PΨ

2α
(2.17)

where the second inequality uses the formula for η, the third inequality uses our choice

of k, including the fact that k ≥ 1, and the fourth inequality again uses our choice of

k, as well as the fact that e−γd/dα ≤ 1 for d ≥ do.

Substituting (2.15) and (2.17) into (2.14) gives

SINR ≥ P e−γd

dα

No + 8PΨ
2α

=
e−γd

dα

1
No

P
+ 8Ψ

2α

It now follows that

1

2
ln(1 + SINR) ≥ e−γd

dα

1

2
ln

(
1 +

1
No

P
+ 8Ψ

2α

)

This demonstrates (2.12) and completes the proof of the theorem for d ≥ do.

Next, we show that for d < do a rate of ZC is attainable. As d decreases, the

lower bound to PS in (2.15) increases and the upper bound to PI in (2.17) is the same

as for d = do, thereby causing the lower bound to SINR to increase. Therefore for

d < do, achievable node rate is at least as large as that for d = do which is ZC . This

completes the proof of the theorem. �

The next theorem extends the previous theorem to the threshold link bit-potential

model.
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Theorem 6 Given c > 0, consider the tessellation of ℜ2 into c × c square cells

with exactly one transmitting node in each cell. Assume the bounded propagation

model (2.2) with parameters α, γ, and the threshold link bit-potential model (2.4) with

parameters by B, τ, No. Then there exists a constant ZT > 0 depending on c, α, γ, τ ,

but not B, No, such that for any d ≥ 0, there exists P > 0 and a tdma schedule S

under which each node can attain a node rate BZT min
{
1, 1

d2

}
to all receivers within

Euclidean distance d of the transmitter. The required power P increases to infinity

as d → ∞.

Proof: Given propagation model parameters α, γ, given link bit-potential model pa-

rameters B, No, τ , and given a tessellation of ℜ2 into c × c square cells, let Ψ be

defined as in (2.10). We will prove the theorem with

P =
2τNo

min
{

1, e−γd

dα

} (2.18)

which grows to infinity as d → ∞, and

ZT =
1

(
max

{
2
c

+ 2, (16Ψ)1/α

c

}
+ 1
)2 .

We first establish the attainability of node-rate BZT /d2 for all d ≥ 1. Let us

therefore fix d ≥ 1. As in the previous proof, consider a partition of ℜ2 into super-

squares, each composed of k2 cells, where

k =

⌈
max

{
2
d

c
+ 2,

(16Ψ)1/α

c
,
(16Ψ)1/α

c
d

}⌉
. (2.19)

As before, index the cells in each super-square in raster order, and consider the

periodic tdma schedule with period k2 such that in the ith slot of each period, from

the cell in each super-square indexed by i, a transmitter transmits at link bit-potential
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B with the power P specified in (2.18). The locations of the transmitters within their

respective cells is arbitrary. To prove the theorem, we will show that at a receiver

located within Euclidean distance d of any of the transmitters, the SINR is at least τ .

It will then follow that with this schedule, the node-rate attained by each transmitter

to such a receiver is B/k2, which, we will show, is at least BZT min
{
1, 1

d2

}
.

As in the previous proof, consider a transmitter and receiver at most distance d

apart. Note that there is one interfering transmitter in each cells of the other super-

squares with the same index as the transmitting cell. With PS and PI denoting,

respectively, the power received from the intended and the interfering transmitters,

SINR =
PS

N0 + PI
=

1
No

PS
+ PI

PS

. (2.20)

To show SINR ≥ τ , it suffices to show that both terms in the denominator of the

right hand side are at most 1/(2τ). Using (2.18), the first term in the denominator

of (2.20) is

No

PS
≤ No

Pη(d)
=

No

P min
{

1, e−γcd

dα

} =
1

2τ
.

Next, using (2.19), (2.18) and (2.16), which uses k ≥ 2d
c

+ 2, the second term in the

denominator is

PI

PS
≤

8PΨ
cαkα e−γd

P min
{

1, e−γd

dα

} =
max

{
16Ψ
cα e−γd, 16Ψ

cα dα
}

2kα
≤ 1

2τ
.

Having shown that both terms in the denominator of (2.20) are at most 1/(2τ), it

follows that SINR ≥ τ , which implies that link bit-potential B is attainable. There-
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fore, the attainable node-rate is

B

k2
≥ B

(
max

{
2d

c
+ 2, (16Ψ)1/α

c
, (16Ψ)1/α

c
d
}

+ 1
)2

=
B

d2

1
(
max

{
2
c

+ 2
d
, (16Ψ)1/α

c
1
d
, (16Ψ)1/α

c

}
+ 1
)2

≥ B

d2

1
(
max

{
2
c

+ 2, (16Ψ)1/α

c

}
+ 1
)2 =

BZT

d2

where the second inequality uses d ≥ 1. This completes the proof of the main part of

this theorem.

Next we show that for d < 1 rate BZT is achievable. Note that as d decreases

below 1, PS increases and PI can be lower bounded by the same quantity as for d = 1.

Thus, the lower bound to SINR increases. This shows that rate BZT is achievable

for d < 1.

It remains only to argue that P must increase to infinity as d → ∞. If not, then

the received power at distance d from a transmitter goes to zero as d → ∞. Therefore,

as can be seen from (2.20), SINR → 0, and consequently, successful transmission is

not possible for all sufficiently large d. �

The following corollaries to the previous two theorems, which corresponds to

Corollary 1 to Theorem 3 in of [7], will be used to establish suitable node-rates for the

delivery hop of routes. They follow simply by interchanging the roles of transmitter

and receiver in the proofs of the two theorems.

Corollary 7 Given c > 0, consider the tessellation of ℜ2 into c× c square cells with

exactly one transmitting node in each cell. Assume the bounded propagation model

given by (2.2) with parameters α, γ and the capacity link bit-potential model (2.3)

with noise power No. Then for any P > 0 there exists a constant ZC > 0 depending

on c, α, γ, P/No such that for any d ≥ 0 there exists a tdma schedule under which a
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receiver at an arbitrary point successfully receives data at rate ZC min
{
1, e−γd/d2+α

}

from nodes transmitting, during the slots assigned to that cell, with power P at a

suitable link bit-potential from any point within distance d of the receiver.

Corollary 8 Given c > 0, consider the tessellation of ℜ2 into c × c square cells

with exactly one transmitting node in each cell. Assuming the bounded propagation

model (2.2) with parameters α, γ, and the threshold link bit-potential model (2.4)

with parameters by B, τ, No. Then there exists a constant ZT > 0 depending on

c, α, γ, τ , but not B, No, such that for any d ≥ 0, there exists P > 0 and a tdma

schedule under which a receiver at an arbitrary point successfully receives data at rate

BZT min
{
1, 1

d2

}
from nodes transmitting, during the slots assigned to that cell, with

power P at a link bit-potential B from any point within distance d of the receiver.

The required power P increases to infinity as d → ∞.

Before we end the section, we make note that in all the above theorems and

corollaries we assume that each cell contains exactly one node. However, it should be

easy to see in the scenario where some nodes are empty, the rates in the theorems,

and hence the corollaries, would still be achievable as the signal and interfering power

can still be bounded by the same quantities as in the proof of the theorems.

2.6 Link-Throughputs: Draining and Delivery

In this section, we establish the link-throughputs for the draining and delivery

phases. This is done by establishing link-schedules for the two phases by using the

tdma schedules established in the theorems and corollaries in the previous section.

We first consider the draining phase. Since every node in the network acts as

a source and no relaying takes place during this phase, the entire node-rate at the

source during the delivery phase is devoted to transferring its own data to all its

receptors.
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Lemma 9 For each n, let Pn be a random extended network on An, and for each

(s, d) ∈ Pn let there be m routes from s to d, each having its receptor within distance an

of the source. Then under the bounded propagation model (2.2) there exist constants

ZC , ZT and with probability approaching one as n → ∞ there exists a link-schedule

depending on n such that the link-throughput for every draining links is

Tdr(an) =






ZC min

{
1,

e−γan

aα+2
n

}
1

m ln n
under the capacity link bit-potential model

BZT min

{
1,

1

a2
n

}
1

m lnn
under the threshold link bit-potential model

Proof: Let c > 0. First, for the capacity link bit-potential model, consider an overlay

of An with a tessellation of squares of side length c. Let Sn = (S1,..., Sp) be the

tdma schedule allotting time slots to the cells in the tessellation established using

Theorem 5 for nodes transmitting over distance an. In order to construct the draining

link schedule we need to know the maximum number of links originating in a cell.

Let Ni be the number of nodes in a cell and let Nmax = maxi Ni. Since each

node has m receptors, there are mNi links originating out of the ith cell. Label them

1,..., mNi and let Li be the set of links labeled i in all the cells. In order to assign

each link at least one transmitting slot in the link-schedule we need mNmax periods

of the tdma schedule. Consider the draining link schedule

LS =
(
(S1

n, L1), (S2
n, L2),..., (SmNmax

n , LmNmax)
)
,

where Si
n = Sn is called the i epoch of the tdma schedule. Transmissions over the

links labeled i take place in the ith epoch of the tdma schedule.

The node-rate at which one node in each cell can transmit to all receivers located

within distance an given by Theorem 5 is R(an) = ZT min{1, e−γana−α−2
n }. Since
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transmissions over a link take place in precisely in one epoch of the tdma Schuyler

and since there are mNmax total epochs, the link-throughput is

Tdr(an) = ZC min

{
1,

e−γan

aα+2
n

}
1

mNmax

From Lemma 13 in the appendix, we know that with probability approaching one

Nmax ≤ ln n, where the maximum is over all cells in the network region. Thus,

with probability approaching one as n approaches infinity, the link-throughput during

draining phase is,

Tdr(an) = ZC min

{
1,

e−γan

aα+2
n

}
1

m lnn

The proof for the threshold based model follows a similar argument. �

The following corollary, which is a dual of the previous lemma, gives the link-

throughput at which a destination can receive data from its deliverers during the

delivery phase.

Corollary 10 For each n, let Pn be a random extended network on An, and for each

(s, d) ∈ Pn let there be m routes such that the deliverer is within distance an of the

destination. Then under the bounded propagation model (2.2) there exist constants

Z ′
C , Z ′

T and with probability approaching one as n → ∞ there exists a link schedule

depending on n such that each destination can receive from each one of its deliverers

at link-throughput

Tde(an) =






Z ′
C min

{
1,

e−γdn

aα+2
n

}
1

a2
n ln n

under the capacity link bit-potential model

BZ ′
T min

{
1,

1

a2
n

}
1

a2
n ln n

under the threshold link bit-potential model

Proof: Let c > 0. First, for the capacity link bit-potential model, consider an overlay
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of An with a tessellation of squares of side length c. Let Lde,i denote the number

of delivery links the originate in cell i. Label these links 1, 2,..., Ldr,i. Let Lde =

maxi Lde,i, where the maximum is taken over all cells. Let Sn = (S1,..., Sp) be the

tdma schedule allotting time slots to the cells in the tessellation established using

Theorem 5 for nodes transmitting over distance an. To construct the link-schedule

for delivery, consider Lde periods of this tdma schedule. In the ith period of the

tdma schedule the delivery node in each cell transmits over the link labeled i in

all time slots that are assigned to it. The node-rate at which one node in each

cell can transmit to all receivers located within distance an given by Theorem 5

is R(an) = ZT min{1, e−γana−α−2
n }. Since transmissions over a link take place in

precisely in one period of the tdma schedule and since there are Lde total periods, the

link-throughput is

Tde(an) = ZC min

{
1,

e−γan

aα+2
n

}
1

Lde

Next we upper bound Lde, by the product of maximum number of nodes within

distance an of each cell and the maximum number of nodes that can choose a given

node as destinations. Since the distance between a destination and its deliverer is

at most an, using the Chernoff bound it can be shown that there exists δ such that

with probability approaching one as n approaches infinity there are at most δa2
n nodes

within distance an of the deliverer. Using the Chernoff bound it can also be shown

that the there exists δ′ such that with probability approaching one as n approaches

infinity the number of sources that choose a give node as destination is at most

δ′ ln n. Thus, with probability approaching one as n approaches infinity, Lde is less

than δδ′a2
n lnn.

Thus, with probability approaching one as n approaches infinity the link-throughput
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for the delivery phase is

Tde(an) = Z ′
C min

{
1,

e−γan

aα+2
n

}
1

a2
n ln n

,

where Z ′
C = ZC/(δδ′).

The proof for threshold link bit-potential model follows a similar argument. �

We now establish achievable link-throughputs for the draining and delivery phases

for the routes created in Section 2.4. We do this for the capacity link bit-potential

model. The arguments for threshold rate-model are similar. Recall that with the

global tessellation of An into squares of side c, all receptors are within distance wn +

2
√

2c of the source where wn is as given in (2.7). From Lemma 9, the link-throughput

for the draining phase is

ZCe−γ(wn+2
√

2c) 1

(wn + 2
√

2c)α+2

1

m ln n
≥ Z ′

C

n−γcκ/
√

2

m ln nα+3
,

where Z ′
C = ZCe−2

√
2γc(

√
2c/3)2

√
2γcκ(2

√
2c(κ+1))−α−2. As shown in Corollary 3, with

probability approaching one as n approaches infinity there are φ ln n routes for every

s-d pair. Thus, with probability approaching one, during the draining phase the link-

throughput is Z ′′
Cn−γcκ/

√
2(ln n)−α−4 where Z ′′

C = Z ′
C/(φ). It can be similarly shown

that there exists Z ′′′
C such that link-throughput Z ′′′

C n−γcκ/
√

2(ln n)−α−5 is achievable

for the delivery phase.

Finally, if γcκ/
√

2 < 1/2, then for large n there exists ZC,1, a < 1/2 such that

link-throughput ZC,1n
−a is achievable for both draining and delivery phases. Also,

note that the length of link-schedule for draining and delivery phases are O((lnn)2)

and O((lnn)3) respectively.
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2.7 Link-Throughput: Trunk Phase

In this section, we want to establish achievable link-throughput for the trunk

phase. We proceed in the same way as for draining and delivery phases. We first

establish the tdma schedule such that one relay node in each cell can transmit to each

one of its neighboring relay nodes. We calculate the node rate for this tdma schedule.

Using this tdma schedule and the maximum number of trunk-links that originate in

a cell construct the link-schedule for trunk phase.

Recall from Section 2.4 that with a global tessellation if An into squares of side

c, two neighboring relay nodes are at most distance (
√

2 +
√

5)c apart. Now from

Theorems 5 and 6 it can be easily seen that each relay node can transmit to every

one of its neighboring relay nodes at node-rates

ZC,tr , min

{
1,

e−γ(
√

2+
√

5)c

((
√

5 +
√

2)c)α+2

}
under capacity-link rate model

ZT,tr , min

{
1,

1

((
√

5 +
√

2)c)2

}
under threshold link bit-potential model .

Note that ZC,tr and ZT,tr do not depend on n. Also, the length of tdma schedule is a

constant, that is, it does not depend on n.

We next upper-bound the number of trunk-links that originate in a cell. Note that

number of trunk-links originating in a cell is same as the number of routes on which

the designated relay node for that cell lies. We refer to this number as the loading

factor of the relay node or alternatively the loading factor of the square containing

the relay node. Let Mn denote the number of squares in the global tessellation of An.

It is easy to see that for large n, Mn ≤
⌈

2
√

n
c

⌉2

≤ 9n
c2

. Number the squares 1,..., Mn,

and let Li(n) denote the loading factor of the ith square. Also, let L(n) = maxi Li(n).

We observe that if an s-d pair contributes a path or paths to the Li(n), then it must

be that the routing corridor for s-d intersects the ith square.
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Lemma 11 For a tessellation of the network region into squares of side c, there exists

a constant δ such that

Pr(L(n) ≤ δ
√

n ln n) → 1 as n → ∞ .

The proof for the lemma is given in Appendix 2.C.

To get an achievable link throughput for the trunk phase consider the link-schedule

that is concatenation of L(n) periods of the tdma schedule. During the ith period

of the link schedule the designated relay node transmits over the ith link originating

in the node, in the times slots assigned to its cell. Since the node-rate under the

tdma schedule is ZC,1 and since each link gets transmitted over in precisely one

of the tdma schedule periods, an achievable link-throughput is ZC,1/L(n). Using

Lemma 11, with probability approaching one as n approaches infinity link-throughput

ZC,tr/(δ
√

n ln n) = Z ′
C,tr/(

√
n ln n) is achievable for the trunk phase.

Following similar arguments, an achievable link-throughput under the threshold

rate model is Z ′
T,1/(

√
n ln n). Finally, note that the length of the link schedule is

O(
√

n ln n).

2.8 Completion of Proof

In this section, we establish a link-schedule for the system and show that this

link-schedule achieves a throughput of Ωp(1/
√

n). We construct this link-schedule

for the routes chosen in Section 2.4 and make use of draining, delivery and trunk

link-schedules that were constructed in Sections 2.6 and 2.7.

If γ > 0, choose c > 3
√

2γ +
√

18γ2 + ln 6 and κ = 1
2
√

2cγ
. Else if γ = 0, choose

κ = 1 and c >
√

ln 6 + 3. Note that in both cases γcκ/
√

2 < 1/2.

For each n, consider an overlay of An with a tessellation of squares of side c. Since

c and κ satisfy the conditions in Corollary 3, from Section 2.4, w. p. a. one there
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exist φ lnn routes for every s-d pair in PN such that the receptor and deliverer on

each route is within distance wn + 2
√

2c of the source and destination respectively,

and each intermediate hop is of length at most (
√

2 +
√

5)c.

In Sections 2.6 and 2.7 we constructed draining, delivery and trunk link-schedules

of length Op((lnn)2), Op((lnn)3) and Op(
√

n ln n) respectively. Thus, there exists

a δ1 such that w. p. a. one the lengths of these schedules are less than δ1(ln n)2,

δ1(lnn)3 and δ1

√
n ln n, respectively. Also w. p. .a. one, the number of bits that

can be transmitted over each link in one period is ZC,1n
−a over draining and delivery

schedule and ZC,tr over the trunk schedule. Now in each period of the overall link-

schedule, we want the same number of bits to be transmitted over each link. Thus,

consider the overall link-schedule that is a concatenation of ⌈na⌉, 1 and ⌈na⌉ periods

of the draining, trunk and delivery link-schedules, respectively. Then the length of

the overall link schedule is L ≤ δ1(n
a(ln n)2 +na(ln n)3 +

√
n ln n). Since a < 1/2, for

large n, L < δ2

√
n ln n, where δ2 = δ1 + 1. It should be easy to see that w. p. a. one

in this schedule Z = min{ZC,1, ZC,tr} bits can be transmitted over one period. Thus,

with probability approaching one as n approached infinity, throughput Z
δ2
√

n lnn
is

achievable for every link and consequently for every route. Since, with probability

approaching one as n approaches infinity, there are φ lnn routes for every (s, d, ) ∈ Pn,

the throughput of the system is Z
δ2
√

n lnn
×φ ln n = Ωp

(
1√
n

)
. This completes the proof

of the main result.

2.9 Concluding remarks

In conclusion, the gain in throughput in Franceschetti et al. [7] made over Gupta

and Kumar [1] come from using percolation to reduce the length of intermediate relay

hops to a constant distance as compared to the Gupta and Kumar version where all

hop lengths were O(lnn). This allows for more simultaneous transmissions to take

place throughout the network during the relaying phase and improves the relaying
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rate.

The gain from using the capacity link-rate model is that power at the transmit-

ters can now doesn’t have to increase with n as it has to with the threshold link-rate

model. However, using the capacity link-rate model means that the receivers, espe-

cially during draining and delivery slots, have to be able to receive at SINRs that

approach zero. Thus, under the threshold link-rate model we need a powerful trans-

mitter whereas under the capacity link-rate model we need a powerful receiver.

2.A Number of nodes in the network region

The follow lemma shows that the number of nodes, denoted Nn, in the network

region An, is Θp(n). That that Nn = Ωp(n) is used later when applying the union

bound.

Lemma 12

Pr(
πn

2
< Nn < 2πn) → 1 as n → ∞ . (2.21)

The probability that the number of nodes, Nn, in the network region An is between

πn/2 and 2πn and goes to 1 as n → ∞.

Proof: The number of nodes in the network region, Nn, is a Poisson random variable

with mean πn. Applying the Chernoff bound gives

Pr(Nn > 2πn) ≤ e−2sπn
E[esNn ] = e−2sπneπn(es−1)

for all s > 0. Choosing s = 1 gives

Pr(Nn ≤ 2πn) ≥ 1 − e−2πneπn(e−1)

1 − eπn(3−e) → 1 as n → ∞ .
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Applying the Chernoff bound again gives Pr(Nn > πn/2) → 1.

�

2.B Number of nodes in a each square of tessellation of An

In this appendix we find an upper bound to the number of nodes in the global

tessellation of An into square cells of side c.

Lemma 13 Given a tessellation of network region An into squares of side c, let Ni

denote the number of nodes in cell i, and let N = maxi N . If the nodes in the network

region are placed according to a Poisson process of unit intensity, then

Pr(N < ln n) → 1 n → ∞

Proof:

Let Mn be the number of squares in the tessellation of An. Since An is contained

in a square of side 2
√

n, it is easy to see that for all sufficiently large n

Mn ≤
⌈

2
√

n

c

⌉2

≤
(

2
√

n

c
+ 1

)2

≤ 9n

c2
. (2.22)

For any square i the number of nodes, Ni, is a Poisson distributed random variable

with mean c2. Applying the Chernoff bound gives,

Pr(Ni ≥ ln n) ≤ e−2s lnn
E[esNi] = e−2s ln nec2(es−1) (2.23)

for all s > 0. Thus,

Pr(N ≥ ln n) = Pr(max
i

Ni ≥ ln n) ≤ Mn Pr(N1 ≥ ln n)

≤ 9n

c2

ec2(e−1)

n2
→ 0 n → ∞,
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where the first inequality follows from union bound and the second inequality follows

from (2.22) and (2.23) with s = 1.

�

2.C Loading Factor

In this section, we provide a proof of Lemma 11. That is, we provide an upper

bound to the loading factor of every square cell in the global tessellation of An.

Proof of Lemma 11:

Recall that Li is the loading factor of the ith cell and L(n) = maxi Li. For a fixed

δ to be chosen later and any n,

Pr(L(n) ≤ δ
√

n ln n) = Pr
(
max

i
Li ≤ δ

√
n ln n

)

≥ 1 −
Mn∑

i=1

Pr(Li > δ
√

n lnn) (2.24)

where Mn ≤ 9n
c2

is the number of cells in the network region. Let Aij = 1 if the

corridor for the jth (s, d) pair intersects the ith cell and zero otherwise. Recall that

Li(n) is the number of routes that contain the ith cell and also, as shown in Section

2.4, that if the corridor for an (s, d) pair intersects cell i, then cell i may be part of

at most nine routes for that (s, d) pair. Thus, Li ≤
∑Nn

j=1 9Aij. Note that for a given

i, Ai1, Ai2... are independent and identically distributed. However the Li’s are not

identically distributed. Instead Li will generally have a higher value for squares near

the center of An than its boundary. Let pi,j be the probability that Ai,j = 1. Then

let a , δ
√

n ln n, applying the Chernoff bound,

Pr(Li(n) > a) ≤ min
s>0

e−sa
E[esLi(n)] ≤ min

s>0
e−sa

E

[
e9s

PNn
j=1

Aij

]

= min
s>0

e−sa

∞∑

k=0

Pr(Nn = k) E

[
e9s

Pk
j=1

Aij

]
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√
n − r

Figure 2.5: ∆(s, d) ≤ c/
√

2 + wn if and only if the destination lies in the striped
region. The radius of the circle at origin is c/

√
2.

= min
s>0

e−sa
∞∑

k=0

Pr(Nn = k)
k∏

j=1

[pi,je
9s + (1 − pi,j)] (2.25)

In order to make the evaluation of the above bound tractable, we want a uniform

upper bound on pi,j.

Lemma 14 For sufficiently large n, there exists µ such that

pi,j ≤ pn , µ
ln n√

n
, for all i, j . (2.26)

Proof: We setup a polar coordinate system such that the origin lies at the center

of the network region. As the probability of intersection of a square by a random

s-d pair routing corridor is highest at the center, we consider the ith square to lie

at the center of the network region, i.e., to contain the origin. Since such a square

of side c is completely contained in a circle of radius c/
√

2, we upper bound pi,j by

the probability of the routing corridor for (s, d) intersecting a circle of radius c/
√

2

centered at the origin.

We place the source, s, at a point (r, θ) and find an upper bound to the probability

that the routing corridor for this s intersects the circle at the origin and then we

average over r and θ. Let ∆(s, d) denote the distance from the origin to the line
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joining s and d. Since the routing corridors have width wn, a routing corridor for an

(s, d) pair can intersect the circle at the origin only if ∆(s, d) ≤ c/
√

2 + wn. Thus,

Pr(s-d routing corridor intersects cell | s = (r, θ))

≤ Pr(∆(s, d) ≤ c/
√

2 + wn | s = (r, θ))

For r > c/
√

2 + wn, ∆(s, d) ≤ c/
√

2 + wn if and only if the destination lies in the

vertically striped region in Figures 2.5.

Pr (s-d routing corridor intersects square i|s = (r, θ))

≤






4δ1 ln n
π
√

n
+ (c/

√
2)√

r2−(c/
√

2)2

(r+
√

n)2

πn
+ (c/

√
2)√

r2−(c/
√

2)2

(
√

n−r)2

πn
if r > c/

√
2 + wn

1 if r ≤ c√
2

+ wn

,

where the upper bound is easily obtained by calculating the areas of the striped region

in Figure 2.5. Since the joint probability density of the polar coordinate locations is

p(r, θ) = 2r
n

1
2π

, we have

pn,i =

∫ 2π

0

∫ √
n

0

Pr
(s-d routing corridor

intersects square i

∣∣∣s = (r, θ)
)
p(r, θ) drdθ

≤
∫ c√

2
+wn

0

2r

n
dr +

∫ √
n

c√
2
+wn



4δ1 ln n

π
√

n
+

(c/
√

2)√
r2 − (c/

√
2)2

(r +
√

n)2

πn

+
(c/

√
2)√

r2 − (c/
√

2)2

(
√

n − r)2

πn



 2r

n
dr

≤ (c/
√

2 + wn)
2

n
+

4δ1 ln n

π
√

n
+

4c

π
√

n
≤
(

4δ2
1 ln n√

n
+

4δ1

π
+

4c

π ln n

)
ln n√

n

≤ µ
ln n√

n
, pn

where µ = (2 + 4δ1/π). �
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Choose δ = 27µπ and note that a = δ
√

n ln n = 27πnpn. Substituting the uniform

bound for pi,j, obtained in Lemma 14, in (2.25)

Pr(Li > δ
√

n lnn) ≤ min
s>0

e−s27πnpn

∞∑

k=0

Pr(Nn = k)[pn(e9s − 1) + 1]k

= min
s>0

e−s27πnpn E[eNn ln(pn(e9s−1)+1)] = min
s>0

e−s27πnpneπnpn(e9s−1)

≤ e−πnpn(3−e),

where the last equality uses the known form of the moment generating function of a

Poisson random variable and the last inequality uses s = 1/9. Then, from (2.24)

Pr(L(n) ≤ δ
√

n ln n) ≥ 1 −
Mn∑

i=1

e−πnpn(3−e)

= 1 − exp (−πnpn(3 − e) + ln Mn)

≥ 1 − exp

(
−πn

µ ln n√
n

(3 − e) + ln
9n

c2

)

→ 1 − 0 = 1 as n → ∞ ,

which concludes the proof of Lemma 11. �
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CHAPTER III

Reliability Efficiency Tradeoff in Wireless Sensor

Networks

3.1 Introduction

Distributed source coding allows a number of spatially separated correlated sources

to encode in a way that exploits their mutual correlations. In particular, as illustrated

in Fig. 3.1, suppose N identical, discrete-time, discrete-valued, jointly stationary and

ergodic sources, denoted X1,..., XN , are to be independently encoded for joint decod-

ing. Then Slepian-Wolf theory [1, 2, 3] shows that encoders for the N sources can be

designed to encode temporal blocks at a rate approximately equal to 1
N

H∞(X1,..., XN)

bits per source per time unit (averaged over the N sources), and a joint decoder can

reconstruct X1,..., XN with arbitrarily small error probability, where H∞ denotes

entropy-rate. If the correlation between sources is significant, this rate can be sub-

stantially smaller than 1
N

∑N
i=1 H∞(Xi), the minimum encoding rate if each source is

optimally encoded in a way that it can be decoded without access to the encodings of

the other sources. This, for example, could be very useful in a field gathering sensor

network in which each sensor measures a quantity like temperature that varies across

the field and that is correlated with the measurements made at nearby sensors.

Although the encoders operate separately, in its basic form, the decoding is done
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d

e1

eN

X1

X2

XN

e2
X̂1, X̂2, ..., X̂N

Figure 3.1: Distributed coding system. e1,..., eN do independent encoding while de-
coder d does joint decoding.

jointly with the result that if one encoder output is missing, for example, if one

encoder fails, as might happen in a sensor network when a sensor runs out of energy,

then the decoder can fail to correctly decode any of the sources. Thus a system that

employs distributed encoding to encode a large number of sources could be unreliable

due to its high sensitivity to the loss of encoded data from just one source.

One might, of course, limit the sensitivity to encoder failure by grouping sources

into blocks of say K sources and encoding/decoding each group separately from the

others. In this case, the failure of one encoder causes the failure of decoding of itself

and of all other sources in the group, but not of the sources in other groups. However,

this reduces the collaborative gain. To simplify the discussion and for concreteness,

from now on we assume that the N sources X1,..., XN come from a spatio-temporal

collection {Xij : −∞ < i, j < ∞}, where i indicates the spatial identity of the source

and j indicates time, such that (a) each source Xi = {Xij : −∞ < j < ∞} is tem-

porally IID and identical to every other source, (b) the spatial sample functions at

different times are independent, i.e. ..., X(−1), X(0), X(1),... are independent, where

X(j) = {Xij : −∞ < i < ∞} is the sample function at time j, and (c) the sources

{..., X−1, X0, X1,...} form a spatially stationary collection1. Among other things, these

assumptions imply that H∞(X1,..., XN) equals the joint entropy H1(X1,..., XN ) of

1Actually, (b) and (c) imply (a), but the latter is stated for transparency
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the collection of time-one random variables from each source, and that H∞(Xi) is

the same for all i and equals H1(X1), the entropy of the first random variable from

the first source. It is also well known that 1
K

H1(X1,..., XK) decreases with increasing

K (strictly so, if the sources are correlated). Therefore, as K decreases, the encod-

ing rate of the aforementioned grouping scheme increases from 1
N

H1(X1,..., XN ) to

1
K

H1(X1,..., XK). Thus, a trade-off is possible: increased reliability (reduced sensi-

tivity) for a loss in encoding efficiency, with smaller values of K causing a larger

trade-off.

Another scheme for limiting sensitivity is to encode each source Xi at rate of

H1(Xi|X1, ..., Xi−1), in which case the average rate across all sources will again be

1
N

H1(X1,..., XN), the minimal value. Slepian-Wolf theory [1, 3] shows that if the data

from all the encodings at these rates is received by the decoder, it can reconstruct

X1,..., XN with arbitrarily high probability. Moreover, it is natural to expect that

if the data from only the ith encoder is lost, a decoder can still correctly decode

with high probability2 the data from sources X1,..., Xi−1. For example, if data from

encoders is lost independently with probability p, then, as we compute later, this

implies that on the average 1 − 1
N

1−p
p

[1 − (1 − p)N ] fraction of the sources cannot

be decoded. While this sequential scheme gains reliability without a loss of coding

efficiency, when N is large, the fraction of sources that are not decodable approaches

one, meaning this scheme is not so useful. On the other hand, when N is large, this

scheme can be combined to good effect with the grouping scheme of the previous

paragraph.

The goal of this chapter is to propose, quantitatively analyze and compare schemes,

such as those in the previous two paragraphs, for trading coding efficiency for in-

creased reliability (reduced sensitivity). A long term goal is to understand the funda-

mental limits of this trade-off. While this chapter does not find the ultimate limits,

2That this is indeed possible is shown in Section 3.4.
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its results do provide bounds as well as practical schemes for attaining increased

reliability.

We first explore schemes we call rigid, including the two schemes above, in which

successful decoding is presumed to occur for source i if and only if all encodings

from a designated set of sources Si, called the dependence set for i, is received. For

example, in the case of the grouping scheme above, Si consists of all sources in the

same group as i, while for the sequential scheme, Si = {1,..., i}. Next, exploiting

the fact that Slepian-Wolf theory uses binning-type encoding, and that binning-type

encoding does not actually rely on knowledge of a specific dependence set, we consider

flexible schemes in which decoding is presumed to occur for source i if and only if all

sources in at least one of a collection of dependence sets is received. Rigid is a special

case of flexible, and as we shall see, flexible schemes perform better.

In order to be able to quantify the reliability/sensitivity of a given scheme we

assume that encoders fail independently with probability p, and that once they fail,

they are lost forever. We make the latter assumption because the encoding methods

to be considered operate on temporal blocks of data, and in this initial effort we do

not wish to deal with the possibility of an encoder failing during a block, or of the

probability of encoder failure during a block increasing as the block length increases,

or of having to make the unrealistic assumption that block loss probabilities are

independent of block length. As one example, this scenario models the situation that

sensors are dropped from an airplane and fraction p fail upon hitting the ground. It

also applies to the situation that all encoders are functioning initially; however, we

know that encoders will fail over time, so we design the system for a specified nonzero

failure probability p.

Continuing with the goal of quantifying reliability/sensitivity, we adopt two pri-

mary performance measures: rate R and loss factor L. By rate we mean the average

number of encoded bits per time unit per source. By loss factor we mean the ex-
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pected fraction of sources that are decoded incorrectly. We focus mainly on schemes

we call lossless, in which incorrect decoding is due primarily to failure of one or more

encoders. In other words, in the absence of encoder failure, the coding is essentially

lossless3.

Let F denote a random variable representing the fraction of sources that are

incorrectly decoded. Then aside from loss factor L, which is the expected value of F ,

one might also be interested in the variance of F , or some other statistic such as the

cumulative distribution function of F . Though in this initial study we focus mainly

on the loss factor L, we also give a few results for the variance of F . When the number

of sources N is much larger than the group size K, the law of large numbers implies

that the probability distribution of F concentrates near L = E[F ]. The variance

estimates will confirm this. Thus, the loss factor L is a generally good measure of

reliability.

We should make clear that the rigid schemes in this chapter were first proposed

by Marco and Neuhoff [4]. However, this chapter is the first to provide a rigorous

theoretical formulation for the reliability-efficiency problem. This chapter also ex-

tends the Slepian-Wolf theorem that is required to evaluate the rates for the rigid

schemes. We also provide a more comprehensive analysis of these schemes in terms of

the variance of the loss factor of the schemes. As such, we do keep the introduction

of the schemes in this chapter.

The chapter is organized as follows. Section 3.2 reviews distributed coding and the

Slepian-Wolf theorem. Section 3.3 introduces rigid systems, the model for encoder

failure and the two performance measures. Section 3.4 extends the Slepian-Wolf

Theorem to the situation that not all encoder outputs are available at the decoder.

Several rigid schemes are proposed and analyzed in Section 3.5, and their perfor-

mances compared in Section 3.6. To make the analysis and comparison, we consider

3Like codes in the usual Slepian-Wolf theory, in the absence of encoder failure these codes correctly
decode with probability less than, but very close to, one.
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a scenario in which the N sources form a Markov chain of IID sources. The specific

parameters of the sources come from considering uniform quantization of samples of

an underlying Gauss-Markov random process. Section 3.7 extends the formulation

to include flexible schemes. Several such schemes are proposed and analyzed in Sec-

tion 3.8, and the performances of flexible and rigid schemes are compared in Section

3.9, where it is found that flexible schemes significantly outperform rigid, albeit with

some increase in complexity. Appendix A proves the extended Slepian-Wolf lemma

of Section 3.4, and Appendix B contains the loss factor calculations for the coding

schemes introduced in the chapter.

Finally, we mention the related work of which we are aware. Coleri and Varaiya [5]

suggest an explicit multipath communication scheme in which a source s1 compresses

its data with respect to a second source s2 only if s1 acts as a relay for s2. This

ensures that if data from s1 gets to the decoder the side information required to

decode it from s2 gets to the decoder as well. Chen and Berger [6] consider the lossy

version of a similar problem, where they study the trade-off between system robustness

and compression efficiency. A coding akin to flexible coding has also been used in

construction of codes for the multiple description problem [7]. Flexible coding also has

similarities with the CEO problem [8], where N sources independently observe and

encode corrupted versions of a single source and communicate it to a central decoder

which tries to reproduce the source within some desired fidelity. Applications of

flexible coding can be found in video coding literature. For example in [9], depending

on playback order, future or past frames are available at the decoder. An intermediate

frame that is flexibly encoded can be decoded using either of those frames.

3.2 Slepian-Wolf Distributed Lossless Coding

In this section we review the problem of distributed lossless coding, first inves-

tigated by Slepian and Wolf [1, 2, 3]. First consider the encoding of two correlated
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IID sources X and Y . From now on we drop subscripts and let H , rather than H1

or H∞, denote entropy or entropy-rate. From point-to-point information theory, we

know that in order to encode a source X losslessly, a rate of R > H(X) is necessary

and sufficient. Thus, if there are two sources (X, Y ) ∼ PX,Y (x, y), then to encode and

decode each of them individually would require rates RX > H(X) and RY > H(Y ).

However, if we do joint encoding and decoding, the point-to-point formula would sug-

gest a rate of R = RX + RY > H(X, Y ) to be sufficient. The question arises, what

rate would be sufficient in case the encoding is done independently and decoding is

performed jointly. The surprising answer, given by Slepian and Wolf, stated that

a sum rate of H(X, Y ) is also sufficient in the case of separate encoding and joint

decoding.

More generally, we consider a system of N sources X1,..., XN , as described in the

introduction, which we think of as spatially separated, each having an encoder that

sends the encoded source descriptions to a joint decoder. Let X denote the common

alphabet of the random variables in each source, and let Xm denote the set of all

m-tuples from X . Let Xm
i = (Xi1,..., Xim), and similarly define xm

i .

Definition 15 An (R1,..., RN , m) distributed source code for X1,..., XN consists of a

set of N encoder mappings

ei : Xm → {1,..., ⌈2mRi⌉}

and a decoder mapping

d : ×N
i=1{1,..., ⌈2mRi⌉} → XmN .

A system with the above code operates as follows. For each i, the encoder for the ith

source takes a temporal block of m source symbols xm
i and produces a sequence of
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bits bi = ei(x
m
i ). The decoder takes as its input the output bits from all the encoders

and produces N blocks as its output x̂ = d(b1,...bN ), where x̂ = (x̂m
1 ,..., x̂m

N ). We

consider Ri to be the rate of the ith encoder.

Definition 16 The probability of error, Pe, of a distributed code is

Pe = Pe(e1,..., eN , d) = Pr (d(e1(X
m
1 ),..., em(Xm

N )) 6= (Xm
1 ,..., Xm

N )) .

In the following and elsewhere we use the notation ak
k→∞
≤ b to mean that ak is a

sequence such that lim supk→∞ ak ≤ b. Moreover, if ak = (ak,1,..., ak,n) is a sequence

of vectors and b = (b1,..., bN ), then ak

k→∞
≤ b means lim supk→∞ ak,i ≤ bi for i = 1 to

n.

Definition 17 A rate vector r = (r1,..., rN) is achievable for (X1,..., XN) if there

exists a sequence of distributed codes with rates Rk = (Rk,1,..., Rk,N) and error proba-

bilities Pe,k such that Rk

k→∞
≤ r and Pe,k → 0 as k → ∞. The Slepian-Wolf achievable

rate region, denoted RSW , is the set of all achievable rate vectors for (X1,..., XN ).

Slepian and Wolf [1, 3] gave the following characterization of the achievable rate

region.

Theorem 18 A rate vector (r1,..., rN) is achievable for (X1,..., XN) by distributed

source coding if and only if

rT ≥ H(XT |XT c)

for all T ⊂ {1,..., N}, where rT =
∑

i∈T ri, XT = {Xi : i ∈ T}, and H denotes

entropy. Equivalently, RSW is the set of all rate vectors satisfying the above.

For example, one can straightforwardly use this theorem to show that the rate

vector r is achievable if ri = H(Xi|X1,..., Xi−1), i = 1,..., N . Moreover, if in addition
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to stationarity X1,..., XN forms a stationary Markov chain, then ri = 1
N

H(X1,..., XN),

i = 1,..., N is achievable.

3.3 Rigid Codes

In the previous section, we looked at distributed coding for N sources, when all

the encoder outputs are present at the decoder. In this section, we propose a system

model that takes into account encoder failures. For this purpose, we again consider a

collection of sources X1,..., XN , as described in the introduction, for which we again

consider an (R1,..., RN , m) distributed source coding system with N encoders with

block length m, e1,..., eN , one for each source. However, we will now think of a decoder

as being composed of N (sub)decoders, d1,..., dN , one for each source. Moreover, the

domain and range of these decoders must be expanded to include the possibility that

one or more of the encoder outputs is not available, and that the decoder might not

attempt to decode. Specifically, the decoder for the ith source is a mapping

di : ×N
j=1{1,..., ⌈2mRj⌉, φj} → Xm ∪ {Φi}

where φj is a symbol indicating that no encoding of source j is received, and Φi is

a symbol indicating that decoding of source i is attempted and an error is declared

for this source. The ith decoder operates by applying di with arguments consisting

of whatever encoder outputs are received and φj’s where no encoding is received. To

formalize this, let Ii be the indicator function representing the success or failure of

encoder i. That is, Ii = 0 if encoder i fails, and Ii = 1 otherwise. Also, let

b̂i =






bi = ei(x
m
i ), Ii = 1

φi, otherwise

.
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Then it is b̂ = (b̂1,..., b̂N) to which the decoders are applied. In particular, the ith

decoder produces

x̂i = di(b̂1,..., b̂N ) .

As mentioned in the introduction, we assume that encoders fail independently of

each other with probability p, which we will refer to as the encoder failure probability4.

We assume that the encoders, once they fail remain dead for all time. Note that under

our assumption, I1,..., IN are i.i.d. with Pr(Ii = 0) = p.

As also mentioned in the introduction, in order to decrease sensitivity to encoder

failures, instead of requiring bits from all the encoders, the decoder for source i

may only need bits from a subset Si ⊂ {1,..., N} of the encoders. We call Si the

dependence set for source i and S = (S1,..., SN ) the dependence structure. Since the

decoder for source i requires at least some bits from the encoding of i, we make the

assumption that i ∈ Si for all i. To capture the idea of decoding from a subset of

encoders, we say a code conforms to a dependence structure S, if there exist functions

d̃i,Si
: ×j∈Si

{1,...⌈2mRj⌉} → Xm, i = 1,..., N , such that

di(b̂1,..., b̂N ) =






d̃i,Si
(b̂Si

), if Ij = 1 for all j ∈ Si

Φi, else

(3.1)

where b̂Si
= {b̂j : j ∈ Si}.

We now define a rigid distributed coding system s for X1,..., XN to be a dependence

structure S = (S1,..., SN ) and an (R1,..., RN , m) code conforming to S.

The dependence structure S of a rigid system s can be visualized in a natural

way as a balanced bi-partite graph D = (V1, V2, E), where V1 = {1,..., N} are graph

4Though we refer to encoder failure, there could actually be some other mechanism that prevents
the decoder from receiving the encoding of a source.
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nodes corresponding to the encoders, V2 = {1,..., N} are nodes (with the same names)

corresponding to the decoders, and E is the set of edges, where if j ∈ Si, there is

a directed edge (j, i) from j ∈ V1 to i ∈ V2. Note that since dependence graphs

are complete representations for dependence structures, we can use the two terms

interchangeably.

3.3.1 Performance

The metrics used to measure the performance of a system are average rate and

loss factor.

Definition 19 The average rate of a rigid system s, denoted Rav(s), is the average

of the rates at which the N sources are encoded:

Rav(s) =
1

N

N∑

i=1

Ri , (3.2)

where Ri is the rate of the ith encoder.

Definition 20 The loss factor of a rigid system s when the encoder failure probability

is p, denoted L(s, p), is the expected fraction of source values that cannot be correctly

reconstructed at the decoder, i.e.,

L(s, p) = E

[
1

N

N∑

i=1

I
(
Xm

i 6= di(b̂1,..., b̂N)
)]

=
1

N

N∑

i=1

Pr
(
Xm

i 6= di(b̂1,..., b̂N )
)

, (3.3)

where I(A) is an indicator function equaling 1 if the event A occurs, and 0 otherwise.

The loss factor of a rigid system is influenced by two phenomena: encoder failures

and coding errors. The latter occurs when the decoder fails to decode correctly even

when bits from all the encoders are received. To quantify the contributions to loss
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factor from these two phenomena, let Ai denote the event that Ij = 1 for all j ∈ Si,

and let Pe,i denote the probability of erroneously decoding source i given Ai. Then

L(s, p) =
1

N

N∑

i=1

Pe,i Pr(Ai) +
1

N

N∑

i=1

Pr(Ac
i) , (3.4)

where

Pr(Ai) = (1 − p)|Si| . (3.5)

We see from (3.4) that the loss factor of a system decomposes into two terms: the first

depending on the coding error and dependence structure, and the second depending

only on the dependence structure.

The first term can be upper bounded as

1

N

N∑

i=1

Pe,i Pr(Ai) ≤
1

N

N∑

i=1

Pe,i = L(s, 0) .

We call L(s, 0) the code loss factor, as here the entire probability of error comes

from coding errors. Since the second term in (3.4) depends only on the dependence

structure S, we give it a corresponding name.

Definition 21 The dependence structure loss factor5 is

Ld(S, p) = 1 − 1

N

N∑

i=1

Pr(Ai) . (3.6)

Combining (3.4) and the definitions of L(s, 0) and Ld(S, p), it is easily seen that

Ld(S, p) ≤ L(s, p) ≤ Ld(S, p) + L(s, 0) . (3.7)

5It will sometimes be referred to as the dependence graph loss factor.
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Also, note that Ld(S, p) can never be less than p, due to the convention in (3.1)

that decoder i will not attempt to decode whenever encoder i fails, which happens

with probability p. In the case of lossless codes, L(s, 0) is small and hence the loss

factor of a system is almost entirely determined by the dependence structure. For

this reason, from now on we primarily consider Ld(S, p) to be the loss factor. Also,

when designing a rigid system we think mainly in terms of choosing a dependence

structure.

3.3.2 Achievable rates and the rate-loss region and function

With the goal of focusing mainly on dependence structure, we now consider the

concept of rate for a dependence structure. Since in this chapter we focus on lossless

codes, i.e. codes that are lossless in the absence of encoder failures, the following

definitions include the constraint that L(s, 0) be asymptotically small.

Definition 22 A rate vector r = (r1,..., rN) is said to be achievable for depen-

dence structure S = {S1,..., SN} if there exists a sequence of rigid systems, sk,

each with structure S, having rate vectors Rk = (Rk,1,..., Rk,N) such that Rk

k→∞
≤ r,

and L(sk, 0)
k→∞−→ 0. Let R(S) be the set of achievable rate-vectors for S, and let

Rmin(S) = inf{ 1
N

∑N
i=1 ri : r ∈ R(S)} denote the minimum rate for S.

Clearly, R(S) ⊂ RSW for every S, and R(S) = RSW when Si = {1,..., N} for each i.

Csiszar and Korner [10] have found a single-letter characterization of R(S). Since it

involves auxiliary random variables, it can be difficult to evaluate.

Definition 23 A rate-loss pair (r, l) is said to be achievable for source X = (X1,..., XN ),

dependence structure S = (S1,..., SN), and encoder loss probability p if there exists

a sequence of rigid systems sk, each conforming to S, such that Rav(sk)
k→∞
≤ r,

L(sk, p)
k→∞
≤ l, and L(sk, 0)

k→∞−→ 0. The achievable rate-loss region for X, S and
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Rate−Loss Region

p

1

R

L

S1

S4

S2

S3

1
N

H(X1, X2, ..., XN) 1
N

∑N
i=1 H(Xi)

Figure 3.2: A schematic rate-loss region RL. Each quadrant corresponds to a specific
dependence structure S. The loss-rate function L(r) is shown by the thick
line. The convex hull is shown by the dash-dot line.

p, denoted RL(S), is the set of all achievable rate-loss pairs. The overall achievable

rate-loss region for this source and encoder loss probability6 is RL = ∪SRL(S).

The following lemma, proved in Appendix 3.A, shows that the rate-loss region RL(S)

has a simple form.

Lemma 24 The rate-loss region RL(S) for a dependence structure S is the north-

east quadrant {(r, l) : r ≥ Rmin(S), l ≥ Ld(S, p)}.

Definition 25 The loss-rate function, L(r), is the minimum loss factor of all systems

with rate less than or equal to r, i.e.,

L(r) = inf{l : (r, l) ∈ RL} .

6Note that RL(S) and RL depend implicitly on the source and encoder loss probability.
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Fig. 3.2 shows a schematic of an achievable rate-loss region and the corresponding

loss-rate function. Since the number of distinct dependence structures is finite, the

RL region has a staircase form. If we were to allow time-sharing of systems with

different dependence structures, then the lower boundary of the RL region would

become the convex hull of the corner points of all RL(S) regions.

3.4 Extended Slepian-Wolf Theorem

Theorem 18 gives the achievable rate region when all encoder descriptions are

present at the decoder. However, we need the achievable rate region such that source

i can be decoded from encoder descriptions in (only) Si. Theorem 27 below, an

extension of Theorem 18 that is proved in Appendix 3.B, gives sufficient conditions

on encoder rates to permit this.

Definition 26 A pair (i, S) consisting of source i and its dependence set S is sup-

ported by a rate vector r if

rU ≥ H(XU |XS−U)

for all subsets U of S that contain i.

Theorem 27 (Extended Slepian-Wolf) Given r = (r1,..., rN), there exists a se-

quence of sets of encoder mapping (ek,1,..., ek,N), k = 1, 2,..., with blocklengths denoted

mk, and rates Rk

k→∞
≤ r such that for each (i, S) supported by r there exists a corre-

sponding sequence of decoders d̃k,i,S that can decode source i from (only) the encoded

descriptions of XS with probability of error converging to zero, i.e.,

Pe(ek,S, d̃k,i,S)
∆
= Pr(Xmk

i 6= d̃k,i,S(ek,S(Xmk
S )) → 0 as k → ∞

where ek,S(Xmk
S ) = {ek,j(X

mk
j ) : j ∈ S}.
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Note that since there are only finitely many possibilities for (i, S), the convergence of

Pe(ek,S, d̃k,i,S) shown in this theorem is uniform over (i, S).

Corollary 28 In the setting of rigid codes, the rate vector r = (r1,..., rN) is achievable

for dependence structure S = (S1,..., SN ) if Si is supported by r for each i ∈ {1,..., N}.

Theorem 27 contains the original Slepian-Wolf result as a special case, namely,

Si = {1, 2,..., N} for all i. It also shows that the design of the encoders need not

depend on what i and Si we may have in mind. That is, it establishes the existence

of encoders that are universal in the sense that their design is independent of the

dependence structure of the decoders.

As an application of the theorem, consider the sequential encoding scheme in

the introduction where, for i = 1,..., N , the encoder for source i transmits at rate

ri = H(Xi|X1,..., Xi−1). Since these rates satisfy the Slepian-Wolf conditions, the

original Slepian-Wolf theorem shows that if bits from all N sources are received at

the decoder, all of them can be decoded correctly. Now, however, one can verify

that for each i the rate vector r supports (i, {1,..., i}), and consequently the above

theorem verifies that there exist encoders with these rates such that for each i there

is a decoder that can correctly decode sources 1 through i with high probability

whenever the encodings of the same sources are received, regardless of whether the

encodings of sources i + 1 through N are received or not.

Definition 29 The extended Slepian-Wolf rate region for a dependence structure S,

denoted RSW (S), is the set of all rate vectors satisfying the condition of the corollary.

Clearly, RSW (S) ⊂ R(S). Moreover, Korner and Martin have found examples where

the containment is strict. It follows from this and the definition of Rmin(S) that

Rmin(S) ≤ inf
(r1,...,rN)∈RSW (S)

1

N

N∑

i=1

ri
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Figure 3.3: Dependence graphs (a) No Slepian-Wolf (b) Complete Slepian-Wolf (c)
Sequential Slepian-Wolf

with strict inequality for some S.

3.5 Several Rigid Schemes

In this section we explore several simple families of rigid encoding systems. We

refer to such families as schemes. Among other things they induce upper bounds to

the loss-rate function.

1) No Slepian-Wolf

Consider the dependence structures S whose graph is shown Fig. 3.3(a). For a

system that conforms to S, the decoder for a given source requires that the encoder

for that source be active, i.e. it has not failed. Note that such a system can be
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thought of as N point-to-point coding systems, and hence the encoders do not need

to perform any distributed coding. Hence we call this the No Slepian-Wolf scheme.

For source i the minimum rate at which it can transmit is H(Xi). Also, the loss factor

for the graph can be calculated using (3.6). Thus, for the No Slepian-Wolf scheme

the average rate and loss factor are

Rmin(S) =
1

N

N∑

i=1

H(Xi)

Ld(S, p) = p .

This scheme has the lowest possible loss factor and the highest possible average rate.

2) Complete Slepian-Wolf

Consider the complete dependence structure S whose graph is shown in Fig. 3.3(b).

As mentioned earlier, the original Slepian-Wolf Theorem (Thm. 18) shows that the

achievable rates r1,..., rN can be chosen so that
∑N

i=1 ri = H(X1,..., XN). For example,

by choosing ri = H(Xi|X1,..., Xi−1) for each i, or if X1,..., XN forms a Markov chain,

by choosing ri = 1
N

H(X1,..., XN), for each i. The loss factor is also easily calculated,

leading to

Rmin(S) =
1

N
H(X1,..., XN)

Ld(S, p) = 1 − (1 − p)N .

This scheme has the lowest possible average rate and the highest possible loss factor.

3) Sequential Slepian-Wolf

Consider the dependence structure S whose graph in Fig. 3.3(c), which describes

the sequential scheme of the introduction. As mentioned earlier, rates ri = H(Xi|X1,..., Xi−1)

are achievable. As with the previous example, they induce Rmin(S). The loss factor
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Figure 3.4: Dependence graphs. (a) Clustered Sequential Slepian-Wolf (b) Master-
Slave, with source 1 as the master.

can again be calculated, leading to

Rmin(S) =
1

N

N∑

i=1

H(Xi|X1,..., Xi−1) =
1

N
H(X1,..., XN )

Ld(S, p) = 1 − 1

N

N∑

i=1

(1 − p)i = 1 − 1

N

1 − p

p
[1 − (1 − p)N ] .

This scheme also has the lowest possible average rate, at a lower loss factor than

Complete Slepian-Wolf. However, for p fixed, the loss factor goes to 1 as N → ∞.

4) Clustered Sequential Slepian-Wolf

Consider the family of dependence structures SK , illustrated in Fig 3.4(a). In

these structures, indexed by K, the N sources of both V1 and V2 are divided into

clusters of size K. In each of these clusters, one performs sequential Slepian-Wolf

coding. (Sequential Slepian-Wolf and No Slepian Wolf schemes are the special cases

corresponding to K = N and K = 1, respectively.) For systems conforming to this

kind of dependence graph, the decoder works similarly to sequential Slepian-Wolf —

in order to decode source i in a given cluster, the decoder needs to receive bits from
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encoders 1 through i in that cluster. By the stationarity assumption, the average rate

and loss factor of the system are the same as for one cluster. It follows the average

rate and loss factor are given by the formulas for Sequential Slepian-Wolf with N

replaced by K. Thus,

Rmin(SK) =
1

K

K∑

i=1

H(Xi|X1,..., Xi−1) =
1

K
H(X1,...XK)

Ld(SK , p) = 1 − 1

K

1 − p

p
[1 − (1 − p)K ] .

5) Master-Slave Scheme

Consider the family of dependence structures SK , indexed by K, whose graphs

are illustrated in Fig 3.4(b). Here, N sources are divided into clusters of size K,

and in each cluster, one source is designated as the master m. The dependence set

for the master consists of itself only. All other sources in the cluster are designated

slaves, with dependence set comprising itself and the master. Theorem 27 gives the

minimal rates of Rm = H(Xm) for the master and Ri = H(Xi|Xm) for the slave. By

stationarity, the average rate of the graph is same as the average rate of a cluster.

Thus

Rmin(SK) =
1

K

(
H(Xm) +

K∑

j=1,j 6=m

H(Xj|Xm)

)
.

To minimize the average rate, the master should be positioned appropriately in the

cluster. The loss factor of the graph is

Ld(SK , p) = 1 − 1

K
[(1 − p) + (K − 1)(1 − p)2] = p(2 − p) − 1

K
p(1 − p) .
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3.6 Comparison of Rigid Schemes

In this section, we compute and compare the performance of the schemes in-

troduced in the previous section for a representative example. To facilitate the

computation of rates, we assume X1,..., XN comes from a stationary Markov se-

quence. Among other things, this implies that H(Xi|X1, . . . , Xi−1) = H(X2|X1)

and H(X1,..., XK) = H(X1) + (K − 1)H(X2|X1). To choose the parameters of this

Markov process, we consider a one-dimensional sensor network that takes N samples

of a zero-mean, unit variance, one-dimensional, continuous-space, stationary Gaussian

random process, Z(s), −∞ < s < ∞, with exponential auto-correlation ρZ(τ) = e−|τ |.

(Such a process is Markov.) The sensors are uniformly spaced over a unit interval

at a distance of 1/N . Each sensor quantizes its sample with an infinite-level uni-

form scalar quantizer with step-size ∆ = 0.1 and a level at the origin. The output

of this quantizer is a discrete-time, amplitude-discretized Gaussian process Ẑ that

is approximately Markov with zero mean, variance 1, and auto-correlation function

ρẐ(k) = E[ẐiẐi+k] ≈ e−k/N . By well known approximations, it has entropies

H(Ẑ1) ≈ h(Z(0)) − log ∆ =
1

2
log 2πe − log ∆

H(Ẑk|Ẑ0) ≈ h
(
Z(

k

N
) | Z(0)

)
− log ∆ =

1

2
log 2πe(1 − e−2k/N) − log ∆ ,

where h denotes differential entropy. Accordingly, we assume the X’s have the en-

tropies given by the approximate formulas on the right-hand sides of the above.

Figures 3.5 and 3.6 show the rate loss performance of different schemes for N = 45

and N = 1215, respectively. The encoder loss probability is p = 0.1. The error bars

show the standard deviation of F . For the clustered SW and Master-Slave schemes,

an operating point is plotted for each cluster size K that divides N . As expected,

the points in the figure representing No SW and Complete SW are the two extreme

points – with the former having highest rate and lowest loss factor, and the latter
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Figure 3.5: Loss factor vs. rate for various schemes for N = 45 and p = 0.1. Error
bars show the standard deviation of the fraction of incorrectly decoded
sources. The stars mark intuitively attractive operating points: K = 5
for both Clustered Sequential SW and Master-Slave.

having the opposite. For large N , the Sequential SW scheme has essentially the same

performance as Complete SW. Clustered Sequential SW has the same performance

as the No SW scheme when the cluster size is one and the same performance as

Sequential SW when the cluster size is N . Indeed, as the cluster size increases from

1 to N , its rate decreases and its loss factor increases, providing a smooth trade-off

between the No SW and Sequential SW.

The Master-Slave scheme follows the Clustered Sequential SW performance from

cluster size one up to a certain point, and then its loss factor becomes smaller than

that of Clustered Sequential SW for a small range of rates. As the cluster size in-

creases further, the rate of the Master-Slave scheme actually increases. This happens

because the rate is the average of the H(X1) and the smaller, but increasing, terms

H(X2|X1), H(X3|X1),...H(XK |X1). Therefore, when K is small, incrementing it adds

a new term H(XK+1|X1) that is less than the average, and consequently, reduces rate.

However, as K increases, H(XK+1|X1) eventually becomes larger than the average of
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Figure 3.6: Loss factor vs. rate for various rigid schemes for N = 1215 and p =
0.1. Error bars show the standard deviation of the fraction of incorrectly
decoded sources. The stars mark intuitively attractive operating points:
K = 5 for Clustered Sequential SW, and K = 9 for Master-Slave.

the previous terms, so that incrementing K increases rate.

Finally, the error bars in the figures show the standard deviation of F , the fraction

of sources that are incorrectly decoded. Comparing the two figures, we see that as

the number of sources increases from N = 45 to N = 1215, the standard deviation

decreases for every scheme. Moreover, for all schemes except Master-Slave with large

unattractive cluster sizes, when N = 1215, the standard deviation of F is fairly small

indicating that loss factor L = E[F ] by itself is a good measure of reliability, which

is what one would expect from the law of large numbers.

3.7 Flexible Coding

To introduce the idea of flexible coding, consider, for example, distributed encod-

ing for three sources at rates R1 = H(X1), R2 = H(X2|X1), R3 = H(X3). In this

case a rigid system can be structured so that X2 can be decoded if the encodings
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of both X1 and X2 are received. However, since stationarity implies H(X2|X3) =

H(X2|X1) = R2, another rigid system could be structured so that source X2 can be

decoded if the encodings of both X2 and X3 are received. However, using Theorem 27

at the above mentioned rates, the encoders and decoders can also be constructed so

that source X2 can be decoded if either the encodings of both X1 and X2 are received,

or those of both X2 and X3 are received. Clearly, such a scheme is more resilient to

encoder failures than either rigid scheme.

Now consider flexible coding for N sources X1,..., XN . On the one hand, as with

rigid systems, a flexible coding system has N encoders e1,..., eN and N decoders

d1,..., dN , whose specification and operation are the same as with rigid coding. On

the other hand, instead of having one dependence set for each source, with flexible

coding, each source i has some number, Mi, of dependence sets {Si,1,..., Si,Mi
}, and

the encoders and decoders are structured so that for each i, source i can be decoded

correctly with high probability if the ith decoder receives the encodings of all sources

in any one of dependence sets {Si,1,..., Si,Mi
}.

Let us call Si = {Si,1,..., Si,Mi
} the dependence set collection for source i and call

S = {S1,...,SN} the flexible dependence structure. In order to formalize the idea of

decoding from a flexible dependence structure, we say a code conforms to a flexible

dependence structure S if for each i and each k ∈ {1,..., Mi}, there exist functions

d̄i,k : ×j∈Si,k
{1,...⌈2mRj⌉} → Xm such that

di(b̂1,..., b̂N ) =






d̄i,k(b̂Si,k
),

where k is the smallest integer such that
Ij = 1 for all j ∈ Si,k, if there is one

Φi, if there is no such k

. (3.8)

Note that specifying the smallest k in the above definition is arbitrary; however, some

choice is necessary.

We now define a flexible distributed coding system s for X1,..., XN to be a flexible

88



dependence structure S = (S1,...,SN) and an (R1,..., RN , m) code that conforms to

S. One can also view a flexible system s with dependence structure S = {S1,...,SN}

as a collection of rigid systems {s(σ) : σ ∈ S1 ×... × SN}. Specifically, for each σ =

{S1,k1
,..., SN,kN

}, s(σ) is a rigid system with dependence structure σ and a code that

conforms to σ with the same encoders as s and decoders dσ,1,..., dσ,N , characterized

in the form of (3.1), by the functions

d̃σ,i(b̂Si,ki
) = d̄i,ki

(b̂Si,ki
) .

A flexible dependence structure S can be visualized with a generalized dependence

graph, which is a labeled bipartite graph G = (V1, V2, E), where V1 = V2 = {1,..., N}

are just as for the graph representing a rigid dependence structure, and E = {(i, j, k) :

j ∈ Si,k} is the set of labeled edges, with (i, j, k) denoting an edge from node i to

node j labeled by k, indicating that j is needed in order to decode Xi with the kth

dependence set Si,k.

3.7.1 Performance and achievability

As with rigid systems, the principal performance measures for a flexible system s

are average rate Rav(s) and loss factor L(s, p), as defined by (3.2) and (3.3). The loss

factor of a system s with flexible dependence structure S decomposes in a somewhat

more complicated manner than (3.4):

L(s, p) =
1

N

N∑

i=1

Mi∑

k=1

Pe,i,k Pr(Ai,k) +
1

N

N∑

i=1

Pr(Ac
i) , (3.9)

where Ai,k is event that decoding of Xi is done with d̄i,k (see (3.8) for the conditions

for such), Pe,i,k is the probability of erroneously decoding source i given Ai,k, and

Ai = ∪Mi
k=1Ai,k. The first term on the right side above can be upper bounded as
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follows:

1

N

N∑

i=1

Mi∑

k=1

Pe,i,k Pr(Ai,k) ≤
1

N

N∑

i=1

max
k

Pe,i,k
∆
= Lc(s, 0) .

Since for a rigid code, Lc(s, 0) reduces to L(s, 0), we consider Lc(s, 0) to be a more

general definition of code loss factor. The second term on the right side of (3.9) is

defined to be the dependence structure loss factor Ld(S, p). Using all of the above

gives a bound analogous to (3.7):

Ld(S, p) ≤ L(s, p) ≤ Ld(S, p) + Lc(S, 0) ,

Unlike (3.5), there is no simple general expression for Pr(Ai) or, consequently, Ld(S, p).

However, one can see that adding additional dependence sets to Si generally increases

Pr(Ai), and consequently, reduces the loss factor.

Again as with rigid systems, we focus on lossless codes and define achievable

rate-vector (r1,..., rN), achievable rate region R(S) and Rmin(S) just as in Definition

22, but with L(s, 0) replaced by Lc(s, 0), and S replaced by S = {S1,...,SN}. An

inner bound to R(S) is the set RSW,f(S) consisting of all rate vectors satisfying the

constraints of Theorem 27. Similarly, an upper bound to Rmin(S) can be calculated

using RSW,f(S) instead of R(S). Note that for a rate-vector to be achievable, it

must be achievable for each dependence structure in S1 ×... × SN . One might think

that such multiple achievability constraints will cause Rmin(S) to be larger than for

a rigid system. However, in the three-source system introduced at the beginning of

this section and in the schemes presented in the next, additional dependence sets are

added to a rigid system without increasing Rmin(S), but nevertheless decreasing the

loss factor, due to the fact that every additional dependence set gives the decoder an

additional chance to correctly decode.

For flexible systems, we define the rate-loss region, RLf and the loss-rate function,
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Lf(r), just as in Definitions 23 and 25. Again, Lf(r) is a north-east quadrant shown

in Lemma 24.

3.8 Several Flexible Schemes

We now introduce three families of flexible systems, i.e., schemes.

1) Consecutive-K scheme

In this scheme the rates and encoders are chosen so that for each i successful

decoding of source i is possible with high probability if the encodings are received

from any set of K consecutive sources that includes i. In other words, the constraints

sets for i have the form

Si,k = {i − K + k,..., i,..., i − 1 + k} , k = max{1, K + 1 − i},..., min{K, N + 1 − i} .

Assuming the sources form a Markov chain, then just as with Clustered Sequential

SW, it can be shown using Theorem 27 that each encoder can have rate

Ri =
1

K
H(X1,..., XK) ,

which is the minimal rate if all encoders are constrained to have the same rate. As

shown in Appendix B, the loss factor is

Ld(S, p) = 1 − (1 − p)K(1 + (K − 1)p) .

Note that the average rate of this scheme is the same as that of Clustered Sequen-

tial SW rigid coding with cluster size K, and the loss factor is smaller for small to

moderate values of K, and larger for large values of K. Since all nodes transmit at

equal rates, as K increases to N , the loss factor and rate of this scheme approach that
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of the Complete SW scheme, which is worse than that of Clustered Sequential SW.

However, for smaller values of K, the decoder for every node gets multiple shots at

decoding, which causes the loss factor of consecutive-K scheme to be less than that

of Clustered Sequential SW for small values of K.

2) Clustered-K-choose-n scheme

In this scheme the sources are partitioned into clusters of size K, and the rates

and encoders are chosen so that for each i successful decoding of source i is possible

with high probability if the encodings are received from the encoding of i as well as

any set of n − 1 other encoders in the same cluster.

Assuming the sources form a Markov chain, then the result in [11, Section III]

shows that the joint entropy of n out K stationary sources is maximized when the n

sources are uniformly spread over all K sources. Combining this result with Thm. 27,

it can be shown that it suffices for each encoder to use rate

Ri = max

{
1

n

(
H(X1) + cH(Xb+1|X1) + (n − c − 1)H(Xa+1|X1)

)
, H(X1|XK−n+2)

}
,

where a = ⌊K−1
n−1

⌋, b = ⌈K−1
n−1

⌉ and c = K − (n − 1)a − 1. Once again this rate is

minimal if all encoders are constrained to have the same rate. As shown in Appendix

B, the loss factor is

Ld(S, p) = p +
1

K

n−1∑

j=0

j




K

j



 (1 − p)jpK−j

For K fixed, it can be seen that as n increases, the rate Ri decreases and the

loss factor increases. Moreover, when K is large, the law of large numbers indicates

that with high probability the fraction of encoder failures will be close to p. Hence,

if n < (1 − p)K, with high probability at least n encodings will be received, and the

loss factor will be close to the minimal value of p. On the other hand if n > (1−p)K,
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then with high probability the number of received encodings will be less than n and

the loss factor will be close to maximal value of 1. Because of this and the fact that

rate decreases with n, it makes sense to choose n just a little less than (1 − p)K.

3) Consecutive-K-choose-n scheme

In this scheme, which combines elements of the previous two, the rates and en-

coders are chosen so that for each i, successful decoding of source i is possible with

high probability if the encodings are received from the encoding of i as well as those

of any n − 1 other sources j, such that |j − i| ≤ K.

Since decoding is similar to that of Clustered-K-choose-n scheme in the sense that

we need bits from at least n sources in a cluster size of K to decode, the encoding

rates for this scheme can be the same as for the previous scheme. Since this scheme

will successfully decode under more conditions than the previous, it has a lower loss

factor. Unfortunately, we have not been able to obtain a useful analytical expression

for the loss factor. However, we are able to compute the loss factor by simulation of

the system.

The rate and loss factor of this scheme behave in a similar fashion as that of

clustered K-choose-n. Thus, for large K, following the arguments in the previous

scheme, a good choice of n would be slightly less than p(1 − K).

3.9 Comparison of Flexible Schemes

In this section we compare the performances of the rigid and flexible coding

schemes on the same sources as in Section 3.6. Figures 3.7 and 3.8 plot loss fac-

tor vs. rate for all the rigid and flexible coding schemes for p = 0.1 and N = 45 and

N = 1215, respectively. For the Consecutive-K scheme, a point is plotted for each K

from 1 to N . For Clustered-K-choose-n the performance for all possible (K, n) pairs

was computed, and only those points on the lower convex hull are plotted; likewise
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Figure 3.7: Loss factor vs. rate for various schemes for N = 45 and p = 0.1.

for Consecutive-K-choose-n.

We see that in the important regime of small to moderate loss factor, p to 3p,

flexible schemes clearly outperform their rigid counterparts, having significantly lower

average rates. On the other hand, in the less important regime of high loss factor,

the rigid Clustered Sequential SW scheme has the best performance, i.e., lowest rate,

although the improvement over the best flexible schemes is not terribly large, at most

20%. In addition, the flexible schemes come close to achieving the smallest possible

loss factor, p, with average rate significantly less than H(X1). In fact the Consecutive-

K-choose-n scheme attains loss factor approximately p over more than 75% of the

achievable rate range of ( 1
N

H(X1,..., XN), H(X1)). It should not be surprising that

the Consecutive-K-choose-n scheme is the best of the flexible schemes, because (a) it

performs at least as well as Consecutive-K, because the latter is a special case of the

former, and (b) for any given K and n, it has the same rate but smaller loss factor

than Clustered-K-choose-n.

Finally, in an attempt to identify attractive operating points, we identify values
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Figure 3.8: Loss factor vs. rate for various schemes for N = 1215 and p = 0.1.

of K and n at the knees of the loss-rate curves for the flexible schemes (marked by

stars on Figures 3.7 and 3.8), where by “knee” we mean the point below which even a

small reduction in rate (10-15%) causes the loss factor to increase significantly (40%

or more). For both N = 45 and 1215 the (K, n) values are (5,n.a.), (9, 7) and (9, 8) for

Consecutive-K, Clustered-K-choose-n and Consecutive-K-choose-n schemes, respec-

tively. The corresponding rate-loss values as (3.55, 0.17), (3.86, 0.13) and (3.59, 0.12)

for N = 45, and (1.67, 0.17), (1.54, 0.13) and (1.38, 0.12) for N = 1215. As expected,

the optimal choice of n for both Clustered-K-choose-n and Consecutive-K-choose-n

is slightly smaller than (1 − p)K.

3.10 Concluding Remarks

This chapter introduced the problem of distributed coding in the presence of

encoder failures. It provided a theoretical formulation, with loss factor and average

rate as the performance measures. It extended the Slepian-Wolf theorem to the case

that some encoder outputs are not received at the decoder. It introduced and analyzed
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several rigid and flexible schemes, both as concrete approaches to trading rate for

increased reliability, and as bounds to the achievable rate-loss region. It evaluated

the performance of these schemes on a spatial Markov chain of N temporally IID

sources, with parameters chosen to model the sampling and uniform quantization of

an underlying Gauss-Markov process. It was found that flexible schemes are the only

ones that achieve the smallest possible loss factor at rates significantly smaller than

if all sources were to be encoded independently.

With a view towards future work, we note that all schemes considered have an

underlying structure — rigid or flexible. One can also envision a fully flexible scheme

comprising a set of encoders and decoders with no underlying dependence structure.

On receiving the indices from a set of encoders, the decoder would attempt to decode

as many sources as possible. For example, if a binning-based encoder and jointly

typical decoder were used, such as described in the proof of Theorem 27, then any

subset of sources whose encoding rates satisfy the extended Slepian-Wolf conditions

could be decoded with high probability, without any knowledge of the encodings of

other sources. It might or might not turn out that such a fully flexible scheme offers

substantial improvement over the schemes considered in this chapter.

3.A Proof of Lemma 24

We first claim that (Rmin(S), Ld(S, p)) is achievable for S, from which it follows

that all rate-loss pairs in the north-east quadrant are achievable. Consider a se-

quence ǫn such that limn→∞ ǫn = 0. From the definition of Rmin(S), for each n there

exists a sequence of systems s
(n)
k , k = 1, 2,..., each with dependence structure S, such

that Rav(s
(n)
k )

k→∞
≤ Rmin(S) + ǫn and L(s

(n)
k , 0)

k→∞−→ 0. Now for each positive inte-

ger n, let sn be s
(n)
k for some k large enough that Rav(s

(n)
k ) ≤ Rmin(S) + 2ǫn and

L(s
(n)
k , 0) ≤ ǫn. Then for this sequence of systems lim supn→∞ Rav(sn) ≤ Rmin(S),

96



and since L(sn, p) ≤ Ld(S, p) + L(sn, 0), we have L(sn, p)
k→∞
≤ Ld(S, p). This shows

(Rmin(S), Ld(S, p)) is achievable, as claimed.

We conclude by showing that if (r, l) is achievable, then r ≥ Rmin(S) and l ≥

Ld(S, p). If (r, l) is achievable with respect to S, then there exists a sequence of sys-

tems sk such that Rav(sk)
k→∞
≤ r, L(sk, 0)

k→∞−→ 0, and L(sk, p)
k→∞
≤ l. Since L(sk, 0)

k→∞−→

0, then from the definition of Rmin(S), r ≥ lim supk→∞ Rav(sk) ≥ Rmin(S). Also,

L(sk, p) ≥ Ld(S, p) for all k. Thus l ≥ lim supk→∞ L(sk, p) ≥ Ld(S, p).

3.B Proof of Thm. 27 (Extended Slepian-Wolf)

Given a rate vector r = (r1,..., rN), let Σ(r) denote the set of all (i, S) supported

by r, i.e.,

Σ(r) = {(i, S) : rU ≥ H(XU |XS−U) for all U ⊂ S such that i ∈ U} ,

Let δn be a non-negative sequence converging to zero.

To prove the theorem, we will show that for any n, there exists M such that for

all m ≥ M , there exists a set of encoders (e1,..., eN ) having blocklengths m and rates

Ri = ri + δn, i ∈ {1,..., N}, and a set of decoders {di,S : (i, S) ∈ Σ(r)} such that

P̃e ,
∑

(i,S)∈Σ(r)

Pe(eS, d̃i,S) < δn (3.10)

where P̃e is called the overall probability of error. The existence of a sequence of

systems satisfying the specifications of the theorem follows directly from this.

To design the encoders and decoders, we will use the conventional random coding

approach [3] with binning-type encoding and jointly typical decoding, and show that

it has the stronger property (3.10).

For any S ⊂ {1,..., N} and any positive integer m, define the jointly typical set of
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sequences xm
S = {xm

k : k ∈ S} as

Am
ǫ (S) =

{
xm

S :

∣∣∣∣−
1

m
log p(xm

T ) − H(XT )

∣∣∣∣ < ǫ for all T ⊂ S

}
,

where ǫ , δn/3.

Random codebook: For i = 1, 2,..., N and each xm ∈ Xm, assign a random index

Ji(x
m) ∈ {1, 2,..., ⌈2mRi⌉}. The index assignment is done independently for each

sequence xm and uniformly on {1, 2,..., ⌈2mRi⌉}. The set of xm for source i assigned

to index j is called the jth bin for source i.

The random codebook, denoted J̃ , is then the collection of all these random

indices, i.e., J̃ = {Ji(x
m) : i = 1, 2,..., N, xm ∈ Xm}. Let j̃ = {ji(x

m) : i =

1, 2,..., N, xm ∈ Xm} be an instance of the codebook. We also let j̃ represent a

distributed source code with the encoder and decoder described below, and we let

P̃e(j̃) denote its overall error probability. J̃ denotes a randomly chosen distributed

code.

Encoder: Given a codebook j̃, the encoder for the ith source, denoted ej̃,i, maps a

source sequence xm
i ∈ Xm into the index of the bin to which xm

i belongs. That is,

ej̃,i(x
m
i ) = ji(x

m
i ). Let ej̃,S = {ej̃,i : i ∈ S}.

Decoder: Given a codebook j̃, the decoder for source i and dependence set S, denoted

dj̃,i,S, receives a set of indices lS = {lk : k ∈ S} and outputs x̂m
i if it is the only member

of Xm such that the following two conditions hold: (a) ej̃,i(x̂
m
i ) = li and (b) there

exists xm
S−{i} such that ej̃,k(x

m
k ) = lk for k ∈ S − {i} and (x̂m

i , xm
S−{i}) ∈ Am

ǫ (S).

Probability of error: In order to show the existence of a code j̃ with overall error

probability P̃e(j̃) less than δn as in (3.10), we will show that for all sufficiently large

m,

¯̃Pe < δn (3.11)
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where

¯̃Pe =
∑

J̃=j̃

Pr(J̃ = j̃)P̃e(j̃)

is the average overall error probability of the random codes J̃ , averaged over all

possible codebooks, i.e all possible j̃. It will then follow immediately that there exists

at least one codebook j̃ with P̃e(j̃) < δn and the proof will be complete.

Let Pe(j̃, i, S)
∆
= Pe(ej̃,S, dj̃,i,S) denote the probability of error of the code j̃ for

source i and dependence set S. Then,

¯̃Pe =
∑

j̃

Pr(J̃ = j̃)
∑

(i,S)∈Σ(r)

Pe(j̃, i, S) =
∑

(i,S)∈Σ(r)

∑

j̃

Pr(J̃ = j̃)Pe(j̃, i, S)

=
∑

(i,S)∈Σ(r)

P̄e(i, S) (3.12)

where P̄e(i, S) , Pr(Xm
i 6= dJ̃ ,i,S(eJ̃ ,S(Xm

i )) is the probability of error in a random

experiment in which the sources produce random Xm
S = {Xm

j , j ∈ S}, a random code

J̃ is chosen, the code is used to encode Xm
S with eJ̃ ,S and to decode source i with

dJ̃,i,S producing X̂M
i . We emphasize that the randomness comes in two places: the

sources in S and the random codebook J̃ .

We now come to the heart of the proof, which is to show there exists M such that

when m > M ,

P̄e(i, S) <
δn

|Σ(r)| (3.13)

for all (i, S) ∈ Σ(r). Substituting this into (3.12) will demonstrate that ¯̃Pe < δn,

which will establish (3.11) and complete the proof.

Accordingly, consider some (i, S) ∈ Σ(r). When an error occurs in decoding source

i with dependence set S, i.e., when Xm
i 6= dJ̃,i,S(eJ̃ ,S(Xm

i )), the error in decoding
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source i can either be declared or undeclared. A declared error, denoted Ed, occurs

when either (1) there is no xm
i satisfying both (a) and (b), or (2) there are two or

more xm
i satisfying (a) and (b). We denote the two kinds of declared errors by Ed,1

and Ed,2. An undeclared error, denoted Eu, occurs when there is one and only one

xm
i satisfying both (a) and (b), but it does not equal Xm

i , the actual output of the

ith source. Note that Ed,1, Ed,2, Eu depend implicitly on i and S.

One can straightforwardly verify that if Ed,1 or Eu occurs, then the actual source

outputs are not jointly typical, i.e., Xm
S /∈ Am

ǫ (S). Therefore,

P̄e(i, S) = Pr(Ed,1 ∪ Ed,2 ∪ Eu)

≤ Pr((Am
ǫ )c ∪ Ed,2)

= Pr((Am
ǫ )c) + Pr(Ed,2 ∩ Am

ǫ︸ ︷︷ ︸
Ẽd,2

) . (3.14)

Consider. the first term in (3.14). The asymptotic equipartition property (AEP)

implies that there exists M0 > 0 such that for all m > M0

Pr((Am
ǫ )c) <

δn

2|Σ(r)| . (3.15)

Indeed, since there are only finitely many choices of (i, S) in Σ(r), we can choose Mo

so large that this holds for all (i, S) ∈ Σ(r).

Now consider the last term in (3.14). Since Ẽd,2 ⊂ Am
ǫ , the occurrence of Ẽd,2

implies that Xm
1 satisfies (a) and (b). It follows that

Ẽd,2 = { ∃ x′m
S : x′m

i 6= Xm
i , eJ̃,k(x

′m
k ) = eJ̃ ,k(X

m
k ), for all k ∈ S and x′m

S ∈ Am
ǫ (S)} .

We further subdivide this event depending on those x′m
j that equal the originally
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occurring Xm
j . For each U ⊂ S such that i ∈ U define the error event

Ẽd,2(U) =
{
∃ x′m

S ∈ Am
ǫ (S) : x′m

k 6= Xm
k , eJ̃ ,k(x

′m
k ) = eJ̃ ,k(X

m
k ), all k ∈ U,

and x′m
l = Xm

l , all l ∈ S − U } .

Then the events Ẽd,2(U) are disjoint, Ẽd,2 = ∪U⊂S: i∈U Ẽd,2(U), and

Pr(Ẽd,2(U)) =
∑

xm
S

p(xm
S ) Pr




∃x′m

S ∈ Am
ǫ (S) : x′m

k 6= Xm
k , all k ∈ U,

eJ̃ ,U(x′m
U ) = eJ̃ ,U(Xm

U ), x′m
S−U = Xm

S−U

Xm
S = xm

S





=
∑

xm
S

p(xm
S ) Pr




∃x′m

S ∈ Am
ǫ (S) : x′m

k 6= xm
k , all k ∈ U,

eJ̃ ,U(x′m
U ) = eJ̃ ,U(xm

U ), x′m
S−U = xm

S−U





≤
∑

xm
S

p(xm
S )

∑

x′m
S ∈Am

ǫ (S):
x′m

k 6=xm
k , k∈U, x′m

S−U=xm
S−U :

Pr
(
eJ̃ ,U(x′m

U ) = eJ̃ ,U(xm
U )
)

≤
∑

xm
S

p(xm
S ) 2−mRU |Am

ǫ (S) ∩ {x′m
S : x′m

S−U = xm
S−U}|

≤
∑

xm
S

p(xm
S ) 2−m(rU+δn) 2mH(XU |XS−U )+2mǫ

= 2−m(rU+δn−H(XU |XS−U )−2ǫ) ≤ 2−mδn/3

where the second equality follows from the independence of Xm
S and the code J̃ ,

the first inequality uses the union bound, the second inequality comes from the way

random indices are assigned and from ignoring the constraints that x′m
k 6= xm

k , k ∈ U ,

the third inequality uses a standard argument, and the last inequality uses the facts

that ǫ = δn/3 and that rU > H(XU |XS−U) since (i, S) ∈ Σ(r), U ⊂ S and i ∈ U . We

can now choose M > Mo so large that the right-hand side of the above is small that
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for all m > M

Pr(Ẽd,2) =
∑

U⊂S: i∈U

Pr(Ẽd,2(U)) <
δn

2|Σ(r)| .

Substituting this and (3.15) into (3.14) shows (3.13), which completes the proof.

3.C Loss Factor Calculations

1) Consecutive-K

Consider a source i such that K ≤ i ≤ N−K+1 (to ignore edge effects). Let Yj be

the event that encoder i does not fail and Y k
j be the event that encoders j, j + 1,..., k

do not fail. Then source i can be decoded if and only if the following event occurs

Y i
i−K+1 ∪ Y i+1

i−K+2 ∪ Y i+2
i−K+3 ∪... ∪ Y i+K−1

i

which equals the following union of disjoint events

Y i
i−K+1 ∪ (Y c

i−K+1 ∩ Y i+1
i−K+2) ∪ (Y c

i−K+2 ∩ Y i+2
i−K+3) ∪... ∪ (Y c

i−1 ∩ Y i+K−1
i )

where c denotes set complement. Therefore,

Pr(source i can be decoded) = Pr(Y i
i−K+1) +

K−1∑

j=1

Pr(Y c
i−K+j) Pr(Y i+j

i−K+j+1)

= (1 − p)K +
K−1∑

j=1

p(1 − p)K = (1 − p)K(1 + (K − 1)p)

and the loss factor of the system is

Ld(S, p) = 1 − (1 − p)K(1 + (K − 1)p) .
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2) Clustered K-choose-n

Since the loss factor of all clusters is the same, it suffices to compute the loss

factor of just one cluster. Let Y represent the number of encoders in a cluster that

are active. Then Y is binomially distributed with probability of success 1 − p.

Ld(S, p) = E[Fraction of sensor values lost]

=
1

K

n−1∑

j=0

E[Number of sensor values lost|Y = j] Pr(Y = j)

+
1

K

K∑

j=n

E[Number of sensor values lost|Y = j] Pr(Y = j)

=
1

K

n−1∑

j=0

K Pr(Y = j) +
1

K

K∑

j=n

(K − j) Pr(Y = j)

=
1

K

n−1∑

j=0

j Pr(Y = j) +
1

K

K∑

j=0

(K − j) Pr(Y = j)

=
1

K

n−1∑

j=0

j Pr(Y = j) + 1 − 1

K
E[Y ]

= p +
1

K

n−1∑

j=0

j

(
K

j

)
(1 − p)jpK−j
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CHAPTER IV

Sensor Placement and Data Gathering for Field

Gathering Wireless Sensor Networks

4.1 Introduction

In this chapter we study two problems associated with data collection in field

gathering wireless sensor networks. These networks consist of a fixed number of

nodes that are deployed over a given network region. The purpose of the network is

to measure some underlying physical phenomenon, e. g. temperature, which we refer

to as the field. Every node in the network takes a measurement of the field at its

location and communicates this observation to a collector. The collector on receiving

observations, from some or all of the nodes, makes an estimate of the field over the

entire network region.

The first problem that we study is the sensor placement problem. For this prob-

lem, we model the underlying field as a stationary random process with a known

autocorrelation function. The sensors take observations of this process at their lo-

cations, and communicate those observations to the collector. The collector, on re-

ceiving observations from all the sensors, makes an estimate of the process over the

entire network region. The metric used to measure the performance of the network is

mean squared error (MSE), integrated over the network region. Since the process is
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correlated, the more sensors that are used, the better is the performance in terms of

the MSE. However, in many scenarios we can only place a limited number of sensors

to take observations of the field. The question then arises is there an optimal design

strategy, that is, is there a placement of sensors that minimizes the MSE. In general,

the sensor placement problem would be in two dimensions. However, as a first step,

we focus on the sensor placement problem in one dimension.

The one-dimensional sensor placement problem has very strong connections to

sampling theory. In essence we are are trying to sample a random process at a

fixed number of points so as to provide an optimal reconstruction in terms of the

mean squared error. In traditional sampling theory, there is a significant body of

literature in the case where the underlying signal being sampled and reconstructed

is band-limited. The commonly known Shannon-Nyquist theorem [1, 2] (it is also

known as the WKS sampling theorem, named after Whittaker [3], Kotelnikov [4]

and Shannon) states that if a signal contains no frequencies higher that f Hz, then

it can be completely specified by samples taken 1/2f seconds apart. That is, if

the signal is sampled uniformly at 2f Hz than it can be reconstructed perfectly.

The Shannon-Nyquist theorem has extensions: n dimensions [5], reconstructing from

function and its derivatives [6, 7], non-uniform points [8], and many others. For

more on sampling of band-limited signals see [9, 10, 11, 12]. Another similar problem

concerns polynomial interpolation of a curve over an interval in space from a fixed

number of points. In this case it can be shown that there exist functions for which

when interpolating from uniform points the maximum error approaches infinity as the

number of points increases [13]. This is known as Runge’s phenomenon. It has been

shown that sampling at Chebyshev points minimizes this phenomenon [14, Chapter

6].

For sampling band-limited random processes there is a well known extension of

the WKS sampling theorem given by Balakrishnan [15]. However, the literature for
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sampling and estimation of non-bandlimited random processes is significantly more

sparse. In most of the literature, the best linear unbiased estimator (BLUE) is used

to estimate the entire field from the samples and the error measure considered is

the mean squared error. Sacks and Ylviskar [16, 17], Hajek and Kimeldorf [18] and

Wahba [19] model the the random process as sum of known regression functions with

unknown coefficients and along with a random error term. They provide asymptoti-

cally optimal sampling designs for evaluating regression coefficients. Su and Cambanis

[20] consider the problem of estimating the entire process in a given region and pro-

vide asymptotically optimal sampling designs for Gaussian processes. For optimal

surface interpolation, Micchelli and Wahba [21] give a lower bound to mean squared

error in terms of the eigenvalues of the covariance function. However, it is not known

whether the lower bound is achievable.

A closely related problem in discrete space is known as the subset selection problem

[22, 23]. In this problem a large number of sample points can potentially be observed

and the objective is to select the best set of k samples in order to estimate the rest

of the sample points or some other correlated random variable. This problem in

general is known to be NP-complete. Recently, Das and Kempe [24] have provided

polynomial time algorithms providing bounds on the mean squared error in terms of

elements of the covariance matrix of the observable variables.

The difficulty of finding optimal design strategies for MSE as the distortion mea-

sure arises from the presence of the inverse of covariance matrix of the samples in

the estimation coefficients and consequently the MSE. Even for simple correlation

functions the inverse covariance matrix behavior is highly non-linear and practically

intractable. This has also prompted the use of distortion measures other than mean

squared error. Cressie [25] and Ko et al [26] study the optimal design problem for

maximizing entropy of the sampled variables. Guestrin et al. [27] examined the opti-

mal sensor placement problem with an objective of maximizing mutual-information.
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In both these cases, it is shown that finding the optimal design is an NP-complete

problem. However, both entropy and mutual information fall under a class of func-

tions that are called sub-modular [28]. Using the results from Nemhauser et al. [29] it

has been shown that choosing sample points greedily one at a time is within (1−1/e)

of the optimal set.

In this chapter, we add one result for the class of non-bandlimited random pro-

cesses. We show that for a Markov process with exponential autocorrelation, the

optimal placement of sensors that minimizes the mean squared error is uniform.

The second problem that we study in this chapter is real-time data gathering in

sensor networks. Consider a field gathering wireless sensor network where the under-

lying field is modeled as a stationary spatio-temporal process in a given region. A

fixed number of sensors is deployed over the network region. We consider a slotted

time system such that each sensor observes the field at its location only at discrete

times. The observations at each sensor are then transmitted to the collector, which

then estimates the entire field in each time slot. In many of the practical scenarios,

all of the sensors will not be able to communicate their data to the collector simulta-

neously. This could be because sensors would be transmitting over the same wireless

channels and thus the collector would only be able to receive data from one sensor

in one time-slot. There is also a possibility that some of the sensors are too far from

the collector and cannot communicate their data to the collector directly. Instead,

they use other sensor nodes as relays. In this case, their data suffers from some delay

before getting to the collector. If we place a large number of sensors to observe the

field, we get good spatial coverage. However, with sensors competing for time-slots

to transmit their data to the collector, much of the data will suffer large delay. On

the other hand, a smaller number of sensors means that the data from each sensor

gets to the collector more quickly at the expense of better spatial coverage. In this

chapter we try to determine the impact of sensor density, and spatial and temporal
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correlation on the error in estimation.

Related work in data gathering wireless networks concerns analyzing throughput

scaling and transport capacity [30, 31], improving network lifetime [32, 33], using

distributed coding to compress data [34, 35].

4.2 Sensor Placement in One Dimension: Problem State-

ment

In this section we give a formal problem statement for the problem of sensor

placement over a network region. We consider the one-dimensional case. Let X(s),

−∞ < s < ∞, denote a zero-mean stationary one-dimensional process and let I =

[0, 1] denote the interval representing the network region. Let RX(s) denote the

auto-correlation function for X. We wish to place N sensors, that is find N sample

locations, in the network region I. We assume that we make the observations at the

end points of the interval I and wish to find N additional sample locations. The

set of positions of the sensors/sample points, denoted S = {s0, s1, s2,..., sN , sN+1},

is called a sampling design. We assume that the positions in S are ordered in an

increasing fashion with s0 = 0 and sN+1 = 1. Also, let X(S) denote the column

vector of observations at the locations in S, and let KS denote the covariance matrix

of these samples.

Let X̂(s) be the minimum mean squared error (MMSE) linear estimate of X(s)

from the samples X(S). Then,

X̂(s) = KT
s,SK−1

S X(S), (4.1)

where the Ks,S = E[X(s)X(S)] and T denotes transpose. Then the mean squared er-

ror at point s, denoted E(s, S), and the overall mean squared error, denoted MSE(S),
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are

E(s, S) = RX(0) − KT
s,SK−1

S Ks,S (4.2)

MSE(I, S) =

∫

I

E(s, S)ds

The optimal sampling design, denoted Sopt, is

Sopt = argmin
S

MSE(I, S) (4.3)

4.2.1 One-Dimensional Gauss-Markov Field

In this subsection, we concentrate on optimal placement of sensors when the un-

derlying process X(s) is Markov. In particular we assume that the autocorrelation

function is exponential, i.e., RX(s) = exp(−σ|s|), where σ > 0 is the correlation

parameter. A higher value of σ implies a lower correlation. A well known example of

a stationary Markov process with exponential correlation is the stationary Ornstein-

Uhlenbeck process [36].

Since the process is Markov, the error at any given point s depends only on the

closest sample point to the left and the closest sample point to the right of s. Thus,

E(s, S) and MSE can then be written,

E(s, S) = E(s, {sl, sr})

MSE(I, S) =

N∑

j=1

MSE(Ij , {sj−1, sj}),

where sl, sr denote the closest sample points to the left and right of s and the interval

Ij = [sj−1, sj ].

The following lemma states that given the observations at end points of an interval

I, the placement of a sensor that minimizes the MSE over the interval is the mid-point
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of the interval.

Lemma 30 Given an interval I = [s1, s2] and a stationary Markov process X(s),

s ∈ I, with correlation function given by RX(s) = exp(−σ|s|), σ > 0. Then, for

s∗ = (s1 + s2)/2 and any s ∈ I, s 6= s∗,

MSE(I, {s1, s
∗, s2}) < MSE(I, {s1, s, s2})

The proof of the lemma is given in Appendix 4.A.

The next lemma states that the optimal placement of sensors sensing a Markov field

with exponential correlation is uniform.

Lemma 31 Given a stationary Markov process X(s), s ∈ [0, 1], and Rx(s) = exp(−σ|s|),

where σ > 0 is the correlation parameter, then the optimal sampling design is uniform,

i.e.,

Sopt =

{
0,

1

N + 1
,

2

N + 1
,...,

N

N + 1
, 1

}

Proof:

We first observe that MSE(S) is continuous function on S, and S is compact,

from the extreme value theorem there exists a global minimum over its domain. We

now prove the contra-positive to the statement of the theorem. We show that for any

given sampling design S that is not uniform, there exists another sampling design S ′

such that, MSE(I, S ′) < MSE(I, S).

Let S = {s0, s1, s2,..., sN , sN+1} be a given non-uniform sampling design such that

0 = s0 < s1 < s2 <...sN < sN+1 = 1. Since the design is non-uniform there exists at

least one i such that si 6= (si−1 + si+1)/2. Choose the smallest such i. Construct a
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s3 s4 sks2s1 . . .

Figure 4.1: Placement of k sensors over the (0, 1) interval.

sampling design S ′ = {s′j : j = 0, 1, 2...N + 1} such that,

s′j =






sj j 6= i

si−1 + si+1

2
j = i

Note that Ij−1,j = I ′
j−1,j for j 6= i, i + 1 and consequently, MSE(Ij−1,j, {sj−1, sj}) =

MSE(I ′
j−1,j, {s′j−1, s

′
j}) for j 6= i, i + 1. Also, from Lemma 30,

MSE(Ii−1,i, {si−1, si}) + MSE(Ii,i+1, {si, si+1}) > MSE(I ′
i−1,i, {s′i−1, s

′
i})

+ MSE(I ′
i,i+1, {s′i, s′i+1}).

Thus,

N∑

j=1

MSE(Ij−1,j, {sj−1,j, sj,j+1}) >
∑

j=1

MSE(I ′
j−1,j, {s′j−1,j, s

′
j,j+1})

MSE(I, S) > MSE(I, S ′)

Thus, for any non-uniform sampling design there exists another sampling design that

has lower MSE. Combining with the fact that MSE(S) does attain a minimum proves

that the uniform sampling design is optimal. �

4.3 Data Gathering in Sensor Networks

In this section, we propose a simple model for data gathering in wireless sensor

networks. This model is admittedly a first step in analyzing how spatial and temporal

correlation would affect data gathering. We model the underlying field as a two-
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1 3 4 5 6 72C

Figure 4.2: Uniform placement of N = 7 sensors over the (0, 1) interval. The collector,
C, is placed at 0, to the extreme left of all the sensors.

dimensional stationary random process with a known autocorrelation function. One of

the dimensions represents space, and the other represents time. We wish to answer the

following question: does increasing the number of sensor nodes employed in gathering

data from a field of limited size always decrease the MSE, or is there an optimal density

of sensors that minimizes the MSE. Initially, one might presume that the larger the

number of sensors, the better the reconstruction of the field at the collector. However,

as mentioned earlier, due to communication constraints, networks do not allow each

sensor to send its data to the collector instantaneously. In fact, in wireless networks

using relays, the data from nodes far away from the collector suffers a large amount of

delay. The nodes closer to the collector also would suffer some delay. This in general

would cause the data to be not as useful in estimating the current value of the field.

We consider a one-dimensional network with N sensors placed uniformly on the

real-line between [0, 1]. We label these sensors 1, 2,..., N from left to right. Thus the

placement of the ith sensor is si = i/N . The collector is assumed to be placed to

the left of the left-most sensor as shown in Figure 4.2. We model the underlying

field that the sensors in the network sense by a zero mean stationary random process

X(s, t) where s and t denote the spatial and temporal dimensions respectively. The

correlation between two samples X(s1, t1) and X(s2, t2) of the field is given by the

autocorrelation function R(s1, t1; s2, t2) = RX(|s1 − s2|, |t1 − t2|).

We assume a slotted time system with each time slot of ∆ seconds. Each sensor

can both transmit and receive in the same slot. Each sensor communicates its data to

the collector by relaying it to the sensor that is immediately to its left. Let X(si, k∆)

denote the the observation of the process by sensor i in time-slot k. Also, let Y (i, k)
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X(si, k)

Y (si, k)Y (si−1, k + 1)

ai

Figure 4.3: The computation at sensor node i. The data sensed in time slot k, X(si, k)
is scaled by ai and added to the data received from sensor i+1. The sum
Y (i − 1, k) is transmitted to sensor i − 1.

denote the data received by sensor i from sensor i+1 in time slot k. Then in time-slot

k + 1 the i th sensor transmits aiX(si, k) + Y (i, k) to sensor i − 1, see Figure 4.3.

Thus, in steady state the collector during time slot k receives

Y (k) =

N∑

i=1

aiX(si, k − i) = aT Xk, (4.4)

where a = [a1, a2, ... aN ]T and Xk = [X(s1, (k−1)∆), X(s2, (k−2)∆), ...X(sN , (k−

N)∆)]T and superscript T indicates transpose. We believe that with each sensor

having limited computation capabilities, linear combining of data is a reasonable

assumption on combining data. Also, this model could be further extended to the

case where for each sensor instead of using the same ai in each time slot, it can vary

ai’s according to a periodic schedule.

The collector at time slot k makes a linear MMSE estimate of the entire field using

Y (k) only. Let X̂(s, k∆) = bsY (k) be the linear estimate of the field at point s and

during time-slot k. Then the mean squared error (MSE) in estimating the entire field

is,

MSE(N) =

∫ 1

0

E[(X(s, k) − X̂(s, k))2]ds (4.5)
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Since for a given N , the sensor placement is fixed and since a does not change with

time, the MSE remains same for different time slots.

In order to minimize MSE, it can be easily shown that,

bs =
E[X(s, k∆)Y (k)]

E[Y (k)2]
=

E

[
X(s, k∆)

∑N
i=1 aiX(si, (k − i)∆)

]

E

[∑N
i=1 aiX(si, (k − i)∆))2

]

=

∑N
i=1 aiRX(|s − si|, i∆)

∑N
i=1

∑N
j=1 aiajRX(|sj − si|, |j − i|∆)

=

∑N
i=1 aiRX(|s − si|, i∆)

aT Ψa
, (4.6)

where Ψ(i, j) = RX(|si − sj |, |i − j|∆). Note the Ψ is the covariance matrix corre-

sponding to Xk.

Then the MSE is,

MSE(N) =

∫ 1

0

E[(X(s, k∆) − X̂(s, k∆))2]ds

= RX(0, 0) −
∫ 1

0

b2
s,kE[Y (k)2]ds

= RX(0, 0) −
∫ 1

0

(
∑N

i=1 aiRX(|s − si|, i∆))2

aT Ψa
(4.7)

= RX(0, 0) −
∑N

1=1

∑N
j=1 aiaj

∫ 1

0
RX(|s − si|, i∆)RX(|s − sj|, j∆)

aT Ψa

= RX(0, 0) − aT Φa

aT Ψa
, (4.8)

where Φ(i, j) =
∫ 1

0
RX(|s−si|, i∆)RX(|s−sj |, j∆)ds. Thus, in order to minimize the

MSE, we need to maximize h(a) ,
aT Φa

aT Ψa
. We will show that h(a) does indeed have

a maximum. For any given, h(a) has the same value for any scalar multiple of a.

Thus, the a obtaining the maximum is not unique. However, our primary concern is

the maximum value h(a) and a value of a that achieves that maximum.
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4.3.1 Optimizing using Lagrange Multipliers

As was stated in the previous section, h(a) attains the same value for any scalar

multiple of a. Thus, in order to find the a that maximizes h(a), and the corresponding

maximum value of h, we consider the following optimization problem,

max
a:aT Ψa=1

aT Φa , max
g(a)=0

f(a), (4.9)

where f(a) = aT Ψa and g(a) = aT Φa−1. Note that f and h attain their maximum

value for the same a and the maximum value of h is the same as that of f constrained

to g = 0. In order to find the maxima of f , we use the Lagrange multiplier approach.

The Lagrangian corresponding to f is,

L(a, λ) = aT Φa − λ(aT Ψa − 1) (4.10)

In order to find stationary points of L we will require the concept of generalized

eigenpairs [37].

Definition 32 A scalar λ is called generalized eigenvalue, for a pair of matrices

(A, B) if and only if it satisfies the equation

Av = λBv.

The vector v is a generalized eigenvector corresponding to λ.

It can be shown that if A and B are both n× n Hermitian matrices, then there exist

n real generalized eigenvalues. In addition if B is positive definite, then it is possible

to find n mutually B-orthonormal eigenvectors vi’s. For more on the generalized

eigenvalue problem, see [37, Chapter 4]. Let ((λ1, v1), (λ2, v2),..., (λN , vN)) be a set

of generalized eigenpairs for the pair of matrices (Φ, Ψ) such that λ1 ≥ λ2... ≥ λN and

116



vi’s are Ψ orthonormal, i.e.,

viΨvj =






0 i 6= j

1 i = j

.

Lemma 33 Given f(x) = xT Φx and g(x) = xT Ψx − 1, where Φ, Ψ real symmetric

and Ψ positive definite, the maximum of f(x) constrained to g(x) = 0 is the maximum

generalized eigenvalue of (Φ, Ψ) and the maximum is attained for any eigenvector

corresponding to the maximum generalized eigenvalue.

The proof of the lemma is given in Appendix 4.B. Thus, using the above lemma

the minimum mean squared error for an optimal a is RX(0, 0) − λ1.

4.4 Simulations

In this section, we provide some simulation results for the data gathering problem

when the underlying process X(s, t) is Gaussian with a separable autocorrelation

model that is exponential in both spatial and temporal domains. That is, RX(s, t) =

exp(−σ|s|) exp(−τ |t|) for all s, t, where σ and τ are parameters that control spatial

and temporal correlations. Note that a higher σ (τ) means a lower spatial (temporal)

correlation. We also fix ∆ = 1.

For a fixed N , under the separable exponential correlation model, Ψ(i, j) =

Rx(|si − sj|, |i − j|∆) = exp(−σ|i − j|/N) exp(−τ |i − j|). Also, for σ 6= 0,

Φ(i, j) = exp(τ(i + j))

∫ 1

0

exp(−σ|s − si|) exp(−σ|s − sj |)ds

= exp(τ(i + j))

[
1

σ
exp

( |i − j|
N

)

−(1 + exp(−2σ))

2σ
exp

(
−σ

i + j

N

)
+

|i − j|
N

exp

(
−σ

|i − j|
N

)]
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Figure 4.4: Plot of abs(a1) vs. σ and τ .

For the first part of the simulations we fix the number of sensors to N = 10.

Figure 4.4 shows a plot of the coefficient of sensor one vs. σ and τ . The weight given

to observations from sensor one increases with decreasing temporal correlation or

increasing spatial correlation. This is to be expected as when the temporal correlation

increases, data from sensors relaying through sensor one even though delayed, is more

useful in estimating the current field. Thus, the optimal set of coefficients give a higher

weight to data from other sensors. Similarly, as spatial correlation increases, the data

from sensor one can give a good estimate of the entire field. Thus, higher the spatial

correlation the larger the weight assigned to sensor one.

Figure 4.5 shows a plot of absolute values of the optimal coefficients ai’s for differ-

ent values of parameter τ . The number of sensors is fixed at N = 10 and the spatial

correlation parameter is σ = 0.01. When data is perfectly correlated in time, that

is τ = 0, the delay incurred by observations from higher numbered sensors to get to

the collector has no effect on estimation of the current value of the field. Thus, the

sensors that are highly correlated to the entire line segment [0, 1], that is sensors in

the middle, get higher weight. However, as temporal correlation decreases, the delay

has more of an effect and the lower the temporal correlation, less useful is the data
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Figure 4.5: Plot of absolute values of ai’s for sensors for different values of τ . N = 10
and σ = 0.01.

from far away sensors. Thus, at low temporal correlation values, the sensors closer to

the collector get a higher weight.

Figure 4.6 shows a plot of the absolute values of the optimal coefficients, ai’s,

for different values of the spatial correlation parameter σ. The number of sensors

is N = 10 and the temporal correlation parameter is τ = 0.98. For high spatial

correlation, that is small σ, the ai’s decrease with i. This is because at high spatial

correlation, the data from sensor one gives a good estimate for the entire field and

it suffers minimal delay to get to the collector. At perfect spatial correlation σ = 0,

we would only want to receive data from the first sensor as it incurs the least delay

and the entire field can be estimated from it. However, at low spatial correlation,

data from other sensors becomes more useful as it gives a better estimate of the field.

Thus, for lower values of spatial correlation, data from sensors farther away from the

collector is also given higher weights.

Finally, Figure 4.7 shows a plot of the optimal value of N vs. the spatial and

temporal correlation parameters. In this figure, on both the X and Y-axes, one

represents perfect correlation. Here, for every value of σ and τ , we optimize the
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Figure 4.6: Plot of absolute values of ai’s for sensors for different values of σ. N = 10
and τ = 0.02.

ai’s for various values of N and then find the N that gives the minimum MSE. As

can be seen from the figure, the optimal number of sensors increases if the temporal

correlation increases or the spatial correlation decreases. For a fixed value of spatial

correlation, as the temporal correlation increases, data that takes multiple hops is

still highly correlated to the current value of the field. Thus, a higher number of

sensors in this case gives a better estimate of the field. Similarly, for a fixed value

of temporal correlation, as the spatial correlation increases, even a small number of

sensors can provide a good estimate of the entire field. Thus, the optimal number of

sensors decreases with an increase in spatial correlation.

4.A Proof of Lemma 30

Without loss of generality we assume that I = [0, 1]. Then s∗ = 0.5. Also, note

that MSE(s) = MSE(1 − s). Thus, in order to show that MSE(s∗) < MSE(s) we

need to show that for any 0 < δ ≤ 0.5

MSE(I, {0, s∗, 1}) < MSE(I1, {0, s∗ + δ, 1}).
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Using the Markov property, it suffice to show,

∫ s∗

0

E(s, {0, s∗})ds +

∫ 1

s∗
E(s, {s∗, 1})ds <

∫ s∗+δ

0

E(s, {0, s∗ + δ})ds

+

∫ 1

s∗+δ

E(s, {s∗ + δ, 1})ds. (4.11)

Let f(t) =
∫ t

0
E(s, {0, t})ds. Note that

∫ 1

t
E(s, {t, 1})ds =

∫ 1−t

0
E(s, {0, 1 − t})dt =

f(1 − t). Then (4.11) can be rewritten as,

f(s∗) + f(s∗) < f(s∗ + δ) + f(s∗ − δ).

The above equation is a known property of convex functions. In order to show that f

is a convex function, we will show that the second derivative of f is strictly positive.

The first derivative of f(t) is

f ′(t) =
d

dt

(∫ t

0

E(s, {0, t}
)

ds
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= E(t, {0, t}) +

∫ t

0

E ′(s, {0, t})ds

=

∫ t

0

E ′(s, {0, t})ds,

where E ′(s, {0, t}) denotes the derivative of E(s, {0, t}) with respect to t. The second

derivative of f(t) is,

f ′′(t) =
d

dt
f ′(t)

= E ′(s, {0, t})|s=t +

∫ t

0

E ′′(s, {0, t})ds (4.12)

Thus, in order to compute the second derivative of f(t), we need the the first and

second derivatives of E.

Recall that RX(s) = exp(−σs). Then for 0 ≤ s ≤ t,

E(s, {0, t}) = 1 − 1

1 − e−2σt
(e−2σs − 2e−σse−2σte−σ(t−s) + e−2σ(t−s)

E ′(s, {0, t}) =
2σe−2σt

(1 − e−2σt)2
(e2σs + e−2σs − 2)

E ′′(s, {0, t}) =
−4σ2e−2σt(1 + e−2σt)

(1 − e−2σt)3
(e2σs + e−2σs − 2),

where the first equation can be easily obtained using (4.2). Next, we separately

evaluate the first and second terms of (4.12)

E(s, {0, t})|s=t = 2σ
∫ t

0

E ′′(s, {0, t})ds =
−4σ2e−2σt(1 + e−2σt)

(1 − e−2σt)3

(
e2σt − e−2σt

2σ
− 2t

)

Substituting back in (4.12),

f ′′(t) = 2σ − −4σ2e−2σt(1 + e−2σt)

(1 − e−2σt)3

(
e2σt − e−2σt

2σ
− 2t

)
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=
8σe−2σt

(1 − e−2σt)2

(
−1 + e−2σt + σt(1 + e−2σt)

)
︸ ︷︷ ︸

g(t)

Thus, if g(t) > 0, then f ′′(t) > 0. Using rudimentary differentiation it can be easily

shown that g′′(t) > 0 and g′(0) = 0. Thus, g′(0) > 0 for all t > 0. Combined with

the fact that g(0) = 0, gives g(t) > 0 for all t ≥ 0. Thus, second derivative of f(t) is

positive. This completes the proof of the lemma. �

4.B Proof of Lemma 33

Before going to the proof of Lemma 33 we give a few preliminaries for optimizing

using Lagrange multipliers. A detailed discussion of Lagrange optimization and proofs

of the lemma’s given in this section can be found in [38, Chapter 18].

Let x = {x1,..., xn} ∈ Rn, and let f(x), g(x) be functions of x. Then the gradient

and Hessian of f(x), denoted ∇xf(x) and ∇2
x
f(x), respectively, are defined as follows.

∇xf(x) =

[
∂f

∂x1

∂f

∂x2

. . . l
∂f

∂xn

]T

.

∇2
x
f(x) =





∂2f

∂x1∂x1

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x2∂x2
. . .

∂2f

∂x2∂xn

...

∂2f

∂xn∂x1

∂2f

∂xn∂x2
. . .

∂2f

∂xn∂xn





.
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For the constrained optimization problem we wish to find x∗ such that

f(x∗) = max
x:g(x)=0

f(x)

We make use of Lagrange multipliers to perform this optimization. The Lagrangian

of f is

L(x, λ) = f(x) − λg(x)

Let ∇L(x, λ) =

[
(∇xL)T ∂L

∂λ

]T

denote the gradient with respect to x and λ. Also,

define the bordered Hessian of L with respect to x as Hx(x, λ) = ∇2
x
L(x, λ) and the

set P (x) = {y : (∇xg)Ty = 0}.

The next lemma gives a necessary condition for x∗ to be a stationary point of f under

the constraint g = 0.

Lemma 34 If x∗ is a stationary point of f subject to g(x) = 0, then there exists a

λ such that ∇L(x∗, λ) = 0.

Thus, for any stationary point x of f subject to g = 0, there exists a λ such that

(x, λ) is a stationary point of L(x, λ).

The next lemma gives a necessary condition for x∗ to be a local maximum of f under

the constraint g(x) = 0.

Lemma 35 (Necessary Conditions) Let x∗ be a local maximum of f subject to

g(x) = 0. Then there exists a λ such that ∇L(x∗, λ) = 0 and Hx(x∗, λ) is negative

semi-definite on P (x∗).

We now return to our optimization problem and provide a proof of Lemma 33

Recall that f(x) = xT Φx and g(x) = xT Ψx, where Φ, Ψ symmetric and Ψ

positive definite. Since Ψ is positive definite, the set of points satisfying g(x) = 0 is a
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compact set. Since f(x) is a continuous function, from the extreme value theorem, it

achieves a global maxima on the set of points satisfying g(x) = 0. Thus, if there exist

only one local maxima, or multiplicity of local maxima all having the same value,

then that value is also the global maxima.

In order the find a point x that achieves the global maximum we show the follow-

ing. From Lemma 34, for any stationary point x of f subject to g = 0 there exist a

λ such that (x, λ) is a stationary point of L. Thus, we first find all points (x, λ) that

are stationary points of L(x, λ). We then show that any stationary point of L(x, λ)

which satisfies the necessary condition to be a local maxima, gives the same value for

f . Since all local maxima have the same value, and since a global maxima exists, the

value of the global maxima is the same as that of any of the local maxima.

Recall that the Lagrangian is

L(x, λ) = f(x) − λg(x) = xT Φx − λxT Ψx.

The stationary points of L, given by ∇L(x, λ) = 0 are solutions to the equations

Φx = λΨx

xT Ψx = 1.

The solution to above equations are pairs (vi, λi) for i = 1, 2,..., n, where λi are

the generalized eigenvalues of Φ, Ψ and vi’s are corresponding eigenvectors such that

they are Ψ orthonormal. Note that, since Ψ is invertible, λi’s are also the eigenvalues

Ψ−1Φ. We order these eigenvalues such that λ1 ≥ λ2 ... ≥ λn.

In order to verify the necessary conditions of being a local maximum for (vi, λi) we

will need the following lemma, see [37, Chapter 4], about generalized eigenvectors.

Lemma 36 Given A, B symmetric real and B positive definite, then there exists a
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set of generalized eigenpairs (λi, vi), i = 1,..., n satisfying Avi = λiBvi such that

1. vT
i Bvj = 0 if i 6= j.

2. vT
i Bvi = 1 for all i.

3. vi’s for a basis for Rn.

We next show that among the stationary points of L, only v1, an eigenvector corre-

sponding to the largest eigenvalue λ1, satisfies the necessary conditions. Note that

for the given Lagrangian L, the bordered Hessian and P (x) are 2Φ − 2λΨ and

{y : xT Ψy = 0}, respectively. Then for v1, H1 , H(v1, λ1) = 2Φ − 2λ1Ψ and

P (v) = {y : vT
1 Ψy = 0}. We want to show that for all y ∈ P (v1), yT H1y < 0.

Since vi’s form a basis for Rn, then for any y there exist αi’s such that y =
∑n

i=1 αivi.

For y ∈ P (vi), using Lemma 36,

0 = vT
1 Ψy = vT

1 Ψ
n∑

i=1

αivi = αi

Thus, y =
∑n

i=2 αivi and for such a y

yT H1y = 2yT (Φ − λ1Ψ)y

= 2yT

(
Φ

n∑

i=1

αivi − λ1Ψ
n∑

i=1

αivi

)

= 2yT

(
Ψ

n∑

i=1

λiαivi − Ψ
n∑

i=1

λ1αivi

)

= 2

(
n∑

i=1

αivi

)
Ψ

(
n∑

i=1

αi(λi − λ1)vi

)

= 2

n∑

i=1

n∑

j=1

α2
i (λj − λ1)v

T
i Ψvj

= 2
n∑

i=1

α2
i (λi − λ1)v

T
i Ψvi
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= 2
n∑

i=1

α2
i (λi − λ1) < 0

Therefore, v1 satisfies a necessary condition to be a local maxima.

We now show that no other point stationary points of L(x, λ) except for another

generalized eigenvector corresponding the largest eigenvalue, satisfies the necessary

condition to be a local maximum. Then H(vi, λi) = 2(Φ−λiΨ) and let y = v1. Since

vT
i Ψv1 = 0, y ∈ P (vi).

yT H(vi, λi)y = 2vT
1 (Φ − λiΨ)v1 = 2vT

1 (Φv1 − λiΨv1)

= 2vT
1 (λ1Ψv1 − λiΨv1)

= 2(λ1 − λi)v
T
1 Ψv1 > 0

Therefore (vi, λi) does not satisfy the conditions for being a local maximum.

Thus, only eigenvectors corresponding to the largest eigenvalue satisfy the neces-

sary conditions. Also, for any eigenvector, v1, corresponding to the largest generalized

eigenvalue of (Φ, Ψ) that also satisfies g(v1) = 0, f(v1) = λ. Thus, all points that

satisfy the necessary conditions to be a local maxima have the same value λ1. Thus,

the global maxima is λ1 and it is achieved by an eigenvector corresponding to the

largest generalized eigenvalue. �
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CHAPTER V

Conclusions and Future Work

In this final chapter, we provide a summary of the contributions of this dissertation

and avenues for future work.

5.1 Summary

In this dissertation, we investigated three problems that wireless ad hoc networks

face. The first problem addressed is that of throughput scaling in random access

wireless networks, while the second two were more specific to field gathering wireless

sensor networks. Chapter II examined the problem of throughput scaling in random

access wireless ad hoc networks. The networks under consideration were extended

networks in which both the number of nodes and the area of the network increase

at the same rate. This ensures that the density of nodes remains constant. Each

node in the network acts as a source and wants to communicated to a destination

that is located at a random location. Franceschetti et al. recently improved the

throughput scaling to Ωp

(
1√
n

)
from Ωp

(
1√

n ln n

)
as achieved by Gupta-Kumar.

By constructing a routing and scheduling strategy, we showed that the increase in

throughput scaling is due to percolation based route construction. Percolation allows

us to construct routes from each source to its destination that have all but two of

their hops have lengths O(1). Shorter hop lengths allow more users to transmit
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simultaneously, while still allowing each of the nodes to transmit at a rate that does

not depend on the number of users in the network. This helps in improving the

throughput. The benefit of using the capacity-based link bit-potential model instead

of a threshold-based model is that it allows the power at each node to remain constant

even as the network size increases. However, under the capacity bit-potential model

the nodes have to receive data at SINR that decreases to zero with increasing network

size. Thus, there is a trade-off between using a powerful transmitter or a powerful

receiver. There is no benefit obtained from using a highway based routing strategy

of Franceschetti et al, as compared to the semi-straight line routing used by Gupta-

Kumar.

Chapter III examined the trade-off between compression and robustness of dis-

tributed coding schemes in wireless sensor networks. We provided a rigorous theoret-

ical formulation of the problem and measured performance of the schemes in terms

of average rate and loss factor. It was shown that traditional Slepian-Wolf coding

in wireless sensor networks suffers from a catastrophic loss if even one of the sensors

fails. In order to use distributed coding in scenarios where nodes may fail, an exten-

sion to the original Slepian-Wolf theorem was provided. The extended Slepian-Wolf

theorem allows for designs of decoders that can decode from a subset of the encoders

that satisfy rate conditions given in the theorem. We then proposed and analyzed

several different flexible distributed coding schemes. The schemes, while working at

low average rates, are very robust to encoder failures. The performance of these

schemes was evaluated for a one-dimensional sensor network measuring a stationary

Gauss-Markov field. The evaluation shows that flexible distributed coding schemes

can achieve the smallest possible loss factor, equaling the probability of node failure,

for rates significantly smaller than independent coding.

Chapter IV investigated the problem of data collection in field gathering wireless

sensor networks. The first part of the chapter examines the sensor placement problem.
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In this problem, the senors transmit the data at their locations to the collector without

using relays. The collector on receiving data from all nodes then reconstructs the

field in the entire network region. It was shown that for a sensor network measuring

a one-dimensional Markov field with exponential correlation, the optimal placement

of sensors under the mean squared error criteria is uniform. In the second part of

the chapter, a data gathering algorithm for sensor network was introduced. In the

algorithm each sensor linearly combines its own data with the data it relays for other

nodes. The collector on receiving the fused data makes an estimate of the field at the

current time. After optimizing the process of data fusion, it was observed that the

optimal density of nodes increases with increasing temporal correlation and decreases

with increasing spatial correlation. This suggests that there is an optimal density

when gathering data from sensors under a communication constraints.

5.2 Future Work

The research described in this dissertation lays the ground for a multitude of

future problems for study.

The foremost open question in the throughput scaling problem in random access

communication networks is the evaluation of the pre-constants that multiply the order

results. As a first step, it would also be interesting to investigate how quickly does

throughput converge to the formulas given in Chapter II.

For the reliability problem, studied in Chapter III, an interesting problem would

be to find the achievable loss-rate function and the achievable rate-loss region. We

also envision a fully flexible scheme without an underlying structure. In this scheme,

the decoder on receiving encoded indices from some of the encoder, checks which of

the nodes it can decode based on which subset’s satisfy the extended Slepian-Wolf

conditions. Finally, constructing practical distributed codes for flexible schemes is an

open problem, too.

133



For sensor placement and data gathering in wireless sensor networks, an interesting

problem to pursue would be generalizing the one-dimensional placement result to non-

Markov processes and the extension of the placement result to two dimensions. As

a first step in extending the result to two dimensions, it may be helpful to look at

the asymptotic case. For the data gathering problem, a more rigorous theoretical

analysis of how the density of nodes depends on the spatial and temporal correlation

is still needed. Also, of interest would be extending the current algorithm to case of

periodic schedules. Once again, extensions to two dimensions is still open.
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