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ABSTRACT

Regularized Estimation of Main and RF Field Inhomogeneitg bongitudinal
Relaxation Rate in Magnetic Resonance Imaging

by

Amanda K. Funai

Chair: Jeffrey A. Fessler

In designing pulses and algorithms for magnetic resonanaging, several simplifications
to the Bloch equation are used. However, as magnetic reser(dR) imaging requires
higher temporal resolution and faster pulses are used/ifiragions such as uniform main
field (B,) strength and uniform radio-frequency (RF) transmit caldi(B;") strength no
longer apply. Ignoring these non-uniformities can caugeicant distortions. Accurate
maps of the main and RF transmit coil field inhomogeneity acgiired for accurate pulse
design and imaging. Standard estimation methods yield/moaps, particularly in image
regions having low spin density, and ignore other importaators, such as slice selection
effects inB; mapping and’; effects inB, mapping. This thesis uses more accurate signal
models for the MR scans to derive iterative regularizechesstiors that show improvements
over the conventional unregularized methods through @raRao Bound analysis, simu-
lations, and real MR data.

In fast MR imaging with long readout times, field inhomogéyneiauses image dis-
tortion and blurring. This thesis first describes regulkadiznethods for estimation of the

off-resonance frequency at each voxel from two or more MRisdwving different echo

Xiv



times, using algorithms that decrease monotonically alaeged least-squares cost func-
tion.

A second challenge is that RF transmit coils produce nofetmifield strengths, so an
excitation pulse will produce tip angles that vary subsédiytover the field of view. This
thesis secondly describes a regularized metho@formap estimation for each coil and for
two or more tip angles. Using these scans and known slicel@rdie iterative algorithm
estimates both the magnitude and phase of each &jil'snap.

To circumvent the challenge in conventiorfa) mapping sequences of an long rep-
etition time, this thesis thirdly describes a regularizeetimod for joint B~ andT; map
estimation using a regularized method based on a pendlkadihood cost function us-
ing the steady-state incoherent (SSI) imaging sequenteseiteral scans with varying tip

angles or repetition times.
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CHAPTER |

Introduction

Magnetic resonance imaging (MRI) is a very important andgxéw imaging modality,
being both safe and non-invasive, while still sensitive karge variety of tissue properties.
Careful manipulation of magnetic fields allows for imagingaof object’s interior and its
structure, metabolism, and function. MR uses three mainneiggfields, the main field
(By), a radio-frequency field§;), and gradient fields. The final measured MR signal
depends greatly on the applied magnetic fields magnitudehasle. Estimation of these
fields using statistical signal processing techniquesssr@sal to create the most accurate
images possible.

A governing assumption throughout magnetic resonance (MRgrfectly homoge-
neous main and radio-frequency fields,(and B;). However, homogeneous fields are
not feasible in the real world. For example, inhomogenaityhie main field arises both
from the physical design of the magnet (although this camiggaved with shimming)
and also from differences in bulk magnetic susceptibiégpecially on the boundary of air
and tissues, as in the sinuses. This is especially probilemahigherB, field strengths.
Similarly, B (radio-frequency or RF) inhomogeneity arises from inciegslistance from
transmit coils, use of surface coils, and interaction of bjett with the RF wavelength.
Homogeneity of either the main field or RF field can not be as$uiue to the physical

properties of MR.



Homogeneity assumptions were generally appropriate undeB, field strengths and
short read out times. However, demand for faster, high@luésn scans and methods such
as functional magnetic resonance imaging (fMRI) requist faethods and highes, field
strengths. As fast imaging techniques such as echo-plaraging (EPI) and spiral scans
gain popularity, image artifacts frorB, field inhomogeneity are visible. These artifacts
cause signal loss and result in shifts or blurring in the fM& images, making qualitative
and quantitative analysis difficult. These effects are edaated in highB, fields. Simi-
larly, as MR main fields grow in strength, image artifactair®; field inhomogeneity are
visible. At higher field strengths, the RF wavelength is séoed, and experiences further
shortening due to changes in the tissue dielectric constsuilting in higher inhomogene-
ity at higher main field strengths. The nonuniform effect acle voxel gives a possibly
different tip angle in each voxel. This gives spatially vagysignal and intensity in the
image, making both qualitative and quantitative analydigcdlt. Therefore, the speed
and field strength requirements of state-of-the-art MR nietdgy further exacerbate the
problems of inhomogeneity.

Correcting for these artifacts is possible using the appatprfield map. Given a
smooth field map o3, inhomogeneity, conjugate phase methods can compensgiedee
accrual at each voxel, tailored RF pulses can compensasggiual loss, or iterative recon-
struction methods can be used to obtain corrected final MRy@®ainder the condition
of an inhomogeneouB, field. Similarly, given a map of3; inhomogeneity, tailored RF
pulses, parallel transmit excitation, and dynamic adjesthof RF power can compensate
for B; inhomogeneity. Highly accurate and reliable field map estors are required in
these intensive imaging environments.

Previous estimators have often been based on heuristicitalgs rather than on a
statistical estimation theory. These estimators are dfteited in scope, dependent on a
strict measurement scheme, specific imaging parameteignore complicating physical

effects. Additionally, these estimators often satisfy ibbguirement for smooth field maps



through low pass filtering and smoothing of calculated fielps1 New statistically based
estimators that are based on more comprehensive modelsededh Estimators are needed
that incorporate the knowledge that true field maps are smwdh an understanding of
the effect of smoothing on image spatial resolution. Thesih presents three separate
estimators that satisfy these desired estimator progertie

Chapter Il first presents a short introduction to MRI. Sectof follows with a brief
discussion of the effects on field inhomogeneity - the matwafor new statistical es-
timators. Chapter Il overviews some principles of iteratpenalized estimator design,
which are used as the solution in this report. Chapter IV ke problem of main field
map estimation, considering both current solution and psopg the new solution as well
as demonstrating its effectiveness. Chapter V similarlksoat B; map estimators, con-
sidering current solutions and proposing a new iteratitaregor and demonstrating its
effectiveness. Chapter VI, noting the interdependenc8;0énd the longitudinal relax-
ation time7;, considers current solutions f§ mapping and jointB;, 77 mapping and
their limitations and proposes a new joint estimatorfpand B; which incorporates slice
profile effects and Bloch non-linearity. Finally, Chapter ¥bncludes, summarizing the
proposed solutions in this work and giving future work in geal of estimating parameter

maps in MRI.

1.1 Contribution of Thesis

This thesis proposes three new penalized-likelihood (BLijrators based on compre-
hensive statistical models with regularization.

First, the field map PL estimator uses two or more scans tmastifield maps that in-
terpolate smoothly in voxels with low spin density and irtga a simple weighting scheme
to partially account for?i decay. A Cramer Rao Bound analysis aids in selection of echo
times. This estimate improves the conventional field mapnasés, shown both in simula-

tion studies, as well as with real MR phantom data. The rieguinproved reconstructed



images dramatically affects the final image quality.

Second, théB;" PL estimator uses multiple scans and an arbitrary seleofitp angles
to estimate both th&,; magnitude and relative phase of one or more coils assumiegya v
long repetition time. This method accounts for slice sébaceffects by using the correct
slice profile in the model, improving results at higher tighas. This method also smoothly
interpolates in regions with low spin density. The simwatresults have less error that the
conventional estimate, even when using the standard twiesng&esults are also shown
with MR phantom data.

Third, the joint B /T, PL estimator uses multiple scans and an arbitrary selection
tip angles and repetition times to estimate both themagnitude and relative phase of

one or more coils. The estimator uses the steady-state eneoh(SSI) method based on

a Cramer Rao Bound analysis of varioB$/7; joint estimation schemes and aids in se
lection of imaging parameters. This method allows for stoetd repetition times, and
thus faster scanning, than the previous regulariBednethod. The regularize®, esti-
mates interpolate smoothly in low spin density areas witsexr+chosen desired full-width
half-maximum (FWHM). Simulation results show lower erroaththose of the previous
estimator due to inclusion @f; effects.
The thesis contributes three new PL estimators that incatpomportant physical ef-

fects and smooth in areas of low data magnitude in a controll@nner via a user-selected
[ value. Cramer Rao bound analyses help select imaging paesnédthe estimators aid

the field of MR parameter mapping to ultimately improve pussign and imaging.



CHAPTER I

MRI Background

First, a brief overview of MRI, the magnetic fields used, amellbasic equations which
govern MRI and their assumptions will be given.

Magnetic resonance imaging (MRI) is a medical imaging mibg&iat uses magnetic
fields to image the body non-invasively and without ioniziagliation. Certain atoms
(those with an odd number of neutrons or protons) possesaraatiristic called nuclear
spin angular momentum. Hydrogen, located throughout theamubody in the form of
water, has a single proton and is the atom used in convehtddR& We can visualize
these atoms as tiny spheres spinning around an axis, or@.*sSffie spins create a small
magnetic moment in the same direction as the angular momentanipulating these
spins through interactions with magnetic fields createsitpeal measured in MRI. Many
of these signals, fit to a Cartesian grid, are then transformi@dh 2D (or 3D) Fourier

Transform to create the final image.

2.1 Three Magnetic Fields

Three magnetic fields are used in signal acquisition in MRIB{, the main field, 2)

B, the radio frequency field, and 3) affine perturbation®gtcalled field gradients.



2.1.1 B,, the Main Field

Normally, the spins are in random directions, creating anm@gnetic moment of zero.
However, when a magnetic field is introduced (by conventiothe z, or longitudinal,
direction), magnetic moments can only be oriented paraleinti parallel to the field, as
explained by quantum physics. The parallel state is a lowergy state, while the anti
parallel state is a higher energy state. Thus, slightly nadcens (only a few parts per
million) will align in the parallel state, creating a net nmagic moment (referred to as the
net magnetization) aligned parallel to the main fighd,

These atoms also possess a second important characteriafioetic resonance. This
property causes the spins to precess about the z direckeralispinning top when the
magnetic fieldB, is applied. The frequency of precession is governed by tirenbra

equation
(21) w=r- BO,

where~ is the gyromagnetic ratio (for hydrogen,/2r = 42.57 MHz/T). Based on this
equation, typical resonant frequencies are 63 MHz for a Ti&l@d. If no excitation is
applied, the net magnetization is proportional to the sginsity, the number of spins per

unit volume. We define the net magnetization as
M = M, + M,j + M.k.

A homogeneous main field is important in MRI so that the resbfrequency is con-
stant across the field. Shimming, using small coils or magnedn be used to make a
more homogeneous main field. Main fields are usually in thgeaf a few Tesla. How-
ever, as field strengths become higher (for example, 3T agttehj, making the main field

homogeneous becomes more and more difficult.



2.1.2 Radio frequency field §,), Excitation and Relaxation

The second magnetic field applied is a radio frequency fialied B, . This alternating
electromagnetic field ., a radio frequency (RF) field) is applied, tuned to the Larfner
guency, during the excitation phase of scanning to tip thgmatization into the transverse
plane.. This applies a torque to the net magnetization vezasing that vector to tip. The
tip angle is governed by the strength of the RF field and thgtleof time it is applied.
Typically, an angle of 90 degrees is desired so that the nghetaation is in the x-y plane.

If the radio frequency field is inhomogeneous, then the negmatzation vector will
be tipped by a different angle at each location in the ROIsTdan cause problems in
excitation.

After excitation, the net magnetization returns to equillitn in the longitudinal plane.
The vector continues to precess at the Larmor frequencygualaxation. This is called
relaxation. Relaxation is governed by two constafiisgnd7;) which depend on the ob-
ject’'s material. 77 is the spin-lattice constant and involves energy exchaeg@den spins
and the surrounding electrons. The values are in the ranigerafreds of millisecond<;

specifies how the longitudinal magnetization recovers:

(2.2) M. (t) = My(1 — e ¥/,

where M, is the equilibrium nuclear magnetizatiof; is the spin-spin time constant and
involves interactions between the sping; is normally in the tens of millisecondsT;

specifies how the magnitude of the transverse magnetiz@tidghe XY plane) decays:

(2.3) M, (t) = Mye /T2

wherel,, = M, +iM,. Ty andT;, do not affect the precession of the net magnetization

vector, but do affect its length. Interestingly, the net metgzation vector can change length



and differ from its equilibrium value during relaxation deqling on the values af;, and
T5. In fact, magnetization can even disappear for a time andristeirn.

The magnetization vector precesses at the Larmor frequehdg returning to equi-
librium. This precession, by Faraday’s Law, causes an melieagnetic force in a RF coill
that is measured. This signal is the MRI signal. This sigih@lrefore, depends not only on

spin density, but also of, and7s.

2.1.3 Field Gradients

To create an image, there needs to be spatially dependeniniafion. The addition
of field gradients which, encode this information earnedhwtentor, Paul C Lauterbur and
Peter Mansfield, a Nobel Prize in 2003. Linear field gradiantsapplied to the main field.
The field perturbation is the same in the directionsbut its magnitude varies at spatial

coordinates. A general gradient can be expressed as

(2.4) G = G,i+G,j+ G.k,

wherei, 7, andk are unit vectors. The main field can then be expressed as
B(r) = (By + Guz + Gy + G.2)k = (By + G - P)k.

By varying these field gradients, many signals can be celtteind then arranged on a
Cartesian grid. Then, a simple 2D Fourier transform of théectéd signal gives the final

image.

2.2 Bloch Equation

The behavior of the magnetization vector is governed by apimenological equation

called the Bloch equation. This equation describes theggsgon and relaxation effects in



the previous section. The Bloch equation is given below:

dM Myi+M,j (M, — M,k
2.5 —— =M x B — vl .
(2.5) di a T T,

The first term describes precession and influences the idinect the net magnetization.
For example, the change in magnetization is proportion#théocross product oM and
B. If B remains constani.g., our main field), then the angle betwedd and B will
not change and we will have precession as specified by thedragquation. The second
term describes the relaxation controlled by the relaxat@es’; and7; and influences the
length of the net magnetization.

There is no known general solution to the Bloch equation;dwas when certain sim-
plifications are made, the differential equation can be eshlvOne important example is
when RF = 0, which applies during relaxation when the RF is not applieing the
expression for a general gradient (2.4), the transversg (¥ane) component of the Bloch

equation is

ey (% +i(wy + w(F, t>>) Moy,

This simple differential equation thus has the solution

(2.6) My, (7)) = Mo(F) e~t/T2l) gmtwnt oGt

2.3 Imaging

Creating an MR image requires two basic steps. Excitatiosistsof using a RF pulse
to excite the volume (or a portion thereof). Then, gradiewtsused to spatially encode
the information. Finally, during readout, the transversenponent of the magnetization
signal is read. Usually, this process is repeated sevenalstiby waiting until equilibrium
is reached between excitations. The collection of recosilgials are rearranged into a 2D

array and then the Fourier transform yields a two-dimeraignage.



2.3.1 Excitation

Excitation involves using an RF pulse to “excite” spins, iprspins by some angle.
Non-selective excitation excites the entire volume, whatective excitation excites just a

slice of the volume. Excitation is based on the principlesdssed in Section 2.1.2.

2.3.1.1 Non-selective Excitation

In non-selective excitation, all the spins in the entireuvoé are excited by the RF
pulse, causing them to tip by an angle determined by the idarahd power of the pulse.

To analytically solve the Bloch equation in this situationg uses a few simplifications.
First, no gradients are applied - the only operating magriigtids are the RF pulse (thg
field) and the main field3,. Relaxation is ignored because the typical length of an RF
pulse is very short (less than 1 millisecond).

Two RF coils are used in MR: one coil, the transmit coil, cesdhe RF field that excites
the spins; the second coil, the receive coil receives theigrfakfrom the precessing spins.
Sometimes, one coil will be used for both of these two purpasemultiple coils will be
used for either the transmit coil or the receive coil or bawhile ideally each of these coils
would have a uniform response.d., for the receive coil, two identical precessing spins
in different locations would generate the same emf), realcBifs have a coil response
function that varies as a function of spadg’ () (response of the transmit coil(s)) and
Breeeive(7) (response of the receive coil(s)), whetés the space variable. (Note - if more
than one coil is used for transmitting or receiving, each ale its own unique response.)
The inhomogeneity of the coil response can be very probliematnon-uniform receive
coil response creates intensity differences - those arghsavemallerBrcve will appear
darker compared to areas with a larger valu@tfeve. This can make MR images more
difficult to interpret. A non-uniform transmit coil respasshowever, is much more prob-
lematic because it leads directly to varying flip angle arfthences the signal equation in

a more complicated way. Non-uniform flip angles,®rfield inhomogeneity, is explained
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further in Section 2.4.
When an amplitude-modulated signal is injected into eithal, ¢he coil induces a

magnetic field calledB!" (7 t):

(2.7) Bl" (7 1) = ay(t) cos(wt + ¢y () +¢, )BT (7),

wherea, (t) and¢, (t) are the input amplitude and phase to the coil afiés the modulator
phase offset. We assume here tB&t* is exactly on-resonance andis the Larmor fre-
guency. The transverse component of this field, or the paheofield that is perpendicular
to By, influences spins. We can break this field into two circulajarized fields, a right
and a left-handed field; because the left-handed field ®iatéhe same direction as the
rotating spins, this field is more resonant with the spinstaedight-handed field has only
a negligible effect on the spins (and is thus ignored) [92].is the left-handed circularly
polarized field and is expressed as:

(2.8) B\ (7, t) = B (Max(t)[cos(wt + ¢1 (1) +6)i — sin(wt + ¢1(t) +6,)j].

This field is referred to as th8;" field and is the active field during transmission (in this
thesis, we are referring to this circularly polarized fieldem we are estimating the, field
and inhomogeneity in Chapter V and Chapter VI).

BecauseB; is precessing, changing our unit directional vectors tdamscthat are ro-
tating clockwise at an angular frequencycan greatly simplify description of these fields.
This is called a rotating frame. We can choose a rotating éréimat is precessing at the
Larmor frequency or at the RF frequency. Here, we assumesorancei (., the Larmor

frequency is exactly the same as thatifyf) and then these rotating frames are identical.
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Then, the new directional vectors are defined as

-

cos(wt) i — sin(wt) j

!
[I>

-

sin(wt) 7 4 cos(wt) j

>

F,

x
>

and the rotation matrix,, is given by

cos(f) sin(d) 0
R.(0) = | —sin(d) cos(f) 0 |,
0 0 1
and the magnetization vector in the rotating frame is given b
T
Mrot - Mx/ Myl Mz/
Then,
(2.9) M, (7,t) = R.(0(F)) M, (7, 0),

where the tip angle is defined as

(2.10) 0(r) = /t wi (7, s)ds,
0

wherew, (7, t) = yBy ()b (t) andb, (t) £ a(t) e7**® and the oscillator offset has been

absorbed by th8; .
In the rotating frame, the RF field rotates the magnetizateetior from the longitudi-
nal. The magnetization vector thus precesses along thisgsat is tipped.

In the case of multiple transmit coils driven by the same RRaib, (¢) with individual

12



coil pattersB; , and different relative amplitudes., the complex coil patterns add linearly.

Although theB; fields add linearly, the magnetization fields do not.

2.3.1.2 Selective Excitation

In selective excitation, a static z gradigriz is applied during the RF pulse to select
only spins in a desired “slice”. Only spins where the resofi@guency matches the fre-
guency ofB; will be excited. Again, we assunig and7; effects are negligible due to the
short pulse duration. A circularly polarized RF pulse islgggpat a frequency close to the
Larmor frequency. Even with these simplifications, the Bleguation can only be easily
solved by making the small tip-angle approximation [98].isTapproximation assumes
that the system is initially at equilibriunn.€., the magnetization vector is completely in the
longitudinal plane) and that the tip angle is small (lesstB@ degrees). Under the small
tip angle assumption, we can assume tWatx~ M, anddM., /dt = 0. After solving the de-
coupled differential equation, the expression for thegvanse component after excitation

is equal to the Fourier Transform &f;. This relationship is [92]:
t
(2.11) M(t,7) = iMy(F)B () o= / )5 4 (5)ds,
0
wherew(z) = 7G,z from which follows:

(2.12) |M (7, 2)| = Mo(F)By (7) Fro{vbu(t + 7/2)}H j=—(3/2m):. -

If we have exact resonance(, eitherz = 0 or G, = 0), then the same solution applies as
in non-selective excitation - the tip angle is equal to titegnal of the RF pulse. This can
be expanded to include multiple coils, as well.

Because of the Fourier Transform relationship, finding theal RF pulse is difficult
because both the RF pulse itself and the resultant slicdgeo® necessarily time limited.

An infinite sinc pulse is impossible to create in practicejsathe ideal rectangular slice
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profile. In practice, truncated sincs or Gaussian pulsesisgd. This can create problems
when an algorithm is based upon the ideal of an infinitely #rid/or rectangular achieved

slice profile.

2.3.2 Signal Equation

After a portion of the volume has been excited, we must furthrelerstand the MR
signal and how to create the appropriate gradients to obtapatially encoded signal for
the final image.

Ideally, receiver coil(s) detect flux changes in transvensgnetization uniformly over
the entire volume or ROI. (To combat this non-ideality, mamgdels add the sensitivity
pattern of the coils as a parameter [69, 113].) Each exciped®ntributes to the signal.
Therefore, the signal equation is equal to the volume ialegfrthe transverse magnetiza-

tion:
(2.13) S, (t) = / Brecee () M (7, t)dr.
vol

We note here that this signal equation ignores constandrfgaeind phase factors based on
ignoring T2 decay. We will also include the coil sensitiggiin this analysis. In the case
where these are not appropriate assumptions, even thisi§rel equation might be called

into question. Using (2.6), the signal equation is:

(214) Sf(t) _ ///MO(F)Breceive(,,:f) e—t/Tz(F) o~ wot e—ryfot G(r)-7dr dasdydz

Again, we ignore the relaxation term. We look only at the éope of this signal and

assume no z gradient is applied. This yields the followingetipn:

(2.15) S(t) _ //m(x’ y)Breceive(xyy) e—wfg G(r)-Fdr dxdy,
rJY
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wherem(z,y) is the integral of the magnetization over the slice. It camals® written

using the kspace notation (which will be explained in thetisextion) as:

(216) S(t) — //m<x’y)Breceive(l,7y) e*’LQﬂ'(k@(t)iBﬁ*ky(t)y) dIdy,
zJy
where
¢
(2.17) k() = ~/27 / G ()dr
0
t
(2.18) ky(t) = 7/27?/ Gy (T)dr,
0

whereG, andG, are the x and y gradients. This signal is detected by thevexseand via

a Fourier Transform (also explained in the next sectionyéat our MR image:(z, y).

2.3.3 Gradients

After excitation, gradients in the x and y direction are #blto spatially encode in-
formation into the MRI signal as shown in the previous edurati This equation clearly
shows a Fourier relationship between the signal and the etagition at kx and ky loca-
tions. These spatial frequency locations are usually redieto as kspace, where k is usually
measured in cycles/cm. Thus, each time in the signal cavrefspto a Fourier transform of
kspace. This perspective greatly aids in designing trajexs.

As the gradients are applied, the spins are also simultateoaturning to equilibrium.
This free-induction decay (FID) signal is “read-out” or msaeed by the coils. A sufficient
amount of time (called TR or repetition time) is waited unltie system returns to equi-
librium and then another excitation cycle begins, différgradients are applied, and the
signal is again read out.

The signal is typically largest at the center of kspace. Tigeas is read out here at

what is referred to as the echo time. This type of echo is dallgradient echo and is the
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type of echo used in this thesis.

2.3.4 Multiple Transmit Coils (parallel excitation)

The severe problem dB;” inhomogeneity in high fieldsX 3T') precipitated the de-
velopment of multiple transmit coils and parallel excivati[67, 108, 134, 135, 142, 143,
145, 148]. Ideally, each coil can be adjusted with phase amgliude to try to compen-
sate for the effects aB; field inhomogeneity. This led to the development of comjete
separate pulses for each coil. The trend toward using higlaén field strengths with their
subsequent benefits would be undermined without a strateggrhpensate foB; inho-
mogeneity. Multiple transmit coils also have other possisénefits. RF pulses could be
shortened in length or a larger space could be covered. A fiossibility is decreasing
the RF power required. Parallel excitation motivates thedrfer accurate and efficiert;”

maps.

2.3.5 Noise in MRI

Noise in the MR signal is additive Gaussian noise [83]. Thea primarily thermal,
the resistance coming both from the coil and body being ida§ me noise is also pro-
duced by the pre-amplifier. However, through proper desiigih® coil and MR system,
the major noise source is the imaging object. Because thei®&Tnitary transform, the
final MRI also has Gaussian noise. When the kspace samplesiéseuon a Cartesian
grid, the Gaussian noise is white; other sampling methoddiumre colored noise. Because
of complex components after the Fourier transform is take, usually look at the mag-
nitude of the image. This will give a Rayleigh distributiam background regions of the
image and a Rician distribution in the signal. Because thamig usually much greater
than the variance, these distributions can be approxinsddésaussian.

The signal to noise ratio (SNR) is affected by many factorsiRI. A general rule of

thumb is that the SNR is proportional to thg field strength if, as is common, the imaging
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object is the main source of resistance. However, thisicglghip is quite complex because
other parameters in MR are also a functionffs magnitude. SNR is proportional to the
square root of the total measurement time, whether by isargahe number of samples,
the number of signal averages, or the length of the readmé.tiAs a rule of thumb,

increasing the spatial resolution by a factor reduces the Bithat same factor.

2.4 MRI Field Inhomogeneity

In solving the Bloch equation as shown in Chapter I, field hgemeity is often as-
sumed. However, due to the nature of objects being imagedetisas/ the difficulty in
engineering perfect magnetic coils, fields are inhomogese®he sources of this inhomo-
geneity, its effects, and correction methods are explanetthis section. As will be seen,
these correction methods require a map of the inhomogenfeglds The estimation of

these fields is the subject of this thesis.

2.4.1 Main Field (B,) Inhomogeneity

As was seen in the Larmor equation (2.1), resonance fregusrdirectly related to
the magnetic field strength. Thus, main field inhomogeneityses different resonant fre-
guencies at each spatial location. An inhomogeneous magnetacan be made more
homogeneous via shimming. However, inhomogeneity can @ise from the specific
morphology of the brain. Differences in the bulk magnetiscaptibility (BMS) of struc-
tures in the body cause macroscopic field inhomogeneity diffezence in BMS is highest
in areas where air and tissue meet; for example, in the ssnaisé ear canal, lungs, and
the abdomen. There is an increased sensitivity to theségmatat highB, field strengths.
Inhomogeneity can also arise from chemical shift. Outectedas shield the nucleus and
slightly reduce the magnetic field experienced by the nildinis causes a small change
in the resonant frequency as well. This chemical shift isselgmced by fat and causes the

fatty parts of an image to be shifted or blurred dependinghanttajectory. Because the
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specific focus of this thesis is fMRI and fat suppressiongmbse usually used, this cause

of inhomogeneity is considered negligible and not furth@rsidered in this thesis.

2.4.1.1 Effects of Inhomogeneity

Depending on the trajectory, inhomogeneity causes difteedfects. The need for
speed, especially in fMRI, requires use of trajectoriesowhiraverse most, if not all, of
kspace in one shot, or excitation cycle. Unfortunatelyséh&rajectories with especially
long read out times exacerbate the problem of inhomogeneity

Inhomogeneity affects the amplitude of the signal and casgmal loss [117]. Under
field inhomogeneity, the object has a distribution of défier resonant frequencies which
gives the spins phase incoherence. When the contributioméaxrh spin is added together,
this dephasing causes a signal loss. This effect is reféoet 7, decay and causes a
much faster decay in the transverse magnetization. (Sorastithe reciprocal of; or R}
is used, such as in Section 4.2.4). With longer readout titiés problem becomes even
more severe and results in signal loss. If #jedecay is severe, the signal is weighted in
k-space, creating blur in the final image.

Geometric distortions can also result. In trajectorieshsas echo-planar, the resulting
geometric distortion due to field inhomogeneity is a shifbwéver, spiral trajectories cause
a blur in the resulting image which is harder to correct fathiea image domain [66], though

both trajectories can be corrected in the signal domain.

2.4.1.2 Correction methods

Given a field map of the inhomogeneity, these effects can breced for. One major
correction method is conjugate phase methods, which attengompensate for the phase
at each voxel€g., [94]). These methods require a spatially smooth field map dm
not perform well where this assumption breaks down. Iteeateconstruction techniques

have also been developed, both for specific trajectoridsqd@ for more general situations
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[114].

Field maps are also used in other MR applications. For exampbeveloping tailored
RF pulses to compensate for signal loss due to inhomogeragitaccurate fieldmap is
required [140]. Because of the importance of accurate fiedg estimation for fMRI, we

focus on this problem in Chapter IV.

2.4.2 Radio Frequency field Inhomogeneity

Inhomogeneity in the RF fieldB;, can be caused by many factors. Higy field
strengths make the RF wavelength shorter. In addition$kae dielectric constant causes
the RF wavelength to be even shorter. A shorter wavelengtbasathe RF field to interact
with the subject even more, causing even more inhomogendihe distance from the
transmit coil also can effect inhomogeneity. Inhomogegnedn be quite large at high
fields; at 3T, inhomogeneity ranging from 30-50% has beendd@0]. Surface coils only

compound the problem and create even greater variation.

2.4.2.1 Effects ofB;" inhomogeneity

Inhomogeneity of the RF fieldH;") causes a nonuniform effect on spins; the net mag-
netization vector will be tipped at different angles degagan the particular value aB;".
This can make MR images very difficult to interpret due to &gt varying signal and
intensity in the image. This can be seen as lighter and dadgons at higheB, lev-
els (> 3T). In addition, the spin density will be measured incoryecausing quantitative

problems, for example in measuring brain volumes [145].

2.4.2.2 Correction Methods

There are several methods used to try to minimiZeinhomogeneity. These include
coil design and special pulses, such as adiabatic, impispubses, 3D MDEFT imag-

ing and FLASH imaging [102]. However, correcting f8" inhomogeneity may still be
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needed after minimization strategies are used or in thewhsa these trajectories are not
applicable. More recently, tailored RF pulses such as [b@2E been proposed to reduce
inhomogeneity; they require use of/s" map. A new method in parallel transmit exci-
tation has been proposed using the transmit SENSE slieetsalilses [145] which also
requires uses of such a map. Dynamically adjusting the RFep@another option which
also requires use of 8, map. To apply these new methods that more comprehensively
compensate foB; inhomogeneity, an accurat&™ map (and one that additionally includes

the phase) is required. We focus on this problem in Chapterd/CGirapter VI.
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CHAPTER llI

Iterative Estimation Background

Creating a field map for eithdB, or B;” requires an accurate, reliable estimator based
on available measurements. Many common estimators arel lmasdeuristic schemes
and not on a statistical model. Other common estimatoregisd signal noise and its
properties. The solution of this dissertation uses stadisestimators to solve the field map
problems. Therefore, we review various statistical estirsa

The first step in estimation requires creating a model fordidw@ including the desired
parameter and other unknown parameters and their statidtiext, we use this model to
create an estimator. Our goal is to estimate the field map freMR data available (for
example, from an initial scan, either for the machine or fmtepatient). The data is usually
referred to as a vectat, while the desired parameters (the field map) @aré3ased on a
model, there are many choices for an estimator. Each estinsabased on a different cost
function, a function which describes the cost of any paléicestimate; for example, the
cost might be the mean squared error or the cost may penalighiimages. Based on the
given cost function, different estimators give differeasults.

One way to measure the effectiveness of an estimator is kodbibs bias and variance.
The bias of an estimator is the difference between the eggde@lue of the parameter and
the value of the parameter. Often, we desire an unbiasedne#egi.e., the bias of the

estimator is zero for each possible parameter. ldeally, waldvalso seek the estimator
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with the lowest variance. However, the mean squared erexgusi to the variance plus the
bias squared. Reducing the bias will increase the variddoderstanding this trade off is

important in selecting a good estimator.

3.1 Bayesian Estimators

Bayesian estimators require more data than just the paessn@nd the available data.
They also require a statistical distribution for the partere called a prior distribution,
f(6). Unfortunately in imaging problems, this distribution isually not known; when it
can be obtained, it is often at great cost and time. Theseatstis minimize the average

cost:

(3.1) 5[0]:/@/Xc(é,e)f(x|0)f(0)dxd0,

wherec is the cost of an estimate based on the true valu@ ddifferent cost functions
generate different estimators. A minimum mean squared east function yields the con-
ditional mean estimator (CME). A minimum mean absolute ecast function yields the
conditional median estimator (CmE). A minimum mean unifomoecost function yields
the maximum a posterior estimator (MAP). One disadvantdgssing these estimators is

finding an appropriate prior.

3.2 ML Estimator

The Maximum Likelihood (ML) estimator is one of the most coomstatistical esti-
mators in practice. This estimator maximizes the likeliéhdonction f(x|6) - the density
function of the data given the parameterfdr:; 6) if 6 is not random. It seeks the estimate
which best matches the data based on the likelihood funcfideximizing this function

can sometimes be difficult, but maximizing any monotoneaasing function of the like-
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lihood (for example, the log of the likelihood) also maximszthe likelihood. We usually

express the estimator as:

(3.2) 0 = arg maxIn f(z]6).
6o

The ML estimator has many desirable properties; it is asptigatlly unbiased and Gaus-
sian and is also transform invariant.

Although ML estimators are theoretically appealing, inqtiee, the estimators do not
always have good performance. They are often sensitive iseray are computationally
expensive, for example, calculating the inverse of a largeim The performance declines

significantly as the number of parameters approaches thé&uohvalues to be estimated.

3.3 Penalized-Likelihood Estimators

There are two major options to improve the results of an Mlinestior. First, we
can add more information (the prior distribution), whictveg us Bayesian estimators.
However, priors are difficult to find and usually do not reflact‘average” image. A second
option is using penalized-likelihood (PL) estimators. $&ean be thought of as a Bayesian
(MAP) estimator with a possibly improper prior. A penalizikelihood estimator seeks
an estimator which most closely matches the data (throughvih estimate) while also

satisfying other criteria through a penalty. The expressshown below:

(3.3) 0 = argmin—In f(x]0) + BR(0)
0cO

(3.4) 0 = argminV¥(h),
0cO

whereV is the new cost function(¢) mapsd to a penalty based on some characteristic -
usually data smoothness. Wheis large, the resulting image will be very smooth, whereas

wheng is small, the estimate will be based more on the data and tagermay be rough.
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The user can choose this parameter independently. The mwshan roughness penalty

in 1D is a quadratic penalty on the difference between na&ghg pixels:

(3.5) R(@) = (4o — tn-1)”,

whereN is the number of pixels in an image. Quadratic penalties bater noise perfor-
mance than an ML estimator, but blur the image. This is thel&nmental noise-resolution
trade off. With a PL estimator, the resolution can be quatibhased on the choice Gf
giving the user more control on where they operate on thisconm. A multi-dimensional
guadratic penalty is similar to (3.5) but considers neigkbio each direction. Diagonal
neighbors could be given less weight than horizontal onie@rheighbors. Non-quadratic
estimators can be used to reduce noise and still not blursedge are more complicated
to analyze. One common roughness penalty used in the liters the total variation
(TV) penalty, or an absolute value penadyg., [7]. They are useful, but suffer from the

disadvantage of not being differentiable.

3.4 Cramér-Rao Bound

The Crangr-Rao Bound (CRB) can be used on a statistical model to medswer
bounds for any unbiased estimator. The CRB shows a regionrizina that can not be
achieved by any unbiased estimator. While it is not specifartpparticular estimator, we
can better understand how good our estimator is in relatidhé CRB. The matrix CRB is

defined by:
Cove{é} > F(9)

where

F(0) = —E[Valnp(Y;6)]
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is the Fisher information. For an unbiased estimator, thi8fves a scalar bound for
each estimator of each parameter (the values along therdihgbthe matrix), as well as
showing bounds for the covariance between parameters. iEherfinformation measures
the average curvature of the log likelihood function by theetvalue of the parameter.

The CRB is applicable for an unbiased ML estimator. HoweMse, regularization
term in a PL estimator makes the estimator inherently biasedthe CRB does not apply.
A PL estimator can operate below the curve specified by the C&fuse of its bias.
Nevertheless, the CRB can give useful analysis for pixelsraviiee SNR is high. For
pixels where the SNR is low, on the other hand, the regulabasically just interpolates
those pixels and we are less interested in the noise preperti

PL estimators are complicated because they are definecdcithpin terms of the min-
imum of a cost function. This makes their mean and varianegacteristics very difficult
to analyze carefully. Some methods have been developeése situations, but they deal
with asymptotic relationships of the mean squared erroiis Tias the characteristic that
mean and variance are equally weighted, whereas in applsathe relative importance
of mean and variance may differ. Some approximations dd @tigch look at moments,

but they are not explored further in this report.

3.5 Spatial Resolution Analysis

As explained in Section 3.3, regularizing PL estimatoratzélur. To choosé, it is
necessary to understand the spatial resolution propartite estimator. Another reason
to look at the spatial resolution is to try to achieve mordamn resolution by modifying
the estimator itself. Here, by spatial resolution, we ré¢éethe impulse response of the
estimator. Although there are several ways to define the Isepesponse, all versions rely
on the gradient of the estimator itself. Estimators which éefined implicitly é.g., PL
estimators) are more complicated to analyze. We would bkenbw the impulse response

of the estimator. Although several definitions of the imputesponse are possible, the
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general form is similar. The impulse response is the gradéthe estimator (based on

either the data or the mean data) times the gradient of thrageelata. Regardless of the
definition chosen, we need an expression for the gradieheadstimator. We require a few
set of conditions to find the gradient - the cost function ninsste a unique minimizer, be

differentiable, and have an invertible Hessian (amongratbeditions). Then, the gradient
is defined. PL estimators consist of a log-likelihood té(th x) and a regularization term

R(0) as follows:

U(0,z) = 1(0,z) + R(6).

The gradient of this estimator is then defined as (after munplgication) [30]:
(3.6) Vo(z) = VB0, 2) + VER(O)] ' [- V10, 2)] g

where V29 is the derivative taken twice with regard to the first arguingrere ) and
whereV:! is the derivative taken once with regard to each argument.

In this report, spatial resolution analysis was performedna[119] and [30] using a
Taylor’s series approximation and Parseval’s relationthed minimizing the cost function
by taking the gradient, setting it to zero, and solving. Tikibasically the same method as

described above.

3.6  Minimization of Cost Function via lterative Methods

After defining our model and choosing an estimator, we neeakctoally evaluate it.
For the methods shown in this section, estimators are theraatof a cost function. For
some problems, an analytic formula for the extrema exitswél@r, for most cost func-
tions, especially PL estimators which include a regulayit@s is not possible. Even for
problems where an analytic solution exists, the solutiooften not feasible numerically

(e.g., inverting a large matrix). Therefore, iterative methodsat converge to a local min-
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ima (or maxima) must be used. This is a large mathematicastatidtical topic with many
algorithms to choose from. Mathematical packages such daMaften contain several
built-in optimizers, such as Newton’s method or the confaggadient method. For the
joint B;" , T} estimation in Chapter VI, we used one general purpose oiiniz method:
preconditioned gradient descent (PGD), which is explaineSection 3.6.2. For the first
two estimation problems in Chapter IV and Chapter V, thesergéparpose optimizers are
not used, because we were able to develop monotonic optsriizsed on the principles
of optimization transfer. Optimization transfer is explad in Section 3.6.1. General pur-
pose optimizers often converge faster than algorithmsymed from optimization transfer,
but for problems such as non-quadratic and non-convex @nad)l these optimizers are not

always monotonic and guaranteed to converge.

3.6.1 Optimization Transfer

Optimization transfer consists of two major principles.rski we choose a surrogate
function ¢(™. This function is normally a function with an analytical rivivizer or one
that is easy to find. Second, we minimize the surrogate. Timgmam is not usually the
global minimum, so we must repeat these steps until the ithgorconverges. The key
lies in choosing appropriate surrogate functions. Theyusgally designed so that: 1)
The surrogate and the cost function have the same value latiteaative step, and 2) the
surrogate function lies above the cost function. When batlstions are differentiable, this
implies that the tangents are also matched at each itestgpe

In this report, we use quadratic surrogates based on Huakgtsithm [60, p.184-5].
These have the benefit of having an analytic solution for ti@mizer of the surrogate.
For a quadratic surrogate, the following iteration will nmonically decrease the original

cost function:

(3.7) et = ) _ (V2] Iv o (9™,
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However, unless™ is separable, this inverse is not computationally prakttitherefore,
in this report, we use separable quadratic surrogates (S@8)is explained in more detall
in Appendix A applied specifically to thB, field map problem and in Appendix C applied

specifically to the3, field map problem.

3.6.2 Preconditioned Gradient Descent: PGD

Gradient descent, or steepest descent, algorithms areeaayeptimization method
where each iteration descends a step along the negative gfaldient of the cost function.
In preconditioned gradient descent, the gradient of thefoostion is first multiplied by a

preconditioning matrix” and then descended a step sizalong that direction,
(3.8) 0D =90 — aPV V(™).

A preconditioner can give much faster convergence. Undeaiceconditions of the gra-
dient and also the preconditioner (for example, the gradiatisfies a Lipschitz condition,
true with a twice differentiable bounded cost function, #melpreconditioner is a symmet-
ric positive definite matrix), the algorithm can be shown tormatonically decrease the cost
function. We can ensure descent and force monotonicity thyaiag the step size by half
until the cost function decreases. This guarantees dedmgntan come a costly number
of evaluations of the cost function. This half-stepping Imoek, as well asy selection is

explained further in Section 6.5.2.
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CHAPTER IV

Field Map B, Estimation

4.1 Introduction

MR ! imaging techniques with long readout times, such as ecaoaplimaging (EPI)
and spiral scans, suffer from the effects of field inhomoggrnbat cause blur and im-
age distortion. To reduce these effects via field-corredi&dimage reconstructiore.g.,
[93,107,114,118], one must have available an accurat@atiof the field map. A com-
mon approach to measuring field maps is to acquire two scathsdifierent echo times,
and then to reconstruct the images (without field corregtfoom those two scans. The
conventional method is then to compute their phase diffte¥emd divide by the echo time
differenceA\;. This model makes no account for noise and creates field nepsate
very noisy in voxels with low spin density. Section 4.2 firstroduces this model and
then reviews standard approaches for this problem. A liioiteof the standard two-scan
approach to field mapping is that selecting the echo-tinfferdnce/\; involves a trade
off: if /Ay is too large, then undesirable phase wrapping will occurjfor, is too small,
the variance of the field map is large. One way to reduce thamnvee while also avoiding
phase unwrapping procedures is to acquire more than twesegn one pair with a small
echo time difference and a third scan with a larger echo tiifierdnce. By using multiple

echo readouts, the scan times may remain reasonable, atdett®e modest spatial reso-

1This section is based on [44]
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lutions needed in fMRI. Therefore, we present a general inthd¢ accommodates more
than two scans and describe a regularized least-squarsiagd estimation method using
those scans. Section 4.3 shows the improvements both irstineaged field maps and the
reconstructed images using multiple scans. This is showhwiith simulated results in

Section 4.3.1 and then using real MR data in Section 4.3.2.

4.2 Multiple Scan Fieldmap Estimation - Theory

4.2.1 Reconstructed Image Model

The usual approach to measuring field maps in MRl is to acqwiescans of the object
with slightly different echo times, and then to reconstintagesy® andy! (without field
correction) from those two scanag., [21, 65, 87]. We assume the following model for

those undistorted reconstructed images is

vy = fite

(4.1) y; = [ie¥i% ¢,

whereA; denotes the echo-time differengg,denotes the underlying complex transverse
magnetization in thgth voxel which is a function of the spin density, aangddenotes
(complex) noise. The goal in field mapping is to estimate ardigtorted) field map,
w = (wy,...,wy), from y° andy', whereasf = (fi,..., fx) iS @ nuisance parameter
vector. This section reviews the standard approach forgiablem, other approaches in

the literature, and then describes a new and improved method
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4.2.2 Conventional Field Map Estimator

Based on (4.1), the usual field map estimatpuses the phase difference of the two

images, computed as follows [47,107]:

(42) B = 22y Dy

This expression is a method-of-moments approach that weaitll perfectly in the absence
of noise and phase wrapping, within voxels whefg > 0. However, (4.2) can be very
sensitive to noise in voxels where the image magnitytleis small relative to the noise
deviations. Furthermore, that estimate ignoresaprriori knowledge that field maps tend
to be smooth or piecewise smooth. Although one could try toamthe above estimate
using a low pass filter, usually many of the values are severely corrupted so smoothing
would further propagate such errors (see Fig. 4.2 top rightead, we propose below to
integrate the smoothing into the estimationwin the first place, rather than trying to “fix”

the noise inv by post processing.

4.2.3 Other Field Map Estimators

Although the conventional estimate (4.2) is most commdmeiomnethods for estimating
field maps have appeared in the literature.

Different techniques have been proposed that incorporake finap acquisition with
image acquisition ( [87] for projection reconstruction §88] for spiral scans). Cheet al.
in [15] used multiple echos during EPI acquisition and usesé¢ distorted scans to create
a final corrected undistorted image. Priestl. in [100] used a two-shot EPI technique
to obtain a field map for each image; this could prevent chaugé¢he field map due to
subject motion from being propagated through an entire fiifiRé series.

Stand alone field map acquisition techniques have also bepoged. Windischberger

et al. [132] used three echos and corrected for phase wrappingasgitying the degree
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of phase wrapping into seven categories. They then usearlregression to create a field
map that is followed by median and Gaussian filtering. Rebalr [101] used ten separate
echo times and acquired distorted EPI images. They usechdasthphase unwrapping
technique of adding multiples @fr and then spatially smoothed the image with a Gaussian
filter. While these techniques both seek to use more echostedse the accuracy of the
field map, they have several disadvantages. Neither arellmsa statistical model and,
thus, do not consider any noise in developing their estimale filtering suggested by
both techniques also adds additional blur. Alesitl. [3] used three scans, the first two
with a small echo time and no phase unwrapping and the thitld aviarger echo time.
Two techniques were tried: 1) phase unwrapping by using tsetfvo sets of data and
2) taking a Fourier transform to determine the EPI shift eigreed. In phantom studies,
using three scans yielded half to a third of the error of twansc Because the estimator
uses a linear fit, there is still error in voxels near phaseatisnuities and along areas of
large susceptibility differences.

An additional technique used to improve the conventioniinege is local (non-linear)
fitting, e.g. [61, 106]. While this can improve the conventional estimate desire a more
statistical approach.

Our technique is unique in that it uses a statistical modielgusultiple scans and op-
erates without the constraint of linearity. By using a peral-likelihood cost function, we
can easily adjust the regularization parameter to contklimount of smoothing without
any additional filtering step. By using a field map derivedhirthe first two echos as the
initialization for the iterative method (assuming the twahes are close enough together),
no phase unwrapping is required. Our model also takes irdowat 1?; decay, which was

ignored in previous multiple echo techniques.
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4.2.4 Multiple Scan Model

We now generalize the conventional model (4.1) to the casmufiple scansj.e.,
with more than one echo time difference. The reconstructezbes are denoted here by
y°, ..., y* whereL is the number of echo time differences. Because we are ugittipte
echo time differencesy?’ decay may no longer be negligible and should be includedrin ou

model. Our model for these images is:
(4.3) yh= fetre b4 el

forl =0,..., L, where/\; denotes the echo time difference of ttie scan relative to the
original scan.e.,, (A, = 0), wherej denotes the voxel number and whéte denotes the

value of R; for the jth voxel. As in most field map estimation methodss thodel assumes
implicitly there is no motion between the scans. As in (4.4),denotes the complex
transverse magnetization aagal denotes the (complex) noise. If we choose thevalues

carefully, this data model allows for a scan that is free ayddy free of phase wraps but
which gives a phase difference lower in SNR, as well as sgavi{s wrapped phase but
higher in SNR. Including the scan(s) with a larger echo tinffeence should help reduce

noise inw;, whereas the wrap-free scan helps avoid the need for phagaping tools.

4.2.5 Maximum-Likelihood Field Map Estimation

The conventional estimate (4.2) appears to disregard rafisets, so a natural alter-
native approach is to estimate using a maximum likelihood (ML) method based on a
statistical model for the measuremengts In MR, the k-space measurements have zero-
mean white gaussian complex noise [85], and we furthernmgserae here that the additive

noise values iry in (4.3) have independent gaussian distributfomith the same variance

2Independence in image space is an approximation. The nalses/in k-space data are statistically
independent, but reconstruction may produce correlatiespecially in scans with non-Cartesian k-space
imaging.
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o2. Under these assumptions, the joint log likelihood foandw giveny = (3°, ..., y%)

is
L
logp(y; f.w) = > logp(y'; f,w)
=0
_1 N L )
@9 = Goa 2 2 |y fe e A
=1 1=0

where ‘=" denotes equality to within constants independenf @éindw. If the R; values

were known, the joint ML estimate ¢gf andw could be solved by the following minimiza-

tion problem:
- q - 1 2
0
Y; 1
N 1 wilN1 o—Ri A
) Y e e 'y
(4.5) arg min Z G f
weRN, feCN T : :
yJL ezijL e—RjAL

This problem is quadratic iff;; minimizing over f; yields the following ML estimate:

L I n—wi N ,—R: A\
s Dloyjeitte

(4.6) fi= =T

Substituting this estimate back into the cost function Y4uadd simplifying considerably

yields the following cost function used for ML estimationwof

Unn(w) = ZZ Z ‘yy y]

4.7) [I — cos(éyn — 2y — wi(Dy — Am))] )

Wherew}”’” is a weighting factor that depends & as follows:

—R;j(Am+An)

(S
4.8 wi" —_—.
(4.8) J ZlL—O e—2R; A
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Similar weighting appeared in the weighted phase estinrafgysed in [6] for angiography.
The ML cost functionV;,(w) is periodic, similar to cost functions used in phase unwrap-
ping problemse.g., [76]. The cost function (4.7) appears to require eithenkiedge of or

a good estimate aR;. However, we note that:

I

[y = il [ ]

therefore, hereafter, we approximaté€ " as follows:

mn V51197

(4.9) ~ 9
’ Zleo |y§‘2

This approximation does not require knowledgejfvalues.
There is no analytical solution for the minimizer,in (4.7), except in thd, = 1 case.

Thus, iterative minimization methods are required, evetritfe ML estimator.

4.2.6 Special Casel. = 1 (Conventional Two Scans)

In the case wheré, = 1 usually/\; is chosen small enough that we can ignéte

decay {.e, let R; = 0) and the ML cost function in (4.7) simplifies to

N
(4.10) Uy (w) = Z ‘y?yﬂ [1 — cos(éyjl» — Ly? — wjﬁl)} .
j=1

The ML estimate is not unique here due to the possibility @fgehwrapping. But ignoring
that issue, the ML estimate @f is w; = (Zy; — Zyj)/A1, becausel — cos(t) has a
minimum at zero. This ML estimate is simply the usual esten{dt2) once again to within
multiples of27. Thus the usual field mapping method (foe= 1) is in fact an ML estimator
under the white gaussian noise model. The more general wostién (4.7) for the field

map ML estimator for. > 1 is new to our knowledge.
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4.2.7 Penalized-Likelihood Field Map Estimation

The ML estimator ignores ow priori knowledge that field maps tend to be spatially
smooth functions due to the physical nature of main field mbgeneity and susceptibil-
ity effects’. (We note that this assumption does not address the presésignal from
fat). A natural approach to incorporating this characteris to add a regularizing rough-
ness penalty to the cost function. Here we regularize ordypiiiase map, and not the
magnetization magf; we expectf to be far less smooth because it contains anatomical
details. Such regularization is equivalent to replacing &fitimation with the following

penalized-likelihood estimator:

L
(w, f) =argmax Y log p(yl; f) — G R(w),
1=0

w?-f

whereR(w) is a spatial roughness penalty (or log prior in a Bayesian MRosophy).
Based on (4.6) and (4.7), after solving fprand substituting it back in, the resulting regu-

larized cost function has the form
(411) \I/pL(w) é \I/ML<(.U) +ﬁ R(w),

where we use the approximation (4.9) fbx, (w). This cost function automatically gives

low weight to any voxels where the magnitufg’y”| is small. For such voxels, the reg-
ularization term will have the effect of smoothing or exioégiing the neighboring values.

Thus, this approach avoids the phase “outlier” problemplegues the usual estimate (4.2)
in voxels with low signal magnitude. b corresponds to &, x N, field mapw, ,,, then

a typical regularizing roughness penalty uses the secotel-dinite differences between

3There may be discontinuities at air/water boundaries. Enehis case, sharp boundaries can be prob-
lematic if there is motion between scans, further motivagtime use of regularization.

36



horizontal and vertical neighboring voxel values as fokow

Ni—1 Nx—1

R(w) = Z Z w<2wn,m - wnfl,m - Wn+1,m)

n=1 m=0
N1—1 Na—1

(412) + Z Z w<2wn,m - Wn,mfl - wn,m+1)7

n=0 m=1

where) is a convex “potential function.” Here, we use the quadrpttential function,
¥(t) = t?/2. In this paper, we used second-order differences for aliltgswe found that
second-order finite differences are preferable to firseodifferences because the resulting
PSF tails decrease more rapidly even when the FWHM valueslargical. A quadratic
potential function has the advantage of being differef¢iamd easy to analyze, especially
with Gaussian noise. Although quadratic regularizatiamrdledges, we assume the field
map is smooth, so a more complicated potential functionh stsscusing a Huber function
[60], is not considered here.

Usually ¢ is differentiable, so we can minimize the cost functib(w) either by con-
ventional gradient descent methods or by optimizationsfenmethods [8, 63, 72]. In
particular, in the usual case Whaj}ét) /t is bounded by unity, then the following iteration

is guaranteed to decrea$éw) monotonically:

(4.13) w™ =™ — diag{ } VI (w™),

_
dj—l—ﬁ-c

whereV is the gradient of the cost function,

. 4, regularization with 1st-order differences
(4.14) c=
16, regularization with 2nd-order differences
and
L L
(4.15) di 2NN ] wpt e (B — D),



using the approximation fow; shown in (4.9). For examples in this paper, we used a
similar minimization algorithm described in Appendix A laesse of its faster convergence
properties.

To initialize w®, we used the regularized ML estimate (4.11) based on theiicssets
of datay® andy'. We choose the echo times to avoid phase wrapping betwess skés of
data (this same idea is used in [3] in their three-point m&th®herefore, there is no need
to apply phase unwrapping algorithms - the algorithm wilheerge to a local minimizer
in the “basin” of the initial estimate [63].

In [37], we considered approximating the- cos term in (4.11) with its second-order
Taylor series to create a penalized weighted least squBk4$.$) cost function. A sim-
plified PWLS approach where the weights were thresholded Vgascansidered. Those
models ignore any phase wrap that may occur when evaluatiy. (They also have in-
creased error with little computational benefit. Thereféhese simplified methods are not

explored further in this paper.

4.2.8 Spatial Resolution Analysis of Field Map Estimation

To use the regularized method (4.11) the user must selecethdarization parameter
(3, which could seem tedious if one used trial-and-error mggh&ortunately, it is particu-
larly simple to analyze the spatial resolution properteghis problem, using the methods
in [35] for example. We make the second-order Taylor sengs@imation for this anal-
ysis. The local frequency response of the estimator usiogrekorder finite differences at

the jth voxel can be shown to be:

(4.16) H(2x, Qy) ~ )

g
1+ —(Q% + Q2 )
d;
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whereQ)x and()y are the Discrete Space Fourier Transform (DSFT) frequeacyables.
and wherep = 1 for regularization based on first-order differences and 2 for second-
order finite differences as in (4.12). (See [119] for reladedlyses.) From (4.16) we see
that the spatial resolution at each voxel depends on thetli@tiaghd;. In areas with small
signal magnitudes, there will be more smoothing, as desifad spatial resolution (4.16)
also depends on th&, values being used. Data from scans with largervalues have
lower w; variance (see (4.17) below), and will be smoothed less. Mewdata from these
scans will also be affected by; decay throughu;”’" if the data is not scaled to compensate
for this factor. To simplify selecting, we normalize the data by the median of the square
root of (4.15) using the approximation (4.9) fer. Normalizing by this factor allows us
to create a standargto FWHM table or graphdg., Fig. 4.1). If this normalization were
not applied, a similar figure would need to be calculated wiébh new data set (or at least
with each new set of\; values) or would need to be chosen empirically. Normalizing
based on the analytical result (4.16) enables us to use theséor all scans.

We used the inverse 2D DSFT of (4.16) to compute the R@Fm| and tabulate its
FWHM as a function of, assuming the previous corrections were made and thatxkeé pi
j hasd; = 1. Fig. 4.1 shows this FWHM as a function big, (), for bothp = 1 and
p = 2. The FWHM increases monotonically with as expected, although the “knees” in
the curve are curious. Nevertheless, one can use this gragahect the appropriateégiven
the desired spatial resolution in the estimated field mag.r€bulting spatial resolution will
be inherently nonuniform, with more smoothing in the regiavith low magnitudes and
vice versa. One could explore modified regularization mesh85] to make the resolution
uniform, but in this application nonuniform resolution seeappropriate since the goals

include “interpolating” across signal voids.
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Figure 4.1: Angularly averaged FWHM of PSF. Shown for field reapmation as a func-
tion of log, 3 for d; = 1 in (4.16).
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4.2.9 Qualitative Example:L =1

Fig. 4.2 shows an example of the data magnitédeand the usual phase estimate based
on L = 1 (4.2) which is very noisy. This is real data taken from a 3T MRmner with
Ay = 2 ms. The maximum value di; - A,| is 1.61 radians in nonzero voxels, making
the scan free of any phase wraps. Fig. 4.2 also shows theipssdikelihood estimate
based on (4.13) using two different values foand using 150 iterations. Here, we can see
the improvement from using a regularized estimator versagbnventional ML estimator.
The effect of3 on the smoothness of the estimate is also seen. The improvesaen is
analyzed quantitatively in Section 4.3. Fig. 4.2 also shiheseffective FWHM (in pixels)
of the regularized algorithm based on (4.16) for both valofes. Most of the image has
a FWHM corresponding to the chosgrbased on Fig. 4.1. Areas of low magnitude have
a much higher FWHM (such as the sinuses) and areas of high tudgriiave the lowest

FWHM.

4.2.10 Theoretical Improvements Over 2 Data Sets

Using more than two sets of data requires a longer data atiqoiand also involves
choosing the\; values. Analyzing the theoretical improvements that mapteined by
using multiple data sets can help determine when the inedeasquisition time is war-
ranted and can guide our choice of the values. Therefore, we calculated the Céam
Rao bound (CRB) for the model (4.3). This bound expressesthest achievable variance
possible for an unbiased estimator based on a given mod#toddh a biased estimator
(the penalized-likelihood estimator) is used in our impégnation, the bound quantifies the
maximal improvement possible based on the model and allowa Eomparison on how
close our implementation is to the ideal, unbiased case.

Because there are multiple unknown parameters in thesels@de (w;, |f;|, Z f;),
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Figure 4.2: Field map estimate example. Top row: magnitodie|y; |, conventional field
map estimate(4.2). Middle row: (field map estimates): peadtlikelihood
estimate using (4.13) wit = 276 (left) and3 = 23 (right). Bottom row:
Maps of the spatial resolution at each pixel measured by WelM for 5 =
276 (left) and = 272 (right).
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the multiple parameter CRB must be used. In that case, thexnGRB is
Cove{é} > F(9)

whereF(0) = —E[VInp(Y;0)] is the Fisher information. Becaugk is a nuisance
parameter, we focus on the CRB for the variancevgfalthough the effect of; will be
felt through the inversion of the Fisher matrix. For simplicwe initially setR; to O in the
CRB derivations shown below.

Applying the CRB to thd. echo-time difference model (4.3) yields, after considerab

simplification, the expression:

0.2

(4.17) Varp{w,} > ,
T4+ AP AL

where, definingy, = 4\, / Aq:

. T , T 2
v () (Fe)
The variance reduces, in general/ass increased. The expression for is the “variance”
of {a, a1, - - - . }, measuring the variance between the echo time differerineseasing
the variance (spread) of th&; values will decrease the overall variance of the field map

estimate.

FortheL. =1 (2 sets of data) model, = 1/4 and (4.17) simplifies to:

CRB; & LQ
N3 )

As expected, the field map variance decreases when the sigeagth| f;|, or echo time

difference/\;, increase. For an unbiased estimator based on the modgWHEL = 2
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(3 sets of data) one can show:

CRB;

4.18 B, £ .
(4.18) CRB; 4/3(a3 —as + 1)

Interestingly, simply using three scans, but usihg = A; (ora, = 1), would reduce
the variance by onlyt/3.

From (4.18), increasingw, should decrease the variance for an unbiased estimator.
Making a, arbitrarily large, however, is not advisable for many reesdA larger, creates
more phase-wrapping. Eventually, the wrapping will leadntia-voxel aliasing and the
desired improvement would be unattainable. Another probheth large values oty is
the effect on the MR pulse sequence length. A larg@lso causes much mof& decay
in the signal as shown in (4.7). Choosing optirgl values requires some knowledge of
R; decay. This can be seen more clearly in the CRB bounds for tlueh(.3) with

decay included. Forthé = 1 model, one can show:

(4.19) Vari{w;} > CRB; - 5

For theL = 2 (3 sets of data) model:

0.2 1 _I_ eiZR]’Al + e*2RjA1a2
2 )
1 15l b

(420) Val’g{d)j} 2 A

where

b& e 2Rt | g2e 2Rtz (1 4 o2 — 2q,) e 2RiS1(IHaz)

Using these expressions, we can optimize Ahevalues, which will be inversely propor-
tional to the value ofR;. In fact, for L = 1, one can show that the optimal choice is
AP = 1.11 / R;. Therefore, small values af, based on the amount dt; decay

expected should be used.
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4.3 Experiments

4.3.1 Simulation: Comparison ofL = 1 and L = 2 Methods

True field map noisy phase a2:3 noisy phase 012:7

Conventional estimate L=1 estimate L=2 estimate a,=3 L=2 estimate a,=7

Figure 4.3: Field map Gaussian example. Top: “True” field daapGaussian example in
Hz; Noisy (SNR = 10dB) wrapped phasé;; with o, = 3, Noisy (SNR =
10dB) wrapped phase witlh, = 7. Bottom: Conventional estimate fdér= 1,
PL estimates fol, = 1, L = 2 with a, = 3, andL = 2 with o, = 7. All field
maps and estimates are shown on a colormap of [-10 128] Hz.wFagped
phase images are shown on a colormap ofr}.

We compared thd, = 1 and L = 2 methods with two examples. First, we used a
simulated Gaussian true field map (Fig. 4.3) with a magnitma@ equal to unity at all
points. Second, we simulated a brain example. For the madmitwe used a simulated
normal T1-weighted brain image [18, 70]. We generated a l&rigld map consisting of a
4.8 cm diameter sphere of air (centered around the nasdlravnbedded in water using
simple geometrical equations [51, 104], using a slice figgabove the sphere. Fig. 4.4
shows the field map and magnitude imagg. We added complex Gaussian noise at many

levels of SNR to the images. For this paper, we used the follgpwefinition of SNR:

mil
(4.21) SNR = 20log ————.
ly° — £l
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True field map noisy phase 02:3 noisy phase uZ:S

L=2 estimate a,=3 L=2 estimate a,=5

L=1 estimate

Conventional estimate

L=2 u2=3 error L=2 a2=5 error

Conventional error Filtered error L=1 error

Fri.

RMSE = 6.0 Hz RMSE = 3.3 Hz RMSE = 2.8 Hz RMSE = 1.0 Hz RMSE = 0.6 Hz

Figure 4.4: Field map brain example. Top: True field map angnitade for brain example
and mask, (SNR = 8.5dB) wrapped phaseder= 3 anda, = 5 images.
Center and Bottom: Conventional, Conventional convolved witGaussian
filter, PL with 2 sets L = 1), and PL with 3 setsl{ = 2) for botha, = 3
andas, = 5 estimated field maps and their respective errors and RMSE. Th
wrapped phase images are shown on a colormaprot [- All field maps and
estimates are shown on a colormap of [-2 100] Hz. Field magr&are shown
on a colormap of [-15 15] Hz.
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The SNR remains consistent even when vanyitig L, or .

We used/\; = 2 msec for both cases. For the = 2 case we also varied, to
produce several\, values. We used a uniform value &f = 20 sec’! in generating our
simulations.

The field map was reconstructed using the penalized-li@getihmethod (4.11) using
normalization as described in Section 4.2.8 for both= 1 and L = 2. The algorithm
(4.13) was run at each SNR level for tthe= 1 case and for thé, = 2 case of data with
varying values of, using 5 realizations. We ran 300 iterations of the algoritlusing
B =273

We also applied the conventional estimator to our data. Tuae the noise, we
convolved the conventional estimate with Gaussian filtdrsvarying widths ¢ =
0.0625,0.1250,...,3.125). We chose the “optimalt based on the minimum masked
RMSE. Choosing the optimal using the true field map gives the conventional estimate
an advantage in this example unavailable in practice.

The RMS error (in Hz) was computed between the “true” field raag the field map
reconstructed using the PL method (4.11) and the conveaaitesiimate. This RMSE was
calculated in a masked region (pixels with magnitudes &t 12@% of the maximum true
magnitude).

Fig. 4.3 shows an example of the PL with= 1 estimate compared to the PL with
L = 2 estimate atv, = 3 anday, = 7 at an SNR of 10dB. Qualitatively, we can see
improvements with increases in bathanda,. Fig. 4.4 shows similar results for the brain
example.

The largest errors in these field maps occur where the magistismallest. The RMSE
is much higher using only the conventional method. We al$cutated the RMSE in the
sinus region of the brain (the ROl is shown in Fig. 4.4). Wesghthis ROI because the low
magnitude makes the field map difficult to estimate here afhahe field inhomogeneity

is also greatest here. The RMSE in this ROl was 61.1 Hz fordhgentional estimate, 11.6
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Hz for the Gaussian filtered estimate, 3.4 Hz for fhe- 1 regularized estimate, and 1.9
Hz for the L = 2 a, = 3 regularized estimate and 1.7 Hz for the= 2 o, = 5 regularized
estimate. Overall, the filtered conventional estimateqraréd similar to the PL method
with L = 1 over the masked region, but had higher error in the ROI. Tharfethod
with . = 2 showed a decreased error in both the masked region and the/fROAkould
expect even higher improvement over any practical Gaudgstared estimate because a
suboptimalc would be used. The proposed regularized estimators are aumrate in
pixels with low magnitude. Adding additional scars £ 1) makes the PL estimate even
more accurate.

Fig. 4.5 shows the improvement (defined as the RMS error foeftimate withl, = 1
divided by the error for PL estimate with = 2) gained by using an additional set of data
for the Gaussian example. For comparison, we also plottegtadicted improvement,
given by the square root of the ratio of the expressions jAahé (4.20). The experimental
gains are actually higher than the improvements anticghateshown by the dotted lines
(the predicted improvement) for some SNR values. Becausesth ratio of RMSEs and
the amount of bias can vary betweén= 1 and . = 2, the unbiased CRB provides a
benchmark of expected ratios rather than an exact upper k8o, recall that (4.19) and
(4.20) considered?; to be a known value when, in fad®; is unknown and approximated
through (4.9). The RMSE is low (in voxels with large magn#syl at high SNRs using
eitherL = 1 or L = 2. At lower SNRs, however, including in voxels with low magrdes,
using L = 2 and higher values af, greatly reduces RMS error. We repeated these sim-
ulations with RS = 0 (results not shown) and the empirical improvement almoat#y
matched (4.18).

Fig. 4.6 shows the improvement gained by using an additisetabf data for the brain
image. For alow SNR (for example 10 dB), the improvementshrge to expected. The
brain image has some areas where the magnitude is very ldanghestimation using any

method quite challenging. In addition, the field map phassfiis less smooth than in the
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RMSE improvement over 2 sets for Gauss data, R;=20 sect

Expected a, = 7

Improvement Ratio
H
T

o 0,= 5
Expected a, = 5

Expected a, = 3

a 1 -

7772:

Expected a, = 1

SNR [dB]

Figure 4.5: Improvement in the RMSE for the Gaussian exatmplesing 3 data sets rather
than 2 sets. Expected improvements shown by dotted lines.
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RMSE improvement over 2 sets for Brain data, R;:20 sect
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a,= 7
Expected a,= 7
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Expected a,= 5
— % 0,=3
Expected a,= 3
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Expected a,= 1
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Figure 4.6: Improvement in the RMSE for the brain example byg 3 data sets rather
than 2 sets. Expected improvements shown by dotted lines.
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Gaussian case, making the estimation more difficult. Forgadri SNR (for example 20
dB), the 3-set case still outperforms the 2-set case suimtarut by less than predicted
by (4.18).

The RMSE has components of both bias error and varianceas ghown below:

RMSE(X) = \/Var{X} +bias’(X).

Therefore, we analyzed the bias and the standard deviat@siagle representative SNR
=20dB and atv, =1, 2, ...7 using 500 iterations and 100 realizations fohdactor.
Fig. 4.7 compares the standard deviation for eactelative to that atv; = 1 and the empir-
ical improvements were compared to those predicted by the @RI®) for the Gaussian
example. As expected, the improvements in variance areclesg to predicted. Here, the
bias is also very low at all levels of SNR - explaining the imy@ment seen in RMSE in
Fig. 4.7.

Fig. 4.8 shows the bias and standard deviation for a signi® SRO for the brain exam-
ple. The empirical variances were close to those expectkd.bias, however, introduced
in part by the regularization, was nearly constant (indejeemnofa). So for large values of
a, the bias begins to dominate the variance in RMSE calcuigtiexplaining Fig. 4.6.

Overall, the variance reductions in both examples due togusiree echo times were
close to the results predicted by the CRB. For low values-ofi.e., five or less), the ex-
pected benefit using > 1 holds even with a moderate value®f. The RMSE reductions
are largest at lower SNRs. For phase estimation, the locR &\bends on the spin density
of each voxel as seenin (4.17). Voxels with lower spin dgrefiectively have lower SNR.

It is precisely in these voxels where using 3 or more scansheagreatest benefit.
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Space Averaged o and |Bias|
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Improvement in o over 0(2=1
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improvement (o)

5r O  expected improvement (0)

Improvement
D

Figure 4.7: Bias and RMSE improvement for Gaussian exanifoe: Space-averaged
and absolute bias for several values; Bottom: RMSE improvement, empiri-
cal and expected, over, = 1 for severah, values.

Table 4.1: Phantom NRMSE for two representative slices
Phantom NRMSE (%) for one realization

Slice One Slice Three
Whole Image| Low Magnitude|| Whole Image| Low Magnitude
7] ’ o U ’ o 7] ‘ o 7] ‘ o
No Field Map| 31.1 - 4.8 - 204 - 2.9 -

Conventional | 15.0, 0.5 |6.8 0.6 155 0.2 |22 0.1
Gauss Filter | 14.3| 04 |6.1 0.4 151 0.2 |19 0.08
L=1 13.0f 04 |40 0.4 152 0.2 |18 0.04
L=2 ap, =2 13.1| 04 |41 0.4 148, 0.1 |1.8 0.03
L=2ay =5 13.5| 0.08 | 4.3 0.2 146 0.02 | 1.8 0.01
L=3 13.5| 0.09 |44 0.1 146 0.02 | 1.8 0.01
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Space Averaged ¢ and |Bias|
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Figure 4.8: Bias and RMSE improvement for brain example.: T®pace-averaged and
absolute bias for several, values; Bottom: RMSE improvement, empirical
and expected, over, = 1 for severah, values.
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L=20a,=2 L=2a,=5 L = 3 Field map

] \. \ \
Ow]ainin]nls

|x| (1 shot) conventional Filtered L= 2“ =2 L= 2“ =5

ojojojojojolo

Figure 4.9: MR phantom data field map reconstructed usinggeed method. First Slice
- Top: Reconstructed 8-shot image, Conventional field mapis&an filtered
field map, regularized field map L=1, regularized field map La2 = 2, reg-
ularized field map L=2n, = 5, regularized field map L=3. The field maps
are displayed with a common color scale from -35 Hz to 50 HZi®Bo: Re-
constructed one-shot image with no field map and with eacheofield maps
above. The images are all on the same color scale. Theseldrenalone
representative realization.

X (8 shot)

4.3.2 MR phantom data: Application to Spiral Trajectories

To illustrate how improved field map estimation leads to ioyed reconstructed im-
ages, we used field maps produced by the conventional medh®dand produced by the
PL method with three scans (4.11) to correct real spiral M fiar field inhomogeneities.
We imaged a phantom with large field inhomogeneity. We usegiralsout trajectory with
a TE of 30 ms, TR of 2 sec, and a flip angle of 90 degrees. We taallises spaced 5 cm
apart over the 15 cm field of view. First, we collected datareate the field maps (using
eight interleaves to minimize the effect of the field inhoranegity) at the original 30 ms,
as well as at 32 mg/{; = 2 ms) and at 34 m/{, = 4 ms) and at 40 ms/{, = 10 ms).
We took ten realizations for each echo difference. We reicocied iteratively the result-
ing 64 x 64 pixel images in a masked region using [36]. Then, we usecethreages to
create (for each slice) a conventional field map (4.2), aeotiwnal field map blurred with
a Gaussian filter, a PL field map with= 1, a PL field map withl, = 2 anda, = 2, a PL
field map withL = 2 anda, = 5, and a PL field map witlh, = 3, (4.11). We used = 27°
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for the regularized iterative algorithm aiad= .5 for the Gaussian filter approach, approx-
imately matching the FWHM of the two approaches. Finally, whected one-shot spiral
out data with TE = 30 ms. This scan is thus much more affectefihlay inhomogeneity.
We collected two realizations and then averaged them inakespWe first reconstructed
this data iteratively without a field map as in [36]. Uncoateld field inhomogeneity causes
a blurred image for spiral trajectories. Finally, we itéraly reconstructed this one-shot
data with each of the field maps previously created as in [114]

Fig. 4.9 shows one representative slice. The regularizédim@ps are less noisy than
the conventional one, especially in areas of low magnitudkaong the edges. Fig. 4.9
illustrates the blur and distortion in the one-shot imagmnstructed without a field map.
The images reconstructed with a field map do not have this i@avertheless, a noisy
field map can cause error in the reconstructed image. Forgeain Fig. 4.9, the image
reconstructed with the conventional field map shows mortaats than the eight-shot data
or either of the images reconstructed with regularized fe#gs. Using the eight-shot data
as “truth”, we computed the NRMSE of each image and Table Holvs the mean and
variance over the ten realizations. We include data fromrepoesentative slices to show a
range of values, although slice three is not shown. In aaditive calculated the NRMSE
in the one-shot reconstructed images in pixels where thenmuatg is less thar? times the
maximum pixel value of the eight-shot reconstructed imagsete if the regularized field
maps reduce errors in areas of the image with low magnituties.i$ also reported in Table
4.1. We use the norm of the eight-shot 30 ms image for norieu#bz. The regularized
iterative PL methods have a lower RMSE and much less vaitiathin the other methods.
Therefore, these regularized methods (especially wittertttan one echo time) give a very

reliable estimate of the field map with little variability.
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4.3.3 Application to EPI Trajectories

The search for more accurate field map estimation methodoiwared by fast MR
imaging, such as echo-planar imaging (EPI) and spiral ingagised in fMRI. Because
these methods use long readout timBs field inhomogeneities or magnetic susceptibili-
ties become more pronounced. Without any correction fomaunaform field, the resulting
reconstructed images will have artifacts. Using field mapestion will result in an im-
proved MR image [32,74,75]. More accurate field maps, asywed using the methods in
this paper, should further decreases the artifacts, iegutt an improved final MR image.

To illustrate how improved field map estimation leads to ioyed images that are re-
constructed with field correction, we used field maps produmethe conventional method
(4.2) and by two scans as well as three scans (4.11) usirg 5 with R} = 20 sec!
with 150 iterations, to correct simulated EPI data for fieldminhomogeneities. We used
a readout length of 30ms with a matrix size of 64x64 for thewations and used the
iterative method for reconstruction explained in [114].

Fig. 4.10 has a simple field map of a square inside an oval usin@—°. Here, RMSE
was calculated in the oval region. This simpler field map rsaksual analysis of the field
maps and their errors easier to judge. Again, the conveatiogld map estimate has much
more noise, especially in areas of low magnitude. The twao fe&d map has a much more
accurate field map with lower overall RMSE. The three scam fielp is also included
here. The overall error is again much lower and the imagests toisy than the two-scan
field maps.

We generated k-space data for an EPI trajectory using thesdated field maps and
a magnitude with a grid phantom. Fig. 4.11 shows the resiiltiseofield map correction
on the reconstructed image. With no field map correctioneishshifts occur to the grid.
Using the true field map for the field map correction createstthe image with a clean
grid. The conventional field map, although an improvemerr mo field map correction,

still has large artifacts at all locations where the magtetis small. The images using the
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RMSE = 1.4 Hz

Figure 4.10: Simple field map to correct a simulated EPI ttayg. Top row: simple field
map and estimated field map. Bottom row: brain image and field error

images.

True fieldmap 3setsa,=5

NRMS = 1.58% NRMS = 0.15% NRMS =0.77% NRMS =0.71% NRMS = 0.36%

Figure 4.11: Grid phantom to show effects of proper field mapection. Top row: Grid
phantom and estimated field maps from Fig. 4.10. Bottom rogcdRstructed
images using no field map correction; correct field map; cotiveal esti-
mate; 2 sets estimate; 3 sets estimate with5
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two scan and the three scan field maps for the correction leggedltifacts.

As can be seen in the reconstructed images, omitting casrector magnetic field in-
homogeneities dramatically affects the final image qualidging a simple, conventional
field map estimate corrects for some of the problems, butistibduces image artifacts,
especially in areas of very low magnitude where field maprstpegin to dominate. These
images show the dramatic improvements made by an improvedfi@p. Using the meth-
ods introduced in this paper to create more accurate fieldsrgaes much more accurate

reconstructed images.

4.3.4 Fieldmap estimation in k-space

The methods described above estimate the fieldmap from tvmeooe reconstructed
images. To work well, those images should be relatively teartifacts, blur, and dis-
tortions, necessitating appropriate data acquisitiomsypFor pulse sequences with long
readout times, it may be more appropriate to estimate thanfi@b directly from the raw k-
space data. A typical scenario is that we can collect twoafdtsspace data, with slightly
different echo times, from which we want to estimate the fredgh v and the baseline

magnetizationf. A reasonable model for the data is:
4] = / f(R) e RO 2R gz | — 01, L,

This is a joint estimation problem like that described ingl1 One can define a cost
function in terms off andw, and then alternate between holddixed and minimizing
over f (using the CG method) and then holdigfgfixed and minimizing ovetw (using
steepest descent [115] or linearization [96] or optimatiransfer methods akin to [33]).
These k-space methods require considerably more computdtan the image domain
methods, so one should first apply an image-domain methoett@a geasonable initial

estimate of the fieldmag.
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4.4 Discussion

We described a regularized method for field map estimatiamgusvo or more scans:
the penalized-likelihood method (4.11). This method \sefigéld maps that interpolate
smoothly over regions with low spin density, thereby avogdphase outliers that plague
the conventional estimate (4.2). The method has been uséd/iwi= 1 (without full
description) in [93, 115, 139].

Our analysis also shows that the conventional estimaté i@H2 fact the ML estimate,
a property that has previously gone unnoticed to our knogded

We also analyzed the spatial resolution properties of trethiod, leading to a practi-
cal procedure for choosing the regularization parametactoeve a given desired spatial
resolution.

We studied the CRB on the variance of the estimate for this ogetimd found that our
empirical simulation results for the PL method comparedafalaly, showing a reduction in
the RMSE in comparison to using only two scans.

We collected real MR phantom data and created conventionhP& estimates of the
field map which were used to reconstruct final images. The Rinate reduces image
artifacts caused by the field inhomogeneity and has a redRMSE, especially in areas of
very low magnitude where the conventional estimate has reammys. Omitting or using
a poor field map estimate for image reconstruction can draaibt affect the final image
quality.

As noted in Section 4.2.4, our cost function assumes, as di atber field map es-
timation problems, that there is no motion between scans.lé/Nhir analysis indicated
that a largerL is better in terms of variance, motion could be a problemrduthe larger
time required forL. echo time differences. Practicalliy,= 1 or L = 2 are the most likely
choices forL and here motion is less likely to be an issue. If a larger nurobecho dif-
ferences are desired, then the cost function could be fugteeralized to include a joint

estimation of the field map and rigid motion parameters.
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We have focused here on the case of a single receive coil. dtrasghtforward to
generalize the method for phased array cails[80].

Although we did not estimat®&?;, we used a simple weighting (4.9) in our algorithm to
partially account for; decay; the improvements seen over estimation with two sasns
still large, especially when using a small valuengf

While this method assumed the first two echo time differencerewlose enough to
prevent phase wrapping, this method could, with propealizétion, extend to data with
larger echo time differences and some phase wrapping. $hespecially interesting at
higher field strengths where wrapping still exists at lowatime differences.

Overall, this method has potential to be a reliable estim@&ioMR field maps, able
to utilize many scans to produce a good estimate. The geperallized-likelihood ap-
proach in this work is also applicable to estimating otheapeetric maps in MRI, such as
relaxation maps [46] and sensitivity maps [138]. It may dsauseful for phase unwrap-
ping problems with noisy data. In some cases, it may be @bketo use edge-preserving
regularization in (4.12), such as the Huber potential fiomcf141].

Ultimately, this method is a tool that may help answer themupiestion of field map-
ping: how to best allocate scan time to achieve the most atzfield map. The preliminary
CRB analysis guides choice of echo times given a set numbeaoss In future work, we
wish to further explore the relationship between numberabfoes, signal to noise ratio,

and spatial resolution.
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CHAPTER V

B Map Estimation

5.1 Introduction

In * MRI, RF transmit coils produce non-uniforf, field strengths, creating varying
tip angles over the field of view. In particular, &g increases, the RF wavelength shortens,
causing moreB; inhomogeneity. Measured inhomogeneity ranges from 30-&Wd12,
120] at high field strengthsH, > 3T). In fact, B; is inherently inhomogeneous, both in
magnitude and phase, because there is no solution to Maxwgliations for a uniform
RF field over a whole volume at high frequency [56]. Uncoree¢inon-uniform tip angles
cause spatially varying signal and contrast in the image. figdd inhomogeneity can also
degrade quantification, such as in measuring brain volut#s] |

A map of theB; field strength, called & map, is essential to many methods to
help minimize and correct for this inhomogeneity. For ex@mgailored RF pulses such
as [102,111] require use of &7 map. Other techniques, such as myocardial perfusion
imaging [59] also require &;” map. At high fields ¢ 3T), aB;” map allows for proper
pre-scan calibration [20]. In parallel transmit excitatiwsing a coil array)e.g., [67, 108,
134,135,142,143, 145, 148], one must have a map of3thefield strength and phase for
RF pulse design.

A conventional approach t&;" mapping is to collect two scans, one of which uses

1This section is based on several conference publicatidis43].

61



twice the RF amplitude of the othexg., [2,12,20,127,128]. Using the double angle for-
mula, a standard method-of-moments estimator is usedghates noise in the data. This
estimator performs poorly in image regions with low spin sign This simple approach
also does not allow for more than two angles nor does it adcfmimrmore complicated
physical factors such as slice selection effects.

We propose a new approach that incorporates multiple codsnaultiple tip angles as
well as accounts for noise in the model. This model also po@tes the RF excitation
pulse envelope to account for slice selection effects. Témative regularized estimator
estimates the unknown compléx™ map from multiple reconstructed images. The sub-
sequent sections first review the standard approach foptbldem, and then describe our

new and improved method with examples of the improfd maps.

5.2 B{" Map Estimation: Theory

5.2.1 ConventionalB;" map

The double angle method (DAM), a conventional approach;to mapping, uses two
scans, one of which uses twice the RF amplitude of the otherodel for the reconstructed

images is

yin = fisin(a;) +en

(51) ng = fj SiIl(QO./j) +€j27

wherey;; denotes the complex image value in tfth voxel for thelth scan { = 1,2),
f; denotes the unknown object value amgis the unknown tip angle at thgth voxel.

Estimatinga; is equivalent to estimating the;" field strength magnitude at thiéh voxel.
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Using the double angle formula:

Elyj2] _ sin(2a;)
Elyj1]  sin(oy)

= 2cos(a;).

The standard estimate of is a method-of-moments estimator that ignores the noideein t

)

This method has several limitations. First, it performs gho image regions with low

data:

1 .
(5.2) G = arccos(— Ys2
2 yn

spin densityj.e., wherey;; is small. It suffers from27 ambiguities ifo; is too large, yet
it would be sensitive to noise if; is too small. Additionally, repeatibility for smatl;
(under20°) is poor [112]. The solution to the added noise ignored byntioelel is usually
low-pass filtering, which must be fine-tuned. Low pass filtgrcan corrupt neighbors of
pixels with smallo; or f; values. The estimator (5.2) also does notimmediately gdimer
to the case where we acquire multiple scans to cover a laageerof tip angles, possibly
even angles that are larger thizmin some image regions. The estimate (5.2) also does not
provide phase information and most methods do not incotp@may phase estimate.

Finally, the estimate (5.2) does not take into account afgramation about the excita-
tion pulse, thus ignoring slice selection effects. The nhetlewn in (5.1) assumes a linear
relationship between the pulse amplitude and the flip argjleh linearity holds for a non-
selective pulses but is only an approximation for slicedele pulses. According to [110],
the linear approximation is adequate for sinc pulses up @odbgrees, but using a non-ideal
pulse such as a Gaussian would decrease the accuracy etlegr.fdrhe effects of using
a finite pulse also cause residual error, but are not accduntein published methods.
Different slice profiles affect the aboslute flip angle aslaslthe flip angle distributions
throughout the sample [126].

The model (5.1) usually requires a very large TR so tfjas the same for bothy;,
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andy;, (i.e., the effects of botl; and7;, relaxation are negligble). For an object with a
knownT7 value or knowril; map, one can generalize the model (5.1) to include the sffect
of 71, e.g., [143]. Some papers, such as [128], using the conventiondkih(5.1) suggest
that shorter TR values can be used. Sequences have beestedgdpat can shorten scan
time and enable rapi®,;” mapping, such as [20]. Some fast methods have been developed
that concurrently estimate or correct thg field, (e.g., [24]) to circumvent the difficulty
of a quick direct mapping. Some methods have been develd@tdate 7; oblivious”
over the relevant range @f values €.g., [39]) to circumvent needin@; information at all.
All current B]” mapping have disadvantages that need to be correetedflow artifacts,
off-resonance, suceptibility effects), but most have laisa and low bias [81]. Because
the proposed method is built around a very general costifumcit is also applicable to
fast methods developed for the DAM.

Our proposed method seeks to map both the magnitude and ghhse3, field. This
method uses a statistical cost function that incorporatésenand slice selection effects
ignored by the conventional estimate. Including regukian into our cost function also

circumvents the need for later filtering.

5.2.2 Signal model for multiple coils, multiple tip anglestoil combinations

Suppose there arE coils. We takeM measurements by transmitting with different
coil combinations and receiving from a common coil. (Thistineel could be generalized
to use multiple receive coils.) For each measurement, omaaoe coil(s) are driven si-
multaneously by the same RF sigha(t) with possibly different known amplitude scaling
factorsa,,r, wherek = 1,..., K denotes the coil number, = 1,..., M denotes the
measurement number, ands a M x K array containing the scaling factats,,. For the
problem to be tractable, we require thigt > K. The complex coil patterns sum together

due to linearity to make the total transmitt&d field. This general model encompasses the
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conventional model (5.1) ifwe le&k = 1, M = 2, and

We model the resulting/ reconstructed images as follows:

k=1

K
(5.3) Yjm = [ (Z Oémkzjk> + Ejm,

form =1,...,M andj = 1,..., N, wheref; denotes the underlying object transverse
magnetization in thgth voxel (multiplied by the sensitivity of the receive coéhde;,,
denotes zero-mean complex gaussian noise. Ahemap, constrained to be real in the
conventional model, is actually a complex quantity, denotes the unknown compléx”
map that relates RF amplitude to tip angle at ttievoxel for thekth coil. When multiple
coils are driven by the same sigral(¢) (with possibly different amplitudes), then the fields
from those coils will superimpose and the complex coil pagavill add by linearity, hence
the sum ovek in (5.3). If the units of the amplitudes,,;, are gauss, then the units of;
will be radians per gauss. More typically, the unitscgf, are arbitrary, and all that is
known is their relative values. In this casg will have units such that the product af,,;
andz;;, has units of radians. This should suffice for RF pulse design.

The functionF in (5.3) replaces the typicain seen in the double angle formula and
inherently incorporates slice selection effects. The fiamcE’ is explained further in Ap-
pendix B.

The model (5.3) expands the one used in [41,42] and includ#sdbice selection ef-
fects and linear transceive coil combinations. Redgénmapping methods [10, 90] have
introduced linear combinations of transmit coils. Thes¢hods have the advantage of us-
ing much smaller tip angles while still collecting enoughrsil to produce accurate results.

The proposed method accomodates this matrix transmit igaérwith a comprehensive
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measurement model that also includes slice selectiontefaad accounts for the noise
factors that are ignored by existing methods.

The goal is to estimate eadB;” map z; £ (z1k, - - -, 2nk) from the reconstructed
images{y;.}. The underlying magnetizatiofi £ (f,,..., fx) is also unknown but is a
nuisance parameter. We would like the estimator to work sdipieven in image regions
wheref; is small.

If f; were allowed to be complex, then the model above would beidemtifiable so
we take the approach of constrainijigo be real.

We also note a single surface coil for receive will sufficegrewhen multiple transmit
coils are used. In this casg, will be a product of the spin density and the receive coil
sensitivity pattern.

Kerr et al. [68] considered a similar problem, except they assumgg values are
powers of two,F’ was the ideal sin relationship, andvas a real quantity. They did not use
coil combinations, so each row of would correspond to an indicator function. They used

the following cost function:

> (yiml = 1 fl sin(amrzi])*

jm
This cost function does not correspond to the complex gansstatistical model for the
data. They applied a general purpose minimization methah fMATLAB . In particular
for simplicity, for each voxel they used only the value of iglex for which the tip was
closest tor/2. They also applied no regularization. In contrast, we usé¢hal data at
every voxel, with a statistically motivated cost functiamd a minimization algorithm that
is tailored to this problem. We allow arbitrary choices foety,,, values, although powers
of two may be a reasonable choice. We use the Bloch equatiaoctamodate real pulse

sequences instead of assuming a perfect rectangular stifteep
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5.2.3 Regularized estimator

We propose to jointly estimate thg,” mapsz = (zy,..., zx) and the objectf by

finding minimizers of the following penalized least squacest function:

(2, f) = argmin U(z, f),

zf
(5.4) V(z, f) = L(z, f) + BR(2),
where
N oMoy K 2
(5.5) L(z, f) =) 5 [vim = F (Zamkz]k>
7j=1 m=1 k=1
and
(5.6) R(z) = R(z),

whereR(z;) is regularizing roughness penalty function for tkia B;” map andg3 is a
regularized parameter that controls the smoothness ofstimaate.

We use quadratic regularization for the mapsecause3;” maps are expected be spa-
tially smooth, although edge-preserving regularizationld be used if needed. However,
we choose not to regularize the magnetization imgdaeecause it will contain detailed
structural information.

There is no analytical solution for the minimizer ¥f z, f) over both parameters, so
iterative methods are required. We consider an block adterg minimization approach in
which we minimize¥ by cycling over each parameter and minimizing with respectrte
parameter vector while holding the other at its most recahie:

For a given estimaté(™ of z at thenth iteration, the minimizer of’ with respect tof
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is found analytically to be:

. (n) fozl real{y}fmF(x%)}
5.7 o=l
Zm:l F(l’ )

im

where we define the composif&™ mapsx,, as follows:
K

(5.8) Tjm 2D Qi
k=1

For givenf values, the problem of minimizing with respect to the comple®;” map
z,, appears nontrivial because of the nonlinearityFof Therefore, we use an iterative

algorithm of the following form:
2 — 500 s fyg, q;(é(n)’ f(n>>7

where D is a diagonal matrix that is derived using quadratic magrigrinciples [8] to
ensure that the cost functichis decreased each iteration. See Appendix C for details.
Variable projection is another possible approach (seesfd,09]) where we substitute
the linear solution off (5.7) back into the cost function (5.4) and then find an edttma
for z. However, we found no simplifications in (5.4) in using (5.9 we use alternating
minimization. The cost functiow’ is nonconvex, so the alternating minimization
algorithm described above will descend from the initialraates to a local minimum [63].
Thus it is desirable to choose reasonable initial estim&es Appendix E for details.
Regularized methods have the benefit of being able to chowakia for 5 based on
guantitative analysis. In Appendix G, we analyze the speggolution of the regularized
estimator (5.4). This analysis leads to a modified penaltgtion which achieves more
uniform spatial resolution in regions with a constgnt We choose a value fgt based on

the desired FWHM of regularizer smoothing.
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5.3 Experiments

5.3.1 Simulation Study

B1 maps

0.839

62

Phase maps
1.56

62 0.803

200

Figure 5.1: TrueB;” magnitude and phase maps and object used in simulation.

Scanfory 1 Scan fory_2 Scan fory_3 Scan fory_4

1 64
SNR =20.0 dB

Figure 5.2: Simulated MR scans for leave-one-coil-out (DOBEstimation withM = 8
measurements and with an SNR of 20dB.
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To evaluate the regularize@” map estimation method described above, we performed
a simulation study using the synthetic true maps shown in3=ily For the object magni-
tude f;, we used a simulated normal T1-weighted brain image [18fatOfhe truth. The
B maps were simulated based on equations for a magnetic fieddcircular current
loop [49, 129]. We simulated noisy reconstructed imagesior= 4 different transmit
coils using the model (5.3) and varying both the number of sugaments {/ = 2K
or M = K + 1), a, and the RF pulse (truncated gaussian and truncated sied\se
pendix B for details). For our scaling matrix, we used “one-coil-at-a-time” (OAAT) €.,

for M =2K

wherely is aK x K identity matrix) and “leave-one-coil-out” (LOO).€., for M = 2K

1 — Ik
aLoo = )
21 —2- Iy

wherely is a K x K matrix of ones). There are many possible choicesdpbut we
focus on these two possible matrices as an illustration ®fitiethod. Both matrices are
well-conditioned £ (aoaar) = 1 andx (aroo) = 3). All choices fora in this paper meet
the criteria of the modified DAM used in Appendix E in calcidatz(®. We just show
images for the truncated sinc pulse as images from bothagiaitpulses look similar. We
added complex gaussian noise such that the SNR, definétlby,,(||y|l/|ly — Ely]l]),
was about 20 dB whef/ = 2 - K and about 30 dB wheh/ = K + 1. Fig. 5.2 shows the
data magnitudey;,,| scans for LOO afl/ = 8.

Fig. 5.3 and Fig. 5.4 show the initial estimates, regulariestimates and their respec-
tive errors using the methods described in Appendix E foutheal M/ = 8 case. Both the
conventional DAM estimate foz| and the method of moment estimate fot are quite

noisy. For the first pass through the algorithm, we ran 5 fitens and use@®, = 2-1°
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DAM est. Reg. est. (abs)

Masked init. error Masked reg. error

Reg. est. (phase)

Masked init. error Masked reg. error

Figure 5.3: Figures for one coil at a time (OAAT). 500 iteoaus, M=8, SNR about 20 dB,
3 = 271, Same figure colorbar as Fig. 5.1. Error colorbar is [-.07] for |z|
and [-7/8, 7/8] for Zz
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Reg. est. (abs)

Masked init. error Masked reg. error

Masked init. error Masked reg. error

Figure 5.4: Figures for 3 coils at a time (LOO). 150 iteraipM=8, SNR about 20 dB,
3 =21, Same colorbar as Fig. 5.3.
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and used the modified penalty as described in Appendix G. &tewlas also normalized
by the median of the first pass estimate of the object as destin Appendix G. We ran
the algorithm with 150 iterations, using = 2-' and using the modified penalty (G.7).
The algorithm, including the first pass, took 300 secondsitoon Matlab. Fewer iteration
could be run (wher/ = 2K) to further speed up processing - all estimates have less tha
10% NRMSE at 75 iterations, for example, which would almadvé the run time.

The reduced noise due to regularization and due to usinfgp@lstan data is evident.
Fig. 5.3 shows the conventional estimate for fig¢ map. Not only is this image very
noisy, but theB;" map is not properly estimated in the large signal void of thdls This
is expected from the very low tip angles that are used hereu{a20 degrees in the center
for the first four scans and about 40 degrees in the centehnéext four scans). We
see some improvement in Fig. 5.4 even in the initial estimatrause using three coils
at a time brings the center tip to around 60 degrees for thefdits scans and about 120
degrees for the next four scans, making the DAM much betteditioned and less prone
to error. The proposed method improves over the initialneste for both the OAAT and
LOO cases. It smoothly interpolates across this signal fmid smoothB;" map in the
region of interest as seen in Fig. 5.3 and Fig. 5.4. Simi/aitynal voids can be seen in the
initial estimate of the phase map yet are smoothed apptepyim the final estimate.

We calculated the error of both the conventional and our regisnate for all four coils.
We used a mask to include only those points where the sigha V& non-negligiblei(e.,
where|f;| > 0.1 max (f;)). For error in the phase of the]” map, we looked g’= — ¢'*|.
The results are summarized in Table 5.1, where the erro@vamged over 20 realizations
(the variance of the error over the realizations is very §nheds than one percent). The
error in the new regularized estimate for tB¢ magnitude is three to five times less than
the error of the conventional estimate. OAAT has greaterawgments due to the very
poor DAM estimate at such low flip angles. The phase estimadeohject estimate (not

shown) are similarly good. This clearly shows the effectdest noise and interpolating
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Table 5.1: Simulation NRMSE (%) for three selected exatafpulses averaged over 20
realizations

‘ 2| @ ‘ |z|™ ‘ /20 ‘ Lz™ ‘ SNR‘ #iters‘
Trunc. sinc pulsg f; > 0.1 max f; 770|155 174 | 31 | 20 | 150
OAAT M =8

Low Magnitude | 143.2| 19.3| 63.8 | 2.7 | 20 150
Gaussian  pulse f; > 0.1 max f; 783 | 164 | 16.0 | 3.1 20 150
OAAT M =8

Low Magnitude | 143.3| 22.9 | 61.7 | 2.7 20 150
ldeal sinc pulsg f; > 0.1 max f; 67.6 | 13.6 | 136 | 25 20 150
OAAT M =8

Low Magnitude | 134.8| 18.0 | 57.1 | 2.3 20 150

Trunc. sinc pulsg f; > 0.1 max f; 174 | 49 | 285 | 6.7 | 20 | 150
LOOM =8

Low Magnitude | 58.7 | 3.9 | 77.7 | 7.0 20 150
Gaussian  pulse f; > 0.1 max f; 268 | 83 | 291 | 55 20 150
LOO M =38

Low Magnitude | 64.0 | 7.0 | 776 | 55 20 150
ldeal sinc pulsg f; > 0.1 max f; 141 | 39 | 242 | 54 20 150
LOO M =38

Low Magnitude | 524 | 3.2 | 708 | 55 20 150

across the signal voids. Similarly, we looked at the errothia signal voids of the brain
(the sinuses and skull) to see the improvement even mordyclééhese results are also
shown in Table 5.1 in the rows labeled “Low Magnitude”. Theas with low magnitude
have much greater error (almost 2 times greater) than arglasigher signal magnitude in
conventional estimators. Using the regularized estima#terfinal error in pixels with low
signal magnitude is similar to that of the other pixels, giey an error six to fifteen times
less that of the conventional error in low magnitude pix&lsus, the regularized estimator
makes impressive improvements, especially in the signdkvo

The flexibility of the signal model and regularized estinmatdgroduced in this paper
allows for less than the standatd = 2K scans required by the DAM, for example. We
requireM > K + 1 to properly estimate both th& coil maps as well as the object. We
initialize this method as described in Appendix E; thisrestie is much worse for those

coils which do not have a double angle initial estimate wherane using each coil sepa-
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Initial est. Reg. est. (abs)

Masked reg. error

Reg. est. (phase)

] —p-
=

Masked init. error Masked reg. error

Figure 5.5: Figures for 3 coils at a time (LOO) with less meaments. 1000 iterations,
M=5, SNR about 30 dB3 = 2-*, Same colorbar as Fig. 5.3.
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Initial est. Reg. est. (abs)

Masked reg. error

Masked init. error Masked reg. error

Figure 5.6: Figures for one coil at a time (OAAT) with less m@@ments. 200 iterations,
M=5, SNR about 30 dB3 = 274, rotate initial estimate from first coil for
subsequent coils. Same colorbar as Fig. 5.3.
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rately and the estimate is quite poor for all the coils whenuse multiple coils at a time
because we lack enough information to ascertain each aailigidual map. Even in these
conditions, as long as the coils overlap enough to providedgmverage of the object,
the estimator will provide a good solution. However, theulegzed estimator takes many
more iterations to converge to a good solution, the costafigdewer scans. At low SNR,
the object and3;” estimates have more “holes” in them and the regularizechasbir is es-
pecially prone to being caught in a local minima. This is esdey problematic for OAAT-
with less coil overlap, the initial estimate fof = 5 has many “holes” at an SNR less than
65 dB. Therefore, when using reduced number of scans, LO€&@mmended, especially
at low SNR. However, OAAT and LOO can be improved by using andased number of
scans {/ = 6, for example) or by rotating the initial estimate for theldor coil combina-
tion) with two scans for the other coil (or combination) ialtscans. Because the simulated
coil maps used here are simply rotations of each other, iimgle step gives good perfor-
mance for even OAAT at an SNR of 30 dB with only 200 iteratiosisofvn in Fig. 5.6).
This is impressive considering that the algorithm perfadraery poorly at this low SNR
without the initial coil rotation. Thus, using additionaformation or assumptions about
the coil maps can lead to a significantly reduced number ofssca

The initial and final estimates fav/ = 5 LOO with 1000 iterations at an SNR of 30 is
shown in Fig. 5.5 withB = 2=%. We chose a slightly lowe? for the low scan simulations to
put more emphasis on the likelihood term (versus the petediy). The initial magnitude
and phase estimates are identical for each coil (as explamAppendix E). The initial
magnitude estimate is quite uniform across the object; aslgporithm iterates, the varia-
tion across theB;” magnitude map for each individual coil is corrected and apphes a
good, regularized solution. While there is still more higlueserror for the magnitud&;
estimate, this can be further reduced using more iteratibhe phase3;” estimate is very
good and reaches a good solution with low error quickly.

The results forM = 5 LOO, at an SNR of 30 at 250, 500, and 1000 iterations are
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compared to the conventional DAM method usihf = 8 scans in Table 5.2. Note that
the initial magnitude error with\/ = 5, which uses the DAM estimate for the first coil
combination for all coil combinations, is not equal to the @Anagnitude error with\/ =

8. We use the MOM phase estimate (E.1) for the DAM= 8 phase estimate. The DAM
M = 8 at an SNR of 30 has a low error in high magnitude pixels (6% abmuch higher
error in low magnitude pixels (32%). After 1000 iteratiomge achieve a similar degree
of error in low magnitude pixels (9%) and substantially reglerror in the low magnitude
pixels (8%) giving a similar error rate in all pixels withihe& object mask. Phase error is
lower for all number of iterations shown for the proposed moetwith A/ = 5 than for the
MOM M = 8 estimator and is substantially lower in low magnitude Exgly a factor of
10).

The OAAT coil combinations failed to provide good resultsiwonly 5 scans at an SNR
of 30dB with the standard initialization. However, when vedated the initial estimate
for the first coil for the subsequent coils as explained apbtwe estimator provided good
estimates with a much reduced number of iterations. Ratatiothe oval brain shape
caused more error along the edges of the oval, but overafirtbgosed method coped with
the object shape irregularities quite well for OAAT (undee present implementation, the
coil combinations used in LOO did not perform well with thetation method). The final
image using 200 iterations for this method is shown in Fi§.d&nd error results in Table
5.2. OAAT has similar trends to LOO, but has significantlytbetesults than the OAAT
DAM M = 8 estimates. Because OAAT uses only one coil at a time, thesaethiflip
angles achieved are much lower and the OAAT DAM estimate hae mitial error than
that of LOO DAM M = 8 estimate. Therefore, the regularization of the proposethatke
substantially decreases the error, especially in low ntadaipixels.

Thus, using only 5 scans as opposed to the standard 8, psodumiar (for LOO) or
lower (for OAAT) NRMSE in high magnitude pixels and substalty lowered error in

low magnitude pixels, albeit at the price of a high numbertefations. Optimization of
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Table 5.2: Simulation NRMSE (%) for proposed methdtl = 5 versus conventional
DAM method M = 8 averaged over 20 realizations (truncated sinc pulse with
SNR=30dB)

‘ ‘ 2| @ ‘ B ‘ £20 ‘ Lz™ ]#of iters
LOO M =5 proposed | f; >0.1max f; | 43.5| 19.9 | 122 | 4.0 250
Low Magnitude| 49.4 | 22.8 | 25.7 | 4.8 250
fi>0l1maxf; | 435 | 13.2 | 122 | 3.8 500
Low Magnitude| 49.4 | 135 | 25.7 | 4.3 500
fi>01maxf; | 435 | 9.1 | 122 | 3.4 1000
Low Magnitude| 49.4 | 8.0 | 25.7 | 3.7 1000
LOO M = 8 DAM f; > 0.1max f; 5.8 111
Low Magnitude 31.6 45.2

OAAT M =5 proposed f; >0.1max f; | 80.5| 17.3 | 355 | 8.4 50
Low Magnitude| 122.7| 245 | 548 | 7.4 50
fi>01maxf; | 80.5| 159 | 355 | 5.9 100
Low Magnitude| 122.7| 245 | 54.8 | 3.3 100
fi>0.1maxf; | 80.5| 14.6 | 355 | 4.9 200
Low Magnitude| 122.7| 22.1 | 54.8 | 2.7 200
OAAT M = 8 DAM f; > 0.1max f; 58.1 17.7
Low Magnitude 116.8 59.3

this method (for example, improving the initial estimatesée on information about the
relative coil patterns as suggested above) may yield evestgrimprovements in reduced
scan regularized estimation.

We tested the improvement seen by using the correct slidéepfor estimation versus
assuming an ideal sinc pulse profile. The results are summathin Table 5.3. We see that
using the correct slice profile gives slightly better erresults for OAAT for the truncated
sinc pulse (though curiously not for the gaussian pulse)s blds true for pixels with a
high signal value as well for signal voids. We would not exygetery large difference for
OAAT, because the flip angles are very small and the diffexend” at these flip angles
is also small. For LOO we see bigger relative differencepgemlly among the gaussian
pulse. This is as we would expect, as the gaussian pulsediffeatly from the ideal sinc
pulse at the flip angles seen in LOO. Thus, the improved slicBi@is most advantageous

at higher flip angles.
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Table 5.3: Simulation NRMSE (%) using the correct slice peofor estimation versus using the conventional ideal pplsdile for

estimation

Excitation | Assumed o 12| @ | |2|™ | 220 | zz™ | SNR| # iters
pulse pulse

Truncsinc | Truncsinc | OAAT M =38 f; > 0.1max f; 770|155 174 | 31 | 20 | 150
Trunc sinc | Ideal sinc OAAT M =8 f; > 0.1max f; 770|167 174 | 27 | 20 | 150
Trunc sinc Trunc sinc OAAT M =38 Low Mag 143.2| 19.3 | 63.8 | 2.7 20 150
Trunc sinc Ideal sinc OAAT M =38 Low Mag 143.2] 21.0| 63.9 | 2.6 20 150
Gaussian Gaussian OAAT M =8 fi > 0.1max f; 783 | 164 | 16.0 | 3.1 | 20 | 150
Gaussian Ideal sinc OAAT M =8 f; > 0.1max f; 78.3| 108 | 16.0 | 2.8 | 20 | 150
Gaussian Gaussian OAAT M =8 Low Mag 143.3| 229 | 61.7 | 2.7 20 150
Gaussian Ideal sinc OAAT M =8 Low Mag 143.3| 12.0| 63.7 | 2.7 20 150
Trunc sinc | Trun sinc LOOM =38 f; > 0.1max f; 174 | 49 | 285 | 6.7 | 20 | 150
Trunc sinc | Ideal sinc LOO M =38 f; > 0.1max f; 174 | 47 | 284 | 59 | 20 | 150
Trunc sinc Trunc sinc LOOM =8 Low Mag 58.7| 39 | 77.7| 7.0 20 150
Trunc sinc Ideal sinc LOOM =8 Low Mag 58.7| 46 | 776 | 6.4 20 150
Gaussian Gaussian LOO M =38 f; > 0.1max f; 268 | 83 | 291 | 55 | 20 | 150
Gaussian Ideal sinc LOOM =38 fi > 0.1max f; 268 | 186 | 26.8 | 55 | 20 | 150
Gaussian Gaussian LOOM =8 Low Mag 640 | 70 | 776 | 55 20 150
Gaussian Ideal sinc LOO M =38 Low Mag 64.0 | 16.8| 779 | 55 20 150




5.3.2 MRI Phantom Study

We also applied this algorithm to real MR data on a phantomrsea with coils posi-
tioned to create &, map that was much larger on one side than on the other. Wenelbtai
images at eighteen nominal tip angles from 10 degrees to &8€eds. Fig. 5.7 shows
scans from the first three tip angles. Fig. 5.8 shows the teefwm the conventional es-
timate (5.2) (with tips ag80° and60°) as well as using the proposed regularized estimator
with three of the tip angles3(°, 60°, 90°) and with all eighteen. The regularized estimates
are much smoother than the conventional estimate. Thishastour supposition that the
phantom should have a smoadth map. We see that even using just three images produces
a much smoother image than the conventional estimate. WWktheaegularized estimate
using all eighteen tip angles as ground “truth” and caledahe NRMSE of the regular-
ized estimate using only three tip angles and the convealtiestimate. The conventional
magnitude estimate had a NRMSE of 29.9% compared to theamged magnitude esti-
mate with an error of 15.3%. Thus, using just one extra scdrtfaa proposed regularized
estimate reduces the magnitude estimate’s error by alnadishihd also calculates a phase
estimate with a NRMSE of 7.32%. Although both the real andrieginary parts o are
smooth, the phase estimate had a small amount of phase wgaphich has been removed
in Fig. 5.8 for display. Because (5.6) regularizes the c@xpbject, or effectively the real
and imaginary parts of, instead of the magnitude and phase g small amount of phase
wrapping is possible in the final object. Simple phase unpiragpalgorithms can be used

as a final step after all iterations have been completed if@#imphase map is desired.

Scan for a = 30 Scan for a,= 60 Scan for a, = 920

| . H 664 | 664
128 0 128
1 128 1

Figure 5.7: Three of the eighteen scans taken of the phanftbese scans show the varying
contrast in the images due to tig inhomogeneity.

128
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|B1+] using all tips 10-180 (gauss/waveform uni t)

| 1 - H |
0 128

|B1+] using 30,60,90 (gauss/waveform unit) unwrapped phase using 30,60,90

| 1 n H
0 128 .14

Figure 5.8: Estimation of the phantom using proposed metfiop: conventional estimate
of B; using two images; regularized estimateRfusing all eighteen images;
Bottom: regularized estimate &f; using three images; regularized estimate of
the phase map.

128
1 128

5.4 Discussion

We have described a new regularized methodAgrmapping that estimates both the
B; magnitude and (relative) phase. This method allows foripleltoils allowing for easy
use in designing pulse sequences for parallel excitatibis Method yields3;” maps that
interpolate smoothly over regions with low spin density.isTavoids noisy estimates in
these regions as well & ambiguities that plague the conventional estimate. Thgaon
tional estimate uses only two tip angles, while our methémhe for any arbitrary selection
of angles.

The simulation results show that the NRMSE of the nBywmap is much less than

that of the conventional estimate. These gains make thipamopariate method even when
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using only one coil and the standard two angles.

Although results showing the improvement made by using theect slice profile in
the model are still very preliminary, we expect that this my@ment to the model will have
a large effect at higher tip angles whereand sin have a larger discrepancy.

This model did not account for possible coil non-linearitypossibleT; effects. We
will explore these factors in future work.

Overall, the model and estimators explored in this paperevakoother, less noisy
estimates while also allowing for the the use of multipldsand tip angles to achieve an

accurateB;” and phase map for each coil.
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CHAPTER VI

Joint B, , T} Map Estimation

6.1 Joint7; and Bf Estimation: Motivation

The longitudinal relaxation timd is a quantitative value of interest in MR. Fast,
accurate, and precise mapping Bf has many applications: measuring the distribution
of contrast agents to find tumors or assess organs [17, 84]jsp@n imaging [27, 55],
schizophrenia, epilepsy, multiple sclerosis, and Padissdiagnosis [73,123,131], quan-
tifying myocardial blood flow [144], assessing lung functif64], preparing navigation
and visualization tools for surgery [50], and, in combipatwith accurate maps of other
parameters such & and spin density, artificially creating “on the fly” MR imagegh
any desired contrast.

Moreover, T} and B;" mapping are usually both unknown quantities in MR pulse se-
quences. Imaging sequences for tBg double angle estimation method, for example,
require spin echo or gradient echo sequences with a londitiepeime (TR > 57;) to
remove anyl; dependence from the acquired images. Fast and improveddtetor the
double angle method use scan time more efficiently [20, 127, 1Alternatively, image
sequences which are accurate over a wide arrak, afalues have been developed [136];
these pulse sequences, however, may not give accurate pif@aseation [89]. Simple
techniques that are independentiaf such as finding the 18(hull of the signal, do not

work well at high B, signal strengths wher8;" mapping is even more crucial [28] and
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may not have good coverage over the entire volume. IdeB[tyestimation would be fast,
simple, work at high signal strengths and give accurate madm and phase estimates.
One possibility is to combine some sortBf estimation into conventionds,” estimation
that incorporates signal dependencelon Especially whenB;” maps are used in devel-
oping RF pulses, accuraf¢” maps that are robust to noise and less sensiti7 ffects
are required. Small differences in tiig" map can make a large difference in the final RF
pulse design [82].

Ty mapping is also adversely affected By inhomogeneity and non-ideal achieved
slice profiles in many conventional pulse sequendgs.inhomogeneity and slice profile
effects especially affect gradient echo and spin echo wkgrgwan acquisition with a short
TR. At such a short TR, these methods are very sensitive tafigle variations. Steady-
state incoherent (SSI) imaging, a very popular fast imagmeghod that can be used 1A
mapping, is especially sensitive; slice profile effectslleman underestimation @f; and
B inhomogeneity causes large inaccuracies in uncorrettadapping [51]. Therefore,
manyT; mapping methods currently incorporate some formBgf mapping, though it is
often a very crude flip angle correction and ignores slicdilereffects entirely. Some other
(and unfortunately, slower) methods Bf mapping also jointly estimate a flip angle map
(for example, Look-Locker [79]) and are more insensitivep inhomogeneity. Ideally,
the fast SSII'; mapping approach would also incorporate estimatio® pfinhomogeneity
and slice profile effects into the original problem formidat

This chapter first considers curréfit mapping methods in Section 6.2, including joint
Bi" andT; estimators in Section 6.2.4. Limitations of these methadseaplored in Sec-
tion 6.3. Next, we do a Cramer Rao bound analysis of variougppingpnethods to choose
an appropriate model in Section 6.4 with supplemental madion Appendix G. Based
on this analysis, we develop our joifit”, 7} estimator in Section 6.5 with supplemen-
tal information in Appendix | (cost function derivative®dppendix J (model derivatives),

Appendix K (initial estimates), Appendix L (spatial restodun analysis), and Appendix M
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(constrainedl; estimation modifications). We performed simulation andniba MR
experiments in Section 6.6. Finally, we discuss the resuits propose future work in

Section 6.7.

6.2 Overview of Current 77 Mapping Methods

Many different methods have been developed to estimaien@ap using very different
imaging sequences and algorithms. In all of these methbdsielationship betweeh;
and the imaging data obtained is complex and a simple ekfdichula for7; can not be
written. Most of the methods depend on transformationsefiéita which then use a linear
or non-linear fit to several parameters which are simplyteslaoT’ .

The simplest mapping method uses a ratio of two spin echabkigaasurements with
two separate repetition times (TR) using a saturation regopulse sequence [133]. The
effect of T, is canceled in the ratio leaving a ratio of exponentials aminig7;. Obtaining
an estimate of/; analytically from this ratio is not possible, so a look-upl&ais used.
For some values df; and TR, the relationship between the ratio dhds quite linear; for
other values, the relationship varies very slowly and gostth®tion of 77 is impossible.
Using principles of error propagation, reasonable value$k can be calculated based
on expected; values and a good SNR can be ensured. Using only two poinégedgv
limits the accuracy of; mapping, especially in the case where a wide spredd walues
is possible. Therefore, many methods have been developaih wieasure this curve at
several points. This can be done for either spin echo or slwemrecovery measurements.
Because these methods all rely on exponential regrowthioe&hips, they have a similar
relationship to SNR; the SNR is directly proportional to thgamic range of the method.
Because inversion recovery (IR) has the double the dynaanige of the spin echo, it also
has a much better SNR. IR sequences are very slow, but fagigmentations have been
developed [9,19,103, 147].

The two most common methods currently usedformapping are the Look-Locker
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method and the SSI measurement with multiple flip angles.

6.2.1 Look-Locker imaging sequence

Look-Locker is based on the IR imaging method and its greaiR but improves on
the inherent inefficiency of the method, which requires afsampling time followed by
a very long waiting time before the next repetition can begmLook-Locker, very small
flip angles are applied several times during the recoveripgesampling the longitudinal
magnetization. These pulses affect the recovery curve medvgry different results than
the IR imaging method. If the flip angles are very small, thgussce is similar to the
IR sequence, but the method is then SNR-limited. This melasd3 parameters that are
estimated using a least-squares fit. The major advantageisofitethod is the relative
insensitivity to B~ inhomogeneity; the method naturally incorporates esfonaof a flip
angle map. Some recent research into this pulse sequenaa/bb®d: jointly estimating
Ty, T3, and the proton density with flexible accuracy [130], optation of number of
inversion times and the appropriate Tl values [95], multesacquisitions incorporating
the average flip angle and using smoothed flip angle maps iZBiredifying the sequence

to work in cardiac imaging, where the cardiac cycle is shdhianT; [86].

6.2.2 SSlimaging sequence

Another common; imaging method is based on SSI (steady-state incoheresit) fa

imaging. This method applies a spoiled gradient recalldtbdSPGR) sequence consecu-
tively acquired with many flip angles and is known as the \@edlip angle (VFA) method.
A spoiled FLASH (fast low angle shot) or driven equilibriunmgle pulse observation of
T, (DESPOT1) acquisition is used. The SNR of this method islamo the previously
described methods but with a much shorter total acquisitioa. However, this method is
very sensitive td3;” inhomogeneity and pulse profile effects.

We will derive the SSI model under the more general conditiba complexB;” map
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with a phase angle of (¢ = 0 when theB;" is real and all along the x’ vector). The signal
model is derived as follows (considering a single spin). Titet pulse is applied at a tip

angle off. After the pulse is applied (at tim&"), the longitudinal magnetization is
M_,(0") = My cos(6),

where M, is the initial magnetization. The longitudinal magnetiaatthen returns to the

initial magnetization based on th& relaxation constant for one spin as follows:

M.(t) = My(1 — exp (—%)) + ML(0F) exp (-Ti) |

1 1

The transverse magnetization after theulse is

M,(0%) = —Mjsin(0)sin(¢)
M,(0%) = Mjysin() cos(¢)

M, (07) = Mjysin(0) exp(id),

and decays back tobased on thé&, relaxation constant for one spin as follows:

t

M. (1) = ML<0+>exp(—E) |

Consecutive pulses are applied after a repetition timeExofAt the end of each repetition

time, the longitudinal magnetization for the spin is

(6.1) M,((n+ 1)Ty) = M,(nT) cos(0) By + My(1 — Ey),
where
(6.2) E, =exp (—%) .
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In this derivation, we assume that the transverse magtietizdecays to 0 before the be-
ginning of the next RF pulse, or perfectly spoiled. A natiyrapoiled sequence occurs
when the repetition time is much longer than Otherwise, forced or external spoiling, to
reduce the transverse magnetization to zero at the end bfpedse, is required. Similarly,

the transverse magnetization is (assuming a perfectlyexpsignal)

(6.3) = M, (nTy)sin(0) exp(i¢) Es,
where
(6.4) Ey = exp (—%) .

The sequence achieves steady-state when, for all subseouieas, at the end of each
repetition time the longitudinal magnetization is the saand is equal to the equilibrium
magnetization. Assuming a uniform tip angle, equilibriseffectively achieved when the
longitudinal magnetization changes by a very small peagag.g., 1%) at the end sub-
sequent pulses. L&Y be the number of pulses applied before steady-state i{wéy)
reached; N depends on the relative error allowed and on treamdersl; andTk. After

N pulses, the magnetization is then:

M,(mTy) =~ M,.,Ym > N,

where M., is the equilibrium magnetization. This magnetization carfdund by setting
M.((n+1)Ty) andM,(nTy) in (6.1) equal tal/,. and then solving foi/,.. Then, the

signal is measured at the end of the repetition time and rdoapto (6.3), the steady state
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signal is

— Ey)sin(0;) exp(io)
1 — E; cos(6;) ’

(6.5) S; = MyEy (1

whered; is theith flip angle. Using multiple flip angles and keeping TR constave can
estimate both\/, and7; using a non-linear least-squares fit. Alternatively, (&&h be
transformed as follows:

S; Si

(6.6) oy - B, o (8) + MoEs exp(ig)(1 — Ey).

Then, a transformation of the poin{&;, S;) into the coordinate plang— ) gives

sm(e
a line where the slope i5,. Knowing E;, we find77 using a least-squares fit.
Much work has been done using the SSI signal model. Recesanas on the SSI
image sequences is mostly in two veins - optimizing the fligles and other parameters
in the SSI sequence (usually in terms of precision and oooally accuracy) [25, 38] and
trying to correct forB; inhomogeneity, flip angle miscalibration, and/or pulsefipecef-
fects [16, 24,97,116, 121, 125], the dominant source ofrénr&SI 7, estimation. Other

research includes improving the estimation procedurengugieighting to improve linear

least-squares estimation [14] and correcting for incomepRF spoiling [99].

6.2.3 SSFP pulse sequence

The SSFP (steady state free precession) pulse sequentzasi te the SSI as it is also
a shortT, method using gradient echo imaging. Here, there is no sgpédnd the signal
adds coherently. The steady-state magnetization thus)dsma both the longitudinal and
transverse magnetization.

A non-spoiled signal is an attractive sequence for joiningsion because of the in-
creased signal available (due to coherent build of signad) reot having to use (possibly

incomplete) spoiling. However, the SSFP is a more comm@itaulse sequence to analyze,

90



especially the transient part of the signal and for any weni@dd pulse sequence. The SSFP
is not a7} weighted sequence as is the SSI but is rather dependent catithef 7; to 75
(Note, this can be seen in (6.7). Tissues with a Higho 7} ratio have a large signal).
Imaging, therefore, shows high signal for CSF in the brain Jittlle contrast between GM
and WM. In addition, the sequence is extremely dependemooff resonance, whether
from the static field inhomogeneity to inducéty inhomogeneity due to the gradients. In
fact, [51] motivates the derivation of the SSFP initially Bcussing the off resonance,
because two isochromats seeing differBgtfields will indeed reach different steady state
values. Therefore, this pulse sequence depends heavilgtanty 77, but alsol; and B,,.
B; dependence, on the other hand, seems to be much less th&®l thigr&l model.

The model can be simplified by assuming that the off-resomamzero and looking

at an extremely shoff’. In this simplified case, the SSFP or SSC (steady-state eot)er

signal is [51]:
M Mg(l — El) Slﬂ(&)
1 — Ey cos(f) —Es(E, — cos(f))
6.7) - My sin(0)

(7 +1) = cos(®) (£ —1)

whereE; = exp(Tr/T}).

There are a few examples in the literature where SSFP is wséeh fquantification.
First, [103] motivates using TrueFISP (a fully refocused8%to avoid the problemati;
dependence on the SSI. While acknowledging that image bawdinid be a problem iB;
inhomogeneity was too large-(250 Hz), off resonance effects are otherwise ignored. They
use the model (6.7). They claim that the TrueFISP recovemyecmore closely mimics the
mono-exponential curve df; than the SSI model, which, therefore, underestimdtes
(assuming nd3;” correction).

[26] uses the SSFP model to do rapid combifigdnd7, mapping. They claim thaf;

mapping is best accomplished using the SSI signal modelratd’ can then be quickly
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mapped using the SSFP given tliatis already known. They present a linearization of the
SSFP model similar to the linearization of the SSI model)(8aich allows for simple
estimation of bot; andT5.

[105] uses the IR TrueFISP pulse to estimate the three mapitameters?;, T,
and spin density. They also ignore off resonance and acletmel that this creates some
error in their measurements (4% 1, 12% in M,, and 20% in7; at an off resonance of
7/3), but do not find this problematic, especially in their pleantand brain data. They
claim this method gives good results with a tip angle betwa@and 70 degrees.

[45], however, questions whether IR-FISP can appropsiastimatel; andT; as in
the papers above. They claim the pulse sequence and thegcudnt results (simulations
and in vivo scans) show a “very sensitive dependence on ftiresonance], especially for
smaller ratios ofl; / T}".

[77] interestingly uses the RAD-SSFP model and incorpsrate approximate slice
profile (uses a triangular function to approximate a singeelsinc) to find improved results
in estimating thél}, 75 ratio. This paper is unique in acknowledging slice profileets in
the SSFP sequence.

While SSFP does not require spoiling and has greater signgthitouge, SSFP depends
strongly on a larger number of variablé€g (75, and By) while having only a weak depen-
dence onBy, one of the desired estimated variables. Therefore, SS&Pa®r choice for

joint T1/B; estimation and will not be further considered in this thesis

6.2.4 Overview of Current Joint 7} and B; Estimation

Because SSI is so sensitive By inhomogeneity, many applications proposed in the
literature use a crude estimate Bf. Methods used to estimate,” (or, identically, flip
angles) include: conventional double angle method [16ihgihe same SSI sequence with
a very long repetition time on a phantom [97], and lookinghe signal null [121] for a

single pixel.
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However, only a few methods claim to do combined estimatibhath B;” and T3.
These methods are explored here.

[28] maps theB;" field using (6.5) ignoring thd; decay (as this scales the signal
magnitude). While this method does not explicitly estimatethe method is interesting
in using the SSI signal model solely to measig. ¢ in that equation is replaced by the
nominald (as given to the scanner) multiplied by a flip angle scalirgdiathat varies based
on position. This flip angle scaling factor, equivalenfdp, is found by applying three flip
angle close td80° and looking for the signal null, which occurs irrespectieel. The
images are first smoothed, based on the assumptiomBthaaries smoothly, to improve
SNR. They use a 3D acquisition to avoid the problem of slicdilgreffects. Although the
SSI method typically uses low flip angles, the authors fourad the method works well
for high flip angles as well, required in finding the signallnuA small variation in B
measured is found at very smdlk, /7 due to poor SNR. This method fails with high off-
resonance as a signal null is never found and the signalsityemo longer varies linearly
with flip angle, though more flip angles could be used with & loear fit.

[116] presents a “joint” mapping method for contrast-erdeahabdominal MRI. The
SSI model is the best approach because it is fast enouglhote djinamic quantization of
contrast concentration. F@;” mapping, a similar sequence, the actual flip angle sequence
[89, 136] is used. This sequence uses two different repetitmes consecutively and then
repeats the entire sequence until steady state is reaclsed. S8, both; and B are tied
together, but with small approximations, a formula f8jf independent of; can be found.
Measurements from this sequence are used to correct thmaddlip angle required to
estimateT;. Although separate data has to be taken to solveBpr this method has
the advantage of using very similar sequences that can lbermed directly after each
other; any non-idealities will be similar for the two seques and motion artifacts will be
negligible compared to methods which require radicallyedént imaging procedures to

compensate foB; .
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[57, 58] uses two RF pulse trains with the same flip anglelrhe longitudinal mag-
netization after each pulse can be written in terms of a dacaya recovery component.
Subtracting two identical pulse trains with different sitagy magnetization removes the
common recovery component, leaving a post-subtractiomesighich only contains a de-
cay component. This method thus does not require steatyyastd uses the transient pulse
information. They develop two different methods, each ofoltuses two post-subtraction
signals. The flip-angle priority (FAP) signals are identjeeth the second having double
the flip angle of the first. The slope of the regression linehef absolute ratio of the two
signals is related to the flip angle aiidis found via curve-fitting. Relaxation-time priority
(RTP) signals are identical with a common flip angle, but wiiffierent time coordinates.
T, is found via regression and then the flip angle can be foundwistitution. Flip angle
maps were smoothed using a moving average, using an ieragthod in RTP to get the
final map.

[146] uses the SSI signal model but looks at the transiertgiahe signal before it
reaches steady state. Ratios of the transient signal torip@al signal are related t@;
andB;" and used to derive each. This method is extremely fast andecaasily combined
with any fast readout, but has limited resolution for singj@t and systematic error at low
flip angles and low SNR.

More recently, [11] uses a similar approach to our proposethod, using multiple
coil arrays to remove the need for large angles in excitirg B field. A parametric
model for both steady state spin warp and transient-state &R with two free parameters
(B andTy) is used, while simultaneously incorporatifg inhomogeneity and some slice
selection effects. The model is solved using least squassnang no inhomogeneity
effects and then iteratively refined with a separately ol@distandard3, estimate. The
method estimates relative phase and uses normalizatiorrdfgr@nce image to eliminate
all constant factors, such g The focus of this method is oB;", noting that thel; map

is much less accurate thd®™ because the MR signal depends much less sensitively on
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relaxation than on th&;” map.

[124] also uses a parametric method using the the standdr(FESSH method) to
estimate bothi} and f, but assumes thag;" is known. Like [11], the initial estimate is
found via regression and then non-linear regression is tesfld a more accurate solution
under the natural constraints of thigand f. The need for at least three or four flip angles,
in contrast to the standard two, to obtain accuracy is alsoudised.

[122] generalizes the model for both the AFI (actual flip &ighaging) and SSI meth-
ods to create a new MTM model using multiple repetition tim€&kis new model, which
averages multiple measurements, can be solved eithertaadlly or numerically using
model fitting. The model has the benefit of giving accuratesrafoth B andT; when
solved analytically, although the accuracy of iiemaps was not further analyzed because
of the focus onB;" maps. The Cramer Rao bound was also used to quickly determine
optimal scan parameters.

[137] analyzes the importance of spoiling on measuremdattsf for both the AFI
and the VFA methods foB;” mapping (corrected fof;). Because diffusion is critical in
RF-spoiled sequences, the optimal angles and measuremé&ntice strongly dependent
on the strength of the spoiling. Spoiling is not considerethis thesis, but obviously is

necessary to consider in the future work.

6.3 Limitations of Current Methods and Possible Solutions

6.3.1 B inhomogeneity

As mentioned previously3;" inhomogeneity is the primary source of errorfinmea-
surements and must be corrected for when using the SSI meSumade of the basic meth-
ods have been explained in the previous section. Almost efthauds blur calculated;
maps to improve SNR without a solid understanding of thecefiee., the FWHM of the

blur, the effect oril} calculation). Additionally, many methods find a low-resan B;
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map or one based on phantoms. Additionally, all methodsesé only the magnitude of
the B;" map and ignore the fact that it is a complex quantity. Thelideshod would create
an accurate, pixel-by-pixel, in-vivo complg%” map with high SNR without indiscrimi-

nant blurring and would not require a separate scan.

6.3.2 Slice profile effects, Bloch equation non-linearity, @d flip angle miscalibration

Slice selective RF pulses would ideally have a rectangtlaps, exciting only the spins
in the desired slice, but this is not achievable in practiReal slice profiles have varying
flip angles over the slice. Because the measured signal iniM&jrates over the volume,
the varying flip angles due to the slice profile can cause emrdhe accompanying?
measurements. In addition, spins do not behave linearlienptesence of an RF field;
i.e, doublingB;" does not lead to twice the flip angle due to the non-lineafithe Bloch
equation. While this approximation works well in the smgll#tegime, using the Bloch
equation to model the achieved flip angle across the sliddg® most accurate.

Flip angle variation and miscalibration can be particylgrioblematic in SSI imaging.
The SSI signal, as a function of flip angle, passes throughdispin-density weighted
and then & weighted area. Typically, two (or more) flip angles are clmoséh the first
maximizing the sensitivity and the second chosen smallgmntaube spin-density weighted
and almost independent ©f.

Some papers suggest using 3D imaging (which does not reglibeselective RF
pulses) to bypass this effeei., [28]. This must be done for all scans (including those
to estimate other parameters) to mitigate the effect sée Qt@er papers, while noting the
effect, claim it has little effect and make no modificatioagheir methodce.g., [116]. [57]
minimizes the effect by dividing each slice into sub-slicemch with an expected uniform
flip angle. [97] directly accounts for slice selection effeby integrating over the signal
equation with respect to position and using the flip angleaaheposition as found us-

ing the achieved slice profile. [42] performs regularizédd map estimation incorporating
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slice-selection effects by using a Bloch-simulated signadel.

Flip angle miscalibration is a related issue. The nomingldhgle (the one input to the
scanner) is often different than the real flip angle achiawedvo. A flip angle factor is
usually integrated when calculating tih& map,e.g., [28] or the flip angle factor can be
directly integrated into the modelg., [121].

The ideal method would inherently correct for slice selactiBloch equation non-
linearity, and flip angle miscalibration, without requigimny substantial increase in com-

putation time.

6.3.3 Joint estimation and signal processing

Ideal joint estimation of two quantities would incorporaigth variables into the same
signal equation and account for appropriate noise. Moshaut currently use a separate
scan to findB;, which can introduce motion artifacts and subtle diffeenbetween the
two acquisitions that would influence the variables diffelg Another possible problem
with current methods is the order of estimation and the tegperror propagation. If the
two variables depend on one another, an iterative appraaapdate each variable based
on the other would provide the most accurate estimation tf.bo

Signal processing and estimation techniques used in dunetinods also lead to more
errors. Most methods use ratios or subtraction. Ratiosrdrerently problematic, as the
noise terms are usually left out of the signal equation. Wherstgnal is small, the noise
terms dominate and the ratio is unstable. Subtraction cam ¢ problematic; noise is
added to the signal and when the subtraction occurs, thalsigay not be completely
subtracted out, leaving a harder to analyze source of noise.

Another problem with current methods is using the signabgigus to actually find3;"
and7;. There are no closed form solutions for either variable gisire SSI signal model
without making many simplifying assumptions and approstiorss, e.g., [53]. Many ap-

proximations, for example, by linearizing the exponentak only valid in a small range
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and are inefficient because of the low signal SNR in that rafigpee main techniques use
regression, least-squares, curve fitting, or error-pragiag. The conventional technique
involves transforming the data (6.6) and then performinghedr least-squares (LLS) fit
on the transformed data. Because LLS minimizes residudigdes the transformed data
and the transformed predicted data based on the estimatiadblea the fitting no longer
matches the cost function and is suboptimal, resulting iraadda estimator with low ac-
curacy. Using weighted least squares with careful choicthefweights transforms the
residuals to match those of the original non-transformest fimction [14]. LLS gives an
estimate off’; and conventional methods still must estim@tan an additional step.
Ideally, the estimation techniques used would properlyantfor noise in the signal
model and therefore, avoid problematic ratios and subtmast Also, the technique would

use the most accurate, unbiased methods available.

6.4 Model Selection: A CRB approach

Many! methods have been developed recently that jointly estitbate B and T}
(see Section 6.2.4). Making an informed choice between tide wariety of pulse se-
quences where relaxation effects aigi inhomogeneity feature prominently remains an
open problem. Analysis of the accuracy and precision ptessitB;” andT; estimates and
the inherent trade offs can aid this selection.

In this section, we first construct a general model for jd@iit, 7, mapping. We then use
the Crangr Rao Bound to analyze the lowest possible variance foasell joint estimation
of B; andT; using several specific pulse sequences. We investigateati@ee of both
estimates over a range &f and7} values. We also use this analysis to help optimize
timing and flip angle parameters for each pulse sequences. artalysis extends the large
body of research on optimization of parameters and prati®oT7; estimation €.g., [25,

26, 38)) to include jointB;” andT; estimation. Joint estimation methods usually require a

1This section is partially based on [40].
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higher resolution of one quantity3(” or 73), often utilizing a map of the second quantity
for greater accuracy in the initial mapping. For examplég]iconcentrates oh; mapping
while utilizing a B map, while [11] concentrates ai;” mapping but also estimates a
lower-accuracyl; map. The trade offs and analysis from this section allowspaomon of

pulse sequences depending on the particular requiredamctor bothB;" andT;.

6.4.1 General Joint Estimation Model for Model Selection

Most B;" or T} mapping pulse sequences can be formulated using the folipgéneral

model. Let the measured value of a single voxel forithescan be given by:

Tr.
(68) Y; — moF (ﬂ, Oézb> + €;,
T

wherem,, is the nominal voxel magnetization dependentZ@n(the echo time) ands. T;
is the longitudinal relaxation constaritjs the RF field strength at this voxely; is the
repetition time for a specific pulse sequence, ands the relative amplitude of the RF
pulse, where the produatb specifies the flip angle in a given voxel. The unitless funrctio
F describes the MRI scan signal value variation independefizcand 7> based on the
individual pulse sequence and scan parameters and is defirtgekction 6.4.1 for three
specific models. The full datd = (y1,--- ,yn) consists ofN scans where eithéfg; or
«; is varied. For example, for the double andgt¢ mapping methody = 2 anda, = 2«
andTr; = Tre. € is modeled as white, Gaussian noise. While magnitude imagés s
from Rician noise, we model complex scans with complex Ganswise. We assume that
O, = 0gVi.

The Cranér Rao Bound (CRB) expresses the lowest achievable variaoasite for
an unbiased estimator for a given model. Although pracestimators are often biased
(e.g., through smoothing or filtering the data or using approxiora to the model), the

bound quantifies the estimator variance and captures th@ingleffects between the two
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unknown parameters. For simplicity, le& 7. Becaus® = (b, t), the multiple parameter

CRB must be used. In that case, the matrix CRB is

(6.9) Cove{é} > J7(0),

where the Fisher information matrix is

(6.10) J(8) = E[[Volnp(Y;6)|[Volnp(Y:6)]"]

The Fisher informationy is a2 x 2 matrix with entries:
1 o \?°
Ju = ; Z (%yz)
1 0 0 _
Jig = Ju = ; Z (%yz) (ayz)

1 d \’
(6.11) Jyp = o2 i (a?/z) )
wherey; is the expected value af. We definep;, £ «;b (tip angle) andy, £ Tfi. The

derivatives of the general model (6.8) then are:

9 _ _ Tri 01
Eyz — MO t2 F ((,bl’ fyl)
(6.12) %ﬂz‘ = My-a;- F*(¢5,7),

whereF'? and F°! denote partial derivatives with respect to the first and sd@guments

of F' respectively. Then,

oy = /CRB(b) = /[J7(0)],,

(6.13) 0. 2 JORB() = +/[J-1(0)],,.

100



We also consider, for comparison purposes, the CRB for eStigy&;" with knownT,
given by(1/Jy;), and the CRB for estimating; with known B;", given by(1/Js,), later
in the analysis.

In this paper, we calculate the CRB for several specific mooets a wide range of

input parameters and optimize the scan parameters.

6.4.2 Specific Joint Estimation Models for Model Selection

For joint estimation model selection, we consider threarpaise sequences, with their
corresponding models fdr in (6.8). First, the SSI model [16] where

(1= c)sin(o)

6.14 FP =
(6.14) ' 1 — e cos(¢p;)

see (6.5) in Section 6.2.2 where the SSI method was intradudénis pulse sequence
is used commonly fofl7 mapping by varyingy; although7y; can also be varied; this
sequence also has been used successfully forisplmapping [28].

Second, we consider the Brunner-Pruessmann method (BB)imug&l] using a non-
selective, spoiled prepulse with a varying flip angle) followed by a slice excitation with
a flip anglegb. As in [11], we setA = .05 ms andgb = 20° to reduce the number of
parameters to optimize. We defing= %. We also ignore anys, inhomogeneity and use
the following model:

cos(¢g) e™(1 — e M) 41 — e

(6.15) FBP = cos(¢) sin(3b) 1 — cos(¢;) cos(/3b) e~

7

Third, we consider pulse sequence used in the Actual FlipeA(gFI) method [136].
When this pulse sequence is useddpi mapping, usually approximations and ratios are
used to remove; dependence in the find,” estimator. However, the signal depends
on both B and T} and is a candidate for joint estimation. This model diffexanf the

previous two in that two repetition time%x,; andT,, are used simultaneously in steady
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state and thus appear in both equatiéii$’ and F;'F7 as shown below:

1 —e 4 (1 —e"M)e " cos(¢;)
1 — e~ cos?(¢;)

l—e M4 (1 —e)e " cos(¢;)
1 — e M=% cos?(¢;) '

Fs'l = sin(¢;)

(6.16) ESFT = sin(gy)

This model is more difficult to generalize 16 > 2, but using an even number of scans is

one possibility.

6.4.3 Model Selection Method and Results

To compare the models using the CRB, we derived the CRB usinticitngifferenti-
ation in MATLAB. Explicit differentiation can speed ressilbut can become complicated
for more complex expressions such as (6.78). and F''Y for the SSI and AFI models are
included in Section G. The complexity of the derivatives slaet immediately show any
clear advantage to either model.

To enable fair comparison of models using different imagimge, consider that
a scan repeatedv times gives a standard deviatian/v/N. Therefore, we report
Gy = oy /Y, Tri ™ (compare [26]), defined as the TR Compensated Deviation
(TRCD). To make optimization feasible over a very large pa#nspace, we constrain
the search space by requiring that= iA,, for the SSI (6.14) and BP (6.15) models. For
the AFI model, we keeff’zp; andTr, constant and sety; | = ao; = iA,. Therefore, we
optimize over only 4-5 parameters regardless of the numbsecans:(A,,, Tr;, b, ).

The ideal model will have a low, andag,; and also be relatively insensitive to variation
in B andT). There is a trade off between optimizing both TRCD valuestetuee, we

optimize a scalar valued function

f(Aom TRa b, Tl) = &b(AaaTRa ba Tl) + &t(AaaTRa ba Tl)
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to consider the effect of both TRCDs. (We also trieds a product of, anda; with similar
results). We seek scan parameters (tip angles and repétities) whose TRCDs have low
variation over a wide range df; and B;" values. We perform a min-max optimization;
we minimize over the set of scan parameters the worst-casg tfhaximum) f(-) over the
range of B;” andT; values. This is expressed mathematically as optimizinddhewing

equation:

(6.17) (A TPPY) = arg min max f(A,, Tk, b, t).
(Aa,Tr) (01)

We first find the TRCD over a large parameter space defined by &xamam tip angle
A, - N € [r/4,97/4], Tr € [.1,3],t € [.2,1.2], andb € [.5, 2]; these denote the “search”
range. Typical values df; for various tissues are: 250 ms for fat, 600 ms for white natte
(WM), 900 ms for muscle, 950 ms for gray matter (GM), 1200 mddlood, and 4500 ms
for cerebrospinal fluid (CSF) [51], so this range covers mapeeted physiological values
of T7. This range also allows for a factor of four amplitude diffiece inB; values. We
perform the optimization in (6.17). The optimal values far @hoice of f are shown in
Table 6.1.

To analyze the trade off betweeén ands;, we also find the worst case TRCD values

over the range of3;” andT;. We define

5" (B Tr) = x5BT b, 1),
it

5’?ax(AayTR> = I{ll)a§(5-t<Aa7TR7b7 t>
+

We then plot, for eaclr;"*, the lowest achievable}*** over all A, and7, values in the
range defined above. These plots are shown in Fig./8.4(2) and Fig. 6.5 (V = 8).

Next, using the optimal parametets* andTg;’t (6.17), we calculate the TRCD over
a larger range of3;" (keeping the range df; the same)b € [.25, .4]; this is the “display”

range. Now, we can see how robust the optimized parameterataenB;” and T} are
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outside the original search range. We plot, for edth value in the display range, the
maximumg over theT; search range on one set of grapag.( 7, in plot B ands; in plot
D); and also for eacHi; value in the display range, the maximuinover the B;” search
range on another set of graptey, 4, in plot A anda; in plot C). The graphs are shown

in Fig. 6.1, Fig. 6.2, and Fig. 6.3.

Table 6.1: Optimized scan parameters based on (6.17)

Model | N | A ora | Ap, of Ty | Thge
(radians) (sec) (sec)
SSI | 2| 1.1781 0.68 -
SSI | 4| 1.3744 0.68 -
SSI | 8 | 0.8836 0.68 -
AFI 2 | 1.0996 0.245 0.10
AFI 4 | 1.3352 0.825 0.10
AFI 8 | 1.0603 0.68 0.10
BP 2| 22776 0.825 -
BP 4 | 0.9818 0.535 -
BP 8 | 0.8836 0.825 -

6.4.4 Model Selection Discussion

In this analysis, we consider two main questions: 1) Whatestthde off between,
andg;? and 2) How robust are the optimal parameters found in (8.17)

Fig. 6.4 and Fig. 6.5 show the trade off betwegti* ands;"**. Improved accuracy
in estimatingB;" decreased) accuracy. Therefore, in scan parameter optimization, a
function of both TRCDs is required. The SSI and AFI method Haedowest achievable
worst case TRCD (the BP method is outside Fig. 6.4). CleatystBl method has the best
performance fotV = 2; both the AFI and SSI method perform well fof = 8, with the
AFI method having a slight advantage.

The optimal parameters robustness varies both on the matimbthe number of scans
(see Figures (6.1), (6.2), and (6.3). TRCD, for all methoddpwest wheril; is small

(plots A and C), but is more robust to the value®jf (plots B and D). This is especially
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true forg,. For all methods)N = 4,8 performs much better thalv = 2, especially for
the AFI method. Using four or eight scans, both the SSI and rAEthod are relatively
insensitive to specific values @f,” andT; and are appropriate to use for joint estimation,
though SSI has the lowest TRCD values consistently. The BRoddtas relatively high
TRCD values, even wheN = 8, anda, is especially sensitive to the value Bf , so this
method as implemented will have high variance for unbia8gdestimation.

After analyzing the CRB for joint estimation d#,” and7}, the SSI method has both
the lowest worst case estimator variances and is the leasitise to B;” andT; values.
The AFI method is also relatively insensitive B)” andT; values, but, overall, has higher
estimator variances. The Brunner model, as modeled hesgydw performance, although
this may be improved by further optimizing other scan paranmsen the model. Although
the results are not shown here, we also tried using the SSéhaodl varyingl'z, but had
very poor results. We note that this optimization does r#@d&R constraints which may

be a problem when using a large tip angle and a short repetitite.
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6.4.5 CRB Extension: Joint estimation Versus Estimation WithOnly One Unknown

Variable

We now consider the “cost” of joint estimationg., how much higher the CRB for

estimatingB;" is for joint estimation ofB;", T} compared to estimating;” with known

Ty, given by(1/J,1), as well as how much higher the CRB for estimatifnis for joint

estimation of B /T, compared to estimatin@; with known B;, given by (1/J5). We

make graphs similar to Fig. 6.1 with three plots for each métlone each forv = 2,

N = 4, and N = 8. Each plot shows for joint estimation as a solid line and for

estimating one unknown variable as a dotted line. We usedine ®ptimal values found

previously in computing the graphs. These graphs are showigi 6.6, Fig. 6.7, Fig. 6.8,

Fig. 6.9, Fig. 6.10, Fig. 6.11, Fig. 6.12, Fig. 6.13, and Big4.

maximum for each T1
1
-
o

%

10

maximum for each T1

0-T
1

A

B

\/

=
o

1

o e}

maximum for each B
N

0-B
1
N

0.5

A

15

N
o

o

=

SN

w

IS

1

D
10
8
6
Ib}—H
4

0.5

1

T

15

2 0 1 2 3 4

B,

Figure 6.6: Cost of joint estimation for the SSI modél= 2. Compare Fig. 6.15 for
joint estimation is shown with a solid line aador estimation of one unknown
variable is shown with a dotted line.

As expectedg for joint estimation is higher thaa for estimating just one unknown

variable in every case. The biggest difference is seen ikEenethod forNV = 2.
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6.4.6 CRB Extension: Limitation of the Maximum Allowed TR

What happens to the optimal results when the maximum alldi¥erd limited? How
does this effect the minimum achievégandas,?

Here set the lowefr search bound quite low to .01 and let the uppgrsearch bound
vary from .2 to 1.2. We looked at using two scans. As previgy$.17) was minimized
to give the optimal parameters. In Fig. 6.15, we plotted lagtAnds; as a function of the

upperlg limit.

\ =TTax

B1
~max
| -—--n

~max

2 Il Il Il Il Il J
0 0.5 1 15 2
upper TR limit

Figure 6.15:5, anda; as a function of upp€rf limit.

6.4.7 CRB Extension: Effect ofAB,

The previous analysis neglected the effecBgin the models (6.14), (6.15), and (6.16).
However, in the presence of magnetic field inhomogeneigretis no closed form solution
to the Bloch equation for an arbitrary RF pulse [78]. Therefdo test the effect of3,
inhomogeneity, we focused on the SSI model.

We simulated the model using a Bloch simulator in MATLAB amadbalated numerical
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derivatives from the equilibrium signal values. The CRB frima simulator forAgz, = 0
matched the CRB when calculated with implicit or explicitferentiation as before. We
setB, = 1.5 and letA g, = [0, 125,250, 375,500] Hz. We assumed a hard pulse (no slice
selection effects). For the SSI pulse, the number of pulseded to achieve a relative error

err is given by:

T
Nequ. = —ﬁln(er’r) —35|

where|-] is the ceiling operator. We setr = 0.001 and repeated the pulse the larger of
5 Of n.q,. times. We originally did this analysis fa¥ = 2, but the results are similar for
N > 2.

We used the optimal design parameters found in Table 6.1.n,Tle calculated a
similar graph to Fig. 6.1. Here, in Fig. 6.16, each line cgpands to a different value of
Ap,. Clearly, we can see that the effect Bf inhomogeneity is very small and does not
overly effect the results of the previous analysis at thenagitparameters. Only when the
variances becomes very large is the difference between the diffeneoiats of magnetic

field inhomogeneity even seen.

6.4.8 CRB Extension: Possible Application to Multiple Coils

This analysis focuses only on a single coil, single voxel etodith multiple coils, we
theorize the possible effect on the effective combifgédmap would be a smallgs;” range
over the object. Therefore, we performed a similar analgsiconstrained < [.81.2].

The optimal parameters using the smallgr range are shown in Table 6.2. For the SSI
method, the optimal parameters are similar, but the optpashmeters are quite different
for the BP method.

The graphs similar to Fig. 6.1 are reproduced below in Fitj7 6Fig. 6.18, and Fig. 6.19.

The SSI model performs similarly, with slightly better résiwas does the AFI and we
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can see large improvements with the BP method.
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Table 6.2: Optimized scan parameters based on (6.17) widh € range

Model | N | Ajora | Ap, of Ty | Thge
(radians) (sec) (sec)
SSI | 2 | 1.9006 0.82 -
SSI | 4 | 1.3587 0.61 -
SSI | 8 | 0.8836 0.52 -
AFl | 2 | 0.6441 0.67 0.10
AFl | 4 | 1.0132 0.61 0.10
AFl | 8 | 0.8522 0.64 0.10
BP | 2 | 0.3927 0.825 -
BP | 4| 0.1963 0.535 -
BP | 8 | 0.0982 0.825 -
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Figure 6.19: Application to multiple coils for the BP mod€&lompare Fig. 6.1.
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6.5 Joint By, T} estimation: Theory

6.5.1 Signal model for multiple coils, multiple tip angles¢oil combinations and/or

multiple TRs

Suppose there arE coils. We takeM measurements by transmitting with different
coil combinations and receiving from a common coil. (Thistineel could be generalized
to use multiple receive coils.) For each measurement, omaaoe coil(s) are driven si-
multaneously by the same RF sigha(t) with possibly different known amplitude scaling
factorsa,,,, wherek denotes the coil number, = 1,..., M denotes the measurement
number, andx is aM x K array containing the scaling factaoss,,. For the problem to
be tractable, we require tha > K + 2. The complex coil patterns sum together due
to linearity to make the total transmittefd," field. This general model encompasses the

conventional model if we lek’ = 1, M = 2, and

We model the resulting/ reconstructed images as follows:

K
(618) Yjm = f]F (Z amkzjkaﬂaAJB07TRm> +5jm7
k=1
form =1,...,M andj = 1,..., N, wheref; denotes the underlying object transverse

magnetization in thgth voxel (multiplied by the sensitivity of the receive coéhde;,,
denotes zero-mean complex gaussian noiBR.,, is the repetition time of the pulse se-
guence AP is the offset in theB, field; we assume this is known (see [44], for example).
T is theT; map over the object.

The B;” map, constrained to be real in the conventional model, isadlgta complex

quantity. z;, denotes the unknown compldk” map that relates RF amplitude to tip angle
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and phase at thgh voxel for thekth coil. When multiple coils are driven by the same signal
b1 (t) (with possibly different amplitudes), then the fields framos$e coils will superimpose
and the complex coil patterns will add by linearity, hence sum overk in (6.18). If
the units of the amplitudes,,,;, are gauss, then the units of, will be radians per gauss.
More typically, the units oty,,;, are arbitrary, and all that is known is their relative values
In this casez;;, will have units such that the product of,,;, andz;; has units of radians.
This should suffice for RF pulse design. We would like to usteascoil combinations as
possible, while still being able to estimate each coil patte, accurately.

The functionF’ in (6.18) is a generalization of the SSI method that inhdéyentorpo-
rates slice selection effects. The functibns explained further in Section 6.5.3. We will
not show explicitly /s dependence on? andTR because these are known constants
with respect to this model.

The model (6.18) expands the one used in [41,42] (whé&ewas infinity) and includes
both slice selection effects and linear transceive coil lmimations. By jointly estimating
T, and B, the SSI signal model allows for shortéR values to be used

RecentB; mapping methods [10, 90] have introduced linear combinatf transmit
coils. These methods have the advantage of using much sraléngles while still col-
lecting enough signal to produce accurate results. Thegsepmethod accommodates this
matrix transmit technique with a comprehensive measurémedel that also can include
slice selection effects and accounts for the noise fact@tsdre often ignored by existing
methods.

The goal is to estimate eacB;” map z, = (z1,...,2n) and theT; mapT =

(Ty,...,Ty) from the reconstructed imagdsg;,,}. The underlying magnetizatiofi =
(f1,-.., fn) is also unknown but is a nuisance parameter. We would likegiienator to
work robustly even in image regions whefgis small.

If f; were allowed to be complex, then the model above would beidemntifiable

because we could add phaseftand subtract the same phase from eaghand E[y;/]
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would remain unchanged. We take the approach of constmpifito be real. This reduces
the ambiguity to a sign change gfand a corresponding phase shift in each phase map.
This does have the disadvantage of assigning any objece fffiam d B, for example) into
the phase of thé3;” maps, which may influence the smoothness offifjenaps. Another
solution that also makes the problem identifiable assuneglil first coil's phase map is
zero and then all the other phase map values would be refatases, in which casécan
be complex.

We also note a single surface coil for receive will sufficeerewhen multiple transmit
coils are used. In this cas¢, will be a product of the spin density and the receive coill

sensitivity pattern ang will include a constant (ovek) phase offset from the receive coil.

6.5.2 Regularized estimator

We propose to jointly estimate th¢,” mapsz = (z4,..., zx), theT; mapT, and the

object f by finding minimizers of the following penalized least sgggcost function:

(2,T,f) = argminV(z, T, f),
zT.f

(619) \I/(sza f>TR) - L(Z,T, f) + BzR<z> + ﬁTR(T> + ﬁfR(f)v

where

N K
(6.20) L(zT.f)=>)_ % Yim — i F (Z amkz]k,T>
j=1 m=1 k=1
and
K
(6.21) R(z) = R(z),

whereR(z;,) is regularizing roughness penalty function for thth B;” map. Eachj3 is a

regularization parameter that controls the smoothneskeoEstimate. Because one may
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desire different amounts of smoothing for each map, we labeh parameters,, 5r, 3;.
However, each parameter is user-chosen based on the dasi@eht of smoothing (ex-
plained in Appendix L) and is not a function of any variablegpaBal resolution analysis
aids in selection of each.

We use quadratic regularization for the mapsbecauseB;” maps are expected be
spatially smooth, although edge-preserving regulawratould be used if needed. We
note that although there seems to be plausible reasons whytiautar B;" map might
not be smooth, in the literaturd3;” maps are always very smooth. This is true, even in
cases such as cancer where there is a large deviation fromoth@al brain, presumably
because the main cause of RF inhomogeneity, even in abnsumjaicts, is due to air/water
susceptibility as the RF waves propagate [13]. We use edggeving regularization for
both 7} (and, if desired,f), because they contain detailed structural informatidong
with a relatively smalls to preserve detail.

There is no analytical solution for the minimizerefz, T', f) over all parameters, so
iterative methods are required.

Minimization with respect tz andT is nontrivial due to the non-linearity of. Pos-
sible minimization approaches include quadratic majoréciples (see Section 3.6.1),
or variable projection (see Section 5.2.3), or general@gttnization methods. We choose
to use the gradient descent method specified below. Desbgafor the gradient descent
method are described in detail in Appendix | and Appendix J.

We use a preconditioned gradient descent method. There ang possibilities for
updating all the variables. We can use either a simultanapdate for all variables or a
block alternating minimization approach. With a simultang update for all variables, let

v:[z T f},andthen

(6.22) D = o™ 4o, d™,
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whered is the search direction given by the gradient of the costtfanowith respect to
each variable, letting the preconditioning matrix equalitkentity matrix in this paper (see
Section | for the derivatives).

Ideally, by an exact line seareh), = argmin, ¥ (v™ + o d™ ). In practice, we

choosex using Newton’s method as follows [30]:

and finally, we let

_¥(0)
U(0)
|~V @ (v d)|

6.23 = :
( ) |% (VU (0™ + ed™)dm™) — VT (v™) d(”))‘

This still requires care in choosirg Here, we let

_ max |v|

~ max|d| *0L,
where .01 was chosen empirically. Then, to force monotonicity, fadlog [71], we set
a=a/2until ¥ (v + a,d™) < U (™).
We note that for a given estimatg™ of z andT'™ of T at thenth iteration, the
minimizer of ¥ with respect tof, assuming no regularization ¢f, is found analytically to
be:

5 (n) er\le real{y;mp( 572’7-1(71))}
(6.24) 70— |

S|P, 7o

Jm’
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where we define the composif&" mapsx,, as follows:

K
(6.25) Ljm e ZOémejk.
k=1

In this thesis, we choose to use an alternating minimizajgoroach in each step, al-
ternating which variable we minimize in as in (6.22) while holding the other variables
constant. We use this method because we do not regularizebfaet and also because
the step size in PGD minimization scales appropriately famhevariable. Simultaneous
gradient descent appeared to converge slower; howevemiizpate that with a suitable
diagonal preconditioner, this method would also be act#ptdn Section 6.6.1 and Sec-
tion 6.6.2, we used a set number of iterations that gave gaatitative results; ideally, we
would use stopping rules based on, for example, percengehiarthe iterative estimates.

We note thatl} has a constraint thaf' > 0. We modify the alternating PGD mini-
mization to perform constrained minimization by perforgia variable transformation as
explained in Appendix M.

The cost functionl is non-convex, so the alternating minimization algorithesctibed
above will descend from the initial estimates to a local mimm [63]. Thus it is essential
to choose reasonable initial estimates. See Appendix Kdtaild.

Regularized methods have the benefit of being able to chowakia for 5 based on
guantitative analysis. In Appendix L, we analyze the spagisolution of the regularized
estimator (6.19). This analysis leads to a modified penaibtgction that achieves more
uniform spatial resolution in regions with a constgit We choose a value for each

based on the desired FWHM of regularizer smoothing.

6.5.3 [ and Slice Selection Effects

In (6.18), F' is a function that can incorporate both the type of pulse sege being

used as well as slice selection effects by using a Bloch equsimulator.
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After considering an appropriate coordinate rotation, &e express the functiof by

the following equation:

(6.26) F(z,t) =e“* H(|2|,1).

Tabulating F' would require storing a look-up table with a complex inpubile H has a
real input and we can store a lower dimensional taldfecan be complex, depending on
the input RF pulse We conjecture that most symmetric RF pulsk have a real; this
model is general enough to include other pulses, includomgsymmetric ones. Boti
and [’ are potentially complex. Therefore, we tabulZfeand use (6.26) in our estimation
algorithm. During our Bloch simulation, we can also vdiyalues and3, offset values to
create a more accurate table that incorporates a larger eunhleffects, albeit with longer
computation time.

Assuming no slice selection effecisg(, the (unachievable) infinite sinc pulse is used,

or 3D imaging) and nd3, offset, we use the SSI model fétin this paper [16] where

(6.27) H™(p,1) = (i — z_: liﬁgjb))

wherey = TR /t.
In the case of slice selection effects By offsets (A\?°), we tabulate/ by evaluating

the Bloch equation using a RF pulse and varying its amplitude we use

0

6.28 by(v) = — 0
(6.28) (v) RYRRYS

p(v),

whereT is the pulse length ang(v) is the RF pulse shape and we vary the amplitdde
T:, and theB, offset to create the three-dimensional table. In the cag®bpfselective
excitation, or in the small-tip angle regime with exactly msonance excitatior, would

be the excitation tip angle times tii&" map. The table{ is calculated once for each RF

124



pulse: for convenience, we normalizeto a maximum value of 1.

In future work, we hope to investigate other common pulseb s1$ those ((B.3),(B.4))
in Appendix B.

We note that one could use a different excitation pulse foheaeasurement, in which
caseF would beF,,. For simplicity, we assume the same RF pulse is used for e@elh m
surement and suppress the subsatipt\We let the subscripR denote the real part and
denote the imaginary part of the quantity. For examplefjgtienote the real part df and

let F1 denote the imaginary part @ so
F = FRr+iFy.

Fig. 6.20, Fig. 6.21, and Fig. 6.22 each show a grapH g, T') keeping eithefl” or
0 constant for the idealized pulse. The (null) imaginary jartot shown for the example
symmetric pulses. Fig. 6.23 shows the derivativéd{gf(d, T") with respect td. Fig. 6.24
and Fig. 6.25 show the derivative &fz (0, T') with respect tdr".

6.6 Joint B, 71 Experiments

6.6.1 Simulations

To evaluate the regularizeB;” and 7; map estimation method described above, we
performed a simulation study using synthetic true maps shawrig. 6.26. For the object
magnitudef; and7}, we used a simulated normal brain anatomical model with gagél
classified into one of 11 different classes [4, 5] Hertruth, we generate an image using
the classified model and typicé] values for each class type. Ffrtruth, we generated a
proton density image weighted Wy, again using the typical PD arld’ values for each
class. To use smaller images for truth, we resized thesedasaging bicubic interpolation
and anti-aliasing. Thé&;” maps were simulated based on equations for a magnetic field in

a circular current loop [49, 129].
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Fr versus tips (radians) for T1=.01 Fr versus tips (radians) for T1=.96
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Figure 6.20: Graph offy (¢, T') for an idealized infinite sinc pulse holdifl§ constant. We
let 77 equal[0.01 0.96 1.96 2.96] and varyd along the horizontal axis.
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F2r versus T1 for tips = 15 deg F2r versus T1 for tips = 30 deg
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Figure 6.21: Graph ofig (¢, T') for an idealized infinite sinc pulse holdifigconstant. We
letd equal[15 30 45 90| and varyT along the horizontal axis.
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F2r versus T1 for tips = 150 deg

F2r versus T1 for tips = 200 deg
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Figure 6.22: Graph ofiy (¢, T') for an idealized infinite sinc pulse holdirig constant.
We letd equal[150 200 250 300] and varyT along the horizontal axis.
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F2r dbl versus tips for T1 = .01 F2r dbl versus tips for T1 = .96
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Figure 6.23: Graph of the first derivative éfr (0, T") with respect tod for an idealized
infinite sinc pulse. We hold; constant{0.01 0.96 1.96 2.96] and vary§
along the horizontal axis.
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F2r dt1 versus T1 for tips = 15 deg F2r dt1 versus T1 for tips = 30 deg
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Figure 6.24: Graph of the first derivative éfr (0, T') with respect tdl’ for an idealized
infinite sinc pulse. We hold constant[15 30 45 90| and varyT along
the horizontal axis.
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Figure 6.25: Graph of the first derivative éfr (6, T') with respect tdI’ for an idealized
infinite sinc pulse. We hold constant[150 200 250 300] and varyT

along the horizontal axis.
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Figure 6.26: True simulated maps.
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We simulated noisy reconstructed images for= 4 different transmit coils using the
model (6.18). We assumed an ideal sinc RF pulse. For oungcatatrixa, we used both

“one-coil-at-a-time” (OAAT) (.e., for M = 3K

I
(6.29) aoaar = | 21 |
3- Ik

wherel, is aK x K identity matrix) and “leave-one-coil-out” (LOO).€, for M = 3K

OélK —CYIK
(6.30) aroo = | 2a-1 —2-Ix |
a1 —3-Ix

wherel g is aK x K matrix of ones). There are many possible choicesfdut we focus
on these two possible matrices to illustrate the methodh Bwtrices are well-conditioned
(k (aoaar) = 1 andx (aroo) = 3). In [91], these two different coil combinations are
analyzed with respect to the AFI model, but the results appbll types of B~ mapping.
They found that the LOO method has significantly better maglityjuthan the OAAT,
which has strong noise. LOO balances the trade off betwewse nespecially at low flip
angles, and the complementarity of multiple coil maps amdreduce mapping error by an
order of magnitude.

We added complex gaussian noise such that the SNRg,,(||y||/|ly — E[y]||), was
either about 60 or 30 dB. Some of these images are shown i F2@.

We used either 12 or 16 measurements. For 12 measurementspested each coil
combination three times at, 2«, and3« (see (6.29) and (6.30)), allowing us to use the
triple angle initialization explained in Appendix K. We alsompared the method with
16 total measurements, which also included We fixedTR = 0.68 s anda = 1.3744

based on the analysis in Section 6.4 for the SSI model Witk 4. We used 50 iterations
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Figure 6.27: Simulated noisy images. For the 1st, 5th, 8td, 2th measurements (cor-
responding to the respective rows in (6.30)). We used 4 emitsleave-one-
coil-out with an SNR of 60 dB.
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(alternating which variable to minimize) with 15 internaGP iterations to show the full
extent of the estimator, although for cases of high SNRishexcessive. Masked NRMSE
(reported in Table 6.3) for the join,", T estimation is compared to estimating ority
using the regularization estimation explained in Chaptere#rring to this estimator as
the “previous” estimate. That method ignofBseffects, as ifi’y = co. We note that the
initial 7 estimate here is the convention&l estimate for the SSI method described in
Section 6.2.2.

First, we compared at a high SNR of 60 dB the OAAT method (showfig. 6.28,
Fig. 6.29, Fig. 6.30, and Fig. 6.31) and LOO method (shownigqm 6.32. Fig. 6.33,
Fig. 6.34, and Fig. 6.35.) We note, in regards to the SNR, sanrent7; mapping papers
report SNRs ranging from 100 - 200 dB in the brain [14] andtdtasee significant bias
at about 60 dB [16], though these methods use a much loweff TR 10 ms). We used
only 12 measurements because both methods perform wéll tgtmost notable error in
theT7 map in OAAT in Fig. 6.30. We still see some small drop-out iaTh map for LOO
Fig. 6.34, though th&} map is definitely improved.

We also compared these methods when used at a lower SNR of. 30ed& the OAAT
method struggled with only 12 measurements (figures not sha® we used 16 measure-
ments. Even at 16 measurements, the noise necessitatgdtiisiprevious method with
a small number of iterations as the initial guess. The fifdsee Fig. 6.39) and’ (see
Fig. 6.38) strongly underestimate the interior of the bratich causes some corruption of
the B;” magnitude maps (see Fig. 6.36). Clearly, using LOO improllestimates, shown
in Fig. 6.40, Fig. 6.41, Fig. 6.42, and Fig. 6.43. There i stime overestimation df}
along the skull, but overall the estimates perform well &tldbwer SNR and with only 12
measurements.

The LOO method works reasonably well at smaller SNRs (regatt20 dB shown in
Table 6.3, figures not shown).

Overall, the simulation results shows that the proposedhatetvorks well, especially
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Figure 6.28: Magnitude3;” maps for OAAT at 60 dB with 12 measurements|, 50 it-
erations with 15 internal PGD iterations, 12 measurementsils, “one at a
time”, SNR around 60 dBB;" map regularization parameterds?, T; map
regularization parameter &°. No object regularization.
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Figure 6.29: Phasé3;,” maps for OAAT at 60 dB with 12 measurements. Compare
Fig. 6.28.
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Initial T1 est. Final T1 est.

True T1 Initial error

Figure 6.30: 71 maps for OAAT at 60 dB with 12 measurements. Compare Fig. 6.28.

using the LOO method or when using a larger number of measamtsn Areas closer
to the skull tend to have some bias, especially in OAAT meshdait theB;" maps are
consistently accurate at lower TR values in comparisonégtievious method.

We chose our values far based on our analysis in Section 6.4. However, we wished
to see if that analysis, based on the CRB, translated to odrifim@ementation of our
joint B, T} estimator. These preliminary results took the simulated tnaps (with all
four coils) and generated simulated data (16 measuremattitslaave-one-out”) with an
SNR of approximately 30 dB. The first set of results, sumneaim Table 6.4, keptv
constant and varied TR. Each set of parameters was onlyastihonce, so the results are
not statistically significant; however, the variance inlRMSE is not large for these maps
and we can try to extrapolate from the table’s trends. Siigijlthe second set of results,
summarized in Table 6.5, kept TR constant and vatigty keeping the “leave-one-out”
and fixing thea,,; = 2a,; andag,; = 3aq,; andau,; = 4oy, for j =1,2,3,4).

We see from Table 6.4, that using TR values around the “opitiifa of .68 ms gave

the lowest error for the3;" maps, though a wide range of TR values gave very gbpd
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Figure 6.31: f estimates for OAAT at 60 dB with 12 measurements. Compareg=2§.
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Figure 6.32: Magnitudd3;” maps for LOO at 60 dB with 12 measurements|, 50 iter-
ations with 15 internal PGD iterations, 12 measurementsil4,c'leave one
out”, SNR around 60 dBB;" map regularization parameter s, T, map
regularization parameter &°. No object regularization.
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Figure 6.33: PhasB;” maps for LOO at 60 dB with 12 measurements. Compare Fig. 6.32.
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A4

Table 6.3: Masked NRMSE for simulated images for diffel@phumbers of measurements, and SNR

mag B, /Bf T f
Coil config| SNR| M | prev| init | final | prev| init | final | init | final | prev| init | final
OAAT 60 | 12|0.28| 0.12| 0.02 | 0.17| 0.20| 0.16| 0.36| 0.11| 0.41| 0.13]| 0.03
LOO 60 | 12| 0.39| 0.37| 0.015| 0.18| 0.18| 0.14| 0.13| 0.10| 0.37| 0.02| 0.02
OAAT 30 [12|0.29|0.74| 0.72 | 0.18] 0.54| 0.22| 0.59| 0.66| 0.43| 0.30| 0.25
OAAT 30 |16|0.23|0.51| 0.20 | 0.18] 0.27| 0.23|0.91| 0.44| 0.45| 0.43]| 0.19
LOO 30 |12/ 0.39| 0.13| 0.06 | 0.22] 0.49| 0.15| 0.29| 0.19| 0.37| 0.09]| 0.07
LOO 20 [ 12/0.39/0.18| 0.11 | 0.29|0.39|0.19/0.44| 0.35| 0.36| 0.15| 0.14
LOO 20 |16/ 0.31|0.22| 0.08 | 0.28| 0.78| 0.22| 0.48| 0.32| 0.45| 0.16| 0.12




Initial T1 est. Final T1 est.

True T1 Initial error

Figure 6.34: T} maps for LOO at 60 dB with 12 measurements. Compare Fig. 6.32.

map estimates. Estimates ©f were more variable and would require more data to be
conclusive, though a slightly longer TR seems to give begtgults. This greater variability
(and greater difficulty in measurirify ) is suggested by our previous analysis, especially in
Fig. 6.1 where highef; values are more difficult to estimate. We can clearly seeithis
Fig. 6.34 where the higli; values at the center of the brain are underestimated. Thre hig
error at very low TR is predicted by Fig. 6.15. From Table &/&,see that using values
around the “optimal’c of 1.3744 give the lowest errors for estimating all mapsy\farge

or very smallo values cause a much greater error. Assumirigjarange around 1, small

« values do not cover a wide enough range of tips to succegsfstimateB;” and7;. The
initialization was important for this study and using theyious estimate oB;" only for

the initialization strongly improved results when a veryadhor very large values of was

chosen.
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Figure 6.35: f estimates for LOO at 60 dB with 12 measurements. Compare 9. 6
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Figure 6.36: Magnitude3;” maps for OAAT at 30 dB with 16 measurements|, 50 it-
erations with 15 internal PGD iterations, 16 measurementsijls, “one at a
time”, SNR around 30 dBB; map regularization parameterds?, T; map
regularization parameter &5°. No object regularization.
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Figure 6.37: Phasé3;” maps for OAAT at 30 dB with 16 measurements. Compare
Fig. 6.36.
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Figure 6.38: 771 maps for OAAT at 30 dB with 16 measurements. Compare Fig. 6.36.

Table 6.4: Changes in NRMS with a change of TR, 1 estimate, |4,d® measurements,
30 iterations with 10 PGD iterations, SNR = 30 dB= 1.38 - [1234]

| TR value| [b] joint | [b| previous| Zb joint | Zb previous| T joint | f joint | f previous]

0.001
0.010
0.016
0.031
0.046
0.061
0.076
0.100
0.160
0.3
0.5
0.7
0.9
11
1.3
15
1.7

0.38
0.14
0.04
0.03
0.02
0.03
0.03
0.03
0.04
0.04
0.06
0.02
0.04
0.06
0.03
0.03
0.04

1.30
1.24
1.20
1.12
1.05
0.99
0.93
0.77
0.68
0.52
0.41
0.32
0.26
0.22
0.18
0.16
0.14

0.57
0.37
0.17
0.15
0.17
0.15
0.17
0.16
0.16
0.16
0.16
0.17
0.18
0.16
0.17
0.14
0.19

0.42
0.42
0.42
0.42
0.42
0.42
0.38
0.31
0.19
0.17
0.23
0.22
0.25
0.21
0.24
0.24
0.24

0.91 0.88 1.07
0.78 0.65 1.16
0.70 0.59 1.25
0.57 0.38 1.42
0.48 0.28 1.53
0.45 0.25 1.58
0.40 0.21 1.59
0.35 0.18 1.53
0.29 0.14 1.23
0.19 0.09 0.73
0.25 0.14 0.43
0.12 0.05 0.38
0.16 0.07 0.36
0.24 0.10 0.35
0.14 0.05 0.34
0.19 0.06 0.34
0.29 0.08 0.33
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Figure 6.39: f estimates for OAAT at 30 dB with 16 measurements. Compareg=3§.
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Figure 6.40: Magnitudd3;” maps for LOO at 30 dB with 12 measurements|, 50 iter-
ations with 15 internal PGD iterations, 12 measurementsil4,c'leave one
out”, SNR around 30 dBB;" map regularization parameter s3, T, map
regularization parameter &5°. No object regularization.
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Figure 6.41: PhasB;” maps for LOO at 30 dB with 12 measurements. Compare Fig. 6.40.
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Figure 6.42: T} maps for LOO at 30 dB with 12 measurements. Compare Fig. 6.40.

Table 6.5: Changes in NRMS with a changengfonly 1 total scan each, 4 coils, 16 mea-
surements, 15 iterations with 5 PGD iterations, SNR = 30 dB=T.68s

| o [ |b]joint | [b] previous| Zb joint | Zb previous| T joint | f joint | f previous|

0.2 2.31 2.39 0.41 0.61 0.88 0.67 0.56
0.3778| 1.04 1.12 0.35 0.53 0.89 0.49 0.48
0.5556| 0.70 0.79 0.39 0.45 0.87 0.42 0.42
0.7333| 0.52 0.65 0.35 0.37 0.87 0.38 0.39
0.9111| 0.44 0.56 0.35 0.33 0.88 0.36 0.38
1 0.21 0.53 0.27 0.31 0.47 0.22 0.38
1.0889| 0.16 0.48 0.28 0.29 0.46 0.21 0.39
1.2667| 0.06 0.42 0.24 0.25 0.22 0.07 0.39
1.4444| 0.02 0.36 0.18 0.23 0.13 0.03 0.42
1.6222| 0.05 0.31 0.21 0.21 0.22 0.07 0.47
1.8 0.09 0.27 0.33 0.19 0.34 0.12 0.52
2 0.08 0.23 0.33 0.21 0.39 0.21 0.48

3 0.49 0.11 0.86 0.21 0.77 0.54 0.48

4 2.16 0.14 1.11 0.24 1.02 1.07 0.43
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True Object
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-0.1

Figure 6.43: f estimates for LOO at 30 dB with 12 measurements. Compare H@. 6



6.6.2 Phantom Real MR Images

Phantom real MR data was taken using a four coil setup. Thatpirahas a stated
trueT = 1s which we measured with an inversion recovery curv&'te: 1.095s. For this
setup, varying TR was more reliable than varying the flip angiherefore, first one coil

was turned on and complex image measurements recordechevieelt of view for a wide

20 40 60 80 100 120 160 200 300 500
range of TR value ms. Next,

1000 2000
the other three coils were turned on separately and compéasarements recorded with

TR= 2000 ms. Samples of this data are shown in Fig. 6.44.

Coil1, TR=2ms Coil2, TR=2ms
64 64
1 64

Coll3, TR=2ms Coll4, TR=2ms

8 1
15
6
64
1 64

Figure 6.44: |y| transmitting individually for each of the four coils with TR2000 ms.

64
1 64

The initial procedure described in Appendix K. These ihidstimates are shown in
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Fig. 6.45.

Init Masked Magnitude B1 maps Init T1 Map

1 1 1
1 .
64 Uniform: 1.08204 |4 0.5
0 64 0
1 64 1 64
Init Masked Phase B1 maps Init Object
1 —
40
64 20

1 64

Figure 6.45: Initial phantom estimates.

Using these initial estimates and all the data, we ran theqeed jointB;", T} estimator
with 30 iterations with 15 iterations of the preconditiong@dient descent method algo-
rithm using alternating minimization. We regularized thg¢ map with3 = 273 and also
regularized thel, map with edge preserving regularization ahd= 27¢. We performed
no object regularization. The final regularized images am in Fig. 6.46. We also ran
the algorithm using no regularization to compare model finviinal unregularized images
shown in Fig. 6.47.

Using these initial values, we measured model fit. We contptire measured magni-
tude data and compared that to the expected magnitude \sihgethese initial values and
also using a final estimate using our proposed algorithm matihegularization. For a few
select pixels, graphs of the actual and estimated data tbetimitial B1 estimate and also
the final regularized estimate) are shown in the graphs béfonv Fig. 6.48 to Fig. 6.51.
We repeated this graphs assuming that Bgtand f are roughly constant and showing our

calculated initialB;" along the x-axis. These are shown in Fig. 6.52 to Fig. 6.56raly
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Init Masked Magnitude B1 maps Init T1 Map

1 1 1
64 Uniform: 1.08204 |4 0.5
64 0
1 64 1 64
Init Masked Phase B1 maps Init Object

1

1 64 1 64

Figure 6.46: Final phantom regularized estimates.

Masked Magnitude B1 maps T1 Map
1 1
64 !
0 64
1 64
Masked Phase B1 maps
1 : ; 1

Figure 6.47: Final phantom unregularized estimate.
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the fit is very good and shows improvement over the initiaheste, especially at very low

B map values.
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Model fit with b1 = 5 deg, new method, nmrs = 2%
3.4

3.2

SSI magnitude data values

2.2* |

—©— Measured magnitude data
+ -+ Expected (regularized final)
— » — Expected (init)
2 T T T 1
0 0.5 1 1.5 2
TR

Figure 6.48: Phantom model fit,= 5 degrees, wheré = ab

We also ran a second phantom study. Our first phantom stugyuseld one coil at
a time and is comparable to the “one-at-a-time” simulatitudi®s. The second phantom
study used several coils at a time and is more comparable titethve-one-out” simulation
studies. Thus, we would expect better performance fromehbersd phantom study.

In the second phantom study, all four coils were first turneadaad data was taken
atTR = [50 100 500 2000| ms. Then, three of the four coils were turned on and
data was collected at the same TR values. This was repeateddb of the 4 three-coil
combinations. The same general procedure was performee abth slight modifications.
Again, the initial B” map was estimated by minimizing the cost, but here, we estina

the (complex) composite coil map. First, we used the eséthabmposite coils map as
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SSI magnitude data values

Model fit with b1 = 25 deg, nhew method, nmrs = 2%

—©— Measured magnitude data
+ -+ Expected (regularized final)
— » — Expected (init)

T T T
0.5 1 15 2
TR

Figure 6.49: Phantom model fit,= 25 degrees, where = ab
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SSI magnitude data values
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Model fit with b1 = 50 deg, nhew method, nmrs = 3%

—©— Measured magnitude data
+ -+ Expected (regularized final)
— » — Expected (init)

T T T 1
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Figure 6.50: Phantom model fit,= 50 degrees, where = ab
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Model fit with b1 = 75 deg, new method, nmrs = 100%

25+

20
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©
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3 10
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—©— Measured magnitude data
7 + -+ Expected (regularized final)
¥ — » — Expected (init)
0 HHHHHH—++—+ + + w 1
0 0.5 1 15 2
TR

Figure 6.51: Phantom model fit,= 75 degrees, where = ab
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SSI data values

Model fit with TR = 0.02, new method, nrms = 13%

—©— Measured data

+ - Expected (regularized final)

— % — Expected (init)

1
T

Bl

Figure 6.52: Phantom model fit with respect to b1, TR =20 ms
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SSI data values

N
|

15+

0.5

Model fit with TR = 0.06, new method, nrms = 10%

—©— Measured data
+ - Expected (regularized final)
— % — Expected (init)

1
T

Bl

T

1

Figure 6.53: Phantom model fit with respect to b1, TR = 60 ms
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SSI data values

Model fit with TR = 0.10, new method, nrms = 8%

—6&— Measured data
+ - Expected (regularized final)
— * — Expected (init)

-
T

T

1
Bl

Figure 6.54: Phantom model fit with respect to b1, TR = 100 ms
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SSI data values

Model fit with TR = 0.20, new method, nrms = 11%

—©6— Measured data
+ - Expected (regularized final)
— »x — Expected (init)

El
T

Bl

Figure 6.55: Phantom model fit with respect to b1, TR = 200 ms
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SSI data values
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Model fit with TR = 2.00, new method, nrms = 24%

—©6— Measured data
+ - Expected (regularized final)
— »x — Expected (init)

El
T

Bl

T

1

Figure 6.56: Phantom model fit with respect to b1, TR = 2000 ms
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an initial estimate for our regularized estimator. Theseslrown in Fig. 6.58. Next, we

kept thel; and f constant and estimated (via our regularized estimatorinitigidual coil

maps to be our initial estimates for the algorithm. Theseshmvn in Fig. 6.59. Finally,

we ran the regularized algorithm with these initial estiesatThis final step only resulted

in small changes from the previous two-step procedure apdssibly unnecessary. The

final estimate is shown in Fig. 6.60. The magnitude data witbagls turned on is shown

in Fig. 6.57. The initial estimates are shown in Fig. 6.59.

All Coils, TR =50 ms

1

64

All Colls, TR =500 ms
1

64
1 64

12

All Coils, TR =100 ms
1

N W A~ OO0 O N

64

[
(e}
N

All Colls, TR = 2000 ms
1

15

64
64

1

Figure 6.57: Phantom magnitude data with all four coils éaron at four repetition times.

Using these values, we measured model fit. We compared thsumegbmagnitude

data and compared that to the expected magnitude value thgisg initial values and also

using a final estimate using our proposed algorithm. For adelect pixels, graphs of



Masked Magnitude B1 maps T1 Map

1
. Hl
64 0
1 64

Masked Phase B1 maps Object
1 30
20
10
64 0
1 64

Figure 6.58: Phantom: Regularized estimates for all caiised on.

Masked Magnitude B1 maps T1 Map
1 1 3
1
0 64
1 64 1 64
Masked Phase B1 maps Object

1
25.65
25.6
64 25.55
1 64

Figure 6.59: Phantom: estimate for individual coil maps.
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Masked Magnitude B1 maps

1
64- Hl
0
1 64

Masked Phase B1 maps

Figure 6.60: Final regularized estimates using all dataifersecond phantom experiment.
Using 20 iterations with 5 internal PGD iterations. Reguiation parameter
for B map is22 and for theT; and f map is272.
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the actual and estimated data (both the initial B1 estimatkadso the final regularized

estimate) are shown in the graphs below from Fig. 6.61 to&&6. Overall, the fit is very

good and shows improvement over the initial estimate. Fiognrmages, we can still see

some possible residual model mismatch. The regularizatidhe object appears to give

some residual error along the edge of fhemap. However, thé3]" maps (the parameter

of interest) in Fig. 6.60 are smooth and match the data wwlk,tachieving our goal.

SSI magnitude data values

Model fit with b1 = 7 deg, new method, nmrs = 12%

3.5
—©6— Measured magnitude data
+ -+ Expected (regularized final)
— » — Expected (init)
3 —
2.5
2 —
1.5+
1 -
0.5
l‘ |
0 T T T T ™ T T * T T T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Each measurement

Figure 6.61: Phantom model fit,= 7 degrees, wheré = ab

This section shows the feasibility of estimating real MRadatd also varying the repe-

tition time versus the tips angles for the SSI data. In the CRByais Section 6.4, keeping

a constant tip angle while varying TR had a much higher vaeahan the other methods.

Indeed, looking at Fig. 6.21 and Fig. 6.22, we can seefhaaries slowly with7; (and re-
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Model fit with b1 = 15 deg, new method, nmrs = 4%
6.5
A

—©O— Measured magnitude data
Y + - Expected (regularized final)
! ‘ — % — Expected (init)
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|

SSI magnitude data values
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1 1

3.5

2.5 T T T T T T T T T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Each measurement

Figure 6.62: Phantom model fit,= 15 degrees, wheré = ab
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SSI magnitude data values

10

Model fit with b1l = 20 deg, nhew method, nmrs = 4%

—6— Measured magnitude data
X + - Expected (regularized final)
— » — Expected (init)

T T T T T T T T T T T T T T T T T T 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Each measurement

Figure 6.63: Phantom model fit,= 20 degrees, whereé = ab
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Model fit with b1 = 25 deg, nhew method, nmrs = 3%
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Figure 6.64: Phantom model fit,= 25 degrees, where = ab
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Model fit with b1 = 35 deg, nhew method, nmrs = 6%
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Figure 6.65: Phantom model fit,= 35 degrees, where = ab
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Model fit with b1 = 43 deg, new method, nmrs = 4%
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Figure 6.66: Phantom model fit,= 43 degrees, where = ab
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ciprocally, keepindl; constant and varying TR), especially at low flip angles. &aon in
TR does not contain as much information as variation in tgl@fcompare the differences
in the magnitude data in Fig. 6.57 where all measurementgute similar to Fig. 6.27
where each measurement has greater variation dependiig\@aiues). Thus, we expect
that phantom MR studies while varying tip angle will have éverror and better final

estimates.

6.7 Joint B;", T} estimation: Discussion

We have described a new regularized method for jBiftand7; mapping. Incorporat-
ing a7 estimate allows for decreased required repetition timesevgtill estimating the
B{" magnitude and phase for multiple coils, especially for usplilse sequence design.
The B" maps interpolates smoothly in areas with low spin densith @iuser-chosen de-
sired FWHM. This method allows for an arbitrary selection oftbtip angles and repetition
times, although careful selection of these aids the selecii an initial estimate.

This method is strongly based on our previous regularizethatefor B mapping
Chapter V and is an extension that allows for shorter repetit@lues. While not investi-
gated in regards to joint estimation, this new method alkawal for incorporation ofB,
inhomogeneity and correct slice profile.

The simulation results show that the NRMSE of the new jd#it estimates are less
than those of our previous estimator, due to incorporatioh effects.

In future work, we hope to investigate using different sficefiles and their subsequent
effects on the final estimates. We anticipate that additicslice profile effects will show
a greater decrease in NRMSE compared to conventional dstisnd\Ve plan to implement
estimating phase map differences among the coils to ciremtpossible object phase that
may contribute to less smoothness in the tRfemaps. We plan to further investigate the
optimal selection of tip angles and repetition times to mizie scan time while achieving a

low NRMSE. We plan to further investigate the spatial resohy especially for the object,
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and with multiple coils.
The model and estimators in this paper provide smooth, leisy estimates that incor-
poratel’ effects and greater repetition times selection that allmvafpossibly shorter scan

time and concurrerif; estimation.
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CHAPTER VII

Conclusion and Future Work

Due to the high field strength and temporal requirements ideno MR, field maps
of the main fieldB, and of the radio frequency fiel®, are required for pulse design and
image correction. Many current estimators for these fietésheuristic and not based on
a comprehensive statistical model. This thesis proposest thew penalized-likelihood
estimators based on statistical models. The field map estirnges multiple scans and
shows an empirical improvement with an improvement in RM8€&rehe conventional or
penalized-likelihood estimator with only two scans. THBgestimator uses a model that
accounts for a multiple coil design and includes slicet@a effects and allows for any
number of arbitrary tip angles, an improvement over the tmamgle conventional esti-
mator. The estimator additionally estimates both the ntageiand phase. The joift;",

T} estimator accounts for a multiple coil design and allowsafioy number of arbitrary tip
angles and repetition times while estimating the magniardephase for each coil anda
map. Simulation and MRI studies show the reduced noise andh¢ simulation) reduced
RMSE when using each new PL estimator over the conventict@hator. Using PL esti-
mators and a statistical model yields better results thsinysing conventional estimators.
These estimators make smoother, less noisy estimatd$ fand B; and7; maps for use
in pulse design and image correction.

Ultimately, each of these methods is a tool that can only aefjwver the true question of
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mapping: the best use of scan time to create the most aceueggte\While the preliminary
CRB analyses in Section 4.2.10 and in Section 6.4 help gualegshr to fortuitous selec-
tions of imaging parameters (the echo time in field map estomar the repetition times
and tip angles in joint3;", T} mapping), neither finds the ideal use of scan time for esti-
mating certain parameters. Indeed, most estimation intérature balances between short
scan time and accuracy in estimates, often using approxingathat allow for shortened
scan time at the cost of accuracy.

This is a complex problem. I®;” mapping, for example, the long repetition times re-
quired by the regularize®; estimator in Chapter V may steer a user toward the jBiht
T, estimator in Chapter VI. 3D imaging, however, has other dekb, such as increased
motion artifacts. Using 2D imaging, a long TR with a singl@sallows for many inter-
leaved slices and may not cost much more time when compargb imaging. This is
especially interesting when slice selection effects ateriporated in the3;” model, min-
imizing some of the negative effects of 2D imaging. In thisesahe added complexity of
the B}, T} estimator (especially, when incorporating slice selectffects and the larger
look-up table required with the addition of another vargghhay not be necessary, espe-
cially when theT; estimate itself may be a nuisance parameter. A long singl¢ sif
course, may bring susceptibility into the data, necessgdhe use of field map estimation.
2D imaging also suffers more from through plane blood flow isrftbw artifacts [81]. The
joint B, T} estimator, on the other hand, has the advantage of allowiagiser to vary
either the tip angles or the repetition times. This is usefspecially in experimental setups
where the repetition time can be picked with accuracy angtisgpossible non-linearity of
tip angles. Choosing the best estimator to use for the mostated3;” maps is a complex
problem with many different considerations.

In future work, we hope to further investigate the issue dfropl parameters and scan
time in regards toB;” mapping. Ideally, a large simulation and phantom study doul

compare 2D and 3D methods in regards to their accuracy amdtsoa. While we have
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compared our methods to the conventioil estimator, a more thorough comparison
would look at more time-efficienB;” mapping procedures as well a&," oblivious B}
mapping procedureeg., [39]) as well as compare to the more recent jaiift and 7}
estimators €.9., [11] or [124]). This would further elucidate the improvente in our
regularized model-based estimators. Further investigdti the jointB; /T, estimator of
slice selection effects is also important; these effeatsligely to be even greater at the
shorter repetition times used in this estimator. We alscehtogmprove our estimators by
estimating the phase difference between the coils, fugharanteeing a smooth,” map

in these estimators. Further, studying the minimum numbeneasurements required for
joint B}, T estimation would help reduce the required scan and estiméitne.

Another item for future work is possible multi-scale esttina for the B;", T} estima-
tion. Because thé;” maps are quite smooth, a much lower resolution map wouldbstil
acceptable while using a higher resolutibnand f which contain anatomical information.
This is especially useful in positioning the estimator tote; mapping with inherenB;”
correction.

Another item for future work is considering the effect of vath its different resonance
frequency. While fat suppression pulses are one possibildgptioned in the thesis, these
do not always perform well, especially in areas outside ttaénb such as the neck. One
option is reformulating the model with the object as comboraof fat and water (each
with their own resonant frequency), with the percentageavfeftimated as an additional
unknown parameter.

This thesis contributes three new penalized-likelihodahestors to the field of MR pa-
rameter mapping. Each signal model incorporates impoghwsical effects such ag}
(for field mapping), slice selection and susceptibilityeefs (for 3;” mapping) and longi-
tudinal relaxation effects (for joinB;", 73 mapping). The subsequent estimators smooth
in areas of low data magnitude in a controlled manner by asmslecteds value that cor-

responds to a desired FWHM. The associated Cramer Rao boulydesaid the user in
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selecting imaging parameters to give highest estimatouracy. These estimators are a
tool in the constant search for fast, high-fidelity parametgimators to aid in improved

pulse design and imaging.
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APPENDIX A

By Minimization Algorithms

To minimize the cost function (4.11) developed in this paper would like a method
that will decrease it monotonically. The simple minimipatialgorithm shown in (4.13)
is guaranteed to decreas€w) monotonically; the proof that ensures monotonicity uses
the fact that the second derivative bf- cost is bounded above by unity. This algorithm
will converge to a local minimizer off(w) within the “basin” that contains the initial
estimate [62].

However, this simple minimization algorithm shown in (4.18only one possible op-
tion to minimize the cost function given in (4.11). In our ilementation, we used an
optimization transfer approach to refine the iterative atgm [8, 62]. First express (4.11)

as shown below:

(A.1) V(w) = ZZ > im(w;) + BR(w),

where we define
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with

() £ 1—cos(t).

To minimize this cost function, we adopt an optimizatiomster approach, for which we
need a surrogate function far(s). In particular, we use the following parabola surrogate
for ¢:

Pl1) < alt:5) 2 pls) + Gt — ) + gmo({shar)lt =)

where{s}, denotes the principle value ef Huber stated that parabola surrogate functions
(which he called a comparison function) exist fprthat satisfy Huber's conditions [60,
p.184-5]; the functions must be differentiable, symmeitd have curvatures(s)) that

are bounded and monotone non-increasingsfar 0. For |s| < 7, ¢(s) shown above

satisfies Huber’s conditions. We note

p(s) = sin(s)

and

(s) 2 o(s) _ sin(s)‘

Replacingy(t) with ¢(t; s), in the expression fap;,,;(w) above yields a quadratic sur-
rogate function forp,,,,(w). We must pick an appropriate value ofvhen defining this
surrogate, and the appropriate value is when the argumepiévaluated ab = w™,
i.e,

s =50 2 (WA = Al + Ly — Zy) mod 7.

r

Making this substitution initially yields a lengthy expsésn for the surrogate, which

we denote asj(.zl)l(wj). However, after some simplification, one can show that theogate
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function simplifies to:

qﬁil( w) £ Ojm (w](.")) + gbjml(w](-")) (w — wj("))
1 2

+ §“w,jml(5£") ) (W - Wg(n)> )

where its curvature is given by

A Pim m, sin(s
"{ijml( ) ! Sl< ‘yj y‘j}w : A A )2 ( )

S

Substituting this curvature,(s) into the expression fap,,,,;(w) gives us the following
curvature for the parabola surrogate

,sin(s)

= |yy| Wi (D = D) -

A Spjml

K jmi(8) =

which is bounded as — 0 and decreasing gs| increases. For values ¢f| > w, we
exploit the periodicity ofp and find an integek such thats — k2x| < =, i.e, the principal
value of the phase. Fig. A.1 showsp and parabola surrogates for several values.of
Whens is an even multiple ofr, the curvatures,, is the maximum curvature @f. When

s is an odd multiple ofr, the curvatures,, is zero, andy is also zero, so the surrogate
function is a constant.

Aggregating such surrogates leads to the following sutefimction for the cost func-

tion ¥ (w):
N L L
97 2 350D ) +HR
7j=1 m=0 =0
where

q](7:71)l( w) £ oW ())Jrgojml( j(”))(w—w](.”))
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Surrogates for sinusoids
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Figure A.1: lllustration ofp(¢) and quadratic surrogates for several values. of
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and where

s(n) A (w§n) Ay — D] + Ly — Ayé) mod 7 € [—m, 7.

r

If the roughness penalfy(x) is a quadratic function, which is the natural choice for sthoo
phase maps, then the surrogate& above is a quadratic function that can be minimized
easily by any classical method such as the conjugate grealgporithm.

In our implementation, we used a separable quadratic sateagorithm to minimize
this cost function [1]. Then, the following iteration, siiani to that of (4.13), is guaranteed

to decreas& (w) monotonically:

1
(A.2) w™ = ™ — diag O R V¥ (w™),
dj +0-c
wherec was defined in (4.14) and where
~ L L
dg'n) = Z Z “%J’ml(sﬁn))'
m=0 [=0

The advantage of (A.2) over (4.13) is th%f‘) < d; in (4.15), so (A.2) will converge
faster [31].
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APPENDIX B

B;: I and Slice Selection Effects

In (5.3), F' is a sinusoidal-like function tabulated using a Bloch epuresimulator, thus
incorporating MR effects beyond the simplified sin model.efidiore, /' can also have a
complex output, depending on the input RF pulse. We comnjedtuat most symmetric
RF pulses will have a real output; this model is general ehdognclude other pulses,
including non-symmetric ones.

After considering an appropriate coordinate rotation, &e express the functiof by

the following equation:
(B.1) F(z) = ¢ H(|2]).

Tabulating F' would require storing a look-up table with a complex inpubile H has a
real input and we need store only a one-dimensional tabléh Boand ' have complex
outputs. Therefore, we tabulaié and use (B.1) in our estimation algorithm.

We tabulatef{ by evaluating the Bloch equation using a RF pulse and varnysngm-

plitude;i.e., we use

(B.2) bi(1)



whereT is the pulse length angt) is the RF pulse shape and we vary the amplitdie
create the one-dimensional table. In the case of non-sedestcitation, or in the small-

tip angle regime with exactly on resonance excitattbmjould be the excitation tip angle
times theB;” map. The tabld] is calculated once for each RF pulse: for convenience, we
normalizeH to a maximum value of 1. We investigated two common pulseaséuin this

paper: a truncated Gaussian pulse:

(B.3) p(t) = o~ (8t/7)%/V2m rect(t/7),

and a truncated sinc pulse:

(B.4) p(t) = sinc(8t/7)[.54 + .46 cos(27t /7)),

fort/r € [—1, 1]. If the (unachievable) infiniteinc RF pulse were used, thefii(§) would
simplify to sin(6). Thus, the conventional model (5.1) implicitly assumes dgoe rectan-
gular slice profile. If this profile were used, (5.3) would bmigar to the model in [41].
Because we use the Bloch equation to tabutateur model (5.3) accounts for slice selec-
tion effects.

We note that one could use a different excitation pulse fohe@aeasurement, in which
casel’ would beF;,,. For simplicity, we assume the same RF pulse is used for eaeh m
surement and suppress the subsariptWe let the subscripR denote the real part and
denote the imaginary part of the quantity. For exampleFjetienote the real part af and

let F1 denote the imaginary part @f so
F = Fgr +iF.

Fig. B.1 shows a graph dffz(¢) for the Gaussian (B.3) and the truncated sinc pulse

(B.4). The idealized modeiin(¢) is also shown for comparison. For both pulses, the
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function is only approximately sinusoidal. Integratedassrthe slice, the imaginary part
almost completely cancels out for symmetric pulses, lepainly a very small imaginary
part. Therefore, the imaginary part is not shown for the ggl@mymmetric pulses. Fig. B.2
shows a graph of the derivative éfz (¢) as well asos(f) (the derivative of the idealized

model) for comparison.
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Figure B.1: Graph ofig () for a Gaussian and truncated sinc pulse.
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Figure B.2: Graph of the derivative éfy(¢) for a Gaussian and truncated sinc pulse.
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APPENDIX C

By: Derivation of cost function gradients and separable

surrogates

This section first considers a simplified version of thg map cost function and its
gradient. Any gradient-based algorithm uses the first dévig of the cost function. Next,
we apply the results to our cost function (5.4). Then, we bigva quadratic surrogate for
our cost function. Finally, we perform the additional stepcteate a separable quadratic
surrogate (SQS) for (5.4) and present the final algorithna @isethis paper. The equations
in this section rely heavily on derivatives of the functibrwhich are derived (in terms of
derivatives ofH) in Appendix D.

First, consider a simple (one voxel, one measurement)orersi(5.5). We can rewrite

(5.5) as follows:

K K
E(z,f) = 1 (y,f, real{z akzk},imag{z akzk})
k=1 k=1

Uy, frab) £ Sy~ fGla.)

(C.1) G(a, b)

F(a+ib) = Ggr(a,b) +iG(a,b),

wherez = (z1,...,2x).
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We simplify /() by ignoring terms independent of the unknown variakles 6 (and

recalling thatf is constrained to be real):

Iy, f,a,b) = —real{y}real{fG(a,b)}

—imag{y}imag{fG(a,b)}

C2) 5 17P 1G (@ D)
Wy, f,a,b) = —yrfGr(a,b) —yrfGi(a,b)
(C.3) +%f2!G(a,b)\2~

The derivative of with respect to the unknown variahigs:

0 0 0
%l = —?/Rf%GR(G, b) - yIf%GI(aa b)

0
+f2GR(a7 b)%GR(aa b)

0
+1*G(a, b)%Gl(a, b)

=~ flun— JCala ) G,

~Fur ~ SGrla,b) 2 Crla )

= —f(yr — fCr(a, b)>%03<a, )

+if(yr — fG(a, b)[)i%GI(C% b)
(C.4) = —f real{(y — fG(a,b))" %G(a, b)} .
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Similarly, the derivative with respect tois:

0

0 0
Gbl = —?JRf%GR(% b) - ylf%GI(aa b)

0
%GR(CL, b)

0
%G](a, b)

(C.5) = —freal{(y fG(a,b))" gbG(a,b)}.

+ |f|2 GR(av b)

+ |f|2 G[(CL, b)

The second derivatives are:

0? 02
1 = ~flyn— fGrla,}) i 5Gnrlab)

—f(yr — fGi(a, b)) Gi(a,b)

(G (o))

_ —freal{(y fGla, b))’ aa G(a b>}

(C.6) +f? ((%GR(a,b)> + (%Gl(a, b)) )
ol = ~floa Gl S Gala.b)

+f( GR(G b))?

s FCr(a b)) oG, )

+f( Gi(a, b))2
_ —freal{(y—fG(a b))’ g—;G(a b)}

(2o
)

(C.7) ( Gr(a,b)
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90, _ —f(yr — fGRW?b))ag%GR(a b)

(Gl B) (Gl )

o~ fGilab) 2O
0

(G0, B) (o Cir(a )

= —freal{(y— fG(a,b))" 83%0(@ b)}

Gr(a,b))

Gy(a,b)

L Gafa )2

c8) (G0, h) (- Cirla ).

Using these derivatives, we want to derive a quadratic gates for our simplified
likelihood functioni(a,b) [8]. A quadratic majorizing surrogate approximates ourtcos
function locally while always lying above the original furan and, as a quadratic, can be

trivially minimized. Letv = (a, b) and define

l(v) = 1|yl /f.1,a,0) - f*.

Then, we form our quadratic surrogate around the poiat (a™, b)), our current esti-
mate ofa andb, where the derivative of the surrogate matches the derevati the simpli-
fied cost function (using (C.4) and (C.5)) and we use the maxirmpassible curvature;

(defined below). The quadratic surrogate fas:

c1(y)
2

2
lv = ull

q(y, f,v,u) = 1(u)+ Vi(u) - (v —u) +

(C.9) > I(v) Yo,u,
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where

aly) = max | Vi),

vER?
= f I%%XHVQZ(|y|/fa17avb>HF
(C.10) = eyl /1),

where ||-|| - is the Frobenius norm and the norm uses (C.6), (C.7), and (C.8&).n\W
merically evaluated (C.10) for the RF pulse shapes used snpdyper. We found(0) =
V2 - h%(0). For the profiles used in this papefy) is nearly piece-wise linear and depends
only on|y|. Fory close to0, c(y) = ¢(0). For largery, c(y) depends linearly ofy|. We
numerically tabulated the functiatty) for use in the algorithm.

We apply these results to the (multi-voxel, multi-measuwatplikelihood (5.5) to form

a quadratic surrogate. We rewrite (5.5) using our previaation:

2

N M K
Lz, f) = ZZ Yim — [ F (Zamk%’k>
j m=1 k=1

_ ZZ (Yjm. [, real{[az;]n },

(C.11) 1mag{[azj]m}).

This is an additively separable cost function; therefdne,quadratic surrogate for (5.5) is

a sum of the quadratic surrogatéor eachl, which we derived in (C.9). We define

vim = (real{[oz;] }, imag{[az;]m})

Ujy 2 (real{ [az](-n)]m}, imag{ [az](-”)]m}),

andvm = (Ulm,‘..le), v = (’l)l,...’UM), Uy = (Ulm,...U1N>, u = (’U,l,.."U,M), and
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z = (real{z},imag{z}). Let

>
WE

QL(Z; Z(n))

M
Z q (yjnu j Ujm7ujm>

M
> U(twjm) + VI(ttgm) - (Vjm — i)

Il
.MZ

7j=1 m=1
&1 ym>
|
N
- ZL<Z~AH) f )
j=1

~ ~ (n)\/ n - ~ (n
(C.12) t2 (5 - ™) oW a (2 — 20 |
where the2 M ® 2M curvature matrix is
I/Vj(n) = diag{cﬁi} ®1,

where® denotes the Kronecker produét,is the2 x 2 identity matrix and

2 .
() _ ( ¢(n) |Yjm]
ij—<fj ) C<f(n)>'

J

The gradien® L(z™, () can be calculated using (C.4) and (C.5) taking care to properly
account for,,,;, factors using the chain rule.

()1, is quadratic, but not separable due to the matrix proddfzif}”)a. Generally, this
matrix product is too large to compute, but here the matramessmall and constant and
could be pre-computed and minimized, with conjugate gradier example. However,
when the surrogate for the regularization surrogates agecdb the total surrogate, this
matrix product is no longer small or static and can not fdgdik inverted.

Therefore, we continue the derivation to findaparable quadratic surrogate. We use
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steps similar to [22]. We first note that we can write

K
lazjlm = Zamkzjk
k=1
K (67
= Y (ﬂ (55— o) + [a"] ) |
k=1 mk m
if Zszl Tk = L andm,, =0 <= i, = 0. Then, (ifr,,, > 0 Vm, k)
K
q (yjm7 f](n)v Vim, ujm> S Z Tmk
k=1
(n) Omk [ . ~(n)
Q(yjma fj 5 7T—mk (ij - ij > + Ujm,Ujm> .

Finally, combining all these steps, we find the separableliii& surrogate for our likeli-

hood cost function.

N M K
Qr-sos = ZZZTka

(C.13) +-(2- g(n))’W(n) (2-2™),

where we letr,,, 2 2=t anda,, £ 31 |a,.| and

P — diag{d§’;’} 91y,

The new curvaturedgz) are found by taking derivatives of the new,_sqs (first line of

(C.13)) and are expressed in terms of the previous maximukatire:
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Finally, we add this surrogate to that of the regularizatenm to obtain the final sepa-

rable quadratic surrogate for (5.4).

Qo = (2™, FO) 4T U2, f0) (z - 2™) ¢

(C.14) (z — z(”))/ <diag{d§z) + 57“} ®.[2> (z — z(”)) .

=

“wn

The factor +” depends on the choice of the regulariRge;,) and is the maximum curvature
of (5.6). For 2nd-order finite differences with the 8 nearesighbors, this factor ig - 4 -
(2 4+ 2/+/2). This leads to the natural iteration for updatigg(wherea; = real{z;} and

be = imag{1)):

oy (1,27

(n+1) (n)

a a ™
(C.15) ¢ e P I

B+ B o, W(r™ 2"

k/‘ n
d§k>+ﬂ'r

One way to increase the speed of the algorithm is to only @pthegt object estimate
every few iterations. Because the object is a nuisance pesrand the initial estimate is
very good (based on simulation results), occasional updaee only marginal effects on
the final B;” map estimates. Therefore, for examples in this paper, wategdhe object
only every 10 iterations. This decreases the computatioa by a significant fraction (by
1/5 for simulation examples) with only a minimal increas®&iRMSE for the same number

of iterations.
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APPENDIX D

Bj: Derivatives of F’

This section derives the derivatives bfin terms of H and its derivatives, which are
tabulated as explained in Section 5.2.2.
To simplify the derivations, we use an equivalent definifion/'. We definez = a +ib

and rewrite (B.1) as follows:

F(z) = &“ H(Va2+b?)

B (\/a2a+ b2 + \/a2ib+ b2> H(\/m)-

The final line follows from using Euler’s formula fet“* and expressingos andsin using

the Pythagorean Theorem. Now, we define the real functions

hr) 2 Hﬁ”
h(r) _ TH(’/‘)T; H(r)
h(r) _ r?H(r) — 2rH(r) + 2H(r)

We can either tabulate the functiéndirectly or we can use the tabulated functiéhto

calculateh. The derivatives of can be numerically tabulated or expressed in terms of the
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previous equations. We can now express (B.1) as

(D.1) F(z) = F(a+1ib) = ah(|z|) + ibh(|z|) = zh(]z]).

The derivatives of (D.1) with respect toandb are:

DP) = b2y + R + ibh(|=])
= (= + (el + A=)
(D-2) - aéh(|z|)+h(|z!).
03) 5P = ah(e) T+ h(el) 7+ A=)
(D.4) — b h(|2]) + ih(]2).

E

Combining these two derivatives, we obtain:

©05) Dre) 2 Do) it
22,
(D.6) = gh(!zw

Some equations in Appendix C require the derivativeg'gfand F;. These can be
separately derived from the definition 6}; and F; or by simply calculating the real and
imaginary parts of expressions (D.2) and (D.4) above. Tlsis applies for the following
derivative expressions (D.9),(D.10), and (D.11).

Note thathr = Hg/r andh; = H;/r. First, we deriveFi and F; in terms ofh as
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follows.

Fr(z) = real{F(2)} = real(zh(|z|))
— veal{a(h(2]) + ihr(12])) + ib(hn(|2]) + ih(]2])))

(D.7) = ahg(|z|) — bhr(]z]).

Fr = imag{F(z)}
= imag{a(hr(|z]) + ihs(|2])) + ib(hr(|z]) + ihs(]2])}
(D.8) = ahy(|z]) + bhg(|z]).

The derivative of (D.7) and (D.8) with respectd@ndb are:

0 0

5 = 5o (ahr(z]) — bhi(|2]))

= e + b=~ =)
o 0
—Fy = a—(ahl(l |)+th(| D)

= hi(|2]) + || hr(|2]) + || ha(|2]).
O = gb (ah(]2]) = bhs(]2]))

_ |—|hR<|z|> — hu(l2]) - ﬂhxl 2.

0
SFy = = (ahi(|e]) + bhi(]2)

= D) + halz) + S,

2] 2|
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The second derivatives @f, which are used along with (C.6), (C.7), and (C.8) to find

c(y) in Appendix C are given by:

P D (L, e

o’ = T (sr2si)
(D.9) —i—%(az).

0 _ h(]z]) ) %

wF(z) \z| (Z+2b—b W)
(D.10) L POED .

2.9 5y o e (abﬂ'a—abi)

|21

(D.12) + 202D .

The derivatives of the real and imaginary partd-oére:

TR = L (hathe + Sl ~ e

da? da || ||
= L) + 2Bhael) = S ha(lzl)

2] 2] Bl
a . b . a?b -

+ b)) — —hu(2]) + S ()2])
E E B
a?b -

(D.12) —mhlqzb-

202



92
w 1

(D.13)

(D.14)

(D.15)

(D.16)

0 a’ . ab -
g (koD + T Ar1zD + o))
a - 2a - a’
—h + —h h
2 1([2]) 2 (]z]) L
@ . b a?b .
+|z|2h1 + EhR“Z') WhROZD
a®b -
+WhR(|Z|)
0 [ ab. b .
—_— —NnrUZ|) — nr{{Z|) — —nNr\|2
o (Bl — =) = Tz
a - ab? . ab? ..
mhRUZD - WhRUZD - WhROZ')
b . 2b . b .
mhl(fz\) - mhlﬂz\) + Whlﬂz\)
b .
—Whl(lzD

Q«@mwmwwm+iﬁww

ob \ |2| |2
a - ab2 . ab2 .
—hi([z]) = —shi(|z]) + —5he(|2])
] 2] 2|
b . 2b . b .
+—nh + —h — —=h
D) + a(=h — b
B3 ..
+WhR(‘Z|>-
hr(|2]) a®b,  ha(lz]), 5
= b— + a“b) +
2] ( |Z|) 2P (a”b)
hi(l2]) ab* . hi(lz]), s
— a — ab
] ( |z’) 2P (ab”)
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i = M D
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APPENDIX E

By: Initial estimate for f and x

The estimator requires a good initial estimate4pto ensure the estimator descends to

a good local minimum. We need an initial estimate for the nitage and phase of ths;"
maps and of the object

The standard double angle method (5.2) is a natural chorcestimating the magni-
tude of B". The DAM effectively estimates the composite mags (5.8); by forming
an appropriatex (defined below in (E.2)) and inverting it, we estimate theimescoill
mapsz,. The DAM also requires that, for each composite map we egstinvee also take
a second measurement where the relative amplitude of eaaks double that of the first
measurement,e., letm = 2K and fixa such thaty,,,, = 2a,,, wherem =1,... K. If
this condition is satisfied, we calculate the initial esﬁeﬁo) as follows.

First, we estimate the magnitude and phase of the composips.nJsing the corre-
sponding measurementse(, y,, andy,,.x) in (5.2), we find;@. Similarly, we use a

method of moments estimator for the phasé3gf.

(El) Aij = Ay]m - AH(|X]m|)7
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using our estimate dk;,,,| from (5.2). We next form the matrix

(83]
(85}
(E.2) o= :
(873
so that _ )
a
o =
2a
Then, our initial estimate of th8;" map is
(E.3) 20 = a7 1x.

Given 2, we estimate the objegt® using (5.7).

Alternatively, suppose that we only maké = K + 1 measurements, the minimum
required to estimate both the object and each of the coil m¥ysfix ayx .1 = 2a; as
before. Using these two measurements, we estimatg;ffleand £(© using (5.2), (E.1),
and (5.7). If the coil combinations are chosen wisely, teifneate should have few “holes”
and can be used as an initial estimate for the other coil coatioinsi.e., x\Y = %\” for
m = 2,... K + 1. Finally, we find theB;” mapsz,, using (E.3) and the sam# matrix
(E.2) as before. We note, this estimate is not as good for tiner @oils and will likely

require more iterations and a higher SNR than ifdll= 2K scans were used.
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APPENDIX F

Bi: What if ¢ is complex?

Up to this point, we have assumed thatconsists of solely real values. However,
«a could be complex.g., if we put a different phase on each coil along with changheg t
magnitude. This does make the derivation of cost functiaadignts and the final algorithm
more complicated. Let us look at these derivations morestyos

Now, |et0&mk = Oéﬁlk -+ ZO&{nk andek = Qi + ijk Then,

and

K K
. _ R I
imag g OmiZjk ¢ = g pibie + 0.

k=1 k=1
Now, bothreal{Zf:1 amkzjk} andimag{zfz1 amkzjk} contain bothu;, andb;;.. This
causes difficulty in evaluating (C.4), (C.5), (C.6), (C.7), or8Gwvhen the argument for
ais real{szzl amkzjk} and the argument fof is imag{szzl amkzjk}. For example,
whena is real, we can use the chain rule to solveﬁ%G(a, b) and finally get the same
result as (D.2) with an extra factor of,,.. Whena is complex, however, (D.2) is no longer
suitable, because the new argumenfsand “b” contain botha,, andb;;, so when we take

a derivative with respect to;;, we have to consider both* and “v”.
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Therefore, we will require a new set of derivatives. BecaggﬁR and %Gl are re-
quired for all the second derivatives of the cost functiond(@ave can solve all the first
derivatives of the cost function using only these deriveg)y we solve for these, rather than
LXe)

For shorthand, we let

K
real{-} £ real{ Z Qb 2k },
k=1

and

k=1

K
imag{-} = imag{z Ok Zik },

and we recall that

o= | (a2 + (3 b
ST = o teal{} () — o} (<))
= alunnlah) + el

||

real{-} imag{-} .
ot 2 hir(|2]) = agihi(|2])

—OCR real{-} lmag{}h](’ZD

128 e,

I
Wk

This expression is equivalent to the previous expressiof jf = 0. We can see that,,,
no longer factors simply out of these expressions; a naiv@ect application of the chain

rule to the previous expressions would yield wrong resuBisnilar results apply for the
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other derivatives, shown below.

0 0 .
G b1 = G el (2] + imas (-} hn(2))
=l + afi i)
+%f“ﬁm”<W+%mw>

o real{- }1mag{} in(l2)

+ﬂf“??ﬁ}um

Eéggﬁh _ égi;@eau-}h3<uw>—-nnag{-}h1020>
= —huhnlle - afu 2 (el
rali ST ) ot 2)
rag, e
agklma’g‘{ mag () (12)).
Zé%;fg _ Eﬁ%;<reay{g.h]qz|>+-nnag{-}fu{0zn>
el %”Tf%wn
e L SR ()

Al real{- }1mag{} h(l2)

imag
Lok, ,l{}hRﬂzD

The other difficulty with a complexx is deriving a separable quadratic surrogate. We
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can no longer use the same definitionmgf, and finding a validr,,, for this case seems

difficult at best. This is a matter for future work.
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APPENDIX G

B;: Spatial Resolution Analysis

We must choose values for the regularization parameéter use the proposed regu-
larized method. With conventional regularization, thikesgon requires tedious trial-and-
error methods; preferably, values would be selected basedquantitative measure, such
as the amount of smoothing to introduce. Therefore, we aedlyhe spatial resolution
of the estimated3;” map 2. To simplify the analysis, we focused on the single coil case
(K = 1) and assumed thdt is known. Empirically, the spatial resolution of the mudtil
case matched the spatial resolution of the single coil cdsnwe used// = 2K and a
uniform object and used the modified penalty described hEnes analysis naturally led
to a modified penalty design, allowing for a standard sedectif 5 based on desired blur
FWHM as well as providing more uniform spatial resolutionepéndent of the particular
characteristics of th&;” maps.

The local impulse response of the estimator is equal to thdignt of the estimator

multiplied by an impulse The gradient of the estimator hasftilowing form:

Vi(y) = [VEUU(2(y),y) " — VIO (2(y),y)]
(VEIL(z,y) + V?BR(2)]

(G.1) [~V IL(2, y)]]omz),
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whereV»4 ¥ denotes theth derivative of¥ with respect toz and thegth derivative ofd
with respect tay.

The second derivative' ! (2, y) introduces varying spatial resolution; this can par-
tially be accounted for through clever choice of the regatar therefore, we derive this
second derivative.

Becausez andy are both complex quantities, for this analysis we treat #a and
imaginary part of each as separate variables. We wrjtewhere;j denotes the voxek
denotes the coil, ang denotes the real or the imaginary part (thgs £ |f s = Rand

2 — Z2if s = I. Then, the Hessian df is:

0 ifj#J
(G.2) (VEOL(z, y)|jks s = _ :
fjdjks;jk’s’<z) if j = j/

where

djks;jk’s/(z) = Z@mkamk’

0 a
(a— w02 Fu(oz) +

@3 2 Roz)m) f,ﬂ([a%))

For purposes of analysis, we used the mean measurement f@ciQi.e.

y=9=fF(x),

and then (G.3) has the same form as (C.6), (C.7), and (C.8) upprgpriate values fos

and accounting for the,,,; factors due to the chain rule for differentiation. Simijanve
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derived

0 0
g A L
[V (X, y)bks,j m's azjk;s 8Zj/k’s/ (zy y)
0 ifj#74
6.4 _ J# ) |
fjgj,k;,s;j’,m’,s/ |f ] — j/
where
0 0
(G5) Gjk,s;5 m’,s" = OémngS/qOéZ]m)%Fs’ (ij’)7

again using the mean measurement vector. However, we raitadithe regularization term
goes to zero, in the limit, then (G.4) times the gradient &f thean measurement vector
goes to (G.2) and understanding (G.4) becomes less negessar

Although the Hessian is not “diagonal”, the diagonal eleteeme larger than the off-
diagonal elements. Therefore, we ignore the off-diagolehents for the remainder of the
analysis.

The resulting spatial resolution for the estimafed maps shown in (G.2) is inherently
non-uniform. Areas with a low magnitudgé will be smoothed more because these areas
are more influenced by noise; this greater smoothing is alelsir Conversely, areas with
a large magnitude, which have a greater degree of data fidel¢ smoothed less. We
do not want the median magnitude ffto effect the amount of smoothing; therefore, we
normalize the data by the median valuefah areas with large signal value (in this paper,
greater than 10% of the object maximum using the first-paasate of the object) giving
the object a median value of 1.

However, the effect ofl;;,.;i»s seems less desirable. Therefore, we modified our
penalty using quadratic penalty design to create more unifgpatial resolution. This
approach is based on certainty-based Fisher informatiproapnation [29, 34]. This ap-

proach requires an estimate #f which is unknown. Therefore, our first step is to run
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the proposed algorithm through a few iterations (say= 5, wheren is the number of
iterations) to obtain a first-pass initial estimatezofWe use a smalb for the initial first
pass through the algorithne.¢., we use3 = 271% in this paper), to allow a small level of

regularization. We then use this initialization to definecartainty” factor as follows:

(GG) Rjks = \/ djks;jks(zn>»

wherez(™ is our initial estimate. We note that becausg, is based on a noisy estimate
of z, areas wherg¢; is very small are particular noisy and create unreliablaveses forx.

Therefore, we set these certainty factors in areas withlsmegnitude (in this paper, less
than 10% of the object maximum using the first-pass estinfateecmbject) to the average

value ofx over the rest of the map. Then, we use the following modifiethjig function:

N

(G.7) R(zx) = Z Z K ks Kiks (Ziks — Ziks) s

Jj=1IeNj;

where\; is a neighborhood of thgth pixel using second order differences. This creates
approximately uniform average spatial resolutioyjif= 1. Thus, we eliminate most of the
effect of d;,,ji-» from the spatial resolution, while still smoothing more neas wheref;

is small.

Finally, we can now choosg based on the amount of acceptable blur. Assuming that
the modified penalty function (G.7) has madg;. ;s ~ 1, we used the inverse 2D FFT to
compute the PSE and tabulated its FWHM as a function @f | f;|. This graph is shown
in Fig 1 of [44]. Given the desired spatial resolution, we park the corresponding for
use in the algorithm. The resulting spatial resolution Wwélinherently non-uniform, with
greater smoothing in low signal magnitude areas, effelgtitiaterpolating” across signal

voids.
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APPENDIX H

B4/T): Derivatives of Signal Models: SSI and AFI

We consider both signals to be real to simplify analysis. Wastder theB;” map
and the7; to be the two unknown variables and use the matrix CRB. For buitels,
we assume that the same echo time is used for both sequende$orathe AFI, for both

repetition times. We also slightly modify the definition Bf and £, to accommodate the

T
B = e~ 1),
1

T
Ey =exp <—%) .
1

Then we can express the expectations as:

AFI pulse sequence

and

9 SSI. _ 1 L — cos(g) 2
SV p(F ] = ()

sin(¢;) F1Tr ?
(H.1) ’ (Tf (1-E COS(Qbi))) '
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—1a;(1 — Ey)Ey(cos(¢;) —Eq)

—E [VTl vb In p(ESSI; b, Tl)} = ? le(l — El COS(¢¢))4

(H.2) (1 = cos(¢;)) sin(¢;) Tg.
—E[VZInp(F5: _ L il — Ey) 2 cos(¢;) —Fy)?
(H3) —E[Inp(FSS;b,73)] ﬂ(a_&wwmg< (6) ~E)?.

The relevant expressions for the CRB of the AFI are:

et )] = % ()

02 \ (1 — EyF5 cos?

<cos(gz5i) +E, By cos®(¢;) — By cos(¢;)
— B\ E3 cos®(¢) +2E5 cos®(¢;) —2E1 By cos®(¢;)
—EQ — E1E22 COSQ(Qbi) +E1E2

2
(H.4) L E2E2 cos2(65) — 2, By cos(és) + 2B, B2 cos(é) ) |

and the expression fdr;}7! just replaces?; with E, and vice versa.
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—E[VyVy, Inp(FF50,T0)] =

(H.5)

(H.6)

1B asin(¢;)
02 TE (1 — E1 By cos?(;))*

(cos(@-) +E1 B, cos’(¢;) — By cos(¢;)

_E1E22 COSB((bi) +2E2 COS2((]5Z') —2E1E2 COSQ((@;)

_E2 — E1E22 COSQ((bZ') +E1E2

+E2F2 cos®(¢;) —2E1 By cos(¢;) +2E1 E2 cos(¢;) )

(E1 cos(¢;)(Tr1 + Tra)(cos(¢i) — 1)
+E1E2TRI COS2(§Z5Z‘)(COS(¢Z‘) — 1)

—TRQ + TR2 COS(@) ) .

B 9 AFTI, _ 1 sin(g:) )2 (ﬁ)Q
E[le 1DP<F2¢—1vb7 Tl)} o2 ((1 — F By COSQ(¢1’))2 Ty

(E1 cos(;)(Tr1 + Tre)(cos(¢;) — 1)
+ By EyTry cos?(¢;)(cos(¢) — 1)

2
—Tro + Tro cos(¢;) > )
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APPENDIX |

B, T;: Derivation of cost function gradients

This section first considers a simplified version of thg and7; map cost function
and its gradient. Any gradient-based algorithm uses thiedesvative of the cost function.
Next, we apply the results to our cost function (6.19). Thaeatipns in this section rely
heavily on derivatives of the functioR' which are derived (in terms of derivatives &f)
in Appendix J (and are very similar to those in Appendix C viltle addition of a third
parameter fofl7).

First, consider a simple (one voxel, one measurement)areddi(6.20). We can rewrite

(6.20) as follows:

K K
E(zj, f) =1 (y,t, f, real{z akzk},imag{z akzk}>
k=1 k=1

1
iyt fra.b) = o ly—fGlab )]

(1.1) G(a,b,1)

F(a+ib,t) = Ggr(a,b,t) +iG(a,b,t),

wherez = (21, ..., 2k).

We simplify /() by ignoring terms independent of the unknown variables 6 (and
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recalling thatf is constrained to be real):

I(y,t, f,a,b) = —real{y}real{fG(a,b,t)}

—imag{y}imag{ fG(a,b,t)}

(1.2) +%|f|2|G(a,b,t)|2.
l(y,t, f,a,b) = —yrfGgr(a,b,t) —yrfGi(a,b,t)
(1.3) +%f2|G(a,b, 7.

The derivative of with respect to the unknown variahigs:

0 0 0
%l = _ny%GR(C% b7 t) - yIf%Gl(aa b7 t)

G0, 1) 5 G, b1)

+f2GI(aa b7 t)%GI(aa b7 t)

= —f(yr — fGr(a,b, t))%GR(av b,t)

—f(y[ - fG](a, b, t))%G](a, b, t)
= _f(yR - fGR(av b> t))%GR(av b? t)

Fif (o~ JGr{a,b,1))i G, b1

(1.4) = —f real{(y — fG(a,b, )" %G(a, b, t)} :
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Similarly, the derivative with respect tois:

0 0 0
%l - _ny%GR(CL, b) t) - y[f%GI(aa b; t)

B
+|f1? Grla,b, t)%GR(a, b,t)

0
+ /1 Gila,b,t)5;Gi(a, b, 1)

(1.5) = —freal{(y — fG(a,b, t))*%G(a,b, t)} :

Similarly, the derivative with respect tas:

0 0 0
&l - _nyaGR(av b7 t) - yIfEGI(av b7 t)

0
+ ’f|2 Gr(a,b, t)aGRm? b,t)

B
+|f>G(a,b, t)aGl(a, b, t)

(1.6) = —freal{(y — fG(a,b, t))*%(}’(a, b, t)} .
When regularizing the object, the derivative with respecf te needed. The derivative is:

(1.7) = —yrGr(a,b,t) = yrGr(a,b,t) + | f||G(a, b, )"

9
77!

We also include the second derivatives for use in a Hessi@nlaton (for example,
for a preconditioner for gradient descent algorithms, @ltyjh not currently implemented

in the algorithm). The second derivativelokith respect to the unknown variahigs:

o2 o2
@l = —f(yr — fGr(a,b, t))@GR(C% b,1)
G0, 0) G, 1)
o (0 S ?
(1.8) +1f] <(%G3(a,b, t)) + (%Gl(a, b, t)) ) :
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Similarly, the second derivative éfwith respect to the unknown variahles:

a—Ql = —f(yr — fGrla,b, t»a—ZGR(aa b, 1)
ob? ob?
s~ 1Gr{ab.8) 2 Gula,b.
o ([0 S 2
(1.9) +1f] ((%GR(a,b,t)) + (%Gf(a, b,t)> )

The second derivative @fwith respect to the unknown variabies:

6—25 = —f(yr — fGrl(a,b, t))a—ZGR(C% b,t)
ot? ot?
s~ £Gr{a b)) DGl
) 8 2 8 2
(llO) +|f| ((aGR(a,b, t)) + (EG[(CL, b, t)) ) .

The second derivative éfwith respect to the unknown variabfes:

32
(1.12) 8—]021 = |G(a,b,t)|.
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APPENDIX J

B, Ty: Derivatives of F

This section derives the derivatives bfin terms of H and its derivatives, which are
tabulated (when using a non-ideal slice profile or incorpogaB, field inhomogeneity)
or explicitly derived (assuming an ideal sinc profile as tlkpegiments in this thesis) as
explained in Section 6.5.1.

To simplify the derivations, we use an equivalent definifionF'. We definez = a +ib

and rewrite (6.26) as follows:

F(z,t) = “ H(Va2+121)

a b
= + H(Va?+b%t).
(\/a2+b2 \/a2+b2> (Va )

The final line follows from using Euler’s formula fef<* and expressingos andsin using

the Pythagorean Theorem.

Then,
a b
FR(CZ,b,t) = \/TWHR(\/G2+I72,1€)—WH[(VCﬂ"’bQ,t)
b a
F](G,b,t) = \/ﬁHR(VGP—sz,t)+ﬁﬂj(\/&2+b2,t).
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Using these equations, we can then find the derivatives

d 1 a2 CL2 [10]
%FR(CL’ bt) = QHR(|Z| ) — WHROZ' ) + Wv Hg(]2],1)
ab
| 2 HI(|Z! t) — o — VI H(|2] 1)
d -1 b ab
%FR(G bt) = HHI(|Z|J) | ? Hg(|2],t) + 2P — VI HR(|2],1)
b? g
+WHI(‘Z’ ) — Wv Hi(|z],1)
d 1 a? a?
—Fy(a,b,t) = —H((|2|,t) — —5H(|2],t) + QV[IO]HI(|Z|7t>
da 2] |22 |2|
ab ab
—WHR(M,t)+WV“°]HR(|z|,t)
d 1 ab ab
—Fy(a,b,t) = —Hg(|z|,t) — —5H(|z],t) + —5 V'O H(|2] 1)
db 2] |22 |2|
b2

bQ
_WHR(|Z| at) + Wv[lo]HR(|Z| 7t)

d
%FR(CL bt) = cos(£Lz) VIOUHR(|z|,t) — sin(£Lz) VIUH,(|2] ,t)

= R (exp(iL2) VIO (|2] 1))
%Fl(a bt) = cos(£z) VIOUH (2] ,t) +sin(£z) VU HR(|2] 1)
= S (exp(iZLz) VIO (|2] 1)) .
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APPENDIX K

B, Ty: Initial estimate for B;", T}, and f

The algorithm requires a good initial estimate f8f and 7} to ensure the iterates
descends to a good local minimum. We need an initial estirfzaitehe magnitude and

phase of the3;” maps, thel; map, and the object.

Simple approach - Assumeél’'R = oo

We note that the standard approachfestimation (based on (6.14) assumes that the
flip angle (and thus, thé;” map) is known. ThenT; is estimated from the data using a
transformation of the points and using a least-squaresligrdfore, one approach to joint
initial estimates is finding a gooB;" estimate and then use the standardestimate and
use (6.24) to estimate the object. One obvious choice isr@sguhat’ R = oo and using
the standard double angle method using for estimating thgninale of B;. We use a

method of moments estimator for the phas&3of.
(K.1) Zsm = Lyjm — LH (WTJ) )

using our estimate ofr;,,|, wherex,, are the composite maps (6.25). (Note titatis

defined in (6.26).) Empirically, we found that while the pbd%™ maps are of sufficiently

224



good quality, the magnitudB;” maps, assuming an infinite repetition time, can be greatly
improved.

An improvement over this method is using the regularizgd estimates from Chap-
ter V with a small number of iterations. Generally, the morgial estimates introduced
later in this appendix are based on our improved model andfibie perform better. How-
ever, with a low SNR, especially when only one coil is “on” atirae as in OAAT, the
regularizedB;" estimate is more robust to noise and can work quite well. Tiéshod
also has the advantage of only requirify = 2 x K, though all estimates show tlg
effects. One option is generating both the more compliceiéidl estimates as well as the
simple B]” estimate described above and choosing the one with lesscempared to the

measured data.

Triple angle method for multiple tip angles and constant TR

For our joint B; /T, estimation, we used the following initialization when thR 15
constant and there is a wide range of tip angles (see examp&esction 6.6.1). First, we
write the simplified SSI signal model as:

1-X

K.2 .= Asin;p—m———
(K-2) Si ST s a;bX’

where

and
TR
Clog X

1

Similar to the double angle method (5.1) and (5.2), we rexjtinree signals such that

Qo = 20[1

3 = 30[1.
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Therefore, this method requires at ledgt = 3 x K. If we letc £ cos(a;b), using the

double and triple angle trigopnometric identities, then

cos(agh) = 2¢ —1

cos(azb) = 4c® — 3c

sin(anh) = V1-—¢2

sin(azh) = 2¢vV1—¢2

sin(agh) = 3V1—c2—4 (ﬂ)d :

We then define the following ratios

L ls
|51
_ sin(agb) 1 — cos(a1b) X
~ sin(agb) 1 — cos(agb) X
2¢(1 — ¢X)
K. =
(K-3) 1— (22— 1)X
and
Y
|51]
_ sin(asb) 1 — cos(a1b) X
~ sin(agb) 1 — cos(ash) X
1—cX
p— —_ j— 2 .
(K.4) = (3—4(1-¢%) T~ (4f 30X
Then, we solve, for X:
(K.5) Xo o 2T

29(2¢2 — 1) — 2¢%°
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Using this solution forX, we can solve for with equationzs (using MATLAB'’s root, for

example) solving the following equation:

0 = (8(z3 — 22) — 16) c* + (42o(1 — 23)) ¢ + (—8z3 + 22923 + 625 + 4) ¢

(K.6) + (32923 — 23) ¢ — 2923 — 29.

B1 magnitude Bl phase
1 2 1 e -

1 73

Good pixels
1 g - 1

87

1 73

Figure K.1: Intermediate initial maps using triple anglethosl. Top: left: |b| right: £b
Bottom: left: T right: f. Data using LOO method at an SNR of 60 as in
Section 6.6.1 using the true maps shown in Fig. 6.26.

We solve fore, and thus the magnitude d#;" map, on a pixel-by-pixel basis. We
preferentially choose those pixels with real roots such fiHa< 1 and the associated value
of X (K.5) such that) < X < 1. We also restrict the selection of this pixels to pixels veher
the magnitude of the data is sufficiently high. We then comltiis magnitude3;” map

with the B} angle (K.1). An example of these interim maps is shown in Rig. Using

227



the complexB;” map values at the preferred pixels, we fit a two-dimensiontrmmial
function over the entire object (in this thesis, we use atfodegree polynomial) for both
the real and imaginary values &f;". (We note that fitting instead to the magnitude and
phase ofB;" would require meeting the constraint théjt> 0.)

Finally, we use this new fitte®,” map and (K.5) to get our initial estimate 6f. This
does seem susceptible to noise when the SNR is éxgy, @round 30) but produces very
good estimates with low noise and is used for the simulatidree final initial maps for

this example are shown in Section 6.6.1 in Fig. 6.32, Fig3,6583. 6.34, and Fig. 6.35.

Method when TR is varied

When we use the same flip angle for each measurement and insigetie repetition
time TR, neither of the above initializations apply. Here is anoth@ssible initialization
method that we used with the phantom data described in ®eg:#602. This method works
when we have a good estimate of themap. In the phantom data, we knew tfatwas
roughly constant over the object and the approximate vélue=(1 ms for the phantom
used in this thesis). With this information, we fit, voxel byxel, B;" using the SSI model
(6.27) assuming that; is known and fixed by minimizing the norm of the differencer(fo
example, using MATLAB'’s fminsearch). For the first set of pt@m data, this initiaB;" is
shown in Fig. K.2. We estimate the phasef using (K.1). By normalizing the data with
respect to a reference image, we also calculgteyer the object and sef to a constant
value equal to its estimated mean.

When a combination of coils is used, we estimate/iienaps for the composite maps
(5.8). One option is using these maps to estimate the comeposps and then finally
solve for the individual maps at the end. This may not be dbkrwhen there are coil
cancellations. Another option is immediately estimating individual coils

As in the triple angle method, we improve the initi&]" map estimate by fitting a

fourth order polynomial to weighteth| values inside the object (the weights inversely

228



Jons B1 init (cost fxn minimizied)

11.6

11.4

11.2

1 64
Figure K.2: Intermediate initiaB;” map when TR is varied. Initial OAAT phantom exper-
iment B} estimate assuming knowi .
proportional to the error of the data as measured betweeméasured magnitude data and
the current estimated magnitude data). These initial @esésare shown in Fig. 6.45 for
the first phantom experiment.
From the improved comple®;” map estimate, we calculated an improvEdmap

estimate using the standdfg estimate and an improvefimap estimate using (6.24).
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APPENDIX L

B, T\: Spatial Resolution Analysis

We must choose values for the regularization parametdosuse the proposed regu-
larized method. With conventional regularization, thikesgon requires tedious trial-and-
error methods; preferably, values would be selected basedquantitative measure, such
as the amount of smoothing to introduce.

Therefore, we analyzed the spatial resolution of the eséichB,” map 2 and7; map
T and thef f.

To simplify the analysis, we focused on the single coil case=¢ 1). For B map
estimation, we assumed th#t andT" are known and fixed; fof; map estimation, we
assumed thaf; andb are known and fixed. Empirically, the spatial resolutionhe multi-
coil case matched the spatial resolution of the single @seovhen we usetl = 4K and
a uniform object and used the modified penalty described Héris analysis naturally led
to a modified penalty design, allowing for a standard sedectif 5 based on desired blur
FWHM as well as providing more uniform spatial resolutionependent of the particular
characteristics of thé&;” maps. Without this analysis, in conventional regularmagach
map would have (possibly drastically) different spatiaattion when using the sanie
The goal of this analysis is that, when using the sainan impulse added to the true map

will result in a certain full-width half-maximum in the finalstimated map.
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The local impulse response of the estimator is equal to tadignt of the estimator
multiplied by an impulse. The gradient of the estimator Hesfollowing general form

(wherey is the data and is the variable):

Vi(y) = [VEIOU(2(y), )] " — VIO (5(y), y)]
[VEOUL(z,y) + V?BR(2)] !

(Ll) [_V[LHL(Zay)”ZZZA’(y)a

whereV!»4 ¥ denotes theth derivative of with respect toz and thegth derivative oflr
with respect tqy.

The second derivative’>?! L(z, y) introduces varying spatial resolution; this can par-
tially be accounted for through clever choice of the regatar therefore, we derive this
second derivative.

First, we consider the spatial resolution of tB¢ mapz. Because: andy are both
complex quantities, for this analysis we treat the real amajinary part of each as separate
variables. We writez;;,; wherej denotes the voxek denotes the coil, ansl denotes the

real or the imaginary part (thug, = 2 if s = RandZ = 2 if s = I). Then, the Hessian

of Lis:
0 ifj#j
(L.2) [VEOL(z, ) jks s = . ’
fjdjks;jk’s/<z> If ] = j/
where
M
djks;jk’s’(z) = Zamkamk,
m=1
0 0
(@FR([O&ZJ']W tj)%FR([O‘Zj]ma tj) +
0 0
(L.3) %FI([azj]matj)@Fl([azj]mvtj) :
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For purposes of analysis, we used the mean measurement f@cioi.e.

y=y=[Fxt),
and then (L.3) has the same form as (1.8) and (1.9). usingajate values fos and ac-

counting for then,,,,, factors due to the chain rule for differentiation. Similasive derived

0 0

6Zjlfs azj’k’s’

lI>

(VUL (%, y)]jhs s

L(z,y)

0 if 5474
(L.4) . e
fjgj,k,s;j”m/’s/ |f ,] — j/
where
4 9
(L5) gj,k,s;j’,m’,s/ = &mk%FS/([@Z‘j]m7 t]')&Fs/([Oézj]mH t])a

again using the mean measurement vector. However, we nateshthe regularization
term goes to zero, in the limit, then (L.4) times the gradiehthe mean measurement
vector goes to (L.2) and understanding (L.4) becomes lessssary.

We repeated this analysis for an unknafiyrmap’ with a knownB;” mapz and object

f. Now, the Hessian of is:

0 if 9 4
(L6) VI L(T, ), — AT
Pdyy(z) it =

where

dji(2) = i(%FR([azj]m,tj))2+

(L.7) (gFI aZilm, ])) .
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We note that the variable transformationBfslightly modifies this equation as explained
in Section M.
We repeated this analysis for an unknown object map (asgutimirt we are regularizing

the object)f with a knownT; mapT and B;” mapz. Now, the Hessian of is:

L8) R T
rii(z) ifj=7j
where
M
rig(z) = > (Fr([0zj]m t))* +
(Lg) FI ([O./Zj]m, tj))2 .

Although these Hessians are not “diagonal”, the diagoreahehts are larger than the
off-diagonal elements. Therefore, we ignore the off-dragaelements for the remainder
of the analysis.

The resulting spatial resolution for the estimated mapsvsha (L.2), (L.6), and (L.8)
is inherently non-uniform. Areas with a low magnituglewill be smoothed more because
these areas are more influenced by noise; this greater smgaghdesirable. Conversely,
areas with a large magnitude, which have a greater degreataffidlelity, are smoothed
less. We do not want the median magnitudefpfto effect the amount of smoothing;
therefore, we normalize the data by the median valug iof areas with large signal value
(in this paper, greater than 10% of the object maximum usiegitst-pass estimate of the
object) giving the object a median value of 1.

However, the effect ofl;;,.;r» andd;; andr;; seems less desirable. Therefore, we
modified our penalties using quadratic penalty design tatersore uniform spatial resolu-
tion. This approach is based on certainty-based Fishemr#ton approximation [29, 34].

This approach requires an estimatehafr T or f, which is unknown. One option is is to
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run the proposed algorithm through a few iterations (say, 5, wheren is the number of
iterations) to obtain a first-pass initial estimatezodndT'. and then use a smatdlfor the
initial first pass through the algorithne.§., 3 = 2719), to allow a small level of regular-
ization. A second option is to use the initial valueszobr T' used for the algorithm; we
found the estimates described in Appendix K were sufficyesticurate to use to calculate
an improved regularization scheme.

We then use these estimates to define a “certainty” factarlksvs:

(L.10) Kiks = A/ Ajksijns (™),
and

(L.11) Rj =/ d; (T™),
and

(L.12) kI =\ Jrig (),

wherez(™ andT'™ are our initial estimates. We note that becatfse andxT and«] are
based on a noisy estimate obr T or f, areas wherg; is very small are particular noisy
and create unreliable estimates fgr andxT and /. Therefore, we set these certainty
factors in areas with small magnitude (in this paper, leas tt0% of the object maximum
using the first-pass estimate of the object) to the average @~ over the rest of the map.

Then, we use the following modified penalty function:

N
(L13) R(Zk) = Z Z H]z'k:s"ilzks(zjks - Zlks)27

J=1leN;
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and

N

(L.14) ZZ“ ki (T; — Th)?,
J=1leN;

and
N

(L.15) — Z Z f1)?,
j=1 lin\

where\; is a neighborhood of thgth pixel using second order differences. This creates
approximately uniform average spatial resolutioffiif= 1 and assuming quadratic regular-
ization. When tested under these assumptions, spatialtesols quite uniform forB;".
Using the improved penalty (L.14) f@r, (with quadratic regularization and a téstwith
blocks of varyingT; values) still results in some spatial resolution variatiut is more
uniform and predictable than the original penalty. Howevdren all other variables are
known and kept constant, the improved penalty gives muclkeraniform spatial resolu-
tion. Thus, using the improved penalties (L.13) and (L.14)ekminate most of the effect
of d;is,jis andd; ; from the spatial resolution, while still smoothing more reas where
f; is small.

Finally, we can now choosé based on the amount of acceptable blur. Assuming that
the modified penalty function (L.13) has madg,.;»s+ ~ 1 and (L.14) has madé;,; ~ 1
and (L.15) has made;; ~ 1, we can chose a FWHM as a function®f | f;| based on the
graph shown in Fig. 4.1. Given the desired spatial resalutiee can pick the corresponding
[ for use in the algorithm. The resulting spatial resolutiah e inherently non-uniform,
with greater smoothing in low signal magnitude areas, &ffely “interpolating” across

signal voids.
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APPENDIX M

Bi, T;: Constrained estimation for 7}

T; is physically constrained to be positive. Therefore, wewitsconstrain
0<T <Tyax,

where we letT), ,x be equal to the maximum value ®f we could physically expect in
the field of view. In this paper, we s@t,;,x = 3 S. To enforce these constraints, we let

T = I'(s) where we chosg to be the sigmoid function

(M.1) I'(c) = HI;Z—S(X—Q'

We then estimate the new variakleThe cost function (6.19) becomes

(2,T, f) = arg min U(z,T,f),

z,T:0<T;<Tmax,f

(2,6, f) = argmin¥(z,s, f),
z,6,f
f

(M.2) U(z,¢,f) = L(z,T(), f) + B-R(z) + B.R(<).

Finally, we letT; = T ().
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We note that the cost function gradients as derived in Sedtichange only via the

chain rule with the additional multiplication of the follamg factor:

0 Tyaxexp *
M.3 —rI = —
(M-3) s (<) (1+ exp*)2
Then,
Lyt ) = (LT 1)) v T) + B R(S)
ng L - 8,1—3 s Ly T=I(s) Sj agj ¢4\ ).

The spatial resolution also changes slightly. As we aremeding and regularizing
(L.12) will also require the additional multiplication fieox (M.3) shown above.
In this paper, we first estimatg as explained in Section K and then convert this via

the inverse logistic function

and then solve fos as above. Finally, we convert this back int@yamap via (M.1).
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