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ABSTRACT

Delivering Affordable Fault-tolerance to Commodity Computer Systems

by

Shuguang Feng

Chair: Scott Mahlke

To meet an insatiable consumer demand for greater performance at less power, silicon tech-

nology has scaled to unprecedented dimensions. This aggressive scaling has provided de-

signers with an ever increasing budget of cheaper and fastertransistors. Unfortunately, this

trend has also been accompanied by a decline in individual device reliability as transistors

have become increasingly susceptible to a host of threats.

With each new technology generation the challenges associated with process variation,

wearout, and transient faults gain greater prominence. We are quickly approaching a new

era where fault-tolerance is becoming a first-order design constraint, no longer a luxury

reserved exclusively for high-reliability, mission-critical domains. Even commodity mi-

croprocessors used in mainstream computing will require protection.

However, just as the reliability needs of NASA and Apple differ dramatically, so does

their ability to absorb the costs necessary to ensure fault-tolerance. Viable solutions tar-

xiii



geting commodity systems must not only recognize this fact,but must embrace it. Simply

stripping down techniques developed for enterprise servers may not result in the most ap-

propriate designs for your laptop or cellphone. The best solutions will exploit the relaxed

reliability constraints of commodity systems, judiciously sacrificing a small degree of fault-

tolerance to achieve far greater reductions in overhead costs.

This thesis proposes a collection of works that can be selectively mixed and matched to

assemble reliability solutions tailor-fit for the commodity systems community. Although

the works presented address a variety of different issues from wearout to transient faults

and prevention to detection, they were all motivated by the same observation–that much

of the overhead costs associated with conventional fault tolerance mechanisms are spent in

pursuit of the last few “nines” of reliability. This conclusion gave rise to the philosophy

permeating the chapters of this work, that summarily dismissing techniques that cannot

supplymission-criticalfault tolerance is no longer acceptable. In presenting concrete so-

lutions to a few of the more interesting challenges—proactive wear-leveling orchestrated

through intelligent job scheduling and software-only transient fault detection and recovery

that exploits intrinsic computational patterns within applications—we establish fundamen-

tal principles that can be applied more broadly to formulatea comprehensive reliability

strategy.

xiv



CHAPTER I

Introduction

Given the recent news coverage of the high-profile Toyota recalls and similar articles

chronicling Apple’s antenna woes on their newly released iPhone, the reliability, or perhaps

more appropriately theunreliability, of computer systems has taken center stage. Although

culpability in these headlining stories may not rest solelyon the shoulders of faulty micro-

processors, the public response to these events has highlighted the frustration that can arise

when computers, and the systems they are associated with, donot function as advertised.

1.1 Dependable Computing for the Masses

With hundreds, sometimes thousands, of dollars being spenton the latest piece of con-

sumer electronics the computers that power them are expected to perform tasks not only

quickly, but also reliably. Whether they are trading stocksfrom a laptop or watching the

latest YouTube video on an iPhone, users expect their experience to be fault-free. Although

the occasional dropped call or “blue screen of death” may be overlooked, the average con-
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sumer has grown accustomed to the (nearly) fault-free enjoyment of their electronic de-

vices.

Unfortunately, the course of aggressive technology scaling being undertaken by in-

dustry is exposing new sources of unreliability and exacerbating old ones. Whether we

are talking about manufacturing defects resulting in chipsthat are dead-on-arrival, pro-

cess variation leading to dynamic heterogeneity, wearout constraining device lifetimes, or

soft-errors periodically corrupting computation, the reliability threats faced by modern mi-

croprocessors are as diverse as they are challenging.

Microarchitects who were once able to defer reliability concerns to lower level circuit

and process engineers are now responsible for their share ofthe heavy lifting. With wearout

and transient faults knocking at the door of even commodity processors, microarchitects

must devise new methods to ensure consumer-visible failurerates still remain impercepti-

bly small, without noticeably degrading performance or cutting into shrinking profit mar-

gins.

Traditionally, reliability research has focused largely on the high-performance server

market. The historical gold standards in this space have been the IBM S/360 (now Z-

series servers) [95] and the HP NonStop systems [14], which rely on large scale modular

redundancy to provide fault tolerance. Other researchers have focused on providing fault

protection using redundant multithreading [80, 74, 59, 38, 90] or specialized hardware

checkers [114, 19, 55].

These simple yet elegant techniques, having served those inthe mission-critical server

arena for decades, are not typically practical outside thisniche domain. The overheads as-

sociated with these conventional solutions are prohibitively expensive for budget-conscious
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systems with less demanding reliability requirements. Although reliability cannot be com-

pletely ignored in lower-end systems, they are not usually designed to provide the “five-

nines” of fault tolerance capable of sending someone safelyto the moon.

In the commodity computing space, area and power are primaryconsiderations. Con-

sumers are not willing to pay the additional costs (in terms of hardware price, performance

loss, or reduced battery lifetime) for conventional fault-tolerance schemes. At the same

time, they do not demand “five-nines” of reliability, tolerating the occasional dropped

phone calls, glitches in video playback, and crashes of their desktop/laptop computers

(commonly caused by software bugs). The key challenge facing the consumer electron-

ics market in future deep submicron technologies is providing just enough fault-tolerance

to ensure that the effective fault rate remains at the level to which people have become

accustomed. Examining how this minimal, yetsufficient, coverage can be achieved “on the

cheap” is the goal of this thesis.

1.2 Reliability Taxonomy

The purpose of this section is to set the stage for the remainder of the thesis by provid-

ing some preliminary background. Additional, supplemental information is supplied within

subsequent chapters as needed. Given the vast amount of reliability works in the literature,

this section hopes to minimize potential confusion by introducing the manner in which

some fundamental terms and concepts will be used within the context of this document.

Although other, presumably more formal texts, may present alternatives to these defini-
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tions, our intent was to embrace the most popular definitionswhen possible for the sake of

readability, drawing distinctions and specializing termsonly when absolutely necessary.

1.2.1 Threats to Reliable Computing

For the purposes of this thesis, faults are separated into two broad categories,transient

andpermanent. Membership in one of these two categories, although not always a hard-

and-fast rule, is generally decided based on the frequency and duration of the fault event.

A transient fault is typically a “rare” event that causes an error that generally does not

persist, whereas a permanent fault, once it has evolved, is almost assured to manifest as

frequent consistent errors. Within permanent faults this thesis is particularly interested in

those faults that are caused by devicewearout–the process by which transistors, which are

fully functional at manufacture time, degrade and eventually fail over a lifetime.

Transient Faults: Probably the better understood of the two categories, transient faults,

also known as soft-errors, can be caused by a variety of phenomena. Historically, the two

major sources have been neutrons from cosmic radiation and alpha particles released from

packaging impurities. Whatever their origin, these high-energy particles deposit additional

charge when they strike that can cause a transistor to erroneously switch. In addition to

these environmental culprits, transient faults can also result from an array of other sources

including crosstalk and voltage and current fluctuations. Furthermore, recent proposals for

high-performance, low-power designs that employ aggressive frequency scaling and even

timing speculation are also emerging as prominent causes oftransient faults.

Permanent Faults:Traditionally viewed as a process and manufacturing concern, per-

manent faults (also known as “hard faults”) have caught the attention of microarchitects in
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recent years. In addition to the expected manufacturing defects, designers are now faced

with the prospect of in-field wearout. This most recent threat has captured significant inter-

est because it is closely coupled with the aggressive technology scaling trend being pursued

by industry. As CMOS feature sizes scale to smaller dimensions, the inability of operat-

ing voltage to scale accordingly results in dramatic increases in power and current density.

Consequently, areas of high power density increase local temperatures leading to hot spots

on the chip. Since most wearout mechanisms, such as gate oxide breakdown and nega-

tive bias temperature instability are all highly dependenton temperature, the occurrence of

wearout-induced failures will become increasingly commonin future technology genera-

tions.

1.2.2 Anatomy of Fault-tolerant Computing

Figure1.1 is an abstract illustration of the major components of a comprehensive re-

liability strategy. Each of these aspects of reliability must be addressed, at least to some

degree, in order to ensure fault-tolerant operation. For example, simply detecting a fault is

insufficient if no mechanism is in place to recover from it. However, not all components in

Figure1.1 require complex, sophisticated solutions. In some situations, like when a tran-

sient fault is detected, an adequate recovery response may simply be to discard the affected

instructions.

The relative position of each component with respect to the transient-permanent fault

boundary represents the degree to which recent state-of-the-art research publications aimed

at transient (permanent) faults has focused on that particular aspect of reliability. For ex-

ample, papers proposing diagnosis and system repair (reconfiguration) solutions have gen-
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Figure 1.1: A “reliability pipeline” depicting the different pieces ofa comprehensive reliability
strategy. The relative location of each component to the transient-permanent boundary represents
the extent to which recent research into transient (wearout-induced permanent) faults has studied
that particular aspect of reliability.

erally been targeted toward permanent faults, mainly because transient faults typically do

not damage the underlying hardware, leaving nothing to be repaired.

This thesis concentrates primarily on the first three stagesin this “reliability pipeline.”

The first half presents techniques to monitor (detection) and proactively manage (preven-

tion) the effects of device wearout. The later half of the dissertation tackles the challenges

of transient fault detection and recovery, capitalizing ondetailed program analysis to reign

in overhead costs.

1.3 Conventional Solutions

As previously alluded to, processor reliability is by no means a new area of research.

In as early as 1956 von Neumann formally presented the principles behind modular redun-

dancy [63], principles that have evolved into the fault-tolerance solution of choice for nearly

all application domains that have historically demanded high-reliably. In its simplest form,

n-modular redundancy (nMR) relies on performing multiple instances of the same compu-

6



tation and employing an arbitration mechanism (typically majority voting) that can identify

the correct, error-free, result fromn potentially different outcomes. The archetypal fault-

tolerant systems of the past have all embraced some variant of this elegant, yet effective

technique [95, 11, 14].

Possibly the biggest attraction of nMR solutions is that they can nearly address all as-

pects of reliability (see Figure1.1). By design they fulfill both the detection and recovery

requirements, and in a simple triple-modular implementation fault diagnosis is also natu-

rally provided (assuming a single fault model). Furthermore, given the inherent redundancy

in an nMR design, even temporary repair can be easily achieved by simply ignoring the out-

puts of components that have been identified as faulty1.

Yet despite the strengths of these early systems, the adventof multithreaded and mul-

ticore architectures motivated researchers to develop ways of accomplishing nMR with-

out having to explicitly design redundancy into the hardware. Rotenberg’s seminal paper

on AR-SMT [80] was the first comprehensive microarchitectural-level paper on modular

redundancy, introducing the concept of redundant multithreading on simultaneous mul-

tithreaded cores. Whether redundantly executing on separate cores within a CMP (spa-

tial redundancy) or managing redundant threads running within multiple software con-

texts on the same hardware (temporal redundancy), later proposals like those by Vijayku-

mar [38, 37, 107] and Falsafi [70, 90, 91] attempted to improve upon the performance

of AR-SMT by exploiting the redundant, and often idle, resources of modern superscalar

CMPs.
1Clearly, depending on the needs of the system the faulty components would ultimately need to be re-

placed or the reductions in redundancy would eventually degrade reliability.
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Relative to these coarse-grained redundancy approaches, the techniques proposed in

this thesis incur considerably less overheads. They are notdependent on the abundance

of idle processors or hardware resources. In scenarios where systems are not signifi-

cantly overprovisioned, the overheads of traditional nMR are considerably greater than the

few percentage points of performance degradation regularly reported in research papers.

The additional resources required to enable redundant execution (i.e., additional cores and

threads) must also be accounted for, resources that can no longer be allocated to other

waiting tasks, adversely impacting their performance.

In contrast, the solution we propose for transient fault detection and recovery only im-

poses a modest performance degradation, limited to just theapplication being protected,

without any modifications to commodity hardware. Similarly, although our wearout pro-

posals do involve microarchitectural additions, they do not require that entire cores be

reappropriated for continuous fault monitoring. Furthermore, unlike nMR solutions that

can only react to failures, the wearout management techniques in this thesis are preventa-

tive and can actually proactively avoid failures.

Of course, the body of reliability literature is not solely devoted to nMR. The con-

siderable research effort devoted toward further reducingthe overheads of fault-tolerant

computing has resulted in many innovative solutions that span the spectrum of the software-

hardware stack. They range from compiler-directed instruction duplication [75] and spe-

cialized hardware checkers [55] for transient fault detection to adaptive body biasing and

voltage scaling [105, 85] to keep wearout at bay. However, as less conventional solutions

that typically only target a single component of the “reliability pipeline” (Figure1.1) they

will be discussed separately within the appropriate chapters. A more extensive treatment
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of the latest advances in fault-tolerant architecture can also be found in Sorin’s recent syn-

thesis lecture [93].

1.4 Contributions

This thesis is built upon two central principles: 1) that themajority of consumer devices

do not lie at either extreme of the reliability spectrum, necessitating the need for not just

“low-cost” but genuinely affordable fault-tolerance, and2) that with the appropriate analy-

sis, the inherent computational patterns within programs can be leveraged to reap dramatic

reductions in the cost of dependable computing.

With these themes in mind we make the following contributions:

• We demonstrate that the progressive nature of prominent silicon wearout mechanisms

makes them amenable to low-cost, in-situ monitoring, proposing a microarchitectural-

level sensor capable of tracking the evolution of wearout.

• We present a proactive reliability-aware scheduler that leverages continuous health

monitoring to orchestrate application-driven wear-leveling to maximize lifetime reli-

ability.

• We develop a commodity-grade (adequate coverage at ultra-low cost) transient fault

detection mechanism that relies on reliability-aware compiler analyses to direct se-

lective instruction duplication of vulnerable computations.

• Lastly, we present a software-only, fine-grained rollbackrecovery mechanism tar-

geted at low-end commodity processors lacking native hardware recovery support.
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CHAPTER II

Self-calibrating Online Wearout Detection

2.1 Introduction

Traditionally, microprocessors have been designed with worst case operating conditions

in mind. To this end, manufacturers have employed burn in, guard bands, and speed bin-

ning to ensure that processors will meet a predefined lifetime qualification, or mean time to

failure (MTTF). However, projections of current technology trends indicate that these tech-

niques are unlikely to satisfy reliability requirements infuture technology generations [18].

As CMOS feature sizes scale to smaller dimensions, the inability of operating voltage to

scale accordingly results in dramatic increases in power and current density. Areas of high

power density increase local temperatures leading to hot spots on the chip [88]. Since

most wearout mechanisms, such as gate oxide breakdown (OBD), negative bias tempera-

ture instability (NBTI), electromigration (EM), and hot carrier injection (HCI), are highly

dependent on temperature, power, and current density, the occurrence of wearout-induced

failures will become increasingly common in future technology generations [41].
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Though the reliability of individual devices is projected to decrease, consumer expec-

tations regarding system reliability are only likely to increase. For example, some business

customers have reported downtime costs of more than $1 million per hour [4]. Further,

a recent poll conducted by Gartner Research demonstrated that more than 84% of orga-

nizations rely on systems that are over five years old, and more than 50% use machines

that are over ten years old [1]. Given the requisite long life expectancies of systems in the

field and the high costs of in-field replacement, any technique for mitigating the amount of

downtime experienced due to failed systems will prove invaluable to businesses.

In order to maintain availability in the presence of potentially unreliable components,

architects and circuit designers have historically employed either error detection or failure

prediction mechanisms. Error detection is used to identifyfailed or failing components by

locating (potentially transient) pieces of incorrect state within the system. Once an error

is detected, the problem is diagnosed and corrective actions may be taken. The second

approach, failure prediction, supplies the system with a failure forecast allowing it to take

preventative measures to avoid, or at least minimize, the impact of expected device failures.

Historically, high-end server systems have relied on errordetection to provide a high

degree of system reliability. Error detection is typicallyimplemented through coarse grain

replication. This replication can be conducted either in space through the use of replicated

hardware [95, 14], or in time by way of redundant computation [80, 74, 70, 107, 90, 37, 75,

71]. The use of redundant hardware is costly in terms of both power and area and does not

significantly increase the lifetime of the processor without additional cold-spare devices.

Detection through redundancy in time is potentially less expensive but is generally limited

to transient error detection unless redundant hardware is readily available.
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Failure prediction techniques are typically less costly toimplement, but they also face

a number of challenges. One traditional approach to failureprediction is the use of canary

circuits [56], designed to fail in advance of the circuits they are charged with protecting,

providing an early indication that important processor structures are nearing their end of

life. Canary circuits are an efficient and generic means to predict failure. However, there

are a number of sensitive issues that must be addressed to deploy them effectively. For

instance, the placement of these circuits is extremely important for accurate prediction,

because the canary must be subjected to the same operating conditions as the circuit it is

designed to monitor.

Another technique for failure prediction is the use of timing sensors that detect when

circuit latency is increasing over time or has surpassed some predefined threshold [31,

15, 2]. The work presented here extends upon [15] which presented the idea of failure

prediction using timing analysis and identifying degrading performance as a symptom of

wearout in semiconductor devices.

Recent work by Srinivasan [98] proposes a predictive technique that monitors the dy-

namic activity and temperature of structures within a microprocessor in order to calculate

their predicted time to failure based on analytical models.This system can then be used

to swap in cold-spare structures based on these predictions. This work pioneered the idea

of dynamically trading performance for reliability in order to meet a predefined lifetime

qualification. Although this technique may be used to identify structures that are likely to

fail in the near future, it relies on accurate analytical device wearout models and a narrow

probability density function for effective predictions.
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Research into the physical effects of wearout on circuits has shown that many wearout

mechanisms for silicon devices are progressive over time. Further, many of these wearout

mechanisms, such as EM, OBD, HCI, and NBTI, have been shown tohave a negative

impact on device performance [7, 51, 119, 23]. For example, a device subject to hot carrier

injection (HCI) will experience drive current degradation, which leads to a decrease in

switching frequency [7]. The recognition of progressive performance degradationas a

precursor to wearout-induced failures creates a unique opportunity for predictive measures,

which can forecast failures by dynamically analyzing the timing of logic in situ.

The work presented here proposes an online technique that detects the performance

degradation caused by wearout over time in order to anticipate failures. Rather than ag-

gressively deploying duplicate fault-checking structures or relying on analytical wearout

models, an early warning system is presented that identifiesthe performance degradation

symptomatic of wearout. As a case study, and to derive an accurate performance degra-

dation model for subsequent simulations, detailed HSPICE simulations were performed to

determine the impact of one particular wearout mechanism, OBD, on logic gates within a

microprocessor core. Research of other progressive wearout mechanisms such as HCI and

EM, indicates that similar effects are likely to be observedas a result of these phenomenon.

The results of this analysis are used to motivate the design of an online latency sam-

pling unit, dubbed the wearout detection unit (WDU). The WDUis capable of measuring

the signal propagation latencies for signals within microprocessor logic. This information

is then sampled and filtered by a statistical analysis mechanism that accounts for anomalies

in the sample stream (caused by phenomenon such as clock jitter, and power and temper-

ature fluctuations). In this way, the WDU is able to identify significant changes in the
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latency profile for a given structure and predict a device failure. Online statistical analysis

allows the WDU to be self-calibrating, adapting to each structure that it monitors, making

it generic enough to be reused for a variety of microarchitectural components.

Traditional studies of wearout mechanisms have focused primarily on their effects on

transistor and circuit level performance, without analyzing the microarchitectural impact.

To the best of our knowledge, the experiments presented in this chapter were the first such

attempt in this direction. Specific contributions include:

• An HSPICE-based characterization of OBD-induced wearout

• A microarchitectural analysis of the performance impact of OBD on microprocessor

logic

• A detailed simulation infrastructure for modeling the impact of wearout on an em-

bedded processor core

• A self-calibrating WDU capable of monitoring path latencies

• A demonstration of how the WDU can be deployed to extend processor lifetime

2.2 Device-level Wearout Analysis

Though many wearout mechanisms have been shown to progressively degrade perfor-

mance as transistors age [7, 119, 23], as a case study, this work focuses on the effects of

one particular mechanism, gate oxide breakdown (OBD), to demonstrate how performance

degradation at the device level can affect processor performance at the microarchitectural

level. Due to the lack of microarchitectural models for the progressive effects of wearout,

it was necessary to first model the effects at the circuit level in order to abstract them up to
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the microarchitecture. The results of the modeling and abstraction are presented within this

section. While this section is useful in understanding the nature of progressive wearout,

readers unfamiliar with device physics may want to simply note the high-level abstraction

of OBD effects presented in Figure2.1and move on to section2.3.

The remainder of this section describes the transistor degradation model for OBD,

based on empirical data from researchers at IBM. This section also presents an HSPICE

characterization of the effects of OBD on gates in a 90 nm standard cell library from a

major technology vendor.

2.2.1 Gate Oxide Breakdown

OBD, also known as time dependent dielectric breakdown (TDDB), is caused by the

formation of a conductive path through the gate oxide of a CMOS transistor. The pro-

gression of OBD causes an increasing leakage current through the gate oxide of devices

that eventually leads to oxide failure, rendering the device unresponsive to input stim-

uli [100, 57, 51]. Sune and Wu showed that there is a significant amount of timerequired

for the OBD leakage current to reach a level capable of affecting circuit performance [100].

This suggests that there is a window of opportunity to detectthe onset of OBD before oxide

leakage levels compromise the operation of devices and cause timing failures.

The modeling of OBD conducted in this work is based upon the experimental results of

Rodriguez et al. [78]. The change in gate oxide current resulting from OBD is modeled by

the power-law expression in Equation2.1:

∆Igate = K(Vgd)
p (2.1)
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The change in gate-to-drain (gate-to-source) current is represented as a function of a lin-

ear scaling factorK, the gate-to-drain (gate-to-source) voltageVgd (Vgs), and a power-law

exponent,p. Both fitting parametersK andp vary depending on the amount of degrada-

tion experienced by the transistor in question. However, for much of the empirical data

collected in [78], selecting ap = 5.0, while still allowingK to track the degree of degra-

dation, resulted in a consistent fit. This is the model for device degradation used in this

work.

2.2.2 HSPICE Analysis

To facilitate modeling the effects of OBD-induced degradation in HSPICE, the BSIM4

gate leakage model [13] for gate-to-drain and gate-to-source oxide leakage is modified to

accommodate the scaling factor from Equation2.1. Using this leakage model, an HSPICE

testbench was created to simulate the effects of OBD on propagation delay within logic

circuits. The testbench consists of an ideal voltage sourcedriving an undegraded copy of

the gate under test, which drives the gate under test, which drives another undegraded copy

of the gate under test. This testbench allows the simulations to capture both the loading

effects a degraded device presents to nodes on the upstream path, as well as the ability of

downstream nodes to regenerate a degraded signal.

For each type of logic gate within the cell library, one transistor at a time is selected

from the gate and its leakage model is replaced with the modified BSIM4 model. For each

transistor that is being degraded, all input to output transistions are simulated so that for

every gate characterized, propagation delays corresponding to all possible combinations

of degraded transistor, input to output path, and initial input states are captured. For each
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Figure 2.1: Impact of OBD-induced oxide leakage current on standard cell propagation delays.

simulation run, the amount of degradation experienced by the degraded transistor (as mod-

eled by the oxide leakage) is slowly increased until the gateceases to function (outputs no

longer switch).

The results of the timing characterization are shown in Figure 2.1. Figure2.1ashows

the changes in propagation delay for an average size inverter. The plot highlights the dif-

ferent effects that OBD has on propagation delay depending on the transition direction

and location/type of the degraded transistor. Note that forthe case when the PMOS (the

analogous story is true for the NMOS) is degraded, rising transitions expressed increases

in delay while falling transitions showed decreases in delay. A detailed discussion of this

phenomenon follows in the next paragraph. Although there are complex dependence rela-

tionships affecting the performance impact on rise and fallpropagation delays, as a sim-

plifying assumption, the net effect is used in this work. Figure2.1bpresents the net effect

(rising transition + falling transition) of OBD on gates within the cell library. For a given

gate a separate curve is shown for each of its transistors. Note that the “net” change in
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Figure 2.2: HSPICE simulation traces for inverter with degraded PMOS (slowdown).

propagation delay is categorically increasing near the endof life for gates within this cell

library, irrespective of which internal transistor is degraded.

An examination of Figure2.1areveals that in the case where the PMOS experiences

OBD, the rising transition expresses more than a doubling ofits nominal delay before the

inverter fails to transition. The primary source of this increase in delay is the interaction

with the previous stage, a non-degraded inverter, which is subjected to driving the leaky

PMOS oxide. Figures2.2 and2.3 show the voltages at the nodes of interest during the

rising and falling transitions of the degraded inverter. The bold traces show the voltage

transitions under nominal conditions while the lighter curves are the result of increasing

amounts of wearout.
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Figure 2.3: HSPICE simulation traces for inverter with degraded PMOS (speedup).

When the input to the inverter under test begins to fall (Figure2.2a), the gate-to-source

oxide leakage,Igs, through the PMOS device provides additional current to theinput node,

prolonging the discharge time of the gate through the NMOS ofthe preceding stage. The

gate-to-drain oxide leakage,Igd, initially aids the rising transition, helping to charge upthe

inverter output. However, as the transition continues and the output begins to rise, thisIgd

leakage also provides an additional current to the gate node. As with theIgs current, this

too increases the time required to drain the remaining charge on the gate. Note also that

with large amounts of degradation the input voltage range compresses due toIgs andIgd

oxide leakage. Unable to switch from rail-to-rail, the on-currents sustainable by the PMOS

and NMOS are significantly reduced, which ultimately contributes to the increase in overall

propagation delay (Figure2.2c).
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Perhaps more surprising is the behavior of the propagation delay during a falling transi-

tion of the inverter output (Figure2.3). With increasing oxide degradation, the delay of the

inverter actually decreases until just prior to functionalfailure. This behavior is caused by

theIgs andIgd leakage currents that help in charging their own gate node, resulting in an

earlier rising transition on the input. As a result, despitethe degraded on currents due to the

compressed gate voltage swing, because the inverter actually “sees” the input transitioning

sooner, the net effect is a decrease in the overall propagation delay of the inverter itself

(tcell) and ultimately the circuit (tcircuit).

In summary, at moderate values of oxide degradation, the input voltage on the gate node

swings roughly rail-to-rail, allowing normal operation ofthe inverter. However, during the

final stages of oxide OBD, the input voltage range compressesdue toIgs andIgd leakage

(Figures2.3aand2.2a), and the current conducted by the PMOS and NMOS devices in

the inverter are significantly altered. The significantly reduced output range eventually

results in functional failure when the device is no longer capable of driving subsequent

stages. Note however, that prior to circuit failure, the stage immediately following the

inverter under test is able to completely restore the signalto a full rail swing (Figures2.2c

and2.3c), irrespective of the switching direction.

2.3 Microarchitecture-level Wearout Analysis

This section describes how the transistor-level models from the previous section are

used to simulate the effects of OBD over time on an embedded microprocessor core. The

section begins by describing the processor core studied in this work along with the synthesis
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flow used in its implementation and thermal analysis. This isfollowed by a discussion

of MTTF calculations and a description of the approach used to conduct Monte Carlo

simulations of the effects of OBD. A discussion of OBD’s impact on propagation delay at

the microarchitectural level concludes the section.

2.3.1 Microprocessor Implementation

The testbed used to conduct wearout experiments was a Verilog model of the Open-

RISC 1200 (OR1200) CPU core [65]. The OR1200 is an open-source, embedded-style,

32-bit, Harvard architecture that implements the ORBIS32 instruction set. The micropro-

cessor contains a single-issue, 5-stage pipeline, with direct mapped 8KB instruction and

data caches, and virtual memory support. This microprocessor core has been used in a

number of commercial products and is capable of running theµClinux operating system.

The OR1200 core was synthesized using Synopsys Design Compiler, with a cell library

characterized for a 90 nm process and a clock period of 2.5 ns (400 MHz). Cadence First

Encounter was used to conduct floorplanning, cell placement, clock tree synthesis, and

routing. This design flow provided accurate timing information (cell and interconnect de-

lays) and circuit parasitics (resistance and capacitance values) for the entire OR1200 core.

The floorplan along with details of the implementation is shown in Figure2.4. Note that

although the OR1200 microprocessor core shown in Figure2.4is a relatively small design,

it’s area and power requirements are comparable to that of anARM9 microprocessor. The

final synthesis of the OR1200 appropriates a timing guard band of 250 ps (10% of the clock

cycle time) to mimic a commodity processor and to ensure thatthe wearout simulations do

not prematurely cause timing violations.
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OR1200 Core
Area 1.0 mm2

Power 123.9 mW
Clock Frequency 400 MHz
Data Cache Size 8 KB
Instruction Cache Size8 KB
Logic Cells 24,000
Technology Node 90 nm
Operating Voltage 1.0 V

(a) Implementation details for the OR1200 mi-
croprocessor.

(b) Overlay of the OR1200 floorplan on top
of the placed and routed implementation of the
CPU core.

Figure 2.4: OpenRisc1200 embedded microprocessor.

2.3.2 Power, Temperature, and MTTF Calculations

The MTTF due to OBD is dependent on many factors, the most significant being ox-

ide thickness, operating voltage, and temperature. To quantify the MTTF of devices un-

dergoing OBD, this work uses the empirical model described in [97], which is based on

experimental data collected at IBM [117]. This model is presented in Equation2.2.

MTTFOBD ∝ (
1

V
)(a−bT )e

(X+ Y
T

+ZT )

kT (2.2)

where,

• V = operating voltage

• T = temperature

• k = Boltzmann’s constant

• a, b, X, Y, andZ are all fitting parameters based on [97]
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In order to calculate the MTTF for devices within the OR1200 core, gate-level activ-

ity data was generated by simulating the execution of a set ofbenchmarks1 running on a

synthesized netlist using Synopsys VCS. This activity information, along with the parasitic

data generated during placement and routing, was then used by Synopsys PrimePower to

generate a per-benchmark power trace. The power trace and floorplan were in turn pro-

cessed by HotSpot [88], a block level temperature analysis tool, to produce a dynamic

temperature trace and a steady state temperature for each structure within the design.

Once the activity and temperature data were derived, the MTTF for each logic gate in

the design was calculated using Equation2.2 with the temperature and activity data for

each benchmark. A per-module MTTF is calculated by identifying the minimum MTTF

across all logic gates within each top-level module of the OR1200 core. These per-module

MTTF values are later used to parametrize the statistical distribution of failures used in

Monte Carlo simulations of OBD effects. Figure2.5presents the steady state temperatures

and MTTF values of different structures within the CPU core for the five benchmarks.

Figure2.5highlights the correlation between MTTF and temperature. Structures with

the highest temperatures tended to have the smallest MTTFs,meaning that they were most

likely to wearout first. For example, the decode unit, with a maximum temperature about

3◦K higher than any other structure on the chip, would likely bethe first structure to fail.

Somewhat surprisingly, the ALU had a relatively low temperature, resulting in a long

MTTF. Upon further investigation, it was found that across most benchmark executions,

less than 50% of dynamic instructions exercised the ALU, andfurthermore, about 20% of

1Five benchmarks were studied to represent a range of computational behavior for embedded systems:
dhrystone - a synthetic integer benchmark; g721encode and rawcaudio from the MediaBench suite; rc4 - an
encryption algorithm; and sobel - an image edge detection algorithm.
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Figure 2.5: Derived workload-dependent steady state temperature and MTTF for the OR1200 CPU
core. An ambient temperature of 333K was used for Hotspot.

the instructions that actually required the ALU were simplelogic operations and not com-

putationally intensive additions or subtractions. These circumstances led to a relatively

low utilization and ultimately lower temperatures. It is important to note that although this

work focuses on a simplified CPU model, the proposed wearout detection technique is not

coupled to a particular microprocessor design or implementation, but rather relies upon

the general circuit-level trends suggested by the HSPICE simulations. In fact, a more ag-

gressive, high performance microprocessor is likely to have more dramatic hotspots, which

would only serve to exaggerate the trends that motivate the WDU design presented in this

work.

2.3.3 Wearout Simulation

As demonstrated in Section2.2, progressive wearout phenomena (OBD in particular)

have a significant impact on circuit-level timing. Work doneby Linder and Stathis [51] has
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shown that OBD-induced gate leakage obeys an exponential growth rate with age:

∆IOBD(t) = IOBD0 · e
t/γ (2.3)

where,

• IOBD(t): the amount of leakage current at timet

• IOBD0 : the initial amount of leakage current at time0

• γ: varied to model a “fast” or “slow” exponential growth

Monte Carlo simulations of the OBD effects on a distributionof microprocessors in the

field are conducted by coupling the leakage model, shown in Equation2.3, with the model

for MTTF from Equation2.2. For every logic gate within each microprocessor simulated,

the time when the first initial breakdown path is formed in theoxide, τBD, is calculated

using a Weibull distribution withα equal to the gate’s MTTF andβ = 1.0, consistent

with [51]. The growth rateγ is then taken from a uniform distribution of+/−10% of τBD,

consistent with a slow growth rate, as in [51].

By integrating the model for OBD failure times and this leakage growth model, a sta-

tistically accurate picture of the effects of OBD-induced leakage for every gate within the

OR1200 core (across a population of chips) is derived. This new model is then used to

generate age-dependent performance data for each gate within the population of processors

in the Monte Carlo simulations. The performance information is then annotated onto the

synthesized netlist and custom signal monitoring handlersare used to measure thesignal

propagation delays at the output of various modules within the design. The process of an-
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Figure 2.6: The observed slowdown of signals from the ALU result bus as a result of OBD effects
over the lifetime of one instance of an OR1200 processor core.

notation and monitoring is repeated for every processor in the population at regular time

intervals over the simulated lifetime of each processor.

To demonstrate how OBD can affect the timing of microarchitectural structures, Fig-

ure 2.6 shows the results of one sample of an OR1200 core from the Monte Carlo simu-

lations. This figure shows the amount of performance degradation observed at the output

of the ALU for a subset of signals from the result bus. This figure illustrates the general

trend of slowdown across output signals from microarchitectural structures. The follow-

ing section discusses how this trend is leveraged to conductwearout detection and failure

prediction.

2.4 Wearout Detection

In this section, the delay trends for microarchitectural structures observed in Section2.3

are leveraged to propose a novel technique for predicting wearout-induced failures. The
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technique consists of two logical steps: online delay monitoring and statistical analysis of

delay data. In the following subsection, a circuit for conducting online delay sampling

is presented. Next, the algorithm used for statistical analysis, TRIX, is presented, and its

applicability to wearout detection is discussed. Finally,two potential implementations for

the statistical analysis of delay profiles are proposed, onein hardware and the other in

software.

2.4.1 Online Delay Profiling

In this section, a self-calibrating circuit for online delay profiling is presented. A

schematic diagram of the online delay profiling unit (DPU) isshown in Figure2.7. The

DPU is used to measure the time that elapses after a circuit’soutput signal stabilizes un-

til the next positive clock edge (slack time). It is important to note that even for critical

paths within the design, some slack time exists because of guard bands provisioned into

the design for worst-case environmental variation and signal degradation due to wearout.

The DPU design consists of three distinct stages. The first stage of the DPU is an arbiter

that determines which one of the (potentially many) input signals to the DPU will be pro-

filed. The second stage of the DPU generates an approximationof the available slack time.

The final stage of the DPU is an accumulator that totals a sample of 4096 signal transition

latency measurements, and uses this measurement as a point estimate for the amount of

available slack in the circuit for the given input signal.

The first stage fulfills the simple purpose of enabling the DPUto monitor delay infor-

mation for multiple output signals from a given structure. This stage is a simple arbiter

that determines which signal will be monitored. The area of this structure scales linearly
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Figure 2.7: Online delay profiling unit.

(though very slowly) with the number of output signals beingmonitored. The effects of

scaling on area and power are discussed later in Section2.5.

The purpose of the second stage of the DPU is to obtain a coarse-grained profile of

the amount of slack at the end of a given clock period. The signal being monitored by the

DPU is connected to a series of delay buffers. Each delay buffer in this series feeds one bit

in a vector of registers (labeled ’A’ in Figure2.7) such that the signal arrival time at each

register in this vector is monotonically increasing. At thepositive edge of the clock, some

of these registers will capture the correct value of the module output, while others will store

an incorrect value (the previous signal value). This situation arises because the propagation

delay imposed by the sequence of delay buffers causes the output signal to arrive after the

latching window for a subset of these registers. The value stored at each of the registers

is then compared with a copy of the correct output value, which is stored in the register

labeled ’B’. The XOR of each delayed register value with the correct value produces a bit

vector that represents the propagation delay of the path exercised for that particular cycle.

In addition, the output signal value from the previous cycleis stored in the register labeled
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’C’, and is used to identify cycles during which the module output actually experiences a

transition. This ensures that cycles during which the output is idle do not bias the latency

sample. As a module’s performance degrades due to wearout, the signal latency seen at its

outputs increases, fewer comparisons will succeed, and thevalue reported at the output of

the vector of XOR gates will increase.

In the third stage of the DPU, a point estimate of the mean propagation latency for a

given output signal is calculated by accumulating 4096 signal arrival times. The accumula-

tion of 4096 arrival times is used to smooth out the variationin path delays that are caused

by variation in the module input, and the sample size 4096 is used because it is a power of

two and allows for efficient division by shifting.

There are multiple ways in which this sampled mean propagation latency may be uti-

lized by a system for failure prediction. In the next subsection, an algorithm is presented

for this purpose that may be implemented either in specialized hardware or software.

2.4.2 Failure Prediction Algorithm

In order to capitalize on the trend of divergence between thesignal propagation latency

observed during the early stages of the microprocessor’s lifetime and those observed at

the end of life, TRIX (triple-smoothed exponential moving average) [99] analysis is used.

TRIX, is a trend analysis technique used to measure momentumin financial markets and re-

lies on the composition of three calculations of an exponential moving average (EMA) [12].

The EMA is calculated by combining the current sample value with a fraction of the pre-
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vious EMA, causing the weight of older sample values to decayexponentially over time.

The calculation of EMA is given as:

EMA = α× sample + (1− α)EMAprev (2.4)

The use of TRIX, rather than the EMA, provides two significantbenefits. First, TRIX

provides an excellent filter of noise within the data stream because the composed applica-

tions of the EMA smooth out aberrant data points that may be caused by dynamic variation,

such as temperature or power fluctuations (discussed in Section 2.5.2). Second, the TRIX

value tends to provide a better leading indicator of sample trends. The equations for com-

puting the TRIX value are:

EMA1 = α(sample−EMA1prev) + EMA1prev

EMA2 = α(EMA1 − EMA2prev) + EMA2prev

TRIX = α(EMA2 − TRIXprev) + TRIXprev (2.5)

TRIX calculation is recursive and parametrized by the weight, α, which dictates the

amount of emphasis placed on older sample values. Figure2.8ademonstrates the impact of

differentα values on the amount of weight given to historical samples. This figure demon-

strates that smallα values tend to favor older samples, while largerα values reflect local

trends. The wearout detection algorithm presented in this work relies on the calculation

of two TRIX values using differentα’s to identify when the local trends in the observed

signal latency begin to diverge from the historical trends (biased toward early-life timing).
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Figure 2.8b shows the effect of differentα values on the TRIX analysis of ALU result

bit 0. Figure2.8bpresents the TRIX calculations for six differentα values as well as the

long-term running average and local point average of signalover the lifetime of the mi-

croprocessor. This data demonstrates that TRIX calculation usingα = 1/210 provides an

accurate estimate of the running average (of latencies for asignal) over the lifetime of the

chip, and does so without the overhead of maintaining a largehistory. Further, this figure

shows that a TRIX calculation withα = 0.8 provides a good indicator of the local sample

latency at a given point in the microprocessor’s lifetime.

The next subsection describes two potential implementations that bring together the

DPU and this statistical analysis technique in order to predict the failure of structures within

a processor core.

2.4.3 Implementation Details

In order to accurately detect the progression of wearout andpredict when structures are

likely to fail, this work proposes the use of the DPU in conjunction with TRIX analysis.
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Figure 2.9: Design and organization of the wearout detection unit.

In the following subsections, two techniques for building systems with wearout prediction

mechanisms are proposed. The first technique is a hardware-only approach, where both

online delay profiling and TRIX analysis are conducted together in a specialized hardware

unit called the wearout detection unit (WDU). The second technique is a hybrid approach

requiring fewer resources where delay profiling is conducted in hardware, but TRIX anal-

ysis is conducted in software, either in the operating system or in firmware. In Section2.5,

we discuss the hardware costs in terms of area and power for each of these implementations,

as well how the WDU scales as it is used to monitor an increasing number of signals.

2.4.3.1 Hardware-only Implementation

The design of the WDU is presented in Figure2.9and consists of three distinct stages.

The first stage is comprised of the delay profiling unit described in Section2.4.1, while the

second stage is responsible for conducting the TRIX analysis discussed in Section2.4.2,

and the third stage conducts threshold analysis to identifysignificant divergences in latency
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trends. The shaded structures in this diagram represent those components that would scale

with the number of signals being monitored. The remainder ofthis section discusses the

implementation details of stage two and three of this design, and the required resources for

their implementation.

In stage two of the WDU, two TRIX values are computed: a locally-biased value,

TRIXl, and a historically-biased value,TRIXg. These are calculated usingα values of

0.8 and1/210, respectively. It is important to note that the value ofα is dependent on the

sample rate and sample period. In this work, we assume a sample rate of three to five

samples per day over an expected 10 year lifetime. Also, the long incubation periods for

many of the common wearout mechanisms require the computed TRIX values to routinely

be saved into a small area of nonvolatile storage, such as flash memory.

Since the TRIX consists of three identical EMA calculations, the impact of Stage 2 on

both area and power can be minimized by spanning the calculation of the TRIX values over

multiple cycles and only synthesizing a single instance of the EMA calculation hardware.

Section2.5describes the area and power overhead for the WDU in more detail.

The third stage of the WDU receivesTRIXl andTRIXg values from the previous

stage and is responsible for predicting a failure if the difference between these two values

exceeds a given threshold. The simulations conducted in this work indicate that a5% dif-

ference betweenTRIXl andTRIXg is almost universally indicative of a structure nearing

failure. It is envisioned that this prediction would be usedto enable a cold spare device,

or notify a higher-level configuration manager of a potentially failing structure within the

core. An analysis of the accuracy of this threshold prediction is presented in Section2.5.
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2.4.3.2 Hardware/Software Hybrid Implementation

In order to alleviate some of the scaling problems and resource requirements of a hard-

ware only technique, a hardware/software hybrid techniquecan be used. In this system,

the DPU is still implemented in hardware, while the TRIX analysis is performed in soft-

ware by the operating system or system firmware. In this configuration, a set of dedicated

registers for maintaining the latency samples for different modules within the design are

used. These dedicated registers are similar to the performance counters used in modern

day processors. The system software then regularly samplesthese counters and can store

the calculated TRIX values to disk or other non-volatile storage.

This hardware/software hybrid design has multiple benefitsover the hardware-only ap-

proach. In the hardware-only approach, the TRIX calculation, as well as theα parametriza-

tion values are hard-wired into the design, meaning that across different technology gen-

erations with different wearout progression rates, different WDU implementations will be

necessary. However, in the hybrid approach, the TRIX parametrization is easily modified

for use in a variety of systems. Another benefit is that the hybrid implementation con-

sumes less power and has a smaller area footprint with betterscaling properties than the

hardware-only design.

2.5 Experimental Analysis

This section provides a detailed analysis of the proposed WDU for both the hardware-

only and hybrid implementations, the area and power overhead for implementation, and its

efficacy in predicting failure.
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Figure 2.10: Scaling of the WDU and DPU area and power as the number of signals monitored
scales.

2.5.1 Overhead and Accuracy

Figure2.10demonstrates the area and power requirements for a WDU and a DPU (for

the hybrid approach) implemented in Verilog and synthesized using a 90 nm standard cell

library, designed to monitor multiple output signals for a structure. The x-axis represents

the number of signals being monitored and the y-axis represents the overhead in terms of

area or power. Figure2.10ademonstrates that the WDU scales poorly in terms of area,

and Figure2.10bshows analagous results for power. This behavior is largelybecause the

amount of storage within the WDU increases linearly with thenumber of signals being

monitored. In contrast, the DPU scales well in both area and power with an increasing

number of signals being monitored because only the logic forthe arbiter scales with an

increasing number of signals, and this increase in logic is for the most part negligible. This

implies that the hybrid prediction technique can be implemented at a much lower design

cost.

In order to evaluate the efficacy of TRIX analysis in predicting failure, a large number

of Monte Carlo wearout simulations were conducted using theWeibull distribution and
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Figure 2.11: Analysis of TRIX analysis efficacy in predicting failure.

failure model presented in Section2.3.2. Figure2.11ademonstrates the relative time at

which failure was predicted for a variety of structures within the processor core for the

population of microprocessors used in this Monte Carlo simulation. The error bars in this

figure represent the standard deviation of these values. Across all simulations, failure was

predicted within 20% of the time of failure for the device. This typically amounted to

slightly less than two years of remaining life before the device ultimately failed. Two

extreme cases were the Next PC module and the LSU, where the failure prediction was

often almost too optimistic, with many of the failure predictions being made with only

about 1% or about 4 days of the structure’s life remaining. Onthe opposite end of the

spectrum, failure of the register file was often predicted with more than 15% of the lifetime

remaining, meaning that some usable life would be wasted in acold-sparing situation.

Figure2.11bdemonstrates the percentage of signals that caused predictions to be raised

for each module before the module failed. In general, the percentage of outputs flagged at

the time of failure varied widely. This can be attributed to anumber of factors. First, the
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Weibull distribution used to model the time of first breakdown for each gate within the

design has a moderate amount of variance, as does the uniformdistribution used to model

the growth rate of leakage from the time of first breakdown. Also, because some gates

experience speedup in the early stages of wearout before they ultimately begin to slow

down, there are competing effects between gates at different stages of wearout early in the

breakdown period.

2.5.2 Dynamic Variations

Dynamic environmental variations, such as temperature spikes, power surges, and clock

jitter, can each have an impact on circuit-level timing, potentially affecting the operation

of the WDU. Here, we briefly discuss some of the sources of dynamic variation and their

impact on the WDU’s efficacy.

Temperature is a well known factor in calculating device delay, where higher temper-

atures typically increase the response time for logic cells. Figure2.12demonstrates the

increase in response time for a selection of logic gates2 over a wide range of temperatures.

This figure shows that over an interval of 50oC, the increase in response time amounts to

approximately 3.4%.

Another source of variation is clock jitter. In general, there are three types of jitter:

absolute jitter, period jitter, and cycle-to-cycle jitter. Of these, cycle-to-cycle jitter is the

only form of jitter that may potentially affect the WDU. Cycle-to-cycle jitter is defined as

the difference in length between any two adjacent clock periods and may be both positive

2The gate models were taken from the 90 nm library and simulated using HSPICE.

37



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50  60  70  80  90  100

P
er

ce
nt

 D
el

ay
 In

cr
ea

se

Temperature (OC)

INV
AND

OR

Figure 2.12: Impact of temperature on logic gate delay.

(cycle 2 longer than cycle 1) or negative (cycle 2 shorter than cycle 1). Statistically, jitter

measurements exhibit a random distribution with a mean value approaching zero [118].

In general, the sampling techniques employed for failure prediction are sufficient to

smooth out the effects of dynamic variation described. For example, a conservative, lin-

ear scaling of temperature effects on the single inverter delay to a 3.4% increase in module

output delay does not present a sufficient magnitude of variance to overcome the 5% thresh-

old required for the WDU to predict failure. Also, because the expected variation due to

both clock jitter and temperature will exhibit a mean value of zero (i.e., temperature is ex-

pected to fluctuate both above and below the mean value), statistical sampling of latency

values should minimize the impact of these variations. To further this point, since the TRIX

calculation acts as a three-phase low-pass filter, the worstcase dynamic variations would

need to cause latency samples to exceed the storedTRIXg value by greater than 5% over

the course of more than 12 successive sample periods, corresponding to over four days of

operation.
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2.6 Related Work

Issues in technology scaling and process variation have raised concerns for reliability in

future microprocessor generations. Recent research work has attempted to diagnose and, in

some cases, reconfigure the processing core to increase operational lifetime. In this section,

we briefly discuss this related work and how it has influenced the design of the WDU.

As mentioned in Section2.1, much of the research into failure detection relies upon re-

dundancy, either in time or space. One such example of hardware redundancy is DIVA [8],

which targets soft error detection and online correction. It strives to provide a low cost alter-

native to the full scale replication employed by traditional techniques like triple-modular re-

dundancy. The system utilizes a simple in-order core to monitor the execution from a large

high performance superscalar processor. The smaller checker core recomputes instructions

before they commit and initiates a pipeline flush within the main processor whenever it de-

tects an incorrect computation. Although this technique proves useful in certain contexts,

the second microprocessor requires significant design/verification effort to build and incurs

additional area overhead.

Bower et al. [19] extends the DIVA work by presenting a method for detecting and diag-

nosing hard failures using a DIVA checker. The proposed technique relies on maintaining

counters for major architectural structures in the main microprocessor and associating ev-

ery instance of incorrect execution detected by the DIVA checker to a particular structure.

When the number of faults attributed to a particular unit exceeds a predefined threshold, it is

deemed faulty and decommissioned. The system is then reconfigured, and in the presence

of cold spares, can extend the useful life of the processor. Related work by Shivakumar et
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al. [86] argues that even without additional spares the existing redundancy within modern

processors can be exploited to tolerate defects and increase yield through reconfiguration.

Research by Vijaykumar [37, 107] and Falsafi [70, 90] attempt to exploit the redundant,

and often idle, resources of a superscalar processor to enhance reliability by utilizing these

extra units to verify computations during periods of low resource demand. This technique

represents an example of the time redundant computation alluded to in Section2.1. It

leverages work by the Slipstream group [80, 71] on simultaneous redundant multithreading

as well as earlier work on instruction reuse [92].

Srinivasan et al. have also been very active in promoting theneed for robust designs

that can withstand the wide variety of reliability challenges on the horizon [98]. Their work

attempts to accurately model the MTTF of a device over its operating lifetime, facilitating

the intelligent application of techniques like dynamic voltage and/or frequency scaling to

meet reliability goals. Although some physical models are shared in common, the focus

of the WDU is not to guarantee that designs can achieve any particular reliability goal, but

rather to enable a design to recognize behavior that is symptomatic of wearout induced

breakdown allowing it to react accordingly.

Analyzing circuit timing in order to self-tune processor clock frequencies and voltages

is also a well studied area. Kehl [43] discusses a technique for re-timing circuits based

on the amount of cycle-to-cycle slack existing on worst-case latency paths. The technique

presented requires offline testing involving a set of storedtest vectors in order to tune the

clock frequency. Although the proposed circuit design is similar in nature to the WDU, it

only examines the small period of time preceding a clock edgeand is only concerned with

worst case timing estimation, whereas the WDU employs sampling over a larger time span
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in order to conduct average case timing analysis. Similarly, Razor [9] is a technique for

detecting timing violations using time-delayed redundantlatches to determine if operating

voltages can be safely lowered. Again, this work studies only worst-case latencies for

signals arriving very close to the clock edge.

2.7 Summary

In this chapter we characterized the device-level effects of oxide breakdown (OBD)

on circuit performance and demonstrated that progressive OBD has a non-uniform impact

on circuit performance. The results of the circuit-level modeling were then applied to a

synthesized implementation of the OR-1200 microprocessorto analyze the effects of OBD

at the microarchitectural level. Circuit timing was identified as a common phenomenon

that can be tracked to predict the progression of OBD. A self-calibrating circuit for ana-

lyzing circuit path delay along with an algorithm for predicting failure using this data was

proposed. Results show that our failure prediction algorithm is successful in identifying

wearout and flagging outputs that suffer a trend of increasing delay over time.
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CHAPTER III

Maestro: Orchestrating Lifetime Reliability in Chip

Multiprocessors

3.1 Introduction

In recent years, computer architects have accepted the factthat transistors become less

reliable with each new technology generation [18]. As technology scaling leads to higher

device counts, power densities and operating temperatureswill continue to rise at an alarm-

ing pace. With an exponential dependence on temperature, faults due to failure mechanisms

like negative-bias temperature instability (NBTI) and time-dependent dielectric breakdown

(TDDB) will result in ever-shrinking device lifetimes. Furthermore, as process variation

(random + systematic) and wearout gain more prominence in future technology nodes,

fundamental design assumptions will become increasingly less accurate. For example, the

characteristics of a core on one part of a chip multiprocessor (CMP) may, due to manufac-

turing defects, only loosely resemble anidentically designedcore on a different part of the

CMP [116, 103]. Even the behavior of the same core can be expected to changeover time

as a result of age-dependent degradation [77, 105].
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In light of this uncertain landscape, researchers have begun investigating dynamic ther-

mal and reliability management (DTM and DRM). Such techniques hope to sustain current

performance improvement trends deep into the nanometer regime, while maintaining the

levels of reliability and life-expectancy that consumers have come to expect, by hiding a

processor’s inherent susceptibility to failures and hotspots. Some recent proposals rely on

a combination of thread scheduling and dynamic voltage and frequency scaling (DVFS)

to recover performance lost to process variation [103, 116]. Others implement intelligent

thermal management policies that can extend processor lifetimes and alleviate hotspots by

minimizing and bounding the overall thermal stress experienced by a core [52, 67, 27, 24].

There have also been efforts to design sophisticated circuits that tolerate faults and adap-

tive pipelines with flexible timing constraints [30, 104]. Although many DTM schemes

actively manipulate job-to-core assignments to avoid thermal emergencies, most existing

DRM approaches onlyreact to faults, tolerating them as they develop.

In contrast, Maestro takes a proactive approach to reliability. To the first order, Maestro

performs fine-grained, module-level wear-leveling for many-core CMPs. Although analo-

gous to wear-leveling in flash devices, the challenge of achieving successful wear-leveling

transparently in CMPs is considerably more difficult. Left unchecked, wearout causes all

structures within a core to age and eventually fail. However, due to process variation, not

all cores (or structures) will be created equal. Every core will invariably possess some

microarchitectural structures that are more “damaged” (more susceptible to wearout) than

others [104, 103]. Performing post-mortems on failed cores (in simulations) often reveals

that a single microarchitectural module, which varies fromcore to core, breaks down long

before the rest. Maestro extends the life of these “weak” structures, their corresponding
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cores, and ultimately the CMP by ensuring uniform aging withscheduling-driven wear-

leveling across all levels of the hierarchy.

Maestro dynamically formulates wearout-centric schedules, where jobs are assigned to

cores such that cores do not execute workloads that apply excessive stress to their weakest

modules (i.e., a floating-point intensive thread is not bound to a core with a weakened

floating-point adder). This accomplisheslocal wear-levelingat the core level, avoiding

failures induced by a single weak structure. When two cores both have a strong affinity for

the same job, a heuristic, which enforcesglobal wear-levelingat the CMP level determines

which core is given priority. Typically, unless there is a substantial negative impact on local

wear-leveling, deference is given to the weaker of the two cores. This ensures that, when

necessary, stronger cores are allowed to execute less desirable jobs in order to postpone

failures in weaker cores (details in Section3.3.2).

By leveraging the natural, module-level diversity in application thermal footprints (Sec-

tion 3.2.3), Maestro has finer-grained control over the aging process than a standard core-

level DVFS approach, without any of the attendant hardware/design overheads. Given the

complex nature of wearout degradation, Maestro departs from the conventional reliance

on static analysis to project optimized schedules. Instead, the condition of the underly-

ing CMP hardware is continuously monitored, allowing Maestro to dynamically refine and

adapt scheduling algorithms as the system ages. Architectures like those envisioned in

[101], with low-level circuit sensors, can readily supply this real-time “health” monitoring.

Maestro offers two key benefits for future CMP systems. First, the fine-grained, local

wear-leveling prevents unnecessary core failures, maximizing the life ofindividual cores.

Longer lasting cores translates to more work that can be doneover the life of the sys-
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tem. Second, it improves the ability of the system to sustainheavy workloads despite

the effects of aging. Enforcing global wear-leveling maximizes thenumberof functional

cores (throughout its useful life), which in turn maximizesthe computational horsepower

available to meet peak demands. With higher degrees of process variation on the horizon,

premature core failures will make it increasingly more difficult to design and qualify future

CMPs. However, by harnessing the potential of Maestro, proactive management will en-

able semiconductor manufacturers to provide chips with longer lifetimes as well as ensure

that system performance targets are consistently met throughout that lifetime. The central

contributions of this chapter include:

• An evaluation of workload variability and its impact on reliability/wearout.

• An introspective system, Maestro, that utilizes low-level sensor feedback and

application-driven wear-leveling to proactively manage lifetime reliability.

• The design and evaluation of two reliability-centric job scheduling algorithms.

3.2 Scheduling for Damaged Cores and Dynamic Workloads

As mentioned, researchers have investigated techniques that leverage intelligent job

scheduling to recover performance, manage on-core temperatures, or cope with process

variation. However, none have studied the influence that wearout-centric scheduling alone

can have on the evolution of wearout within a core, and the overall lifetime reliability

of a CMP system. Section3.2.1presents a brief overview of common failure mechanisms.

Next, Section3.2.2surveys previously proposed scheduling approaches and highlights lim-

itations. Then, to quantify the potential for reliability-centric scheduling, Section3.2.3
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Mechanism Mean Time to Failure (MTTF) Failure Mode

NBTI MTTF ∝ ( 1
V

)γe
EaNBTI

κT

ShiftingVt leads to increasing
leakage current and slower devices
that eventually cease to switch.

TDDB MTTF ∝ ( 1
V

)(a−bT )e
(X+ Y

T
+ZT )

κT

Compromises the oxide, leading
to increasing gate current and
switching delay.

EM MTTF ∝ (α CV
WH

)−ne
EaEM

κT

Accumulation/depletion of metal
in interconnects results in faults
due to shorts and voids.

TC MTTF ∝ ( 1
T−Tambient

)q
Fatigue due to thermal expansion/
contraction leads to packaging
failures.

Table 3.1: Common failure mechanisms: Negative Bias Temperature Instability (NBTI), Time De-
pendent Dielectric Breakdown (TDDB), Electromigration (EM) and Thermal Cycling (TC). V =
voltage, T = temperature,α = switching factor,κ = Boltzmann’s constant,Vt = threshold voltage,
and all other variables are technology dependent fitting parameters.

examines the module-level thermal diversity seen across a set of SPEC2000 applications.

Lastly, Section3.2.4presents preliminary results quantifying the impact of this variation

on processor lifetimes.

3.2.1 Failure Mechanism Review

A large body of work exists in the literature on characterizing the behavior of wearout

mechanisms that age processors. Researchers have focused on capturing the dependence

of these mechanisms on operating parameters like voltage and temperature. This depen-

dence is typically presented in the form of mean time to failure (MTTF) equations. These

equations are then often used to project the average expected lifetime of a processor in

the field, given a set of worst-case operating conditions (Vdd, temperature, etc.). Design-

ing and qualifying a processor to meet a target MTTF with worst-case (or near-worst-

case) conditions in mind (MTTFwc) ensures that expected operating lifetimes will be met
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because actual operating conditions in the field tend to be much milder than worst case

(MTTFactual >> MTTFwc). Table3.1 summarizes some of the common mechanisms

that have been studied in the past. Note the strong dependence of all the mechanisms on

temperature.

Research into the physical effects of wearout has shown thatmany prominent mecha-

nisms, especially TDDB and NBTI, are progressive in nature [51, 119, 23]. Unlike soft-

errors that can occur suddenly and without warning, wearout-related faults are typically

more gradual, manifesting as small defects that eventuallyevolve into hard faults. This

property of wearout suggests that before age-induced degradation can cause permanent

failures in a CMP, measuring the accumulation of damage can actually be used to dynami-

cally monitor the life-expectancy of individual cores. Theremainder of this chapter targets

TDDB and NBTI, which are expected to be the two leading causesof wearout-related fail-

ures in future technologies, but can be easily extended to address any progressive failure

mechanisms that may emerge in the future.

3.2.2 Existing Scheduling Schemes

Scheduling, in the context of this chapter, refers to the process of assigning jobs to

cores in a CMP, and is conceptually decoupled from the operating system (OS) scheduler.

The schedulers proposed by microarchitects in the past typically resided in a virtualization

layer (i.e., system firmware) that sits between the OS and theunderlying hardware. At each

scheduling interval the OS supplies a set of jobs,J , to this virtualization layer, and it is the

task of the low-level scheduler to bind the jobs to cores.
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Prior work in this area can be roughly divided into two broad categories: performance-

centric schedulers,perf-centric, which exploit the variability in performance characteris-

tics between cores in a CMP [103, 116], and thermal-aware schedulers that are cognizant

of on-chip temperatures. Work within the thermal-aware category can be further differ-

entiated into those that target power reduction or performance improvement (higher al-

lowable frequencies) [67, 88, 20, 46], thermal-p, and those that target reliability enhance-

ment [52, 105], thermal-r. The characteristics, and limitations, of schedulers within each

of these categories is discussed below.

3.2.2.1 perf-centric

In large CMP systems, whether due to process variation or aging (or both), some cores

will have slower critical paths or even non-functional components. In this environment

where some cores have better performance characteristics than others (e.g., faster sustain-

able frequencies or more usable issue queue entries) performance-oriented schedulers seek

to identify intelligent schedules that match application requirements to hardware capability.

Appropriate scheduling results in better overall system performance, and can hide to an ex-

tent, the existence of cores with degraded functionality. However, perf-centric schedulers

fail to address a major root-cause of performance degradation, device aging.

3.2.2.2 thermal-p

These schedulers attempt to identify schedules that minimize peak temperatures across

a core and/or CMP by exploiting the spatial locality of heat dissipation. Interleaving hot and

cool jobs between adjacent cores alleviates the stress on the thermal packaging, increasing
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its efficiency, by not concentrating the heat among neighboring cores. This reduces power

consumption and the probability of temperatures exceedingthermal thresholds, minimizing

the performance penalty incurred by thermal throttling. Oftentimes these techniques can

also be coupled with DVFS. By running at higher frequencies to exploit the thermal head-

room afforded by scheduler-driven hotspot mitigation, andrelying on judicious DVFS to

avoid thermal emergencies, overall system performance canbe greatly enhanced. Although

minimizing peak temperatures improves the reliability of the hottest processor structures,

many core failures are caused by modules that only experience moderate temperatures but

were more prone to aging due to process variation.

3.2.2.3 thermal-r

In a slight variation on thermal-p schedulers, these techniques attempt to track the ef-

fects of thermal stress directly on reliability. Proposalslike Reliability Banking [52] model

reliability as a function of thermal history. The intuitionhere is that wearout is a cumula-

tive process whose rate is strongly influenced by temperature. By maintaining a history of

on-die temperatures these techniques can exploit the fact that applications are often com-

prised of hot and cool phases. Performance can be improved byaccelerating (frequency

scaling) periods of cool execution or by selectively disabling thermal throttling during pe-

riods of hot execution. Reliability targets are met as long as the cumulative thermal history

for a processor is not allowed to exceed a predetermined threshold. Although this could

be effective for truly homogeneous systems, in future CMPs with significant amounts of

process variation, thermal stress is only half of the story.A comprehensive approach must

also account for the existing damage already present in eachcore. More recent work by
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Tiwari [105] addresses this shortcoming by monitoring the consumptionof timing margins,

implicitly accounting for both process variation and wearout. However, their main focus

was on the use of Adaptive Body Biasing (ABB) and Adaptive Supply Voltage (ASV)

scaling to increase lifetime operating frequencies. Theirdiscussion of an aging-driven

scheduling scheme is cursory and lacks the analysis and algorithmic tradeoffs presented in

this work. Additionally, apart from relying heavily on static analysis of projected operating

conditions, the proposal in [105] is also intrusive, requiring extensive hardware support

(area and complexity) for ABB and ASV.

To summarize, previous perf-centric and thermal-p schedulers have illustrated how ef-

fective job scheduling can improve performance and power consumption. However, by not

accounting for issues like the impact of process variation,module-level thermal variation

across applications, system utilization, etc., existing thermal-r schedulers have not tapped

the full potential of wearout-centric scheduling. The nextsection provides the motivation

for this claim.

3.2.3 Workload Variation

Since both TDDB and NBTI are highly dependent on temperature, it is important to

understand the thermal footprints of typical applicationsin order to appreciate the potential

for reliability-centric scheduling. Figure3.1shows the range of temperatures experienced

by different structures within an Alpha21364-like processor [5] across a set of 8 SPECINT

(bzip2, gcc, gzip, mcf, perlbmk, twolf, vortex, vpr) and 9 SPECFP benchmarks (ammp,

applu, apsi, art, equake, galgel, lucas, sixtrack, swim, wupwise). All temperatures are
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Figure 3.1: Variation of module temperatures across SPEC2000 workloads. All temperatures are
normalized toTmax, the peak temperature seen across all benchmarks and modules (83◦C).

normalized to the peak temperature,Tmax, seen across all modules and benchmarks, which

corresponds to the temperature of theFPAdd module when runninglucas(83◦C). Notice

the significant variation in temperature within nearly every module. Apart from the more

than 40% variation seen inFPAdd (a 37◦C swing), other structures (whose utilizations

are not as strongly correlated with the execution of floating-point and integer benchmarks)

also exhibit significant temperature shifts, 10-15% forBpred andIntReg. These large

temperature ranges suggest that scheduling alone can be a powerful tool for manipulating

aging rates.

Figure3.2selects a few representative applications and examines them in greater detail.

Figures3.2aand3.2bhighlight how the traditional view of “hot” and “cold” applications is

perhaps too simplistic. Without accounting for the module-level variation in temperatures,

one could incorrectly assume thatapplu is more taxing, from a reliability perspective, than

vpr or wupwisesimply because it exhibits a higher peak operating temperature (FPMul).

However, this would neglect the fact that for many structures, likeIntReg, temperatures

for appluare actually much lower than the other two applications. Forcompleteness, Fig-

ure 3.2c is included to show that variations in module temperatures exist even between
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(a) SPECFP v. SPECINT (b) SPECFP v. SPECFP

(c) Variation despite comparable peak temperatures

Figure 3.2: Head-to-head comparisons of applu (SPECFP), vpr (SPECINT), and wupwise
(SPECFP). No one benchmark in (a), (b), or (c) strictly dominates the other (with respect to tem-
perature) across all modules.

applications with comparable peak temperatures. All things considered, deciding where

on the CMP to schedule a particular application, to achieve the least reliability impact, re-

quires additional information about the strength of individual structures within every core.

Although the magnitude of the temperature differences may not seem impressive at first,

with peak deltas in module temperatures around 10-20% in Figure3.2a, these modest vari-

ations in temperature can have dramatic impacts on a processor’s mean time to failure

(MTTF).
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3.2.4 Implications for Mean Time to Failure

From Figure3.2, one could expect a core consistently runningappluto fail because of a

fault in theFPMul unit due to its high operating temperatures. However, in thepresence of

process variation other structures within the core could have been manufactured with more

defects (or tighter timing margins), and therefore even more susceptible to failure despite

not ever realizing the same peak temperatures asFPMul. In this environment, a reliability-

centric job scheduler must take into consideration the extent of damage present within a

core in addition to the per-module thermal footprint of running applications. Figure3.3

presents the expected lifetime of a core runningappluor vpr as a function of the module

identified as the weakest structure. The lifetimes are projected based on well-known MTTF

equations for NBTI and TDDB [49, 97]. The values are normalized to the best achievable

MTTF, which in this comparison is attained ifFPMap is the weakest module in the core

and the core is runningvpr. The optimal job to schedule on a particular core to maximize

its lifetime is dependent not just on the application mix currently available, but also on

the strengths of individual structures within that core. Schedulingappluon a core with a

weakIntReg can nearly triple its operating lifetime compared to naively forcing it to run

vpr. Similarly, schedulingvpr instead ofappluon a core with a weakFPAdd improves its

projected lifetime by more than 4x.

To further highlight the need to address process and workload variation, a quick exam-

ination of the processors simulated in Section3.4.2reveals that 35% of core failures are

the result of failing structures that never experience peakon-chip temperatures. Further-

more, 22% of core failures are caused by modules that do not rank among the top three
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Figure 3.3: Projected core lifetime based on execution ofappluandvpr as a function of the module
identified as the weakest structure. Values are normalized to the best achievable MTTF.

most thermally active. By accounting for the impact of process variation and module-level

thermal variation of applications, Maestro can prevent premature core failures and reap the

opportunity left on the table by previous schedulers.

3.3 System Design

Figure 3.4 presents a block diagram of Maestro, which consists of two main com-

ponents: 1) a health monitoring system (introspection) and2) a virtualization layer that

implements wearout-centric job scheduling (management).Although this chapter targets

reliability-centric scheduling, a broader vision of introspective reliability management could

use online sensor feedback to guide a range of solutions fromtraditional DVFS to more

radical approaches like system-level reconfiguration [79, 39].

3.3.1 Health Monitoring

Tracking the evolution of wearout damage within a CMP (i.e.,health monitoring) is

essential to forming intelligent reliability-centric schedules. Maestro assumes that the un-

derlying CMP is provisioned with circuit-level sensors like those described in [101]. Rec-
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ognizing that the two mechanisms addressed in this work, NBTI and TDDB, both impact

physical device parameters as they evolve has led researchers to actively develop circuit-

level sensors that can track these changes. NBTI is known to shift threshold voltage (Vt)

leading to slower devices and increased subthreshold/standby leakage current (Iddq), while

TDDB increases gate currents (Igs andIgd). Both result in statistically measurable degra-

dation in timing paths at the microarchitectural-level [42, 102, 16, 22].

A runtime system collects raw data streams from the array of circuit-level sensors and

applies statistical filtering and trend analysis (similar to what is described in [16]) to convert

these streams into descriptions of system characteristicsincluding, delay profiles, leakage

currents, and operating temperatures. These individual channels of information are then

processed to generate a comprehensive microarchitectural-level reliability assessment of

the CMP. This is shown in Figure3.4 as a vector of per-module damage values (relative

to the maximum damage sustainable prior to failure). Introducing the additional analysis

step allows the health monitoring system to account for things like the presence of re-

dundant devices within a structure, the influence of shifting environmental conditions on

sensor readings, and the interaction between different wearout mechanisms. Ultimately,

this allows the low-level sensor feedback to be abstracted with each vector representing the

effective damage profile for a particular core.

3.3.2 Maestro Virtualization Layer

The second portion of the Maestro framework resides in system firmware that serves as

the interface between the OS and the underlying hardware. The OS provides the virtual-

ization layer with a set of jobs that need to run on the CMP and other meta-data (optional)
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Figure 3.4: A high-level block diagram of the Maestro introspective reliability management system.
Dynamic monitoring of sensor feedback and detailed characterization of workload behavior enables
Maestro to improve lifetime system reliability with wearout-centric scheduling.

that can guide Maestro in refining its scheduling policies (Section3.3.2.3). Online profiling

of system workloads identifies application-specific thermal footprints, shown in Figure3.4

as a vector of per-module temperatures for each application. This thermal footprint can

either be generated by brief exploratory execution of jobs on the available cores, similar to

what is done in [116], or projected by correlating thermal behavior with program phases

(leveraging the existing body of work on runtime phase monitoring and prediction [40]).

Given the prevalence of on-chip temperature sensors [36], Maestro assumes low-overhead

exploration is performed during each scheduling interval.Coupled with the real-time health

assessments, this detailed module-level application characterization enables Maestro to cre-

ate wearout-centric job schedules that intelligently manage CMP aging.

As previously defined, scheduling in this chapter will referto the act of mapping threads

to cores and is initiated by two main events, 1) the OS issues new jobs for Maestro to ex-
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ecute (pushes into a FIFO queue) or 2) the damage profile of theunderlying CMP has

changed sufficiently (taking on the order of days/weeks) to warrant thread migration. The

two reliability-centric scheduling policies evaluated inthis work illustrate two approaches

to lifetime reliability. The greedy policy (Section3.3.2.2) takes the position that all core

failures are unacceptable and aggressively preserves eventhe weakest cores. The adaptive

policy (Section3.3.2.3) champions a more unconventional philosophy that claims indi-

vidual core failures are tolerable provided the lifetime reliability of the CMP system is

maximized.

Both wearout-centric policies, and the naive baseline scheduler, are presented below

along with corresponding pseudocode. Unless otherwise indicated, the following defini-

tions are common to all policies:

m: a microarchitectural module (i.e.,FPMul, IntReg, etc.).

LiveCores: the set of functional cores in the CMP,{c0, c1, ..., cN}.

JobQueue: the set ofall pending, uncompleted jobs issued from the OS.

ActiveJobs: the set of theN oldest, uncompleted, jobs,{j0, j1, ..., jN}.

Dmg(m): the entry in the CMP damage profile for modulem.

Temp(j, m): the entry for modulem in the temperature footprint for jobj.

3.3.2.1 Naive Scheduler

A standard round-robin scheduler is used as the baseline policy. The least-recently-used

(LRU) core in the set ofLiveCores is assigned the oldest job from the set ofActiveJobs.
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Algorithm 1 Greedy wearout-centric scheduler
Step 1:

foreach c ∈ LiveCores do
find cdmg , the damage present in corec , where

cdmg ←− Dmg(m′) |m′ ∈ c ∧Dmg(m′) ≥ Dmg(m), ∀m ∈ c

end
sort LiveCores based oncdmg

end
Step 2:

until ActiveJobs is empty
cw ←− weakest core inLiveCores based oncdmg

mw ←− m′ |m′ ∈ cw ∧Dmg(m′) ≥ Dmg(m), ∀m ∈ cw

foreach j ∈ ActiveJobs do
find costj,cw , the cost of executing jobj on corecw , where

costj,cw ←− Temp(j,mw)

end
jopt ←− j′ | j′ ∈ ActiveJobs ∧ costj′,cw

≤ costj,cw , ∀j ∈ ActiveJobs

Assign jobjopt to corecw

Removecw from LiveCores andjopt from ActiveJobs

end
end

This process is repeated until all jobs inActiveJobs have been scheduled. This policy

maintains high-level load balancing by distributing jobs uniformly across the cores. How-

ever, without accounting for core damage profiles or application thermal footprints, the

resulting schedule is effectively a random mapping (from a reliability perspective).

3.3.2.2 Greedy Scheduler

This policy attempts to minimize the number of premature core failures by greedily

favoring the weakest cores (Algorithm1). Cores are sorted based upon their damage pro-

files and priority is given to the cores whose weakest modulespossess the most damage

(Step 1 of Algorithm1). These “weak” cores are greedily assigned jobs with the most

favorable thermal footprints with respect to their damage profiles (Step 2 of Algorithm1),
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Algorithm 2 Adaptive wearout-centric scheduler
let GA(J,C) be the optimal schedule generated by the GA for jobsJ and coresC
Step 1:

foreach c ∈ LiveCores do
find cdmg , the damage present in corec , where

cdmg ←−
∑c

mi
αiDmg(mi) andαi is a scaling factor biased toward modules

with more damage

end
sort LiveCores in increasing order ofcdmg

PrimaryCores←− first n coreswheren is set by the user through the OS
SecondaryCores←− remainingN − n cores

end
Step 2:

let Sprimary, be the set of job-to-core assignments,(j, c), ∀c ∈ PrimaryCores

Sprimary ←− GA(ActiveJobs, PrimaryCores)
Assign jobs forPrimaryCores according toSprimary

Remove assigned jobs fromActiveJobs

end
Step 3:

let Ssecondary, be the set of job-to-core assignments,(j, c), ∀c ∈ SecondaryCores

Ssecondary ←− GA(ActiveJobs, SecondaryCores)
Assign jobs forSecondaryCores according toSsecondary

end

minimizing their effective thermal stress. Thislocal wear-levelingreduces the probability

that these weak cores will fail due to asingledamaged structure. Scheduling the weak

cores first maximizes the probability of finding jobs with favorable thermal footprints with

respect to each weak core since there is a larger applicationmix to choose from. However,

this also forces the stronger cores to execute the remaining, potentially less desirable, jobs.

In practice, this means that the stronger cores in the CMP actually sacrifice a portion of

their lifetime to lighten the burden on their weaker counterparts (global wear-leveling).

3.3.2.3 Adaptive Scheduler

The adaptive scheduler recognizes that many CMP systems areoften underutilized,

provisioned with more cores than they typically have jobs torun (see Section3.4.4). The
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scheduler exploits this fact by allowing a few weak cores to be sacrificed in order to pre-

serve the remaining stronger cores (Algorithm2). Although being complicit in core failures

may seem non-intuitive, in systems that are underutilized,the greedy scheduler can lead to

CMPs that are overprovisioned early in the CMP’s life (LiveCores >> JobQueue) while

not assuring enough available throughput (LiveCores < JobQueue) later on. This insight

forms the basis of the adaptive policy.

Promoting a survival-of-the-fittest environment, this policy maximizes the functional

life of the strongest subset of cores (PrimaryCores in Step 1 of Algorithm2), those

with the least amount of initial damage and the potential to have the longest lifetimes. By

assigning jobs to thePrimaryCores first, Maestro ensures that they execute applications

with the most appropriate thermal footprints (Step 2 of Algorithm 2). The remaining jobs

are assigned amongst theSecondaryCores (Step 3 of Algorithm2). This can lead to

some weak cores failing sooner than under a greedy policy. Note, however, in Step 3 of

Algorithm 2, the scheduler is still looking amongst the remaining jobs for the one with the

best thermal footprint given a core’s damage profile. Thislocal wear-leveling, common

to both the greedy and adaptive policies, ensures that the weaker cores even under the

adaptive policy survive longer than they would under the naive policy. Ultimately, over the

lifetime of the CMP, ifPrimaryCores ≥ JobQueue consistently, while avoiding periods

whenPrimaryCores >> JobQueue or PrimaryCores < JobQueue, then Maestro

has maximized the total amount of computation performed by the system. The proper size

of PrimaryCores, n, is exposed to the OS so that the behavior of the scheduler canbe

customized to the needs of the end user.
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Finally, note in Step 2 and Step 3 of Algorithm2, the scheduler uses an optimization

scheme based on a genetic algorithm (GA) to identify the least-cost schedules for both

thePrimaryCores andSecondaryCores. This allows the adaptive scheduler to consider

the effect scheduling a job has on all structures within a core (unlike the greedy scheduler

which only looks at the weakest structure) for more effective local wear-leveling.

3.3.2.4 GA optimization

The optimization used in this work is derived from [25], a standard solution of the

generalized assignment problem, and is described below1.

Chromosome definition: The chromosome modeled is a job-to-core mapping of a set of

n jobs,J = {j0, j1, ..., jn}, to a set ofm coresC = {c0, c1, ..., cn}. It is represented as a

one-dimensional array where the value stored at indexi, ji, is the job that has been assigned

to corei. The example in Figure3.5 has jobsj1 mapped to core 0,jn−1 mapped to core

1, andj0 mapped to corem. During Step 2of the adaptive scheduling algorithmn > m,

while for the optimization performed inStep 3m = n.

Figure 3.5: Chromosome structure

Cost function: The cost function used by the GA is recalculated at each scheduling in-

terval, based on the CMP damage profile and application thermal footprints, according to

1The runtime overhead of the GA is negligible for long-running scientific and server workloads.
However, for shorter-running applications the GA optimization can be replaced by a greedy version
without severely impacting the effectiveness of the adaptive scheduler.
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(a) Parent selection

(b) Crossover operation

(c) Conflict resolution (d) Mutation

Figure 3.6: Steps involved in reproduction.S0, S1, S2, S3 are the parental candidates.Sc is the
resulting child chromosome after initial crossover.S′

c andS′′
c are the states of the child chromosome

after conflicts resolution and mutation respectively.

Equation3.1, whereCost(S) = the cost of scheduleS andCost(j, c) = the cost of schedul-

ing job j on corec.

Cost(S) =

S
∑

j,c

Cost(j, c)

=
S

∑

j,c

(

c
∑

m

Dmg(m) · Temp(j, m)
)

(3.1)

The individual steps of the GA are enumerated below:
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1. Generate initial population: An initial population of solutions (schedules) is cre-

ated by randomly enumerating a subset of the possible job-to-core mappings.

2. Evaluate fitness:Calculate the fitness (cost) of all members of the populationusing

Equation3.1.

3. Reproduction: Two parents are identified, each using a simple binary tournament

where two candidates are selected randomly from the population and the one with the

best fitness (smallest cost) is chosen for reproduction (Figure3.6a). A child is gener-

ated by applying a one-point crossover operator on the parent chromosomes, where

a random crossover pointi ∈ [0, m] is selected, wherem is the size of the chromo-

somes. The child chromosome is formed by combining the firsti genes from one

parent with the lastm− i genes from the second parent (Figure3.6b) . Note that this

newly formed chromosome could have the same job assigned to two different cores.

For this case to arise there must also be a set of jobsJ ′ ⊂ J that are unassigned

sincen ≥ m. To resolve the conflicts, one of the redundant cores (selected at ran-

dom) is reassigned a job fromJ ′ based onCost(j, c) (Figure3.6c). Lastly, the newly

formed child chromosome is mutated by taking 2 randomly selected job assignments

and swapping them (no risk of creating new conflicts), reducing the probability of

converging at local optima (Figure3.6d) .

4. Replace and Repeat:After a child solution is formed the weakest member, as de-

fined by the cost function, of the existing population is replaced by the new child.

This concludes a single generation in the evolutionary cycle. The process is repeated
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until a predetermined number of generations,genmax, fails to produce an improved

solution2.

3.4 Evaluation and Analysis

This section evaluates Maestro’s reliability-centric scheduling policies using lifetime

reliability simulations. A variety of system parameters including CMP size and system

utilization are varied to investigate their impact on Maestro’s performance. The effective-

ness of each wearout-centric policy is measured in terms oflifetime throughput(LT), the

number of cycles spent executing active jobs (real applications not idle threads), summed

across all cores, throughout the entire lifetime of the CMP.LT improvement metrics are the

result of comparisons with the naive, round-robin scheduler presented in Section3.3.2.1.

Monte Carlo experiments are conducted using a simulation setup similar to the framework

in [35]. The standard toolchain of SimpleScalar [10], Wattch [21], and Hotspot [88] is used

to simulate the thermal characteristics of workloads and Varius [82] is used to model the

impact of process variation. Results presented in this section, unless otherwise indicated,

are for a 16-core CMP with processors modeled after the DEC Alpha 21264/21364 [5].

Details of the CMP configuration can be found in Figure3.7.

2Given the size of the solution space, as many as16! possible schedules for a 16-core CMP,
values ofgenmax from 0 to 100,000 were studied to understand the tradeoff between optimality and
runtime. The actual values ofgenmax used in Section3.4 were determined empirically based on
the CMP size, with many runs producing good results withgenmax as low as 1000.
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(a) CMP floorplan (b) Core floorplan

(c) Alpha 21364 die photo (d) Core specifications

Figure 3.7: CMP details. All simulation results, unless otherwise stated, are presented for a CMP
configured with 16 cores.

3.4.1 Adaptive Lifetime Simulation

Given that CMPs have lifespans on the order of years (3-5 years in future computer sys-

tems [33]), detailed lifetime reliability simulation is a computationally intensive task. This

is especially true when large numbers of Monte Carlo runs must be conducted to generate

statistically significant results. Since wearout damage takes years to reach critical mass,

results presented in this section were gathered using anadaptivesimulation scheme. Short

periods of detailed system-level reliability simulation,the darker phases in Figure3.8a, are

used to gather statistics on the progression of CMP aging in light of dynamically chang-

ing workload streams and Maestro’s reliability-centric scheduling. The simulation is then
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rapidly advanced through a longer period of time (accelerated simulation) using the statis-

tics generated during the most recent detailed phase as a guide. To minimize error, the

length of the accelerated simulation phase is limited by theamount of damage accumulated

during the detailed interval according to Equation3.2:

La = (
Dfail

Dacc

) · AF · Ld where, (3.2)

La = the length of the accelerated phase.

Ld = the length of the previous detailed phase.

Dfail = the amount of damage the weakest core in the CMP can sustain before failing.

Dacc = the amount of damage accumulated by the weakest core during the previous

detailed phase.

AF = variable parameter that trades off simulation time for accuracy (0%-100%).

Dynamically adjusting the durations allows simulation to slow down as cores near their

failing point, where small changes in damage and schedulingdecisions have larger impli-

cations. When a core fails in phasei, accelerated simulation resumes at a faster rate (Lai+1

> Lai
), butLa soon contracts as the next core in the CMP nears failure. Figure 3.8aillus-

trates (not to scale) how adjustingAF can influence the lengths of the accelerated phases.

The value ofAF essentially dictates the number of detailed phases that aresimulated be-
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(a) Interleaving of detailed and accelerated simula-
tion phases.

(b) Simulation time/error v. acceleration factor (AF).

Figure 3.8: The adaptive simulation used to accelerate lifetime reliability simulations while incur-
ring minimal experimental error.

tween core failures. At anAF of 100%, simulations are accelerated from one core failure

to the next. However, whenAF is dialed down to 50%, many more phases are required

to cover the same amount of simulated time, concentrating simulation effort around times

when cores are failing and improving simulation accuracy. Figure3.8bshows both simu-

lation time speedup and error as a function ofAF , illustrating how simulation time can be

traded off for fidelity. The experiments presented in this work use anAF of 6%, resulting

in simulation runtimes from 30 minutes to over 6 hours for a single Monte Carlo run.

3.4.2 Lifetime Throughput Enhancement

Figure3.9shows the normalized LT improvement as a function of the scheduling policy,

CMP size, and failure threshold. In the context of this chapter, failure threshold is defined

as the number of cores that must fail before a chip is considered unusable. This is the point

at which the risks/costs associated with maintaining a system with only a fraction of its

original computational capacity justifies replacing the chip. The CMP is considered dead

even though functional cores still remain. The results shown in Figure3.9 are conducted

for 2 to 16-core systems, and failure thresholds ranging from 1 core to all cores. The
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Figure 3.9: Performance of wearout-centric scheduling policies verses CMP size and failure thresh-
old.

value of the failure threshold is passed to the adaptive policy so that it can optimize for the

appropriate number of cores. Results are shown for CMP utilizations of 100%, providing

a lower-bound on the benefits of the adaptive policy (Section3.4.4examines the impact of

CMP utilization).

As expected, both the greedy and adaptive policies perform well across all CMP sizes

and the majority of failure thresholds. As the size of the CMPgrows, Maestro has more

cores to work with, increasing the chances of finding complementary job-to-core mappings.

This results in more effective schedules for both wearout-centric policies improving their

performance. Yet even with the lack of scheduling alternatives in a 2-core system, both

policies can still achieve a respectable 30% improvement.

A strong dependence on failure threshold is also evident. Byaggressively minimiz-

ing premature core failures, the greedy scheduler achieveslarge gains for small failure

thresholds. However, as the failure threshold nears the size of the CMP, the LT improve-

ment attenuates. This is expected since under the greedy policy, stronger cores sacrifice

a portion of their lifetime in order to preserve their weakercounterparts. The cost of this

68



sacrifice is most apparent when the failure threshold allowsall the cores to fail. In these

systems, the increased contribution toward LT by the weak cores is offset by the loss in LT

resulting from the strong cores failing earlier. Notice also that the adaptive scheduler out-

performs greedy by the largest margins when the failure threshold is roughly half the size

of the CMP. In these situations, the adaptive scheduler has the maximum freedom to sacri-

ficeSecondaryCores to preservePrimaryCores (Section3.3.2.3). At either extreme for

failure threshold, it performs similarly to greedy.

Lastly, it is important to note that, although the benefits ofwearout-centric scheduling

are less impressive for these extreme values of failure threshold, the scenarios when a user

could actually afford to wait for all the cores within a system to fail are also quite remote.

For the remainder of the chapter, all the experiments shown are for a 16-core CMP with a

failure threshold of 8 cores and 100% system utilization unless otherwise indicated.

3.4.3 Failure Distributions

Figure 3.10 presents the failure distributions for the individual cores, as well as the

CMPs that correspond to the results in Figure3.9. Figure3.10aillustrates the effectiveness

of the wearout-centric policies at distributing the workload stress appropriately. The dis-

tribution for the baseline naive policy reveals a bias towards early premature core failures.

The greedy scheduler, exploiting effective wear-leveling, produced a tighter distribution,

lacking in both premature failures as well as cores that significantly outlasted their peers.

Lastly, the adaptive policy also delivers on its promises bypreserving a subset of cores for

a longer period of time than either the naive or greedy schedulers.
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(a) Failure distribution (Core)

(b) CMP failure distribution (CMP)

Figure 3.10: Failure distributions for individual cores and the 16-coreCMP with a failure threshold
of 8 cores and 100% utilization. Trendlines are added (between markers) to improve readability.

Figure3.10btells a similar story, but with chip-level failures. As withthe individual

core distributions, both wearout-centric policies are able to increase the mean failure time

of the CMP population. Note that because the failure time of aCMP is limited by the weak-

est set of its constituent cores, the distributions in Figure3.10bare considerably tighter than

those in Figure3.10a. The corresponding tables of expected lifetimes embedded within the

plots present the data slightly differently. From a productyield/warranty perspective, in-

telligent wearout-centric scheduling can be thought of as an additional means of ensuring

that cores meet their expected reliability qualified lifetimes. For example, the table in Fig-
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Figure 3.11: Impact of CMP utilization on reliability enhancement.

ure3.10bshows that the adaptive scheduler enabled 99% of the chips tosurvive beyond1.9

years, compared to just1.4 years with the naive baseline, a 38% improvement. Granted,

job assignment alone cannot makeguaranteeson lifetime, but it can complement existing

more aggressive techniques like thermal throttling.

3.4.4 Sensitivity to System Utilization

The utilization of computer systems can be highly variable,both within the same do-

main (e.g., variability inside data centers) and across domains. One might expect compu-

tationally intensive scientific codes (e.g., physics simulations, oil exploration, etc.) to con-

sistently utilize the hardware. On the other hand, since designers build web servers to ac-

commodate peak loads (periodic by season, day, and hour), they are often over-provisioned

for the common case. Some reports claim average utilizationas low as 20% of peak [6].

Figure3.11plots the performance of Maestro’s wearout-centric schedulers as a func-

tion of system utilization. The results are shown for nominal utilizations ranging from 20%

(light duty mail server or embedded system) to 100% (scientific cluster)3. Note that ini-

3Although the mean utilization per simulation run is fixed, the instantaneous utilization expe-
rienced by the CMP is allowed to vary over time, sometimes peaking at 100% even for a system
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tially as average utilization drops, improvement in lifetime throughput actually increases.

A system that is slightly underutilized can be more aggressively load balanced since some

cores are allowed to remain idle. However, as utilization continues to drop these gains

are eventually lost, until finally improvements are actually worse than at full utilization.

In these highly over-provisioned systems, the efforts of wearout-centric scheduling to pre-

vent premature failures arepartially wasted because so few cores are actually necessary to

sustain demand. Nevertheless, in the long run, the periodicspikes in utilization do accu-

mulate, and thanks to the longer overall core lifetimes (lower utilization means less overall

stress that translates to longer lifetimes), the greedy andadaptive schedulers still manage

to exhibit improvements.

3.4.5 Sensitivity to Sensor Noise

Figure3.12illustrates how error-prone sensors could impact lifetimereliability gains.

Although the introduction of systematic error, which is studied in Figure3.12b, does reduce

the potential of wearout-centric scheduling, the presenceof random noise (more common

for circuit-level sensors) shown in Figure3.12acan be accounted for and mitigated by the

statistical filtering and trend analysis schemes referenced in Section3.3.1. Yet, even at

the extreme of +/-15% systematic error, Maestro still achieves over 10% LT improvement.

Figure3.12balso suggests that the adaptive scheduler is more sensitiveto noise than the

greedy scheduler. By aggressively trying to preservePrimaryCores, the adaptive heuris-

tic relies strongly on sensor feedback to accurately identify the boundary between its two

classes of processors, making it less robust against sensorinaccuracy.

nominally at 20% load. Furthermore, the averageeffectiveutilization is also changing as cores on
the CMP begin to fail.
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(a) (b)

Figure 3.12: Sensitivity to sensor noise. Although random sensor noise can be removed with the
appropriate filtering, systematic error due to manufacturing tolerances is more problematic.

Figure 3.13: Performance of wearout-centric scheduling with differentsensors. Results are shown
for a failure threshold of 1 core to favor the temperature sensor and access counter based ap-
proaches.

3.4.6 Sensor Selection

Lastly, Figure3.13presents a comparison between the low-level damage sensorsad-

vocated in this work and more conventional hardware like temperature sensors and perfor-

mance counters. Given that Maestro is targeting an environment with significant amounts

of process variation, it is not surprising that employing temperature and activity readings

as proxies for wearout/manufacturing induced damage is inadequate. They are unable to

account for the extent to which non-uniform, pre-existing damage within the CMP re-

sponds to the same thermal stimuli. In the absence of variation, a scheduler relying on

only temperature might effectively enhance lifetime reliability by evenly distributing the
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thermal stress across the CMP. However, without any knowledge of CMP damage profiles,

as process variation is swept from one extreme (no variation) to the other (100% expected

variation at 32nm), thermal load balancing alone is insufficient and Figure3.13shows a

dramatic plunge in the effectiveness of these temperature based schemes. Similarly, the

performance counter approach performed poorly across the spectrum of variation.

3.5 Summary

As large CMP systems grow in popularity and technology scaling continues to exacer-

bate lifetime reliability challenges, the research community must develop innovative ways

for systems to dynamically adapt. Although issues like process variation are the source

of design and validation nightmares, this inherent heterogeneity in future systems is also a

source of potential opportunity. Maestro recognizes that although emerging reliability ob-

stacles cannot be ignored, with the appropriate monitoringand intelligent management,

they can be overcome. By exploiting low-level sensor feedback, Maestro was able to

demonstrate the effectiveness of wearout-centric scheduling at preventing premature core

failures, improving expected CMP lifetimes by as much as 38%. Formulating wearout-

centric schedules that achieved both local and global wear-leveling, Maestro enhanced the

lifetime throughput of a 16-core CMP by as much as 180%. Future work that leverages sen-

sor feedback to improve upon other traditional reliabilitymanagement mechanisms (e.g.,

DVFS) could demonstrate still more potential.
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CHAPTER IV

Shoestring: Probabilistic Soft Error Reliability on the

Cheap

4.1 Introduction

A critical aspect of any computer system is its reliability.Computers are expected to

perform tasks not only quickly, but also correctly. Whetherthey are trading stocks from a

laptop or watching the latest YouTube video on an iPhone, users expect their experience

to be fault-free. Although it is impossible to build a completely reliable system, hardware

vendors target failure rates that are imperceptibly small.

One pervasive cause of computer system failure and the focusof this chapter is soft

errors. A soft error, or transient fault, can be induced by electrical noise or high-energy

particle strikes that result from cosmic radiation and chippackaging impurities. Unlike

manufacturing or design defects, which are persistent, transient faults as their name sug-

gests, only sporadically influence program execution.

One of the first reports of soft errors came in 1978 from Intel Corporation, when chip

packaging modules were contaminated with uranium from a nearby mine [53]. In 2004,
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Cypress semi-conductor reported a number of incidents arising from soft errors [121]. In

one incident, a single soft error crashed an entire data center and in another soft errors

caused a billion-dollar automotive factory to halt every month.

Since the susceptibility of devices to soft error events is directly related to their size and

operating voltage, current scaling trends suggest that dramatic increases in microprocessor

soft error rates (SER) are inevitable. Traditionally, reliability research has focused largely

on the high-performance server market. Historically the gold standards in this space have

been the IBM S/360 (now Z-series servers) [95] and the HP NonStop systems [14], which

rely on large scale modular redundancy to provide fault tolerance. Other research has

focused on providing fault protection using redundant multithreading [80, 74, 59, 38, 90]

or hardware checkers like DIVA [114, 19]. In general, these techniques are expensive in

terms of both the area and power required for redundant computation and are not applicable

outside mission-critical domains.

The design constraints of computer systems for the commodity electronics market dif-

fer substantially from those in the high-end server domain.In this space, area and power are

primary considerations. Consumers are not willing to pay the additional costs (in terms of

hardware price, performance loss, or reduced battery lifetime) for the solutions adopted

in the server space. At the same time, they do not demand “five-nines” of reliability,

regularly tolerating dropped phone calls, glitches in video playback, and crashes of their

desktop/laptop computers (commonly caused by software bugs). The key challenge facing

the consumer electronics market in future deep submicron technologies is providing just

enough coverage of soft errors, such that the effective fault rate (the raw SER scaled by the
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available coverage) remains at level to which people have become accustomed. Examining

how this coverage can be achieved “on the cheap” is the goal ofthis chapter.

To garner statistically high soft error coverage at low overheads, we propose Shoestring,

a software-centric approach for detecting and correcting soft errors. Shoestring is built

upon two areas of prior research: symptom-based fault detection and software-based in-

struction duplication. Symptom-based detection schemes recognize that applications of-

ten exhibit anomalous behavior (symptoms) in the presence of a transient fault [111, 48].

These symptoms can include memory access exceptions, mispredicted branches, and even

cache misses. Although symptom-based detection is inexpensive, the amount of cover-

age that can be obtained from a symptom-only approach is typically limited. To address

this limitation we leverage the second area of prior research, software-based instruction

duplication [75, 76]. With this approach, instructions are duplicated and results are vali-

dated within a single thread of execution. This solution hasthe advantage of being purely

software-based, requiring no specialized hardware, and can achieve nearly 100% coverage.

However, the overheads in terms of performance and power arequite high since a large

fraction of the application is replicated.

The key insight that Shoestring exploits is that the majority of transient faults can ei-

ther be ignored (because they do not ultimately propagate touser-visible corruptions at the

application level) or are easily covered by light-weight symptom-based detection. To ad-

dress the remaining faults, compiler analysis is utilized to identify high-value portions of

the application code that are both susceptible to soft errors (i.e., likely to corrupt system

state) and statistically unlikely to be covered by the timely appearance of symptoms. These

portions of the code are then protected with instruction duplication. In essence, Shoestring
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intelligently selects between relying on symptoms and judiciously applying instruction du-

plication to optimize the coverage and performance tradeoff. In this manner, Shoestring

transparently provides a low-cost, high-coverage solution for soft errors in processors tar-

geted for the consumer electronics market. However, unlikethe high-availability IBM and

HP servers which can provide provable guarantees on coverage, Shoestring provides only

opportunistic coverage, and is therefore not suitable for mission-critical applications.

The contributions of this chapter are as follows:

• A transparent software solution for addressing soft errors in commodity processors

that incurs minimal performance overhead while providing high fault coverage.

• A new reliability-aware compiler analysis that quantifiesthe likelihood that a fault

corrupting an instruction will be covered by symptom-basedfault detection.

• A selective instruction duplication approach that leverages compiler analysis to iden-

tify and replicate a small subset of vulnerable instructions.

• Microarchitectural fault injection experiments to demonstrate the effectiveness of

Shoestring in terms of fault coverage and performance overhead.

4.2 Background and Motivation

4.2.1 Soft Error Rate

The vulnerability of individual transistors to soft errorsis continuing to grow as device

dimensions shrink with each new technology generation. Traditionally, soft errors were

a major concern for memory cells due to their higher sensitivity to changes in operating
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Figure 4.1: The soft error rate trend for processor logic across a range of silicon technology nodes.
TheNominalcurve illustrates past and present trends while theVscaleL, VscaleM, andVscaleH
curves assume low, medium and high amounts (respectively) of voltage scaling in future deep sub-
micron technologies. The user-visible failure rates highlighted at45nm and16nm are calculated
assuming a 92% system-wide masking rate.

conditions. However, protecting memory cells is relatively straightforward using parity

checks or error correcting codes (ECC). On the other hand, combinational logic faults are

harder to detect and correct. Furthermore, Shivakumar et al. [87] has reported that the SER

for SRAM cells is expected to remain stable, while the SER forlogic is steadily rising.

Both these factors have motivated a flurry of research activities investigating solutions to

protect the microproccessor core against transient faults. This body of related work will be

addressed in Section4.6.

Figure4.1shows the SER trend for a range of silicon technology generations reported

in terms offailures in time(FIT1) per chip. Leveraging data presented by Shivakumar et

al. [87], the SER trend for processor logic was scaled down to deep submicron technolo-

gies (similar to what is done by Borkar [18]) to generate the curve labeledNominal. Note

the exponential rise in SER with each new technology generation. Further exacerbating

1The number of failures observed per one billion hours of operation.
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the SER challenge is the fact that in future technologies aggressive voltage scaling (both

static and dynamic) will be required to meet power/thermal envelopes in the presence of

unprecedented transistor densities. The curves,VscaleL, VscaleM, andVscaleH illus-

trate the potential impact low, medium, and high amounts (respectively) of voltage scaling

can have on SER.

Fortunately, a large fraction of transient faults are masked and do not corrupt actual

program state. This masking can occur at the circuit, microarchitectural, or software lev-

els. Our experiments, consistent with prior findings by Wangand Patel [109], show this

masking rate to be around92% collectively from all sources. Accounting for this masking,

the raw SER at45 nm (the present technology node) translates to about one failure every

month in a population of 100 chips. For a typical user of laptop/desktop computers this is

likely imperceptible. However, in future nodes like16 nm the user-visible fault rate could

be as high as one failure a day for every chip. The potential for this dramatic increase in

the effective fault rate will necessitate incorporating soft error tolerance mechanisms into

even low-cost, commodity systems.

4.2.2 Solution Landscape and Shoestring

As previously discussed, a soft error solution tailored forthe commodity user space

needs to be cheap, minimally invasive, and capable of providing sufficientfault coverage.

Figure4.2 is a conceptual plot of fault coverage versus performance overhead for the two

types of fault detection schemes that form the foundation ofShoestring, one based on symp-

toms and the other on instruction duplication. The bottom region in this plot indicates the
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Figure 4.2: Fault coverage versus dynamic instruction penalty trade-off for two existing fault detec-
tion schemes: symptom-based detection and instruction duplication-based detection. Also indicated
is the region of the solution space targeted by Shoestring. The mapping of fault coverage to user-
visible failure rate (dashed horizontal lines) is with respect to a single chip in a16nm technology
node with aggressive voltage scaling (VscaleH).

amount of fault coverage that results from intrinsic sources of soft error masking, available

for free.

Of the remaining, unmasked faults, symptom-based detection is able to cover a signifi-

cant fraction without incurring any appreciable overhead,mostly from detecting hardware

exceptions. However, as a more inclusive set of symptoms areconsidered the overall cov-

erage only improves incrementally while the performance overhead increases substantially.

This is expected since these schemes relies on monitoring a set of rare events, treating their

occurrence as symptomatic of a soft error, and initiating rollback to a lightweight check-

point2. When the set of symptoms monitored is limited to events thatrarely (if ever) occur

under fault-free conditions (e.g., hardware exceptions) the performance overhead is negli-

gible. However, when the set of symptoms is expanded to include more common events

2The checkpointing required for the symptom detection employed by Shoestring already exists in modern
processors to support performance speculation (see Section 4.4).
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like branch mispredicts and cache misses, the overhead associated with false-positives in-

creases [111].

In contrast the coverage versus performance curve is far less steep for instruction dupli-

cation. Since instruction duplication schemes achieve fault coverage by replicating com-

putation and validating the original and duplicate code sequences, the amount of coverage

is easily tunable, with coverage increasing almost linearly with the amount of duplication.

The horizontal lines in Figure4.2highlight three fault coverage thresholds that map to

effective failure rates of one failure per day, week, and month (in the context of a single

chip in 16 nm with aggressive voltage scalingVscaleH). The fault coverage provided by

the intrinsic sources of masking translates to about one failure a day, clearly unacceptable.

To achieve a more tolerable failure rate of one fault per weekor even month, comparable

to other sources of failure in consumer electronics (e.g., software, power supply, etc.), the

amount of fault coverage must be significantly improved. Note that although the symptom-

based detection solution is both cheap and minimally invasive, it falls short of achieving

these coverage thresholds. Similarly, although instruction duplication is capable of meeting

these reliability targets, it does so by sacrificing considerable performance and power (from

executing more dynamic instructions).

Although neither existing technique alone provides the desired performance and cov-

erage tradeoffs, as a hybrid method, Shoestring is able to exploit the strengths of each,

ultimately providing a technique that is optimally positioned within the solution space.
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4.3 System Design

The main intuition behind Shoestring is the notion that near-perfect, “five-nines” re-

liability is not always necessary. In fact, in most commodity systems, the presence of

such ultra-high resilience may go unnoticed. Shoestring exploits this reality by advocating

the use of minimally invasive techniques that provide “justenough” resilience to transient

faults. This is achieved by relying on symptom-based error detection to supply the bulk of

the fault coverage at little to no cost. After this low-hanging fruit is harvested, judicious ap-

plication of software-based instruction duplication is then leveraged to target the remaining

faults that never manifest as symptoms.

To the first order, program execution consists of data computation and traversing the

control flow graph (CFG). Correct program execution, strictly speaking, requires 1) that

data be computed properly and 2) that execution proceeds down the right paths, i.e., com-

pute the datacorrectlyand compute thecorrectdata. Working from this definition, previous

software-based reliability schemes like SWIFT [75] have assumed that a program executes

correctly (from the user’s perspective) if all stores in theprogram are performed properly.

This essentially redefines correct program execution as 1) storing the correct data (to the

correct addresses) and 2) performing the right stores. Implicit is the assumption that the

sphere of replication (SoR) [74], or the scope beyond which a technique cannot tolerate

faults, is limited to the processing core. Faults in the caches and external memories are not

addressed, but can be efficiently protected by techniques like ECC [44].

Shoestring, makes similar assumptions about SoR and correct program execution. How-

ever, unlike SWIFT [75] and other schemes, we are not targetingcompletefault coverage.
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// inpData is a global array
// process() is a global macro
1: index = 0
2: while (!stop)
3: process(inpData[index])
4: process(inpData[index + 1])
5: process(inpData[index + 2])
6: process(inpData[index + 3])
7: index = index + 4
8: stop = (index + 3) >= inpDataSize
9: end

10: // clean-up code
11: for (; index < inpDataSize; index++)
12: process (inpData[index])
13: end

Figure 4.3: A representative example of performance optimized code (loop unrolled).

Relaxing the coverage constraint frees Shoestring from having to protect all portions of a

program in order to guarantee correctness. This affords Shoestring the flexibility to only se-

lectively protect those stores that are most likely to impact program output and least likely

to already be covered by symptom detectors. Furthermore, weacknowledge that recent

work by Wang et al. [110] has shown that as many as 40% of all dynamic branches areout-

come tolerant. That is, they do not affect correct program behavior when forced down the

incorrect path. The authors demonstrate that many of these so-called “Y-branches” are the

result of partially dead control (i.e., they are data dependent and outcome tolerant thema-

jority of the time). Leveraging this insight, Shoestring can also shed the overhead required

to ensure that the CFG isalwaysproperly traversed. Instead, we focus on only protecting a

subset of control flow decisions that impact “high-value” instructions.

Figure4.3 shows a snippet of code where some manipulation of an array data struc-

ture is being performed. The computation is performed within a tight loop that uses the

process macro to manipulate elements of the arraydata. Performance optimizations
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Figure 4.4: A standard compiler flow augmented with Shoestring’s reliability-aware code genera-
tion passes.

cause the loop to be unrolled4 times into lines 2 through 9. Additional cleanup code (lines

11 through 13) is also inserted to maintain program semantics. Note that in this exam-

ple not all computation is essential for correct program behavior. The instruction at line

8 determines if the early loop termination condition is met.If the instruction(s) comput-

ing stop is (are) subjected to a transient fault, the unrolled loop could exit prematurely.

Although this early exit degrades performance, program correctness is still maintained. In

contrast, properly updating the variableindex at line 7 is required for program correctness

(assuming of course thatinpData is a user-visible variable). However, sinceindex is

also used as a base address to accessinpData, there is a significant probability that a fault

corruptingindex would manifest as a symptomatic memory access exception. Given the

proper symptom-based detection scheme, this could decrease theeffectivevulnerability of

the computation at line 7. Identifying instructions critical to program correctness and prun-

ing from this set those instructions that are already “covered” by symptom-based detection

is the focus of the remainder of this section.
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4.3.1 Compiler Overview

Implementing the most cost effective means of deploying instruction duplication re-

quires detailed compiler analysis. Shoestring introducesadditional reliability-aware code

generation passes into the standard compiler backend. Figure 4.4 highlights these passes

in the context of typical program compilation. Shoestring’s compilation passes are sched-

uled after the program has already been lowered to the machine-specific representation but

before register allocation.

The first two passes,Preliminary Classificationand Vulnerability Analysis, are de-

signed to categorize instructions based on their expected behavior in the presence of a

transient fault. These categories are briefly described below.

• Symptom-generating: these instructions, if they consume a corrupted input, are

likely to produce detectable symptoms.

• High-value: these instructions, if they consume a corrupted input, arelikely to pro-

duce outputs that result in user-visible program corruption.

• Safe: these instructions are naturally covered by symptom-generating consumers.

For any safe instruction,IS, the expectation is that if a transient fault is propagated by

IS, or arises during its execution, there is a high probabilitythat one of its consumers

will generate a symptom within an acceptable latencySlat.

• Vulnerable: all instructions that are not safe are considered vulnerable.

Following the initial characterization passes, a third pass, Code Duplication, performs

selective, software-based instruction duplication to protect instructions that are not inher-
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ently covered by symptoms. This duplication pass further minimizes wasted effort by pro-

tecting only the high-value instructions, those likely to impact program output. By only du-

plicating instructions that are along the dataflow graph (DFG) between safe and high-value

instructions, the performance overhead can be dramatically reduced without significantly

impacting reliability.

The following sections describe the details of the heuristics used in the analysis and

duplication passes.

4.3.2 Preliminary Classification

Shoestring’s initial characterization pass iterates overall instructions in the program

and identifies symptom-generating and high-value instructions. For clarity, this classifi-

cation is described as a separate compiler pass. However, inpractice the identification of

symptom-generating and high-value instructions can be performed as part of the vulnera-

bility analysis pass.

4.3.2.1 Symptom-generating Instructions

The symptom events considered by prior symptom-based detection work can be broadly

separated into the following categories [111, 48]:

• ISA-defined Exceptions: these are exceptions defined by the instruction set archi-

tecture (ISA) and must already be detected by any hardware implementing the ISA

(e.g., page fault or overflow).
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• Fatal Exceptions: these are the subset of the ISA-defined exceptions that never occur

under normal user program execution (e.g., segment fault orillegal opcode).

• Anomalous Behavior: these events occur during normal program execution but can

also be symptomatic of a fault (e.g., branch mispredict or cache miss).

The relative usefulness of symptoms in each of these categories is dependent on how

strongly their appearance is correlated with an actual fault. Ideal candidates occur very

rarely during normal execution, minimizing overhead due tofalse positives, but always

manifest in the wake of a fault. Therefore, to maximize the overhead-to-coverage tradeoff

the experiments in Section4.5 evaluate a Shoestring implementation that only considers

instructions that can elicit the second category of fatal, ISA-defined exceptions as poten-

tially symptom generating. Since these are events that during the normal execution of user

programs never arise, they incur no performance overhead inthe absence of faults.

Although additional coverage can be gleaned by evaluating amore inclusive set of

symptoms, prior work has shown that the additional coverageoften does not justify the

accompanying costs. For example, Wang and Patel [111] presented results where using

branch mispredictions on high-confidence branches as a symptom gained an additional

0.3% of coverage with an 8% performance penalty. Other non-fatal symptoms like data

cache misses also have similar coverage and overhead profiles.

4.3.2.2 High-value Instructions

Ideally, we would like to only consider instructions that impact program output as high-

value. However, given that the analysis necessary to provably make such determinations is
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impractical, if not intractable, heuristics must be employed. Currently, any instructions that

can potentially impact global memory is considered high-value. In addition, any instruc-

tions that can produce arguments passed to function calls (especially library calls) are also

included. To provide a truly transparent solution, Shoestring, at present, assumes that no

user annotations are available to assist in instruction classification. Future extensions could

leverage techniques from information-flow theory [106, 54] to further refine the instruction

selection process or even exploit the work by Li and Yeung [50] to prune instructions that

only impact “soft” program outputs. Although investigating more sophisticated heuristics

for identifying high-value instructions is a very promising avenue of future work, it was

not attempted in this thesis.

4.3.3 Vulnerability Analysis

After the preliminary instruction classification is complete, Shoestring analyzes the vul-

nerability of each instruction to determine whether it is safe. As stated previously, a safe

instruction,IS, is one with enough symptom-generating consumers such thata fault cor-

rupting the result ofIS is likely to exercise a symptom within a fixed latencySlat. For each

instruction, the number of symptom-generating consumers is first tabulated based on dis-

tance. For a given producer (Ip) and consumer (Ic ) pair, we define the distance,Dp,c, as the

number of intervening instructions betweenIp andIc within the statically scheduled code.

It is used as a compile-time estimate of the symptom detection latency if the consumer,Ic,

were to trigger a symptom. For a given instruction,I, if the number of symptom-generating

consumers at distancei is Ni, thenI is considered safe ifNtot =
∑Slat

i=1 Ni is greater than a

fixed thresholdSt. The value for the threshold parameterSt controls the selectivity of safe
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(a) (b)

(c) (d)

Figure 4.5: Example data flow graphs illustrating Shoestring’s vulnerability analysis. The data
flow edge numbers represent the distance between two instructions in the statically scheduled code.
Shaded nodes represent symptom-generating instructions and dashed circles highlight high-value
instructions. Dashed edges in (d) represent control flow.

instruction classification and can be used to trade off coverage for performance overhead

(see Section4.5).

Figure4.5 and the corresponding case studies illustrate how the vulnerability analy-

sis heuristic is applied for a few sample DFGs. The numbers along the data-flow edges

represent the distance,Dp,c, between the two nodes (instructions). Shaded nodes indicate

symptom-generating instructions, and nodes highlighted by a dashed circle are high-value

instructions. For all the case studies,Slat = 100 andSt = 2.
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4.3.3.1 Case Study 1: Direct Consumers

In Figure4.5a, instructionIa is being analyzed for safe-ness. Instructions 1, 2, and 3 are

all direct consumers ofIa. Instructions 2 and 3 have already been identified as symptom-

generating instructions and 3 is also a high-value instruction. In this example,Ia would

be classified as vulnerable because it only has one symptom-generating consumer within a

distance of 100 (Slat), instruction 2.

4.3.3.2 Case Study 2: Indirect Consumers

Figure4.5bpresents a more interesting example that includes direct aswell as indirect

consumers as we analyzeIb. As with direct consumers, indirect consumers that have been

identified as symptom-generating also contribute to theNtot of Ib. However, their contri-

bution is reduced by a scaling factorSiscale to to account for the potential forpartial fault

masking.

In Figure4.5b, instructions 3, 4, and 5 are all symptom generating consumers of Ib.

Since 3 is a direct consumer, any fault that corrupts the result of Ib will cause instruction 3

to generate a symptom (probabilistically of course). However, the same fault would have to

propagate through instruction 2 before it reaches the indirect consumer, instruction 4. This

allows for the possibility that the fault may be masked by 2 before it actually reaches 4. For

example, if the soft error flipped an upper bit in the result ofIb and instruction 2 was an

AND that masked the upper bits, the fault would never be visible to instruction 4, reducing

its ability to manifest a symptom. However, instruction 1 would still consume the tainted

value and potentially write it out to memory, corrupting system state. Therefore, due to the
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potential for masking, an indirect consumer is less likely than a direct consumer to cover

the exact same fault. Ultimately with respect toIb in Figure4.5b, given anSiscale = 0.8,

we haveN20 = 1, N3 = 0.8, andN5 = 0.64. SinceNtot =
∑100

i=1 Ni = 2.44 and is greater

than the thresholdSt of 2, Ib is classified as safe.

4.3.3.3 Case Study 3: Minimizing Analysis Overhead

Figure4.5c presents a more complete example and further illustrates how memoiza-

tion is used to avoid redundant computation. Rather than identifying indirect symptom-

generating consumers recursively for every instruction, we maintain a globalsymptom-

generation tableof Ni values for every instruction. By traversing the DFG in a depth-first

fashion, we guarantee that all the consumers of an instruction are processed before the in-

struction itself is encountered. Creating an entry in the symptom-generation table (labeled

S-Gen Table in the Figure4.5c) for every instruction as it is being analyzed ensures that

each node in the DFG only needs to be visited once3.

For example, assuming the vulnerability analysis begins with Ic, Shoestring analyzes

the instructions in the following order, 4, 7, 6, 8, 5, 1, 2 andeventually marksIc as

safe. When the analysis pass reaches instruction 3 it can determine its classification di-

rectly, without identifying any of its indirect consumers,since the symptom-generation

table entry for instruction 5 was already populated during the analysis pass forIc. The

corresponding table entry for 3 is computed by scaling allNi entries for 5 bySiscale, ad-

justing the corresponding distances by adding 2, and finallyaccounting for the symptom-

generating potential of instruction 5 itself. The table entry for instruction 3 would then

3Although this optimization is beneficial for programs with large functions, even a naive recursive anal-
ysis for the SPEC2K applications evaluated in this work did not appreciably increase compilation time.
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containN2 = 1, N12 = 0.8, N17 = 0.64 and instruction 3 would subsequently also be

classified as safe.

Obviously, this depth-first traversal is complicated in thepresence of loops (not present

in Figure4.5c) where circular dependencies can exist and the traversal could loop indef-

initely never reaching a leaf node. Consequently, wheneverShoestring encounters a loop

it forces the depth-first traversal to backtrack when the distance between the instruction

currently being processed and the instruction at the bottomof the loop exceedsSlat. This

guarantees all relevant symptom-generating consumers areaccounted for while also ensur-

ing forward progress.

4.3.3.4 Case Study 4: Control Flow

The examples examined so far have been limited to analyzing instruction DFGs and

control has to a large extent been ignored. Although Shoestring takes a relaxed approach

with respect toenforcingcorrect control flow, branching is taken into considerationwhen

performing vulnerability analysis. Figure4.5d shows an example where the instruction

being analyzed,Id, is in a basic block (bb0) that has a highly biased branch. In this sce-

nario, although instruction 5 is a symptom-generating consumer, because it is in a basic

block (bb2) that is unlikely to be executed, it will not provide dependable coverage forId.

Therefore, the contribution of every consumer toNi is scaled by their respective execution

probabilities. These execution probabilities are extracted from profiled execution (provided

to the experiments in Section4.5), or when profile data is unavailable, generated from static

approximations.
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Lastly, although Wang et al. [110] showed that execution down the wrong direction

of many branches ultimately reconverges with the correct execution path, in Figure4.5d

if the branch terminating bb0 is corrupted causing execution to proceed to bb2 instead of

bb1, there is no time for control to reconverge before instruction 4 potentially corrupts

system state. Therefore, Shoestring also selectively protects (by duplicating input operand

chains) all branches that have a control-dependence edge with a high-value instruction. For

sake of brevity, the standard algorithm for identifying control-dependence edges will not

be presented here but it is important to note that not all branches that can influence whether

instruction 4 is executed will be protected. Only those branches that are effectively the

“nearest” to instruction 4 will possess the requisite control-dependence edges and be pro-

tected, leaving the rest (which are further away and more likely to reconverge) vulnerable.

4.3.4 Code Duplication

The process of inserting redundant code into a single threadof execution has been

well studied in the past [76, 64]. In general, this process involves duplicating all com-

putation instructions along the path of replication and inserting comparison instructions

at synchronization points (e.g., at memory and control flow instructions) to determine if

faults have manifested since the last comparison was performed. This section will high-

light how Shoestring’s code duplication pass departs from this existing practice. The reader

is encouraged to examine prior work for a detailed description of the mechanics of code

duplication.

The code duplication pass begins by selecting a single high-value instruction,IHV ,

from the set of all high-value instructions. It then proceeds to recursively duplicate all
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(a) (b)

Figure 4.6: Example data flow graph illustrating Shoestring’s code duplication pass. Nodes labeled
with an “S” represent safe instructions and dashed circles highlight high-value instructions. In (a)
the shaded portions of the graph represent code duplicationchains. (b) shows the new DFG with
all duplicated instructions inserted as shaded nodes. Nodes labeled with an “=” represent checker
instructions.

instructions that produce values forIHV . This duplication is terminated when 1) no more

producers exist, 2) a safe instruction is encountered, or 3)the producer has already been

previously duplicated. In all cases, it is guaranteed that every vulnerable instructions that

could possibly influence data consumed byIHV is duplicated. Comparison instructions are

inserted right beforeIHV to verify the computation of each of its input operands.

Figure4.6apresents a section of a DFG with three high-value instructions (nodes 6, 7,

and 8), three safe instructions (nodes labeled with an “S”),and five vulnerable instructions

(nodes 1-5). For this example, we start with instruction 6 and begin by duplicating its pro-

ducer, instruction 3. Next, we attempt to duplicate the producers for 3 and notice that one of

the producers has been classified as safe and terminate code duplication on that path. The

other producer for 3 (instruction 2), however, is vulnerable so we duplicate 2 and continue
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along its producer chain duplicating instruction 1 as well.Subsequent attempts to duplicate

1’s consumers encounters safe instructions, at which pointall vulnerable code relevant to

high-value instruction 6 has been duplicated. Shoestring then moves on to the next high-

value instruction and repeats the process with instruction7. At this point, instruction 3 has

already been duplicated as a result of protecting instruction 6 so nothing needs to be done.

Next, instruction 8 is considered, resulting in the duplication of instruction 4.

Figure 4.6b shows the new DFG with all the duplicated instructions (shaded nodes)

and checkers (“=” nodes) inserted. Note that both high-value instructions 6 and 7 each

have their own checker to compare the results from instruction 3 and its redundant copy

3’. Although both 6 and 7 consume the same value, only relyingon a single checker at

instruction 6 to detect faults that corrupt 3’s result couldleave 7 vulnerable to faults that

corrupt the result of 3 after 6 has already executed. Depending on how far apart 6 and 7

execute, this vulnerability window could be significant. Nevertheless, in situations where

high-value instructions with common producers also execute in close proximity, the need

for duplicate checkers can also be avoided. However, this optimization is not investigated

in this work.

4.4 Experimental Methodology

Given that this chapter is targeting coverage of faults induced by soft errors oncommod-

ity processors, we would ideally conduct electron beam experiments using real hardware

running code instrumented by Shoestring. Given limited resources a popular alternative

to beam experiments is statistical fault injection (SFI) into a detailed register transfer lan-
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guage (RTL) processor model. However, since Shoestring exploits fault masking at the

application level, full program simulation is also required. Since simulating realistic bench-

marks on RTL models is extremely slow, a common practice in the literature is to rely on

microarchitectural-level simulators to provide the appropriate compromise between simu-

lation fidelity and speed.

4.4.1 Fault Model and Injection Framework

The fault injection results presented in this chapter are generated using the PTLsim x86

microarchitectural simulator [120]. PTLsim is able to run x86 binaries on the native (host)

machine as well as within a detailed microarchitectural simulator. Being able to effectively

switch between native hardware execution and microarchitectural simulation on-the-fly en-

ables fast, highly detailed simulations. We simulated a modern, high performance, out-

of-order processor modeled after the AMD K8 running x86 binaries. The details of the

processor configuration can be found in Table4.1.

The fault model we assume is a single bit flip within the physical register file. Although

they are not explicitly modeled, most faults in other portions of the processor eventually

manifest as corrupted state in the register file, making it anattractive target for injection

studies4. Furthermore, Wang et al. [112] showed that the bulk of transient-induced failures

are dominated by corruptions introduced from injections into the register file. Nevertheless,

our methodology may not fully capture the ability of Shoestring to handle faults from

combinational logic with large fanouts.

4Only performing fault injections into the register file is a limitation of our evaluation infrastructure, not
a limitation of Shoestring’s fault coverage abilities. In reality Shoestring will detect soft errors that strike
other parts of the processing core as well.
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Table 4.1: Processor details (configured to model an AMD-K8).

Processor core @ 2.2GHz
Fetch queue size 36 entries
Reorder buffer size 72 entries
Issue queue size 16 entries
Issue width 16 entries
Fetch/Dispatch/Writeback/

3
Commit width
Load/Store queue size 44 entries (each)
Physical register file size 128 entries
Physical register file size 128 entries

Memory
L1-I/L1-D cache 64KB, 2-way, 3 cycle lat
L2 cache (unified) 1MB, 16-way, 10 cycle latency
DTLB/ITLB 32 entries (each)
Main memory 112 cycle lat

The experimental results shown in this chapter are producedwith Monte Carlo simu-

lations. At the start of each Monte Carlo trial a random physical register bit is selected

for injection. It has been shown that the memory footprint ofSPEC2K applications are

significantly smaller than the full size of a 64-bit virtual address space. Allowing faults to

occur in any of the 64-bits of a register would increase the likelihood of it resulting in a

symptomatic exception [111], and consequently being covered by Shoestring. Therefore,

although PTLsim simulates a 64-bit register file, we limit our fault injections to only the

lower 32 bits to avoid artificially inflating Shoestring’s coverage results.

Once an injection site is determined, program simulation isallowed to run in native

mode (running on real hardware) until it reaches a representative code segment (identified

using SimPoint [84] and manual source code inspection). At this point PTLsim switches to

detailed mode and warms up the microarchitectural simulator. After a randomly selected

number of cycles has elapsed, a fault is induced at the predetermined injection site. De-
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tailed simulation continues until 10M instructions commit, at which time PTLSim copies

architectural state back to the host machine and resumes simulating the remainder of the

program in native mode. This of course assumes that the faultdid not result in a fatal ex-

ception or program crash prior to 10M instructions. At the end of every simulation the log

files are analyzed to determine the outcome of the Monte Carlorun as described in the next

section.

4.4.2 Outcome Classification

The result of each Monte Carlo trial is classified into one of four categories:

1. Masked: the injected fault was naturally masked by the system stack. This includes

trials where the fault was architecturally masked as well asthose that were masked

at the application level.

2. Covered by symptoms: the injected fault resulted in anomalous program behavior

that is symptomatic of a transient fault. For these trials itis assumed that system

firmware is able to trigger recovery from a lightweight checkpoint. The details of

this assumed checkpointing mechanism are described in the next section.

3. Covered by duplication: faults in this category were the result of injecting code

that was selectively duplicated by Shoestring. During these trials the comparison

instructions at the end of every duplication chain would trigger a function call to

initiate recovery.

4. Failed: In this work the definition of failure is limited to only those simulation runs

which completed (or prematurely terminated) with user-visible data corruptions.
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Although the definition for failure used in this chapter may seem unconventional, it is

consistent with recent symptom-based work and is the most appropriate in the context of

evaluating Shoestring. The main premise behind the Shoestring philosophy is that the cost

of ensuring reliable computation can be reduced by focusingon covering only the faults

that are ultimately noticeable by the end user. Therefore, the figure of merit is not the

number of faults that propagated into microarchitectural (or architectural) state, but rather

the fraction that actually resulted in user-visible failures.

4.4.3 System Support

As briefly discussed in the previous section, Shoestring (and symptom-based schemes

in general) relies on the ability to rollback processor state to a clean checkpoint. The results

presented in Section4.5 assume that in modern/future processors a mechanism for recov-

ering to a checkpointed state of 10-100 instructions in the past will already be required

for aggressive performance speculation. Consistent with Wang and Patel [111], Shoestring

assumes that any fault that manifests as a symptom within a window of 100 committed

instructions (micro-ops, not x86 instructions) can be safely detected and recovered. The

proper selection of theSlat parameter described in Section4.3.3is closely tied to the size

of this checkpointing window. Only those consumers that canbe expected to generate a

symptom within this window are considered when identifyingsafe instructions. Similarly,

faults that are detected by instruction duplication would also trigger rollback and recovery.

The results presented in Section4.5assume a checkpointing interval, and consequently

an Slat value, of 100. Although this small window may seem modest in comparison to

checkpointing intervals assumed by other work, most notably Li et al. [48], it is the most ap-
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propriate given Shoestring’s goals of providing minimallyinvasive, low cost protection. In-

creasing the size of this window would unfairly inflate the coverage provided by Shoestring

since accommodating large checkpointing intervals requires substantial hardware/software

overhead. However, if large checkpointing intervals eventually find their way into main-

stream processors, the heuristics used by Shoestring can beeasily tuned to exploit this

additional support and provide even greater coverage.

The compilation component of Shoestring is implemented in the LLVM compiler [47].

The reliability-aware code generation passes described inSection4.3.1are integrated as

part of the code generation backend. Six applications from the SPEC2K integer bench-

mark suite (gzip, mcf, crafty, bzip2, gap, andvortex) are used as representative workloads

in our experiments and are compiled with standard -O3 optimizations. To minimize ini-

tial engineering effort, we only evaluated benchmarks fromthe SPEC2K suite that both

1) compiled on standard LLVM (without modifications for Shoestring) and 2) simulated

correctly on PTLSim “out-of-the-box”. They were not handpicked because they exhibited

desirable behavior. Similarly, to minimize engineering effort we do not apply Shoestring

to library calls. The common practice in the literature is toassume that dynamically linked

library calls are protected by some other means, i.e., outside the SoR (see Section4.3) [75].

The results presented in Section4.5adheres to the same practice and avoids injections into

library calls.

Lastly, due to limitations of our evaluation framework we donot study Shoestring in the

context of multithreaded/multicore environments. Given that we treat the cache as outside

our SoR the majority of challenges posed by the shared memoryin multithreaded/multicore

systems would not impact the efficacy of Shoestring. However, the larger memory foot-
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prints of multithreaded applications could potentially attenuate the coverage due to a re-

duction in the performance of memory access symptoms. The greater resource/register

utilization in simultaneous multithreaded systems could also reduce the amount of mask-

ing we see from faults that strike dead/free registers. Lastly, identifying the exact core

which triggered the symptom, as well as orchestrating the checkpoint rollback and recov-

ery, is more challenging when multiple threads running on different cores are interacting

and sharing data. However, these challenges are beyond the scope of the current thesis and

are left as interesting directions for future work.

4.5 Evaluation and Analysis

This section begins with results from an initial fault injection campaign to quantify the

amount of opportunity available for Shoestring to exploit.We then proceed to examine the

compilation heuristics described in Section4.3. Finally, we present and analyze the fault

coverage and runtime overheads for Shoestring. All experimental results included in this

section are derived from>10k Monte Carlo trials.

4.5.1 Preliminary Fault Injection

Figure4.7presents the results of initial fault injection trials. Thepurpose of this prelim-

inary experiment was to identify the amount of faults that are inherently masked throughout

the entire system stack. The accumulation of all these sources of masking, from the mi-

croarchitecture up through the application layer, is essentially the amount of “coverage”

that is available for free. This is shown as theMaskedsegment on the stacked bars and
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(a) Symptom-based fault coverage (b) Latency distribution of symptom-based detection.

Figure 4.7: Results of preliminary fault injection experiments. (a) shows the percentage of faults
that are intrinsically masked (Masked), covered by symptoms (Symptom), covered by long-latency
symptoms (Symptom-L), or result in user-visible failures (User-visible Corruption).

corresponds to roughly 91.9% on average across the benchmarks. Symptoms account for

another 4.9% and actual user-visible failures account for the remaining 3.2%.

As mentioned in Section4.3 symptom-based coverage is only useful if symptoms are

triggered within a small window of cycles,Slat, following a fault. If the symptom latency

exceedsSlat then the likelihood that state corruption can occur before asymptom is mani-

fested increases. Note now the portions of the chart labeledasSymptom-L. These segments

are the fraction of trials that lead to symptoms but did so only after the 100 instructionSlat

window expired. Without more expensive check-pointing to accommodate longer laten-

cies, the Symptom-L cases must also be considered failures.Figure4.7bexamines these

symptom-generating trials from a different perspective, as a distribution based on detection

latency. Although the majority of symptoms do manifest within the 100 instruction thresh-

old, roughly 14.7% would require a much more aggressive checkpointing scheme (1000

instructions) than what is needed for performance speculation alone. Furthermore, the re-

maining 2.6%, with latencies of more than 10,000 instructions could not be exploited with-

out being accompanied by heavyweight, software-based checkpointing (and its attendant
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Figure 4.8: Percentage of static instructions classified as high-value(IHV ).

costs). The remainder of the chapter assesses Shoestring’sability to minimize user-visible

corruptions by integrating symptom-based coverage with intelligent software-based code

duplication.

4.5.2 Program Analysis

4.5.2.1 High-value Instructions

To gain insight into how selective instruction duplicationis actually applied by Shoestring,

we examine the heuristics described in Section4.3 in the context of our SPEC2K work-

loads. Figure4.8shows the percentage of instructions identified as high-value within each

benchmark. As discussed in Section4.3.2.2, only instructions that can potentially modify

global memory or produce values for function calls are considered high-value. On av-

erage roughly 24.3% of all static instructions meet this criteria and become the focus of

Shoestring’s code duplication efforts.
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Figure 4.9: Percentage of static instructions classified as safe asSt is varied (IS).

4.5.2.2 Safe Instructions

Figure4.9presents the percentage of instructions classified as safe,as a function of the

heuristic parameterSt (Section4.3.3). A value ofn for St indicates that for an instruction to

be considered safe (i.e., covered by symptom-generating consumers) it must possess at least

n consumers within a distance ofSlat instructions along any potential path of execution.

Note that on average, even withSt relaxed to allow for any non-zero threshold (>0) only

10.1% of static instructions are classified as safe. This is mainly due to our conservative

decision to only consider potential ISA-excepting instructions as candidates for symptom-

generating consumers. A more aggressive heuristic could potentially identify more safe

instructions if the set of symptoms that it monitored was more inclusive. However, this

would come at the cost of performance-degrading false positives.

For this, and all subsequent, experiments the value ofSlat was fixed at 100 instructions

as explained in Section4.4.3. A value of 0.9 forSiscale (Section4.3.3.2) was also empiri-

cally determined to produce the best heuristic behavior, and is fixed for all experiments.
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Figure 4.10: Percentage of static code duplication performed by Shoestring asSt is varied (ID).

4.5.2.3 Duplicated Instructions

Figure4.10shows the percentage of (static) instructions that are duplicated by Shoestring

asSt is swept from>0 to∞. Note the direct relationship betweenSt and the number

of duplicated instructions. This is attributable to the fact that code duplication begins at

high-value instructions and terminates at the first safe instruction encountered (see Sec-

tion 4.3.4). Therefore, the fewer instructions that are classified as safe, the less likely a

duplication chain will terminate early. In the extreme casewhenSt = ∞ no instructions

are classified as safe. This results in fully duplicating producer chains for every high-value

instruction.

4.5.3 Overheads and Fault Coverage

Next we examine the runtime overhead of the binaries that have been protected by

Shoestring’s selective code duplication. Figure4.11ashows that asSt is varied from>0

to∞ the performance overhead of Shoestring ranges from 15.8% to30.4% (obtained from

native simulation on an Intel Core 2 processor). The execution overheads for a full soft-
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(a) Runtime performance overhead.

(b) Fault coverage.

Figure 4.11: Fault coverage and runtime performance overheads for Shoestring as a function of
St.

ware duplication scheme, SWIFT [75], are also included for the sake of comparison5(bars

labeledFull). Since Shoestring is positioned as a reliability “on the cheap” solution, main-

taining low runtime overhead is of paramount importance. Toevaluate the amount of cov-

erage that can be obtained by Shoestring with the least amount of performance overhead,

for the remainder of this section the value ofSt is fixed at>0.

Figure4.11bpresents the coverage results for this Shoestring configuration. Also in-

cluded are coverage numbers for no instruction duplication, No Duplication, andSt = ∞

5The overheads we cite from SWIFT [75] are conservative considering they targeted a wide VLIW ma-
chine and would incur substantially more overhead given a less overprovisioned processor.
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Figure 4.12: Detailed coverage breakdown for Shoestring configured withSt fixed at>0.

to illustrate where the proposed solution sits with respectto the upper and lower bounds.

Coverage numbers for other values ofSt were not included because of the requisite simu-

lation effort. Although investigating more sophisticatedheuristics for instruction classifi-

cation and vulnerability analysis has the potential to garner even more coverage, note that

Shoestring is already able to recover from 80.4% of the failures that would have otherwise

gone unmasked and caused user-visible data corruptions.

Lastly, Figure4.12 takes a closer look at the fault coverage achieved by Shoestring.

The stacked bars highlight the individual components contributing to Shoestring’s total

fault coverage. Note that on average, selective duplication covers an additional 33.9% of

the unmasked faults that would have slipped by a symptom-only based scheme. Notice

also the segment labeledSoftware. This category, only significant forgzipandbzip2, is the

result of assertions placed in the source code that actuallydetect the erroneous behavior

of the program following a fault injection. This observation suggests that perhaps only a

modest investment is required to enhance conventional assertion checks with information

that could improve Shoestring’s program analysis.
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Table 4.2: Shoestring compared to existing solutions for soft errors.“HW”:hardware, “SW”:
software, “nMR”: n-modular redundancy, “RMT”: redundant multithreading, “RF-only”: register
file protection only.

Solution HW SW Performance Area Coverage
Support Support Overhead Overhead

nMR YES NO LOW VERY HIGH VERY HIGH
RMT YES MAYBE HIGH HIGH VERY HIGH
SW instruction NO YES HIGH NONE HIGH
duplication
Symptom-based NO NO LOW NONE MODERATE
detection
RF-only YES NO LOW MODERATE MODERATE
Shoestring NO YES LOW NONE HIGH

4.6 Related Work

This section examines Shoestring in the context of previouswork. Table4.2 presents

a quick overview of where Shoestring sits within the soft error solution space. The ability

to achieve high levels of fault coverage with very low performance overhead, all without

any specialized hardware, sets it apart from previously proposed schemes. Each category

of alternative solutions is addressed in detail below.

n-Modular Redundancy (nMR): Spatial or temporal redundant execution has long

been a cornerstone for detecting soft errors, with hardwareDMR (dual-modular redun-

dancy) and TMR (triple-modular redundancy) being the solutions of choice for mission-

critical systems. However, the cost of such techniques has relegated them to the high-

budget server and mainframe domains (e.g., HP NonStop series [14] and IBM zSeries [11]

machines). DIVA [8] is a less expensive alternative to full hardware duplication, utilizing

a small checker core to monitor the computations performed by a larger microprocessor.
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Rather than employing full hardware replication, recent work has also been interested in

using smaller, lightweight hardware structures to target individual components of the pro-

cessor. Argus [55] relies on a series of hardware checker units to perform online invariant

checking to ensure correct application execution. In [72] Reddy and Rotenberg propose

simple checkers that verify the functionality of decode andfetch units by comparing dy-

namically generated signatures, for small traces of identical instructions. They extend this

idea in [73] by introducing additional checkers for other microarchitectural structures.

Although the area overhead of solutions like DIVA and Argus are significantly lower

than full DMR, they still remain an expensive choice for commodity systems. Nevertheless,

these nMR (and partial nMR) solutions provide greater faultcoverage than Shoestring and

can provide bounds on detection latency.

Redundant Multithreading (RMT): The introduction of simultaneous multithreading

(SMT) capabilities in modern processors gave researchers another tool for redundant exe-

cution. Rotenberg’s paper on AR-SMT [80] was the first to introduce the concept of RMT

on SMT cores. The basic idea was to use the processor’s extra SMT contexts to run two

copies of the same thread, a leading thread and a trailing thread. The leading thread places

its results in a buffer, and the trailing thread verifies these results and commits the executed

instructions. Subsequent works improved upon this scheme by optimizing the amount of

duplicated computation introduced by the redundant thread[74, 37, 71]. RMT has also

been attempted at the software level by Cheng et al. [108]. This eliminates the need for ar-

chitectural modifications to support RMT, and relies on the compiler to generate redundant

threads that can run on general-purpose chip multiprocessors. With the advent of multicore,

RMT solutions have evolved into using two or more discrete cores within a CMP to mimic
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nMR behavior. Reunion [91] and Mixed-mode reliability [115] are two recent proposals

that allow idle cores within a CMP to be leveraged for redundant thread execution. The

chief attraction of RMT approaches is the high coverage theycan provide. The drawbacks

of RMT include significant throughput degradation (loss of an SMT context or an entire

core), hardware complexity/overhead, and potentially double the power consumption of

non-RMT execution.

Software instruction duplication: Redundant execution can also be achieved in soft-

ware without creating independent threads as shown by Reis et al. [75]. They proposed

SWIFT, a fully compiler based software approach for fault tolerance. SWIFT exploits

wide, underutilized processors by scheduling both original and duplicated instructions in

the same execution thread. Validation code sequences are also inserted by the compiler to

compare the results between the original instructions and their corresponding duplicates.

CRAFT [76] and PROFIT [76] improve upon the SWIFT solution by leveraging additional

hardware structures and architectural vulnerability factor (AVF) analysis [60], respectively.

As in the case of RMT, compiler-based instruction duplication also delivers nearly complete

fault coverage, with the added benefit of requiring little tono hardware cost. However, in

order to achieve this degree of fault coverage, solutions like SWIFT can more than double

the number of dynamic instructions for a program, incurringsignificant performance and

power penalties.

Symptom-based detection:As mentioned in previous sections, Wang et al. was the

first to exploit anomalous microarchitectural behavior to detect the presence of a fault.

Their light-weight approach for detecting soft errors, ReStore [109, 111], leveraged symp-

toms including memory exceptions, branch mispredicts, andcache misses. The concept of
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anomaly detection has been further explored by Racunas et al. [69] who proposed verify-

ing data value ranges and data bit invariants. Lastly, Li et al. [48] extended symptom-based

fault coverage and applied it to detecting and diagnosingpermanenthardware faults. The

strength of symptom-based detection lies in its low-cost and ease of application. Unfor-

tunately, the achievable fault coverage is limited and not appropriate for high error-rate

scenarios.

Register file protection schemes:The register file holds a significant portion of pro-

gram state. Consequently, error-free execution of a program cannot be accomplished with-

out protecting it against faults. Just as main memory can be augmented with ECC, register

file contents can also be protected by applying ECC. This process can be further optimized

by protecting only live program variables, which usually occupy only a fraction of the reg-

ister file. Solutions like the one presented by Montesinos etal. [58] builds upon this insight

and only maintains ECC for those registers most likely to contain live values. Similarly

Blome et al. [17] proposes a register value cache that holds duplicates of live register val-

ues. It is important to note that these schemes in general canonly detect faults that occur

aftervalid data has been written back to the register file. In contrast, Shoestring can also

detect faults in other parts of the datapath that corrupt instruction output before it is written

back to the register file or correction codes have been properly generated.

4.7 Summary

If technology scaling continues to exacerbate the challenges posed by transient faults,

the research community cannot remain focused only on ultra-high reliability systems. We
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must devote efforts also to developing new innovative solutions for mainstream commod-

ity processors. This chapter introduces Shoestring, a transparent, software-based reliability

solution that leverages both symptom-based detection as well as selective instruction du-

plication to minimize user-visible failures induced by soft errors. For a total performance

penalty of 15.8%, Shoestring can cover an additional 33.9% of faults undetected by a con-

ventional symptom-based scheme. Allowing just 1.6% of faults to manifest as user-visible

data corruption, Shoestring is a cost-effective means of providing acceptable soft error re-

silience at a cost that the average commodity system can afford.
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CHAPTER V

Encore: Low-cost, Fine-grained Transient Fault Recovery

Shoestring assumed that the presence of hardware speculation support could be easily

repurposed to recover from transient faults. However, we acknowledge that the presence

of this speculative hardware may notnecessarilyexist in systems with less aggressive per-

formance targets. To accommodate processors with less robust hardware support we de-

veloped Encore, an alternative rollback recovery mechanism tailored for these lower-cost

systems without support for speculative rollback recovery.

5.1 Introduction

Traditionally, architects have designed systems that would take periodic checkpoints of

processor and memory state. In the event of a soft error the system could rollback to an ex-

isting, fault-free snapshot and continue execution (rollback recovery). These highly robust

fault recovery solutions have historically also relied on some form of modular redundancy

to provide the necessary detection capabilities. Available in spatial and temporal variants,

modular redundancy generally involved redundant execution (either on separate hardware
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or in separate software contexts) followed by detailed comparisons that would identify the

presence of a fault [14, 95, 80, 74, 59]. However, the resultant overheads of these cou-

pled detection and recovery schemes, a large component of which was the cost of creating

checkpoints, usually relegated their use to to high-end, enterprise systems [28].

Given the rise of processor reliability as a first-order design constraint, even in lower-

end commodity processors, there has been a growing interestin low-cost, non-intrusive

mechanisms for transient fault detection. Many of these newproposals have been able

to maintain low runtime overheads by sacrificing a small degree of reliability, focusing

primarily on addressing the bulk of faults that are relatively inexpensive to detect [111, 48,

34]. However, these techniques [111, 34] have also tended to assume that existing hardware

provided rollback recovery, arguing that such hardware would already be needed to support

performance speculation. Although this argument may hold for aggressive out-of-order

processors, such hardware support is not present in the majority of low-end commodity

systems.

With that in mind we propose,Encore, a software-only solution that seeks to provide

probabilistic (best effort) rollback recovery capabilities at minimal costs. Encore was de-

veloped to complement emerging probabilistic detection techniques, enabling them to be

deployed in commodity systems without native hardware support for rollback recovery. As

an automated, compiler-driven technique, Encore is able toutilize programmable heuristics

that allow the end-user to dial in the desired degree of fault-tolerance and therefore only in-

cur as much runtime overhead as they are able to budget. Encore can achieve this behavior

by mimicking the same checkpoint, rollback, and re-executemodel used by earlier enter-

prise systems. However, rather than performing, full-system, heavyweight checkpoints,
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Idempotence TargetFully Idempotent

Figure 5.1: Percentage of dynamic instruction traces that are inherently idempotent as a function
of size. The execution traces were extracted from an assortment of SPEC2K and Mediabench work-
loads. TheIdempotence Targetcurve illustrates Encore’s goal of exposing, and exploiting, even
greater degrees of idempotence through intelligent compiler analysis and transformations.

Encore is able to exploit thestatistically idempotentproperty of applications to reduce, and

in certain situations nearly completely eliminate the overheads required to supply rollback

recovery.

At a high-level, an idempotent region of code is simply one that can be re-executed

multiple times and still produces the same, correct result.In the context of rollback recov-

ery, this means that at least to the first order, a fault occurring within an idempotent piece

of code can be recovered from without any overhead for checkpointing state. This typically

means that there cannot exist any paths through the region that can read, modify, and then

write to the same (or overlapping) location(s), i.e. no write after read (WAR) dependencies.

To better understand the extent of idempotent code present in an application, Figure5.1

shows the distribution of idempotent execution traces across a set of desktop and media

benchmarks. Results are shown as a function of the trace size(dynamic instruction length).

The surprisingly large percentage of naturally occurring idempotent regions of execution

seen in Figure5.1is what initially encouraged the development of Encore. To the first order,
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the code regions corresponding to the traces that were identified as idempotent could be

easily instrumented for rollback recovery with almost no impact on runtime performance.

It is important to point out however, that although there is plenty of opportunity present,

only a few of these regions actually span an entire function.Most are spread throughout

the application, making manual inspection to identify themimpractical.

This is not entirely unexpected since with more instructions comes the greater chance

that there exists some sequence of instructions that violate the WAR constraints required

to maintain idempotence. This intuition is reinforced by the data which exhibits a sharp

drop in the likelihood of being idempotent when moving from traces with just a handful

of instructions to those with 50 or more. Lastly, it is also interesting to note that for the

traces that do not exhibit full idempotence, many tend to benearly idempotent, i.e., con-

taining only a few offending instructions. Furthermore, these instructions often only occur

along statistically unlikely paths. Encore seeks to exposeeven greater amounts of statistical

idempotence by recognizing these properties of application behavior (Idempotence Target

in Figure5.1).

To make exploiting program idempotence feasible, this chapter proposes techniques to

automate the analysis and instrumentation within compileroptimization passes. We present

the algorithms and heuristics developed that enable Encoreto carefully partition application

code into fine-grained regions with favorable idempotence behavior, and then to instrument

them for rollback-recovery. By recognizing the statistically idempotent structure naturally

present in many applications, Encore can transparently provide rollback recovery on com-

modity systems at prices that they can afford. The contributions of this chapter are as

follows:
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• We demonstrate how low-cost transient fault recovery can be achieved for commod-

ity systems without hardware support for aggressive performance speculation.

• We develop new compiler algorithms and heuristics for

– Automatically identifying candidate idempotent regions in generalized code re-

gions with support for cycles.

– Selectively trading off recoverability with cost by performing code transforma-

tions that leverage application profiling statistics.

• We evaluate and analyze the performance of Encore’s ability to recover from transient

faults with full-system simulations across a diverse set ofrepresentative workloads.

5.2 Recovering from Transient Faults

Transient fault tolerance requires the ability todetectand subsequentlyrecoverfrom

soft error events. There is no shortage of examples in the literature that address each of

these tasks (see Section5.6). However, as we have already indicated, recent progress in

achieving low-cost probabilistic transient fault detection has not been accompanied by sim-

ilar advances in fault recovery. Encore, and the remainder of this chapter, is concerned with

being able to rollback and recover from a transient fault once it has already been detected

by a low-cost, low-latency solution like ReStore [111] or Shoestring [34].

Traditional high-reliability systems have chiefly relied upon heavy-weight, full-system

checkpointing mechanisms to support rollback and recovery. Some high-level character-

istics of these traditional techniques are highlighted in Table5.1. Compared to these con-
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ventional methods, Encore provides recoverability at muchfiner-granularities without any

specialized hardware support. Although it cannot provide guaranteed recovery, the prob-

abilistic nature of Encore allows it to be applied to commodity hardware at dramatically

lower costs (in terms of runtime performance and memory footprint).

Table 5.1: Comparison with conventional checkpointing schemes.
Attributes Enterprise Recovery Architectural Recovery Encore

[28, 61, 29, 95] [94, 68]

Interval Length ~hours 100-500K instrs. 100-1000 instrs.
Storage Space 0.5 - 1 GB 0.5 - 1 MB ~10 - 100 B
Checkpoint Time ~minutes ~ms ~ns
Scope Full System Processor Processor
Guaranteed Recovery Yes Yes No
Extra Hardware Sometimes Yes No

5.2.1 Recovery with Fine-grained Re-execution

At the high-level, one of the simplest ways to recover from a transient fault is by re-

executing the application from a location far enough back along the control flow graph

(CFG) so as to correctly reproduce the data that was corrupted by the fault. With this

seemingly straight-forward maneuver, the effects of all but the most insidious transient

faults can be completely eliminated. This, of course, assumes that during the initial exe-

cution no WAR dependencies overwrote state that could lead to erroneous behavior upon

re-execution.

Note, that employing this form of fault tolerance requires,in addition to a detection

mechanism, the ability to identify the location from which to initiate re-execution, i.e., de-

ciding where the code should rollback to in the event of a fault. Ideally the system would

rollback to point just before the fault site and no further. This would ensure correct forward
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(a) Rollback options (b) Significance of idempotence (c) Significance of hot paths

Figure 5.2: Fine-grained transient fault recovery via rollback and re-execution. (a), (b), and
(c) illustrate some of the challenges and opportunities that exist when leveraging fine-grained re-
execution to achieve fault recovery. (a) enumerates potential rollback destinations that execution
can be redirected to once a fault, striking atbb4 is detected, atbb6. Ideally bb1 andbb3 would share
a common predecessorbb′ that could serve as the rollback destination for all faults that are detected
within the region. (b) highlights how idempotence violating instructions might constrain which code
regions can actually be efficiently recovered. (c) depicts how otherwise non-idempotent regions can
still frequently exhibit idempotent behavior along their hot paths. The region shown in (c) is taken
from the CFG corresponding to the dominant hot function in175.vpr.

progress while also minimizing the amount of “wasted work,”the amount of code that was

uneccessarily re-executed. Correctly reasoning about this location requires1) that you can

precisely diagnose where the fault occurred and 2) that you can identify the original

path of execution that lead to the fault site. Although conceptually simple, merely as-

certaining 2) without specialized hardware support would require costly, software-based

dynamic control flow signature generation [113]. Yet, even having established the original

path of execution, accurately locating the site of the initial fault still remains an expensive,

if not altogether impractical task.

Figure5.2ahelps illustrate these two challenges in more detail. Basicblocksbb1 − bb7

form a small subgraph of code taken from a larger CFG. In this example a transient fault
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corrupts an instruction inside basic blockbb4. When the fault is detected atbb6, we are

left with the difficult task of determining where to redirectcontrol to safely rollback and

recover. Basic blocksbb1, bb2, andbb4 are all viable options that would lead to safe recov-

ery. However, rolling back tobb5 would not be far enough, while re-executing frombb3

could actually lead to other undesirable behavior since it was not on the original execution

path. Ultimately, identifying the optimal location to redirect control after a fault is detected

requires dynamic information and is undecidable at compile-time.

Yet, if the subgraph in Figure5.2awere part of a single-entry, multiple-exit (SEME)

region, the decision could be made to conservatively rollback execution to the region entry

block (the dominating header), in this casebb′. This would not only free Encore from

having to account for which path of execution originally lead to bb4, but in this example

it would also ensure that execution was resumed far enough “back” to regenerate any data

corrupted by the original fault. Despite uneccessarily re-executing some code, namely

bb1 andbb2, this is still a more agreeable alternative to specialized hardware additions or

expensive dynamic control flow tracking. Although this effectively resolves challenge 2),

obviously in the general case, resuming execution at the topof SEME regions is only

effective against faults that are detected within the same region that they occur. Fortunately,

for large SEME regions the probability of a fault being detected after control has left the

region is reduced. Details regarding how Encore attempts toform these large SEME regions

are described in Section5.3.3.
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5.2.2 The Role of Idempotence

Figure5.2billustrates how recognizing idempotent regions can greatly reduce the over-

head required to provide rollback recovery. Since idempotent regions by definition contain

no WAR dependencies, they are attractive candidates for Encore’s re-execution based fault

recovery. In this example, since all paths through regionr1 are idempotent, it is more de-

sirable thanr0, for which execution down the path containingbb4 can be non-idempotent.

Relying on conventional, full-system checkpointing schemes to ensure that a region liker1

could be re-executed would be using a sledgehammer to crack the proverbial nut. Because

the region is naturally idempotent, Encore can simply redirect all fault detection events ini-

tiated anywhere within the region tobb6, the header ofr1. It is important to note here that

althoughr0 is not idempotent, if the increment of variableX in bb4 were the only instruc-

tion violating idempotence then selectively checkpointing X prior to the increment would

transformr0 into a readily recoverable region. Small, cost-efficient transformations like

these, described in greater detail in Section5.3, are what enable Encore to achieve low-cost

rollback recovery.

Lastly, Figure5.2cshows an actual subgraph taken from175.vpr, a benchmark from the

Spec2000 benchmark suite. It corresponds to a slice of the CFG from the functiontry swap,

which is the hottest function within the application (accounting for roughly half of its exe-

cution time). The details of the basic blocks and the surrounding CFG have been abstracted

away for clarity. The shaded basic blocks,bb8, bb10, andbb11 are locations where the idem-

potence of the region can be violated. The code within these basic blocks is responsible for

memory allocation to dynamic variables. Consequently, these are only executed the first
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time try swapis called. For the remaining invocations oftry swap, the path through basic

blocksbb6, bb7, andbb9 dominates the execution time ofri. This suggests that although

regionri is not strictly speaking idempotent, it does exhibit idempotentbehaviorthe vast

majority of the time. Thisprobabilisticidempotence is yet another property of applications

that can Encore exploit to reduce its overheads.

Admittedly the notion of idempotence is not new. For example, Kim et al. [45] lever-

aged idempotent properties of inner loops in Fortran applications to minimize the instances

of storage overflows in a speculative execution system. However, relying on this property

for low-cost, transient fault recovery in a systematic fashion has not yet been fully ad-

dressed. A recent proposal by Kruijf et al. [26] resorted to manually inspecting and mod-

ifying source code to take advantage of the function-wide idempotence and fault tolerant

properties of multimedia and data-mining applications. Although their work is in the same

spirit as Encore, and a great step in the right direction, by utilizing domain/application-

specific algorithmic knowledge to identify and condition candidate functions significantly

limits the applicability of the approach.Establishing a generalized methodology for

exploiting fine-grained, often statistical, idempotence to enable low-cost rollback re-

covery was the purpose of developing Encore.The remainder of this chapter will address

the algorithms and heuristics formulated to realize this goal.

5.3 Encore

Achieving low-cost transient fault recovery involves identifying naturally occurring re-

gions of code that are amenable to re-execution, and judiciously sacrificing reliability to
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Figure 5.3: High-level Encore vision. At compile-time, application code is partitioned into SEME
regions that are subsequently analyzed and instrumented toenable low-cost rollback recovery from
transient faults. Flexible heuristics enable Encore to refine the partitioning and instrumentation
passes, customizing their behavior to achieve the desired tradeoff between reliability and perfor-
mance overheads.

maintain low overheads. Figure5.3 illustrates the different high-level components of the

Encore vision. Encore is designed as a series of compiler passes that analyzes, refines,

and ultimately instruments the code with rollback recovery“hooks” that are coupled with

a detection mechanism at runtime. To start with, the application source code (specifically

the CFG) is initially partitioned into SEME regions. These regions are then analyzed to

determine their idempotence properties (Section5.3.1). The results of this analysis are

then used to instrument the regions for rollback recovery (Section5.3.2) as well as refine

the initial region partitioning (Section5.3.3) using heuristics developed to maximize roll-

back coverage while maintaining acceptable overheads (Section 5.3.4). Lastly, when faults

are detected at runtime, execution is redirected to a recovery block that restores any non-

idempotent state from lightweight checkpoints before releasing control to the header block

of the corresponding region.
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5.3.1 Identifying Inherent Idempotence

Before the discussion proceeds any further, to help avoid any ambiguity that may arise,

a few terms that will be used throughout this chapter are explicitly defined below.

Region: in its unqualified form this will refer to SEME regions, a subgraph of basic

blocks connected in the program CFG that contains a single (entry) block that domi-

nates all other blocks and zero or more exiting blocks (basicblocks with branches to

outside the region).

Reachable Store1: at a given pointp (i.e., basic block) in the CFG, areachable

store, relative top, is a store instruction that could potentially execute after control

has passed throughp.

Guarded Address: with respect to a given pointp, a guarded addressis one that

is guaranteedto be overwritten by a store instruction prior to reachingp, along all

possible paths top.

Exposed Address: with respect to a given pointp, anexposed addressis an address

thatmaybe referenced by an unguarded load prior to reachingp. A load l is guarded

if, and only if, the address referenced byl is already a guarded address with respect

to the location ofl.

Inherent Idempotence: a property of a region indicating that the region contains

no WAR sequences to the same address that could prevent it from being safely re-

executed during rollback recovery without undesired side-effects.

1This should not to be confused with the concept of reaching definitions commonly used in dataflow
analysis.

125



These definitions, and the text throughout this chapter, only make reference to load and

store instructions. This is done simply in an effort to improve readability. In reality, all

instructions that can potentially reference and/or modifymemory are considered during the

idempotence analysis. Additionally, register state is also initially ignored in the analysis

and will be treated separately in Section5.3.2.

5.3.1.1 Path Insensitive Analysis

Determining the idempotence of a region,r, begins by generating the region-wide

reachable store(RS), guarded address(GA) , andexposed address(EA) sets for all basic

blocksbbi ∈ r. This is done by performing multiple post-order traversalsof the region’s

CFG. For the time being, the details surrounding these regions will be ignored with the

exception of saying that they are limited to SEME subgraphs of basic blocks. Initially the

discussion will also be limited to acyclic regions. Cycles (i.e., loops) will be incorporated

in Section5.3.1.2once the initial acyclic algorithm has been described.

The initial post-order traversal begins from the entry block to the region. As each basic

block (bbi) is encountered, Equation5.1is used to update the corresponding reachable store

set,RSbbi
. Next, all edges inr are reversed and multiple post-order traversals are performed

on this new subgraph starting from each of the region’s exiting blocks. As each basic block,

bbi, is encountered during these “reverse” post-order traversals, Equations5.2 and5.3 are

used to update the corresponding guarded address and exposed address sets. Note that

the guarded address set,GAbbi
, must be updated before the exposed address set,EAbbi

.
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Furthermore, the set subtraction operation, “−”, used in these and subsequent equations is

supplied with standard, conservative, static memory aliasanalysis techniques2.

RSbbi
=

⋃

∀bbj∈Cbbi

(

RSbbj
∪ASbbj

)

⋃

ASbbi
(5.1)

whereRSbbi
is the set of reachable stores atbbi; Cbbi

is the set ofbbi’s children; andASbbi

is the set of all stores withinbbi itself.

GAbbi
=

⋂

∀bbj∈Cbbi

(

GAbbj
∪ASbbj

)

(5.2)

EAbbi
=

(

⋃

∀bbj∈Cbbi

EAbbj

)

⋃

(EA
local
bbi
−GAbbi

) (5.3)

whereGAbbi
is the set of guarded addresses atbbi; EAbbi

is the set of exposed addresses at
bbi; EA

local
bbi

is the set of all addresses referenced by loads inbbi that are not preceded by a
store, also withinbbi, to the same address, effectively the set oflocal exposed addresses for
bbi.

Once all the basic blocks within the region have been processed, and the associatedRS,

GA, andEA sets have been generated, Equation5.4can be used to determine whetherr is

idempotent. It essentially checks if idempotence can be violated by executing a basic block

bbi alonganypossible path throughr.

Regionr is idempotentiff I(bbi) = true,∀bbi ∈ r

where, I(bbi)

{

true, iff EAbbi
∩ RSbbi

= ∅

false, otherwise
(5.4)

Figure5.4 illustrates how this path insensitive idempotence analysis is performed on

a small example region. Figure5.4 highlights the potential WAR dependencies (#,⋆,@,+)

that exist between the relevant instructions 1-12. Figure5.4bshows how the data struc-

2Extending Encore to use more aggressive dynamic memory profiling is a promising area of future work.
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bb 2

bb7
9: Store A

10: Store B

11: Load C

bb 1 1: Store A

bb 8 12: Store C

bb 6bb 5 7: Load B

8: Load C

6: Load B

bb 3 bb 4

4: Load A

5: Store C

2: Store B

3: Store C

+
*
+

#

*

#

@

@

(a) A SEME region with four poten-
tial idempotence violating WAR de-
pendencies: instructions 4 and 9 (#);
7 and 10 (⋆); 8 and 12 (@); and 11
and 12 (+).

bb 2

bb7

bb 1

RS: {1-A, 2-B, 3-C, 5-C, 9-A, 10-B, 12-C}

GA: {}

EA: {}

bb 8

bb 6bb 5

bb 3 bb 4

RS: {2-B, 3-C, 5-C, 9-A, 10-B, 12-C}

GA: {A}

EA: {}

RS: {5-C, 9-A, 10-B, 12-C}

GA: {A}

EA: {}

RS: {9-A, 10-B, 12-C}

GA: {A, C}

EA: {B}

RS: {12-C}

GA: {A, C}

EA: {B}

RS: {2-B, 3-C, 9-A, 10-B, 12-C}

GA: {A}

EA: {}

RS: {}

GA: {A, B, C}

EA: {}

RS: {9-A, 10-B, 12-C}

GA: {A, C}

EA: {B}

Violates 

Idempotence!

(b) Results of the Encore analysis that identifies the single
dependency that actually requires checkpointing (instruction
10) to maintain idempotence. The number-letter pairs in the
RS sets indicates the instruction number and destination ad-
dress for the corresponding store.

Figure 5.4: Example illustrating Encore’s idempotence analysis. Onlythe relevant instructions
within each basic block are shown in (a). (b) shows how the data structures in Equation5.1 and
Equations5.2-5.3 are populated during the in-order traversal and reverse in-order traversal of the
subgraph, respectively.

tures in Equation5.1and Equations5.2-5.3are populated during the in-order traversal and

reverse in-order traversal of the subgraph, respectively.Although there are four WAR de-

pendencies that exist within this region, Encore is able to single-out the one dependence

that can actually violate idempotence during runtime, the dependency between instructions

7 and 10 (⋆).

Admittedly, identifying idempotence in this manner leads to conservative answers.

Equation5.4 does not account for correlations among branches between basic blocks and

consequently may categorize regions as non-idempotent because of paths that can never

be realized given the design of the application. However, augmenting any compiler anal-

ysis with path sensitive information is generally considered an intractable problem [32].

Nevertheless despite this limitation, the algorithm proposed here is efficient, scalable, and

sufficiently accurate.
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5.3.1.2 Incorporating Cycles

Up to this point, the analysis has focused on acyclic regions. Introducing cycles can dra-

matically complicate issues. To help maintain the scalability of the analysis, loops within

a region are treated in a hierarchical manner. Initially, prior to idempotence analysis, a

conventional compiler pass ensures that all loops are in a canonical form3 (i.e., single

header block and no side-entries). Next, whenever the boundaries of loops are encoun-

tered (header blocks during the forward post-order traversals and exiting blocks during the

reverse post-order traversals) no attempt is made to enter the body of the loop. Instead,

previously generated meta-information for each loop that summarizes the net impact of all

the memory accesses within the loop is used to update idempotence data structures. This

enables entire loops to be treated as if they were simply another basic block.

When analyzing regions containing cycles, all loops are processed first. If nested loops

are present, they are analyzed from the inner-most loop outward. When processing an

(inner-most) loop the constituent basic blocks can initially be analyzed as if they were

just a simple acyclic region. The guarded address and exposed address sets for each basic

block within the loop are generated as described in Section5.3.1.1. However, given the

cyclic nature of loops, effectively all stores are potentially reachable from any point within

(possibly across iterations). Therefore, the set of reachable stores for each basic block

within a loopl, RS
l
bbi

, is equivalent to the set of all stores within the loop,AS
l. Defining

RSl
bbi

in this fashion ensures that all cross-iteration WAR dependencies are accounted for.

Once the loop-wide reachable store, guarded address, and exposed address sets have been

3Not all cycles within a CFG can be converted into a canonical form. In these rare cases, Encore does
not instrument the parent region for rollback recovery.
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generated for all basic block within the loop, the loop can betreated as any other region

and idempotence can be assessed using Equation5.4. Once loop idempotence has been

determined, the next step is to generate the meta-information associated with the loop.

The goal of loop-wide meta-information is to capture and expose loop-wide memory

side-effects to simplify subsequent region analysis. Thisallows the entire loop itself to be

treated effectively as a simple basic block. The contents ofthis data structure are enumer-

ated below and are used in an analogous fashion to their basicblock counterparts.

Loop-wide reachable stores, RSli : the set of all stores that could potentially execute

if control ever enters loopli. The cyclic nature of the loop ensures thatRSli =

RS
li
header = AS

li, whereRS
li
header is the set of reachable stores for the loop header

andAS
li is the set of all stores within theli.

Loop-wide guarded addresses, GAli : the set of all addresses that are that are guar-

anteed to be overwritten if and when loopli is executed. Since loops can have mul-

tiple exiting blocks this is effectively the intersection of all guarded addresses across

all exiting blocks ofli. In other wordsDSli =
⋂

∀bbi∈Xli

GAbbi
, whereXli is the set

of exiting blocks forli.

Loop-wide exposed addresses, EAli : analogous to the definition of local exposed

addresses for basic blocks, the exposed address set forli is the set of all addresses

that may be referenced by an unguarded load along all possible paths throughli.

This is equivalent to the union of theEA sets across all the exit blocks,EAli =

⋃

∀bbi∈Xli

EAbbi
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With the loop-wide meta-data populated for all loops withinthe CFG, analysis of any

arbitrary region can proceed and treat loops hierarchically as just another basic block. The

region traversals simply “step-over” loops whenever they are encountered and update idem-

potence data structures with the loop-wide meta-data.

5.3.2 Instrumentation

Once the idempotence of the various regions within an application has been determined,

the next step is to identify whether inherently non-idempotent regions can be efficiently

(with low runtime overheads) transformed into idempotent regions. For Encore, this trans-

formation is achieved by instrumenting offending non-idempotent regions with instructions

to checkpoint state that may otherwise be overwritten upon re-execution.

While performing the idempotence checks in Section5.3.1, all offending stores that

violate Equation5.4 are recorded in a checkpoint set,CP, associated with every region.

If Encore decides to enable recovery (see Section5.3.4), on a non-idempotent region,ri,

it will proceed to instrument each store,s ∈ CP, with checkpointing instructions that

checkpoints the data just prior tos. Additionally, in order to ensure that no WAR register

dependencies violate idempotence, all live-in (with respect tori) registers that are overwrit-

ten withinri are also checkpointed upon entering the region. The identification of register

live-in values is a standard analysis in modern compilers and is omitted due to space con-

straints. Given the small amount (see Section5.5) of storage required the checkpointed

data is placed in a specially reserved region of the stack.

After instrumenting a region with the necessary checkpointing instructions, all that re-

mains is to create arecovery block–the destination of all rollbacks, initiated if and when
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a fault is detected within the region. Encore instruments the header of each region with a

simple store that updates a dedicated memory location with the address of the correspond-

ing recovery block each time control enters the region. Existing low-cost, software-based

detection schemes [111, 34] can be easily modified to redirect control to the address stored

in this reserved memory location when a fault is detected.

Within the recovery block, all the previously checkpointedstate (registers and memory)

are restored before redirecting control back to the region header. Although this additional

instrumentation also contributes to runtime overheads, itis only executed upon the detec-

tion of a transient fault. In fact, the conditional rollbackto the recovery block can also be

amortized with the cost of the detection scheme. Further optimizations for reducing the

overhead of this selective checkpointing are described in Section5.3.4.

5.3.3 Region Formation

Having discussed how idempotence is analyzed (and enforcedif necessary), we can

now discuss how the CFG is actually is initially partitioned, and subsequently refined, into

these segments. Candidate region formation is done in Encore by building upon traditional

interval analysis [3]. In general an interval, as defined by Aho et al., is essentially a loop

plus acyclic “tails” that dangle from the blocks within the loop. In practice the initial loop

at the “top” of the interval may not exist (i.e., an interval can simply be a small SEME

subgraph that shares a single dominating header node).

Since it is a standard pass within most modern compilers, this section omits the details

of how thisinitial partitioning is achieved and focuses on the subsequent refinement steps.

However there are two properties of this partitioning that are important to keep in mind,
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1) All intervals are by definition SEME regions and 2) interval partitioning can be

applied recursively.

The first property of interval partitioning greatly simplifies the process of recovery. By

ensuring that all regions are SEME, Encore can avoid the costly task of tracking dynamic

execution paths (see Section5.2.1). This property is what allows Encore to safely insert

the recovery block described in Section5.3.2just before the region’s header. Irrespective

of which path lead to the actual fault site, redirecting control to this recovery block will

ensure that it can be corrected.

The second property suggests that once a CFG is partitioned into intervals, the intervals

themselves form aninterval graphthat can also be partitioned into intervals. Encore ex-

ploits the second property of interval partitioning to create candidate regions with varying

sizes. By controlling the size of the regions, Encore is ableto effectively manage the trade-

off between fault tolerance and performance overhead. Generally speaking, the larger the

region that Encore attempts to recover from, the greater thelikelihood that the region is

not inherently idempotent. Recall that non-idempotent regions require instrumentation to

enable safe re-execution, which contributes to the overallruntime overhead. On the other

hand, the larger the region, the more likely that a transientfault striking within the region

will be detected before control exits the region and the fault is no longer recoverable. Sec-

tion5.3.4.2will discuss how heuristics are used to identify the appropriate region size given

a budget for acceptable performance overhead.

At this point, one might contend that merging two regions,ri andrj to form a larger

regionr′ (with ri precedingrj) may not necessarily incur additional costs to enforce idem-

potence withinr′. In fact, if rj were non-idempotent, the fact that it is preceded byri
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could actually reduce the amount of checkpointing requiredin rj if the idempotence vio-

lating instructions withinrj only referenced locations within the guarded address set for ri.

Although in principle this is correct, in practice these scenarios are rare and for the major-

ity of cases, fusing regions together was not an effective means ofreducingperformance

overheads.

5.3.4 Encore Heuristics

This section will focus on the heuristics used to glean the best reliability versus per-

formance trade-offs from Encore. First we discuss how profiling information can be used

to statistically prune basic blocks from the idempotence analysis followed by the heuristic

used to identify which regions are chosen as candidates for rollback recovery.

5.3.4.1 Relaxing Idempotence Criteria

Since Encore is intended to supply probabilistic rollback recovery for non-mission crit-

ical systems, one opportunity for optimization is to leverage application profiling. Unlike

conventional techniques targeting ultra-reliable systems that must provide guarantees on

recoverability, Encore is free of such constraints and is atliberty to to utilize profile-based,

not necessarily provable, analysis.

Presented with this flexibility the algorithm described in Section5.3.1can selectively

ignore any basic blocks that do not meet a certain “liveness”criteria. As previously men-

tioned, the idempotence determination made by Equation5.4 is necessarily conservative

since it accounts for all paths through the region. By exploiting profiling information, En-

core can now exclude basic blocks that are along paths that have low probabilities of being
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traversed when updatingRS, GA, andEA sets for each basic block. More formally, this

means that Equations5.1, 5.2, and5.3 can be re-formulated limiting the union and inter-

section operations, which originally operated over all thechildren of a basic block,Cbbi
, to

a subset set of childrenC′
bbi

where thedynamically-deadchildren have been pruned away.

The degree to which Encore filters these rarely executed basic blocks from its idempotence

analysis is controlled by a heuristic parameterPmin. Any basic block with an execution

probability less thanPmin is selectively ignored.

5.3.4.2 Region Selection

Another opportunity for trading off reliability for performance is in the area of region

selection. Encore can selectively decide1) which regions should be instrumented for

recovery (Section5.3.2) as well as 2) when to terminate the process of merging existing

intervals to form larger regions (Section5.3.3). Exposing the heuristic parameters that

control these decisions allows Encore to be customized by system designers.

Determining whether protecting a region is actually a profitable endeavor, is fairly

straightforward. For inherently idempotent regions, the answer is almost always yes. The

cost of updating the address for the current recovery block is negligible for all but the

smallest possible regions. However, for small, non-idempotent code portions, the overhead

incurred to preserve idempotence can potentially make it more attractive to simply concede

fault coverage for those regions. To account for this possibility, only regions that have rea-

sonable cost-to-coverage ratios are instrumented for selective checkpointing and rollback

recovery. In other wordsCoverage(ri)/Cost(ri) > γ must be satisfied for every candidate

region, whereγ is a heuristic threshold. The length of the hotpath throughri is used as a
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compile-time surrogate for coverage, while the ratio of checkpointing instructions required

to the number of total instructions within the hotpath is used as an estimate for cost.

Although some regions may initially be undesirable, Encorehas the ability to merge

adjacent regions to form larger, possibly more attractive candidates. Since merging regions

has the potential to incur additional checkpointing instructions, it is only performed if the

additional cost∆Cost is offset by the improvement in overall reliability. Given two re-

gions,ri andrj, that are to be fused intor′, this∆Coverage is defined as∆Coverage(r′) =

Coverage(r′)/Max(Coverage(ri), Coverage(rj)).

At a given cost, this definition for∆Coverage ensures that fusing two similarly sized

regions, which earns more cost-effective returns in terms of improved reliability, is pre-

ferred over merging a large and a small region. Ultimately only when∆Coverage/∆Cost >

η does Encore consider merging existing regions. Small values ofη predisposes the system

to try and create the larger regions in pursuit of greater reliability while largerη’s shift the

focus toward minimizing performance overheads.

5.4 Experimental Methodology

As with all reliability schemes dealing with transient faults, an ideal evaluation of En-

core would involve electron beam experiments on real hardware running real-world ap-

plications. Yet, given limited resources an acceptable alternative has been statistical fault

injection (SFI) on detailed system models (architectural,microarchitectural, RTL, etc.).

Statistics related to fault masking, and to a lesser extent fault detection, can be highly

dependent on the details of the underlying hardware. Consequently, for the full system
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results shown in Section5.5.4fault masking was determined by a series of Monte Carlo

experiments that injected faults into a low-level Verilog model of an ARM926 embedded

processor. Transient faults were injected into state elements and combinational logic and

the overall average hardware masking rate was quantified.

However in contrast, the more important figure of merit for evaluating Encore, the

amount of application code that can be cheaply re-executed,is far more sensitive to program

structure and to some degree is (micro)architecturally neutral. The remaining details of

the experimental methodology and the analytical model developed to evaluate Encore are

described below.

5.4.1 Compilation Framework

The compiler analysis and instrumentation passes described in Section5.3 were im-

plemented in the LLVM compiler. An assortment of Spec2000 integer (SPEC2K-INT),

Spec2000 floating point (SPEC2K-FP), and Mediabench applications serve as the repre-

sentative workloads for our experiments. All applicationswere compiled with standard

-O3 optimizations.

5.4.2 Recoverability Coverage Model

As previously stated, Encore only targets therecoveryaspect of processor reliability.

Within this context we definerecoverability coverageas the percentage of application code

that can be safely re-executed in the presence of a fault. In the case of Encore, this coverage

is effectively equivalent to the percentage of execution time that is spent within dynamic
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code regions that are inherently idempotent or have been instrumented to preserve idempo-

tence.

5.4.2.1 Impact of Detection Latency

Assume that the hot path through regionr consists of instructionsi0, i1, ..., in. If a fault

corrupts the output ofis (where0 ≤ s ≤ n) and the detection latency for the system isl

instructions, Encore can recover from this fault ifs + l < n. To account for the detection

latency of the system we calculate a latency scaling factorα according to Equation5.5.

αri
= Pr(s + l < n), ∀s ∈ [0, n], ∀l ∈ [0, Dmax]

=

∫ n

0

∫ s

0

f(l)g(s)dlds where, (5.5)

αri
: is the scaling factor associated with regionri that accounts for detection latency.

n : is the number of (dynamic) instructions along the hot path through regionri.
s : is a random variable, distributed over the interval[0, n], representing the instruction

(number) at which a transient fault occurs.
l : is a random variable, distributed over the interval[0, Dmax], representing the detec-

tion latency of a system with a maximum latency ofDmax, measured in terms of
instructions.

Pr(s + l < n) : the probability that a fault at instructions is detected inside the boundary
of regionri.

f(l) : is the probability density function corresponding to the the detection latency of the
system.

g(s) : is the probability density function corresponding to the fault sites within regionri.

For the full-system fault coverage results presented in Section 5.5.4 we use an uniform

distribution of fault sites, which assumes that every dynamic instruction over the course

of an application’s runtime has the same probability of being “struck” by a transient fault.

This is consistent with the general body of reliability workthat use uniform distributions to
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guide the selection of fault locations and times during SFI simulations. Similarly, the full-

system results in Section5.5.4also assumes a uniform distribution ([0,100] instructions)

of fault detection latencies. This is consistent with the detection latencies exhibited by

techniques like Shoestring [34], one of many recent proposals that exploits the anomalous

software behavior that manifests in the wake of a soft error event. With these assumptions,

Equation5.5can be re-written as Equation5.6.

αri
=

∫ n

0

∫ min(s,Dmax)

0

(1

n

)( 1

Dmax

)

dlds =



















1− Dmax

2n
, n ≥ Dmax

n
2Dmax

, n < Dmax

(5.6)

5.4.3 Performance Modeling

The runtime performance overheads in Section5.5.3are presented in terms of dynamic

instructions. The use of dynamic instructions may appear atfirst to be a less desirable

alternative to running natively on a real machine and/or a microarchitectural simulator.

However, this decision allows us to abstract away the details of the underlying hardware

and present architecture-neutral results.

5.5 Evaluation and Analysis

This section presents the quantitative evidence demonstrating Encore’s ability to pro-

vide affordable rollback recovery. For the data presented in this section values forγ and

η (Section5.3.4.2) were empirically derived for each application to target anacceptable

maximum runtime overhead of∼ 20%.
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Figure 5.5: Inherent region idempotence as a function ofPmin. From left to right, the columns
illustrate the fraction of regions within each applicationthat is inherently idempotent for different
values ofPmin ∈ {∅, 0.0, 0.1, 0.25}. With Pmin = ∅, the left-most column for each application
depicts the idempotence breakdown when no dynamically-dead code is pruned from the analysis.
TheUnknownsegments correspond to portions of the application source code that could not be
analyzed by Encore.

5.5.1 Region Idempotence

Figure5.5examines the inherent idempotence of candidate recovery regions as a func-

tion of Pmin. From left to right, the different columns for each application correspond to

the idempotence for the different values ofPmin ∈ {∅, 0.0, 0.1, 0.25}. The different seg-

ments represent the fraction of regions that were identifiedto be inherentlyidempotent,

non-idempotent, andunknown. Unknown regions contained code that Encore’s compiler

analysis was unable to process. This consisted of regions with calls to functions (mainly

system and library function calls) for which relevant aliasanalysis information could not

be easily obtained, preventing idempotence determinations.

Note that, as expected, the fraction of regions that are deemed idempotent grows as

more dynamically-dead code is pruned (increasing values ofPmin). Furthermore, nearly all

of the benefit can be garnered by simply pruning the code that wasneverexecuted during

profiling runs (Pmin = 0.0). This suggests that a good portion of the instrumentation
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optimizations described in Section5.3 can be achieved without incurring any measurable

risk. For the remainder of this section, all data presented is forPmin = 0.0.

Not surprisingly the SPEC2K-FP and Mediabench applications exhibit slightly bet-

ter idempotence behavior than the SPEC2K-INT benchmarks. As suggested by Kruijf et

al. [26], the multimedia and embedded-type codes typical of emerging applications tend

to have fewer memory side-effects, great for idempotence. However, it is interesting to

note that at least in terms of static code, on average, the extent of idempotence present

across all three benchmark suites are comparable. It is encouraging to observe that even in

control-heavy SPEC2K-INT applications, there is still a considerable fraction of code that

is inherentlyidempotent. On average, across all applications, 49% of regions are inherently

idempotent without pruning and 75% are idempotent withPmin = 0.0. This suggests that

Encore would only have to insert minimal, if any, checkpointing instrumentation code for

most applications to enforce idempotence.

5.5.2 Dynamic Execution Breakdown

Figure 5.6 takes a closer look at the execution of these workloads and presents the

breakdown of execution time (calculated in terms of the percentage of total dynamic in-

structions) spent in different regions of the code. The segments labeledw/ Encore Check-

pointingcorrespond to execution within regions that were non-idempotent but were selec-

tively instrumented to preserve idempotence, whilew/o Encore Checkpointingrepresents

execution time spent in regions that were inherently non-idempotent but were too expen-

sive to checkpoint. Execution time represented by thew/o Encore Checkpointingsegment

corresponds to lost recoverability coverage.
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Figure 5.6: Breakdown of dynamic execution time. For each application the stacks represent the
fraction of execution time spent within regions of the code that were inherently idempotent, non-
idempotent but instrumented with selective checkpointingby Encore, and non-idempotent but too
costly to checkpoint.

Despite having roughly the same amount of idempotent staticcode, the SPEC2K-FP

and Mediabench workloads spent significantly more runtime within naturally idempotent

and easily checkpointed code regions, i.e., Encore recoverable code.

5.5.3 Overheads

Figure5.7areports the runtime overheads corresponding to the recoverability coverage

results reported in Figure5.6. TheStatic Alias Analysisbar shows the current runtime over-

heads for Encore while theOptimistic Alias Analysisbar provides an approximate lower-

bound for future Encore designs that could utilize more robust alias analysis frameworks.

Encore must currently checkpoint a significant number instructions because the limited

alias analysis available to it cannot effectively disambiguate their addresses. Future, sys-

tems with more powerful, potentially dynamic, alias analysis could determine that a large

fraction of these currently idempotence-violating instructions are in fact innocuous.

Nevertheless, even in its current form Encore only imposes a14% runtime overhead,

on average, across all benchmarks. Although Encore was given a 20% performance bud-
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(a) Runtime performance overhead. TheStatic Alias Analysisbar reports the current runtime overheads for
Encore while theOptimistic Alias Analysisbar provides an approximate lower-bound for future Encore designs
that could utilize more robust (potentially dynamic) aliasanalysis frameworks.
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(b) Overheads reported as the average number of bytes required per region to store checkpointing information.
The stacked breakdowns highlight the contributions from memory and register checkpointing.

Figure 5.7: Encore runtime and storage overheads.

get, obviously not all workloads incurred this overhead. Some, like172.mgrid, epic,and

mpeg2encwere able to instrument all regions for recovery without requiring the full per-

formance budget. Others, like181.mcfand177.mesawere not able to meet (approach) the

20% target without incurring significant reductions in recoverability coverage.

Similarly, Figure5.7breports the storage overheads required to hold the selective check-

pointing information generated by Encore. Note that for register checkpoints, the check-

pointing information only consists of the register data, whereas for memory checkpoints

both data and address must be stored to enable proper recovery. On average, Encore must

only store 24 bytes of information per region, orders of magnitude less than the memory

footprint of conventional, full-system checkpointing techniques.
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Figure 5.8: Full-system fault coverage for a low-cost commodity systemusing Encore for rollback
recovery and fault detection schemes with different latencies. From left to right, the columns repre-
sent the % of all transient fault events that can be effectively tolerated given a system with detection
latencies of 1000, 100, and 10 instructions.

5.5.4 Full-system Reliability

Lastly, Figure5.8 examines the full-system fault tolerance that can be achieved by a

commodity system augmented with Encore for rollback recovery and a Shoestring-like

mechanism for fault detection. TheMaskedsegments represent the fraction of transient

faults that are naturally masked by the underlying hardwareand do not require any ad-

ditional intervention. As mentioned in Section5.4, this masking rate was identified with

Monte Carlo-based SFI experiments on a Verilog model of a representative low-end com-

modity processor [17].

In addition to the “free” fault coverage due to hardware masking, the fraction of faults

the system can also recover from with Encore-enabled rollback recovery is represented

by theRecoverable w/ IdempotenceandRecoverable w/ Encore Checkpointingsegments.

Portions of the bars labeledNot Recoverablecorrespond to faults that either occurred within

regions of the application code that Encore chose not to protect, or were the result of faults

that were not detected before execution had already left theregion containing the original

fault site.

144



The different columns in Figure5.8 correspond to the use of detection schemes with

different latencies. From left to right, the columns represent the coverage for systems

with detection latencies of 1000, 100, and 10 instructions.The middle column illustrates

the coverage achievable for a system experiencing fault detection latencies consistent with

existing techniques like Shoestring [34] and Restore [111]. The leftmost bar shows that

Encore can even benefit systems with hardware speculation support. Since aggressive out-

of-order machines typically only support rollback of 10-100 instructions, Encore could

enhance the recoverability of these systems but supportingrollback even in cases where

detection latencies reached 1000 instructions. Lastly, the rightmost bar presents the poten-

tial fault coverage that can be achieved in future systems with further constrained detection

latencies.

Nevertheless, even with present day latencies, Encore can safely recover from 97%

of faults, on average, across all benchmarks and nearly all faults for certain workloads

like 172.mgrid, 177.mesa, mpeg2dec, and rawcaudio. Although these coverage results

may seem less impressive when compared with the base maskingrate of 91%, one must

view these gains in the proper context. By supplying this 66%reduction in the number

of transient events that can cause system failures, Encore can enable low-end commodity

systems to meet reliability targets that may otherwise be out of reach.

5.6 Related Work

Transient fault tolerance requires two steps: 1) detectingthe fault event and 2) recov-

ering to an error-free state and resuming execution. Since Encore targets system recovery,
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this section only contains a brief overview of fault detection solutions, while providing a

more detailed discussion of previous efforts in fault recovery.

5.6.1 Fault Detection

There exists a large body of research addressing the challenge of fault detection [55,

34, 66, 71, 108, 80, 59, 75, 81]. These efforts can be broadly divided into four categories.

First, there are solutions that utilize some form of spatialredundancy to execute multiple

copies of an application simultaneously, periodically comparing results. Redundant multi-

threading [80] and dual-core execution [91] are good examples from this class. The second

category consists of solutions that exploit temporal redundancy, where the same work is

re-executed on the same hardware resource. Compiler-basedinstruction duplication [75]

and hardware-based selective replication [62] are well known techniques that fall into this

group. Lately, a third class of techniques have emerged thatrely on high-level software

symptoms [108, 69, 81] to identify faults, sometimes with help of specialized detectors [55,

113]. Finally, there have also been recent proposals that formulate hybrid solutions [34, 71]

combining multiple techniques to drive costs even lower while maintaining high detection

coverage.

5.6.2 System Recovery

Once a fault is detected, the system must rollback in order tocontinue execution from

a previous clean state. Recovery solutions are tasked with maintaining this clean state,

and providing an interface to enable the rollback. The most popular category of recovery

solutions are checkpoint based. In their simplest form, checkpoint-recovery solutions peri-
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odically save off the entire system state, and revert to the most recent version in the event

of a fault.

Enterprise-level Recovery. Traditionally, checkpoint-recovery solutions have been used

in large-scale enterprise systems to guarantee the often touted “five-nines” of reliability.

These systems, with 100-1000s of nodes, periodically suspend their program execution

and take snapshots of the entire memory system, usually stored on globally accessible

disks [28]. To maintain consistency, all the nodes in the system take their checkpoints

simultaneously, often causing bottlenecks due to disk bandwidth limitations. In general

these enterprise-level solutions are appropriate for their domain, but the cost of creating

these checkpoints are prohibitively high for all but the most mission-critical systems.

Architectural Recovery. A cheaper alternative to taking a complete system snapshot is

to log incremental changes to the system state. In the event of a failure, these changes can

be unrolled as needed. SafetyNet [94] and ReVive [68] are two examples of such solutions.

Although these log-based recovery solutions are scalable to more frequent checkpoints,

and smaller intervals, the additional complexity and overheads introduced from potential

hardware additions makes them less attractive for budget-wary commodity systems.

Opportunistic Recovery. This last category of recovery solutions may not technically

be recovery schemes in the conventional sense. Work by Li andYeung [50], subsequently

reaffirmed by others [89, 83, 96, 26], recognized that not all applications, or even functions

within an application, require the same degree of “correctness.” Many, especially multime-

dia and embedded codes can naturally tolerate a non-trivialamount of errors. Li and Yeung
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exploit this notion of application-level correctness by manually inserting checkpointing

code that only saves the program counter, architectural register file, and stack state at the

top of outer loops. Relax [26] takes this principle even further. Functions are manually

instrumented with recovery blocks that are allowed to select between re-executing code,

returning default values, or simply ignoring the faults depending on how such actions are

expected to impact the “quality” of externally visible results. Encore shares the same basic

principles with these other lightweight recovery solutions. However, this work is the first

to present an automated (compiler-based, without manual inspection), generalized (beyond

inner/outer loops and functions) solution for achieving selective rollback recovery. Fur-

thermore, the application-level correctness notions [96] that existing works benefit from

are complementary to Encore and can be supplied to the compilation framework to further

enhance reliability.

5.7 Summary

Whether due to environmental phenomena or ambitious designs pushing the envelop

of low power architectures, transient faults are re-emerging as a prominent reliability is-

sue in modern computing. Yet despite this growing reliability concern, we would argue

that instead of appropriating large transistor budgets (orprocessor cycles) to hedge against

growing fault rates, system architects should embrace the high degree of fault tolerance

that can be had simply by sacrificing provable guarantees. Such tradeoffs are the most at-

tractive for low-end commodity and embedded markets, wheresystems often cannot afford

to devote a substantial portion of their resources to anything other than actually perform-
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ing useful computations. With the ability to recover from, on average, 97% of transient

faults (when paired with existing detection mechanisms), Encore is poised as an attractive

solution. Realizing this coverage at a modest 14% average performance overhead, it frees

system designers to return their attention back to other aspects of the system architecture.
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CHAPTER VI

Conclusion

In a world where consumer electronics permeate nearly everyarea of daily life, con-

cerns over processor reliability will soon take center stage. Whether people are purchasing

faster, more capable smartphones or the latest generation of tablets and laptops they will

continue to demand a user experience that remains shelteredfrom the limitations of hard-

ware reliability. Although the laws of physics will inevitably lead to more vulnerable tran-

sistors, microarchitects and system designers must develop innovative solutions that can

keep emerging reliability threats at bay while imposing minimal user-visible overheads.

As our preliminary studies eventually evolved into the individual works presented within

this thesis, we identified two fundamental insights that established the foundation of our

work: 1) that the majority of consumer devices do not lie at either extreme of the reliability

spectrum, necessitating the need for not just “low-cost” but genuinely affordable fault-

tolerance, and 2) that with the appropriate analysis, the inherent computational patterns

within programs can be leveraged to reap dramatic reductions in the cost of dependable

computing.
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In this dissertation we championed an approach to fault-tolerance that exploited the

relaxed constraints of commodity devices in order to entertain ideas that have previously

been overlooked by those in the high-reliability, mission-critical computing domains. Tra-

ditional fault-tolerance solutions are simply overdesigned for the average consumer who

realistically does not expect “five-nines” of reliability from their devices. By sacrificing

a few “nines”, the user-centric, application-aware techniques described in this disserta-

tion are able to provide a relatively transparent—in terms of additional hardware cost and

performance degradation—layer of reliability that shields the end user from the negative

effects of technology scaling.

The first half of this thesis embraced this philosophy and demonstrated that the risks

posed by device wearout and permanent faults can be effectively addressed without resort-

ing to traditional hardware overprovisioning. Instead of utilizing cold spares or intrusive

circuit enhancements, Maestro relies on light-weight sensors like the WDU and the char-

acteristic hardware and software heterogeneity present within chip multiprocessor environ-

ments. By introducing wearout-aware job scheduling algorithms we can achieve intra- and

inter-chip wear leveling that significantly prolongs the effective life of the overall system,

with virtually no impact on performance.

Next, we turned our attention to the more immediate threat oftransient soft-errors.

By leveraging efforts from two prominent areas of prior research, namely symptom-based

fault detection and compiler-directed instruction duplication, we were able to produce an

ultra-low cost, hybrid transient fault detection scheme, Shoestring. The flexibility of se-

lective instruction duplication enabled us to compliment the basic fault-coverage supplied

by more efficient, symptom-based detection methods. Intelligent compile-time analysis
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allows Shoestring to apply instruction duplication sparingly, strategically protecting only

the statistically-vulnerable portions of an application that are not inherently safeguarded by

symptoms.

Lastly, having investigated fault-detection, our focus naturally turned toward transient

fault recovery. With many recent proposals, including Shoestring, relying on existing hard-

ware to provide fault recovery capabilities, a need emergedfor a low-cost, software-only

mechanism that could support recovery in commodity systemswithout native hardware

for speculative rollback. With Encore we introduced a solution that appreciated the in-

nate idempotent nature of many regions of program execution. Combining this observation

with detailed program analysis, and a few choice compiler transformations, Encore is able

to deliver respectable recoverability “coverage” withoutthe specialized hardware or per-

formance penalties of conventional, full-system checkpointing techniques.

By applying the law of diminishing marginal utility to fault-tolerant computing, the

works presented in this thesis are able to break from tradition and advocate a new approach

to looking at the reliability challenges facing future computer systems—one that dispenses

with an all-or-nothing paradigm in favor of flexible engineering solutions that can target

multiple design points with different cost-benefit tradeoffs.
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