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ABSTRACT

Delivering Affordable Fault-tolerance to Commodity ContgruSystems

by

Shuguang Feng

Chair:; Scott Mahlke

To meet an insatiable consumer demand for greater perfaeratriess power, silicon tech-
nology has scaled to unprecedented dimensions. This aijggesxaling has provided de-
signers with an ever increasing budget of cheaper and faatesistors. Unfortunately, this
trend has also been accompanied by a decline in individwateleeliability as transistors
have become increasingly susceptible to a host of threats.

With each new technology generation the challenges atsdaiath process variation,
wearout, and transient faults gain greater prominence. r&/gackly approaching a new
era where fault-tolerance is becoming a first-order desamsitaint, no longer a luxury
reserved exclusively for high-reliability, mission-acdl domains. Even commodity mi-
croprocessors used in mainstream computing will requinéegtion.

However, just as the reliability needs of NASA and Apple @ifiramatically, so does

their ability to absorb the costs necessary to ensure faldtance. Viable solutions tar-

Xiii



geting commodity systems must not only recognize this fagtmust embrace it. Simply
stripping down techniques developed for enterprise semvey not result in the most ap-
propriate designs for your laptop or cellphone. The besttgmis will exploit the relaxed
reliability constraints of commodity systems, judiciousécrificing a small degree of fault-
tolerance to achieve far greater reductions in overheats.cos

This thesis proposes a collection of works that can be seddginixed and matched to
assemble reliability solutions tailor-fit for the commagd#ystems community. Although
the works presented address a variety of different isswes fwearout to transient faults
and prevention to detection, they were all motivated by #maes observation—that much
of the overhead costs associated with conventional falglitance mechanisms are spentin
pursuit of the last few “nines” of reliability. This conclas gave rise to the philosophy
permeating the chapters of this work, that summarily dismg techniques that cannot
supplymission-criticalfault tolerance is no longer acceptable. In presenting retaso-
lutions to a few of the more interesting challenges—proacivear-leveling orchestrated
through intelligent job scheduling and software-only si@nt fault detection and recovery
that exploits intrinsic computational patterns within kpgtions—we establish fundamen-
tal principles that can be applied more broadly to formukatsomprehensive reliability

strategy.

Xiv



CHAPTER|

Introduction

Given the recent news coverage of the high-profile Toyotalleand similar articles
chronicling Apple’s antenna woes on their newly releasédife, the reliability, or perhaps
more appropriately thenreliability, of computer systems has taken center stage. Although
culpability in these headlining stories may not rest sotelythe shoulders of faulty micro-
processors, the public response to these events has Ihigddithe frustration that can arise

when computers, and the systems they are associated witlot dlonction as advertised.

1.1 Dependable Computing for the Masses

With hundreds, sometimes thousands, of dollars being spetite latest piece of con-
sumer electronics the computers that power them are expaxigerform tasks not only
quickly, but also reliably. Whether they are trading stoftksn a laptop or watching the
latest YouTube video on an iPhone, users expect their expegito be fault-free. Although

the occasional dropped call or “blue screen of death” mayweeaoked, the average con-



sumer has grown accustomed to the (nearly) fault-free emgoy of their electronic de-
vices.

Unfortunately, the course of aggressive technology sgdbeing undertaken by in-
dustry is exposing new sources of unreliability and exaatemg old ones. Whether we
are talking about manufacturing defects resulting in chijzg are dead-on-arrival, pro-
cess variation leading to dynamic heterogeneity, wearounsttaining device lifetimes, or
soft-errors periodically corrupting computation, thaability threats faced by modern mi-
croprocessors are as diverse as they are challenging.

Microarchitects who were once able to defer reliability cems to lower level circuit
and process engineers are now responsible for their shdre béavy lifting. With wearout
and transient faults knocking at the door of even commodibc@ssors, microarchitects
must devise new methods to ensure consumer-visible faities still remain impercepti-
bly small, without noticeably degrading performance ottiogtinto shrinking profit mar-
gins.

Traditionally, reliability research has focused largely tbe high-performance server
market. The historical gold standards in this space have bez IBM S/360 (now Z-
series serversPp] and the HP NonStop systems/], which rely on large scale modular
redundancy to provide fault tolerance. Other researchers focused on providing fault
protection using redundant multithreadingp] 74, 59, 38, 90] or specialized hardware
checkers]14, 19, 55].

These simple yet elegant techniques, having served thdke mission-critical server
arena for decades, are not typically practical outsidertitise domain. The overheads as-

sociated with these conventional solutions are prohiéigiexpensive for budget-conscious



systems with less demanding reliability requirementshéligh reliability cannot be com-
pletely ignored in lower-end systems, they are not usualighed to provide the “five-
nines” of fault tolerance capable of sending someone sédelye moon.

In the commodity computing space, area and power are pric@rgiderations. Con-
sumers are not willing to pay the additional costs (in terfrtsaodware price, performance
loss, or reduced battery lifetime) for conventional faolerance schemes. At the same
time, they do not demand “five-nines” of reliability, toléreg the occasional dropped
phone calls, glitches in video playback, and crashes of thesktop/laptop computers
(commonly caused by software bugs). The key challenge daitia consumer electron-
ics market in future deep submicron technologies is proggiist enough fault-tolerance
to ensure that the effective fault rate remains at the levettiich people have become
accustomed. Examining how this minimal, geifficienf coverage can be achieved “on the

cheap” is the goal of this thesis.

1.2 Reliability Taxonomy

The purpose of this section is to set the stage for the reraabfdthe thesis by provid-
ing some preliminary background. Additional, supplemEnfarmation is supplied within
subsequent chapters as needed. Given the vast amounbiligliworks in the literature,
this section hopes to minimize potential confusion by idtrcing the manner in which
some fundamental terms and concepts will be used within ehgegt of this document.

Although other, presumably more formal texts, may preséstratives to these defini-



tions, our intent was to embrace the most popular definitrdmsn possible for the sake of

readability, drawing distinctions and specializing termngy when absolutely necessary.

1.2.1 Threats to Reliable Computing

For the purposes of this thesis, faults are separated irtdtoad categoriesransient
andpermanent Membership in one of these two categories, although natysdva hard-
and-fast rule, is generally decided based on the frequemdydaration of the fault event.
A transient fault is typically a “rare” event that causes aroethat generally does not
persist, whereas a permanent fault, once it has evolvedinissaassured to manifest as
frequent consistent errors. Within permanent faults thésis is particularly interested in
those faults that are caused by dewiaEarout-the process by which transistors, which are
fully functional at manufacture time, degrade and evetydail over a lifetime.

Transient Faults: Probably the better understood of the two categories,iganfults,
also known as soft-errors, can be caused by a variety of phena. Historically, the two
major sources have been neutrons from cosmic radiationlphé particles released from
packaging impurities. Whatever their origin, these higlergy particles deposit additional
charge when they strike that can cause a transistor to @wusheswitch. In addition to
these environmental culprits, transient faults can alsaoltérom an array of other sources
including crosstalk and voltage and current fluctuationstifermore, recent proposals for
high-performance, low-power designs that employ aggredsequency scaling and even
timing speculation are also emerging as prominent causeartfient faults.

Permanent Faults: Traditionally viewed as a process and manufacturing congear-

manent faults (also known as “hard faults”) have caught ttemtion of microarchitects in



recent years. In addition to the expected manufacturingatef designers are now faced
with the prospect of in-field wearout. This most recent thhes captured significant inter-
est because itis closely coupled with the aggressive téapyscaling trend being pursued
by industry. As CMOS feature sizes scale to smaller dimessithe inability of operat-
ing voltage to scale accordingly results in dramatic insesan power and current density.
Consequently, areas of high power density increase loogleeatures leading to hot spots
on the chip. Since most wearout mechanisms, such as gate bredkdown and nega-
tive bias temperature instability are all highly dependentemperature, the occurrence of
wearout-induced failures will become increasingly comnofuture technology genera-

tions.

1.2.2 Anatomy of Fault-tolerant Computing

Figurel.lis an abstract illustration of the major components of a aaingnsive re-
liability strategy. Each of these aspects of reliabilityshbe addressed, at least to some
degree, in order to ensure fault-tolerant operation. Famgte, simply detecting a fault is
insufficient if no mechanism is in place to recover from it.\Wwver, not all components in
Figurel.1require complex, sophisticated solutions. In some sibaatilike when a tran-
sient fault is detected, an adequate recovery responseimply$e to discard the affected
instructions.

The relative position of each component with respect to thesient-permanent fault
boundary represents the degree to which recent stateeedrtiresearch publications aimed
at transient (permanent) faults has focused on that p&atiespect of reliability. For ex-

ample, papers proposing diagnosis and system repair frgaaation) solutions have gen-
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Figure 1.1: A “reliability pipeline” depicting the different pieces & comprehensive reliability
strategy. The relative location of each component to thedient-permanent boundary represents
the extent to which recent research into transient (weanodticed permanent) faults has studied
that particular aspect of reliability.

erally been targeted toward permanent faults, mainly bexé&ansient faults typically do
not damage the underlying hardware, leaving nothing to paired.

This thesis concentrates primarily on the first three stag#ss “reliability pipeline.”
The first half presents techniques to monitor (detectiownl) @oactively manage (preven-
tion) the effects of device wearout. The later half of thesditation tackles the challenges
of transient fault detection and recovery, capitalizingletailed program analysis to reign

in overhead costs.

1.3 Conventional Solutions

As previously alluded to, processor reliability is by no mea new area of research.
In as early as 1956 von Neumann formally presented the ptesbehind modular redun-
dancy (3], principles that have evolved into the fault-tolerancison of choice for nearly
all application domains that have historically demandeghhieliably. In its simplest form,

n-modular redundancy (nMR) relies on performing multipistances of the same compu-



tation and employing an arbitration mechanism (typicalbjonity voting) that can identify
the correct, error-free, result frompotentially different outcomes. The archetypal fault-
tolerant systems of the past have all embraced some vafidghiscelegant, yet effective
technique §5, 11, 14].

Possibly the biggest attraction of nMR solutions is thaytb@n nearly address all as-
pects of reliability (see Figurg.l). By design they fulfill both the detection and recovery
requirements, and in a simple triple-modular implemeatatault diagnosis is also natu-
rally provided (assuming a single fault model). Furtherepgiven the inherent redundancy
in an nMR design, even temporary repair can be easily aathigysimply ignoring the out-
puts of components that have been identified as faulty

Yet despite the strengths of these early systems, the ad/emtltithreaded and mul-
ticore architectures motivated researchers to develogs wéayaccomplishing nMR with-
out having to explicitly design redundancy into the hardaaRotenberg’s seminal paper
on AR-SMT [80] was the first comprehensive microarchitectural-levelgsagn modular
redundancy, introducing the concept of redundant muéddadmg on simultaneous mul-
tithreaded cores. Whether redundantly executing on sepacaies within a CMP (spa-
tial redundancy) or managing redundant threads runninginvinultiple software con-
texts on the same hardware (temporal redundancy), latpopats like those by Vijayku-
mar [38, 37, 107 and Falsafi J0, 90, 91] attempted to improve upon the performance
of AR-SMT by exploiting the redundant, and often idle, res@s of modern superscalar

CMPs.

IClearly, depending on the needs of the system the faulty ooemts would ultimately need to be re-
placed or the reductions in redundancy would eventuallyatigreliability.




Relative to these coarse-grained redundancy approadieesethniques proposed in
this thesis incur considerably less overheads. They areleqmndent on the abundance
of idle processors or hardware resources. In scenariosewdy@mtems are not signifi-
cantly overprovisioned, the overheads of traditional nM&aonsiderably greater than the
few percentage points of performance degradation regutadorted in research papers.
The additional resources required to enable redundantuggedi.e., additional cores and
threads) must also be accounted for, resources that canngerlde allocated to other
waiting tasks, adversely impacting their performance.

In contrast, the solution we propose for transient fauledi&bn and recovery only im-
poses a modest performance degradation, limited to jusappécation being protected,
without any modifications to commodity hardware. Similadithough our wearout pro-
posals do involve microarchitectural additions, they do mmuire that entire cores be
reappropriated for continuous fault monitoring. Furthere) unlike nMR solutions that
can only react to failures, the wearout management teckriguthis thesis are preventa-
tive and can actually proactively avoid failures.

Of course, the body of reliability literature is not solelgvdted to nMR. The con-
siderable research effort devoted toward further redutinegoverheads of fault-tolerant
computing has resulted in many innovative solutions thahgpe spectrum of the software-
hardware stack. They range from compiler-directed inswaauplication ['5] and spe-
cialized hardware checkersd] for transient fault detection to adaptive body biasing and
voltage scaling 05 85] to keep wearout at bay. However, as less conventionalisakit
that typically only target a single component of the “religyp pipeline” (Figure 1.1) they

will be discussed separately within the appropriate clraptd more extensive treatment



of the latest advances in fault-tolerant architecture ¢sm lae found in Sorin’s recent syn-

thesis lectureq3].

1.4 Contributions

This thesis is built upon two central principles: 1) thatthajority of consumer devices
do not lie at either extreme of the reliability spectrum, essitating the need for not just
“low-cost” but genuinely affordable fault-tolerance, a2)dthat with the appropriate analy-
sis, the inherent computational patterns within prograamshe leveraged to reap dramatic
reductions in the cost of dependable computing.

With these themes in mind we make the following contribusion

We demonstrate that the progressive nature of prominkdsiwearout mechanisms
makes them amenable to low-cost, in-situ monitoring, psoppa microarchitectural-

level sensor capable of tracking the evolution of wearout.

» We present a proactive reliability-aware scheduler tea¢ilages continuous health
monitoring to orchestrate application-driven wear-levgto maximize lifetime reli-

ability.

* We develop a commodity-grade (adequate coverage atlaliraost) transient fault
detection mechanism that relies on reliability-aware cien@nalyses to direct se-

lective instruction duplication of vulnerable computaiso

 Lastly, we present a software-only, fine-grained rollbaekovery mechanism tar-

geted at low-end commodity processors lacking native harewecovery support.



CHAPTER I

Self-calibrating Online Wearout Detection

2.1 Introduction

Traditionally, microprocessors have been designed witlstw@se operating conditions
in mind. To this end, manufacturers have employed burn iardjbands, and speed bin-
ning to ensure that processors will meet a predefined liegjoalification, or mean time to
failure (MTTF). However, projections of current technojdgends indicate that these tech-
niques are unlikely to satisfy reliability requirementguture technology generationsd.
As CMOS feature sizes scale to smaller dimensions, thelityabf operating voltage to
scale accordingly results in dramatic increases in powercarrent density. Areas of high
power density increase local temperatures leading to hatsspn the chip §€]. Since
most wearout mechanisms, such as gate oxide breakdown (@BBative bias tempera-
ture instability (NBTI), electromigration (EM), and hotrcier injection (HCI), are highly
dependent on temperature, power, and current densityctherence of wearout-induced

failures will become increasingly common in future tectoyyl generations/[1].
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Though the reliability of individual devices is projecteldecrease, consumer expec-
tations regarding system reliability are only likely to iease. For example, some business
customers have reported downtime costs of more than $lomitier hour {]. Further,

a recent poll conducted by Gartner Research demonstraaednibre than 84% of orga-

nizations rely on systems that are over five years old, anc rti@n 50% use machines
that are over ten years old][ Given the requisite long life expectancies of system$ia t
field and the high costs of in-field replacement, any techaigu mitigating the amount of

downtime experienced due to failed systems will prove n&hle to businesses.

In order to maintain availability in the presence of potalhi unreliable components,
architects and circuit designers have historically emgtbgither error detection or failure
prediction mechanisms. Error detection is used to ideffaifed or failing components by
locating (potentially transient) pieces of incorrect stafithin the system. Once an error
is detected, the problem is diagnosed and corrective actizay be taken. The second
approach, failure prediction, supplies the system withlaraforecast allowing it to take
preventative measures to avoid, or at least minimize, tipaathof expected device failures.

Historically, high-end server systems have relied on edigiection to provide a high
degree of system reliability. Error detection is typicatlyplemented through coarse grain
replication. This replication can be conducted either iacgpthrough the use of replicated
hardware §5, 14], or in time by way of redundant computatio®] 74, 70, 107, 90, 37, 75,
71]. The use of redundant hardware is costly in terms of bothgv@md area and does not
significantly increase the lifetime of the processor withadditional cold-spare devices.
Detection through redundancy in time is potentially legsemsive but is generally limited

to transient error detection unless redundant hardwassadily available.

11



Failure prediction techniques are typically less costlimiplement, but they also face
a number of challenges. One traditional approach to fapueéiction is the use of canary
circuits [56], designed to fail in advance of the circuits they are changéh protecting,
providing an early indication that important processoudtires are nearing their end of
life. Canary circuits are an efficient and generic means édlipt failure. However, there
are a number of sensitive issues that must be addressed ltay depm effectively. For
instance, the placement of these circuits is extremely mapb for accurate prediction,
because the canary must be subjected to the same operatidigjaas as the circuit it is
designed to monitor.

Another technique for failure prediction is the use of timsensors that detect when
circuit latency is increasing over time or has surpassedespradefined threshol®{,
15, 2]. The work presented here extends upof] [which presented the idea of failure
prediction using timing analysis and identifying degragdperformance as a symptom of
wearout in semiconductor devices.

Recent work by Srinivasar®{] proposes a predictive technique that monitors the dy-
namic activity and temperature of structures within a npcozessor in order to calculate
their predicted time to failure based on analytical moddlsis system can then be used
to swap in cold-spare structures based on these predicfidns work pioneered the idea
of dynamically trading performance for reliability in omd® meet a predefined lifetime
gualification. Although this technique may be used to idgrdiructures that are likely to
fail in the near future, it relies on accurate analyticalidewearout models and a narrow

probability density function for effective predictions.
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Research into the physical effects of wearout on circuissdwn that many wearout
mechanisms for silicon devices are progressive over timether, many of these wearout
mechanisms, such as EM, OBD, HCI, and NBTI, have been showrate a negative
impact on device performancé,[51, 119 23]. For example, a device subject to hot carrier
injection (HCI) will experience drive current degradatiomhich leads to a decrease in
switching frequency {]. The recognition of progressive performance degradatiora
precursor to wearout-induced failures creates a uniquertynmty for predictive measures,
which can forecast failures by dynamically analyzing tingiriig of logic in situ.

The work presented here proposes an online technique thedtsléhe performance
degradation caused by wearout over time in order to anteifsalures. Rather than ag-
gressively deploying duplicate fault-checking structuoe relying on analytical wearout
models, an early warning system is presented that identifeeperformance degradation
symptomatic of wearout. As a case study, and to derive anratecperformance degra-
dation model for subsequent simulations, detailed HSPi@Hlations were performed to
determine the impact of one particular wearout mechanid),@n logic gates within a
microprocessor core. Research of other progressive wesrechanisms such as HCI and
EM, indicates that similar effects are likely to be obseras@ result of these phenomenon.

The results of this analysis are used to motivate the dedigm online latency sam-
pling unit, dubbed the wearout detection unit (WDU). The WBWapable of measuring
the signal propagation latencies for signals within micogessor logic. This information
is then sampled and filtered by a statistical analysis mashetiat accounts for anomalies
in the sample stream (caused by phenomenon such as cleckaitid power and temper-

ature fluctuations). In this way, the WDU is able to identifgrsficant changes in the

13



latency profile for a given structure and predict a devickifai Online statistical analysis
allows the WDU to be self-calibrating, adapting to eachtrre that it monitors, making
it generic enough to be reused for a variety of microarchitet components.

Traditional studies of wearout mechanisms have focusedagpily on their effects on
transistor and circuit level performance, without analgzihe microarchitectural impact.
To the best of our knowledge, the experiments presentedsrchiapter were the first such

attempt in this direction. Specific contributions include:

An HSPICE-based characterization of OBD-induced wearout

» A microarchitectural analysis of the performance impd&BD on microprocessor

logic

A detailed simulation infrastructure for modeling the iagp of wearout on an em-

bedded processor core

A self-calibrating WDU capable of monitoring path latesei

A demonstration of how the WDU can be deployed to extendgssar lifetime

2.2 Device-level Wearout Analysis

Though many wearout mechanisms have been shown to progrigssegrade perfor-
mance as transistors age [L19, 23], as a case study, this work focuses on the effects of
one particular mechanism, gate oxide breakdown (OBD), hoatestrate how performance
degradation at the device level can affect processor pednce at the microarchitectural
level. Due to the lack of microarchitectural models for tmegvessive effects of wearout,

it was necessary to first model the effects at the circuit lieverder to abstract them up to
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the microarchitecture. The results of the modeling andrabsbn are presented within this
section. While this section is useful in understanding tarire of progressive wearout,
readers unfamiliar with device physics may want to simpliertbe high-level abstraction
of OBD effects presented in FiguPel and move on to sectioh 3.

The remainder of this section describes the transistoradiegion model for OBD,
based on empirical data from researchers at IBM. This geeti®o presents an HSPICE
characterization of the effects of OBD on gates in a 90 nmdstahcell library from a

major technology vendor.

2.2.1 Gate Oxide Breakdown

OBD, also known as time dependent dielectric breakdown (BRI caused by the
formation of a conductive path through the gate oxide of a Gi@nsistor. The pro-
gression of OBD causes an increasing leakage current thringggate oxide of devices
that eventually leads to oxide failure, rendering the dewiaresponsive to input stim-
uli [100, 57, 51]. Sune and Wu showed that there is a significant amount of tegeired
for the OBD leakage current to reach a level capable of affgcircuit performancel[0d.
This suggests that there is a window of opportunity to detecbnset of OBD before oxide
leakage levels compromise the operation of devices anckdamnsg failures.

The modeling of OBD conducted in this work is based upon tipeegrental results of
Rodriguez et al. {g]. The change in gate oxide current resulting from OBD is nhedi®y

the power-law expression in Equati@ri:

Algate = K(ng>p (2.1)
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The change in gate-to-drain (gate-to-source) currenpiesented as a function of a lin-
ear scaling factof<, the gate-to-drain (gate-to-source) voltage (V,), and a power-law
exponentp. Both fitting parameter#” andp vary depending on the amount of degrada-
tion experienced by the transistor in question. Howevarniach of the empirical data
collected in [/€], selecting g = 5.0, while still allowing K to track the degree of degra-
dation, resulted in a consistent fit. This is the model foricevdegradation used in this

work.

2.2.2 HSPICE Analysis

To facilitate modeling the effects of OBD-induced degramtatn HSPICE, the BSIM4
gate leakage model f] for gate-to-drain and gate-to-source oxide leakage isifieaito
accommodate the scaling factor from Equatioh Using this leakage model, an HSPICE
testbench was created to simulate the effects of OBD on pgadjwan delay within logic
circuits. The testbench consists of an ideal voltage sodiigéng an undegraded copy of
the gate under test, which drives the gate under test, whiebstanother undegraded copy
of the gate under test. This testbench allows the simulatiorcapture both the loading
effects a degraded device presents to nodes on the upstegapap well as the ability of
downstream nodes to regenerate a degraded signal.

For each type of logic gate within the cell library, one tiate at a time is selected
from the gate and its leakage model is replaced with the nestiBiSIM4 model. For each
transistor that is being degraded, all input to output fsdimns are simulated so that for
every gate characterized, propagation delays correspgrdiall possible combinations

of degraded transistor, input to output path, and initiplinstates are captured. For each
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Figure 2.1: Impact of OBD-induced oxide leakage current on standartiprepagation delays.

simulation run, the amount of degradation experienced éyldgraded transistor (as mod-
eled by the oxide leakage) is slowly increased until the gateses to function (outputs no
longer switch).

The results of the timing characterization are shown in QUL Figure2.lashows
the changes in propagation delay for an average size imvdie plot highlights the dif-
ferent effects that OBD has on propagation delay dependmnthe transition direction
and location/type of the degraded transistor. Note thathifercase when the PMOS (the
analogous story is true for the NMOS) is degraded, risingsiteons expressed increases
in delay while falling transitions showed decreases inyefadetailed discussion of this
phenomenon follows in the next paragraph. Although theeecamplex dependence rela-
tionships affecting the performance impact on rise andpiapagation delays, as a sim-
plifying assumption, the net effect is used in this work. F&R2.1bpresents the net effect
(rising transition + falling transition) of OBD on gates tiih the cell library. For a given

gate a separate curve is shown for each of its transistorge tdat the “net” change in
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Figure 2.2: HSPICE simulation traces for inverter with degraded PMOSwslown).
propagation delay is categorically increasing near theadride for gates within this cell
library, irrespective of which internal transistor is daded.

An examination of Figur@.lareveals that in the case where the PMOS experiences
OBD, the rising transition expresses more than a doublintsafominal delay before the
inverter fails to transition. The primary source of thisre&se in delay is the interaction
with the previous stage, a non-degraded inverter, whichiligested to driving the leaky
PMOS oxide. Figure®.2 and2.3 show the voltages at the nodes of interest during the
rising and falling transitions of the degraded inverter.eTold traces show the voltage
transitions under nominal conditions while the lightervas are the result of increasing

amounts of wearout.
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Figure 2.3: HSPICE simulation traces for inverter with degraded PMO&élup).

When the input to the inverter under test begins to fall (Fegu23, the gate-to-source
oxide leakage],;, through the PMOS device provides additional current tartpat node,
prolonging the discharge time of the gate through the NMO®efpreceding stage. The
gate-to-drain oxide leakagé,, initially aids the rising transition, helping to charge tine
inverter output. However, as the transition continues &edutput begins to rise, thig,
leakage also provides an additional current to the gate.n@devith thel,, current, this
too increases the time required to drain the remaining ehargthe gate. Note also that
with large amounts of degradation the input voltage rangepresses due tf,, and /4
oxide leakage. Unable to switch from rail-to-rail, the arrrents sustainable by the PMOS
and NMOS are significantly reduced, which ultimately cdnites to the increase in overall

propagation delay (Figur2.29.
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Perhaps more surprising is the behavior of the propagagtaydiuring a falling transi-
tion of the inverter output (Figur2.3). With increasing oxide degradation, the delay of the
inverter actually decreases until just prior to functiofagure. This behavior is caused by
the I,; andI,, leakage currents that help in charging their own gate nagilting in an
earlier rising transition on the input. As a result, desgiigiedegraded on currents due to the
compressed gate voltage swing, because the inverter lgctseds” the input transitioning
sooner, the net effect is a decrease in the overall promagdelay of the inverter itself
(teer) and ultimately the circuitt(;,cyit)-

In summary, at moderate values of oxide degradation, the igdtage on the gate node
swings roughly rail-to-rail, allowing normal operationtbie inverter. However, during the
final stages of oxide OBD, the input voltage range compredsedo/,, and/,, leakage
(Figures2.3aand 2.29, and the current conducted by the PMOS and NMOS devices in
the inverter are significantly altered. The significantldueed output range eventually
results in functional failure when the device is no longepatae of driving subsequent
stages. Note however, that prior to circuit failure, thegstanmediately following the
inverter under test is able to completely restore the sigmalfull rail swing (Figure.2c

and2.309, irrespective of the switching direction.

2.3 Microarchitecture-level Wearout Analysis

This section describes how the transistor-level modelsh ftioe previous section are
used to simulate the effects of OBD over time on an embeddetbpriocessor core. The

section begins by describing the processor core studiéisimbrk along with the synthesis
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flow used in its implementation and thermal analysis. Thi®iewed by a discussion
of MTTF calculations and a description of the approach usedonduct Monte Carlo
simulations of the effects of OBD. A discussion of OBD'’s inspan propagation delay at

the microarchitectural level concludes the section.

2.3.1 Microprocessor Implementation

The testbed used to conduct wearout experiments was a yembmlel of the Open-
RISC 1200 (OR1200) CPU coré]. The OR1200 is an open-source, embedded-style,
32-bit, Harvard architecture that implements the ORBIS®2ruction set. The micropro-
cessor contains a single-issue, 5-stage pipeline, wigtttdmapped 8KB instruction and
data caches, and virtual memory support. This micropracesse has been used in a
number of commercial products and is capable of running:@lenux operating system.

The OR1200 core was synthesized using Synopsys Design Gmyth a cell library
characterized for a 90 nm process and a clock period of 2.80IHz). Cadence First
Encounter was used to conduct floorplanning, cell placen®otk tree synthesis, and
routing. This design flow provided accurate timing inforroat(cell and interconnect de-
lays) and circuit parasitics (resistance and capacitaalees) for the entire OR1200 core.
The floorplan along with details of the implementation iswshan Figure2.4. Note that
although the OR1200 microprocessor core shown in Figutes a relatively small design,
it's area and power requirements are comparable to that ARW9 microprocessor. The
final synthesis of the OR1200 appropriates a timing guard b&d&50 ps (10% of the clock
cycle time) to mimic a commodity processor and to ensurettigatvearout simulations do

not prematurely cause timing violations.
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OR1200 Core
Area 1.0 mn?
Power 123.9 mW
Clock Frequency 400 MHz
Data Cache Size 8 KB
Instruction Cache Size 8 KB
Logic Cells 24,000
Technology Node 90 nm
Operating Voltage 1.0V

(a) Implementation details for the OR1200 mi{b) Overlay of the OR1200 floorplan on top
Croprocessor. of the placed and routed implementation of the
CPU core.

Figure 2.4: OpenRisc1200 embedded microprocessor.
2.3.2 Power, Temperature, and MTTF Calculations

The MTTF due to OBD is dependent on many factors, the mostfgignt being ox-
ide thickness, operating voltage, and temperature. Tottudhe MTTF of devices un-
dergoing OBD, this work uses the empirical model descrilme[®7], which is based on
experimental data collected at IBM17]. This model is presented in Equati@rf.

1 (X+X-+2T)

MTTFopp (V)W-bT)eiw (2.2)

where,

V' = operating voltage

T = temperature

k = Boltzmann’s constant

* a,b, X, Y, andZ are all fitting parameters based ¢i7]
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In order to calculate the MTTF for devices within the OR120@0e; gate-level activ-
ity data was generated by simulating the execution of a sben€hmarksrunning on a
synthesized netlist using Synopsys VCS. This activityrimfation, along with the parasitic
data generated during placement and routing, was then ys8girimpsys PrimePower to
generate a per-benchmark power trace. The power trace ag@lélo were in turn pro-
cessed by HotSpoBf], a block level temperature analysis tool, to produce a dyoa
temperature trace and a steady state temperature for eactust within the design.

Once the activity and temperature data were derived, the FMOT each logic gate in
the design was calculated using Equatib8 with the temperature and activity data for
each benchmark. A per-module MTTF is calculated by idemtgiythe minimum MTTF
across all logic gates within each top-level module of thel@® core. These per-module
MTTF values are later used to parametrize the statisticdfibution of failures used in
Monte Carlo simulations of OBD effects. Figu2es presents the steady state temperatures
and MTTF values of different structures within the CPU carethe five benchmarks.

Figure2.5 highlights the correlation between MTTF and temperatuteucures with
the highest temperatures tended to have the smallest MTiiéaming that they were most
likely to wearout first. For example, the decode unit, with @aximum temperature about
3°K higher than any other structure on the chip, would likelytte first structure to fail.
Somewhat surprisingly, the ALU had a relatively low tempere, resulting in a long
MTTF. Upon further investigation, it was found that acrossstmbenchmark executions,

less than 50% of dynamic instructions exercised the ALU, fartiermore, about 20% of

IFive benchmarks were studied to represent a range of cotignahbehavior for embedded systems:
dhrystone - a synthetic integer benchmark; g721encodeamchudio from the MediaBench suite; rc4 - an
encryption algorithm; and sobel - an image edge detectigorihm.
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Figure 2.5: Derived workload-dependent steady state temperature antivior the OR1200 CPU
core. An ambient temperature of 383wvas used for Hotspot.

the instructions that actually required the ALU were siniplgic operations and not com-
putationally intensive additions or subtractions. Theseumstances led to a relatively
low utilization and ultimately lower temperatures. It isportant to note that although this
work focuses on a simplified CPU model, the proposed wearetgiction technique is not
coupled to a particular microprocessor design or impleatent, but rather relies upon
the general circuit-level trends suggested by the HSPI@Hilsitions. In fact, a more ag-
gressive, high performance microprocessor is likely teelraere dramatic hotspots, which
would only serve to exaggerate the trends that motivate tb&\Wesign presented in this

work.

2.3.3 Wearout Simulation

As demonstrated in Sectidh2, progressive wearout phenomena (OBD in particular)

have a significant impact on circuit-level timing. Work ddneLinder and Stathisy1] has
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shown that OBD-induced gate leakage obeys an exponentiatigrate with age:

Alopp(t) = Iopp, - € (2.3)

where,

» Iopp(t): the amount of leakage current at time
* Iopp,: the initial amount of leakage current at tihe

» ~: varied to model a “fast” or “slow” exponential growth

Monte Carlo simulations of the OBD effects on a distributtddmicroprocessors in the
field are conducted by coupling the leakage model, shown uratton2.3, with the model
for MTTF from Equation2.2 For every logic gate within each microprocessor simulated
the time when the first initial breakdown path is formed in tixéde, 75, is calculated
using a Weibull distribution withv equal to the gate’'s MTTF and = 1.0, consistent
with [51]. The growth ratey is then taken from a uniform distribution ef/ — 10% of 75,
consistent with a slow growth rate, as l].

By integrating the model for OBD failure times and this legé&arowth model, a sta-
tistically accurate picture of the effects of OBD-inducedKage for every gate within the
OR1200 core (across a population of chips) is derived. Teig model is then used to
generate age-dependent performance data for each gate thv@lpopulation of processors
in the Monte Carlo simulations. The performance informai®then annotated onto the
synthesized netlist and custom signal monitoring handiszsused to measure teignal

propagation delays at the output of various modules witténdesign. The process of an-
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Figure 2.6: The observed slowdown of signals from the ALU result bus asaltrof OBD effects
over the lifetime of one instance of an OR1200 processor. core

notation and monitoring is repeated for every processonénpopulation at regular time
intervals over the simulated lifetime of each processor.

To demonstrate how OBD can affect the timing of microarditeal structures, Fig-
ure 2.6 shows the results of one sample of an OR1200 core from theéViBatlo simu-
lations. This figure shows the amount of performance degiadabserved at the output
of the ALU for a subset of signals from the result bus. Thisrggillustrates the general
trend of slowdown across output signals from microarchited structures. The follow-
ing section discusses how this trend is leveraged to condeatout detection and failure

prediction.

2.4 \Wearout Detection

In this section, the delay trends for microarchitectunalgures observed in Secti@r3

are leveraged to propose a novel technique for predictirgyoug-induced failures. The
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technique consists of two logical steps: online delay nawvimy and statistical analysis of
delay data. In the following subsection, a circuit for codiitug online delay sampling
is presented. Next, the algorithm used for statisticalyamigl TRIX, is presented, and its
applicability to wearout detection is discussed. Findlg potential implementations for
the statistical analysis of delay profiles are proposed, iorteardware and the other in

software.

2.4.1 Online Delay Profiling

In this section, a self-calibrating circuit for online delarofiling is presented. A
schematic diagram of the online delay profiling unit (DPU¥lewn in Figure2.7. The
DPU is used to measure the time that elapses after a cirouitfsut signal stabilizes un-
til the next positive clock edge (slack time). It is importén note that even for critical
paths within the design, some slack time exists becauseafideands provisioned into
the design for worst-case environmental variation andadigagradation due to wearout.
The DPU design consists of three distinct stages. The fagesdvf the DPU is an arbiter
that determines which one of the (potentially many) inpghais to the DPU will be pro-
filed. The second stage of the DPU generates an approxinadttbe available slack time.
The final stage of the DPU is an accumulator that totals a sanfpl096 signal transition
latency measurements, and uses this measurement as a giomdte for the amount of
available slack in the circuit for the given input signal.

The first stage fulfills the simple purpose of enabling the OB thonitor delay infor-
mation for multiple output signals from a given structurehisistage is a simple arbiter

that determines which signal will be monitored. The areah structure scales linearly
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Figure 2.7: Online delay profiling unit.

(though very slowly) with the number of output signals bemgnitored. The effects of
scaling on area and power are discussed later in Se2tton

The purpose of the second stage of the DPU is to obtain a cgeaseed profile of
the amount of slack at the end of a given clock period. Theatigeing monitored by the
DPU is connected to a series of delay buffers. Each delagbinfithis series feeds one bit
in a vector of registers (labeled ‘A’ in Figué7) such that the signal arrival time at each
register in this vector is monotonically increasing. At gasitive edge of the clock, some
of these registers will capture the correct value of the nedutput, while others will store
an incorrect value (the previous signal value). This situredrises because the propagation
delay imposed by the sequence of delay buffers causes that@ignal to arrive after the
latching window for a subset of these registers. The valoeedtat each of the registers
is then compared with a copy of the correct output value, Wwiscstored in the register
labeled 'B’. The XOR of each delayed register value with therect value produces a bit
vector that represents the propagation delay of the patitisre for that particular cycle.

In addition, the output signal value from the previous cyslstored in the register labeled
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'C’, and is used to identify cycles during which the moduleépui actually experiences a
transition. This ensures that cycles during which the ouitpidle do not bias the latency
sample. As a module’s performance degrades due to weanewtignal latency seen at its
outputs increases, fewer comparisons will succeed, andadlbe reported at the output of
the vector of XOR gates will increase.

In the third stage of the DPU, a point estimate of the meanggation latency for a
given output signal is calculated by accumulating 4096aigrrival times. The accumula-
tion of 4096 arrival times is used to smooth out the variatiopath delays that are caused
by variation in the module input, and the sample size 4096¢sllecause it is a power of
two and allows for efficient division by shifting.

There are multiple ways in which this sampled mean propagddtency may be uti-
lized by a system for failure prediction. In the next subggtan algorithm is presented

for this purpose that may be implemented either in speedliardware or software.

2.4.2 Failure Prediction Algorithm

In order to capitalize on the trend of divergence betweersideal propagation latency
observed during the early stages of the microprocesséelntie and those observed at
the end of life, TRIX (triple-smoothed exponential movingeage) P9 analysis is used.
TRIX, is a trend analysis technique used to measure momentfinancial markets and re-
lies on the composition of three calculations of an expaaémtoving average (EMA)1Z].

The EMA is calculated by combining the current sample valitd & fraction of the pre-
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vious EMA, causing the weight of older sample values to depgyonentially over time.

The calculation of EMA is given as:

EMA = a x sample + (1 — a)EM Ay, (2.4)

The use of TRIX, rather than the EMA, provides two significaanefits. First, TRIX
provides an excellent filter of noise within the data streatanse the composed applica-
tions of the EMA smooth out aberrant data points that may bheadby dynamic variation,
such as temperature or power fluctuations (discussed in8e&tb6.2. Second, the TRIX
value tends to provide a better leading indicator of sanpleds. The equations for com-

puting the TRIX value are:

EMA, = a(sample — EMAi,..,) + EMAi,,.,
EMA2 = Oz(EMAl - EMAZprev) + EMAZprev

TRIX = a(EMAy; —TRIXe) +TRIX)e (2.5)

TRIX calculation is recursive and parametrized by the weigh which dictates the
amount of emphasis placed on older sample values. FRj8eelemonstrates the impact of
differenta values on the amount of weight given to historical sampléss figure demon-
strates that small values tend to favor older samples, while largevalues reflect local
trends. The wearout detection algorithm presented in tloidk welies on the calculation
of two TRIX values using different’s to identify when the local trends in the observed

signal latency begin to diverge from the historical trertsiaged toward early-life timing).
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Figure 2.8: Sensitivity analysis of TRIX parametrization.

Figure 2.8b shows the effect of different: values on the TRIX analysis of ALU result
bit 0. Figure2.8bpresents the TRIX calculations for six differemtvalues as well as the
long-term running average and local point average of siguat the lifetime of the mi-
croprocessor. This data demonstrates that TRIX calculatginga = 1/2'° provides an
accurate estimate of the running average (of latencies $ayraal) over the lifetime of the
chip, and does so without the overhead of maintaining a laigtery. Further, this figure
shows that a TRIX calculation withh = 0.8 provides a good indicator of the local sample
latency at a given point in the microprocessor’s lifetime.

The next subsection describes two potential implememtatibat bring together the
DPU and this statistical analysis technique in order toigtele failure of structures within

a processor core.

2.4.3 Implementation Details

In order to accurately detect the progression of wearoupaadict when structures are

likely to fail, this work proposes the use of the DPU in corgtion with TRIX analysis.
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Figure 2.9: Design and organization of the wearout detection unit.

In the following subsections, two techniques for buildiygtems with wearout prediction
mechanisms are proposed. The first technique is a hardwdyeapproach, where both
online delay profiling and TRIX analysis are conducted tbgein a specialized hardware
unit called the wearout detection unit (WDU). The seconthtégue is a hybrid approach
requiring fewer resources where delay profiling is conddiatehardware, but TRIX anal-
ysis is conducted in software, either in the operating sysiein firmware. In SectioR.5,
we discuss the hardware costs in terms of area and powerdooéthese implementations,

as well how the WDU scales as it is used to monitor an incrgasirmber of signals.

2.4.3.1 Hardware-only Implementation

The design of the WDU is presented in Fig@:.® and consists of three distinct stages.
The first stage is comprised of the delay profiling unit désdiin Sectior?.4.1, while the
second stage is responsible for conducting the TRIX arglyisicussed in Sectidh4.2

and the third stage conducts threshold analysis to idesitifyificant divergences in latency
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trends. The shaded structures in this diagram represesg twmponents that would scale
with the number of signals being monitored. The remaindehisf section discusses the
implementation details of stage two and three of this desigd the required resources for
their implementation.

In stage two of the WDU, two TRIX values are computed: a lgehlased value,
TRIX,;, and a historically-biased valug,R/X,. These are calculated usiagvalues of
0.8 and1/2%, respectively. It is important to note that the valuena dependent on the
sample rate and sample period. In this work, we assume a samugl of three to five
samples per day over an expected 10 year lifetime. Also,aihg incubation periods for
many of the common wearout mechanisms require the compurRed Vialues to routinely
be saved into a small area of nonvolatile storage, such dsrflasnory.

Since the TRIX consists of three identical EMA calculatigihe impact of Stage 2 on
both area and power can be minimized by spanning the caloulatthe TRIX values over
multiple cycles and only synthesizing a single instancénefEMA calculation hardware.
Section2.5describes the area and power overhead for the WDU in moré.deta

The third stage of the WDU receivdskIX; andT'RI X, values from the previous
stage and is responsible for predicting a failure if theeddhce between these two values
exceeds a given threshold. The simulations conductedsnatbik indicate that 4% dif-
ference betweel R1.X; andT R1 X, is almost universally indicative of a structure nearing
failure. It is envisioned that this prediction would be usednable a cold spare device,
or notify a higher-level configuration manager of a potdhtitailing structure within the

core. An analysis of the accuracy of this threshold preaiicts presented in Sectidhs.
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2.4.3.2 Hardware/Software Hybrid Implementation

In order to alleviate some of the scaling problems and resoaquirements of a hard-
ware only technique, a hardware/software hybrid techn@arebe used. In this system,
the DPU is still implemented in hardware, while the TRIX afs#8 is performed in soft-
ware by the operating system or system firmware. In this cordigon, a set of dedicated
registers for maintaining the latency samples for diffemaodules within the design are
used. These dedicated registers are similar to the perfa@neounters used in modern
day processors. The system software then regularly sanipes counters and can store
the calculated TRIX values to disk or other non-volatileatye.

This hardware/software hybrid design has multiple benefies the hardware-only ap-
proach. In the hardware-only approach, the TRIX calcuhgt&s well as the: parametriza-
tion values are hard-wired into the design, meaning thaisscdifferent technology gen-
erations with different wearout progression rates, déffieAMVDU implementations will be
necessary. However, in the hybrid approach, the TRIX paidraéon is easily modified
for use in a variety of systems. Another benefit is that theridyimplementation con-
sumes less power and has a smaller area footprint with sstéding properties than the

hardware-only design.

2.5 Experimental Analysis

This section provides a detailed analysis of the proposedJVidd both the hardware-
only and hybrid implementations, the area and power overfeamplementation, and its

efficacy in predicting failure.
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Figure 2.10: Scaling of the WDU and DPU area and power as the number of sgmanitored
scales.

2.5.1 Overhead and Accuracy

Figure2.10demonstrates the area and power requirements for a WDU ariUa(for
the hybrid approach) implemented in Verilog and synthesireng a 90 nm standard cell
library, designed to monitor multiple output signals fortausture. The x-axis represents
the number of signals being monitored and the y-axis reptegbe overhead in terms of
area or power. Figur@.10ademonstrates that the WDU scales poorly in terms of area,
and Figure2.10bshows analagous results for power. This behavior is lafgetause the
amount of storage within the WDU increases linearly with thenber of signals being
monitored. In contrast, the DPU scales well in both area awlep with an increasing
number of signals being monitored because only the logi¢Herarbiter scales with an
increasing number of signals, and this increase in logigrighfe most part negligible. This
implies that the hybrid prediction technique can be impletaeeé at a much lower design
cost.

In order to evaluate the efficacy of TRIX analysis in predigtfailure, a large number

of Monte Carlo wearout simulations were conducted usingWegbull distribution and
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Figure 2.11: Analysis of TRIX analysis efficacy in predicting failure.

failure model presented in Secti@3.2 Figure2.11ademonstrates the relative time at
which failure was predicted for a variety of structures witthe processor core for the
population of microprocessors used in this Monte Carlo &tan. The error bars in this
figure represent the standard deviation of these valuess8all simulations, failure was
predicted within 20% of the time of failure for the device. i§Hypically amounted to
slightly less than two years of remaining life before theidewltimately failed. Two
extreme cases were the Next PC module and the LSU, whereilie farediction was
often almost too optimistic, with many of the failure pratas being made with only
about 1% or about 4 days of the structure’s life remaining. t@nopposite end of the
spectrum, failure of the register file was often predictethwiore than 15% of the lifetime
remaining, meaning that some usable life would be wastedoidzsparing situation.
Figure2.11bdemonstrates the percentage of signals that caused jweditt be raised
for each module before the module failed. In general, thegrgage of outputs flagged at

the time of failure varied widely. This can be attributed towanber of factors. First, the
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Weibull distribution used to model the time of first breakdofer each gate within the
design has a moderate amount of variance, as does the umfstmbution used to model
the growth rate of leakage from the time of first breakdownsoAlbecause some gates
experience speedup in the early stages of wearout befoyeuthmately begin to slow
down, there are competing effects between gates at diffstages of wearout early in the

breakdown period.

2.5.2 Dynamic Variations

Dynamic environmental variations, such as temperatuk@sppower surges, and clock
jitter, can each have an impact on circuit-level timing,guatally affecting the operation
of the WDU. Here, we briefly discuss some of the sources of aiyn&ariation and their
impact on the WDU'’s efficacy.

Temperature is a well known factor in calculating deviceagieWhere higher temper-
atures typically increase the response time for logic cdHigure2.12 demonstrates the
increase in response time for a selection of logic fatesr a wide range of temperatures.
This figure shows that over an interval of°8) the increase in response time amounts to
approximately 3.4%.

Another source of variation is clock jitter. In general, ihare three types of jitter:
absolute jitter, period jitter, and cycle-to-cycle jittedf these, cycle-to-cycle jitter is the
only form of jitter that may potentially affect the WDU. Cyeto-cycle jitter is defined as

the difference in length between any two adjacent clockoggsrand may be both positive

2The gate models were taken from the 90 nm library and simililaseng HSPICE.
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Figure 2.12: Impact of temperature on logic gate delay.

(cycle 2 longer than cycle 1) or negative (cycle 2 shortenttycle 1). Statistically, jitter
measurements exhibit a random distribution with a mearevaproaching zera [ 4.

In general, the sampling techniques employed for failuediation are sufficient to
smooth out the effects of dynamic variation described. Kangle, a conservative, lin-
ear scaling of temperature effects on the single invertiatyde a 3.4% increase in module
output delay does not present a sufficient magnitude ofwegito overcome the 5% thresh-
old required for the WDU to predict failure. Also, because #xpected variation due to
both clock jitter and temperature will exhibit a mean valtieero (i.e., temperature is ex-
pected to fluctuate both above and below the mean valuejtstalt sampling of latency
values should minimize the impact of these variations. Tih&r this point, since the TRIX
calculation acts as a three-phase low-pass filter, the wasst dynamic variations would
need to cause latency samples to exceed the sfofddY, value by greater than 5% over
the course of more than 12 successive sample periods, pondisg to over four days of

operation.
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2.6 Related Work

Issues in technology scaling and process variation hagedaioncerns for reliability in
future microprocessor generations. Recent research vesrkttempted to diagnose and, in
some cases, reconfigure the processing core to increassiopal lifetime. In this section,
we briefly discuss this related work and how it has influenbeddesign of the WDU.

As mentioned in SectioB.1, much of the research into failure detection relies upon re-
dundancy, either in time or space. One such example of haedwdundancy is DIVA{],
which targets soft error detection and online correctibstrives to provide a low cost alter-
native to the full scale replication employed by tradititieahniques like triple-modular re-
dundancy. The system utilizes a simple in-order core to toothe execution from a large
high performance superscalar processor. The smaller eheoke recomputes instructions
before they commit and initiates a pipeline flush within themprocessor whenever it de-
tects an incorrect computation. Although this techniqueves useful in certain contexts,
the second microprocessor requires significant desigfibagion effort to build and incurs
additional area overhead.

Bower et al. [L9] extends the DIVA work by presenting a method for detectind diag-
nosing hard failures using a DIVA checker. The proposedriegle relies on maintaining
counters for major architectural structures in the mainrapoocessor and associating ev-
ery instance of incorrect execution detected by the DIVAckke to a particular structure.
When the number of faults attributed to a particular unieeds a predefined threshold, it is
deemed faulty and decommissioned. The system is then rgaoedi, and in the presence

of cold spares, can extend the useful life of the processalat&d work by Shivakumar et
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al. [8€] argues that even without additional spares the existidgmdancy within modern
processors can be exploited to tolerate defects and ireyeéalsl through reconfiguration.

Research by Vijaykumag[/, 107] and Falsafi [0, 90] attempt to exploit the redundant,
and often idle, resources of a superscalar processor tmeaheliability by utilizing these
extra units to verify computations during periods of lowoese demand. This technique
represents an example of the time redundant computatiadealito in SectiorR2.1 It
leverages work by the Slipstream gro@p),[ 7 1] on simultaneous redundant multithreading
as well as earlier work on instruction reuse

Srinivasan et al. have also been very active in promotinghtdesl for robust designs
that can withstand the wide variety of reliability challesgn the horizore[g]. Their work
attempts to accurately model the MTTF of a device over itsatpgy lifetime, facilitating
the intelligent application of techniques like dynamictagle and/or frequency scaling to
meet reliability goals. Although some physical models drared in common, the focus
of the WDU is not to guarantee that designs can achieve atigylar reliability goal, but
rather to enable a design to recognize behavior that is symgdic of wearout induced
breakdown allowing it to react accordingly.

Analyzing circuit timing in order to self-tune processoodk frequencies and voltages
is also a well studied area. Kehldj] discusses a technique for re-timing circuits based
on the amount of cycle-to-cycle slack existing on worstedasency paths. The technique
presented requires offline testing involving a set of staest vectors in order to tune the
clock frequency. Although the proposed circuit design isilsir in nature to the WDU, it
only examines the small period of time preceding a clock eagkis only concerned with

worst case timing estimation, whereas the WDU employs sagpler a larger time span
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in order to conduct average case timing analysis. Simjl&§zor P] is a technique for
detecting timing violations using time-delayed redundatuahes to determine if operating
voltages can be safely lowered. Again, this work studiey evdrst-case latencies for

signals arriving very close to the clock edge.

2.7 Summary

In this chapter we characterized the device-level effe€tsxade breakdown (OBD)
on circuit performance and demonstrated that progresddi@ @as a hon-uniform impact
on circuit performance. The results of the circuit-leveldaling were then applied to a
synthesized implementation of the OR-1200 microprocessanalyze the effects of OBD
at the microarchitectural level. Circuit timing was iddietil as a common phenomenon
that can be tracked to predict the progression of OBD. A calibrating circuit for ana-
lyzing circuit path delay along with an algorithm for pretiing failure using this data was
proposed. Results show that our failure prediction algariis successful in identifying

wearout and flagging outputs that suffer a trend of increpdelay over time.
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CHAPTER Il

Maestro: Orchestrating Lifetime Reliability in Chip

Multiprocessors

3.1 Introduction

In recent years, computer architects have accepted théh&tdransistors become less
reliable with each new technology generatiag][ As technology scaling leads to higher
device counts, power densities and operating temperattlie®ntinue to rise at an alarm-
ing pace. With an exponential dependence on temperatuits e to failure mechanisms
like negative-bias temperature instability (NBTI) andeéidependent dielectric breakdown
(TDDB) will result in ever-shrinking device lifetimes. Rhlermore, as process variation
(random + systematic) and wearout gain more prominenceturduechnology nodes,
fundamental design assumptions will become increasimgly dccurate. For example, the
characteristics of a core on one part of a chip multiproae@&3klP) may, due to manufac-
turing defects, only loosely resemble identically designed@ore on a different part of the
CMP [116 103. Even the behavior of the same core can be expected to cluwegéme

as a result of age-dependent degradation 105.
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In light of this uncertain landscape, researchers haverbewyestigating dynamic ther-
mal and reliability management (DTM and DRM). Such techegjbope to sustain current
performance improvement trends deep into the nanometaneegvhile maintaining the
levels of reliability and life-expectancy that consumeasdrcome to expect, by hiding a
processor’s inherent susceptibility to failures and hotspSome recent proposals rely on
a combination of thread scheduling and dynamic voltage eegliency scaling (DVFS)
to recover performance lost to process variatiohd 116. Others implement intelligent
thermal management policies that can extend processtimide and alleviate hotspots by
minimizing and bounding the overall thermal stress expeeed by a coreq2, 67, 27, 24].
There have also been efforts to design sophisticated tsrthat tolerate faults and adap-
tive pipelines with flexible timing constraint§(, 104. Although many DTM schemes
actively manipulate job-to-core assignments to avoidrttadremergencies, most existing
DRM approaches onlgeactto faults, tolerating them as they develop.

In contrast, Maestro takes a proactive approach to reitiabllo the first order, Maestro
performs fine-grained, module-level wear-leveling for gjxaore CMPs. Although analo-
gous to wear-leveling in flash devices, the challenge ofeathg successful wear-leveling
transparently in CMPs is considerably more difficult. Lafichecked, wearout causes all
structures within a core to age and eventually fail. Howestee to process variation, not
all cores (or structures) will be created equal. Every coileimvariably possess some
microarchitectural structures that are more “damagedrénsosceptible to wearout) than
others [L04, 103. Performing post-mortems on failed cores (in simulat)arfsen reveals
that a single microarchitectural module, which varies fraore to core, breaks down long

before the rest. Maestro extends the life of these “weakicstires, their corresponding
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cores, and ultimately the CMP by ensuring uniform aging witheduling-driven wear-
leveling across all levels of the hierarchy.

Maestro dynamically formulates wearout-centric schesluldnere jobs are assigned to
cores such that cores do not execute workloads that appbssxe stress to their weakest
modules (i.e., a floating-point intensive thread is not lwbtm a core with a weakened
floating-point adder). This accomplishlexal wear-levelingat the core level, avoiding
failures induced by a single weak structure. When two coo#is bave a strong affinity for
the same job, a heuristic, which enforggsbal wear-levelingat the CMP level determines
which core is given priority. Typically, unless there is dstantial negative impact on local
wear-leveling, deference is given to the weaker of the twesoThis ensures that, when
necessary, stronger cores are allowed to execute lessolesjobs in order to postpone
failures in weaker cores (details in Secti®i3.2.

By leveraging the natural, module-level diversity in apation thermal footprints (Sec-
tion 3.2.3, Maestro has finer-grained control over the aging prodess & standard core-
level DVFS approach, without any of the attendant hardwlasgn overheads. Given the
complex nature of wearout degradation, Maestro departa ftee conventional reliance
on static analysis to project optimized schedules. Instds condition of the underly-
ing CMP hardware is continuously monitored, allowing Mae$sb dynamically refine and
adapt scheduling algorithms as the system ages. Architectike those envisioned in
[101], with low-level circuit sensors, can readily supply thesl-time “health” monitoring.

Maestro offers two key benefits for future CMP systems. Fihs fine-grained, local
wear-leveling prevents unnecessary core failures, maxmgithe life ofindividual cores.

Longer lasting cores translates to more work that can be deaethe life of the sys-
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tem. Second, it improves the ability of the system to sustaavy workloads despite
the effects of aging. Enforcing global wear-leveling maizies thenumberof functional
cores (throughout its useful life), which in turn maximizee computational horsepower
available to meet peak demands. With higher degrees of gso@giation on the horizon,
premature core failures will make it increasingly more difft to design and qualify future
CMPs. However, by harnessing the potential of Maestro, gincamanagement will en-
able semiconductor manufacturers to provide chips witlgéoifetimes as well as ensure
that system performance targets are consistently metdghout that lifetime. The central

contributions of this chapter include:

» An evaluation of workload variability and its impact onigddility/wearout.

* An introspective system, Maestro, that utilizes low-lesensor feedback and

application-driven wear-leveling to proactively manaetime reliability.

» The design and evaluation of two reliability-centric jatheduling algorithms.

3.2 Scheduling for Damaged Cores and Dynamic Workloads

As mentioned, researchers have investigated technigagdetrerage intelligent job
scheduling to recover performance, manage on-core temojpesa or cope with process
variation. However, none have studied the influence thatawgacentric scheduling alone
can have on the evolution of wearout within a core, and theatvifetime reliability
of a CMP system. Sectio®2.1presents a brief overview of common failure mechanisms.
Next, SectiorB.2.2surveys previously proposed scheduling approaches ahtigtits lim-

itations. Then, to quantify the potential for reliabilitgntric scheduling, Sectiod.2.3
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| Mechanism | Mean Time to Failure (MTTF) | Failure Mode |

Shifting V; leads to increasing
NBTI MTTF (%)ve% leakage current and slower deviges
that eventually cease to switch.
Compromises the oxide, leading
B (X+¥+27) . .
)(e=bT)e——— | toincreasing gate current and
switching delay.
Accumulation/depletion of metal
EM MTTF (a%)—"e% in interconnects results in faults
due to shorts and voids.
Fatigue due to thermal expansion/
TC MTTF o (m)q contraction leads to packaging
failures.

TDDB | MTTF  (

L
v

Table 3.1: Common failure mechanisms: Negative Bias Temperaturabitisy (NBTI), Time De-
pendent Dielectric Breakdown (TDDB), ElectromigrationM)Eand Thermal Cycling (TC). V =
voltage, T = temperaturey = switching factor,x = Boltzmann’s constantl; = threshold voltage,
and all other variables are technology dependent fittingapagters.

examines the module-level thermal diversity seen acrogs af SPEC2000 applications.
Lastly, Section3.2.4presents preliminary results quantifying the impact o$ tariation

on processor lifetimes.

3.2.1 Failure Mechanism Review

A large body of work exists in the literature on charactergihe behavior of wearout
mechanisms that age processors. Researchers have focusagtoring the dependence
of these mechanisms on operating parameters like voltadiéemmperature. This depen-
dence is typically presented in the form of mean time to faiMTTF) equations. These
equations are then often used to project the average expkfetitme of a processor in
the field, given a set of worst-case operating conditiongl(\Mémperature, etc.). Design-
ing and qualifying a processor to meet a target MTTF with woese (or near-worst-

case) conditions in mindW{ 1T F,,,.) ensures that expected operating lifetimes will be met
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because actual operating conditions in the field tend to behmmilder than worst case
(MTTF,iya >> MTTF,.). Table3.1summarizes some of the common mechanisms
that have been studied in the past. Note the strong depemdémtl the mechanisms on
temperature.

Research into the physical effects of wearout has showmthal prominent mecha-
nisms, especially TDDB and NBTI, are progressive in nattrg 119 23]. Unlike soft-
errors that can occur suddenly and without warning, wearglated faults are typically
more gradual, manifesting as small defects that eventeathve into hard faults. This
property of wearout suggests that before age-induced datipa can cause permanent
failures in a CMP, measuring the accumulation of damage carably be used to dynami-
cally monitor the life-expectancy of individual cores. Tieenainder of this chapter targets
TDDB and NBTI, which are expected to be the two leading cansesarout-related fail-
ures in future technologies, but can be easily extendeddoead any progressive failure

mechanisms that may emerge in the future.

3.2.2 Existing Scheduling Schemes

Scheduling, in the context of this chapter, refers to thegse of assigning jobs to
cores in a CMP, and is conceptually decoupled from the ojpgraystem (OS) scheduler.
The schedulers proposed by microarchitects in the pastappiresided in a virtualization
layer (i.e., system firmware) that sits between the OS andrterlying hardware. At each
scheduling interval the OS supplies a set of johdp this virtualization layer, and it is the

task of the low-level scheduler to bind the jobs to cores.
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Prior work in this area can be roughly divided into two broategories: performance-
centric schedulergerf-centric which exploit the variability in performance characteris
tics between cores in a CMR(3 116, and thermal-aware schedulers that are cognizant
of on-chip temperatures. Work within the thermal-awareegaty can be further differ-
entiated into those that target power reduction or perfocaamprovement (higher al-
lowable frequencies)7, 88, 20, 4€], thermal-p and those that target reliability enhance-
ment 2, 109, thermal-r. The characteristics, and limitations, of schedulers widach

of these categories is discussed below.

3.2.2.1 perf-centric

In large CMP systems, whether due to process variation oigg@r both), some cores
will have slower critical paths or even non-functional caments. In this environment
where some cores have better performance characteriséioothers (e.g., faster sustain-
able frequencies or more usable issue queue entries) permioe-oriented schedulers seek
to identify intelligent schedules that match applicatiequirements to hardware capability.
Appropriate scheduling results in better overall systenfgpmance, and can hide to an ex-
tent, the existence of cores with degraded functionalityweler, perf-centric schedulers

fail to address a major root-cause of performance deg@uatevice aging.

3.2.2.2 thermal-p

These schedulers attempt to identify schedules that mzeipeak temperatures across
a core and/or CMP by exploiting the spatial locality of haasgbation. Interleaving hot and

cool jobs between adjacent cores alleviates the stressedhdélmal packaging, increasing
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its efficiency, by not concentrating the heat among neighlgarores. This reduces power
consumption and the probability of temperatures excedtiegnal thresholds, minimizing
the performance penalty incurred by thermal throttlingte@fimes these techniques can
also be coupled with DVFS. By running at higher frequenaiesxploit the thermal head-
room afforded by scheduler-driven hotspot mitigation, aglgling on judicious DVFS to
avoid thermal emergencies, overall system performancbegneatly enhanced. Although
minimizing peak temperatures improves the reliability led hottest processor structures,
many core failures are caused by modules that only experigrocierate temperatures but

were more prone to aging due to process variation.

3.2.2.3 thermal-r

In a slight variation on thermal-p schedulers, these tephes attempt to track the ef-
fects of thermal stress directly on reliability. Propodids Reliability Banking 2] model
reliability as a function of thermal history. The intuititrere is that wearout is a cumula-
tive process whose rate is strongly influenced by tempexaiy maintaining a history of
on-die temperatures these techniques can exploit thelfatapplications are often com-
prised of hot and cool phases. Performance can be improveddslerating (frequency
scaling) periods of cool execution or by selectively digaipthermal throttling during pe-
riods of hot execution. Reliability targets are met as lostj@ cumulative thermal history
for a processor is not allowed to exceed a predetermineghbl@. Although this could
be effective for truly homogeneous systems, in future CMRE significant amounts of
process variation, thermal stress is only half of the stArgomprehensive approach must

also account for the existing damage already present in @aeh More recent work by
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Tiwari [105 addresses this shortcoming by monitoring the consumptitiming margins,
implicitly accounting for both process variation and wedroHowever, their main focus
was on the use of Adaptive Body Biasing (ABB) and Adaptive @yp/oltage (ASV)
scaling to increase lifetime operating frequencies. Th&cussion of an aging-driven
scheduling scheme is cursory and lacks the analysis andthlgdc tradeoffs presented in
this work. Additionally, apart from relying heavily on sitaainalysis of projected operating
conditions, the proposal inLDg is also intrusive, requiring extensive hardware support

(area and complexity) for ABB and ASV.

To summarize, previous perf-centric and thermal-p sctezduiave illustrated how ef-
fective job scheduling can improve performance and powes@mption. However, by not
accounting for issues like the impact of process variatinogdule-level thermal variation
across applications, system utilization, etc., existmgyinal-r schedulers have not tapped
the full potential of wearout-centric scheduling. The neattion provides the motivation

for this claim.

3.2.3 Workload Variation

Since both TDDB and NBTI are highly dependent on temperaitiis important to
understand the thermal footprints of typical applicationgrder to appreciate the potential
for reliability-centric scheduling. Figur®.1shows the range of temperatures experienced
by different structures within an Alpha21364-like procadgs] across a set of 8 SPECINT
(bzip2, gcc, gzip, mcf, perlomk, twolf, vortex, yand 9 SPECFP benchmarkar{mp,

applu, apsi, art, equake, galgel, lucas, sixtrack, swimpwisg. All temperatures are
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Figure 3.1: Variation of module temperatures across SPEC2000 worldoadl temperatures are
normalized tadl;,,..., the peak temperature seen across all benchmarks and nso@Hc).

normalized to the peak temperaturg,,., seen across all modules and benchmarks, which
corresponds to the temperature of #@Add module when runningucas(83°C). Notice

the significant variation in temperature within nearly gverodule. Apart from the more
than 40% variation seen iIRPAdd (a 37C swing), other structures (whose utilizations
are not as strongly correlated with the execution of floapomt and integer benchmarks)
also exhibit significant temperature shifts, 10-15%Bpr ed andl nt Reg. These large
temperature ranges suggest that scheduling alone can heeafplatool for manipulating
aging rates.

Figure3.2selects a few representative applications and examingsithgreater detail.
Figures3.2aand3.2bhighlight how the traditional view of “hot” and “cold” apations is
perhaps too simplistic. Without accounting for the modehee| variation in temperatures,
one could incorrectly assume tregipluis more taxing, from a reliability perspective, than
vpr or wupwisesimply because it exhibits a higher peak operating tempexgePMul ).
However, this would neglect the fact that for many strugulée | nt Reg, temperatures
for appluare actually much lower than the other two applications.déonpleteness, Fig-

ure 3.2cis included to show that variations in module temperatursest @ven between

51



80% 80% .
B applu @ vpr B applu @ wupwise
70% | M 70% |
8 3
E60% - E60% -
X X
50% - 50%
40% - 40% -
3 ¥ 93333333338 F 2 9% 933333333 EF
S 83 *EFEssRFERP2T S8 3 EFE5:sB3802°7
® 3 a® =3 3 LI ® 3 an =3 3 w 3
(a) SPECFP v. SPECINT (b) SPECFP v. SPECFP
80% .
B vpr O wupwise
70%
xX
©
E60% -
x
50% -
40% -
9293333333335 3
88 " EF3EB83852°
mgn- o E.ug wm B fo)

(c) Variation despite comparable peak temperatures

Figure 3.2: Head-to-head comparisons of applu (SPECFP), vpr (SPECININY wupwise
(SPECFP). No one benchmark in (a), (b), or (c) strictly domtéts the other (with respect to tem-

perature) across all modules.

applications with comparable peak temperatures. All thiognsidered, deciding where
on the CMP to schedule a particular application, to achibeddast reliability impact, re-

quires additional information about the strength of indual structures within every core.
Although the magnitude of the temperature differences nwyseem impressive at first,
with peak deltas in module temperatures around 10-20% iarER)2g these modest vari-

ations in temperature can have dramatic impacts on a pracessean time to failure

(MTTF).
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3.2.4 Implications for Mean Time to Failure

From Figure3.2, one could expect a core consistently runrapgluto fail because of a
fault in theFPMul unit due to its high operating temperatures. However, irptiesence of
process variation other structures within the core coule ieeen manufactured with more
defects (or tighter timing margins), and therefore evenaysusceptible to failure despite
not ever realizing the same peak temperaturésPadil . In this environment, a reliability-
centric job scheduler must take into consideration thergxdédamage present within a
core in addition to the per-module thermal footprint of ringhapplications. Figur&.3
presents the expected lifetime of a core runrapgluor vpr as a function of the module
identified as the weakest structure. The lifetimes are ptegebased on well-known MTTF
equations for NBTI and TDDB49, 97]. The values are normalized to the best achievable
MTTF, which in this comparison is attainedkPMap is the weakest module in the core
and the core is runningpr. The optimal job to schedule on a particular core to maximize
its lifetime is dependent not just on the application mixreatly available, but also on
the strengths of individual structures within that coreh&tulingappluon a core with a
weakl nt Reg can nearly triple its operating lifetime compared to nanfelcing it to run
vpr. Similarly, schedulingypr instead ofappluon a core with a weakPAdd improves its
projected lifetime by more than 4x.

To further highlight the need to address process and wadkladation, a quick exam-
ination of the processors simulated in Sect®d.2reveals that 35% of core failures are
the result of failing structures that never experience pmakhip temperatures. Further-

more, 22% of core failures are caused by modules that do n&tamong the top three
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Figure 3.3: Projected core lifetime based on executiorappluandvpr as a function of the module
identified as the weakest structure. Values are normalia¢keg best achievable MTTF.

most thermally active. By accounting for the impact of psceariation and module-level
thermal variation of applications, Maestro can preveniratire core failures and reap the

opportunity left on the table by previous schedulers.

3.3 System Design

Figure 3.4 presents a block diagram of Maestro, which consists of twonmam-
ponents: 1) a health monitoring system (introspection) 2nd virtualization layer that
implements wearout-centric job scheduling (managemeXithough this chapter targets
reliability-centric scheduling, a broader vision of irdpeective reliability management could
use online sensor feedback to guide a range of solutions tiraditional DVFS to more

radical approaches like system-level reconfiguratici $9.

3.3.1 Health Monitoring

Tracking the evolution of wearout damage within a CMP (ibealth monitoring) is
essential to forming intelligent reliability-centric stiules. Maestro assumes that the un-

derlying CMP is provisioned with circuit-level sensorsdithose described inD1]. Rec-
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ognizing that the two mechanisms addressed in this work, INB@ TDDB, both impact
physical device parameters as they evolve has led researchactively develop circuit-
level sensors that can track these changes. NBTI is knowhitiotisreshold voltage(;)
leading to slower devices and increased subthresholdisydaakage current/{,,), while
TDDB increases gate currentg (and/,;). Both result in statistically measurable degra-
dation in timing paths at the microarchitectural-levél,[102, 16, 27].

A runtime system collects raw data streams from the arrayrofit-level sensors and
applies statistical filtering and trend analysis (simitewhat is described irlf]) to convert
these streams into descriptions of system characteriatsding, delay profiles, leakage
currents, and operating temperatures. These individuairaiis of information are then
processed to generate a comprehensive microarchiteteuedlreliability assessment of
the CMP. This is shown in Figurg.4 as a vector of per-module damage values (relative
to the maximum damage sustainable prior to failure). Intodag the additional analysis
step allows the health monitoring system to account forghilke the presence of re-
dundant devices within a structure, the influence of sigfenvironmental conditions on
sensor readings, and the interaction between differentouéanechanisms. Ultimately,
this allows the low-level sensor feedback to be abstractddeach vector representing the

effective damage profile for a particular core.

3.3.2 Maestro Virtualization Layer

The second portion of the Maestro framework resides in syftenware that serves as
the interface between the OS and the underlying hardware.O3 provides the virtual-

ization layer with a set of jobs that need to run on the CMP ahdraneta-data (optional)
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Figure 3.4: A high-level block diagram of the Maestro introspectiveatelity management system.
Dynamic monitoring of sensor feedback and detailed charazdtion of workload behavior enables
Maestro to improve lifetime system reliability with wearaentric scheduling.

that can guide Maestro in refining its scheduling policiesc(®n3.3.2.3. Online profiling
of system workloads identifies application-specific thdrfoatprints, shown in Figur&.4
as a vector of per-module temperatures for each applicafldns thermal footprint can
either be generated by brief exploratory execution of jabthe available cores, similar to
what is done in 116, or projected by correlating thermal behavior with pragrphases
(leveraging the existing body of work on runtime phase nwig and prediction40)).
Given the prevalence of on-chip temperature sensiiils [Maestro assumes low-overhead
exploration is performed during each scheduling inter€alupled with the real-time health
assessments, this detailed module-level applicatiorackenization enables Maestro to cre-
ate wearout-centric job schedules that intelligently ngen@MP aging.

As previously defined, scheduling in this chapter will retethe act of mapping threads

to cores and is initiated by two main events, 1) the OS issaesjobs for Maestro to ex-
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ecute (pushes into a FIFO queue) or 2) the damage profile afitderlying CMP has
changed sufficiently (taking on the order of days/weeks)aorant thread migration. The
two reliability-centric scheduling policies evaluatedtlvis work illustrate two approaches
to lifetime reliability. The greedy policy (Sectid®3.2.9 takes the position that all core
failures are unacceptable and aggressively preservesleweveakest cores. The adaptive
policy (Section3.3.2.3 champions a more unconventional philosophy that clainds in
vidual core failures are tolerable provided the lifetimeatality of the CMP system is
maximized.

Both wearout-centric policies, and the naive baseline dualee, are presented below
along with corresponding pseudocode. Unless otherwisedtetl, the following defini-

tions are common to all policies:

m: a microarchitectural module (i.&sPMul , | nt Reg, etc.).

LiveCores: the set of functional cores in the CMRy, ¢y, ..., cx }-

JobQueue: the set ofall pending, uncompleted jobs issued from the OS.

ActiveJobs: the set of theV oldest, uncompleted, job&jo, ji, ..., jin }-

Dmg(m): the entry in the CMP damage profile for modute

Temp(j, m): the entry for modulen in the temperature footprint for jop

3.3.2.1 Naive Scheduler

A standard round-robin scheduler is used as the baselifgypdhe least-recently-used

(LRU) core in the set oliveCores is assigned the oldest job from the setbfiveJobs.
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Algorithm 1 Greedy wearout-centric scheduler
Step 1:
foreach ¢ € LiveCores do
find cq4pg , the damage present in carewhere
Camg <— Dmg(m/) | m’ € ¢ A Dmg(m') > Dmg(m), Vm € ¢

end
sort LiveCores based orgy,4

end
Step 2:
until ActiveJobs is empty
¢y +— Weakest core iiveCores based Oy, g
My «— m' | m’ € ¢,y A Dmg(m’) > Dmg(m),Vm € ¢,
foreach j € ActiveJobs do
find cost; ., , the cost of executing jop on corec,, , where
costj e, «— Temp(j, may)
end
Jopt < J'| j' € ActiveJobs A costj ., < cost.,, V] € ActiveJobs
Assign jobj,, to corec,,
Removec,, from LiveCores andj,, from ActiveJobs

end
end

This process is repeated until all jobs AxtiveJobs have been scheduled. This policy
maintains high-level load balancing by distributing jolmsfarmly across the cores. How-
ever, without accounting for core damage profiles or apgptioathermal footprints, the

resulting schedule is effectively a random mapping (froralability perspective).

3.3.2.2 Greedy Scheduler

This policy attempts to minimize the number of prematureedailures by greedily
favoring the weakest cores (Algorithi). Cores are sorted based upon their damage pro-
files and priority is given to the cores whose weakest modobssess the most damage
(Step 1 of Algorithml). These “weak” cores are greedily assigned jobs with thetmos

favorable thermal footprints with respect to their damag#iles (Step 2 of Algorithni),
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Algorithm 2 Adaptive wearout-centric scheduler
let GA(J,C) be the optimal schedule generated by the GA for jélasd cores”
Step 1:
foreach ¢ € LiveCores do
find cq4py , the damage present in carewhere
Cdmg “— me a;Dmg(m;) ande; is a scaling factor biased toward modules
with more damage

end

sort LiveCores in increasing order of g,

PrimaryCores «—— firstn coreswhere n is set by the user through the OS
SecondaryCores «—— remainingN — n cores

end

Step 2:

let Sprimary, D€ the set of job-to-core assignmeriisc), Ve € PrimaryCores
Sprimary «— GA(ActiveJobs, PrimaryCores)

Assign jobs forPrimaryCores according taSy,imary

Remove assigned jobs frodrtiveJobs

end

Step 3:

let Ssecondary, D€ the set of job-to-core assignmeriis ), Ve € SecondaryCores
Ssecondary —— GA(ActiveJobs, SecondaryCores)

Assign jobs forSecondaryCores according taSgecondary

end

minimizing their effective thermal stress. Thaxal wear-levelingeduces the probability
that these weak cores will fail due tosingle damaged structure. Scheduling the weak
cores first maximizes the probability of finding jobs with daable thermal footprints with
respect to each weak core since there is a larger applicatoto choose from. However,
this also forces the stronger cores to execute the remaipatgntially less desirable, jobs.
In practice, this means that the stronger cores in the CMalgtsacrifice a portion of

their lifetime to lighten the burden on their weaker coupgets ¢lobal wear-leveling

3.3.2.3 Adaptive Scheduler

The adaptive scheduler recognizes that many CMP systemsftare underutilized,

provisioned with more cores than they typically have jobsuto (see Sectio8.4.4. The
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scheduler exploits this fact by allowing a few weak coresdaacrificed in order to pre-
serve the remaining stronger cores (Algorit@mAlthough being complicitin core failures
may seem non-intuitive, in systems that are underutiliteglgreedy scheduler can lead to
CMPs that are overprovisioned early in the CMP’s litédeCores >> JobQueue) while
not assuring enough available throughputfeCores < JobQueue) later on. This insight
forms the basis of the adaptive policy.

Promoting a survival-of-the-fittest environment, thisipplmaximizes the functional
life of the strongest subset of coreBrimaryCores in Step 1 of Algorithm2), those
with the least amount of initial damage and the potentialaeetthe longest lifetimes. By
assigning jobs to th&rimaryCores first, Maestro ensures that they execute applications
with the most appropriate thermal footprints (Step 2 of Aitjon 2). The remaining jobs
are assigned amongst ttl¥econdaryCores (Step 3 of Algorithm?2). This can lead to
some weak cores failing sooner than under a greedy policye,Nmwever, in Step 3 of
Algorithm 2, the scheduler is still looking amongst the remaining jalydiie one with the
best thermal footprint given a core’s damage profile. Toeal wear-leveling common
to both the greedy and adaptive policies, ensures that tladervecores even under the
adaptive policy survive longer than they would under the@gblicy. Ultimately, over the
lifetime of the CMP, if PrimaryCores > JobQueue consistently, while avoiding periods
when PrimaryCores >> JobQueue or PrimaryCores < JobQueue, then Maestro
has maximized the total amount of computation performecbysystem. The proper size
of PrimaryCores, n, is exposed to the OS so that the behavior of the schedulebean

customized to the needs of the end user.

60



Finally, note in Step 2 and Step 3 of AlgorithZnthe scheduler uses an optimization
scheme based on a genetic algorithm (GA) to identify thetdeast schedules for both
the PrimaryCores andSecondaryCores. This allows the adaptive scheduler to consider
the effect scheduling a job has on all structures within & ¢onlike the greedy scheduler

which only looks at the weakest structure) for more effedidcal wear-leveling

3.3.2.4 GA optimization

The optimization used in this work is derived from5], a standard solution of the

generalized assignment problem, and is described below

Chromosome definition: The chromosome modeled is a job-to-core mapping of a set of
n jobs,J = {jo, j1,---, Jn}, t0 @ set ofin coresC = {cy, c1,...,c, }. Itis represented as a
one-dimensional array where the value stored at indgxis the job that has been assigned
to corei. The example in Figur8.5 has jobsj; mapped to core 0}, ; mapped to core

1, andj, mapped to coren. During Step 2of the adaptive scheduling algorithm> m,

while for the optimization performed iStep 3m = n.

Core ¢o C1 C C3 C4 ... Cmi Cm

Job | ji linal 2 Vin s --- Lia ] do

Figure 3.5: Chromosome structure

Cost function: The cost function used by the GA is recalculated at each stingdin-

terval, based on the CMP damage profile and application @efiontprints, according to

1The runtime overhead of the GA is negligible for long-rumnatientific and server workloads.
However, for shorter-running applications the GA optintiza can be replaced by a greedy version
without severely impacting the effectiveness of the adacheduler.
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Figure 3.6: Steps involved in reproductionSy, S1, So, S3 are the parental candidatesS. is the
resulting child chromosome after initial crossovsf, and S” are the states of the child chromosome
after conflicts resolution and mutation respectively.

Equation3.1, whereCost(S) = the cost of schedulg andCost(j, ¢) = the cost of schedul-

ing job j on corec.

S
Cost(S) = ZCOSt(]}C)
.y
= Z(ZDmg(m)-Temp(j,m)) 3.1)

The individual steps of the GA are enumerated below:
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1. Generate initial population: An initial population of solutions (schedules) is cre-

ated by randomly enumerating a subset of the possible j@oit® mappings.

2. Evaluate fitness:Calculate the fithess (cost) of all members of the populaigng

Equation3.1

3. Reproduction: Two parents are identified, each using a simple binary touema
where two candidates are selected randomly from the popualahd the one with the
best fithess (smallest cost) is chosen for reproductioru(Ei®,69. A child is gener-
ated by applying a one-point crossover operator on the palgomosomes, where
a random crossover pointe [0, m] is selected, whers: is the size of the chromo-
somes. The child chromosome is formed by combining the figgnes from one
parent with the last» — i genes from the second parent (Fig8réb) . Note that this
newly formed chromosome could have the same job assignedtdifferent cores.
For this case to arise there must also be a set of jobs J that are unassigned
sincen > m. To resolve the conflicts, one of the redundant cores (saleat ran-
dom) is reassigned a job frotfi based orCost (7, ¢) (Figure3.69. Lastly, the newly
formed child chromosome is mutated by taking 2 randomlycsetejob assignments
and swapping them (no risk of creating new conflicts), reayi¢the probability of

converging at local optima (Figu6d) .

4. Replace and Repeat:After a child solution is formed the weakest member, as de-
fined by the cost function, of the existing population is eggld by the new child.

This concludes a single generation in the evolutionaryecy€he process is repeated
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until a predetermined number of generatiofss,....., fails to produce an improved

solutior?.

3.4 Evaluation and Analysis

This section evaluates Maestro’s reliability-centric esdhling policies using lifetime
reliability simulations. A variety of system parametersluding CMP size and system
utilization are varied to investigate their impact on Mag'stperformance. The effective-
ness of each wearout-centric policy is measured in terntisetime throughpu{(LT), the
number of cycles spent executing active jobs (real apjdicatnot idle threads), summed
across all cores, throughout the entire lifetime of the CMRmprovement metrics are the
result of comparisons with the naive, round-robin schedpitesented in Sectio®.3.2.1
Monte Carlo experiments are conducted using a simulatitupsemilar to the framework
in [35]. The standard toolchain of SimpleScalat], Wattch [21], and Hotspot§g] is used
to simulate the thermal characteristics of workloads andu¥dS?] is used to model the
impact of process variation. Results presented in thisseatinless otherwise indicated,
are for a 16-core CMP with processors modeled after the DEDaAR1264/213645].

Details of the CMP configuration can be found in Fig@ré

2Given the size of the solution space, as manylés possible schedules for a 16-core CMP,
values ofgen,,,q., from 0 to 100,000 were studied to understand the tradeoffdmt optimality and
runtime. The actual values @kn,,.., used in Sectior8.4 were determined empirically based on
the CMP size, with many runs producing good results with,,,,.. as low as 1000.

64



(a) CMP floorplan

IntReg

IntQ

LdstQ | IntExec

ITB

DTB

(b) Core floorplan
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INT Issue

4 wide
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Memory
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L1 (1$ and D$) Private 2-way, 64K, 2-cycle access
L2 Private 1M, 8-way, 10-cycle access
Process

Technology 32nm (96mm? CMP)

Frequency 4 GHz

Vdd 1.0V

(c) Alpha 21364 die photo

(d) Core specifications

Figure 3.7: CMP details. All simulation results, unless otherwiseeatare presented for a CMP
configured with 16 cores.

3.4.1 Adaptive Lifetime Simulation

Given that CMPs have lifespans on the order of years (3-%yaduture computer sys-
tems [33]), detailed lifetime reliability simulation is a compuitanally intensive task. This
is especially true when large numbers of Monte Carlo runsttseigonducted to generate
statistically significant results. Since wearout damagedagears to reach critical mass,
results presented in this section were gathered usirgglaptivesimulation scheme. Short
periods of detailed system-level reliability simulatitime darker phases in FiguBe8a are
used to gather statistics on the progression of CMP aginglimt f dynamically chang-

ing workload streams and Maestro’s reliability-centribesduling. The simulation is then
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rapidly advanced through a longer period of time (accederatmulation) using the statis-
tics generated during the most recent detailed phase asda.gilio minimize error, the
length of the accelerated simulation phase is limited byatheunt of damage accumulated

during the detailed interval according to Equat®g&

D it

L, = (D ) AF - Ly where, (3.2)
L, = thelength of the accelerated phase.
Ly = thelength of the previous detailed phase.
D,y = the amount of damage the weakest core in the CMP can sustaie fhailing.
D,.. = the amount of damage accumulated by the weakest core daengevious

detailed phase.

AF = variable parameter that trades off simulation time for aacy (0%-100%).

Dynamically adjusting the durations allows simulationltmsdown as cores near their
failing point, where small changes in damage and scheddkugsions have larger impli-
cations. When a core fails in phaseaccelerated simulation resumes at a faster ate (
> L,,), but L, soon contracts as the next core in the CMP nears failure ré&gy8aillus-
trates (not to scale) how adjustiny’ can influence the lengths of the accelerated phases.

The value ofAF essentially dictates the number of detailed phases thaimndated be-
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Figure 3.8: The adaptive simulation used to accelerate lifetime rdliiglsimulations while incur-
ring minimal experimental error.

tween core failures. At ad F’' of 100%, simulations are accelerated from one core failure
to the next. However, wheAF is dialed down to 50%, many more phases are required
to cover the same amount of simulated time, concentratmglstion effort around times
when cores are failing and improving simulation accuradggufe 3.8bshows both simu-
lation time speedup and error as a functiomAdt, illustrating how simulation time can be
traded off for fidelity. The experiments presented in thiskuasse anA F' of 6%, resulting

in simulation runtimes from 30 minutes to over 6 hours forregka Monte Carlo run.

3.4.2 Lifetime Throughput Enhancement

Figure3.9shows the normalized LT improvement as a function of thedleg policy,
CMP size, and failure threshold. In the context of this ceggailure threshold is defined
as the number of cores that must fail before a chip is consibl@enusable. This is the point
at which the risks/costs associated with maintaining aesystith only a fraction of its
original computational capacity justifies replacing thgpchrhe CMP is considered dead
even though functional cores still remain. The results showFigure3.9 are conducted

for 2 to 16-core systems, and failure thresholds ranginghfocore to all cores. The
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Figure 3.9: Performance of wearout-centric scheduling policies veS®P size and failure thresh-
old.

value of the failure threshold is passed to the adaptivepash that it can optimize for the
appropriate number of cores. Results are shown for CMRzatitins of 100%, providing
a lower-bound on the benefits of the adaptive policy (Se@idmiexamines the impact of
CMP utilization).

As expected, both the greedy and adaptive policies perfoethaeross all CMP sizes
and the majority of failure thresholds. As the size of the CBws, Maestro has more
cores to work with, increasing the chances of finding completary job-to-core mappings.
This results in more effective schedules for both wear@mittic policies improving their
performance. Yet even with the lack of scheduling alteuestiin a 2-core system, both
policies can still achieve a respectable 30% improvement.

A strong dependence on failure threshold is also evident.ad@yessively minimiz-
ing premature core failures, the greedy scheduler achikewge gains for small failure
thresholds. However, as the failure threshold nears tleedfithe CMP, the LT improve-
ment attenuates. This is expected since under the greetby,psttonger cores sacrifice

a portion of their lifetime in order to preserve their weakeunterparts. The cost of this
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sacrifice is most apparent when the failure threshold allaNvihe cores to fail. In these
systems, the increased contribution toward LT by the wea&scis offset by the loss in LT
resulting from the strong cores failing earlier. Noticecetlsat the adaptive scheduler out-
performs greedy by the largest margins when the failurestiolel is roughly half the size
of the CMP. In these situations, the adaptive schedulerfeasiaximum freedom to sacri-
fice SecondaryCores to preservePrimaryCores (Section3.3.2.3. At either extreme for
failure threshold, it performs similarly to greedy.

Lastly, it is important to note that, although the benefitsveirout-centric scheduling
are less impressive for these extreme values of failureiimid, the scenarios when a user
could actually afford to wait for all the cores within a systéo fail are also quite remote.
For the remainder of the chapter, all the experiments show/ifoaa 16-core CMP with a

failure threshold of 8 cores and 100% system utilizatioresslotherwise indicated.

3.4.3 Failure Distributions

Figure 3.10 presents the failure distributions for the individual ras well as the
CMPs that correspond to the results in FigBré Figure3.10aillustrates the effectiveness
of the wearout-centric policies at distributing the workdiostress appropriately. The dis-
tribution for the baseline naive policy reveals a bias talgararly premature core failures.
The greedy scheduler, exploiting effective wear-levelipgpduced a tighter distribution,
lacking in both premature failures as well as cores thatisogmtly outlasted their peers.
Lastly, the adaptive policy also delivers on its promisepit®serving a subset of cores for

a longer period of time than either the naive or greedy sdeesiu
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Figure 3.10: Failure distributions for individual cores and the 16-cdzdMP with a failure threshold
of 8 cores and 100% utilization. Trendlines are added (betwmarkers) to improve readability.

Figure 3.10btells a similar story, but with chip-level failures. As withe individual
core distributions, both wearout-centric policies areedblincrease the mean failure time
of the CMP population. Note that because the failure time@W is limited by the weak-
est set of its constituent cores, the distributions in Fe@uiObare considerably tighter than
those in Figure3.10a The corresponding tables of expected lifetimes embeddtbihvthe
plots present the data slightly differently. From a prodyietd/warranty perspective, in-
telligent wearout-centric scheduling can be thought ofreadditional means of ensuring

that cores meet their expected reliability qualified lifedis. For example, the table in Fig-
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Figure 3.11: Impact of CMP utilization on reliability enhancement.

ure3.10bshows that the adaptive scheduler enabled 99% of the chgs\tive beyond .9
years, compared to just4 years with the naive baseline, a 38% improvement. Granted,
job assignment alone cannot makearantee®n lifetime, but it can complement existing

more aggressive techniques like thermal throttling.

3.4.4 Sensitivity to System Utilization

The utilization of computer systems can be highly variabtgh within the same do-
main (e.g., variability inside data centers) and acrossaiesn One might expect compu-
tationally intensive scientific codes (e.g., physics satiohs, oil exploration, etc.) to con-
sistently utilize the hardware. On the other hand, sincegdess build web servers to ac-
commodate peak loads (periodic by season, day, and hoey)atk often over-provisioned
for the common case. Some reports claim average utilizasdow as 20% of peak].

Figure3.11plots the performance of Maestro’s wearout-centric sclegdas a func-
tion of system utilization. The results are shown for norhutgizations ranging from 20%

(light duty mail server or embedded system) to 100% (sdierdiusterf. Note that ini-

3Although the mean utilization per simulation run is fixede fhstantaneous utilization expe-
rienced by the CMP is allowed to vary over time, sometimekipgaat 100% even for a system
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tially as average utilization drops, improvement in lifeé throughput actually increases.

A system that is slightly underutilized can be more aggvesgioad balanced since some
cores are allowed to remain idle. However, as utilizationtcwes to drop these gains
are eventually lost, until finally improvements are actpalorse than at full utilization.

In these highly over-provisioned systems, the efforts cdineat-centric scheduling to pre-
vent premature failures apartially wasted because so few cores are actually necessary to
sustain demand. Nevertheless, in the long run, the pergplies in utilization do accu-
mulate, and thanks to the longer overall core lifetimes @outilization means less overall
stress that translates to longer lifetimes), the greedyaalaghtive schedulers still manage

to exhibit improvements.

3.4.5 Sensitivity to Sensor Noise

Figure3.12illustrates how error-prone sensors could impact lifetnel@bility gains.
Although the introduction of systematic error, which isdsad in Figure3.12h does reduce
the potential of wearout-centric scheduling, the preseficandom noise (more common
for circuit-level sensors) shown in FiguBel2acan be accounted for and mitigated by the
statistical filtering and trend analysis schemes refer@meeSection3.3.1 Yet, even at
the extreme of +/-15% systematic error, Maestro still acdseover 10% LT improvement.
Figure3.12balso suggests that the adaptive scheduler is more sensitiv@se than the
greedy scheduler. By aggressively trying to presdtvénaryCores, the adaptive heuris-
tic relies strongly on sensor feedback to accurately ifietite boundary between its two

classes of processors, making it less robust against ser@sauracy.

nominally at 20% load. Furthermore, the averadfectiveutilization is also changing as cores on
the CMP begin to fail.
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Figure 3.13: Performance of wearout-centric scheduling with differe@bsors. Results are shown
for a failure threshold of 1 core to favor the temperature s@nand access counter based ap-
proaches.

3.4.6 Sensor Selection

Lastly, Figure3.13 presents a comparison between the low-level damage seadors
vocated in this work and more conventional hardware likeperature sensors and perfor-
mance counters. Given that Maestro is targeting an envieommith significant amounts
of process variation, it is not surprising that employingiperature and activity readings
as proxies for wearout/manufacturing induced damage weiqaate. They are unable to
account for the extent to which non-uniform, pre-existirmmége within the CMP re-
sponds to the same thermal stimuli. In the absence of vamiadi scheduler relying on

only temperature might effectively enhance lifetime reilidy by evenly distributing the
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thermal stress across the CMP. However, without any knayded CMP damage profiles,
as process variation is swept from one extreme (no variptotihe other (100% expected
variation at 32nm), thermal load balancing alone is insigifitand Figure3.13shows a

dramatic plunge in the effectiveness of these temperatasedschemes. Similarly, the

performance counter approach performed poorly acrosgptwrsim of variation.

3.5 Summary

As large CMP systems grow in popularity and technology agatontinues to exacer-
bate lifetime reliability challenges, the research comityumust develop innovative ways
for systems to dynamically adapt. Although issues like psscvariation are the source
of design and validation nightmares, this inherent hetemegy in future systems is also a
source of potential opportunity. Maestro recognizes tlthbagh emerging reliability ob-
stacles cannot be ignored, with the appropriate monitoaimg) intelligent management,
they can be overcome. By exploiting low-level sensor feekpb#Maestro was able to
demonstrate the effectiveness of wearout-centric schreglat preventing premature core
failures, improving expected CMP lifetimes by as much as 38%rmulating wearout-
centric schedules that achieved both local and global vexating, Maestro enhanced the
lifetime throughput of a 16-core CMP by as much as 180%. feutiark that leverages sen-
sor feedback to improve upon other traditional reliabilitpnagement mechanisms (e.g.,

DVFES) could demonstrate still more potential.
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CHAPTER IV

Shoestring: Probabilistic Soft Error Reliability on the

Cheap

4.1 Introduction

A critical aspect of any computer system is its reliabili§omputers are expected to
perform tasks not only quickly, but also correctly. Whettrezy are trading stocks from a
laptop or watching the latest YouTube video on an iPhonessusepect their experience
to be fault-free. Although it is impossible to build a contplg reliable system, hardware
vendors target failure rates that are imperceptibly small.

One pervasive cause of computer system failure and the fafctigss chapter is soft
errors. A soft error, or transient fault, can be induced lectical noise or high-energy
particle strikes that result from cosmic radiation and gbfgkaging impurities. Unlike
manufacturing or design defects, which are persistemsieat faults as their name sug-
gests, only sporadically influence program execution.

One of the first reports of soft errors came in 1978 from Intetg@ration, when chip

packaging modules were contaminated with uranium from abyeaine [3]. In 2004,
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Cypress semi-conductor reported a number of incidentsygrisom soft errors [21]. In
one incident, a single soft error crashed an entire dateecamd in another soft errors
caused a billion-dollar automotive factory to halt everyntio

Since the susceptibility of devices to soft error eventsrsatly related to their size and
operating voltage, current scaling trends suggest thatakia increases in microprocessor
soft error rates (SER) are inevitable. Traditionally,abllity research has focused largely
on the high-performance server market. Historically thiel gdandards in this space have
been the IBM S/360 (now Z-series servers)|[and the HP NonStop systems/], which
rely on large scale modular redundancy to provide faultréslee. Other research has
focused on providing fault protection using redundant ithukading BO, 74, 59, 38, 90]
or hardware checkers like DIVAL[L4, 19]. In general, these techniques are expensive in
terms of both the area and power required for redundant ctatipa and are not applicable
outside mission-critical domains.

The design constraints of computer systems for the commedittronics market dif-
fer substantially from those in the high-end server domiaitthis space, area and power are
primary considerations. Consumers are not willing to payatiditional costs (in terms of
hardware price, performance loss, or reduced batteryni&tfor the solutions adopted
in the server space. At the same time, they do not demand rifives” of reliability,
regularly tolerating dropped phone calls, glitches in vigidayback, and crashes of their
desktop/laptop computers (commonly caused by softwars)biitne key challenge facing
the consumer electronics market in future deep submicrdmtdogies is providing just

enough coverage of soft errors, such that the effective fatd (the raw SER scaled by the
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available coverage) remains at level to which people hagerbe accustomed. Examining
how this coverage can be achieved “on the cheap” is the gdhlsothapter.

To garner statistically high soft error coverage at low beads, we propose Shoestring,
a software-centric approach for detecting and correctofg esrors. Shoestring is built
upon two areas of prior research: symptom-based fault tieteand software-based in-
struction duplication. Symptom-based detection schemesgnize that applications of-
ten exhibit anomalous behavior (symptoms) in the presehedaransient fault 711, 48].
These symptoms can include memory access exceptions edisigd branches, and even
cache misses. Although symptom-based detection is insymerthe amount of cover-
age that can be obtained from a symptom-only approach isdlpilimited. To address
this limitation we leverage the second area of prior reseasoftware-based instruction
duplication [/5, 76]. With this approach, instructions are duplicated andItesare vali-
dated within a single thread of execution. This solution tha@sadvantage of being purely
software-based, requiring no specialized hardware, amddaieve nearly 100% coverage.
However, the overheads in terms of performance and poweguate high since a large
fraction of the application is replicated.

The key insight that Shoestring exploits is that the majasittransient faults can ei-
ther be ignored (because they do not ultimately propagaisdovisible corruptions at the
application level) or are easily covered by light-weightngptom-based detection. To ad-
dress the remaining faults, compiler analysis is utilizeedentify high-value portions of
the application code that are both susceptible to soft ®iiae., likely to corrupt system
state) and statistically unlikely to be covered by the tyregipearance of symptoms. These

portions of the code are then protected with instructiorlidapon. In essence, Shoestring
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intelligently selects between relying on symptoms andgiadisly applying instruction du-
plication to optimize the coverage and performance trdddafthis manner, Shoestring
transparently provides a low-cost, high-coverage sahufio soft errors in processors tar-
geted for the consumer electronics market. However, uttikenigh-availability IBM and
HP servers which can provide provable guarantees on cove®gpestring provides only
opportunistic coverage, and is therefore not suitable fiesion-critical applications.

The contributions of this chapter are as follows:

A transparent software solution for addressing soft ermercommodity processors

that incurs minimal performance overhead while providirghtfault coverage.

A new reliability-aware compiler analysis that quantiftege likelihood that a fault

corrupting an instruction will be covered by symptom-bafsedt detection.

A selective instruction duplication approach that legeacompiler analysis to iden-

tify and replicate a small subset of vulnerable instruction

Microarchitectural fault injection experiments to derstrate the effectiveness of

Shoestring in terms of fault coverage and performance easth

4.2 Background and Motivation

4.2.1 Soft Error Rate

The vulnerability of individual transistors to soft errasscontinuing to grow as device
dimensions shrink with each new technology generationdificaally, soft errors were

a major concern for memory cells due to their higher sensitto changes in operating
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Figure 4.1: The soft error rate trend for processor logic across a ranfisilicon technology nodes.
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curves assume low, medium and high amounts (respectivielgjtage scaling in future deep sub-
micron technologies. The user-visible failure rates higjied at45 nm and 16 nm are calculated
assuming a 92% system-wide masking rate.

conditions. However, protecting memory cells is relagvstraightforward using parity
checks or error correcting codes (ECC). On the other hamdbowtional logic faults are
harder to detect and correct. Furthermore, Shivakumar gt 4lhas reported that the SER
for SRAM cells is expected to remain stable, while the SERIdgic is steadily rising.
Both these factors have motivated a flurry of research #ietsvinvestigating solutions to
protect the microproccessor core against transient falitis body of related work will be
addressed in Sectigh6.

Figure4.1shows the SER trend for a range of silicon technology geloeimteported
in terms offailures in time(FIT!) per chip. Leveraging data presented by Shivakumar et
al. [87], the SER trend for processor logic was scaled down to delemsuon technolo-
gies (similar to what is done by Borkar{]) to generate the curve label®&bminal Note

the exponential rise in SER with each new technology geioerat-urther exacerbating

1The number of failures observed per one billion hours of aen.
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the SER challenge is the fact that in future technologiesesgive voltage scaling (both
static and dynamic) will be required to meet power/therrmaledopes in the presence of
unprecedented transistor densities. The curVesaleL, VscaleM, andVscaleH illus-
trate the potential impact low, medium, and high amountsp@etively) of voltage scaling
can have on SER.

Fortunately, a large fraction of transient faults are medsked do not corrupt actual
program state. This masking can occur at the circuit, mrctoectural, or software lev-
els. Our experiments, consistent with prior findings by Wand Patel 109, show this
masking rate to be arourd®% collectively from all sources. Accounting for this masking
the raw SER ati5 nm (the present technology node) translates to about onedagery
month in a population of 100 chips. For a typical user of lgpdesktop computers this is
likely imperceptible. However, in future nodes liké nm the user-visible fault rate could
be as high as one failure a day for every chip. The potentrahiie dramatic increase in
the effective fault rate will necessitate incorporatindt oror tolerance mechanisms into

even low-cost, commodity systems.

4.2.2 Solution Landscape and Shoestring

As previously discussed, a soft error solution tailoredtf@@ commodity user space
needs to be cheap, minimally invasive, and capable of prayislfficientfault coverage.
Figure4.2is a conceptual plot of fault coverage versus performaneeh®ad for the two
types of fault detection schemes that form the foundatid@hafestring, one based on symp-

toms and the other on instruction duplication. The bottogiar in this plot indicates the
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amount of fault coverage that results from intrinsic sosmiesoft error masking, available
for free.

Of the remaining, unmasked faults, symptom-based deteigiable to cover a signifi-
cant fraction without incurring any appreciable overhaadstly from detecting hardware
exceptions. However, as a more inclusive set of symptomsanrsidered the overall cov-
erage only improves incrementally while the performanceriogad increases substantially.
This is expected since these schemes relies on monitorietgod iare events, treating their
occurrence as symptomatic of a soft error, and initiatinpack to a lightweight check-
poinf. When the set of symptoms monitored is limited to eventsrivatly (if ever) occur
under fault-free conditions (e.g., hardware exceptions)terformance overhead is negli-

gible. However, when the set of symptoms is expanded to dechaore common events

2The checkpointing required for the symptom detection eygaldy Shoestring already exists in modern
processors to support performance speculation (see 8dctio
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like branch mispredicts and cache misses, the overheadiagsbwith false-positives in-
creases]11].

In contrast the coverage versus performance curve is fastegp for instruction dupli-
cation. Since instruction duplication schemes achievk taverage by replicating com-
putation and validating the original and duplicate codeuseges, the amount of coverage
is easily tunable, with coverage increasing almost liearth the amount of duplication.

The horizontal lines in Figurd.2 highlight three fault coverage thresholds that map to
effective failure rates of one failure per day, week, and thdim the context of a single
chip in 16 nm with aggressive voltage scalingscaleH). The fault coverage provided by
the intrinsic sources of masking translates to about ohgréaa day, clearly unacceptable.
To achieve a more tolerable failure rate of one fault per waeéven month, comparable
to other sources of failure in consumer electronics (eajtware, power supply, etc.), the
amount of fault coverage must be significantly improved.eNbat although the symptom-
based detection solution is both cheap and minimally imegast falls short of achieving
these coverage thresholds. Similarly, although instonaduplication is capable of meeting
these reliability targets, it does so by sacrificing consitiee performance and power (from
executing more dynamic instructions).

Although neither existing technique alone provides thaerddgerformance and cov-
erage tradeoffs, as a hybrid method, Shoestring is able glwigxhe strengths of each,

ultimately providing a technique that is optimally positexl within the solution space.
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4.3 System Design

The main intuition behind Shoestring is the notion that fmsfect, “five-nines” re-
liability is not always necessary. In fact, in most commypdiystems, the presence of
such ultra-high resilience may go unnoticed. Shoestrinoés this reality by advocating
the use of minimally invasive techniques that provide “@isbugh” resilience to transient
faults. This is achieved by relying on symptom-based eredection to supply the bulk of
the fault coverage at little to no cost. After this low-hamgfruit is harvested, judicious ap-
plication of software-based instruction duplication isrileveraged to target the remaining
faults that never manifest as symptoms.

To the first order, program execution consists of data coatjmut and traversing the
control flow graph (CFG). Correct program execution, difrispeaking, requires 1) that
data be computed properly and 2) that execution proceeds ttwight paths, i.e., com-
pute the dataorrectlyand compute theorrectdata. Working from this definition, previous
software-based reliability schemes like SWIFE] have assumed that a program executes
correctly (from the user’s perspective) if all stores in gnegram are performed properly.
This essentially redefines correct program execution asoting the correct data (to the
correct addresses) and 2) performing the right stores. i¢ihfd the assumption that the
sphere of replication (SoRY{l], or the scope beyond which a technique cannot tolerate
faults, is limited to the processing core. Faults in the ea@dnd external memories are not
addressed, but can be efficiently protected by technigke€£lCC [14].

Shoestring, makes similar assumptions about SoR and tprogram execution. How-

ever, unlike SWIFT T5] and other schemes, we are not targettogpletefault coverage.
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/1 inpData is a global array

/1l process() is a global macro
1: index =0

2: while (!stop)

3 process(i npbDat a[i ndex])

4. process(inpData[index + 1])
5: process(inpData[index + 2])
6: process(i npData[index + 3])
7 i ndex = index + 4

8: stop = (index + 3) >= inpDataSi ze
9: end

10: // clean-up code

11: for (; index < inpDataSize; index++)
12: process (inpData[index])

13: end

Figure 4.3: A representative example of performance optimized codg (lorolled).
Relaxing the coverage constraint frees Shoestring fronmbgae protect all portions of a
program in order to guarantee correctness. This affordesShng the flexibility to only se-
lectively protect those stores that are most likely to inipsogram output and least likely
to already be covered by symptom detectors. Furthermoregokeowledge that recent
work by Wang et al.11(] has shown that as many as 40% of all dynamic branchesiare
come tolerant That is, they do not affect correct program behavior wheoed down the
incorrect path. The authors demonstrate that many of treesalked “Y-branches” are the
result of partially dead control (i.e., they are data depemhdnd outcome tolerant timea-
jority of the time). Leveraging this insight, Shoestring can alsdshe overhead required
to ensure that the CFG &waysproperly traversed. Instead, we focus on only protecting a
subset of control flow decisions that impact “high-valuestmctions.

Figure 4.3 shows a snippet of code where some manipulation of an arriaystiaic-
ture is being performed. The computation is performed withitight loop that uses the

pr ocess macro to manipulate elements of the artat a. Performance optimizations
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Figure 4.4: A standard compiler flow augmented with Shoestring’s rdiigkaware code genera-
tion passes.

cause the loop to be unrollddimes into lines 2 through 9. Additional cleanup code (lines
11 through 13) is also inserted to maintain program sem&nidote that in this exam-
ple not all computation is essential for correct programavedr. The instruction at line
8 determines if the early loop termination condition is miétthe instruction(s) comput-
ing st op is (are) subjected to a transient fault, the unrolled loogidt@xit prematurely.
Although this early exit degrades performance, programectmess is still maintained. In
contrast, properly updating the variabledex at line 7 is required for program correctness
(assuming of course thanpDat a is a user-visible variable). However, sincadex is
also used as a base address to adcepPat a, there is a significant probability that a fault
corruptingi ndex would manifest as a symptomatic memory access excepticen@ne
proper symptom-based detection scheme, this could dectieesffectivevulnerability of
the computation at line 7. Identifying instructions critito program correctness and prun-
ing from this set those instructions that are already “cegteby symptom-based detection

is the focus of the remainder of this section.
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4.3.1 Compiler Overview

Implementing the most cost effective means of deployingrilesion duplication re-
quires detailed compiler analysis. Shoestring introdwaackltional reliability-aware code
generation passes into the standard compiler backendreMgtihighlights these passes
in the context of typical program compilation. Shoestringdmpilation passes are sched-
uled after the program has already been lowered to the madpiecific representation but
before register allocation.

The first two passeRreliminary Classificatiorand Vulnerability Analysis are de-
signed to categorize instructions based on their expeatédvior in the presence of a

transient fault. These categories are briefly describealbel

» Symptom-generating these instructions, if they consume a corrupted input, are

likely to produce detectable symptoms.

» High-value: these instructions, if they consume a corrupted input|ikedy to pro-

duce outputs that result in user-visible program corruptio

» Safe these instructions are naturally covered by symptom-iggimg consumers.
For any safe instructiorg, the expectation is that if a transient fault is propagated b
Ig, or arises during its execution, there is a high probalifigt one of its consumers

will generate a symptom within an acceptable latefgy.

* Vulnerable: all instructions that are not safe are considered vulderab

Following the initial characterization passes, a thirdsp@®de Duplication performs

selective, software-based instruction duplication tagebinstructions that are not inher-
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ently covered by symptoms. This duplication pass furthermizes wasted effort by pro-
tecting only the high-value instructions, those likelyrngpact program output. By only du-
plicating instructions that are along the dataflow graph@pbetween safe and high-value
instructions, the performance overhead can be dramaticaduced without significantly
impacting reliability.

The following sections describe the details of the heuwsstised in the analysis and

duplication passes.

4.3.2 Preliminary Classification

Shoestring’s initial characterization pass iterates @lkemstructions in the program
and identifies symptom-generating and high-value indoast For clarity, this classifi-
cation is described as a separate compiler pass. Howevyaadtice the identification of
symptom-generating and high-value instructions can biopeed as part of the vulnera-

bility analysis pass.

4.3.2.1 Symptom-generating Instructions

The symptom events considered by prior symptom-basedtaeteeork can be broadly

separated into the following categori€s. [, 48):

» ISA-defined Exceptions these are exceptions defined by the instruction set archi-
tecture (ISA) and must already be detected by any hardwgrkeimenting the ISA

(e.q., page fault or overflow).
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» Fatal Exceptions these are the subset of the ISA-defined exceptions that aewer

under normal user program execution (e.g., segment faiulegal opcode).

» Anomalous Behavior these events occur during normal program execution but can

also be symptomatic of a fault (e.g., branch mispredict oheaniss).

The relative usefulness of symptoms in each of these caésgisrdependent on how
strongly their appearance is correlated with an actuat.fadeal candidates occur very
rarely during normal execution, minimizing overhead dudaise positives, but always
manifest in the wake of a fault. Therefore, to maximize therbead-to-coverage tradeoff
the experiments in Sectioh5 evaluate a Shoestring implementation that only considers
instructions that can elicit the second category of fatdA-defined exceptions as poten-
tially symptom generating. Since these are events thahgtine normal execution of user
programs never arise, they incur no performance overhetie iabsence of faults.

Although additional coverage can be gleaned by evaluatingoee inclusive set of
symptoms, prior work has shown that the additional coveEtgn does not justify the
accompanying costs. For example, Wang and Patel] [presented results where using
branch mispredictions on high-confidence branches as ateymgained an additional
0.3% of coverage with an 8% performance penalty. Other atal-Bymptoms like data

cache misses also have similar coverage and overhead grofile

4.3.2.2 High-value Instructions

Ideally, we would like to only consider instructions thatdact program output as high-

value. However, given that the analysis necessary to phlpvasike such determinations is
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impractical, if not intractable, heuristics must be empgldyCurrently, any instructions that
can potentially impact global memory is considered highwaln addition, any instruc-
tions that can produce arguments passed to function cafe¢elly library calls) are also
included. To provide a truly transparent solution, Shaegtrat present, assumes that no
user annotations are available to assist in instructicgstiaation. Future extensions could
leverage techniques from information-flow theoty§, 54] to further refine the instruction
selection process or even exploit the work by Li and Yeuiid fo prune instructions that
only impact “soft” program outputs. Although investigagimore sophisticated heuristics
for identifying high-value instructions is a very promigiavenue of future work, it was

not attempted in this thesis.

4.3.3 Vulnerability Analysis

After the preliminary instruction classification is comi@gShoestring analyzes the vul-
nerability of each instruction to determine whether it ifesas stated previously, a safe
instruction, /g, is one with enough symptom-generating consumers suclatfaatlt cor-
rupting the result of 5 is likely to exercise a symptom within a fixed latengy;. For each
instruction, the number of symptom-generating consungefisst tabulated based on dis-
tance. For a given producef,j and consumerl( ) pair, we define the distanc®,, ., as the
number of intervening instructions betwegnand /. within the statically scheduled code.
It is used as a compile-time estimate of the symptom dete&itency if the consumer,,
were to trigger a symptom. For a given instructionif the number of symptom-generating
consumers at distanéés N;, then/ is considered safe iV;,; = ij{ N; is greater than a

fixed thresholdS;. The value for the threshold parametgrcontrols the selectivity of safe
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Indirect Consumers

Direct Consumers

(@) (b)

Control Flow

bb2
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Figure 4.5: Example data flow graphs illustrating Shoestring’s vulrlity analysis. The data
flow edge numbers represent the distance between two itistreién the statically scheduled code.
Shaded nodes represent symptom-generating instructiotiglashed circles highlight high-value
instructions. Dashed edges in (d) represent control flow.

instruction classification and can be used to trade off @agerfor performance overhead
(see Sectiod.5).

Figure 4.5 and the corresponding case studies illustrate how the rabiigy analy-
sis heuristic is applied for a few sample DFGs. The numbersgathe data-flow edges
represent the distanc®),, ., between the two nodes (instructions). Shaded nodes tedica
symptom-generating instructions, and nodes highlighted dashed circle are high-value

instructions. For all the case studiég,, = 100 and.S; = 2.
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4.3.3.1 Case Study 1: Direct Consumers

In Figure4.53 instructionl, is being analyzed for safe-ness. Instructions 1, 2, and 3 are
all direct consumers of,. Instructions 2 and 3 have already been identified as symptom
generating instructions and 3 is also a high-value insactin this example/, would
be classified as vulnerable because it only has one sympéomrating consumer within a

distance of 1004;.;), instruction 2.

4.3.3.2 Case Study 2: Indirect Consumers

Figure4.5bpresents a more interesting example that includes diregelss indirect
consumers as we analyzg As with direct consumers, indirect consumers that have bee
identified as symptom-generating also contribute to/Xhg of 1,. However, their contri-
bution is reduced by a scaling fact6y,..;. to to account for the potential fqrartial fault
masking.

In Figure4.5h instructions 3, 4, and 5 are all symptom generating conssiiofe/,.
Since 3 is a direct consumer, any fault that corrupts thdtreu, will cause instruction 3
to generate a symptom (probabilistically of course). Hasvgthe same fault would have to
propagate through instruction 2 before it reaches theesticonsumer, instruction 4. This
allows for the possibility that the fault may be masked by heeit actually reaches 4. For
example, if the soft error flipped an upper bit in the resulf,oédnd instruction 2 was an
AND that masked the upper bits, the fault would never be visiblagtruction 4, reducing
its ability to manifest a symptom. However, instruction lukbstill consume the tainted

value and potentially write it out to memory, corrupting t&ys state. Therefore, due to the
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potential for masking, an indirect consumer is less likélgrt a direct consumer to cover
the exact same fault. Ultimately with respectitan Figure4.5h given anS;,.... = 0.8,
we haveNy, = 1, N3 = 0.8, andN; = 0.64. SinceN,,, = >/ N; = 2.44 and is greater

=1

than the threshold, of 2, I is classified as safe.

4.3.3.3 Case Study 3: Minimizing Analysis Overhead

Figure 4.5c presents a more complete example and further illustratesrhemoiza-
tion is used to avoid redundant computation. Rather thantiigéng indirect symptom-
generating consumers recursively for every instructioa, maintain a globasymptom-
generation tablef V; values for every instruction. By traversing the DFG in a tiefotst
fashion, we guarantee that all the consumers of an insbruetie processed before the in-
struction itself is encountered. Creating an entry in thepm-generation table (labeled
S-Gen Table in the Figuré.5¢ for every instruction as it is being analyzed ensures that
each node in the DFG only needs to be visited énce

For example, assuming the vulnerability analysis begirtb Wi Shoestring analyzes
the instructions in the following order, 4, 7, 6, 8, 5, 1, 2 awkntually marksl,. as
safe. When the analysis pass reaches instruction 3 it canndiee its classification di-
rectly, without identifying any of its indirect consumeEnce the symptom-generation
table entry for instruction 5 was already populated durimg analysis pass fai.. The
corresponding table entry for 3 is computed by scaling\alentries for 5 byS;..;., ad-
justing the corresponding distances by adding 2, and firz@bpunting for the symptom-

generating potential of instruction 5 itself. The tablergrior instruction 3 would then

3Although this optimization is beneficial for programs witlige functions, even a naive recursive anal-
ysis for the SPEC2K applications evaluated in this work ditlappreciably increase compilation time.
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containN, = 1, Nj; = 0.8, N;; = 0.64 and instruction 3 would subsequently also be
classified as safe.

Obviously, this depth-first traversal is complicated in pihesence of loops (not present
in Figure4.59 where circular dependencies can exist and the traversid ¢@op indef-
initely never reaching a leaf node. Consequently, when8heestring encounters a loop
it forces the depth-first traversal to backtrack when théadise between the instruction
currently being processed and the instruction at the bottbthe loop exceeds;,;. This
guarantees all relevant symptom-generating consumeeaoceinted for while also ensur-

ing forward progress.

4.3.3.4 Case Study 4: Control Flow

The examples examined so far have been limited to analymnstguiction DFGs and
control has to a large extent been ignored. Although Shiogstakes a relaxed approach
with respect teenforcingcorrect control flow, branching is taken into consideratdren
performing vulnerability analysis. Figu5d shows an example where the instruction
being analyzed/,, is in a basic block (bb0) that has a highly biased branchhigdgce-
nario, although instruction 5 is a symptom-generating oorex, because it is in a basic
block (bb2) that is unlikely to be executed, it will not prdeidependable coverage oy
Therefore, the contribution of every consumenpis scaled by their respective execution
probabilities. These execution probabilities are exgadétom profiled execution (provided
to the experiments in Secti@nb), or when profile data is unavailable, generated from static

approximations.

93



Lastly, although Wang et al1].(J] showed that execution down the wrong direction
of many branches ultimately reconverges with the correetetton path, in Figurd.5d
if the branch terminating bb0 is corrupted causing exeautioproceed to bb2 instead of
bb1, there is no time for control to reconverge before irtdiom 4 potentially corrupts
system state. Therefore, Shoestring also selectivelggi®{by duplicating input operand
chains) all branches that have a control-dependence ediga Wigh-value instruction. For
sake of brevity, the standard algorithm for identifying tofrdependence edges will not
be presented here but it is important to note that not alldivas that can influence whether
instruction 4 is executed will be protected. Only those bhas that are effectively the
“nearest” to instruction 4 will possess the requisite colrtiependence edges and be pro-

tected, leaving the rest (which are further away and mosdyito reconverge) vulnerable.

4.3.4 Code Duplication

The process of inserting redundant code into a single thoéaskecution has been
well studied in the past/p, 64]. In general, this process involves duplicating all com-
putation instructions along the path of replication anceitisg comparison instructions
at synchronization points (e.g., at memory and control flogtructions) to determine if
faults have manifested since the last comparison was peefihr This section will high-
light how Shoestring’s code duplication pass departs filtmdxisting practice. The reader
is encouraged to examine prior work for a detailed desaoriptif the mechanics of code
duplication.

The code duplication pass begins by selecting a single Vade instruction,/y,

from the set of all high-value instructions. It then proceed recursively duplicate all
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Figure 4.6: Example data flow graph illustrating Shoestring’s code thgtlon pass. Nodes labeled
with an “S” represent safe instructions and dashed circlaghlight high-value instructions. In (a)

the shaded portions of the graph represent code duplicatiains. (b) shows the new DFG with
all duplicated instructions inserted as shaded nodes. Ndalmeled with an “=" represent checker

instructions.

instructions that produce values foy,,. This duplication is terminated when 1) no more
producers exist, 2) a safe instruction is encountered, the8producer has already been
previously duplicated. In all cases, it is guaranteed thiatyevulnerable instructions that
could possibly influence data consumedilpy; is duplicated. Comparison instructions are
inserted right beforé; . to verify the computation of each of its input operands.
Figure4.6apresents a section of a DFG with three high-value instrastimodes 6, 7,

and 8), three safe instructions (nodes labeled with an ‘@19, five vulnerable instructions
(nodes 1-5). For this example, we start with instruction @ laegin by duplicating its pro-
ducer, instruction 3. Next, we attempt to duplicate the pomas for 3 and notice that one of
the producers has been classified as safe and terminate gpligaton on that path. The

other producer for 3 (instruction 2), however, is vulneeadd we duplicate 2 and continue
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along its producer chain duplicating instruction 1 as wellbsequent attempts to duplicate
1's consumers encounters safe instructions, at which pdlintiinerable code relevant to
high-value instruction 6 has been duplicated. Shoesthrg toves on to the next high-
value instruction and repeats the process with instrugtioit this point, instruction 3 has
already been duplicated as a result of protecting instva@iso nothing needs to be done.
Next, instruction 8 is considered, resulting in the duglaaof instruction 4.

Figure 4.6b shows the new DFG with all the duplicated instructions (gtadodes)
and checkers (“=" nodes) inserted. Note that both highe/ahstructions 6 and 7 each
have their own checker to compare the results from instvnc®i and its redundant copy
3’. Although both 6 and 7 consume the same value, only relgim@ single checker at
instruction 6 to detect faults that corrupt 3’s result coldlave 7 vulnerable to faults that
corrupt the result of 3 after 6 has already executed. Depgnaln how far apart 6 and 7
execute, this vulnerability window could be significant. idgheless, in situations where
high-value instructions with common producers also exeautlose proximity, the need
for duplicate checkers can also be avoided. However, thHisnggation is not investigated

in this work.

4.4 Experimental Methodology

Given that this chapter is targeting coverage of faults cediby soft errors ocommod-
ity processors, we would ideally conduct electron beam exgatisnusing real hardware
running code instrumented by Shoestring. Given limitedueses a popular alternative

to beam experiments is statistical fault injection (SFtpia detailed register transfer lan-
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guage (RTL) processor model. However, since Shoestrintpgsgault masking at the
application level, full program simulation is also requir&ince simulating realistic bench-
marks on RTL models is extremely slow, a common practice énliterature is to rely on
microarchitectural-level simulators to provide the apiate compromise between simu-

lation fidelity and speed.

4.4.1 Fault Model and Injection Framework

The fault injection results presented in this chapter areegted using the PTLsim x86
microarchitectural simulatorlpP(]. PTLsim is able to run x86 binaries on the native (host)
machine as well as within a detailed microarchitecturalgator. Being able to effectively
switch between native hardware execution and microaiitel simulation on-the-fly en-
ables fast, highly detailed simulations. We simulated a enodhigh performance, out-
of-order processor modeled after the AMD K8 running x86 beasm The details of the
processor configuration can be found in Tablg

The fault model we assume is a single bit flip within the phgisiegister file. Although
they are not explicitly modeled, most faults in other pori@f the processor eventually
manifest as corrupted state in the register file, making iatmactive target for injection
studied. Furthermore, Wang et all | 7] showed that the bulk of transient-induced failures
are dominated by corruptions introduced from injections the register file. Nevertheless,
our methodology may not fully capture the ability of Shoegfrto handle faults from

combinational logic with large fanouts.

40nly performing fault injections into the register file isimitation of our evaluation infrastructure, not
a limitation of Shoestring’s fault coverage abilities. kality Shoestring will detect soft errors that strike
other parts of the processing core as well.
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Table 4.1: Processor details (configured to model an AMD-K8).

Processor core @ 2.2GHz
Fetch queue size 36 entries
Reorder buffer size 72 entries
Issue queue size 16 entries
Issue width 16 entries
Fetch/Dispatch/Writeback/ 3
Commit width
Load/Store queue size 44 entries (each)
Physical register file size 128 entries
Physical register file size 128 entries

Memory

L1-1/L1-D cache 64KB, 2-way, 3 cycle lat
L2 cache (unified) 1MB, 16-way, 10 cycle latency
DTLB/ITLB 32 entries (each)
Main memory 112 cycle lat

The experimental results shown in this chapter are produigdMonte Carlo simu-
lations. At the start of each Monte Carlo trial a random ptgisiegister bit is selected
for injection. It has been shown that the memory footprinS®EC2K applications are
significantly smaller than the full size of a 64-bit virtualdress space. Allowing faults to
occur in any of the 64-bits of a register would increase tkelihood of it resulting in a
symptomatic exceptionl[L1], and consequently being covered by Shoestring. Therefore
although PTLsim simulates a 64-bit register file, we limit éault injections to only the
lower 32 bits to avoid artificially inflating Shoestring’svarage results.

Once an injection site is determined, program simulatioall®ved to run in native
mode (running on real hardware) until it reaches a reprasigatcode segment (identified
using SimPoint$4] and manual source code inspection). At this point PTLsintches to
detailed mode and warms up the microarchitectural simul@ter a randomly selected

number of cycles has elapsed, a fault is induced at the medigted injection site. De-
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tailed simulation continues until 10M instructions compait which time PTLSim copies
architectural state back to the host machine and resumesaging the remainder of the
program in native mode. This of course assumes that thedaltiot result in a fatal ex-
ception or program crash prior to 10M instructions. At thd efhevery simulation the log
files are analyzed to determine the outcome of the Monte @anlas described in the next

section.

4.4.2 Outcome Classification

The result of each Monte Carlo trial is classified into onecirfcategories:

1. Masked: the injected fault was naturally masked by the system sfébls includes
trials where the fault was architecturally masked as wethase that were masked

at the application level.

2. Covered by symptoms the injected fault resulted in anomalous program behavior
that is symptomatic of a transient fault. For these trialis iissumed that system
firmware is able to trigger recovery from a lightweight checint. The details of

this assumed checkpointing mechanism are described irettiesaction.

3. Covered by duplication: faults in this category were the result of injecting code
that was selectively duplicated by Shoestring. During eéhiegls the comparison
instructions at the end of every duplication chain wouldgar a function call to

initiate recovery.

4. Failed: In this work the definition of failure is limited to only thesimulation runs

which completed (or prematurely terminated) with userblésdata corruptions.
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Although the definition for failure used in this chapter magm s unconventional, it is
consistent with recent symptom-based work and is the mgsbapate in the context of
evaluating Shoestring. The main premise behind the Shoggthilosophy is that the cost
of ensuring reliable computation can be reduced by focusimgovering only the faults
that are ultimately noticeable by the end user. Therefdre,figure of merit is not the
number of faults that propagated into microarchitectusakafchitectural) state, but rather

the fraction that actually resulted in user-visible fagsir

4.4.3 System Support

As briefly discussed in the previous section, Shoestring &mptom-based schemes
in general) relies on the ability to rollback processorestata clean checkpoint. The results
presented in Sectiofh.5 assume that in modern/future processors a mechanism for-rec
ering to a checkpointed state of 10-100 instructions in thst ill already be required
for aggressive performance speculation. Consistent wahdand Patell[11], Shoestring
assumes that any fault that manifests as a symptom withimdomi of 100 committed
instructions (micro-ops, not x86 instructions) can be lyadetected and recovered. The
proper selection of thé),; parameter described in Sectidr8.3is closely tied to the size
of this checkpointing window. Only those consumers that loarexpected to generate a
symptom within this window are considered when identifygade instructions. Similarly,
faults that are detected by instruction duplication wousd arigger rollback and recovery.

The results presented in Sectidd assume a checkpointing interval, and consequently
an S;,; value, of 100. Although this small window may seem modestamgarison to

checkpointing intervals assumed by other work, most ngtiait#t al. [4€], itis the most ap-
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propriate given Shoestring’s goals of providing minimatiyasive, low cost protection. In-
creasing the size of this window would unfairly inflate theexage provided by Shoestring
since accommodating large checkpointing intervals regsubstantial hardware/software
overhead. However, if large checkpointing intervals ewvelty find their way into main-
stream processors, the heuristics used by Shoestring ceadilg tuned to exploit this
additional support and provide even greater coverage.

The compilation component of Shoestring is implementetiéenl i VM compiler [47].
The reliability-aware code generation passes describ&kation4.3.1are integrated as
part of the code generation backend. Six applications fieenSPEC2K integer bench-
mark suite §zip, mcf, crafty, bzip2, ga@ndvorteX are used as representative workloads
in our experiments and are compiled with standard -O3 opttions. To minimize ini-
tial engineering effort, we only evaluated benchmarks fithilen SPEC2K suite that both
1) compiled on standard LLVM (without modifications for Sktreng) and 2) simulated
correctly on PTLSim “out-of-the-box”. They were not hanchgd because they exhibited
desirable behavior. Similarly, to minimize engineerintpefwe do not apply Shoestring
to library calls. The common practice in the literature isgsume that dynamically linked
library calls are protected by some other means, i.e., deithie SoR (see SectidB) [ 75].
The results presented in Sectibrb adheres to the same practice and avoids injections into
library calls.

Lastly, due to limitations of our evaluation framework werdi study Shoestring in the
context of multithreaded/multicore environments. Giveatiwe treat the cache as outside
our SoR the majority of challenges posed by the shared meimanyltithreaded/multicore

systems would not impact the efficacy of Shoestring. Howether larger memory foot-
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prints of multithreaded applications could potentialljeatiate the coverage due to a re-
duction in the performance of memory access symptoms. Thater resource/register
utilization in simultaneous multithreaded systems colso aeduce the amount of mask-
ing we see from faults that strike dead/free registers. I aistentifying the exact core
which triggered the symptom, as well as orchestrating tleelkgboint rollback and recov-
ery, is more challenging when multiple threads running dfedént cores are interacting
and sharing data. However, these challenges are beyonddpe sf the current thesis and

are left as interesting directions for future work.

4.5 Evaluation and Analysis

This section begins with results from an initial fault injec campaign to quantify the
amount of opportunity available for Shoestring to expldite then proceed to examine the
compilation heuristics described in Sectir3. Finally, we present and analyze the fault
coverage and runtime overheads for Shoestring. All expartal results included in this

section are derived from10k Monte Carlo trials.

4.5.1 Preliminary Fault Injection

Figure4.7 presents the results of initial fault injection trials. Th&pose of this prelim-
inary experiment was to identify the amount of faults thatiaherently masked throughout
the entire system stack. The accumulation of all these ssuwtmasking, from the mi-
croarchitecture up through the application layer, is essénthe amount of “coverage”

that is available for free. This is shown as thlaskedsegment on the stacked bars and
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Figure 4.7: Results of preliminary fault injection experiments. (apwhk the percentage of faults
that are intrinsically masked\asked, covered by symptomSympton), covered by long-latency
symptomsQymptom-L), or result in user-visible failured{ser-visible Corruption

corresponds to roughly 91.9% on average across the benkfintsBymptoms account for
another 4.9% and actual user-visible failures accountferémaining 3.2%.

As mentioned in Sectiod.3 symptom-based coverage is only useful if symptoms are
triggered within a small window of cycles;,;, following a fault. If the symptom latency
exceedsS,,; then the likelihood that state corruption can occur befosgraptom is mani-
fested increases. Note now the portions of the chart lalz8gmptom-LThese segments
are the fraction of trials that lead to symptoms but did sy afler the 100 instructios;,;
window expired. Without more expensive check-pointing toanmodate longer laten-
cies, the Symptom-L cases must also be considered failtiigsre 4.7b examines these
symptom-generating trials from a different perspectigea distribution based on detection
latency. Although the majority of symptoms do manifest witthhe 100 instruction thresh-
old, roughly 14.7% would require a much more aggressive kgfanting scheme (1000
instructions) than what is needed for performance speounlatone. Furthermore, the re-
maining 2.6%, with latencies of more than 10,000 instrutticould not be exploited with-

out being accompanied by heavyweight, software-basedkpbeting (and its attendant
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Figure 4.8: Percentage of static instructions classified as high-vdlug,).

costs). The remainder of the chapter assesses Shoes#inigis to minimize user-visible

corruptions by integrating symptom-based coverage witklligent software-based code

duplication.

4.5.2 Program Analysis
45.2.1 High-value Instructions

To gaininsightinto how selective instruction duplicatisactually applied by Shoestring,
we examine the heuristics described in Secdd®in the context of our SPEC2K work-
loads. Figuret.8shows the percentage of instructions identified as highevadithin each
benchmark. As discussed in Sect3.2.2 only instructions that can potentially modify
global memory or produce values for function calls are aberg®d high-value. On av-
erage roughly 24.3% of all static instructions meet thitecia and become the focus of

Shoestring’s code duplication efforts.
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Figure 4.9: Percentage of static instructions classified as saféds varied (s).
4.5.2.2 Safe Instructions

Figure4.9presents the percentage of instructions classified asesaéefunction of the
heuristic parametef; (Sectiord.3.3. A value ofn for S; indicates that for an instruction to
be considered safe (i.e., covered by symptom-generatimguooers) it must possess at least
n consumers within a distance 6f,; instructions along any potential path of execution.
Note that on average, even with relaxed to allow for any non-zero thresholeQ) only
10.1% of static instructions are classified as safe. Thisamiydue to our conservative
decision to only consider potential ISA-excepting instiaes as candidates for symptom-
generating consumers. A more aggressive heuristic coukhpally identify more safe
instructions if the set of symptoms that it monitored was enioclusive. However, this
would come at the cost of performance-degrading falseigesit

For this, and all subsequent, experiments the valug efvas fixed at 100 instructions
as explained in Sectiofh.4.3 A value of 0.9 forS;,.... (Section4.3.3.9 was also empiri-

cally determined to produce the best heuristic behaviat,sifixed for all experiments.
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Figure 4.10: Percentage of static code duplication performed by Shimgsts.S; is varied ((p).
4.5.2.3 Duplicated Instructions

Figure4.10shows the percentage of (static) instructions that areéchtpd by Shoestring
as S; is swept from>0 to co. Note the direct relationship betweéh and the number
of duplicated instructions. This is attributable to thetfdmat code duplication begins at
high-value instructions and terminates at the first safgunson encountered (see Sec-
tion 4.3.4. Therefore, the fewer instructions that are classifiedads, ghe less likely a
duplication chain will terminate early. In the extreme caden.S; = oo no instructions
are classified as safe. This results in fully duplicatingdoieer chains for every high-value

instruction.

4.5.3 Overheads and Fault Coverage

Next we examine the runtime overhead of the binaries that leen protected by
Shoestring’s selective code duplication. Figdrélashows that as; is varied from>0
to oo the performance overhead of Shoestring ranges from 15.8¥%.486 (obtained from

native simulation on an Intel Core 2 processor). The exenutiverheads for a full soft-
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Figure 4.11: Fault coverage and runtime performance overheads for Stingsas a function of
Si.

ware duplication scheme, SWIFTY], are also included for the sake of compari¥bars
labeledFull). Since Shoestring is positioned as a reliability “on theagti’ solution, main-
taining low runtime overhead is of paramount importanceev@auate the amount of cov-
erage that can be obtained by Shoestring with the least anobyperformance overhead,
for the remainder of this section the value%fis fixed at>0.

Figure4.11bpresents the coverage results for this Shoestring configaraAlso in-

cluded are coverage numbers for no instruction duplicatdanDuplication andS; = oo

5The overheads we cite from SWIFTH] are conservative considering they targeted a wide VLIW ma-
chine and would incur substantially more overhead giverss.é&erprovisioned processor.
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Figure 4.12: Detailed coverage breakdown for Shoestring configured @itfixed at>0.

to illustrate where the proposed solution sits with respethe upper and lower bounds.
Coverage numbers for other values%fwere not included because of the requisite simu-
lation effort. Although investigating more sophisticateelristics for instruction classifi-
cation and vulnerability analysis has the potential to gagven more coverage, note that
Shoestring is already able to recover from 80.4% of the feduihat would have otherwise
gone unmasked and caused user-visible data corruptions.

Lastly, Figure4.12takes a closer look at the fault coverage achieved by Shiogstr
The stacked bars highlight the individual components douting to Shoestring’s total
fault coverage. Note that on average, selective duplicatavers an additional 33.9% of
the unmasked faults that would have slipped by a symptom-oated scheme. Notice
also the segment label&bftware This category, only significant f@zipandbzip2 is the
result of assertions placed in the source code that actdathct the erroneous behavior
of the program following a fault injection. This observatisuggests that perhaps only a
modest investment is required to enhance conventionattessehecks with information

that could improve Shoestring’s program analysis.
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Table 4.2: Shoestring compared to existing solutions for soft errotslW”:hardware, “SW":
software, “nMR”: n-modular redundancy, “RMT”: redundantuitithreading, “RF-only”: register
file protection only.

Solution HW SW Performance Area Coverage
Support | Support | Overhead Overhead

nMR YES NO LOW VERY HIGH | VERY HIGH

RMT YES | MAYBE HIGH HIGH VERY HIGH

SW instruction NO YES HIGH NONE HIGH

duplication

Symptom-based| NO NO LOW NONE MODERATE

detection

RF-only YES NO LOW MODERATE | MODERATE

Shoestring NO YES LOW NONE HIGH

4.6 Related Work

This section examines Shoestring in the context of prewenk. Table4.2 presents
a quick overview of where Shoestring sits within the sofoesolution space. The ability
to achieve high levels of fault coverage with very low penfi@ance overhead, all without
any specialized hardware, sets it apart from previouslp@sed schemes. Each category
of alternative solutions is addressed in detail below.

n-Modular Redundancy (nMR): Spatial or temporal redundant execution has long
been a cornerstone for detecting soft errors, with hardavR (dual-modular redun-
dancy) and TMR (triple-modular redundancy) being the sohs of choice for mission-
critical systems. However, the cost of such techniques élegated them to the high-
budget server and mainframe domains (e.g., HP NonStopsdétieand IBM zSeries 1]
machines). DIVA f] is a less expensive alternative to full hardware duplamatutilizing

a small checker core to monitor the computations perfornyeal larger microprocessor.
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Rather than employing full hardware replication, recentkueas also been interested in
using smaller, lightweight hardware structures to targdividual components of the pro-
cessor. Argusis] relies on a series of hardware checker units to perforrmeritivariant
checking to ensure correct application execution. 19 Reddy and Rotenberg propose
simple checkers that verify the functionality of decode &tdh units by comparing dy-
namically generated signatures, for small traces of idahtnstructions. They extend this
idea in [73] by introducing additional checkers for other microarebtural structures.

Although the area overhead of solutions like DIVA and Argus significantly lower
than full DMR, they still remain an expensive choice for coatity systems. Nevertheless,
these NMR (and partial nMR) solutions provide greater faolerage than Shoestring and
can provide bounds on detection latency.

Redundant Multithreading (RMT): The introduction of simultaneous multithreading
(SMT) capabilities in modern processors gave researcimather tool for redundant exe-
cution. Rotenberg’s paper on AR-SM¥(]] was the first to introduce the concept of RMT
on SMT cores. The basic idea was to use the processor’s efacBntexts to run two
copies of the same thread, a leading thread and a trailiegdhfThe leading thread places
its results in a buffer, and the trailing thread verifies ¢hessults and commits the executed
instructions. Subsequent works improved upon this schgmapbmizing the amount of
duplicated computation introduced by the redundant thfégd37, 71]. RMT has also
been attempted at the software level by Cheng eflal][ This eliminates the need for ar-
chitectural modifications to support RMT, and relies on theapiler to generate redundant
threads that can run on general-purpose chip multiproceséath the advent of multicore,

RMT solutions have evolved into using two or more discretesavithin a CMP to mimic
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NMR behavior. Reunion9l] and Mixed-mode reliability ]15 are two recent proposals
that allow idle cores within a CMP to be leveraged for redumidbread execution. The
chief attraction of RMT approaches is the high coverage tagyprovide. The drawbacks
of RMT include significant throughput degradation (loss ofSMT context or an entire
core), hardware complexity/overhead, and potentiallybd®uhe power consumption of
non-RMT execution.

Software instruction duplication: Redundant execution can also be achieved in soft-
ware without creating independent threads as shown by Reik 5. They proposed
SWIFT, a fully compiler based software approach for fauletance. SWIFT exploits
wide, underutilized processors by scheduling both origamal duplicated instructions in
the same execution thread. Validation code sequencessarenakrted by the compiler to
compare the results between the original instructions had torresponding duplicates.
CRAFT [76] and PROFIT 6] improve upon the SWIFT solution by leveraging additional
hardware structures and architectural vulnerabilityda(AVF) analysis §0], respectively.
Asin the case of RMT, compiler-based instruction duplmaglso delivers nearly complete
fault coverage, with the added benefit of requiring littlextohardware cost. However, in
order to achieve this degree of fault coverage, solutikes3WIFT can more than double
the number of dynamic instructions for a program, incursignificant performance and
power penalties.

Symptom-based detection:As mentioned in previous sections, Wang et al. was the
first to exploit anomalous microarchitectural behavior &iedt the presence of a fault.
Their light-weight approach for detecting soft errors, Re&[109, 111], leveraged symp-

toms including memory exceptions, branch mispredicts,caothe misses. The concept of
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anomaly detection has been further explored by Racunas [étSalvho proposed verify-
ing data value ranges and data bit invariants. Lastly, Li.¢t&] extended symptom-based
fault coverage and applied it to detecting and diagnopergnanentardware faults. The
strength of symptom-based detection lies in its low-cost @ase of application. Unfor-
tunately, the achievable fault coverage is limited and mpgrepriate for high error-rate
scenarios.

Register file protection schemesThe register file holds a significant portion of pro-
gram state. Consequently, error-free execution of a progannot be accomplished with-
out protecting it against faults. Just as main memory carnugenanted with ECC, register
file contents can also be protected by applying ECC. Thisgg®can be further optimized
by protecting only live program variables, which usuallgopy only a fraction of the reg-
ister file. Solutions like the one presented by Montesinas. ¢55] builds upon this insight
and only maintains ECC for those registers most likely totaimnlive values. Similarly
Blome et al. L 7] proposes a register value cache that holds duplicateseofédigister val-
ues. It is important to note that these schemes in generadrgrdetect faults that occur
aftervalid data has been written back to the register file. In contrdsigString can also
detect faults in other parts of the datapath that corruptungon output before it is written

back to the register file or correction codes have been psogenerated.

4.7 Summary

If technology scaling continues to exacerbate the chaflempsed by transient faults,

the research community cannot remain focused only on bigh-reliability systems. We
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must devote efforts also to developing new innovative smhstfor mainstream commod-
ity processors. This chapter introduces Shoestring, aparent, software-based reliability
solution that leverages both symptom-based detection hss/selective instruction du-

plication to minimize user-visible failures induced bytseifrors. For a total performance
penalty of 15.8%, Shoestring can cover an additional 33.9f4aubts undetected by a con-
ventional symptom-based scheme. Allowing just 1.6% oftfaid manifest as user-visible
data corruption, Shoestring is a cost-effective means@figing acceptable soft error re-

silience at a cost that the average commaodity system cardaffo
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CHAPTER YV

Encore: Low-cost, Fine-grained Transient Fault Recovery

Shoestring assumed that the presence of hardware spenwapport could be easily
repurposed to recover from transient faults. However, weawledge that the presence
of this speculative hardware may nacessarilyexist in systems with less aggressive per-
formance targets. To accommodate processors with lesstrbbtdware support we de-
veloped Encore, an alternative rollback recovery mechangslored for these lower-cost

systems without support for speculative rollback recovery

5.1 Introduction

Traditionally, architects have designed systems that evtakle periodic checkpoints of
processor and memory state. In the event of a soft error gtersycould rollback to an ex-
isting, fault-free snapshot and continue execution (eakorecovery). These highly robust
fault recovery solutions have historically also relied omg form of modular redundancy
to provide the necessary detection capabilities. Avadlabispatial and temporal variants,

modular redundancy generally involved redundant exeoygdher on separate hardware
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or in separate software contexts) followed by detailed canispns that would identify the
presence of a faultl4, 95, 80, 74, 59]. However, the resultant overheads of these cou-
pled detection and recovery schemes, a large componentioiiwias the cost of creating
checkpoints, usually relegated their use to to high-enrprise systemsf].

Given the rise of processor reliability as a first-order gesionstraint, even in lower-
end commodity processors, there has been a growing intarésiv-cost, non-intrusive
mechanisms for transient fault detection. Many of these peyposals have been able
to maintain low runtime overheads by sacrificing a small degof reliability, focusing
primarily on addressing the bulk of faults that are reldgivieexpensive to detecfi[.1, 48,
34]. However, these techniquesl[], 34] have also tended to assume that existing hardware
provided rollback recovery, arguing that such hardwareldvalready be needed to support
performance speculation. Although this argument may hotdafygressive out-of-order
processors, such hardware support is not present in theritgagb low-end commodity
systems.

With that in mind we proposegncore a software-only solution that seeks to provide
probabilistic (best effort) rollback recovery capab@giat minimal costs. Encore was de-
veloped to complement emerging probabilistic detecti@hnéjues, enabling them to be
deployed in commodity systems without native hardware stigpr rollback recovery. As
an automated, compiler-driven technique, Encore is ahléline programmable heuristics
that allow the end-user to dial in the desired degree offaldtrance and therefore only in-
cur as much runtime overhead as they are able to budget. &oanrachieve this behavior
by mimicking the same checkpoint, rollback, and re-execubelel used by earlier enter-

prise systems. However, rather than performing, full-aystheavyweight checkpoints,
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Figure 5.1: Percentage of dynamic instruction traces that are inhdyeidlempotent as a function
of size. The execution traces were extracted from an assottai SPEC2K and Mediabench work-
loads. Theldempotence Targeaturve illustrates Encore’s goal of exposing, and explgitirven
greater degrees of idempotence through intelligent caenpihalysis and transformations.

Encore is able to exploit thetatistically idempotentroperty of applications to reduce, and
in certain situations nearly completely eliminate the tveads required to supply rollback
recovery.

At a high-level, an idempotent region of code is simply onat ttan be re-executed
multiple times and still produces the same, correct retulihe context of rollback recov-
ery, this means that at least to the first order, a fault oomymithin an idempotent piece
of code can be recovered from without any overhead for che@nkipg state. This typically
means that there cannot exist any paths through the regabicdh read, modify, and then
write to the same (or overlapping) location(s), i.e. no evatter read (WAR) dependencies.

To better understand the extent of idempotent code presantapplication, Figurg.1
shows the distribution of idempotent execution traces seceoset of desktop and media
benchmarks. Results are shown as a function of the tracédsimamic instruction length).
The surprisingly large percentage of naturally occurridgmpotent regions of execution

seenin Figur®.1lis what initially encouraged the development of Encore.hBdirst order,
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the code regions corresponding to the traces that wereifidenas idempotent could be
easily instrumented for rollback recovery with almost ngauat on runtime performance.
It is important to point out however, that although therelenpy of opportunity present,

only a few of these regions actually span an entire functMost are spread throughout
the application, making manual inspection to identify thempractical.

This is not entirely unexpected since with more instruioomes the greater chance
that there exists some sequence of instructions that ei¢ihet WAR constraints required
to maintain idempotence. This intuition is reinforced bg thata which exhibits a sharp
drop in the likelihood of being idempotent when moving froraces with just a handful
of instructions to those with 50 or more. Lastly, it is alstemesting to note that for the
traces that do not exhibit full idempotence, many tend toéarly idempotent, i.e., con-
taining only a few offending instructions. Furthermoreggh instructions often only occur
along statistically unlikely paths. Encore seeks to exgesa greater amounts of statistical
idempotence by recognizing these properties of applicdiehavior [dempotence Target
in Figure5.1).

To make exploiting program idempotence feasible, this t@rgpoposes techniques to
automate the analysis and instrumentation within compjémization passes. We present
the algorithms and heuristics developed that enable Encaaaefully partition application
code into fine-grained regions with favorable idempoteretebior, and then to instrument
them for rollback-recovery. By recognizing the statidticalempotent structure naturally
present in many applications, Encore can transparenthjigeaollback recovery on com-
modity systems at prices that they can afford. The contobgtof this chapter are as

follows:
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* We demonstrate how low-cost transient fault recovery aaadhieved for commod-

ity systems without hardware support for aggressive perémice speculation.
» We develop new compiler algorithms and heuristics for

— Automatically identifying candidate idempotent regiongeneralized code re-

gions with support for cycles.

— Selectively trading off recoverability with cost by penfioing code transforma-

tions that leverage application profiling statistics.

» We evaluate and analyze the performance of Encore’syatuliecover from transient

faults with full-system simulations across a diverse seepfesentative workloads.

5.2 Recovering from Transient Faults

Transient fault tolerance requires the abilitydetectand subsequentlgecoverfrom
soft error events. There is no shortage of examples in tbrtiire that address each of
these tasks (see Sectiérb). However, as we have already indicated, recent progress in
achieving low-cost probabilistic transient fault detenthas not been accompanied by sim-
ilar advances in fault recovery. Encore, and the remaintiigchapter, is concerned with
being able to rollback and recover from a transient faulteohtas already been detected
by a low-cost, low-latency solution like ReStorel[] or Shoestring $4].

Traditional high-reliability systems have chiefly reliedan heavy-weight, full-system
checkpointing mechanisms to support rollback and recovBome high-level character-

istics of these traditional techniques are highlightedabl&5.1. Compared to these con-
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ventional methods, Encore provides recoverability at mfuddr-granularities without any
specialized hardware support. Although it cannot providargnteed recovery, the prob-
abilistic nature of Encore allows it to be applied to comntpdiardware at dramatically

lower costs (in terms of runtime performance and memorygioot).

Table 5.1: Comparison with conventional checkpointing schemes.

Attributes Enterprise Recovery | Architectural Recovery Encore

[28, 61, 29, 95] [94, 69
Interval Length ~hours 100-500K instrs. 100-1000 instrs
Storage Space 05-1GB 0.5-1MB ~10-100B
Checkpoint Time ~minutes ~ms ~ns
Scope Full System Processor Processor
Guaranteed Recoverny Yes Yes No
Extra Hardware Sometimes Yes No

5.2.1 Recovery with Fine-grained Re-execution

At the high-level, one of the simplest ways to recover fromaasient fault is by re-
executing the application from a location far enough badhglthe control flow graph
(CFG) so as to correctly reproduce the data that was codupgethe fault. With this
seemingly straight-forward maneuver, the effects of atl e most insidious transient
faults can be completely eliminated. This, of course, agsuthat during the initial exe-
cution no WAR dependencies overwrote state that could learoneous behavior upon
re-execution.

Note, that employing this form of fault tolerance requirgsaddition to a detection
mechanism, the ability to identify the location from whichinitiate re-execution, i.e., de-
ciding where the code should rollback to in the event of atfddeally the system would

rollback to point just before the fault site and no furthenisiwould ensure correct forward
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Figure 5.2: Fine-grained transient fault recovery via rollback and egecution. (a), (b), and
(c) illustrate some of the challenges and opportunitiesd #xast when leveraging fine-grained re-
execution to achieve fault recovery. (a) enumerates padematlback destinations that execution
can be redirected to once a fault, strikingiat; is detected, abbg. Ideally bb; andbbs would share

a common predecessbl’ that could serve as the rollback destination for all faukattare detected
within the region. (b) highlights how idempotence violgtinstructions might constrain which code
regions can actually be efficiently recovered. (c) depicis btherwise non-idempotent regions can
still frequently exhibit idempotent behavior along theat Ipaths. The region shown in (c) is taken
from the CFG corresponding to the dominant hot functiod 7&.vpr.

progress while also minimizing the amount of “wasted wotkg amount of code that was
uneccessarily re-executed. Correctly reasoning abautdbation require$) that you can
precisely diagnose where the fault occurred and 2) that youam identify the original
path of execution that lead to the fault site Although conceptually simple, merely as-
certaining 2) without specialized hardware support woelguire costly, software-based
dynamic control flow signature generation.[j. Yet, even having established the original
path of execution, accurately locating the site of theahfault still remains an expensive,
if not altogether impractical task.

Figure5.2ahelps illustrate these two challenges in more detail. Baksicksbb, — bb;

form a small subgraph of code taken from a larger CFG. In tkésrgple a transient fault
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corrupts an instruction inside basic blokk,. When the fault is detected &k;, we are
left with the difficult task of determining where to redireszintrol to safely rollback and
recover. Basic blocksb,, bby, andbb, are all viable options that would lead to safe recov-
ery. However, rolling back téb; would not be far enough, while re-executing fram
could actually lead to other undesirable behavior sinceag mot on the original execution
path. Ultimately, identifying the optimal location to reelct control after a fault is detected
requires dynamic information and is undecidable at corApihe.

Yet, if the subgraph in Figur6.2awere part of a single-entry, multiple-exit (SEME)
region, the decision could be made to conservatively roklexecution to the region entry
block (the dominating header), in this cagé. This would not only free Encore from
having to account for which path of execution originallydea bb,, but in this example
it would also ensure that execution was resumed far enougtk”tio regenerate any data
corrupted by the original fault. Despite uneccessarilgxeeuting some code, namely
bb, andbb,, this is still a more agreeable alternative to specializadivare additions or
expensive dynamic control flow tracking. Although this effeely resolves challenge 2),
obviously in the general case, resuming execution at theofdpEME regions is only
effective against faults that are detected within the sagi®n that they occur. Fortunately,
for large SEME regions the probability of a fault being dételcafter control has left the
region is reduced. Details regarding how Encore attemgitstothese large SEME regions

are described in Sectidn3.3
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5.2.2 The Role of Idempotence

Figureb5.2billustrates how recognizing idempotent regions can gyeatluce the over-
head required to provide rollback recovery. Since idempatggions by definition contain
no WAR dependencies, they are attractive candidates faorgisare-execution based fault
recovery. In this example, since all paths through regioare idempotent, it is more de-
sirable than-, for which execution down the path containibtg can be non-idempotent.
Relying on conventional, full-system checkpointing sclesrto ensure that a region like
could be re-executed would be using a sledgehammer to dragiroverbial nut. Because
the region is naturally idempotent, Encore can simply extdiall fault detection events ini-
tiated anywhere within the region tds, the header of. It is important to note here that
althoughr, is not idempotent, if the increment of variabtein b, were the only instruc-
tion violating idempotence then selectively checkpoigti prior to the increment would
transformr, into a readily recoverable region. Small, cost-efficieantformations like
these, described in greater detail in Secbds) are what enable Encore to achieve low-cost
rollback recovery.

Lastly, Figures.2cshows an actual subgraph taken fribi@b.vpr a benchmark from the
Spec2000 benchmark suite. It corresponds to a slice of ti&f@in the functiortry_swap
which is the hottest function within the application (acoting for roughly half of its exe-
cution time). The details of the basic blocks and the sulmg\CFG have been abstracted
away for clarity. The shaded basic blockss, bb,, andbb,; are locations where the idem-
potence of the region can be violated. The code within thasiblocks is responsible for

memory allocation to dynamic variables. Consequentlysdhere only executed the first
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time try_swapis called. For the remaining invocationstoy_swap the path through basic
blocksbbg, bb;, andbby dominates the execution time of This suggests that although
regionr; is not strictly speaking idempotent, it does exhibit idetembbehaviorthe vast
majority of the time. Thigprobabilisticidempotence is yet another property of applications
that can Encore exploit to reduce its overheads.

Admittedly the notion of idempotence is not new. For examfien et al. [45] lever-
aged idempotent properties of inner loops in Fortran appbtias to minimize the instances
of storage overflows in a speculative execution system. kewyeelying on this property
for low-cost, transient fault recovery in a systematic fashhas not yet been fully ad-
dressed. A recent proposal by Kruijf et alf] resorted to manually inspecting and mod-
ifying source code to take advantage of the function-widarigotence and fault tolerant
properties of multimedia and data-mining applicationghAugh their work is in the same
spirit as Encore, and a great step in the right direction, tilizimg domain/application-
specific algorithmic knowledge to identify and conditiomdalate functions significantly
limits the applicability of the approachEstablishing a generalized methodology for
exploiting fine-grained, often statistical, idempotenced enable low-cost rollback re-
covery was the purpose of developing Encorel he remainder of this chapter will address

the algorithms and heuristics formulated to realize thislgo

5.3 Encore

Achieving low-cost transient fault recovery involves itignng naturally occurring re-

gions of code that are amenable to re-execution, and judityisacrificing reliability to
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Figure 5.3: High-level Encore vision. At compile-time, applicatiordeds partitioned into SEME
regions that are subsequently analyzed and instrumentedable low-cost rollback recovery from
transient faults. Flexible heuristics enable Encore tonefthe partitioning and instrumentation
passes, customizing their behavior to achieve the desieettoff between reliability and perfor-
mance overheads.

maintain low overheads. Figuge3illustrates the different high-level components of the
Encore vision. Encore is designed as a series of compilexepabat analyzes, refines,
and ultimately instruments the code with rollback recoviagoks” that are coupled with
a detection mechanism at runtime. To start with, the apfpliocasource code (specifically
the CFQG) is initially partitioned into SEME regions. Thesgions are then analyzed to
determine their idempotence properties (SecBahl). The results of this analysis are
then used to instrument the regions for rollback recovegci(iBn5.3.2 as well as refine
the initial region partitioning (SectioB.3.3 using heuristics developed to maximize roll-
back coverage while maintaining acceptable overheadsi¢8¢c3.4. Lastly, when faults
are detected at runtime, execution is redirected to a regdleck that restores any non-
idempotent state from lightweight checkpoints beforeasileg control to the header block

of the corresponding region.
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5.3.1 Identifying Inherent Idempotence

Before the discussion proceeds any further, to help avoicarbiguity that may arise,

a few terms that will be used throughout this chapter arei@igldefined below.

Region in its unqualified form this will refer to SEME regions, a gpmaph of basic
blocks connected in the program CFG that contains a singteyjeblock that domi-

nates all other blocks and zero or more exiting blocks (balsicks with branches to
outside the region).

Reachable Store': at a given point (i.e., basic block) in the CFG, machable

store relative top, is a store instruction that could potentially executeraftantrol

has passed through

Guarded Address with respect to a given point, a guarded addresg one that
is guaranteedo be overwritten by a store instruction prior to reachinglong all

possible paths tp.

Exposed Address with respect to a given point, anexposed address an address
thatmaybe referenced by an unguarded load prior to reachimgload! is guarded
if, and only if, the address referenced big already a guarded address with respect

to the location of.

Inherent Idempotence a property of a region indicating that the region contains
no WAR sequences to the same address that could preveninittfeing safely re-

executed during rollback recovery without undesired sffeets.

1This should not to be confused with the concept of reachirfjpitiens commonly used in dataflow
analysis.
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These definitions, and the text throughout this chaptey, malke reference to load and
store instructions. This is done simply in an effort to imgaeadability. In reality, all
instructions that can potentially reference and/or montigmory are considered during the
idempotence analysis. Additionally, register state i atgtially ignored in the analysis

and will be treated separately in Sect.3.2

5.3.1.1 Path Insensitive Analysis

Determining the idempotence of a regian, begins by generating the region-wide
reachable stor€RS), guarded addresgGA) , andexposed addreq&A) sets for all basic
blocksbb; € r. This is done by performing multiple post-order traversal¢he region’s
CFG. For the time being, the details surrounding these nagiall be ignored with the
exception of saying that they are limited to SEME subgraghsasic blocks. Initially the
discussion will also be limited to acyclic regions. Cycles.( loops) will be incorporated
in Section5.3.1.2once the initial acyclic algorithm has been described.

The initial post-order traversal begins from the entry kltthe region. As each basic
block (bb;) is encountered, Equatidnlis used to update the corresponding reachable store
set,RS;,,. Next, all edges im are reversed and multiple post-order traversals are paeftr
on this new subgraph starting from each of the region’smxitlocks. As each basic block,
bb;, is encountered during these “reverse” post-order tralgr&quation.2 and5.3 are
used to update the corresponding guarded address and dxpaddess sets. Note that

the guarded address sétA,,,, must be updated before the exposed addresEdg, .
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Furthermore, the set subtraction operation’,“used in these and subsequent equations is

supplied with standard, conservative, static memory aligsysis techniques

RSy, = |J (RSu, UASH,)(Jass, (5.2)
Vbb; €Cy,,

whereRSy, is the set of reachable storeshat, Cy, is the set obb;’s children; andAS,,,
is the set of all stores withiby; itself.

GAbbi = m (GAbbj U ASbbj> (52)
Vbb; €Cp,
EAy, = ( U EAbbj) U (EAL - GAy,) (5.3)
Vbb; €Cy,

whereGAy, is the set of guarded addressestat EA,,, is the set of exposed addresses at
bb;; EAé‘gfj“l is the set of all addresses referenced by loads;ithat are not preceded by a
store, also withirbb;, to the same address, effectively the sdbokl exposed addresses for
bb;.

Once all the basic blocks within the region have been precgssd the associat&s,
GA, andEA sets have been generated, Equaligican be used to determine whetheas
idempotent. It essentially checks if idempotence can blatad by executing a basic block
bb; alongany possible path through

Regionr is idempotentff 7(bb;) = true,Vbb; € r

true, iff EAbbi N RSbbi =

. (5.4)
false otherwise

where, 1(bb;) {

Figure 5.4 illustrates how this path insensitive idempotence anslissperformed on
a small example region. FiguBe4 highlights the potential WAR dependenciesx(##,+)

that exist between the relevant instructions 1-12. Figudd shows how the data struc-

2Extending Encore to use more aggressive dynamic memoryipgaé a promising area of future work.
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: RS: {1-A, 2-B, 3-C, 5-C, 9-A, 10-B, 12-C}

i [—'j GA:
bb 1
l bb 1 l{l Store A EA: {}

RS: {2-B, 3-C, 5-C, 9-A, 10-B, 12-C}
GA: {A}
EA: }

2: Store B Y Load A
- > Loa . | - - | ¥
stre Zi'. ({i)s’ 3, 9-A, 108,12.C} RS: {5-C, 9-A, 10-B, 12-C}
3: Store 5: Store C - A: {A
T G EA O o ()
% - RS: {} RS: {9-A, 10-8, 12-C}
6: Load B 7:Load B GA: {A, B, C} GA:{A C} 1
EA: {} EA: {B} « \\
3. Load C i ~ Violates
Idempotence!
RS: {9-A, 10-B, 12-C}
PR .
9: Store A (E;: ({g’) c}
*
10: Store B
. e @+ - RS: {12-C}
11: Load C bb 8 12: Store C g: {(Q}' c}

v

(a) A SEME region with four poten-  (b) Results of the Encore analysis that identifies the single
tial idempotence violating WAR de- dependency that actually requires checkpointing (insisac
pendencies: instructions 4 and 9 (#); 10) to maintain idempotence. The number-letter pairs in the
7 and 10 €); 8 and 12 (@); and 11 RS sets indicates the instruction number and destination ad-
and 12 (+). dress for the corresponding store.

Figure 5.4: Example illustrating Encore’s idempotence analysis. Qhly relevant instructions
within each basic block are shown in (a). (b) shows how tha gatctures in Equatio®.1 and
Equations5.2-5.3 are populated during the in-order traversal and reverseider traversal of the
subgraph, respectively.

tures in Equatiorb.1and Equation$.2-5.3are populated during the in-order traversal and
reverse in-order traversal of the subgraph, respectivdtiiough there are four WAR de-
pendencies that exist within this region, Encore is ablarngls-out the one dependence
that can actually violate idempotence during runtime, #ygethdency between instructions
7 and 10 ).

Admittedly, identifying idempotence in this manner leadscbnservative answers.
Equation5.4 does not account for correlations among branches betwesn tidacks and
consequently may categorize regions as non-idempoteaubeof paths that can never
be realized given the design of the application. Howevegnanting any compiler anal-
ysis with path sensitive information is generally consadean intractable problens?].
Nevertheless despite this limitation, the algorithm pisgabhere is efficient, scalable, and

sufficiently accurate.
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5.3.1.2 Incorporating Cycles

Up to this point, the analysis has focused on acyclic regibrieoducing cycles can dra-
matically complicate issues. To help maintain the scatsof the analysis, loops within
a region are treated in a hierarchical manner. Initiallyppto idempotence analysis, a
conventional compiler pass ensures that all loops are imargeal form?® (i.e., single
header block and no side-entries). Next, whenever the layigsdof loops are encoun-
tered (header blocks during the forward post-order trale@nd exiting blocks during the
reverse post-order traversals) no attempt is made to dmdoddy of the loop. Instead,
previously generated meta-information for each loop tbatrearizes the net impact of all
the memory accesses within the loop is used to update idemp®data structures. This
enables entire loops to be treated as if they were simplyhandiasic block.

When analyzing regions containing cycles, all loops aregseed first. If nested loops
are present, they are analyzed from the inner-most loop adtwWhen processing an
(inner-most) loop the constituent basic blocks can initible analyzed as if they were
just a simple acyclic region. The guarded address and ed@Emdress sets for each basic
block within the loop are generated as described in Se&i8rl.1 However, given the
cyclic nature of loops, effectively all stores are potditieeachable from any point within
(possibly across iterations). Therefore, the set of rdalehstores for each basic block
within a loop/, RSﬁ,bi, is equivalent to the set of all stores within the lod§’. Defining
RS}, in this fashion ensures that all cross-iteration WAR depewiés are accounted for.

Once the loop-wide reachable store, guarded address, aondexkaddress sets have been

3Not all cycles within a CFG can be converted into a canonisahf In these rare cases, Encore does
not instrument the parent region for rollback recovery.
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generated for all basic block within the loop, the loop cartrbated as any other region
and idempotence can be assessed using EquaibnOnce loop idempotence has been
determined, the next step is to generate the meta-infoomassociated with the loop.

The goal of loop-wide meta-information is to capture andoseploop-wide memory
side-effects to simplify subsequent region analysis. 8H@vs the entire loop itself to be
treated effectively as a simple basic block. The contentkisfdata structure are enumer-

ated below and are used in an analogous fashion to their blagic counterparts.

Loop-wide reachable storesRS;,: the set of all stores that could potentially execute
if control ever enters loop;. The cyclic nature of the loop ensures tiRf;, =
RSy ... = AS", whereRS)_ . is the set of reachable stores for the loop header
andAS' is the set of all stores within tHe

Loop-wide guarded addressesGA,,: the set of all addresses that are that are guar-
anteed to be overwritten if and when lohps executed. Since loops can have mul-
tiple exiting blocks this is effectively the intersectiohadl guarded addresses across

all exiting blocks ofl;. In other worddDS;, = mebieXl. GAy,, WhereX,, is the set

of exiting blocks fori;.

Loop-wide exposed addressedLA,,: analogous to the definition of local exposed
addresses for basic blocks, the exposed address sktisahe set of all addresses
that may be referenced by an unguarded load along all pesgdihs througl;.

This is equivalent to the union of tHEA sets across all the exit blockBA,; =

Usse,ex,, EAw,
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With the loop-wide meta-data populated for all loops witthie CFG, analysis of any
arbitrary region can proceed and treat loops hierarclyiealljust another basic block. The
region traversals simply “step-over” loops whenever theyeamcountered and update idem-

potence data structures with the loop-wide meta-data.

5.3.2 Instrumentation

Once the idempotence of the various regions within an agipdic has been determined,
the next step is to identify whether inherently non-idenepotregions can be efficiently
(with low runtime overheads) transformed into idempotegions. For Encore, this trans-
formation is achieved by instrumenting offending non-igetient regions with instructions
to checkpoint state that may otherwise be overwritten upegxecution.

While performing the idempotence checks in SecttoB.1, all offending stores that
violate Equatiorb.4 are recorded in a checkpoint s€t?, associated with every region.
If Encore decides to enable recovery (see Sedi@¥), on a non-idempotent region;,
it will proceed to instrument each store,e CP, with checkpointing instructions that
checkpoints the data just prior to Additionally, in order to ensure that no WAR register
dependencies violate idempotence, all live-in (with resper;) registers that are overwrit-
ten withinr; are also checkpointed upon entering the region. The ideatiidin of register
live-in values is a standard analysis in modern compiledsisimmitted due to space con-
straints. Given the small amount (see Sectob of storage required the checkpointed
data is placed in a specially reserved region of the stack.

After instrumenting a region with the necessary checkjpognnstructions, all that re-

mains is to create eecovery blockthe destination of all rollbacks, initiated if and when
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a fault is detected within the region. Encore instrumengsitbader of each region with a
simple store that updates a dedicated memory location Wlatidress of the correspond-
ing recovery block each time control enters the region. tifxgdow-cost, software-based
detection schemes [ 1, 34] can be easily modified to redirect control to the addresedto
in this reserved memory location when a fault is detected.

Within the recovery block, all the previously checkpoinstate (registers and memory)
are restored before redirecting control back to the regeader. Although this additional
instrumentation also contributes to runtime overheads,only executed upon the detec-
tion of a transient fault. In fact, the conditional rollbaickthe recovery block can also be
amortized with the cost of the detection scheme. Furthamagations for reducing the

overhead of this selective checkpointing are describeeati&n5.3.4

5.3.3 Region Formation

Having discussed how idempotence is analyzed (and enfofcestessary), we can
now discuss how the CFG is actually is initially partitionadd subsequently refined, into
these segments. Candidate region formation is done in Efigobuilding upon traditional
interval analysisd]. In general an interval, as defined by Aho et al., is essinaadoop
plus acyclic “tails” that dangle from the blocks within thaob. In practice the initial loop
at the “top” of the interval may not exist (i.e., an intervaincsimply be a small SEME
subgraph that shares a single dominating header node).

Since it is a standard pass within most modern compilers sénétion omits the details
of how thisinitial partitioning is achieved and focuses on the subsequenéeneéint steps.

However there are two properties of this partitioning that ianportant to keep in mind,
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1) All intervals are by definition SEME regions and 2) interval partitioning can be
applied recursively.

The first property of interval partitioning greatly simpdi§i the process of recovery. By
ensuring that all regions are SEME, Encore can avoid théycastk of tracking dynamic
execution paths (see Sectiér2.1). This property is what allows Encore to safely insert
the recovery block described in Sectibr8.2just before the region’s header. Irrespective
of which path lead to the actual fault site, redirecting colnto this recovery block will
ensure that it can be corrected.

The second property suggests that once a CFG is partitiot@dhiervals, the intervals
themselves form amterval graphthat can also be partitioned into intervals. Encore ex-
ploits the second property of interval partitioning to ¢eeeandidate regions with varying
sizes. By controlling the size of the regions, Encore is &bkffectively manage the trade-
off between fault tolerance and performance overhead. @lynspeaking, the larger the
region that Encore attempts to recover from, the greatelikbBhood that the region is
not inherently idempotent. Recall that non-idempoteniomeg require instrumentation to
enable safe re-execution, which contributes to the ovaeratime overhead. On the other
hand, the larger the region, the more likely that a trandeauit striking within the region
will be detected before control exits the region and thetfiauto longer recoverable. Sec-
tion 5.3.4.2will discuss how heuristics are used to identify the appgedprregion size given
a budget for acceptable performance overhead.

At this point, one might contend that merging two regionsandr; to form a larger
regions’ (with r; preceding-;) may not necessarily incur additional costs to enforce idem

potence within’. In fact, if »; were non-idempotent, the fact that it is precededrpy
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could actually reduce the amount of checkpointing requined if the idempotence vio-
lating instructions withirr; only referenced locations within the guarded address se}.fo
Although in principle this is correct, in practice thesersmgos are rare and for the major-
ity of cases, fusing regions together was not an effectivama@freducingperformance

overheads.

5.3.4 Encore Heuristics

This section will focus on the heuristics used to glean th& baiability versus per-
formance trade-offs from Encore. First we discuss how pngfiinformation can be used
to statistically prune basic blocks from the idempotencayais followed by the heuristic

used to identify which regions are chosen as candidatesHfiback recovery.

5.3.4.1 Relaxing ldempotence Criteria

Since Encore is intended to supply probabilistic rollbaatovery for non-mission crit-
ical systems, one opportunity for optimization is to lewgrapplication profiling. Unlike
conventional techniques targeting ultra-reliable systéinat must provide guarantees on
recoverability, Encore is free of such constraints and i#atty to to utilize profile-based,
not necessarily provable, analysis.

Presented with this flexibility the algorithm described ec8on5.3.1can selectively
ignore any basic blocks that do not meet a certain “livenegtria. As previously men-
tioned, the idempotence determination made by Equdidns necessarily conservative
since it accounts for all paths through the region. By explgiprofiling information, En-

core can now exclude basic blocks that are along paths thatiba probabilities of being
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traversed when updatingS, GA, andEA sets for each basic block. More formally, this
means that Equatiorisl, 5.2, and5.3 can be re-formulated limiting the union and inter-
section operations, which originally operated over allchégdren of a basic block?,,,, to

a subset set of childred;, where thedynamically-deaathildren have been pruned away.
The degree to which Encore filters these rarely executed bésiks from its idempotence
analysis is controlled by a heuristic paramekgy;,,. Any basic block with an execution

probability less tharP,,;,, is selectively ignored.

5.3.4.2 Region Selection

Another opportunity for trading off reliability for perfarance is in the area of region
selection. Encore can selectively deciewhich regions should be instrumented for
recovery (Sections.3.2 as well as 2) when to terminate the process of merging exiaty
intervals to form larger regions (Section5.3.3. Exposing the heuristic parameters that
control these decisions allows Encore to be customized §igsydesigners.

Determining whether protecting a region is actually a pabfié endeavor, is fairly
straightforward. For inherently idempotent regions, theveer is almost always yes. The
cost of updating the address for the current recovery bleakegligible for all but the
smallest possible regions. However, for small, non-idet@piocode portions, the overhead
incurred to preserve idempotence can potentially make ieratiractive to simply concede
fault coverage for those regions. To account for this pd#silonly regions that have rea-
sonable cost-to-coverage ratios are instrumented foctsedecheckpointing and rollback
recovery. In other word§'overage(r;)/Cost(r;) > ~ must be satisfied for every candidate

region, wherey is a heuristic threshold. The length of the hotpath througk used as a
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compile-time surrogate for coverage, while the ratio ofaidp®inting instructions required
to the number of total instructions within the hotpath isdiae an estimate for cost.

Although some regions may initially be undesirable, Enduaie the ability to merge
adjacent regions to form larger, possibly more attractarededates. Since merging regions
has the potential to incur additional checkpointing instians, it is only performed if the
additional costACost is offset by the improvement in overall reliability. Givewad re-
gions,r; andr;, that are to be fused int6, thisACoverage is defined ad\Coverage(r') =
Coverage(r') /Maz(Coverage(r;), Coverage(r;)).

At a given cost, this definition foACoverage ensures that fusing two similarly sized
regions, which earns more cost-effective returns in terfrismproved reliability, is pre-
ferred over merging a large and a small region. Ultimately aienACoverage/ACost >
1 does Encore consider merging existing regions. Small gadfie predisposes the system
to try and create the larger regions in pursuit of greatéabdity while largern’s shift the

focus toward minimizing performance overheads.

5.4 Experimental Methodology

As with all reliability schemes dealing with transient felan ideal evaluation of En-
core would involve electron beam experiments on real harelwanning real-world ap-
plications. Yet, given limited resources an acceptableradttive has been statistical fault
injection (SFI) on detailed system models (architectumaroarchitectural, RTL, etc.).
Statistics related to fault masking, and to a lesser exiauit fletection, can be highly

dependent on the details of the underlying hardware. Camsdly, for the full system
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results shown in Sectiob.5.4fault masking was determined by a series of Monte Carlo
experiments that injected faults into a low-level Verilogael of an ARM926 embedded
processor. Transient faults were injected into state edsrend combinational logic and
the overall average hardware masking rate was quantified.

However in contrast, the more important figure of merit foaleating Encore, the
amount of application code that can be cheaply re-execigtéat,more sensitive to program
structure and to some degree is (micro)architecturallyraéuThe remaining details of
the experimental methodology and the analytical modelldeeel to evaluate Encore are

described below.

5.4.1 Compilation Framework

The compiler analysis and instrumentation passes deschib8ection5.3 were im-
plemented in the LLVM compiler. An assortment of Spec200@gder (SPEC2K-INT),
Spec2000 floating point (SPEC2K-FP), and Mediabench agijpias serve as the repre-
sentative workloads for our experiments. All applicatiovesre compiled with standard

-O3 optimizations.

5.4.2 Recoverability Coverage Model

As previously stated, Encore only targets teeoveryaspect of processor reliability.
Within this context we defineecoverability coveragas the percentage of application code
that can be safely re-executed in the presence of a faultelodase of Encore, this coverage

is effectively equivalent to the percentage of executiametthat is spent within dynamic
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code regions that are inherently idempotent or have beémimented to preserve idempo-

tence.

5.4.2.1 Impact of Detection Latency

Assume that the hot path through regiooonsists of instructiong, i, ..., i,,. If a fault
corrupts the output of, (where0 < s < n) and the detection latency for the systeni is
instructions, Encore can recover from this fault # | < n. To account for the detection

latency of the system we calculate a latency scaling factaccording to EquatioB.5.

a,, = Pr(s+1<mn), Vs €[0,n],Vl € [0, Dzl

/ / f(l)g(s)dlds  where, (5.5)

a,, : is the scaling factor associated with regigrthat accounts for detection latency.

n . is the number of (dynamic) instructions along the hot phtbugh region-;.

s : is a random variable, distributed over the interj¢alz|, representing the instruction
(number) at which a transient fault occurs.

[ : is a random variable, distributed over the interialD,,..|, representing the detec-
tion latency of a system with a maximum latency I8f,,., measured in terms of
instructions.

Pr(s+1 < n) : the probability that a fault at instructionis detected inside the boundary
of regionr;.

f(1) : is the probability density function corresponding to the tetection latency of the
system.

g(s) :is the probability density function corresponding to thalf sites within region;.

For the full-system fault coverage results presented irti@e&.5.4we use an uniform
distribution of fault sites, which assumes that every dyicamstruction over the course
of an application’s runtime has the same probability of géstruck” by a transient fault.

This is consistent with the general body of reliability wahiat use uniform distributions to
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guide the selection of fault locations and times during $fugations. Similarly, the full-
system results in Sectidh5.4also assumes a uniform distribution ([0,100] instructjons
of fault detection latencies. This is consistent with théedion latencies exhibited by
techniques like Shoestring4], one of many recent proposals that exploits the anomalous
software behavior that manifests in the wake of a soft ewent With these assumptions,

Equation5.5can be re-written as Equati@n®.

n  prmin(s,Dmaz) 1 1 1-— %, n > Dmaz
ay, = / / (-) ( )dlds - (5.6)
0 0 n Dmam

n
2Dmaz’ n < Dmaa:

5.4.3 Performance Modeling

The runtime performance overheads in Secidn3are presented in terms of dynamic
instructions. The use of dynamic instructions may appedirsitto be a less desirable
alternative to running natively on a real machine and/or eroarchitectural simulator.
However, this decision allows us to abstract away the detdithe underlying hardware

and present architecture-neutral results.

5.5 Evaluation and Analysis

This section presents the quantitative evidence demaimgfrancore’s ability to pro-
vide affordable rollback recovery. For the data presemtetthis section values foy and
n (Section5.3.4.9 were empirically derived for each application to targetaaaeptable

maximum runtime overhead of 20%.
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Figure 5.5: Inherent region idempotence as a functionff;,,. From left to right, the columns

illustrate the fraction of regions within each applicatitiat is inherently idempotent for different
values ofP,,;, € {0,0.0,0.1,0.25}. With P,,;,, = 0, the left-most column for each application
depicts the idempotence breakdown when no dynamicallg-dede is pruned from the analysis.
The Unknown segments correspond to portions of the application souamiedhat could not be

analyzed by Encore.

5.5.1 Region ldempotence

Figure5.5 examines the inherent idempotence of candidate recovgiyn®as a func-
tion of P,,;,,. From left to right, the different columns for each applicatcorrespond to
the idempotence for the different values®f;, € {0,0.0,0.1,0.25}. The different seg-
ments represent the fraction of regions that were identtbelde inherentlyidempotent
non-idempotentandunknown Unknown regions contained code that Encore’s compiler
analysis was unable to process. This consisted of regiatisoalls to functions (mainly
system and library function calls) for which relevant aleamalysis information could not
be easily obtained, preventing idempotence determingation

Note that, as expected, the fraction of regions that are ddadempotent grows as
more dynamically-dead code is pruned (increasing valuéy,gf). Furthermore, nearly all
of the benefit can be garnered by simply pruning the code thaheverexecuted during

profiling runs @,,;, = 0.0). This suggests that a good portion of the instrumentation
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optimizations described in Secti@n3 can be achieved without incurring any measurable
risk. For the remainder of this section, all data presergédripP,,;, = 0.0.

Not surprisingly the SPEC2K-FP and Mediabench applicatiexhibit slightly bet-
ter idempotence behavior than the SPEC2K-INT benchmarlkssuygested by Kruijf et
al. [26], the multimedia and embedded-type codes typical of emgrgpplications tend
to have fewer memory side-effects, great for idempotencewedyer, it is interesting to
note that at least in terms of static code, on average, thenerf idempotence present
across all three benchmark suites are comparable. It isieaging to observe that even in
control-heavy SPEC2K-INT applications, there is still asilerable fraction of code that
isinherentlyidempotent. On average, across all applications, 49% asmegre inherently
idempotent without pruning and 75% are idempotent With, = 0.0. This suggests that
Encore would only have to insert minimal, if any, checkpigtinstrumentation code for

most applications to enforce idempotence.

5.5.2 Dynamic Execution Breakdown

Figure 5.6 takes a closer look at the execution of these workloads aeskepts the
breakdown of execution time (calculated in terms of the @etage of total dynamic in-
structions) spent in different regions of the code. The sagmlabeledv/ Encore Check-
pointingcorrespond to execution within regions that were non-idatent but were selec-
tively instrumented to preserve idempotence, while Encore Checkpointingepresents
execution time spent in regions that were inherently n@mipotent but were too expen-
sive to checkpoint. Execution time represented bywif@Encore Checkpointingegment

corresponds to lost recoverability coverage.

141



M Idempotent @ w/ Encore Checkpointing O w/o Encore Checkpointing

=
o
1=}
X

3
e
X

o
Q
X

'
Q
X

~
Q
X

Dynamic Execution Breakdown

Q
X

300.twolf
177.mesa
mpeg2enc
pegwitdec
pegwitenc
rawcaudio
rawdaudio

mpeg2dec

256.bzip2
172.mgrid
173.applu

197.parser
183.equake
g721decode
g721encode

SPEC2K-INT SPEC2K-FP MEDIABENCH

Figure 5.6: Breakdown of dynamic execution time. For each applicatf@ndtacks represent the
fraction of execution time spent within regions of the cdu tvere inherently idempotent, non-
idempotent but instrumented with selective checkpoirttindgncore, and non-idempotent but too
costly to checkpoint.

Despite having roughly the same amount of idempotent statie, the SPEC2K-FP
and Mediabench workloads spent significantly more runtinthivnaturally idempotent

and easily checkpointed code regions, i.e., Encore reableecode.

5.5.3 Overheads

Figure5.7areports the runtime overheads corresponding to the reabilgy coverage
results reported in Figue 6. TheStatic Alias Analysibar shows the current runtime over-
heads for Encore while th@ptimistic Alias Analysi®ar provides an approximate lower-
bound for future Encore designs that could utilize more sblalias analysis frameworks.
Encore must currently checkpoint a significant number ut$ions because the limited
alias analysis available to it cannot effectively disanolaig their addresses. Future, sys-
tems with more powerful, potentially dynamic, alias anayould determine that a large
fraction of these currently idempotence-violating instrons are in fact innocuous.

Nevertheless, even in its current form Encore only impos&4% runtime overhead,

on average, across all benchmarks. Although Encore was gi&9% performance bud-
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(b) Overheads reported as the average number of bytes reqeireelgion to store checkpointing information.
The stacked breakdowns highlight the contributions frormmey and register checkpointing.

Figure 5.7: Encore runtime and storage overheads.

get, obviously not all workloads incurred this overheadm®plike 172.mgrid, epicand
mpeg2enavere able to instrument all regions for recovery withoutuieqg the full per-
formance budget. Others, like81.mcfand177.mesavere not able to meet (approach) the
20% target without incurring significant reductions in reexability coverage.

Similarly, Figureb.7breports the storage overheads required to hold the sedexttack-
pointing information generated by Encore. Note that foigtsy checkpoints, the check-
pointing information only consists of the register dataevdas for memory checkpoints
both data and address must be stored to enable proper rec@reaverage, Encore must
only store 24 bytes of information per region, orders of mtagte less than the memory

footprint of conventional, full-system checkpointing edques.
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Figure 5.8: Full-system fault coverage for a low-cost commodity systsimg Encore for rollback
recovery and fault detection schemes with different latesnd-rom left to right, the columns repre-
sent the % of all transient fault events that can be effelgtitaderated given a system with detection
latencies of 1000, 100, and 10 instructions.

5.5.4 Full-system Reliability

Lastly, Figure5.8 examines the full-system fault tolerance that can be aekidy a
commodity system augmented with Encore for rollback reppwamnd a Shoestring-like
mechanism for fault detection. Thdaskedsegments represent the fraction of transient
faults that are naturally masked by the underlying hardveer@ do not require any ad-
ditional intervention. As mentioned in Secti&, this masking rate was identified with
Monte Carlo-based SFI experiments on a Verilog model of eessmtative low-end com-
modity processorl/].

In addition to the “free” fault coverage due to hardware niragkthe fraction of faults
the system can also recover from with Encore-enabled mhllvacovery is represented
by theRecoverable w/ IdempotenaadRecoverable w/ Encore Checkpointisggments.
Portions of the bars label@ibt Recoverableorrespond to faults that either occurred within
regions of the application code that Encore chose not teptodr were the result of faults
that were not detected before execution had already leftetien containing the original

fault site.
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The different columns in FigurB.8 correspond to the use of detection schemes with
different latencies. From left to right, the columns reprasthe coverage for systems
with detection latencies of 1000, 100, and 10 instructiorise middle column illustrates
the coverage achievable for a system experiencing fawdttien latencies consistent with
existing techniques like Shoestring/] and Restore[11]. The leftmost bar shows that
Encore can even benefit systems with hardware speculafpposu Since aggressive out-
of-order machines typically only support rollback of 1001l@structions, Encore could
enhance the recoverability of these systems but suppamitizgack even in cases where
detection latencies reached 1000 instructions. Lastyritthtmost bar presents the poten-
tial fault coverage that can be achieved in future systertisfwither constrained detection
latencies.

Nevertheless, even with present day latencies, Encore afaty secover from 97%
of faults, on average, across all benchmarks and nearhaalisf for certain workloads
like 172.mgrid 177.mesampeg2decandrawcaudia Although these coverage results
may seem less impressive when compared with the base masitengf 91%, one must
view these gains in the proper context. By supplying this G&&ction in the number
of transient events that can cause system failures, Eneoremable low-end commodity

systems to meet reliability targets that may otherwise hi@breach.

5.6 Related Work

Transient fault tolerance requires two steps: 1) detedhedgault event and 2) recov-

ering to an error-free state and resuming execution. Simcefe targets system recovery,
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this section only contains a brief overview of fault detentsolutions, while providing a

more detailed discussion of previous efforts in fault reagv

5.6.1 Fault Detection

There exists a large body of research addressing the cbelleinfault detectionq5,
34, 66, 71, 108, 80, 59, 75, 81]. These efforts can be broadly divided into four categories
First, there are solutions that utilize some form of spagadlundancy to execute multiple
copies of an application simultaneously, periodically paming results. Redundant multi-
threading §0] and dual-core executio®]] are good examples from this class. The second
category consists of solutions that exploit temporal reduncy, where the same work is
re-executed on the same hardware resource. Compiler-basteaction duplication {5
and hardware-based selective replicatiof] pre well known techniques that fall into this
group. Lately, a third class of techniques have emergedrétaton high-level software
symptoms {08, 69, 81] to identify faults, sometimes with help of specializedatzbrs p5,
113. Finally, there have also been recent proposals that f@tatybrid solutionsi4, 71]
combining multiple techniques to drive costs even lowergvmaintaining high detection

coverage.

5.6.2 System Recovery

Once a fault is detected, the system must rollback in ordeotdinue execution from
a previous clean state. Recovery solutions are tasked waihtaining this clean state,
and providing an interface to enable the rollback. The mopufar category of recovery

solutions are checkpoint based. In their simplest form¢kpeint-recovery solutions peri-
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odically save off the entire system state, and revert to thstmecent version in the event

of a fault.

Enterprise-level Recovery. Traditionally, checkpoint-recovery solutions have besecu
in large-scale enterprise systems to guarantee the ofteaddfive-nines” of reliability.
These systems, with 100-1000s of nodes, periodically subkgeir program execution
and take snapshots of the entire memory system, usuallgdstmm globally accessible
disks 8. To maintain consistency, all the nodes in the system thké theckpoints
simultaneously, often causing bottlenecks due to disk wadtt limitations. In general
these enterprise-level solutions are appropriate for th&nain, but the cost of creating

these checkpoints are prohibitively high for all but the tmogsion-critical systems.

Architectural Recovery. A cheaper alternative to taking a complete system snapshot i
to log incremental changes to the system state. In the evenfiadlure, these changes can
be unrolled as needed. SafetyNef][and ReVive ] are two examples of such solutions.
Although these log-based recovery solutions are scalabiadre frequent checkpoints,
and smaller intervals, the additional complexity and oeads introduced from potential

hardware additions makes them less attractive for budgey-aommodity systems.

Opportunistic Recovery. This last category of recovery solutions may not technycall
be recovery schemes in the conventional sense. Work by L¥andg [50], subsequently
reaffirmed by othersdo, 83, 96, 26], recognized that not all applications, or even functions
within an application, require the same degree of “corressti Many, especially multime-

dia and embedded codes can naturally tolerate a non-tairalint of errors. Li and Yeung
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exploit this notion of application-level correctness bymaally inserting checkpointing
code that only saves the program counter, architecturatezdile, and stack state at the
top of outer loops. Relax?f] takes this principle even further. Functions are manually
instrumented with recovery blocks that are allowed to sddetween re-executing code,
returning default values, or simply ignoring the faults éleging on how such actions are
expected to impact the “quality” of externally visible réésuEncore shares the same basic
principles with these other lightweight recovery solusofdowever, this work is the first
to present an automated (compiler-based, without mansjpéution), generalized (beyond
inner/outer loops and functions) solution for achievinggeseve rollback recovery. Fur-
thermore, the application-level correctness noticitg§ fhat existing works benefit from
are complementary to Encore and can be supplied to the catiopilframework to further

enhance reliability.

5.7 Summary

Whether due to environmental phenomena or ambitious degigehing the envelop
of low power architectures, transient faults are re-enmgrgis a prominent reliability is-
sue in modern computing. Yet despite this growing relipitioncern, we would argue
that instead of appropriating large transistor budgetg ocessor cycles) to hedge against
growing fault rates, system architects should embrace itjte deegree of fault tolerance
that can be had simply by sacrificing provable guaranteesh 8adeoffs are the most at-
tractive for low-end commodity and embedded markets, whgsgems often cannot afford

to devote a substantial portion of their resources to angtbiher than actually perform-
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ing useful computations. With the ability to recover fronm average, 97% of transient
faults (when paired with existing detection mechanismagdfe is poised as an attractive
solution. Realizing this coverage at a modest 14% averagerpeance overhead, it frees

system designers to return their attention back to othezaspf the system architecture.
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CHAPTER VI

Conclusion

In a world where consumer electronics permeate nearly emexy of daily life, con-
cerns over processor reliability will soon take center stalyhether people are purchasing
faster, more capable smartphones or the latest generdtiablets and laptops they will
continue to demand a user experience that remains shefteradhe limitations of hard-
ware reliability. Although the laws of physics will ineviily lead to more vulnerable tran-
sistors, microarchitects and system designers must deuwatmvative solutions that can
keep emerging reliability threats at bay while imposing imial user-visible overheads.

As our preliminary studies eventually evolved into the undiial works presented within
this thesis, we identified two fundamental insights thaalglsshed the foundation of our
work: 1) that the majority of consumer devices do not lie tiegi extreme of the reliability
spectrum, necessitating the need for not just “low-cost’ genuinely affordable fault-
tolerance, and 2) that with the appropriate analysis, therent computational patterns
within programs can be leveraged to reap dramatic reduciiohe cost of dependable

computing.
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In this dissertation we championed an approach to faudirémice that exploited the
relaxed constraints of commodity devices in order to eatefideas that have previously
been overlooked by those in the high-reliability, missaitical computing domains. Tra-
ditional fault-tolerance solutions are simply overdesigtior the average consumer who
realistically does not expect “five-nines” of reliabilityoin their devices. By sacrificing
a few “nines”, the user-centric, application-aware teqhes described in this disserta-
tion are able to provide a relatively transparent—in teringdalitional hardware cost and
performance degradation—Ilayer of reliability that shéetde end user from the negative
effects of technology scaling.

The first half of this thesis embraced this philosophy and alestrated that the risks
posed by device wearout and permanent faults can be effgctiddressed without resort-
ing to traditional hardware overprovisioning. Instead tlizing cold spares or intrusive
circuit enhancements, Maestro relies on light-weight gemnbke the WDU and the char-
acteristic hardware and software heterogeneity presehinahip multiprocessor environ-
ments. By introducing wearout-aware job scheduling athors we can achieve intra- and
inter-chip wear leveling that significantly prolongs théeefive life of the overall system,
with virtually no impact on performance.

Next, we turned our attention to the more immediate thredtasfsient soft-errors.
By leveraging efforts from two prominent areas of prior @sh, namely symptom-based
fault detection and compiler-directed instruction duglion, we were able to produce an
ultra-low cost, hybrid transient fault detection schemlegéstring. The flexibility of se-
lective instruction duplication enabled us to complimém& basic fault-coverage supplied

by more efficient, symptom-based detection methods. iget compile-time analysis
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allows Shoestring to apply instruction duplication spglynstrategically protecting only
the statistically-vulnerable portions of an applicatibattare not inherently safeguarded by
symptoms.

Lastly, having investigated fault-detection, our focusunally turned toward transient
fault recovery. With many recent proposals, including Stiaeg, relying on existing hard-
ware to provide fault recovery capabilities, a need emefged low-cost, software-only
mechanism that could support recovery in commodity systeitteout native hardware
for speculative rollback. With Encore we introduced a solutthat appreciated the in-
nate idempotent nature of many regions of program execuiombining this observation
with detailed program analysis, and a few choice compibargformations, Encore is able
to deliver respectable recoverability “coverage” withthe specialized hardware or per-
formance penalties of conventional, full-system checkpog techniques.

By applying the law of diminishing marginal utility to fadlblerant computing, the
works presented in this thesis are able to break from tadénd advocate a new approach
to looking at the reliability challenges facing future camgr systems—one that dispenses
with an all-or-nothing paradigm in favor of flexible engimeg solutions that can target

multiple design points with different cost-benefit tradsof
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