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CHAPTER I

Introduction

In recent years, novel high-throughput genotyping and sequencing methods and

dramatic increases in computational power have enabled geneticists to study human

variation at a fine scale. This variation can be separated into genetic and phenotypic

variation, both of which are influenced by evolutionary processes such as migration,

mutation, genetic drift, and natural selection (see Figure 1.1).

Genetic variation is directly influenced by neutral processes such as migration,

mutation, and genetic drift. Migration can act to increase genetic variation within

a population through immigration, causing diverse alleles to be assimilated into a

population’s gene pool. Similarly, migration can act to decrease genetic variation

within a population through emigration, causing alleles to be removed from a

population. Mutation causes an increase in genetic variation through the creation

of new alleles not previously present within a population. In contrast, genetic drift

causes a decrease in genetic variation through the random fixation or loss of alleles

within a population.

Phenotypic variation is directly influenced by both genetic variation and

selection. Genetic variation influences phenotypic variation by the generation of novel

phenotypic traits. Selection, in turn, acts on these traits, promoting either variation or

lack of variation. Selection thereby indirectly influences genetic variation through its
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action on phenotypic variation. Because of the complex interplay among the many

neutral and selective forces acting on variation, to elucidate the demographic and

adaptive processes that have led to modern human evolution, we must understand

the neutral processes that have shaped the background levels of genetic variation

among populations. Therefore, in this thesis, I will focus only on neutral processes

that affect genetic variation at multiple levels: variation within populations, variation

among populations within a species, and variation among species.

In addition to its importance within population genetics, the study of genetic

variation is important to other fields, including medical genetics (e.g., Tishkoff

and Kidd , 2004), forensic science (e.g., Evett and Weir , 1998), anthropology (e.g.,

Cavalli-Sforza and Feldman, 2003), and the many other disciplines for which

knowledge about population relationships is important. For example, in disease-gene

mapping, it is necessary to carefully correct for population stratification in association

studies to circumvent the problem of falsely associating a genetic variant with a disease

(Marchini et al., 2004; Clayton et al., 2005; McCarthy et al., 2008). Similarly, the

correlations of allelic states across loci within populations directly influence studies

that seek to isolate disease-causing variants (Kruglyak , 1999; Hirschhorn et al., 2002;

Hirschhorn and Daly , 2005; Rosenberg et al., 2010). As a consequence, knowledge of

patterns of genetic variation among populations from around the world can improve

the power of association studies, thereby ultimately influencing our understanding of

the genetic basis of human diseases.

Because of the importance of genetic variation, we need to be able to properly

assess it by developing accurate estimators of its properties. There now exist many

publicly available large-scale multilocus datasets from human individuals around the

world. These datasets include the Human Genome Diversity Project-Centre d’Etude

du Polymorphisme Humain (HGDP-CEPH) Cell Line Panel (Cann et al., 2002;

Cavalli-Sforza, 2005), the HapMap Project (International HapMap Consortium,
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2005, 2007; International HapMap 3 Consortium, 2010), and the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2010). Recent work facilitated by

these datasets has led to important advancements in our understanding of worldwide

human genetic variation. For example, the HGDP has been useful for understanding

the population-genetic processes that have led to modern human evolution (Rosenberg

et al., 2002; Prugnolle et al., 2005; Wang et al., 2007; Friedlaender et al., 2008;

Jakobsson et al., 2008; Li et al., 2008; Tishkoff et al., 2009). Models based on HGDP

data have been shown to mimic trends observed from the data (Ramachandran et al.,

2005; Liu et al., 2006; DeGiorgio et al., 2009; Hunley et al., 2009). Additionally,

datasets from the HapMap and 1000 Genomes Projects have been, and will be

in the future, useful for mapping genetic variants that are associated with disease

(International HapMap 3 Consortium, 2010; Nielsen, 2010; The 1000 Genomes

Project Consortium, 2010; Jostins et al., 2011).

One important consideration when using these datasets is that they often contain

related individuals (Rosenberg , 2006; Pemberton et al., 2010). The inclusion of

relatives within a dataset is not necessarily problematic, especially because random

sampling of a population with a small size is likely to yield a dataset with related

individuals. However, if the presence of related individuals is not properly taken

into account, then estimates of genetic variation (e.g., expected heterozygosity) from

these datasets could be biased. Chapters II and III tackle the problem of correcting

the bias in estimates of a specific measure of genetic variation (termed gene diversity

or expected heterozygosity) that is generated by the inclusion of related individuals

within samples.

Chapter II (DeGiorgio and Rosenberg , 2009) develops an unbiased estimator of

gene diversity for samples containing related individuals at diploid autosomal loci.

This tool will be useful in assessing autosomal genetic variation within humans.

However, as Chapter II does not show that my estimator is unbiased on samples
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at X-linked loci or at loci from non-diploid individuals, the derivation of an estimator

that can account for arbitrary ploidy would have wide applicability to studies of

humans as well as other diploid or possibly non-diploid species.

Chapter III (DeGiorgio et al., 2010) extends the work of Chapter II to the most

general case of an unbiased estimator of gene diversity for samples containing related

individuals with arbitrary ploidy. This chapter also presents the first derivation of

the exact variance of the estimator of gene diversity in samples containing related

individuals. Previous variance calculations were only obtained in approximation for

an unbiased estimator of gene diversity in samples containing unrelated individuals

at diploid autosomal loci (Weir , 1989). Because many population-genetic datasets

contain relatives, my estimators will be valuable tools for assessing genetic variation

within those populations (e.g., Jankovic et al., 2010).

Using estimators of genetic variation applied to large-scale genomic datasets, it

is possible to further investigate evolutionary hypotheses. One set of evolutionary

hypotheses pertains to the origin of anatomically modern humans. A popular

hypothesis for modern human origins is the out-of-Africa hypothesis (Figure 1.2A),

which states that all non-African populations of modern human descend from a

common ancestral population that lived in Africa 150,000-200,000 years ago and

migrated out 50,000-100,000 years ago (Relethford , 2008). A competing hypothesis

for modern human origins is the multiregional hypothesis (Figure 1.2B), which

states that modern humans descend from the continual mating of distinct groups

of archaic hominids such as Homo erectus (Relethford , 2008). The out-of-Africa

and multiregional hypotheses are not completely disjoint, however. A relaxed

version of the out-of-Africa hypothesis states that modern humans mated with

archaic Neanderthal populations during their expansion out of Africa, leading to the

introgression of archaic human genes into the modern gene pool. This hypothesis has

spurred a heated debate that remains unresolved (Currat and Excoffier , 2004; Serre
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et al., 2004; Garrigan and Hammer , 2006; Green et al., 2006; Noonan et al., 2006;

Plagnol and Wall , 2006; Wall et al., 2009; Green et al., 2010). In Chapters IV and V,

I investigate these hypotheses of modern human origins using models of evolutionary

history.

Chapter IV (DeGiorgio et al., 2009) is a simulation study in which I qualitatively

compare and contrast patterns of within-population genetic variation predicted by

models of evolutionary history with the analogous patterns observed from worldwide

human genetic data. I investigate several models of evolutionary history, including

one that represents the out-of-Africa hypothesis (serial founder model), one that

represents a version of the multiregional hypothesis (archaic persistence model), one

that represents a relaxed version of the out-of-Africa hypothesis involving admixture

with archaic humans (serial founder model with archaic admixture), and a model

that illustrates the evolutionary process that drives within-population human genetic

variation (instantaneous divergence model).

An alternative to investigating the patterns of genetic variation predicted by

models of human evolutionary history through simulation studies is to make analytical

predictions of genetic variation under the models. Analytical predictions are useful

for multiple reasons, as they enable the generation of hypotheses as well as model

parameter estimation and hypothesis testing. Although simulation studies have

the advantage that they can commonly investigate more complex models than can

be explored through analytical theory, analytical results can offer a faster and

more comprehensive exploration of the space of parameter values for a model that

would otherwise be investigated through simulations. Chapter V complements the

work of Chapter IV through the rigorous development of analytical, in contrast to

simulation-based, results for models of human evolutionary history. I recapitulate

several patterns of within-population genetic variation obtained through simulations

in Chapter IV as well as extend the set of patterns by including those involving
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between-population genetic variation. I find in Chapter V that investigating patterns

of genetic variation between populations (e.g., using inter-population expected

homozygosity and FST ) can provide additional insight into human evolutionary

history and enables us to distinguish patterns predicted by models of evolutionary

history that were not possible to distinguish using genetic variation within populations

(e.g., using intra-population expected heterozygosity). However, although within-

and between-population genetic relationships are useful for understanding human

evolution, they neglect information that can be extracted from our evolutionary

relationships with other species.

We can determine our relationships with other species by constructing

phylogenetic trees from sequence data across a set of species. However, the estimation

of phylogenetic trees is a complex task that requires knowledge beyond simple

sequence differences. For example, due to diverse evolutionary phenomena, trees

estimated at different genomic loci (or gene trees) can disagree (Rannala and Yang ,

2008). The phenomenon that generates gene tree discordance on which I focus in

this dissertation is incomplete lineage sorting, in which sets of sampled lineages fail

to coalesce in the population in which they are first capable of coalescing (Degnan

and Rosenberg , 2009). Due to the discordance of gene trees, methods for inferring

species trees from multilocus data can be misled by the conflicting signals observed

over the set of loci investigated (Degnan and Rosenberg , 2006; Kubatko and Degnan,

2007; Degnan et al., 2009). As genetic datasets rapidly increase in size, it is

becoming increasingly important to develop and evaluate phylogenetic methods that

can overcome these obstacles, and to produce accurate estimates of species trees from

multilocus data. Chapters VI, VII, and VIII develop and analyze the performance of

methods for estimating species trees from multilocus datasets.

In Chapter VI (DeGiorgio and Degnan, 2010), I develop a method (SuperMatrix

Rooted Triple, or SMRT) for inferring species trees from multilocus sequence data
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that is both computationally efficient and accurate when applied to genome-scale

data. Additionally, using a DNA substitution model applied to genealogies generated

under the coalescent, I prove that SMRT is a statistically consistent estimator of

species tree topologies. Statistical consistency is a desirable property because it is

reasonable to expect that as more data are gathered, evidence should accumulate in

support of the true value of the parameter being estimated.

Chapter VII presents a subsequent study that investigates the statistical

consistency of various species tree inference methods when the relationship among

species is obscured due to non-random mating (or population structure) in ancient

species. This feature of non-random mating in ancient species is not typically included

in phylogenetic models. However, because extant species are commonly structured,

it is reasonable to believe that ancient species were also structured.

In addition to analyzing the statistical consistency of species tree inference

methods, it is important to understand how these methods perform in practice.

Empirical phylogenetic datasets tend to have fewer than 100 loci available and,

therefore, the performance of a species tree inference method as the number of loci

gets large (i.e., statistical consistency) may not be relevant in practice. Typically, the

performance of species tree inference methods is studied through simulations, which

can explore only a small evolutionary parameter space. An alternative approach is to

evaluate the performance of methods on a space of parameters defined by the actual

evolutionary history of a group of species. Chapter VIII presents such a study, in

which I evaluate the performance of species tree inference methods using an empirical

multilocus dataset from North American pines. I utilize techniques from multivariate

statistical analysis, such as principal components and cluster and correlation analyses,

to thoroughly investigate the strengths and weaknesses of each method. These results

will be useful for investigators within the community of researchers interested in

phylogeny of closely related species.
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CHAPTER II

An Unbiased Estimator of Gene Diversity in

Samples Containing Related Individuals

2.1 Introduction

Gene diversity, or expected heterozygosity, is a frequently used measure of

genetic variation applied in diverse areas of population genetics. Together with its

counterpart, gene identity or expected homozygosity, it has been used to quantify

genetic variation in populations (Driscoll et al., 2002; Hoelzel et al., 2002), evaluate

genetic divergence and population relationships (Nei , 1973; Ramachandran et al.,

2005), detect inbreeding (Li and Horvitz , 1953), measure linkage disequilibrium

(Ohta, 1980; Sabatti and Risch, 2002), and test for the influence of natural selection

(Watterson, 1978; Depaulis and Veuille, 1998; Sabeti et al., 2002).

Consider a polymorphic locus with I distinct alleles and a population with

parametric allele frequencies p1, p2, . . . , pI , where pi ∈ [0, 1], and
∑I

i=1 pi = 1. The

term “gene diversity”, which is defined as

H = 1−
I∑

i=1

p2i , (2.1)

was proposed by Nei (1973), though the use of eq. 2.1 as a measure of diversity dates

10



to considerably earlier (Gini , 1912; Simpson, 1949; Gibbs and Martin, 1962).

Now consider a sample of n observations of alleles, in which the number of

observations of allelic type i is ni. The count estimate of pi is p̂i = ni/n. If no

inbred or related individuals are included in the sample, then an unbiased estimator

of gene diversity is (Nei and Roychoudhury , 1974)

Ĥ =
n

n− 1

(
1−

I∑
i=1

p̂2i

)
. (2.2)

If relatives or inbred individuals are included in the sample, then Ĥ is no longer

an unbiased estimator of H. To understand why this statement is true, suppose that

a sample contains a pair of close relatives. Because these individuals are related, they

may share one or two alleles identically by descent (IBD) at a locus (compared to zero

alleles shared IBD in unrelated individuals). As a result, estimation of pi is based

on fewer independent observations than for a sample not containing any relatives.

Although E[p̂i] = pi when relatives are included, V ar[p̂i] is greater than it would be

had no relatives been included. Observe that the computation of E[Ĥ] involves a

negative coefficient for E[p̂2i ]. Because E[p̂2i ] = V ar[p̂i] + E[p̂i]2, E[Ĥ] decreases as

V ar[p̂i] increases. Thus, the inclusion of relatives results in a downward bias, so that

E[Ĥ] < H. For the case in which inbred unrelated individuals with known inbreeding

coefficients are included in a sample, Weir (1989, 1996) provided the expectation of

1−
∑I

i=1 p̂
2
i , producing an unbiased estimator of gene diversity

ĤWeir =
n

n− 1− f

(
1−

I∑
i=1

p̂2i

)
, (2.3)

where f is the average inbreeding coefficient across individuals (see also Shete (2003)).

When inbred individuals are included, f ̸= 0 and it follows that E[Ĥ] < E[ĤWeir] =

H.
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In this article, we conduct a detailed investigation of the case in which a sample

includes related individuals. We derive an unbiased estimator of H for samples

containing related individuals with known levels of relationship. Our derivation

makes use of a formula of Bourgain et al. (2003) and McPeek et al. (2004) for

the variance of count estimates of allele frequencies in samples containing inbred

and related individuals. The resulting estimator incorporates kinship coefficients,

the same quantitative descriptors of pairwise relationships that have been used in

diverse problems involving relatives—such as evaluation of phenotypic covariances

in families (Lange, 2002), estimation of relatedness parameters (Weir et al., 2006),

and quantitative-trait linkage analysis (Almasy and Blangero, 1998). When a sample

consists only of unrelated non-inbred individuals, our new estimator H̃ reduces to the

standard estimator Ĥ, and it reduces to ĤWeir if inbred but not related individuals are

included. Using data simulated based on allele frequencies from human populations,

we find that the new estimator H̃ corrects for bias generated by inclusion of related

individuals and that it attains a mean squared error (MSE) comparable to that of Ĥ.

We apply this new estimator to microsatellite data from human population samples

containing relatives and show that, compared to the standard estimator, it produces

estimates closer to those obtained when excluding relatives from the analysis.

2.2 Theory

We assume that gene diversity is estimated from n/2 diploid individuals. Our aim

is to obtain a bias-correction factor that can be incorporated into a new estimator

of gene diversity, H̃. We begin by computing V ar[p̂i] in a sample that may include

relatives or inbred individuals. V ar[p̂i] was reported by Bourgain et al. (2003) and

McPeek et al. (2004); we provide an alternative derivation that uses a generalization

of the simpler method of Broman (2001). This approach was originally applied in

a setting that did not consider inbreeding, and we generalize the computation to
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include inbreeding. Note that the variances of other estimators of allele frequencies

have previously been derived in fairly general settings (McPeek et al., 2004), and that

the estimator p̂i is not a maximum likelihood estimator when related individuals are

included in a sample (Boehnke, 1991). However, our interest here is specifically on

the count-based estimator of allele frequencies, as it is this estimator that is used in

the standard estimator of gene diversity in eq. 2.2.

Define Xk to be the number of alleles of type i that are carried by individual

k at a particular locus. Xk can equal 0, 1, or 2, and E[Xk] = 2pi. Regardless of

the relationships among individuals 1, 2, . . . , n/2, an unbiased estimator for pi, the

frequency of allele i, is

p̂i =
1

n

n/2∑
k=1

Xk. (2.4)

The variance of p̂i is given by

V ar[p̂i] =
1

n2

n/2∑
j=1

n/2∑
k=1

Cov(Xj, Xk). (2.5)

Suppose that individuals j and k are related. The coefficient of kinship between

individuals j and k, Φj,k, is the probability that two alleles chosen at the locus — one

from individual j and the other from individual k — are identical by descent. In the

special case of j = k, the kinship coefficient is Φk,k = (1/2)(1 + fk), where fk is the

inbreeding coefficient for individual k (Lange, 2002, p. 81).

Conditional on the nature of the relationship between individuals j and k and on

their inbreeding coefficients, the four alleles in the two individuals can take on one of

nine condensed identity states (Jacquard , 1974, p. 107). Let ∆s = P[S = s], where

the condensed identity state S ranges from 1 to 9 and the probability is conditional on

the type of the relationship. Using Table 2.1 and the fact that the kinship coefficient

for the pair of individuals equals ∆1 + (1/2)(∆3 + ∆5 + ∆7) + (1/4)∆8 (Jacquard ,
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1974, p. 108), we obtain

E[XjXk] =
2∑

a=0

2∑
b=0

9∑
s=1

ab∆sP[Xj = a,Xk = b |S = s]

= 4Φj,kpi(1− pi) + 4p2i .

Since E[Xj] = E[Xk] = 2pi, it follows that

Cov(Xj, Xk) = E[XjXk]− E[Xj]E[Xk]

= 4Φj,kpi(1− pi). (2.6)

Inserting the covariance into eq. 2.5 yields

V ar[p̂i] =
4pi(1− pi)

n2

n/2∑
j=1

n/2∑
k=1

Φj,k

= Φpi(1− pi), (2.7)

where Φ = 1
(n/2)2

∑n/2
j=1

∑n/2
k=1 Φj,k is the average kinship coefficient across pairs of

individuals (including comparisons of individuals with themselves). This result can

be seen to be equivalent to the variance reported by McPeek et al. (2004), p. 361.

Proposition II.1. Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1]

and
∑I

i=1 pi = 1. Suppose a sample from a population has n/2 possibly related and

inbred individuals. Then an unbiased estimator for gene diversity is

H̃ =
1

1− Φ

(
1−

I∑
i=1

p̂2i

)
, (2.8)

where Φj,k is the kinship coefficient of individuals j and k and Φ =

1
(n/2)2

∑n/2
j=1

∑n/2
k=1 Φj,k is the average kinship coefficient across pairs of individuals.

Proof. We need to show that E[H̃] = H. Observing that E[p̂2i ] = V ar[p̂i]+E[p̂i]2 and
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E[p̂i] = pi, we apply eq. 2.4 and then the variance of p̂i in eq. 2.7 to get

E[H̃] =
1

1− Φ

[
1−

I∑
i=1

(
V ar[p̂i] + p2i

)]

=
1

1− Φ

[
1−

I∑
i=1

(
Φpi
(
1− pi

)
+ p2i

)]
= H.

Corollary II.2. Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1]

and
∑I

i=1 pi = 1. Suppose a sample from a population has n/2 possibly related and

inbred individuals. Let R be the set of distinct types of relative pairs in the sample.

Further, let nR be the number of pairs of individuals with relationship type R ∈ R and

let ΦR be the kinship coefficient for each of these pairs. Then an unbiased estimator

for gene diversity is

H̃ =
n(n− 1)

n(n− 1− f)− 8
∑

R∈R nRΦR

Ĥ, (2.9)

where f = 1
n/2

∑n/2
k=1 fk is the average inbreeding coefficient across individuals and fk

is the inbreeding coefficient for individual k.

Proof. Applying the definitions of Φ and Φk,k and the fact that Φj,k = 0 for a pair of

“unrelated” individuals,

Φ =
1

(n/2)2

n/2∑
j=1

n/2∑
k=1

Φj,k

=
4

n2

(
n/2∑
k=1

Φk,k + 2

n/2∑
j=1

n/2∑
k=j+1

Φj,k

)

=
1

n2

(
n+ nf + 8

∑
R∈R

nRΦR

)
.

Inserting this value for Φ into eq. 3.10 we obtain the desired result.
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Note that if no related individuals are included in the sample, then R is the empty

set, thus reducing H̃ to ĤWeir; if additionally no related individuals are included, then

f = 0 and H̃ reduces to Ĥ.

Corollary II.3. Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1]

and
∑I

i=1 pi = 1. Suppose a sample from a population has n/2 non-inbred individuals,

among which q parent-offspring pairs, r full-sib pairs, and s second-degree (avuncular,

grandparent-grandchild, and half-sib) relative pairs are included. Assuming the sample

has no other relative pairs, an unbiased estimator for gene diversity is

H̃ =
n(n− 1)

n(n− 1)− 2q − 2r − s
Ĥ. (2.10)

Proof. The kinship coefficients are ΦP = 1/4 for parent-offspring pairs, ΦF = 1/4 for

full-sib pairs, and ΦS = 1/8 for second-degree pairs. If an individual k is not inbred,

then fk = 0. For a sample without inbred individuals, f = 0. Inserting the quantity

and kinship coefficient for each of the three types of relative pairs into eq. 3.13, we

obtain eq. 2.10.

Corollary II.4. Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1]

and
∑I

i=1 pi = 1. Suppose a sample from a population has n/2 possibly related and

inbred individuals. Let R be the set of distinct types of relative pairs in the sample.

Further, let nR be the number of pairs of individuals with relationship type R ∈ R

and let ΦR be the kinship coefficient for each of these pairs. Then the bias of Ĥ is

always negative, increases in magnitude as H increases, and is given by

bias(Ĥ) = −
nf + 8

∑
R∈R nRΦR

n(n− 1)
H, (2.11)

where f = 1
n/2

∑n/2
k=1 fk is the average inbreeding coefficient across individuals and fk

is the inbreeding coefficient for individual k.
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Proof. As shown in Corollary II.2, H̃ = cĤ, where c = n(n − 1)/[n(n − 1 − f) −

8
∑

R∈R nRΦR]. Rearranging and taking the expected value gives E[Ĥ] = E[H̃]/c =

H/c. The desired result follows from simplifying the expression for bias(Ĥ), or (1−

c)H/c.

2.3 Data from Human Populations

To examine the behavior of H̃ in a realistic setting, we performed simulations and

data analysis using microsatellite loci from the H1048 and H952 subsets (Rosenberg ,

2006) of the Human Genome Diversity Project-Centre d’Etude du Polymorphisme

Humain (HGDP-CEPH) Cell Line Panel (Cann et al., 2002; Cavalli-Sforza, 2005).

The H1048 subset consists of 1048 individuals in 53 populations. Among the 53

populations, the samples from 26 of them contain at least one pair of closely related

individuals with either a first-degree (parent-offspring, full-sib) or second-degree

(avuncular, grandparent-grandchild, half-sib) relationship (Table 2.2). The H952

subset is a collection of 952 individuals included in the larger H1048 subset. No

two of the 952 individuals are believed to have a first- or second-degree relationship.

Levels of relationship in H1048, as estimated previously from microsatellite genotypes

(Rosenberg , 2006), were treated here as known with certainty. Since no cycles

were observed in pedigrees from the HGDP-CEPH panel (Rosenberg , 2006), we

assumed that none of the panel members were inbred. Genotypes at 783

autosomal microsatellite loci (Ramachandran et al., 2005; Rosenberg et al., 2005)

were investigated in the H1048 and H952 data sets.
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2.4 Simulations

2.4.1 Simulation Procedure

Simulations based on the microsatellite loci were used to examine the properties

of H̃ and Ĥ. For each of the 783 loci, we treated allele frequencies estimated from the

H952 subset of individuals as true allele frequencies. The parametric gene diversity H

was obtained for a locus as one minus the sum of the squares of these allele frequencies.

All of our simulations assumed no inbreeding.

For a given locus, individual genotypes were simulated by sampling two alleles

independently from the allele frequency distribution. To simulate a related individual

with a given level of relationship to another individual, the number of alleles shared

IBD with its relative was drawn under the appropriate probability distribution for

the specified type of relative pair (parent-offspring, full-sib, or second-degree). This

number of shared alleles (0, 1, or 2) was copied from a random individual that had

already been generated and that had not yet been paired with a relative; if the number

of alleles copied was 1, then an allele was chosen at random from the previously

generated individual. The rest of the alleles, if any, were sampled independently from

the allele frequency distribution. Gene diversity was estimated using H̃ and Ĥ for

samples with and without related individuals. We applied Ĥ both to entire samples

as well to samples in which the “second” member of each relative pair was discarded.

For each locus, simulated sets of individuals were obtained 100, 000 times, and Ĥ, H̃,

Ĥ2, and H̃2 were averaged across all replicates. The true value for gene diversity, H,

was then subtracted from the mean of Ĥ and H̃ to calculate bias for each estimator

(and the result was squared to give bias squared). Variance of Ĥ was calculated

by subtracting the square of the mean of Ĥ from the mean of Ĥ2 (variance of H̃

was calculated analogously). MSE was then calculated by adding variance and bias

squared. Note that in our simulations, relative pairs were all disjoint, so that no
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individual was contained in multiple relative pairs; however, in our derivations, it is

not required for relative pairs to be disjoint for H̃ to be unbiased.

2.4.2 Simulation Results

To illustrate the performance of the estimators across the span of gene diversities

present in the human microsatellite dataset, loci were placed in increasing order by

assumed parametric gene diversity, and six equally spaced loci—with the 112th, 224th,

336th, 448th, 560th, and 672nd highest values of gene diversity—were chosen for

analysis. Similar results were obtained with all six loci (not shown), and therefore,

among the six loci only the locus with the lowest gene diversity (AAT263P, H =

0.6778) and the locus with the highest gene diversity (ACT3F12, H = 0.8263) were

chosen for display. For both loci, Table 2.3 shows the simulated MSE, variance, and

bias squared for the different estimators, considering three different sample sizes and

three combinations of the number of related individuals for each sample size. Since

the simulation results are based on 100, 000 replicate datasets, each of the quantities

presented is small. However, it is possible to observe differences in the properties of

the three estimators. Among the three estimators, Ĥ applied to full samples gives the

lowest variance, H̃ produces slightly higher variance, and Ĥ applied to samples with

related individuals removed produces the highest variance. Bias squared is very close

to zero for Ĥ applied to samples with related individuals removed, as well as for H̃,

but it is noticeably higher for Ĥ applied to full samples containing relatives. For the

locus with the lower value of H (0.6778), Ĥ applied to full samples has the smallest

MSE in all cases tested, although H̃ has MSE very close to that of Ĥ. However, for the

locus with the higher value of H (0.8263), MSE is always smallest for H̃. Therefore,

H̃ is not only unbiased, but it also has MSE comparable to—and sometimes smaller

than—that of Ĥ.

It is instructive to investigate the influence of specific variables on the MSE,
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variance, and bias squared of H̃ and Ĥ, by varying the simulation parameters over

the space of gene diversities, sample sizes, and possible sets of relative pairs, and

calculating MSE, variance, and bias squared for each scenario. We use Ĥfull and

H̃full to denote Ĥ and H̃ applied to a sample of individuals. For Ĥ applied to a

sample in which related individuals are removed, we use the notation Ĥreduced.

Figure 2.1 displays the effect of sample size on MSE for each of the estimators,

for scenarios in which all simulated individuals belong to relative pairs of a particular

type. Here, the full and reduced samples consist of m and m/2 individuals,

respectively. When q = m/2, r = m/2, or s = m/2, MSE is consistently lower for

Ĥfull and H̃full (which have virtually identical MSE and therefore have overlapping

lines in the graph) than for Ĥreduced. As the sample size increases, the MSEs of all

estimators approach zero.

We next examined how the three estimators performed in simulated samples

containing the same sample size and total number of relative pairs, but with

different combinations involving different numbers of parent-offspring, full-sib, and

second-degree pairs. The same two loci that were analyzed in Table 2.3 and Figure 2.1

were investigated to show the effect of the combination of relative pairs at differing

degrees of gene diversity. Figures 2.2 and 2.3 illustrate MSE, variance, and bias

squared for each estimator as functions of the combination of types of relative pairs

in a full sample of size 40 and a reduced sample of size 20 individuals. Each point

in a triangle represents the number of parent-offspring, full-sib, and second-degree

relative pairs in a sample; the sum of these quantities is equal to half the sample

size. MSE and variance are always lower for Ĥfull and H̃full than for Ĥreduced, which

relies on a smaller sample size, and Ĥfull and H̃full show similar trends. Bias squared

for the unbiased H̃full is similar to that for Ĥreduced, which eliminates relatives from

the sample, whereas it is much larger for Ĥfull. As the number of first-degree pairs

is increased (decreasing the number of second-degree pairs), both variance and MSE
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increase. For Ĥfull, as can be predicted from eq. 2.11, bias squared also increases

with an increase in the number of first-degree pairs. Since they are both unbiased

estimators, H̃full and Ĥreduced display no particular pattern for bias squared.

Finally, we studied the trends in MSE, variance, and bias squared for the

estimators over the space of gene diversities, holding the full sample size fixed at

30 individuals and the reduced sample size fixed at 15. Unlike the analyses in

Table 2.3 and Figures 2.1-2.3, which show results based on two representative loci, this

analysis used simulations based on all 783 microsatellites. We considered a scenario in

which the sample of 30 individuals consisted of 15 parent-offspring pairs. Figure 2.4

illustrates that for all three estimators, MSE and variance tend to decrease as gene

diversity increases. Since H̃full and Ĥreduced are both unbiased, bias squared shows

no trend for these estimators. However, since bias for Ĥfull is linear with respect

to gene diversity (eq. 2.11), bias squared is quadratic. On the basis of eq. 2.11, we

predict [bias(Ĥfull)]
2 = (−8×15×(1/4)

60×59
H)2 ≈ (7.182 × 10−5)H2, and a close match to

this prediction was observed. The regression displayed in Figure 2.4 has regression

model [bias(Ĥfull)]
2 = (7.187× 10−5)H2.

Three main results can be observed in our simulations. First, H̃ is unbiased and

has comparable bias in samples containing relatives to that obtained by applying Ĥ to

samples with relatives removed. Using H̃, or excluding relatives and using Ĥ, reduces

the bias compared to using Ĥ without excluding relatives. Second, H̃ has comparable

(but consistently slightly higher) variance to the values obtained with Ĥ in samples

containing relatives. Both H̃ and Ĥ have lower variance in full samples of individuals

than that of Ĥ in reduced samples that exclude relatives. Third, because H̃ has

less bias than Ĥ in samples containing relatives, H̃ has comparable, and sometimes

smaller, MSE to Ĥ (although its variance is larger). Both estimators have lower MSE

than Ĥ applied to subsets that exclude relatives.

The properties of the estimators depend on a number of parameters. All estimators
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have lower MSE as sample size increases. In addition, the MSEs of Ĥ and H̃ are

smaller when second-degree relative pairs are investigated, in comparison to scenarios

that include an equivalent number of first-degree pairs. Furthermore, the MSEs of Ĥ

and H̃ are generally smaller for loci with larger gene diversities, with the magnitude

of the bias of Ĥ increasing linearly with increasing gene diversity.

We can conclude that for samples containing relatives, H̃ has comparable variance

to Ĥ, with a considerable reduction of bias. H̃ has comparable bias in a full sample

to that of Ĥ applied to a reduced sample excluding relatives, with a considerable

reduction of variance. Thus, H̃ combines into a single estimator the desirable

properties possessed by Ĥ applied to samples with relatives and by Ĥ applied to

samples without relatives.

2.5 Application to Data

2.5.1 Notation

For convenience, we use the following notation: Ĥ952 and Ĥ1048 for application of

Ĥ to the samples of 952 and 1048 individuals, respectively, and H̃952 and H̃1048 for

application of H̃ to these samples. Note that because the H952 data set contains

no relative pairs, H̃952 = Ĥ952, and there is no need to consider H̃952 separately.

We also use the notation Ĥ507, Ĥ603, and H̃603 when restricting our analysis to the

26 populations containing at least one relative pair; for each of the 27 remaining

populations, the estimators Ĥ and H̃ produce identical values.

2.5.2 Mean of the Estimator

For investigating the properties of Ĥ and H̃ applied to the H1048 data set, since

the true value of H is unknown for the actual data, we treated the value of Ĥ952

for each locus as a substitute “true” value. Because Ĥ is unbiased when applied to
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data not containing relatives, Ĥ952 provides a sensible proxy for the unknown true

gene diversity. This approach enabled us to consider how estimates of H from data

including relatives might differ from estimates based on the same data excluding all

relatives. For each of the 53 populations, we computed the means of Ĥ952, Ĥ1048, and

H̃1048 across the 783 microsatellite loci. Since the true H is unknown and bias cannot

be calculated, we instead examine the mean of Ĥ1048 across loci minus the mean of

Ĥ952 across loci, and the mean of H̃1048 across loci minus the mean of Ĥ952 across

loci.

Figure 2.5 shows comparisons of the mean of Ĥ1048−Ĥ952 across loci and the mean

of H̃1048− Ĥ952 across loci. In general, the three estimators produce similar estimates

in a given population. However, notice that in Figure 2.5A, Ĥ1048 is reduced compared

with Ĥ952, a likely consequence of the bias of Ĥ when applied to samples containing

relatives. When H̃1048 is used in place of Ĥ1048, since H̃1048 corrects for the inclusion

of known related individuals, there is a considerable reduction in the magnitude of

the difference between the mean of the estimator (Ĥ1048 or H̃1048) across loci and the

mean of Ĥ952 across loci (Figure 2.5B). These observations are reflected in Wilcoxon

signed rank tests that compare paired lists of mean heterozygosities across loci for

the 53 populations (Table 2.4). The p-value for a comparison of Ĥ1048 with Ĥ952

was 8.804× 10−6, suggesting that inclusion of relatives in a sample has a statistically

significant impact on Ĥ. In contrast, H̃1048 and Ĥ952 showed no significant difference,

with a p-value of 0.703 for the Wilcoxon signed rank test. Similar results were obtained

for other comparisons of the three estimators. The mean across populations of Ĥ952−

H̃1048 (3.262×10−4) was smaller than for Ĥ952−Ĥ1048 (2.387×10−3); the same was true

for the mean of |Ĥ952−H̃1048| (6.660×10−4) compared with the mean of |Ĥ952−Ĥ1048|

(2.387× 10−3).

Comparable results were obtained when using only the 26 populations that

contained relative pairs. The Wilcoxon signed rank test produced a statistically
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significant p-value of 2.980× 10−8 for Ĥ603 compared with Ĥ507 and a non-significant

p-value of 0.708 when comparing H̃603 with Ĥ507. The mean across populations of

Ĥ507−H̃603 (6.649×10−4) was smaller than for Ĥ507−Ĥ603 (4.866×10−3), as was the

mean of |Ĥ507 − H̃603| (1.358× 10−3) relative to that of |Ĥ507 − Ĥ603| (4.866× 10−3).

In addition, similar numbers of populations had H̃603 > Ĥ507 (12) and H̃603 < Ĥ507

(14); by contrast there were no populations with Ĥ603 > Ĥ507.

Because estimators often have a tradeoff between bias and variance, we

investigated the relationship between the mean values across loci of Ĥ603 − Ĥ507 and

H̃603 − Ĥ507 and the standard deviations of Ĥ603 and H̃603 across loci. We observed

that compared to Ĥ603, H̃603 produces a noticeable decrease in the mean difference

from Ĥ507 with only a slight increase in the standard deviation (Figure 2.6). This

result is somewhat analogous to the simulation-based result that H̃ has less bias than

Ĥ, and comparable variance.

2.5.3 Gene Diversity vs. Distance from Africa

Based on an observed decline of gene diversity estimates with geographic distance

from East Africa, Ramachandran et al. (2005) argued that the geographic expansion

of modern humans can be described by a series of founder events originating in

Africa. This analysis utilized the Ĥ estimator applied to the 783 microsatellites

typed in the H1048 subset of individuals, excluding the Surui population. To evaluate

how the results of Ramachandran et al. (2005) were affected by the bias of Ĥ in

samples with close relatives, we analyzed the relationships of the three estimators of

gene diversity—Ĥ952, Ĥ1048, and H̃1048—with geographic distance from East Africa

(Figure 2.7). Distance from Addis Ababa was measured in kilometers via waypoint

routes, and was based on the values from Rosenberg et al. (2005).

The three estimators produced relatively similar regressions (Figure 2.7),

demonstrating that the close linear relationship of gene diversity and distance from
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Africa is not greatly affected by inclusion of relatives in the analysis. We observed

very similar values for the coefficients of determination (R2) of linear regressions

when using Ĥ952, Ĥ1048, and H̃1048 (note that all three R
2 values are higher than that

reported by Ramachandran et al. (2005), whose lower value resulted from an error

in the calculation of their Figure 4A). The Surui population, which has the smallest

gene diversity and is the farthest population from Addis Ababa, deviates considerably

from the regression line when using Ĥ1048 to measure gene diversity (Figure 2.7B).

When excluding the large number of relatives present in the Surui sample (Ĥ952) or

correcting for their inclusion (H̃1048), the Surui population is not as extreme an outlier

(Figures 2.7A and 2.7C).

2.6 Discussion

In this article, we have developed an unbiased estimator H̃ for gene diversity in

samples containing related and inbred individuals. The bias-correction factor in this

estimator, which we derived from the variance of allele frequency estimates, depends

only on the average kinship coefficient between pairs of sampled individuals. Using

data simulated based on allele frequency distributions from human populations, we

found that H̃ performs well with regard to both bias and mean squared error. The bias

generated by H̃ applied to data including relatives is approximately the same as the

bias generated by the standard estimator Ĥ applied to data containing only unrelated

individuals. The MSE for H̃ is comparable to—and often smaller than—the MSE of

Ĥ when related individuals are included. Calculation of H̃ relies only on sample allele

frequencies and on the average kinship coefficient and is therefore easy to perform

when relationships among individuals are known. Thus, the new estimator H̃ offers

a combination of unbiasedness, low MSE, and ease of computation, providing an

improved approach to the estimation of gene diversity in samples containing relatives.

Using data from human populations, we found that H̃ largely corrected a reduction
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in the standard estimator Ĥ, producing estimates that were not significantly different

from those obtained if we instead removed relatives from the data set and applied

Ĥ. This shift towards the values obtained in data without relatives occurred together

with only a slight increase in standard deviation across loci relative to Ĥ. However,

by treating dependent observations as independent, Ĥ perhaps produces a smaller

variance than is appropriate in samples with relatives. Thus, we conclude that as

an alternative to removing relatives from samples containing relative pairs, H̃ can be

applied to obtain suitable gene diversity estimates.

When we applied H̃ to the human data, a few populations still produced a

“bias”, in that H̃1048 remained considerably lower than Ĥ952. The most noticeable of

these populations are the Surui, Karitiana, and Pima populations from the Americas

(Figure 2.5B); the “bias” was larger for these low-diversity populations, whereas

theory predicts less bias when diversity is lower (eq. 2.11). It should first be noted

that unlike for the other populations, inferences about second-degree relationships

obtained by Rosenberg (2006) were somewhat uncertain for the Surui and Karitiana

populations. Thus, Table 2.2 and our analysis did not include inferred second-degree

relationships in those populations, when in fact many are likely to be present. This

is a likely reason why the “bias” in the Surui and Karitiana populations was only

partially eliminated. For the Pima population, a likely explanation is that the

sample contains many related individuals in extended families (Rosenberg , 2006),

and our computation only adjusted for first- and second-degree relative pairs. If

these higher-order relationships had been fully known, however, it would have been

possible to use our estimator to adjust for them.

Our estimator adjusts for inbreeding by averaging over inbreeding coefficients for

sampled individuals. It is important to note that the inbreeding coefficients that we

have included are exact values obtained from pedigrees. If an estimated inbreeding

coefficient was used in place of the exact value, then H̃ would not necessarily produce
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unbiased estimates in samples containing inbred individuals. H̃ would also lead to

a bias if relationships were misspecified. In our data example, relationships were

assumed to be known, and for a dataset of the size used for inferring the relationships

(Rosenberg , 2006) this assumption is generally sensible. However, for small datasets

in which relationship inferences are uncertain, caution must be used when interpreting

the bias of H̃ applied to the same data from which relationships are estimated.

The estimators we have considered relate to within-population gene diversity.

What if we consider the gene diversity between populations? Suppose we have

samples from two populations, A and B, each containing related inbred individuals.

The between-population analogue of gene diversity is ĤA,B = 1 −
∑I

i=1 p̂iq̂i, where

p̂i and q̂i are estimates of the frequency of allele i at a given locus in populations

A and B, respectively (Nei , 1987). Because the bias in within-population gene

diversity estimates only arises from the quadratic p̂2i term in eq. 2.1, E
[∑I

i=1 p̂iq̂i
]
=∑I

i=1 piqi (Nei , 1987, p. 222), and ĤA,B continues to be an unbiased estimator for

between-population gene diversity in samples containing relatives.
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Ĥ
r
ed

u
ce
d

4.
92
4
×
10

−
3

4.
92
4
×
10

−
3

2
.9
9
0
×

1
0
−
1
0

1.
90
3
×
10

−
3

1.
90
3
×
10

−
3

2
.3
4
6
×

1
0
−
9

Ĥ
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Ĥ
r
ed

u
ce
d

4.
93
0
×
10

−
3

4.
93
0
×
10

−
3

1
.1
5
4
×

1
0
−
8

1.
89
0
×
10

−
3

1.
89
0
×
10

−
3

2.
39
7
×
10

−
8

Ĥ
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Figure 2.1: Mean squared error (MSE) as a function of sample size m for three
different estimators. Each plot in a given row represents samples with
a different type of relative pair. The numbers of parent-offspring, full-sib,
and second-degree pairs are denoted by q, r, and s, respectively. The
full and reduced samples contain m and m/2 individuals, respectively.

The H̃full curve is almost directly on top of the Ĥfull curve. A. Allele
frequencies simulated based on observed frequencies at locus AAT263P
(H = 0.6778). B. Allele frequencies simulated based on observed
frequencies at locus ACT3F12 (H = 0.8263). The range of the plots
is truncated at 0.02, so that the MSE for small sample sizes is not shown.
Each point in the graphs is based on 100, 000 simulated data sets, and
the same simulated data were used for all three estimators.
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Figure 2.2: Heat maps of simulated mean squared error (MSE), variance, and bias
squared for each estimator applied to a full sample of 40 and a reduced
sample of 20 individuals, as functions of the mixture of types of relative
pairs included in the sample. The simulation was based on allele
frequencies at the AAT263P locus (H = 0.6778). The sample of 40
individuals includes q parent-offspring, r full-sib, and s second-degree
pairs. The three vertices correspond to samples that contain either
all parent-offspring, all full-sib, or all second-degree pairs. Moving
horizontally along the triangle changes the numbers of parent-offspring
and full-sib pairs in the sample, and moving vertically changes the number
of second-degree pairs. The numbers indicated on the scale are the
cutoff values for each color. Each row of triangles represents a different
estimator, and each column represents a different statistic. Blue and
black dots represent the points at which the smallest and largest values
occur in each triangle, respectively. Each point in the graphs is based on
100, 000 simulated data sets, and the same simulations were used for all
three estimators.
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Figure 2.3: Heat maps of simulated mean squared error (MSE), variance, and bias
squared for each estimator applied to a full sample of 40 and a reduced
sample of 20 individuals, as functions of the mixture of types of relative
pairs included in the sample. The simulation was based on allele
frequencies at the ACT3F12 locus (H = 0.8263). See Figure 2.2 caption
for additional details.
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Figure 2.4: Mean squared error (MSE), variance, and bias squared for each estimator
applied to a full sample of 30 and a reduced sample of 15 individuals, as
functions of parametric gene diversity, considering simulated values based
on each of the 783 loci. The simulations incorporated 30 individuals in 15
parent-offspring pairs. A. Ĥfull. A quadratic regression of bias squared
on H (with the constant and linear terms forced to be 0) is given by
(7.187× 10−5)H2, with R2 = 0.959. The Spearman correlation coefficient

is−0.8364 forH and MSE and−0.8394 forH and variance. B. H̃full. The
Spearman correlation coefficient is −0.8394 for H and MSE and −0.8394
for H and variance. C. Ĥreduced. The Spearman correlation coefficient is
−0.8447 for H and MSE and −0.8447 for H and variance. Each point
in the graphs is based on 100, 000 simulated data sets, and the same
simulations were used for all three estimators.
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Figure 2.5: Comparison of the mean of Ĥ1048 − Ĥ952 and the mean of H̃1048 − Ĥ952.
Each population is represented by a point colored based on the geographic
location of the population, and the dotted line represents zero difference
between the full-data estimator and Ĥ952. Since 27 of the 53 populations
do not contain related individuals, the gene diversities given by Ĥ1048 and
H̃1048 are the same for these populations. A. The mean of Ĥ1048 − Ĥ952,
displaying a reduction of Ĥ when applied to samples containing related
individuals. B. The mean of H̃1048 − Ĥ952, displaying a decrease in the
magnitude of the difference between the full-data estimator and Ĥ952.
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Figure 2.6: Comparison of the mean difference of an estimator (Ĥ603 or H̃603) from
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represented by a point colored based on the geographic location of the
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H̃603, respectively.
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Figure 2.7: Gene diversity vs. geographic distance from Addis Ababa, Ethiopia. A.
Ĥ952 vs. distance from Addis Ababa. The linear regression is given by
H = 0.7778 − (7.955 × 10−6) × distance, with R2 = 0.856. B. Ĥ1048

vs. distance from Addis Ababa. The linear regression is given by H =
0.7809−(8.595×10−6)×distance, with R2 = 0.844. C. H̃1048 vs. distance
from Addis Ababa. The linear regression is given byH = 0.7792−(8.161×
10−6)× distance, with R2 = 0.849.
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CHAPTER III

Unbiased estimation of gene diversity in samples

containing related individuals: exact variance and

arbitrary ploidy

3.1 Introduction

For a given locus, gene diversity, also known as expected heterozygosity,

characterizes the proportion of heterozygous genotypes expected in a population

under Hardy-Weinberg equilibrium (Nei , 1973). Nei and Roychoudhury (1974)

devised an estimator of gene diversity that is unbiased for random samples of

unrelated, non-inbred individuals. When inbred individuals or close relatives are

included in a sample, however, this estimator has a downward bias (Weir , 1989;

DeGiorgio and Rosenberg , 2009). To account for the effects of inbreeding in a sample

of diploid individuals, Weir (1989, 1996) derived the expected value of gene diversity,

producing an unbiased estimator of gene diversity that makes use of the mean

inbreeding coefficient across sampled individuals, where the inbreeding coefficient of

an individual is defined as the probability for a randomly chosen locus that the two

alleles of the individual are inherited identically by descent from a common ancestor.

Using the mean kinship coefficient across pairs of sampled individuals, DeGiorgio and

Rosenberg (2009) extended this estimator to account for the bias produced in samples
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containing close relatives, where the kinship coefficient between two individuals, j and

k, is defined as the probability that an allele randomly selected from individual j at

a random locus and an allele randomly selected from individual k at the same locus

are identical by descent (IBD).

The DeGiorgio and Rosenberg (2009) estimator is useful for autosomal markers in

samples from diploid organisms that contain related or inbred individuals. However,

in studying gene diversity among related individuals in non-diploid cases (e.g.,

Buteler et al. (1999)) or in cases of mixed ploidy, such as in the analysis of sex

chromosomes (e.g., Reiland et al. (2002)), unbiasedness for this estimator has not

been demonstrated. Here, we extend the DeGiorgio and Rosenberg (2009) estimator of

gene diversity to account for situations in which known related and inbred individuals

are included in a sample and in which the sample contains an arbitrary mixture of

individuals of different ploidy. We use a more general method to obtain the estimator

than the method used for diploids by DeGiorgio and Rosenberg (2009), and we show

that the general estimator reduces to the DeGiorgio and Rosenberg (2009) estimator

in the diploid case. We also derive a formula for the variance of our estimator, H̃,

to facilitate evaluation of the statistical properties of the estimator. This variance

formula, which is a function of identity states among individuals, includes terms that

involve identity by descent among two, three, and four individuals, and among pairs

of pairs of individuals. Our variance function is convenient because extensive work on

IBD probabilities among individuals (Cotterman, 1940; Harris , 1964; Gillois , 1965;

Cockerham, 1971; Jacquard , 1974; Thompson, 1974; Lange, 2002) has provided a

framework for calculating the quantities incorporated in the formula.

Using the variance formula, we examine the performance of our estimator in

scenarios involving the human X chromosome, for which males and females, who

might both be included in a typical sample, differ in ploidy. In our evaluations,

we first show that the exact theoretical values of the variance, which are obtained
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from a quite complex formula, are closely matched by simulations. We also validate

that when each sampled individual is related to at most one other individual in the

sample, the exact theoretical variance can be approximated well by a simpler formula.

Using the variance approximation and simulations, we compare the behavior of our

estimator to that of the Nei and Roychoudhury (1974) estimator, which does not

account for relatives. We then analyze human SNPs from the X chromosome and

find that H̃ also performs well in practice.

3.2 Theory

Consider a sample of g groups, each with different ploidy (e.g., haploid males and

diploid females on the human X chromosome). Suppose that the sample from group

b contains nb mb-ploid individuals, b = 1, 2, . . . , g. Further, let (b, k), k = 1, 2, . . . , nb,

denote individual k from group b. The number of copies of allelic type i in individual

k from group b is

X
(i)
(b,k) =

mb∑
ℓ=1

A
(i)
(b,k),ℓ , (3.1)

where A
(i)
(b,k),ℓ is an indicator random variable that takes on the value 1 if the ℓth allele

in individual (b, k) has type i and that equals 0 otherwise.

Note that E
[
A

(i)
(b,k),ℓ

]
= pi, where pi is the frequency of allelic type i in the

population. We can then define an unbiased estimator for the frequency of allele

i as

p̂i =
1∑g

b=1 nbmb

g∑
b=1

nb∑
k=1

X
(i)
(b,k). (3.2)

Rewriting the estimator of Nei and Roychoudhury (1974) for the mixed-ploidy case, if

no inbred or related individuals are included in the sample, then an unbiased estimator

of gene diversity is
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Ĥ =

∑g
b=1 nbmb

(
∑g

b=1 nbmb)− 1

(
1−

I∑
i=1

p̂2i

)
. (3.3)

If inbred or related individuals are included in the sample, then Ĥ is a biased estimator

of H = 1 −
∑I

i=1 p
2
i . We follow the approach of DeGiorgio and Rosenberg (2009),

correcting for this bias by first obtaining the variance of sample allele frequencies.

However, we use a different method here for obtaining the variance of sample allele

frequencies, determining the bias correction for diploids as a special case of a more

general computation.

3.2.1 An unbiased estimator

Suppose we have four possibly, but not necessarily, distinct individuals (a, j),

(b, k), (a′, j′), and (b′, k′). Define Φ(a,j)(b,k) as the probability that two alleles randomly

chosen, one from individual (a, j) and the other from individual (b, k), are IBD.

Similarly, define Φ(a,j)(b,k)(a′,j′) as the probability that three alleles randomly chosen,

one from (a, j), one from (b, k), and one from (a′, j′), are IBD. Define Φ(a,j)(b,k)(a′,j′)(b′,k′)

as the probability that four alleles randomly chosen, one from (a, j), one from (b, k),

one from (a′, j′), and one from (b′, k′), are IBD. Finally, define Φ(a,j)(b,k),(a′,j′)(b′,k′)

as the joint probability that two alleles randomly chosen, one from (a, j) and the

other from (b, k), are IBD, and two alleles randomly chosen, one from (a′, j′) and the

other from (b′, k′), are IBD. These four types of probability of identity by descent are

identical to the θ, γ, δ, and ∆ coefficients of Cockerham (1971), respectively. We can

then define
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Φ2 =

g∑
a=1

g∑
b=1

na∑
j=1

nb∑
k=1

wawbΦ(a,j)(b,k) (3.4)

Φ3 =

g∑
a=1

g∑
b=1

g∑
a′=1

na∑
j=1

nb∑
k=1

na′∑
j′=1

wawbwa′Φ(a,j)(b,k)(a′,j′) (3.5)

Φ4 =

g∑
a=1

g∑
b=1

g∑
a′=1

g∑
b′=1

na∑
j=1

nb∑
k=1

na′∑
j′=1

nb′∑
k′=1

wawbwa′wb′Φ(a,j)(b,k)(a′,j′)(b′,k′) (3.6)

Φ2,2 =

g∑
a=1

g∑
b=1

g∑
a′=1

g∑
b′=1

na∑
j=1

nb∑
k=1

na′∑
j′=1

nb′∑
k′=1

wawbwa′wb′Φ(a,j)(b,k),(a′,j′)(b′,k′) , (3.7)

as weighted mean kinship coefficients across all sets of pairs, triples, quartets, and

pairs of pairs of individuals. The weight associated with an individual in group x,

wx = mx/
∑g

b=1 nbmb, is proportional to the ploidy associated with the group. Define

the inbreeding coefficient for individual (b, k), denoted by f(b,k), as the probability

that two alleles randomly chosen without replacement from individual (b, k) are IBD,

and let f b = (1/nb)
∑nb

k=1 f(b,k) be the mean inbreeding coefficient across individuals

in group b. This definition reduces to the standard definition for the diploid case.

In this section we first present two equations (eqs. 3.8 and 3.9) that aid in the

development of a generalized estimator of gene diversity (Theorem III.1). This

general estimator, the main result of this section, corrects the bias created by the

inclusion of related and inbred individuals in a sample consisting of individuals with

any mixture of ploidy. Using this estimator, we provide generalizations of results

presented by DeGiorgio and Rosenberg (2009) for diploids to the case of arbitrary

ploidy (eqs. 3.13 and 3.14) and we show how these generalizations can be reduced to

the diploid case.

Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1], and
∑I

i=1 pi =

1. Suppose a sample from a population has g groups, each with different ploidy, and

nb mb-ploid individuals in group b, b = 1, 2, . . . , g, each of whom is possibly inbred
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and related to other individuals in the sample. Consider the ℓth allele of individual

(a, j) and the tth allele of individual (b, k). By definition of expected value, we have

E
[
A

(i)
(a,j),ℓA

(i)
(b,k),t

]
= P

[
A

(i)
(a,j),ℓ = 1, A

(i)
(b,k),t = 1

]
= Φ(a,j)(b,k)pi + (1− Φ(a,j)(b,k))p

2
i

= Φ(a,j)(b,k)pi(1− pi) + p2i . (3.8)

In taking the expected value of our estimator of gene diversity, we will need to

evaluate the quantity E[p̂2i ]. Using eq. 3.8, we show in Appendix A that

E
[
p̂2i
]
= Φ2pi(1− pi) + p2i . (3.9)

Plugging eqs. 3.8 and 3.9 into V ar[p̂i] = E[p̂2i ]− (E[p̂i])2 yields V ar[p̂i] = Φ2pi(1−pi),

which reduces to the result presented for the diploid case in eq. 7 of DeGiorgio and

Rosenberg (2009), by reduction of the definition of Φ2 for the diploid case. The

following theorem provides a generalized unbiased estimator of gene diversity when a

sample with any mixture of ploidy contains related or inbred individuals.

Theorem III.1. Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1]

and
∑I

i=1 pi = 1. Suppose a sample from a population has g groups, each with different

ploidy, and nb mb-ploid individuals in group b, b = 1, 2, . . . , g, each of whom is possibly

inbred and related to other individuals in the sample. Then

H̃ =
1

1− Φ2

(
1−

I∑
i=1

p̂2i

)
(3.10)

is an unbiased estimator for gene diversity.

The proof that H̃ is unbiased follows that of Proposition 1 in DeGiorgio and

Rosenberg (2009), substituting the more general Φ2 in place of the corresponding
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mean kinship coefficient in the earlier proof.

When reducing the definition of Φ2 for the diploid case studied by DeGiorgio

and Rosenberg (2009), the result in Theorem III.1 is identical to the result presented

for this case in Proposition 1 of DeGiorgio and Rosenberg (2009). One interesting

consequence of Theorem III.1 is that H̃ has a simple representation in terms of

the sample probability of identity-by-state and the probability of identity-by-descent

computed based on assumed levels of inbreeding and relationship. This representation

is

H̃ =
1− P̂[IBS]
1− P[IBD]

, (3.11)

where P̂[IBS] is the probability that two alleles in the sample, chosen uniformly at

random with replacement, are identical by state, and P[IBD] is the probability that

two alleles in the sample, chosen uniformly at random with replacement, are identical

by descent. A proof that eq. 3.11 is a consequence of eq. 3.10 is provided in Appendix

A. Note that eqs. 3.10 and 3.11 have a connection to estimators of relatedness in a

context in which relatedness is unknown. Such estimators essentially invert equations

similar to eq. 3.11 to get estimators of Φ2 (Ritland , 1996; Rousset , 2002).

We next seek to transform the estimator in eq. 3.10 into one that is more

convenient for data analysis. Let Ga,b, a, b = 1, 2, . . . , g, be the set of distinct types of

relative pairs for pairs of distinct individuals in a sample, one from group a and one

from group b. Let ηR be the number of pairs of individuals with relationship type R

in Ga,b, and let ΦR be the kinship coefficient for each of these pairs. Then, as shown

in Appendix A, we can write Φ2 as

Φ2 =
1(∑g

b=1 nbmb

)2
[

g∑
b=1

nbmb +

g∑
b=1

nbmb(mb − 1)f b + 2

g∑
b=1

∑
R∈Gb,b

m2
bηRΦR

+ 2

g−1∑
a=1

g∑
b=a+1

∑
R∈Ga,b

mambηRΦR

]
. (3.12)
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This version of Φ2 is convenient for computation. To obtain a formula for H̃ that is

convenient for computation and that is a generalized version of an analogous quantity

for the diploid case in eq. 9 of DeGiorgio and Rosenberg (2009), we can substitute

eqs. 3.3 and 3.12 into eq. 3.10 to get

H̃ =

(∑g
b=1 nbmb

)(∑g
b=1 nbmb − 1

)
D

Ĥ, (3.13)

where

D =

(
g∑

b=1

nbmb

)(
g∑

b=1

nbmb − 1

)
−

g∑
b=1

nbmb(mb − 1)f b − 2

g∑
b=1

∑
R∈Gb,b

m2
bηRΦR

− 2

g−1∑
a=1

g∑
b=a+1

∑
R∈Ga,b

mambηRΦR.

A proof of eq. 3.13 is provided in Appendix A. We note that by using g = 1, n1 = n,

and m1 = 2 in eq. 3.13, we obtain eq. 9 of DeGiorgio and Rosenberg (2009).

Note that H̃ = cĤ, where

c =

(∑g
b=1 nbmb

)(∑g
b=1 nbmb − 1

)
D

.

By rearranging and taking the expected value, we get E[Ĥ] = E[H̃]/c = H/c.

Therefore,
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bias(Ĥ) =
1− c

c
H

= − 1(∑g
b=1 nbmb

)(∑g
b=1 nbmb − 1

)[ g∑
b=1

nbmb(mb − 1)f b

+ 2

g∑
b=1

∑
R∈Gb,b

m2
bηRΦR

+ 2

g−1∑
a=1

g∑
b=a+1

∑
R∈Ga,b

mambηRΦR

]
H.

(3.14)

Equation 3.14 is a generalized version of the bias formula in the diploid case, in

eq. 11 of DeGiorgio and Rosenberg (2009). The bias is always negative and it has

a magnitude that increases linearly with respect to H. Using g = 1, n1 = n, and

m1 = 2 in eq. 3.14, we obtain eq. 11 of DeGiorgio and Rosenberg (2009).

3.2.2 Variance of the estimator

In the previous section, we derived an unbiased estimator H̃ of gene diversity in

a sample of arbitrary ploidy. It is useful to determine the variance of the estimator,

a quantity that in the diploid case DeGiorgio and Rosenberg (2009) obtained only

by simulation. The following theorem provides a formula for the variance of the

generalized estimator of gene diversity in samples with any mixture of ploidy.

Theorem III.2. Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1]

and
∑I

i=1 pi = 1. Suppose a sample from a population has g groups, each with different

ploidy, and nb mb-ploid individuals in group b, b = 1, 2, . . . , g, each of whom is possibly

inbred and related to other individuals in the sample. Then the variances of the H̃

and Ĥ estimators of gene diversity are
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V ar[H̃] =
1(

1− Φ2

)2V ar

[
1−

I∑
i=1

p̂2i

]
(3.15)

and

V ar[Ĥ] =

[ ∑g
b=1 nbmb

(
∑g

b=1 nbmb)− 1

]2
V ar

[
1−

I∑
i=1

p̂2i

]
, (3.16)

where

V ar

[
1−

I∑
i=1

p̂2i

]
= Φ2,2 − Φ

2

2 + 2[Φ
2

2 − Φ4]
I∑

i=1

p2i + 4[2Φ4 + Φ2 − 2Φ3 − Φ2,2]
I∑

i=1

p3i

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]

(
I∑

i=1

p2i

)2

. (3.17)

The proof of Theorem III.2 is long and is provided in Appendix B.

We next derive an approximate formula that in our calculations below, we use in

place of eq. 3.17 inside of eqs. 3.15 and 3.16. The approximation is based only on

pairwise kinship coefficients, and is useful in cases in which the number of relatives

in a sample is small enough that no individual is related to more than one other

sampled individual. In such cases, the only nonzero terms included in Φ3, Φ4, and

Φ2,2 all involve sampling the same individual or pairs of individuals more than once.

Thus, the Φ3, Φ4, and Φ2,2 terms, along with Φ
2

2, are ignored, as they are likely to be

much smaller than Φ2 in cases in which the number of relationships in the sample is

small.

In addition to the assumptions listed in Theorem III.2, suppose that each

individual in the sample is related to no more than one other individual in the sample.

If we ignore terms involving (
∑g

b=1 mbnb)
−k, k > 1, then terms involving Φ

2

2, Φ3, Φ4,

and Φ2,2 in eq. 3.17 can be ignored. The only terms in eq. 3.17 that we retain are those

of order (
∑g

b=1 mbnb)
0 and (

∑g
b=1 mbnb)

−1. Φ2 is of order (
∑g

b=1 mbnb)
−1. Therefore,

reducing eq. 3.17 leads to
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V ar

[
1−

I∑
i=1

p̂2i

]
≈ 4Φ2

[
I∑

i=1

p3i −

(
I∑

i=1

p2i

)2]
. (3.18)

This formula is an approximation to eq. 3.17 when the number of relatives in a

sample is small enough that no individual is related to more than one other sampled

individual.

We now show that when no related individuals are included in a sample of diploids,

the variance in eq. 3.18 is exactly the formula given byWeir (1989). Suppose a sample

from a diploid population consists of n unrelated, but possibly inbred, individuals and

further suppose that we ignore terms involving n−k, k > 1. Then Φkk = (1/2)(1+fk),

where fk is the inbreeding coefficient for individual k. We can write the mean pairwise

kinship coefficient as

Φ2 =
1

n2

n∑
k=1

Φkk =
1

n2

n∑
k=1

1

2
(1 + fk) =

1

2n
(1 + f),

where f = (1/n)
∑n

k=1 fk is the mean inbreeding coefficient across individuals.

Plugging Φ2 = (1 + f)/(2n) into eq. 3.18, we get

V ar

[
1−

I∑
i=1

p̂2i

]
≈ 2

n
(1 + f)

[
I∑

i=1

p3i −

(
I∑

i=1

p2i

)2]
. (3.19)

3.2.3 The X chromosome case

A common situation in which data of mixed ploidy arise is on sex chromosomes,

for which members of one sex have two copies of a specific sex chromosome and

members of the other sex have one copy. Later, we examine data on the human X

chromosome, for which females have two copies and males have one. Thus, we now

utilize eq. 3.13 to derive an unbiased estimator of gene diversity in samples from the

X chromosome.

Consider an X-linked locus with I distinct alleles, allele frequencies pi ∈ [0, 1] and
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∑I
i=1 pi = 1. Suppose a sample from a population has nF females and nM males, each

of whom is possibly inbred and related to other sampled individuals. Let M, F , and

U be the sets of distinct types of male-male, female-female, and male-female relative

pairs in the sample, respectively. Further, let ηR be the number of pairs of individuals

with relationship type R and let ΦR be the kinship coefficient for each of these pairs.

Let males be group 1 and let females be group 2. Plugging g = 2, n1 = nM , n2 = nF ,

m1 = 1, and m2 = 2 into eq. 3.13, we obtain an unbiased estimator for gene diversity

at an X-linked locus as

H̃ =
(nM + 2nF )(nM + 2nF − 1)

D
Ĥ, (3.20)

where

D = (nM + 2nF )(nM + 2nF − 1)− 2nFfF − 2
∑
R∈M

ηRΦR − 8
∑
R∈F

ηRΦR − 4
∑
R∈U

ηRΦR,

fF = (1/nF )
∑nF

k=1 fk is the mean inbreeding coefficient across female individuals, and

fk is the inbreeding coefficient for female k.

The following special case of eq. 3.20 will be useful for the examples we consider

in subsequent sections. It makes use of Table 3.1, which shows the various types

of relationships possible for the X chromosome in pairs of individuals. Suppose a

non-inbred sample from a population has nF females and nM males, among which ηk

pairs of relationship type k are included. Let Φk be the kinship coefficient for each of

these pairs. Because the sample is not inbred, the mean inbreeding coefficient across

female individuals is fF = 0. Plugging fF as well as ηk and Φk for each relationship

type k (Table 3.1) into eq. 3.20, we obtain

H̃ =
(nM + 2nF )(nM + 2nF − 1)

(nM + 2nF )(nM + 2nF − 1)− 2
∑4

k=1 ηkΦk − 8
∑12

k=5 ηkΦk − 4
∑20

k=13 ηkΦk

Ĥ.

(3.21)
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3.3 Data analysis

3.3.1 Data

We investigated the properties of H̃ on mixed-ploidy data using analytical

computations of bias, variance, and mean squared error, simulations, and analysis of

data from human populations. Our choices for simulation parameters were designed

based on values in the data. In our analytical computations and simulations, we based

our assumed true allele frequencies on sample allele frequencies at 36 X-chromosomal

loci typed in 950 unrelated individuals, 624 males and 326 females, from the Human

Genome Diversity Panel (HGDP-CEPH) microsatellite dataset of 1048 individuals

(Ramachandran et al., 2008). Individuals 127 and 139 from the Ramachandran et al.

(2008) dataset were not included in our analyses. The 950 individuals were assumed to

have no first- or second-degree relationships, based on the Rosenberg (2006) analysis

of the full HGDP-CEPH panel.

Our data analysis was performed on a dataset of 13,052 X-chromosomal single

nucleotide polymorphism (SNP) loci genotyped in 485 individuals from 29 populations

in the HGDP-CEPH panel (Jakobsson et al., 2008). We also removed individuals

related through the X chromosome, yielding a dataset of 446 unrelated individuals.

Unlike the Jakobsson et al. (2008) dataset of 443 unrelated individuals, our set of

446 individuals did not retain individuals 866, 1046, or 1049, which are not in the

H952 subset of the HGDP-CEPH panel. However, individuals 292, 451, 477, 983, 988,

and 1089 were included in the dataset of non-relatives because they were all involved

exclusively in male-male parent-offspring relationships, and were therefore unrelated

to other sampled individuals through the X chromosome.
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3.3.2 Data analysis methods

We used simulations and analytical calculations to evaluate the behavior of the

estimator H̃ for X-chromosomal loci under conditions of varying heterozygosities,

sample sizes, and relationships of sampled individuals. We compared the relative

performance of H̃ and Ĥ by applying H̃ and Ĥ to samples containing related

individuals and Ĥ to samples in which relatives were removed so that no relative

pairs remained. True allele frequencies were based on microsatellite sample allele

frequencies (see “Data”). In the simulations, individuals of a relative pair were

generated by randomly choosing the allele(s) of the first individual based on the

empirical allele frequency distribution from the dataset. For a given type of relative

pair, we then simulated the allele(s) of the second individual by copying alleles from

the first individual using the probabilities of sharing zero, one, and two alleles IBD

for that type of pair. Table 3.2 depicts these probabilities, as well as the symbols used

here to denote the various classes of relative pairs. If only one allele was shared, then

it was copied in the second individual from the first allele of the first (independently

generated) individual. In cases of male-female relative pairs, the male was generated

first and the second allele of the female was always chosen independently from the

allele frequency distribution.

To create a reduced dataset of unrelated individuals, the second (possibly

dependent) individual was not included for same-sex pairs, whereas for male-female

pairs, the male relative was removed. Thus, because each individual in our simulation

was included in exactly one relative pair, the number of individuals used to calculate

Ĥ for the unrelated sample was always half of that used for the other two estimators.

Removing the male in male-female pairs results in the loss of 1/3 of the alleles,

compared to a loss of 1/2 of the alleles for removal of an individual from a same-sex

pair. Thus, compared to removing females, removing males from male-female pairs

generates a larger sample of alleles while still ensuring that no individuals are related.
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The value assumed for the true heterozygosity, H, of a specific locus, was

calculated from the assumed true allele frequencies based on the genotypic data of the

950 unrelated individuals. In each simulated scenario, for each of the three estimators,

this true heterozygosity was compared to the mean of the estimates produced by the

estimator in 100,000 replicate simulations. The subscript full is used to denote cases

in which an estimator was applied to the entire sample, whereas the subscript reduced

indicates that relatives were removed from the sample. The bias of each estimator

for a scenario was found by subtracting H from the mean value of the estimates

for that estimator. Variance was calculated as the squared mean of the estimates

across simulations subtracted from the mean across simulations of the squares of the

estimates. Mean squared error (MSE) was then calculated as the sum of bias squared

and variance.

3.3.2.1 Approximate variance

Because each of our analyses was performed on samples that contained only

pairs of related individuals, the assumptions that underlie the derivation of the

approximate variance (eq. 3.18) apply. We compared the exact, the approximate,

and the simulated variance for H̃ and Ĥ in a series of cases that included only

full-sib pairs. We chose nine representative cases of the various parameters that

can affect estimator performance. Three of these cases considered an equal mix

of male-male, female-female, and male-female full-sib pairs at the ATCT003 (H =

0.7794), DXS1068 (H = 0.7344), and GATA48H04 (H = 0.6476) loci, chosen to

represent high, intermediate, and low heterozygosity, respectively. Additionally, we

considered cases at the intermediate heterozygosity locus involving 20 male-male, 80

male-male, 20 female-female, 80 female-female, 20 male-female, and 80 male-female

pairs, to examine the effects of sample size and the sexes of the individuals. In

each of our evaluations, we calculated the exact variances (eq. 3.15 and eq. 3.16),
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approximate variances (eq. 3.18 plugged into eq. 3.15 and eq. 3.16), and simulation

variances obtained from 100,000 replicate simulations.

As Table 3.3 shows, in all cases examined, the exact, approximate, and simulated

variances are similar, with the approximate variance slightly underestimating the

exact variance. Because of the complexity of the formula for the exact variance, the

difference between approximate and exact variance does not have a simple dependence

on heterozygosity or sample size. However, it can be observed in Table 3.3 that for

both H̃ and Ĥ, the relative difference between the approximate and exact variances

is smallest at low heterozygosity and large sample size, typically near ∼2%. In cases

of high heterozygosity and small sample size, the relative difference remains at most

∼10%. We note that the same approximation to the variance of 1−
∑I

i=1 p̂
2
i in eq. 3.18

is applied in obtaining the approximate variances of both H̃ and Ĥ. Thus, because

the approximation is generally reasonably accurate and because it treats H̃ and Ĥ in

the same way, our use of the approximation is sensible in our subsequent comparisons

of the mean squared errors of H̃ and Ĥ.

3.3.3 Effect of parameters on the estimators

Several factors can potentially affect the performance of the estimators. These

factors include the true value of heterozygosity itself, the sample size, the type of

relative pair represented in the sample, and, if multiple types of relative pairs are

included, the combination of particular types of relative pairs. We now examine each

of these factors in sequence.

3.3.3.1 Varying heterozygosity

To investigate the influence of varying heterozygosity on the estimator, we

evaluated the scenario of 60 related individuals in 10 t1 pairs, 10 u2 pairs, and

10 v2 pairs (see Table 3.2) for each of the 36 X-linked microsatellite loci. This
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scheme incorporates 30 full-sib pairs, considering equally many males and females

and utilizing three distinct kinship coefficients: 1/2 for male-male pairs (t1), 1/4 for

male-female pairs (u2), and 3/8 for female-female pairs (v2). The 36 loci represent a

spread of assumed true heterozygosities ranging from 0.4008 to 0.8599. For each locus,

we calculated H̃full (eq. 3.21), as well as Ĥfull and Ĥreduced (Nei and Roychoudhury ,

1974).

Figure 3.1 displays the properties of the three estimators, H̃full, Ĥfull and Ĥreduced,

based on application of analytical computations of bias (eq. 3.14 for Ĥfull) and the

variance approximation (eq. 3.18 plugged into equations 3.15 and 3.16) to each of

the 36 loci. H̃full and Ĥreduced are unbiased estimators and therefore have zero

bias, whereas Ĥfull exhibits increasing bias squared as heterozygosity increases.

The bias squared for Ĥfull as a function of heterozygosity is plotted using the

theoretical prediction based on eq. 3.14: [bias(Ĥ)]2 =
(
−2(10× 1

2
)+8(10× 3

8
)+4(10× 1

4
)

(30+2×30)×(30+2×30−1)
H
)2

=

(3.897 × 10−5)H2. Generally, over the space of heterozygosities defined by the

36 microsatellite loci, the MSE and variance of all three estimators decrease with

increasing heterozygosity.

3.3.3.2 Varying sample size and type of relative pair

We next applied the estimators to scenarios of varying sample size. The ATCT003

(H = 0.7794), DXS1068 (H = 0.7344), and GATA48H04 (H = 0.6476) loci were

chosen from the dataset to represent high, intermediate, and low heterozygosities,

respectively. Only the data for the intermediate heterozygosity locus DXS1068 are

shown; the other two loci yield similar results. For each locus and for each of the ten

types of relative pairs in Table 3.2, we varied the sample size from 2 to 100 pairs.

We considered a sample size of at least 2 pairs, as no information is available for the

computation of Ĥreduced from a single pair of male-male relatives. For all three loci,

analytical calculations were performed using the variance approximation (eq. 3.18
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plugged into equations 3.15 and 3.16).

Figure 3.2 shows that as sample size increases, MSE decreases for all three

estimators, and it is always comparable for H̃full and Ĥfull (H̃full mostly overlaps

Ĥfull in the figure). Usually, we expect MSE in a reduced sample to be highest due to

greater variance. However, although the results conformed to this prediction for most

types of relative pairs, for male-female relative pairs for which there was probability

greater than or equal to 3/4 for sharing exactly one allele IBD (types u1 and u4),

the MSE of Ĥreduced was actually lower than the MSE for H̃full and Ĥfull. The same

result was also detected in our simulations (data not shown). Investigating further,

we found that in male-male and female-female pairs, cases with high probabilities for

sharing one or two alleles IBD had MSEs for H̃full and Ĥfull that were closer to the

Ĥreduced MSE values, compared with the higher MSE for Ĥreduced observed in other

cases. The MSE of Ĥreduced is smaller relative to that of the other estimators for u1

and u4 male-female pairs because when only 1/3 of the sample is removed in creating

the unrelated set of individuals (removal of males), the increase in variance due to

the relatively small decrease in sample size in Ĥreduced is comparable to the increased

variance caused by the high IBD probabilities for u1 and u4 pairs in H̃full and Ĥfull,

unlike in other cases. When females, instead of males, are removed from male-female

pairs, decreasing the sample by 2/3 rather than 1/3, the estimators behave more

intuitively (Figure 3.3), with Ĥreduced yielding the highest MSE.

3.3.3.3 Varying combinations of relative pairs

Finally, we studied the effect of relative pair combinations in a sample, using allele

frequencies at the ATCT003, DXS1068, and GATA48H04 loci. Only the results for

the highest heterozygosity locus, ATCT003, are shown; as was true in the previous

section, each locus yielded similar results. For each locus, we examined each of the

231 possible divisions of exactly 20 full-sib pairs into male-male (t1), male-female (u2),
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and female-female (v2) pairs. Figure 3.4 displays the MSE, variance, and bias squared

of the three estimators, calculated analytically using the variance approximation

(eq. 3.18), for various combinations of t1, u2, and v2 pairs for the ATCT003 locus.

Variance was highest for Ĥreduced, because it had the smallest sample of alleles. For

all estimators, variance was highest where the configuration of full-sibs had mostly

male-male pairs, again due to the smaller sample of alleles. H̃full and Ĥreduced were

unbiased across the space of possible combinations. Ĥfull showed a trend in bias

squared in which configurations with a greater proportion of males had higher bias

squared, as is predicted analytically from the smaller sample size (eq. 3.14). For

all configurations, the bias squared of Ĥfull was greater than that for the other

estimators. Among the three estimators, MSE was highest for Ĥreduced. Similarly

to the observation for variance, MSE was greatest for configurations with a high

proportion of male-male pairs. Although H̃full performed slightly poorer in having a

greater variance when compared to Ĥfull, it had a slightly lower MSE due to its lower

bias. More generally, although H̃full performed better in the setting of Figure 3.4,

the exact formula can be used to determine which estimator has lowest MSE for a

given scenario.

3.3.4 Application to data

We next investigated the behavior of our estimator using X-chromosomal SNP

datasets of 485 individuals and 446 unrelated individuals (see “Data”). Table 3.4

displays the relative pairs in the sample of 485 individuals. Because we analyzed the

estimators separately by population, the subscripts of 485 and 446 refer to whether or

not relatives were included in a calculation, not to the actual numbers of individuals in

that calculation. In the same manner as in DeGiorgio and Rosenberg (2009), we took

Ĥ446 for each population to be a proxy for true heterozygosity, because this quantity

provided an unbiased estimate when no relatives were included in the sample. Note
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that removed individuals belonged only to pairs related through the X chromosome;

individuals related only autosomally (such as male-male parent-offspring pairs) were

included in the reduced sample. In our analysis, we compared the means of H̃485 and

Ĥ485 across the 13,052 loci to the corresponding mean of Ĥ446.

Figure 3.5 compares the difference between the mean of Ĥ485 across loci (Ĥ485)

and the mean of Ĥ446 (Ĥ446) with the difference between the mean of H̃485 (H̃485)

and the mean of Ĥ446 (Ĥ446). As Figure 3.5A shows, Ĥ485 generally yields a lower

heterozygosity estimate than Ĥ446 due to the downward bias caused by related

individuals. Applying H̃485 reduces the magnitude of the difference between the

estimate of heterozygosity in sets with and without relatives (Figure 3.5B), and H̃485

yields values that are not consistently lower than those of Ĥ446. It is important to note

that because 15 of 45 of the relative pairs in the data have an uncertain second-degree

relationship (t3, u5, or v5), H̃485 might have overcorrected bias in cases in which the

individuals were not related via the X chromosome and undercorrected bias in cases

in which the individuals actually were related on the X-chromosome.

AWilcoxon signed rank test was used to evaluate the differences between Ĥ485 and

Ĥ446 applied to the 13 populations that contained relatives (see Table 3.4). This test

yielded a p-value of 0.0024, indicating that the inclusion of relatives had a significant

impact on the estimation of heterozygosity using Ĥ. In contrast, the Wilcoxon signed

rank comparison of H̃485 and Ĥ446 yielded a p-value of 0.6355, indicating that the

inclusion of relatives did not significantly alter the estimation of heterozygosity when

H̃ was used. The mean difference H̃485−Ĥ446 (−8.0493×10−5) and the mean absolute

difference |H̃485 − Ĥ446| (6.3159× 10−4) were smaller across the 13 populations than

the mean difference (−1.9393× 10−3) and mean absolute difference (1.9849× 10−3),

Ĥ446 − Ĥ485 and |Ĥ446 − Ĥ485|, respectively.

We also investigated the behavior of H̃ and Ĥ with regard to variance for the 13

populations that contained relatives. We compared Ĥ485 − Ĥ446 and H̃485 − Ĥ446,
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which we used as proxies for bias, following the methods of DeGiorgio and Rosenberg

(2009), and the standard deviations of the two estimators applied with relatives

included. From Figure 3.6, we observe that while there was a sizeable difference in

the bias proxy between Ĥ485 and H̃485, there was only a small difference in standard

deviation. This result is compatible with the results from our analytical computations,

which suggest that H̃ corrects bias without substantially increasing variance.

3.4 Discussion

Our estimator, H̃, is an effective tool for assessing the gene diversity of a sample

of arbitrary ploidy containing related or inbred individuals. It can be used to provide

unbiased estimates of expected heterozygosity when the inbreeding and kinship

coefficients of sampled individuals are known. We have found that the unbiasedness

of the diploid estimator of DeGiorgio and Rosenberg (2009) extends to a much more

general set of scenarios, provided that kinship coefficients are appropriately weighted

by ploidy in the computation.

Here, we have evaluated the properties of H̃ in the specific case of the human X

chromosome. Through our analytical calculations, we have shown that, similarly to

the DeGiorgio and Rosenberg (2009) estimator in the diploid case, the performance

of H̃ is generally superior to that of Ĥ when the sample to which the estimators are

applied contains relatives. H̃ accounts for the bias introduced by relatedness while

simultaneously maintaining comparable MSE and variance to Ĥ. Our estimator also

performs well compared to Ĥ when applied to data from human populations. While

the true heterozygosity of each population is not known, when we compared H̃ and

Ĥ to an approximation of true heterozygosity, Ĥ applied to the dataset with no

related individuals, we found that the difference between the estimate when relatives

were included and when relatives were not included was significantly smaller for H̃.

Because the reduction in this proxy for bias is accompanied by only a small increase
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in standard deviation, we argue that H̃ should often be preferred over Ĥ in the

estimation of gene diversity in a sample containing relatives.

In addition to developing the H̃ estimator for gene diversity, we also determined

the analytical variance of our estimator, allowing us to theoretically evaluate the

properties of H̃. We also developed an approximation for variance (eq. 3.18) that is

simpler to compute and that is applicable when each individual has at most one

relative in the sample. Knowledge of the theoretical variance can further allow

investigators to evaluate the circumstances under which H̃ applied to a full sample,

including relatives, is superior to using Ĥ with a reduced sample in which members

of relative pairs have been removed. For example, Figure 3.2 indicates that removing

relatives will provide a lower MSE of the heterozygosity estimate in some cases.

However, Figure 3.4 suggests that H̃full yields a lower MSE than Ĥreduced except in

the small fraction of relative-pair combinations that contain large numbers of u1 pairs.

Thus, we propose that in most cases, the use of H̃ on a sample set that includes related

individuals affords a better estimate of gene diversity than applying Ĥ on a sample

that contains no relatives, and that investigators can use the theoretical variance of

H̃ to determine whether a given situation is likely to be among the exceptions.
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Table 3.4: Types of relative pairs in populations from the dataset of 485 individuals
reported by Jakobsson et al. (2008)

t1 t2 t3 u1 u2 u3 u4 u5 v1 v2 v3 v4 v5
Bantu (Kenya) 1
Bedouin 1 1
Biaka Pygmy 1 2 1 2
Druze 2 1 2
Kalash 1
Mandenka 1 1
Maya 1 1 2
Mbuti Pygmy 1 1
Melanesian 1 3 2 2 1
Mozabite 1
Palestinian 1 1
Pima 1 1 1 1 1 1
Yoruba 1 1 1 1
Total 4 1 5 7 6 1 0 3 5 5 0 1 7
Symbols for the types of relative pairs appear in Table 3.2.
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Figure 3.1: Mean squared error, variance, and bias squared for each estimator,
obtained analytically using the variance approximation (eq. 3.18), as a
function of heterozygosity for 36 loci. The scheme considered included
60 individuals in 10 t1 pairs (Φ = 1/2), 10 u2 pairs (Φ = 1/4), and 10

v2 pairs (Φ = 3/8). A. Ĥfull. The curve through the points in the third

column is described by eq. 3.14. B. H̃full. C. Ĥreduced.
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Figure 3.2: Mean squared error as a function of sample size (number of pairs =
number of individuals / 2) calculated analytically using the variance
approximation (eq. 3.18) based on allele frequencies at the DXS1068 locus
(H = 0.7344). Each plot considers different sample sizes for one type of
relative pair (Table 3.2). The range of each plot is truncated at 0.020 and

the graph of H̃full covers that of Ĥfull. A. Male-male relative pairs. B.
Male-female relative pairs. C. Female-female relative pairs. Note that
the Ĥreduced line in the graph of mean squared error as a function of the
number of u4 pairs is behind the other two lines.
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locus (H = 0.7344) for male-female relative pairs in which the females

were removed to calculate Ĥreduced. The range of each plot is truncated
at 0.020. The graph of H̃full covers that of Ĥfull.
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Figure 3.4: Mean squared error (MSE), variance, and bias squared of Ĥfull, H̃full,

and Ĥreduced, calculated analytically using the variance approximation
(eq. 3.18), as functions of the configuration of t1 male-male (Φ = 1/2),
u1 male-female (Φ = 1/2), and v2 female-female (Φ = 3/8) pairs in 20
total relative pairs, based on allele frequencies at the ATCT003 locus
(H = 0.7794). Each row displays a different estimator and each column
displays a different statistic. The three vertices of each triangle represent
20 male-male, 20 male-female, and 20 female-female full-sib pairs. The
numbers on the scale indicate the cutoff values for colors. Note that unlike
for the other two estimators, the scale for bias squared of Ĥfull includes
nonzero values. The black dot on each graph (except the bias squared

graphs for H̃full and Ĥreduced) represents the largest value in that triangle,
and the blue dot represents the smallest value.
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Figure 3.5: Comparison of the difference between the mean of Ĥ485 across loci and
the mean of Ĥ446 with the difference between the mean of H̃485 and the
mean of Ĥ446. A. The difference between the mean of Ĥ485 and the mean
of Ĥ446 for each of the 13 populations containing relatives (Table 3.4). B.

The difference between the mean of H̃485 and the mean of Ĥ446 for each
of the 13 populations. The estimators were applied to a dataset of 13,052
SNP loci with 485 individuals belonging to 29 populations, and the results
for the 13 populations with relatives are shown. Included in the set of 485
individuals was a subset of 446 individuals that contained no relatives.
The subscripts of 485 and 446 refer to whether or not relatives were
included, not to the actual number of individuals in the calculation. Each
data point represents one population, with color indicating the geographic
region of that population. The dotted line indicates a difference of zero.
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Figure 3.6: Comparison of the difference between the mean of the estimator and
the mean of Ĥ446 and standard deviation of the estimator, for the
estimators H̃485 and Ĥ485. These estimators were applied to a full dataset
of 13,052 X-chromosome SNP loci with 485 individuals belonging to
29 populations, whereas 446 individuals were included in the reduced
dataset that contained no relatives. Only the 13 populations containing
relatives are shown. The subscripts 485 and 446 refer to whether or
not relatives were included, not to the actual number of individuals in
the calculation. Open and closed points represent the estimates for Ĥ485

and H̃485, respectively. The dotted line indicates a difference of zero.
Lines connect data points representing the same population, with each
population colored by geographic region.
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3.6 Appendix A

In this section, we present proofs for eqs. 3.9, 3.11, 3.12, and 3.13.

Proof of eq. 3.9. Applying the definition of p̂i and using eq. 3.8, we have

E
[
p̂2i
]
=

1(∑g
b=1 nbmb

)2 g∑
a=1

g∑
b=1

na∑
j=1

nb∑
k=1

E
[
X

(i)
(a,j)X

(i)
(b,k)

]
=

1(∑g
b=1 nbmb

)2 g∑
a=1

g∑
b=1

na∑
j=1

nb∑
k=1

ma∑
ℓ=1

mb∑
t=1

E
[
A

(i)
(a,j),ℓA

(i)
(b,k),t

]
=

1(∑g
b=1 nbmb

)2 g∑
a=1

g∑
b=1

na∑
j=1

nb∑
k=1

ma∑
ℓ=1

mb∑
t=1

(
Φ(a,j)(b,k)pi(1− pi) + p2i

)
=

1(∑g
b=1 nbmb

)2 g∑
a=1

g∑
b=1

na∑
j=1

nb∑
k=1

mamb

(
Φ(a,j)(b,k)pi(1− pi) + p2i

)
=

(∑g
b=1 nbmb

)2(∑g
b=1 nbmb

)2Φ2pi(1− pi) +

(∑g
b=1 nbmb

)2(∑g
b=1 nbmb

)2p2i
= Φ2pi(1− pi) + p2i .

Proof of eq. 3.11. P̂[IBS] =
∑I

i=1 p̂
2
i . We need only show that P[IBD] = Φ2. Note

that while we write P̂[IBS] as an estimate, P[IBD] depends only on quantities that are

treated as known with certainty and we write it as a known quantity itself. Consider

two alleles from the sample (that are not necessarily distinct). Let C(a,j)(b,k) denote the

event that the first of the two alleles is from individual (a, j) and the second is from

individual (b, k), where (a, j) and (b, k) are not necessarily distinct. Supposing that

the two alleles are drawn uniformly at random from the sample, with replacement,

let P[C(a,j)(b,k)] denote the probability of event C(a,j)(b,k). Let P[IBD|C(a,j)(b,k)] be the

probability that two alleles are IBD given that the first allele is chosen from individual

(a, j) and the second is chosen from individual (b, k). Then
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P[IBD] =
g∑

b=1

{
nb∑
k=1

P[IBD|C(b,k)(b,k)]P[C(b,k)(b,k)]

+

nb∑
j=1

nb∑
k=1
k ̸=j

P[IBD|C(b,j)(b,k)]P[C(b,j)(b,k)]

}
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g∑
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g∑
b=1
b̸=a

na∑
j=1

nb∑
k=1

P[IBD|C(a,j)(b,k)]P[C(a,j)(b,k)].

Note that, for individuals (a, j) and (b, k), which are not necessarily distinct,

P[C(a,j)(b,k)] =

(
ma∑g

c=1 ncmc

)(
mb∑g

c=1 ncmc

)
=

mamb

(
∑g

c=1 ncmc)2

P[IBD|C(a,j)(b,k)] = Φ(a,j)(b,k).

It follows that

P[IBD] =
g∑

b=1

{
nb∑
k=1

Φ(b,k)(b,k)
m2

b

(
∑g

c=1 ncmc)2
+

nb∑
j=1
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k ̸=j

Φ(b,j)(b,k)
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(
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}
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nb∑
k=1
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g∑
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g∑
b=1

na∑
j=1

nb∑
k=1

mambΦ(a,j)(b,k)

= Φ2.

Proof of eq. 3.12. For an mb-ploid individual k, Φ(b,k)(b,k) = 1/mb+(1−1/mb)f(b,k) =

(1/mb)[1 + (mb − 1)f(b,k)]. Note that Φ(a,j)(b,k) = 0 if individuals (a, j) and (b, k) are

unrelated. We can then break Φ2 into three components, considering three different

types of pairs of individuals: same group-same individual, same group-different

individual, and different group. Therefore
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Proof of eq. 3.13. First we note that

1− Φ2 =
D(∑g

b=1 nbmb

)2 .
Substituting 1− Φ2 into H̃ (eq. 3.10) gives

H̃ =

(∑g
b=1 nbmb

)2
D

(
1−

I∑
i=1

p̂2i

)
.

Rearranging eq. 3.3 we get

1−
I∑

i=1

p̂2i =

∑g
b=1 nbmb − 1∑g

b=1 nbmb

Ĥ,
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from which

H̃ =

(∑g
b=1 nbmb

)2
D

(∑g
b=1 nbmb − 1∑g

b=1 nbmb

Ĥ

)

=

(∑g
b=1 nbmb

)(∑g
b=1 nbmb − 1

)
D

Ĥ.

3.7 Appendix B

In this section, we present results that aid in the derivation of the variance of our gene

diversity estimator. Lemma III.3 derives certain expectations involving four alleles.

These expectations are used to calculate the variance and covariance of squared allele

frequency estimates in Lemma III.4. Lemma III.4 is then used to prove the variance

formula in Theorem III.2 when related and inbred individuals are included in a sample.

Lemma III.3. Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1]

and
∑I

i=1 pi = 1. Suppose a sample from a population has g groups, each with

different ploidy, and nb mb-ploid individuals in group b, b = 1, 2, . . . , g, each of whom

is possibly inbred and related to other individuals in the sample. Consider the ℓth

allele of individual (a, j), the tth allele of individual (b, k), the ℓ′th allele of individual

(a′, j′), and the t′th allele of individual (b′, k′). For clarity, let w = (a, j), x = (b, k),

y = (a′, j′), and z = (b′, k′). Then for allelic types i and i′ ̸= i,
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E
[
A

(i)
w,ℓA

(i)
x,tA

(i)
y,ℓ′A

(i)
z,t′

]
= Φwxyzpi + [Φwxy + Φwxz + Φwyz + Φxyz + Φwx,yz

+ Φwy,xz + Φwz,xy − 7Φwxyz]p
2
i

+ [12Φwxyz + (Φwx + Φwy + Φwz + Φxy + Φxz + Φyz)

− 3(Φwxy + Φwxz + Φwyz + Φxyz)

− 2(Φwx,yz + Φwy,xz + Φwz,xy)]p
3
i

+ [1 + (Φwx,yz + Φwy,xz + Φwz,xy)

+ 2(Φwxy + Φwxz + Φwyz + Φxyz)− 6Φwxyz

− (Φwx + Φwy + Φwz + Φxy + Φxz + Φyz)]p
4
i (3.22)

E
[
A

(i)
w,ℓA

(i)
x,tA

(i′)
y,ℓ′A

(i′)
z,t′

]
= [Φwx,yz − Φwxyz]pipi′

+ [2Φwxyz + Φwx − (Φwxy + Φwxz)− Φwx,yz]pip
2
i′

+ [2Φwxyz + Φyz − (Φwyz + Φxyz)− Φwx,yz]p
2
i pi′

+ [1 + Φwx,yz + Φwy,xz + Φwz,xy

+ 2(Φwxy + Φwxz + Φwyz + Φxyz)− 6Φwxyz

− (Φwx + Φwy + Φwz + Φxy + Φxz + Φyz)]p
2
i p

2
i′ . (3.23)

Proof. We need to evaluate

E
[
A

(i)
w,ℓA

(i)
x,tA

(i′)
y,ℓ′A

(i′)
z,t′

]
=

15∑
s=1

∆sP
[
A

(i)
w,ℓ = 1, A

(i)
x,t = 1, A

(i′)
y,ℓ′ = 1, A

(i′)
z,t′ = 1

∣∣∣S = s
]
,

where S represents one of the 15 identity states in Figure 3.7 for four alleles—one

from w, one from x, one from y, and one from z—and ∆s is the identity coefficient,

the probability of observing state S = s for four alleles randomly chosen, one from

w, one from x, one from y, and one from z. We can rewrite the identity coefficients

in terms of kinship coefficients by using the following relationships:
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15∑
s=1

∆s = 1

Φwxyz = ∆1

Φwxy = ∆1 +∆2

Φwxz = ∆1 +∆3

Φwyz = ∆1 +∆4

Φxyz = ∆1 +∆5

Φwx,yz = ∆1 +∆6

Φwy,xz = ∆1 +∆9 (3.24)

Φwz,xy = ∆1 +∆12

Φwx = ∆1 +∆2 +∆3 +∆6 +∆7

Φwy = ∆1 +∆2 +∆4 +∆9 +∆10

Φwz = ∆1 +∆3 +∆4 +∆12 +∆13

Φxy = ∆1 +∆2 +∆5 +∆12 +∆14

Φxz = ∆1 +∆3 +∆5 +∆9 +∆11

Φyz = ∆1 +∆4 +∆5 +∆6 +∆8.

Note that the ∆ coefficients above are identical to the δ coefficients in Cockerham

(1971). Also, the Φ coefficients involving two individuals, three individuals, and

pairs of pairs of individuals are identical to Cockerham’s θ, γ, and ∆ coefficients,

respectively (Cockerham, 1971). If i′ = i, we get

E
[
A

(i)
w,ℓA

(i)
x,tA

(i)
y,ℓ′A

(i)
z,t′

]
= ∆1pi + (∆2 +∆3 +∆4 +∆5 +∆6 +∆9 +∆12)p

2
i . (3.25)

If i ̸= i′, we get
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E
[
A

(i)
w,ℓA

(i)
x,tA

(i′)
y,ℓ′A

(i′)
z,t′

]
= ∆6pipi′ +∆7pip

2
i′ +∆8p

2
i pi′ +∆15p

2
i p

2
i′ . (3.26)

The desired result follows by substituting equations (3.24) into equations (3.25) and

(3.26).

Note that expressions mathematically identical to eqs. 3.22 and 3.23 except

with different notation appear in Table 1 of Cockerham (1971). However, a slight

conceptual difference is that our formulas involve an expectation of a product among

four arbitrary alleles, not necessarily four alleles in two pairs of diploid genotypes.

We now use Lemma III.3 to derive V ar[p̂2i ] and Cov(p̂2i , p̂
2
i′).

Lemma III.4. Consider a locus with I distinct alleles, allele frequencies pi ∈ [0, 1]

and
∑I

i=1 pi = 1. Suppose a sample from a population has g groups, each with different

ploidy, and nb mb-ploid individuals in group b, b = 1, 2, . . . , g, each of whom is possibly

inbred and related to other individuals in the sample. Then for allelic types i and

i′ ̸= i,

E
[
p̂4i
]
= Φ4pi + [4Φ3 + 3Φ2,2 − 7Φ4]p

2
i + [12Φ4 + 6Φ2 − 12Φ3 − 6Φ2,2]p

3
i

+ [1 + 3Φ2,2 + 8Φ3 − 6Φ4 − 6Φ2]p
4
i (3.27)

E
[
p̂2i p̂

2
i′

]
= [Φ2,2 − Φ4]pipi′ + [2Φ4 + Φ2 − 2Φ3 − Φ2,2]pip

2
i′

+ [2Φ4 + Φ2 − 2Φ3 − Φ2,2]p
2
i pi′

+ [1 + 3Φ2,2 + 8Φ3 − 6Φ4 − 6Φ2]p
2
i p

2
i′ (3.28)

and therefore
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V ar
[
p̂2i
]
= Φ4pi + [4Φ3 + 3Φ2,2 − 7Φ4 − Φ

2

2]p
2
i

+ [12Φ4 + 4Φ2 + 2Φ
2

2 − 12Φ3 − 6Φ2,2]p
3
i

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]p
4
i (3.29)

Cov
(
p̂2i , p̂

2
i′

)
= [Φ2,2 − Φ4 − Φ

2

2]pipi′ + [2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]pip
2
i′

+ [2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]p
2
i pi′

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]p
2
i p

2
i′ . (3.30)

Proof. Applying the definition of p̂i, we have
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E
[
p̂4i
]
=

1(∑g
b=1 nbmb

)4 g∑
a=1

g∑
b=1

g∑
a′=1

g∑
b′=1

na∑
j=1

nb∑
k=1

na′∑
j′=1

nb′∑
k′=1

ma∑
ℓ=1

mb∑
t=1

ma′∑
ℓ′=1

mb′∑
t′=1

× E
[
A

(i)
(a,j),ℓA

(i)
(b,k),tA

(i)
(a′,j′),ℓ′A

(i)
(b′,k′),t′

]
=

1(∑g
b=1 nbmb

)4 g∑
a=1

g∑
b=1

g∑
a′=1

g∑
b′=1

na∑
j=1

nb∑
k=1

na′∑
j′=1

nb′∑
k′=1

mambma′mb′

×
{
Φ(a,j)(b,k)(a′,j′)(b′,k′)pi

+ [Φ(a,j)(b,k)(a′,j′) + Φ(a,j)(b,k)(b′,k′) + Φ(a,j)(a′,j′)(b′,k′) + Φ(b,k)(a′,j′)(b′,k′)

+ Φ(a,j)(b,k),(a′,j′)(b′,k′) + Φ(a,j)(a′,j′),(b,k)(b′,k′) + Φ(a,j)(b′,k′),(b,k)(a′,j′)

− 7Φ(a,j)(b,k)(a′,j′)(b′,k′)]p
2
i

+ [12Φ(a,j)(b,k)(a′,j′)(b′,k′) + Φ(a,j)(b,k) + Φ(a,j)(a′,j′) + Φ(a,j)(b′,k′)

+ Φ(b,k)(a′,j′) + Φ(b,k)(b′,k′) + Φ(a′,j′)(b′,k′)

− 3(Φ(a,j)(b,k)(a′,j′) + Φ(a,j)(b,k)(b′,k′) + Φ(a,j)(a′,j′)(b′,k′) + Φ(b,k)(a′,j′)(b′,k′))

− 2(Φ(a,j)(b,k),(a′,j′)(b′,k′) + Φ(a,j)(a′,j′),(b,k)(b′,k′) + Φ(a,j)(b′k′),(b,k)(a′,j′))]p
3
i

+ [1 + Φ(a,j)(b,k),(a′,j′)(b′,k′) + Φ(a,j)(a′,j′),(b,k)(b′,k′) + Φ(a,j)(b′,k′),(b,k)(a′,j′)

+ 2(Φ(a,j)(b,k)(a′,j′) + Φ(a,j)(b,k)(b′,k′) + Φ(a,j)(a′,j′)(b′,k′) + Φ(b,k)(a′,j′)(b′,k′))

− 6Φ(a,j)(b,k)(a′,j′)(b′,k′)

− (Φ(a,j)(b,k) + Φ(a,j)(a′,j′) + Φ(a,j)(b′,k′) + Φ(b,k)(a′,j′) + Φ(b,k)(b′,k′)

+ Φ(a′,j′)(b′,k′))]p
4
i

}
= Φ4pi + [4Φ3 + 3Φ2,2 − 7Φ4]p

2
i + [12Φ4 + 6Φ2 − 12Φ3 − 6Φ2,2]p

3
i

+ [1 + 3Φ2,2 + 8Φ3 − 6Φ4 − 6Φ2]p
4
i .

For the case with alleles i and i′ ̸= i, we have

81



E
[
p̂2i p̂

2
i′

]
=

1(∑g
b=1 nbmb

)4 g∑
a=1

g∑
b=1

g∑
a′=1

g∑
b′=1

na∑
j=1

nb∑
k=1

na′∑
j′=1

nb′∑
k′=1

ma∑
ℓ=1

mb∑
t=1

ma′∑
ℓ′=1

mb′∑
t′=1

× E
[
A

(i)
(a,j),ℓA

(i)
(b,k),tA

(i′)
(a′,j′),ℓ′A

(i′)
(b′,k′),t′

]
=

1(∑g
b=1 nbmb

)4 g∑
a=1

g∑
b=1

g∑
a′=1

g∑
b′=1

na∑
j=1

nb∑
k=1

na′∑
j′=1

nb′∑
k′=1

mambma′mb′

×
{
[Φ(a,j)(b,k),(a′,j′)(b′,k′) − Φ(a,j)(b,k)(a′,j′)(b′,k′)]pipi′

+ [2Φ(a,j)(b,k)(a′,j′)(b′,k′) + Φ(a,j)(b,k)

− (Φ(a,j)(b,k)(a′,j′) + Φ(a,j)(b,k)(b′,k′))− Φ(a,j)(b,k),(a′,j′)(b′,k′)]pip
2
i′

+ [2Φ(a,j)(b,k)(a′,j′)(b′,k′) + Φ(a′,j′)(b′,k′)

− (Φ(a,j)(a′,j′)(b′,k′) + Φ(b,k)(a′,j′)(b′,k′))− Φ(a,j)(b,k),(a′,j′)(b′,k′)]p
2
i pi′

+ [1 + Φ(a,j)(b,k),(a′,j′)(b′,k′) + Φ(a,j)(a′,j′),(b,k)(b′,k′) + Φ(a,j)(b′,k′),(b,k)(a′,j′)

+ 2(Φ(a,j)(b,k)(a′,j′) + Φ(a,j)(b,k)(b′,k′) + Φ(a,j)(a′,j′)(b′,k′) + Φ(b,k)(a′,j′)(b′,k′))

− 6Φ(a,j)(b,k)(a′,j′)(b′,k′)

− (Φ(a,j)(b,k) + Φ(a,j)(a′,j′) + Φ(a,j)(b′,k′) + Φ(b,k)(a′,j′) + Φ(b,k)(b′,k′)

+ Φ(a′,j′)(b′,k′))]p
2
i p

2
i′

}
= [Φ2,2 − Φ4]pipi′ + [2Φ4 + Φ2 − 2Φ3 − Φ2,2]pip

2
i′

+ [2Φ4 + Φ2 − 2Φ3 − Φ2,2]p
2
i pi′

+ [1 + 3Φ2,2 + 8Φ3 − 6Φ4 − 6Φ2]p
2
i p

2
i′ .

Applying the definition of variance, we have
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V ar
[
p̂2i
]
= E

[
p̂4i
]
−
(
E
[
p̂2i
])2

= Φ4pi + [4Φ3 + 3Φ2,2 − 7Φ4]p
2
i + [12Φ4 + 6Φ2 − 12Φ3 − 6Φ2,2]p

3
i

+ [1 + 3Φ2,2 + 8Φ3 − 6Φ4 − 6Φ2]p
4
i −

[
Φ2pi(1− pi) + p2i

]2
= Φ4pi + [4Φ3 + 3Φ2,2 − 7Φ4 − Φ

2

2]p
2
i + [12Φ4 + 4Φ2 + 2Φ

2

2 − 12Φ3 − 6Φ2,2]p
3
i

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]p
4
i .

Applying the definition of covariance, we have

Cov
(
p̂2i , p̂

2
i′

)
= E

[
p̂2i p̂

2
i′

]
− E

[
p̂2i
]
E
[
p̂2i′
]

= [Φ2,2 − Φ4]pipi′ + [2Φ4 + Φ2 − 2Φ3 − Φ2,2]pip
2
i′

+ [2Φ4 + Φ2 − 2Φ3 − Φ2,2]p
2
i pi′

+ [1 + 3Φ2,2 + 8Φ3 − 6Φ4 − 6Φ2]p
2
i p

2
i′

−
[
Φ2pi(1− pi) + p2i

][
Φ2pi′(1− pi′) + p2i′

]
= [Φ2,2 − Φ4 − Φ

2

2]pipi′ + [2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]pip
2
i′

+ [2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]p
2
i pi′

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]p
2
i p

2
i′ .

We now utilize Lemma III.4 to prove Theorem III.2.

Proof of Theorem III.2. Applying the definition of variance, we have
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V ar

[
1−

I∑
i=1

p̂2i

]
=

I∑
i=1

I∑
i′=1

Cov
(
p̂2i , p̂

2
i′

)
=

I∑
i=1

V ar
[
p̂4i
]
+ 2

I−1∑
i=1

I∑
i′=i+1

Cov
(
p̂2i , p̂

2
i′

)
=

I∑
i=1

{
Φ4pi + [4Φ3 + 3Φ2,2 − 7Φ4 − Φ

2

2]p
2
i

+ [12Φ4 + 4Φ2 + 2Φ
2

2 − 12Φ3 − 6Φ2,2]p
3
i

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]p
4
i

}
+ 2

I−1∑
i=1

I∑
i′=i+1

{
[Φ2,2 − Φ4 − Φ

2

2]pipi′ + [2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]pip
2
i′

+ [2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]p
2
i pi′

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]p
2
i p

2
i′

}
= Φ4 + [4Φ3 + 3Φ2,2 − 7Φ4 − Φ

2

2]
I∑

i=1

p2i

+ [12Φ4 + 4Φ2 + 2Φ
2

2 − 12Φ3 − 6Φ2,2]
I∑

i=1

p3i

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]
I∑

i=1

p4i

+ 2[Φ2,2 − Φ4 − Φ
2

2]
I−1∑
i=1

I∑
i′=i+1

pipi′

+ 2[2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]
I−1∑
i=1

I∑
i′=i+1

pip
2
i′

+ 2[2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]
I−1∑
i=1

I∑
i′=i+1

p2i pi′

+ 2[3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]
I−1∑
i=1

I∑
i′=i+1

p2i p
2
i′ .

Simplifying, we get
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V ar

[
1−

I∑
i=1

p̂2i

]
= Φ4 + 2[2Φ3 + Φ2,2 − 3Φ4]

I∑
i=1

p2i + 4[2Φ4 + Φ2 − 2Φ3 − Φ2,2]
I∑

i=1

p3i

+ [Φ2,2 − Φ4 − Φ
2

2]

(
I∑

i=1

p2i + 2
I−1∑
i=1

I∑
i′=i+1

pipi′

)

+ [2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]

(
2

I∑
i=1

p3i + 2
I−1∑
i=1

I∑
i′=i+1

[p2i pi′ + pip
2
i′ ]

)

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]

(
I∑

i=1

p4i + 2
I−1∑
i=1

I∑
i′=i+1

p2i p
2
i′

)

= Φ4 + 2[2Φ3 + Φ2,2 − 3Φ4]
I∑

i=1

p2i + 4[2Φ4 + Φ2 − 2Φ3 − Φ2,2]
I∑

i=1

p3i

+ [Φ2,2 − Φ4 − Φ
2

2]
I∑

i=1

I∑
i′=1

pipi′

+ 2[2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]
I∑

i=1

I∑
i′=1

p2i pi′

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]
I∑

i=1

I∑
i′=1

p2i p
2
i′

= Φ4 + 2[2Φ3 + Φ2,2 − 3Φ4]
I∑

i=1

p2i + 4[2Φ4 + Φ2 − 2Φ3 − Φ2,2]
I∑

i=1

p3i

+ [Φ2,2 − Φ4 − Φ
2

2]

(
I∑

i=1

pi

)2

+ 2[2Φ4 + Φ
2

2 − 2Φ3 − Φ2,2]

(
I∑

i=1

p2i

)(
I∑

i=1

pi

)

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]

(
I∑

i=1

p2i

)2

= Φ2,2 − Φ
2

2 + 2[Φ
2

2 − Φ4]
I∑

i=1

p2i + 4[2Φ4 + Φ2 − 2Φ3 − Φ2,2]
I∑

i=1

p3i

+ [3Φ2,2 + 8Φ3 − 6Φ4 − 4Φ2 − Φ
2

2]

(
I∑

i=1

p2i

)2

.

Applying the identity V ar[(1−
∑I

i=1 p̂
2
i )/(1−Φ2)] = V ar[1−

∑I
i=1 p̂

2
i ]/(1−Φ2)

2 gives
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eq. 3.15.

It is interesting (and convenient) that although the derivation requires the use of all

15 ∆ coefficients, the only coefficients required in the variance formula are Φ2, Φ3, Φ4,

and Φ2,2. The 15 ∆ coefficients in Figure 3.7 completely specify the 14 Φ coefficients

in eq. 3.24 (along with the 15th Φ coefficient equal to ∆15). Through symmetry of

the six Φ coefficients involving two individuals, symmetry of the four Φ coefficients

involving three individuals, and symmetry of the three Φ coefficients involving pairs

of pairs of individuals, by averaging over sets of individuals, the variance of gene

diversity becomes a function of only four average Φ coefficients.
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Figure 3.7: Identity states. Two alleles (dots) are identical by descent if and only if
there is a line connecting them. This figure is similar to Figure 6.2 of
Jacquard (1974) and has been reproduced here for convenience.
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CHAPTER IV

Explaining worldwide patterns of human genetic

variation using a coalescent-based serial founder

model of migration outward from Africa

4.1 Introduction

The nature of the origin and geographic spread of anatomically modern humans

has been the focus of much recent interest in anthropology and genetics (Wolpoff et al.,

2000; Stringer , 2002; Cavalli-Sforza and Feldman, 2003;Klein, 2008; Relethford , 2008;

Weaver and Roseman, 2008), with considerable effort having been centered on the

potential contribution of archaic hominids to the modern human gene pool (Serre

et al., 2004; Garrigan and Hammer , 2006; Green et al., 2006; Noonan et al., 2006;

Plagnol and Wall , 2006; Herrera et al., 2009). Within this context, population-genetic

studies have examined a variety of aspects of worldwide human variation, identifying

several striking geographical patterns in statistics that describe human genetic

diversity (Fig. 4.1). First, the level of genetic variation, as measured by heterozygosity,

exhibits a linear decline as a function of geographic distance from Africa (Prugnolle

et al., 2005; Ramachandran et al., 2005; Li et al., 2008). Second, LD increases linearly

as a function of geographic distance from Africa (Jakobsson et al., 2008). Third, the

ancestral allele frequency spectrum “flattens” with increasing geographic distance
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from Africa, indicating that derived alleles tend to be more frequent in populations

at a greater distance away from Africa (Li et al., 2008).

These three patterns point to an important role for Africa in the history of human

genetic variation. Thus, many models involving migrations outward from Africa have

been proposed for providing simulation-based explanations of geographical patterns

in human genetic data. This collection of models includes coalescent-based migration

models that proceed retrospectively in time and that are easily simulated, but

that involve relatively few populations, each of which typically represents a large

geographic region (Plagnol and Wall , 2006; Takahata et al., 2001; Schaffner et al.,

2005; Fagundes et al., 2007). It also includes models that permit complex phenomena

and multiple populations per continent through a prospective approach, but that are

often limited in terms of computation time and applicability to statistical inference

(Ramachandran et al., 2005; Eswaran, 2002; Liu et al., 2006; Deshpande et al., 2009).

One model that has performed well in explaining the decline of heterozygosity with

increasing distance from Africa is a model of serial founder events beginning from an

African origin (Ramachandran et al., 2005; Deshpande et al., 2009; Hunley et al.,

2009). In this model, starting with a single source population, a new population

is formed from a subset of the individuals in the founding population. The new

population experiences a bottleneck, in that it is founded by a small group. It grows to

a larger size, after which a subset of the population becomes the founding group for a

third population. The founding process is then iterated (Fig. 7.1A). Simulations of the

serial founder model in a prospective framework produce a decrease of heterozygosity

in each subsequent group, so that heterozygosity appears to decline linearly with the

number of colonization steps from the source population. Intuitively, when a new

colony is founded, it carries only a subset of the diversity from the previous colony,

and therefore, a heterozygosity decrease occurs. Thus, it has been shown that if

the source is placed in Africa, then the prediction of serial founder models matches
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the observed pattern of heterozygosity (Ramachandran et al., 2005; Deshpande et al.,

2009; Hunley et al., 2009). It has also been suggested that the serial founder model

can explain worldwide patterns in LD and the ancestral allele frequency spectrum (Li

et al., 2008; Jakobsson et al., 2008), although these claims have not yet been verified

in simulations of the model.

Here, we develop a retrospective coalescent approach that enables a generalization

of the serial founder model. As few models of human range expansions have

considered linked loci (Hellenthal et al., 2008), our approach makes it possible to

examine a broader variety of patterns than have been studied in most out-of-Africa

models. Rather than performing formal statistical inference under our new general

model, we aim to determine whether the model qualitatively accords with worldwide

trends in human genetic variation. We indeed find that the new model provides

explanations not only of geographic patterns of heterozygosity, but also of patterns

of LD and the ancestral allele frequency spectrum. The model accommodates

migration between neighboring colonies and admixture between modern and archaic

populations; through the introduction of two additional models, an archaic persistence

model and an instantaneous divergence model, we discuss the extent to which these

phenomena are compatible with worldwide variation patterns.

4.2 Results

4.2.1 Overview of models

Our serial founder model is a special case of a more general model (Fig. 7.1A).

In our serial founder model, each of K populations, numbered with increasing

distance from a founding group (population 1), has present population size N

diploid individuals. The divergence time of populations 1 and 2, tD generations

ago, represents the time of formation of a second modern human population. The
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model proceeds as a series of founding events in which a group of individuals

migrates from the most recently founded colony to form a new colony. Because

each founding group is small compared to its source, when a new colony k is founded,

it undergoes a bottleneck of size Nb < N individuals lasting Lb generations. It

then immediately expands to size N . After L generations, a group of individuals

migrates from colony k to found population k + 1. Population divergence times are

arranged such that founding events occur at intervals of tD/(K − 1) generations.

Thus, L+ Lb = tD/(K − 1).

To include migration between neighboring populations, as in Deshpande et al.

(2009), we add symmetric migration between neighbors at rate M = 4Nm, where m

is the per-generation fraction of a population consisting of new migrants. Backward

in time, population k sends migrants to populations k − 1 and k + 1, each with rate

M , and populations k−1 and k+1 send migrants to population k, each with rate M .

Migration only involves populations that have already been founded, so that during

the stage when population k is the newest population, it only experiences migration

with one colony instead of two. Populations 1 and K never experience migration with

two populations during the entire time of their existence.

In our general model, an archaic population diverges at time tAD generations (tAD >

tD) to form a population of constant diploid size NA individuals. After a period of

isolation, the archaic population admixes with a single modern population k∗ at rate

γ so that at time tAdmix generations, the probability that a lineage from population

k∗ enters the archaic population is γ going back in time. Admixture occurs L/2

generations after population k∗ expands to size N .

4.2.2 Simulations

Sets of K populations under the basic serial founder model, the migration model,

and the archaic admixture model were simulated using the coalescent simulator MS
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(Hudson, 2002). For each model, parameter values that produced representative

phenomena were selected within plausible ranges. Each population sample consisted

of n 100 kb chromosomes, randomly paired to create n/2 diploid individuals. We used

a 25-year generation time, a sequence length SL = 105 bases, a per-base mutation rate

µs = 2.5×10−9, a per-base recombination rate rs = 2.50025×10−9, and a population

size N = 10, 000. These values produce a population mutation rate θ = 4Nµ = 10,

where µ = SLµs, and a population recombination rate ρ = 4Nr = 10, where r =

(SL − 1)rs. For each model, we simulated 5,000 datasets of K = 100 populations,

each with a sample of size n = 50. Heterozygosity, LD, and the slope of the ancestral

allele frequency spectrum were calculated for each dataset, and weighted averages

were taken over replicate simulations to produce final values of the statistics (see

Methods).

4.2.3 Basic model

We first examined a basic serial founder model with tD = 2, 079 (51.975 kya), with

no migration between neighbors and no archaic admixture. We used a bottleneck size

of Nb = 250, a bottleneck length of Lb = 2, and a time length between a population

expansion and the founding of a new colony of L = 19. These choices were largely

designed to mimic values used in past simulations (Ramachandran et al., 2005; Liu

et al., 2006).

Under this model, Fig. 4.4A displays a linear decline in heterozygosity with

increasing colony number. The heterozygosities are small, because they are means

over all segregating sites, and many sites are monomorphic within a given population

sample. However, the qualitative pattern matches that seen in data (Fig. 4.1A) and

in forward simulations (Ramachandran et al., 2005; Liu et al., 2006; Deshpande et al.,

2009). The LD decay with increasing distance along a chromosome has a pattern

in which populations far from the parental colony have the highest LD (Fig. 4.4B).
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Focusing on LD at 10 kb, a linear LD increase with increasing colony number is

apparent (Fig. 4.4C). We can also observe a flattening of the ancestral allele frequency

spectrum with increasing colony number, as reflected in a decline in the regression

slope of this spectrum on ancestral allele frequency (Fig. 4.4D). Thus, the serial

founder model produces LD patterns and ancestral allele frequency spectra that match

those observed in data (Fig. 4.1).

Migration

We next added symmetric migration to our basic model, with rate M = 4Nm

between neighboring colonies, holding all other parameters the same. To represent

higher and lower migration rates, we considered M = 40 and M = 1.

Figs. 4.5 and 4.6 show, as was observed in the case of no migration, that as colony

number increases there is a decline in heterozygosity, an increase in LD, and a decline

in the slope of the ancestral allele frequency spectrum. These results suggest that the

migration parameter does not have a major effect on the qualitative patterns, and

that inclusion of migration only slightly alters the patterns observed with bottlenecks

alone.

One possible reason for a stronger influence of bottlenecks compared to migration

is that in the time scale of the model—with recent bottlenecks followed by short

periods of migration—migration between neighbors might not move ancestral lineages

very far from their original locations. Instead of being located during the bottleneck

at the founding of the population from which two lineages are sampled, the common

ancestor for a pair of lineages might be located during a bottleneck only a few steps

earlier in the serial expansion. Although migration increases the coalescence time of

a random pair of lineages from a population relative to the corresponding time in the

model without migration, the extra time to coalescence caused by migration might

typically be quite small.
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A heterozygosity peak visible in the first few populations (Fig. 4.5A) is likely

to result from edge effects. Central populations receive more diverse migrants than

edge populations, because migration brings in distant lineages from both sides. In

a similar model in which a linearly-arrayed population has persisted for a long time

(Wilkins and Wakeley , 2002), diversity is greatest at the center, because the ancestors

of lineages in the center typically wander over a greater range before coalescing. In

our model, the fact that central populations originate more recently than populations

near the source lessens this effect, because lineages from groups near the source have

been through fewer bottlenecks than lineages in the middle and might therefore have

deeper coalescence times. As a result of the competing effects of bottlenecks and

migration, the highest diversity occurs in populations located between the source and

the center.

4.2.4 Archaic admixture

We next added archaic admixture to the basic model, using NA = 1, 000 for the

size of the archaic population, tAD = 16, 000 (400 kya) for the splitting time of the

modern and archaic populations, and tAdmix = 1584.5 (39.6125 kya) for the time of

admixture. Archaic admixture occurred in modern population k∗ = 25, with fraction

γ of this population instantaneously taken from the archaic population at time tAdmix.

The parameter choices reflect a model of admixture of a European modern population

and Neanderthals, with admixture occurring halfway between the end of one founding

event and the beginning of the next founding event. The time and extent of admixture

were chosen to have similar values to those employed in previous models (Noonan

et al., 2006; Plagnol and Wall , 2006).

In Fig. 4.7, admixture with γ = 0.05 leads to patterns in heterozygosity, LD,

and the slope of the ancestral allele frequency spectrum similar to those observed

in the basic serial founder model. However, archaic admixture causes an increase
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in heterozygosity and a decrease in LD that occur at population 25 and that are

carried into subsequent populations. Heterozygosity increases at population 25

because admixture brings in archaic lineages distinct from the modern lineages in

that population. The LD decrease at population 25 results from the way in which

bottlenecks and admixture interact in our model. Bottlenecks increase the genetic

drift experienced by a population, and genetic drift increases short-range LD (Slatkin,

2008). Admixture can also inflate LD, particularly long-range LD (Plagnol and Wall ,

2006), as allelic correlations at distant loci can arise via the separate sets of haplotypes

contained in the distinct groups ancestral to a population. If the effect of bottlenecks

in producing LD is stronger than the effect of admixture, then including admixture in

the model causes short-range LD to be smaller in the first population that experiences

the admixture than in the previous population in the series.

Increasing the admixture fraction to γ = 0.1 further increases heterozygosity and

decreases short-range LD at population 25 (Fig. 4.8). The slope of the ancestral allele

frequency spectrum increases at population 25, causing a discontinuity that was less

visible at population 25 in the case of γ = 0.05. This jump occurs because population

25 receives an influx of ancestral haplotypes from the archaic population, thereby

increasing both the frequencies of ancestral alleles and the slope of the ancestral

allele frequency spectrum. With larger γ, the amount of LD in population 25 at long

physical distances is larger (Fig. 4.9), compatible with the greater effect of admixture

on long-range LD compared to that of bottlenecks.

4.2.5 Archaic persistence model

To examine if an admixture model with substantially greater contributions from

archaic populations can explain patterns in heterozygosity, LD, and the ancestral

allele frequency spectrum, we developed an “archaic persistence model” to reflect a

scenario in which modern humans originate from one archaic population and then
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expand into a collection of preexisting archaic populations.

In this model (Fig. 7.1B), K populations, each with size N diploid individuals,

diverge tD generations ago, and each experiences subsequent migration with its

immediate neighbors at rate M in each direction. At t1 generations in the past,

looking forward in time, population 1 sends a large wave of migrants to population 2

over a series of Lw generations. Backward in time, this wave corresponds to a change

from M to W in the backward migration rate from population 2 to population 1, so

that a fraction W/(4N) of population 2 is drawn from population 1 in each of the Lw

generations. For each k, population k sends a similar (forward) wave to population

k + 1 at tk generations in the past.

Using MS, we simulated 5,000 datasets with K = 100, N = 1, 000, n = 50,

M = 0.1, tD = 40, 000, and tk = 2, 079 − 21(k − 1). The value for tk matches the

founding time for population k + 1 in our basic serial founder simulations. Each

wave lasts Lw = 2 generations, matching our serial founder bottleneck length, and

sends 250 migrants per generation (W = 1, 000). The parameter choices reflect a

scenario in which archaic humans spread ∼1 million years ago and modern humans

arose via admixture of archaic populations with descendants of a recent expansion

out of Africa.

In contrast to the basic serial founder model, the archaic persistence model

produces patterns opposite to those observed in human data (Fig. 4.10).

Heterozygosity increases, LD decreases, and the ancestral allele frequency spectrum

slope increases with increasing colony number. These results can be understood from

the fact that in the long time since the initial divergence, the K archaic populations

have enough time to develop distinctive localized variants. As the migration wave

travels through them, it accumulates diversity, gathering new variants from each

population through which it passes. Thus, heterozygosity increases with increasing

colony number in the same way that it increases in the archaic admixture model at the
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population in which admixture occurs. The difference between models lies in the fact

that in the archaic persistence model, archaic admixture occurs in every population,

so that heterozygosity increases at each step rather than at a single location. This

occurrence of archaic admixture at each step also explains the decrease in LD and

increase in the slope of the ancestral allele frequency spectrum that occur at each

step. Deviations in the initial and final colonies from the general patterns are likely

due to edge effects; the linear arrangement of populations prevents edge populations

from accumulating the same level of diversity prior to the migration wave as that

accumulated in central populations.

4.2.6 Instantaneous divergence model

A key feature of the serial founder model is that compared with an earlier

colony in the series, a subsequent colony has fewer ancestors over a longer period

of time in its history. Thus, to assess if a decline in effective size can explain

patterns in heterozygosity, LD, and the ancestral allele frequency spectrum, we

devised an instantaneous divergence model that captures this effective size reduction

without explicitly modeling bottlenecks. This model, which itself is implausible as a

description of human migrations, can help illuminate the features of the serial founder

model that allow it to explain observed patterns.

Our instantaneous divergence model (Fig. 7.1C) has K populations each with

a different constant size, chosen so that the total elapsed coalescent time for

population k since the divergence equals that elapsed for population k since initial

divergence in the basic serial founder model. The cumulative coalescent intensity

from the present back tD generations of a variable-sized population whose size

was N(s) at s generations in the past is
∫ tD
0

1/N(s) ds (Sjodin et al., 2005).

The corresponding cumulative intensity from the present back tD generations of a

population of constant size Nk is
∫ tD
0

1/Nkds = tD/Nk. Setting the intensities of
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the variable-sized and constant-sized populations equal, a population of constant

size Nk = tD/
∫ tD
0

1/N(s) ds experiences the same length in coalescent time as a

variable-sized population with size function N(s). In our basic serial founder model,

bottlenecks last Lb generations, and during a bottleneck, a population has constant

size Nb. Therefore, for each bottleneck, the elapsed coalescent time is Lb/Nb. Because

population k experiences k − 1 bottlenecks, the cumulative coalescent time elapsed

during bottlenecks is (k− 1)Lb/Nb. Similarly, the cumulative coalescent time outside

of bottlenecks is [tD−(k−1)Lb]/N . Thus, we assign population k in the instantaneous

divergence model size

Nk =
tD

[tD − (k − 1)Lb]/N + (k − 1)Lb/Nb

, (4.1)

where N , Nb, and Lb are as in the serial founder model.

For this model, using MS, we simulated 5,000 datasets with K = 100 and n = 50.

The divergence between the K populations occurred at tD = 2, 079 (51.975 kya).

The ancestral population had size N = 10, 000 diploid individuals, and for each k,

population k had size Nk (eq. 4.1).

Comparing Figs. 4.4 and 4.11, the serial founder and instantaneous divergence

models display nearly identical patterns and ranges of values for heterozygosity,

LD, and the slope of the ancestral allele frequency spectrum. This concordance

has the interpretation that the worldwide genetic patterns observed in human

populations can be explained by a decrease in the cumulative number of ancestors

of a population—that is, an increase in genetic drift and in total elapsed coalescent

time—with increasing distance from the source. Thus, the utility of this instantaneous

divergence model is that it provides an explanation for the success of the more realistic

serial founder model in describing worldwide patterns of variation.
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4.3 Discussion

In this paper we have developed a general coalescent-based serial founder model

that incorporates linked loci, providing a versatile tool for generating and testing

hypotheses about features of human population-genetic data. Using several cases

of the model, we examined heterozygosity, LD, and the ancestral allele frequency

spectrum, mimicking computations performed in past data analyses. If the source

population is placed in Africa, then the serial founder model explains three patterns

observed in data: a decrease in heterozygosity, increase in LD, and decrease in the

slope of the ancestral allele frequency spectrum with increasing distance from Africa.

Our use of an instantaneous divergence model suggests that the patterns observed

in the data—and the success of the serial founder model—are due to an increase in

genetic drift and a corresponding increase in elapsed coalescence time with increasing

distance from Africa. Unlike the serial founder model, an archaic persistence model,

in which a migration wave of modern humans into preexisting archaic populations

has the effect of increasing the diversity of the ancestors for populations at a greater

distance from Africa, does not produce increasing drift with increasing distance from

Africa, and does not explain observed patterns.

We considered a variant of the basic serial founder model that included migration

between neighboring populations, finding that migration did not have a large impact

on the decrease in heterozygosity, increase in LD, and decrease in the slope of

the ancestral allele frequency spectrum that were observed from the basic model.

However, an increased migration rate caused a peak in the level of heterozygosity to

appear in populations near the founding colony rather than in the founding colony

itself. This result suggests that when using patterns of diversity to pinpoint the

origin of an expansion in a serial founder framework (Ramachandran et al., 2005;

Tishkoff et al., 2009), the site of origin might reside in a neighboring population to

the highest-diversity population, rather than in the highest-diversity population itself.
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We examined the effect of limited archaic admixture on the serial founder

model and found that it increased heterozygosity, decreased short-range LD, and

increased the slope of the ancestral allele frequency spectrum, starting at the admixed

population. The LD decrease contrasts with the results of Plagnol and Wall (2006),

who found that archaic admixture was needed to inflate the level of LD to match

that observed in Europeans at intermediate physical distances. Note, however, that

whereas we considered the standard r2 LD statistic using all loci with minor allele

frequency ≥0.05, Plagnol & Wall focused on a statistic specifically designed to be

sensitive to archaic admixture, and applied it to a different restricted class of SNPs.

Differences in results might also have arisen from modeling differences, such as in

the values used for the time of admixture, population size, and bottleneck size. As

the effect we observed for archaic admixture on LD was relatively weak, our LD

summaries might not be informative enough to empirically detect archaic admixture.

More generally, the relative similarity of predictions of the basic serial founder,

migration, archaic admixture, and instantaneous divergence models suggests that it

is difficult to distinguish these models solely using the summary statistics that we

have considered. Thus, although a serial founder model is supported by the analysis,

many alternatives cannot be excluded. However, the archaic persistence model, whose

predictions disagree with the patterns in the data, is not in this collection. Because

a migration wave of modern humans in this model carries an increasing diversity

of archaic contributions into subsequent populations, this model does not possess

the essential feature that permits other models to explain observed patterns, namely

an increase in genetic drift with distance from the source. Use of unequal sizes for

persisting archaic populations, however, might have produced patterns with greater

similarity to those produced by a serial founder model (Weaver and Roseman, 2008;

Relethford , 1998). If archaic population sizes had instead decreased with increasing

colony number, via an archaic serial founder process, then the production by archaic
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persistence of patterns opposite to those in the data might have been offset by an

archaic serial founder increase in genetic drift with increasing distance from a founding

archaic colony.

Such a scenario is likely implausible, as an archaic serial founder process is not

expected to have similar behavior to the modern analog that we have analyzed. Let

tD grow in a serial founder model with migration while holding Lb and L constant.

We expect lineages from each population to find common ancestors before any

population split or bottleneck is reached. The model would then approximate the

finite linear population model of Wilkins and Wakeley (2002), for which predictions

differ substantially from those of the serial founder model with migration. The

finite linear model predicts that the center of the range receives diverse migrants

and therefore has the highest diversity, whereas in the serial founder model with

migration, populations near the founding colony have the highest diversity. Thus,

although some flexibility exists in the parameters that allow the serial founder model

to match observed data, and although we have only explored a small part of the

parameter space, consideration of archaic persistence suggests that the model cannot

be made too different and still explain the patterns in the data.

4.4 Materials and Methods

4.4.1 Heterozygosity

For the heterozygosity of a population in one simulation we used the standard

unbiased estimator (Nei and Roychoudhury , 1974), averaged over all loci polymorphic

in the set of K populations. We then calculated a weighted average across simulations

of the mean heterozygosity across loci. We used the proportion of segregating sites in

a simulated dataset (segregating in the whole simulated set of K populations) relative

to the total number of segregating sites from all 5,000 simulated datasets as weights.
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4.4.2 Linkage disequilibrium

For each population we calculated the r2 LD statistic (Slatkin, 2008) between all

distinct pairs of sites with minor allele frequency ≥ 5% in that population. For each

simulation, using the distance between the two sites in a pair, we placed r2 values

into 1 kb bins representing physical distances in the ranges [0 kb, 1 kb), . . . , [99 kb,

100 kb). In each population we obtained an average of all r2 values in each bin. We

then computed an average r2 across simulations, weighting the results of a simulation

by the proportion of r2 comparisons performed for that simulated dataset in that

population relative to the total number of r2 comparisons in that population from all

5,000 simulations. The [9 kb, 10 kb) bin was used to indicate LD at 10 kb.

4.4.3 Ancestral allele frequency spectrum

In computing the slope of the ancestral allele frequency spectrum as a function

of allele frequency, we modified the method of Li et al. (2008) using resampling

to evade a discreteness effect in which some frequency bins contain more markers

than others due to more discrete frequencies being assigned to those specific bins.

We used ancestral and derived allele assignments from Li et al. (2008) for 407,001

autosomal markers in the data of Jakobsson et al. (2008). For each population, for

each locus, we computed ancestral allele frequency using 1000 random draws from

the empirical allele frequency distribution. Loci were binned by ancestral frequency

into 20 bins, representing [0/20, 1/20), [1/20, 2/20), . . ., [19/20, 20/20]. For each

population, bin counts were normalized by the total number of loci. The slope of the

linear regression of the normalized frequency spectrum on ancestral allele frequency

was then computed using bins centered at 9/40 to 31/40 (similarly to the use by Li

et al. (2008) of frequencies 1/5 to 4/5).

For the corresponding computation from our simulations, we used n + 1 bins, so

that if a locus had the ancestral allele occurring i times, then the count for bin i/n was
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incremented. For a given simulation, for each population, counts were normalized by

the number of segregating sites in that simulation. For each population, the slope of

the linear regression of normalized frequency spectrum on ancestral allele frequency

was computed using bins 10/50 through 40/50. In each population, we calculated an

average slope cross simulations, weighting the value for a simulation by the proportion

of segregating sites observed in that simulated dataset relative to the total number

of segregating sites from all simulated datasets.
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Figure 4.5: Patterns of heterozygosity, LD, and the ancestral allele frequency
spectrum in simulations of the serial founder model with symmetric
migration at rate M = 40 between neighboring populations. All other
parameters are the same as in Fig 4.4.
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Figure 4.6: Patterns of heterozygosity, LD, and the ancestral allele frequency
spectrum in simulations of the serial founder model with symmetric
migration at rate M = 1 between neighboring populations. All other
parameters are the same as in Fig 4.4.
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Figure 4.7: Patterns of heterozygosity, LD, and the ancestral allele frequency
spectrum in simulations of the serial founder model with archaic
admixture. The model incorporates archaic admixture with an admixture
fraction γ = 0.05 of population 25 deriving from the archaic population.
All other parameters are the same as in Fig. 4.4.
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Figure 4.8: Patterns of heterozygosity, LD, and the ancestral allele frequency
spectrum in simulations of the serial founder model with archaic
admixture. The model incorporates archaic admixture with an admixture
fraction γ = 0.1 of population 25 deriving from the archaic population.
All other parameters are the same as in Fig. 4.4.
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serial founder model with archaic admixture at rate γ. The simulation
proceeded in the saw was as in Fig. 4.7, except that longer regions were
simulated (1 Mb).
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Figure 4.10: Patterns of heterozygosity, LD, and the ancestral allele frequency
spectrum in simulations of the archaic persistence model. (A)
Heterozygosity as a function of colony number. B) LD measured by
r2 as a function of physical distance in kb. (C ) LD at 10 kb measured
by r2 as a function of colony number. (D) Slope of the ancestral allele
frequency spectrum in the range of 20% to 80% ancestral allele frequency
as a function of colony number.
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Figure 4.11: Patterns of heterozygosity, LD, and the ancestral allele frequency
spectrum in simulations of the instantaneous divergence model. (A)
Heterozygosity as a function of colony number. (B) LD measured by
r2 as a function of physical distance in kb. (C ) LD at 10 kb measured
by r2 as a function of colony number. (D) Slope of the ancestral allele
frequency spectrum in the range of 20% to 80% ancestral allele frequency
as a function of colony number.
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CHAPTER V

Coalescence-time distributions in a serial founder

model of human evolutionary history

5.1 Introduction

Equilibrium population structure models in population genetics, which assume

that the rules specifying the evolution of alleles within and among populations do

not change with time, have achieved much success in describing genetic variation.

Although equilibrium models are convenient for obtaining analytical results that can

be used to test hypotheses and predict patterns of genetic variation, non-equilibrium

models often provide more realistic representations of patterns that occur in real

populations. Non-equilibrium models assume that the rules specifying the evolution of

alleles within and among populations change as a function of time. In non-equilibrium

models, however, except in a small number of cases (e.g., Takahata et al., 1995;

Wakeley , 1996b,c,a; Jesus et al., 2006; Efromovich and Kubatko, 2008), analytical

formulas have been somewhat scarce because model complexity can make them

difficult to obtain.

Recently, a non-equilibrium structured population model, the “serial founder

model,” has been proposed for describing the colonization of the world by modern

humans (Ramachandran et al., 2005). The colonization process in this model starts
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with a single source population. The source population sends a subset of its

individuals to migrate outward and found a new population. This newly founded

population has a small size at its founding and subsequently expands to a larger

size. After expanding to a larger size, it then sends out migrants to form the next

population. The founding process is iterated until K populations have been founded.

The appeal of this model is that using both forward (Ramachandran et al., 2005;

Deshpande et al., 2009) and backward (coalescent) simulations (DeGiorgio et al.,

2009; Hunley et al., 2009), it has been successful in describing observed patterns of

human genetic variation, such as the decline in expected heterozygosity observed with

increasing geographic distance from a putative African source location.

In addition to the initial serial founder model of Ramachandran et al. (2005),

a variety of models that contain the geographical expansions and bottlenecks

characteristic of the serial founder model have recently been investigated (Austerlitz

et al., 1997; Le Corre and Kremer , 1998; Edmonds et al., 2004; Ray et al., 2005;

Klopfstein et al., 2006; Liu et al., 2006; Deshpande et al., 2009; Excoffier and

Ray , 2008; Hallatschek and Nelson, 2008; DeGiorgio et al., 2009; Hunley et al.,

2009). Among formulations with a one-dimensional geographic structure, some

models (e.g., Austerlitz et al., 1997; Deshpande et al., 2009) allow migration after

the initial founding of populations and assume that once a population is founded,

it logistically grows to its carrying capacity. When carrying capacity is reached (or

shortly thereafter), migrants exit the population to found the next population. Other

models (e.g., DeGiorgio et al., 2009) do not permit migration after populations are

founded and assume that population growth is instantaneous. In these models, after

a population is founded, it experiences a small size for some length of time before

instantaneously expanding to a larger size. For the former class of models, Austerlitz

et al. (1997) presented recursion equations to generate the distribution of coalescence

times for pairs of lineages sampled either from the same population or from different
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populations. These equations can then be used to calculate geographic patterns in

summary statistics such as gene diversity and FST . For the latter class, DeGiorgio

et al. (2009) and Hunley et al. (2009) approached similar problems using simulations.

The relative simplicity of the population growth and migration assumptions in this

latter group of models, however, potentially permits explicit analytical formulas,

rather than recursions or simulations, to be investigated.

Here, generalizing the coalescent-based version of the serial founder model as

formulated by DeGiorgio et al. (2009), we provide an analytical distribution of the

coalescence time for a pair of lineages at a randomly selected locus, along with

corresponding expected coalescence times, expected homozygosity values, and FST

values. In this non-equilibrium model, we show that the decrease in expected

heterozygosity and the corresponding increase in homozygosity with increasing

distance from the source population can be predicted analytically. We then provide

analytical results for the expected identity for two alleles drawn randomly from a

given pair of populations, and we find that the qualitative patterns produced by the

formulas closely match those observed from human genetic data and the simulations

of Hunley et al. (2009). Furthermore, we discuss how our results can be used to obtain

analytical formulas for summary statistics for an archaic serial founder model, for the

nested-regions model of Hunley et al. (2009), and for the instantaneous divergence

model of DeGiorgio et al. (2009). Our new analytical formulas on within-population

gene diversity, between-population gene identity, and pairwise FST motivate an

analysis of empirical trends in these summary statistics in worldwide human genetic

data. Because a serial founder process is largely consistent with worldwide patterns

of human genetic variation, the analytical results presented here are useful both for

generating and for testing hypotheses about human origins.
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5.2 Serial founder model

In this section, we begin by formally defining the serial founder model. This model

was used in a simulation of DeGiorgio et al. (2009), and in this article, we provide a

more complete generalization. We then obtain the probability density of coalescence

times for two lineages sampled under the model. Utilizing this density, we obtain

mth moments of coalescence times, mth moments of homozygosities, and FST values

between pairs of populations.

5.2.1 Model

We formulate the serial founder model in a coalescent setting. A diagram of

the model appears in Figure 5.1A. Our generic formulation contains a sequence of

bottlenecks in which bottleneck sizes, population sizes, bottleneck lengths, and the

times for the population founding events are allowed to vary. The model considers

K extant populations, denoted E1, E2, . . . , EK . For i < j, the founding of extant

population Ei took place at least as far back in time as that of extant population

Ej. The model has 2K ancestral populations, denoted A0, A1, . . . , A2K−1. For i < j,

the founding of ancestral population Aj took place at least as far back in time as

that of ancestral population Ai. Ni denotes the size of ancestral population Ai,

i = 0, 1, . . . , 2K − 1. Note that for i = 1, 2, . . . , K, the size of extant population Ei

is equal to N2(K−i), which also is the size of ancestral population A2(K−i). Time is

measured in generations, and the present has time τ0 = 0.

Forward in time, ancestral population A2K−1 expands to a larger size at time

τ2K−1 to create ancestral population A2(K−1) (the population directly ancestral to

the source population E1). At time τ2(K−1), ancestral population A2(K−1) splits

into extant population E1 and ancestral population A2(K−1)−1 (a newly founded

population during the time in which it experiences a small size prior to expansion).

At time τ2(K−1)−1, ancestral population A2(K−1)−1 expands to a larger size to form
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ancestral population A2(K−2). At time τ2(K−2), ancestral population A2(K−2) splits to

form extant population E2 and ancestral population A2(K−2)−1 (the next founded

population during its bottleneck phase). This process is iterated until extant

population K has been founded. In general, at time τ2(K−i), i = 1, 2, . . . , K − 1,

ancestral population A2(K−i) splits into extant population Ei and a newly founded

ancestral population A2(K−i)−1. At time τ2(K−i)−1, i = 0, 1, . . . , K − 1, ancestral

population A2(K−i)−1 expands to a larger size to form ancestral population A2[K−(i+1)].

Note that by construction, extant population EK and ancestral population A0 are the

same population.

We note that several past studies (e.g., Austerlitz et al., 1997; Ramachandran

et al., 2005; Liu et al., 2006; Deshpande et al., 2009) utilized formulations of the serial

founder model that involved logistic growth of newly founded populations, migration

between neighboring populations after their initial founding, or both of these model

features. In contrast, for the purpose of obtaining analytical results, our model has

a mathematically simpler formulation that involves an instantaneous expansion of a

newly founded population to a larger size and that does not permit migration between

neighboring populations after founding events.

5.2.2 Coalescence times

In this section, we derive the probability density of coalescence times for a pair of

lineages sampled under the serial founder model. We begin by deriving the probability

density function fij(t) for the coalescence time of a pair of lineages, one randomly

sampled from extant population Ei and the other randomly sampled from extant

population Ej (where j is not necessarily distinct from i). This function is defined

piecewise over the space of possible coalescence times t ∈ [0,∞). Using our formula

for fij(t), we derive mth moments of coalescence times, from which we obtain mean

pairwise coalescence times. We use the result from coalescent theory that coalescence
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times are exponentially distributed with a rate that is inversely proportional to the

population size (Kingman, 1982; Hudson, 1983; Tajima, 1983). Also, we use the result

that the number of mutations along a genealogical branch is Poisson-distributed, and

because we restrict our attention to neutral loci, we separate the mutation process

from the genealogical process (Tavaré, 1984; Hudson, 1990).

Let Tij be a random variable that denotes the coalescence time for a pair of

lineages, one randomly sampled from extant population Ei and the other randomly

sampled from extant population Ej, with i ≤ j. If i < j, then the two lineages

cannot coalesce until they are in the same ancestral population (i.e., more ancient

than τ2(K−i)). Suppose the two lineages exist in the same population during the time

interval [τh, τh+1), where h ≥ 2(K−i). The probability density for coalescence at time

t ∈ [τh, τh+1) is the product of the probability that the lineages do not coalesce in the

more recent time intervals, exp[−
∑h−1

ℓ=2(K−i)(τℓ+1−τℓ)/Nℓ], and (1/Nh)e
−(t−τh)/Nh , the

probability density for a coalescence event at time t conditional on failure to coalesce

more recently than τh.

If i = j, then the two lineages can also coalesce in the interval [τ0, τ2(K−i)). Suppose

the two lineages exist in the same population during time interval [τ0, τ2(K−i)). The

probability density for coalescence at time t ∈ [τ0, τ2(K−i)) in extant population Ei is

(1/N2(K−i))e
−(t−τ0)/N2(K−i) . The probability that the lineages do not coalesce in time

interval [τ0, τ2(K−i)) is e
−(τ2(K−i)−τ0)/N2(K−i) (we write τ0 for notational consistency, but

recall τ0 = 0).

For i ≤ j and h ∈ {2(K − i), 2(K − i) + 1, . . . , 2K − 1}, denote the probability

that a coalescence event has not occurred by time τh between a pair of lineages, one

from Ei and one from Ej, by

Λijh = exp

(
− δij

τ2(K−i) − τ0
N2(K−i)

−
h−1∑

ℓ=2(K−i)

τℓ+1 − τℓ
Nℓ

)
,
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where δij is the Kronecker delta. We then arrive at the density function for the time

to coalescence of a pair of lineages sampled from extant populations Ei and Ej, i ≤ j,

fij(t) =


δij

e
−(t−τ0)/N2(K−i)

N2(K−i)
, 0 ≤ τ0 ≤ t < τ2(K−i)

Λijh
e−(t−τh)/Nh

Nh
, τh≤t<τh+1

and h=2(K−i),...,2K−1

0 , otherwise,

(5.1)

where τ2K = ∞. This density for the pairwise coalescence time consists of a collection

of shifted exponential distributions, each defined on a different interval.

Equipped with the density in eq. 5.1, we next derive mth moments for the

distribution of coalescence times. We are interested primarily in the mean, but the

derivation for arbitrary m is no more difficult than that for m = 1.

E[Tm
ij ] =

∞∫
0

tmfij(t)dt

=

τ2(K−i)∫
τ0

tmδij
e−(t−τ0)/N2(K−i)

N2(K−i)

dt+
2K−1∑

h=2(K−i)

τh+1∫
τh

tmΛijh
e−(t−τh)/Nh

Nh

dt

= δij
eτ0/N2(K−i)

N2(K−i)

τ2(K−i)∫
τ0

tme−t/N2(K−i)dt+
2K−1∑

h=2(K−i)

Λijh
eτh/Nh

Nh

τh+1∫
τh

tme−t/Nhdt.

Using the result (Gradshteyn and Ryzhik , 2007, p. 106) that

∫
xmeaxdx = eax

m∑
ℓ=0

(−1)ℓℓ!
(
m
ℓ

)
aℓ+1

xm−ℓ, (5.2)

we obtain

E[Tm
ij ] =

m∑
ℓ=0

ℓ!

(
m

ℓ

){
δijN

ℓ
2(K−i)

[
τm−ℓ
0 − τm−ℓ

2(K−i)e
−(τ2(K−i)−τ0)/N2(K−i)

]

+
2K−1∑

h=2(K−i)

ΛijhN
ℓ
h

[
τm−ℓ
h − τm−ℓ

h+1 e
−(τh+1−τh)/Nh

]}
. (5.3)
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Setting m = 1, the expected coalescence time is

E[Tij] = δij

[
τ0 +N2(K−i) −

(
τ2(K−i) +N2(K−i)

)
e−(τ2(k−i)−τ0)/N2(K−i)

]

+
2K−1∑

h=2(K−i)

Λijh

[
τh +Nh −

(
τh+1 +Nh

)
e−(τh+1−τh)/Nh

]
. (5.4)

Using the density in eq. 5.1, we can investigate how the initial divergence time and

the severity of bottlenecks influence the distribution of coalescence times. Figure 5.2B

displays density plots for coalescence times in the serial founder model given in

Figure 5.2A. Analytical density functions closely match the histograms generated

in 107 coalescent simulations using ms (Hudson, 2002), following the simulation

method of DeGiorgio et al. (2009). Figure 5.2B shows that multiple modes appear

in the distributions of pairwise coalescence times, as a result of the increased rate of

coalescence during bottlenecks. Coalescence-time distributions for pairs of lineages

from different populations are shifted by the divergence time of the two populations,

so that coalescence times for pairs of lineages from distinct populations tend to exceed

those of pairs of lineages from the same population.

We can consider the effect of bottleneck size by examining the coalescence

time distribution for a pair of lineages in two scenarios that are identical except

that one has a smaller bottleneck size. In Figure 5.2B, considering a pair of

lineages from population 4, with bottleneck size 1000 diploid individuals, most of

the coalescence-time distribution accumulates early because of the strong bottleneck

during the time interval [τ1, τ2) = [5000, 10000). Much of the remainder of the

distribution accumulates during the next strong bottleneck, in the time interval

[τ3, τ4) = [15000, 20000).

Increasing the bottleneck size in Figure 5.2A, from 1000 to 5000, the rate of

coalescence of lineages within bottlenecks decreases. Because of this decrease, lineages

are more likely to persist farther into the past without coalescing. Thus, Figure 5.2C
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shows that decreasing the severity of the bottleneck by increasing the bottleneck

population size reduces the probability that the lineages coalesce during the most

recent bottleneck. Additionally, a fourth mode of the coalescence-time distribution

becomes visible during the bottleneck in the time interval [τ5, τ6) = [25000, 30000).

5.2.3 Pairwise homozygosity and heterozygosity

Two commonly used summary statistics are expected homozygosity (gene identity)

and expected heterozygosity (gene diversity). Let Jij be a random variable that

denotes the homozygosity for a pair of lineages, one randomly sampled from extant

population Ei and the other randomly sampled from extant population Ej (where j is

not necessarily distinct from i). Further, let Hij = 1− Jij be a random variable that

denotes the heterozygosity for a pair of lineages, one randomly sampled from Ei and

the other randomly sampled from Ej. We define homozygosity as the probability that

two alleles sampled at a locus are identical by descent (the definition of locus used

here is flexible and can range from a single site to a haplotype). Assuming an infinite

alleles mutation model and a time interval of length T generations, if mutations are

Poisson-distributed, then homozygosity (or the probability that no mutation occurs

on an interval of length T ) is e−2µT , where µ is the per-generation mutation rate

(Wakeley , 2009, p. 107). We can therefore find mth moments of homozygosity as

E[Jm
ij ] =

∞∫
0

e−2mµtfij(t)dt

=

τ2(K−i)∫
τ0

e−2mµtδij
e−(t−τ0)/N2(K−i)

N2(K−i)

dt+
2K−1∑

h=2(K−i)

τh+1∫
τh

e−2mµtΛijh
e−(t−τh)/Nh

Nh

dt

=
δij

1 + 2N2(K−i)mµ

[
e−2mµτ0 − e

−2mµτ2(K−i)−
τ2(K−i)−τ0

N2(K−i)

]

+
2K−1∑

h=2(K−i)

Λijh

1 + 2Nhmµ

[
e−2mµτh − e

−2mµτh+1−
τh+1−τh

Nh

]
. (5.5)
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By the binomial theorem, the mth moment of heterozygosity is

E[Hm
ij ] = E[(1− Jij)

m] =
m∑
ℓ=0

(
m

ℓ

)
(−1)ℓE[J ℓ

ij]. (5.6)

Setting m = 1 in eqs. 5.5 and 5.6, we get the expected homozygosity and expected

heterozygosity for a pair of lineages, one randomly sampled from population Ei and

the other randomly sampled from population Ej,

E[Jij] =
δij

1 + 2N2(K−i)µ

[
e−2µτ0 − e

−2µτ2(K−i)−
τ2(K−i)−τ0

N2(K−i)

]

+
2K−1∑

h=2(K−i)

Λijh

1 + 2Nhµ

[
e−2µτh − e

−2µτh+1−
τh+1−τh

Nh

]
(5.7)

E[Hij] = 1− δij
1 + 2N2(K−i)µ

[
e−2µτ0 − e

−2µτ2(K−i)−
τ2(K−i)−τ0

N2(K−i)

]

−
2K−1∑

h=2(K−i)

Λijh

1 + 2Nhµ

[
e−2µτh − e

−2µτh+1−
τh+1−τh

Nh

]
. (5.8)

Using the model in Figure 5.2A, Figure 5.3 plots the expected heterozygosity of

two lineages sampled from population 4 as a function of both bottleneck population

size and bottleneck length. When the bottleneck has length zero, bottlenecks

do not increase genetic drift and hence the expected heterozygosity reaches its

maximum. Increasing the bottleneck length causes a monotonic decrease in expected

heterozygosity. Decreasing the population size of the bottlenecks further decreases

the heterozygosity. The smallest expected heterozygosity shown is reached with the

combination of the smallest bottleneck population size (100 diploid individuals) and

the largest bottleneck length (5000 generations).
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5.2.4 Pairwise FST

Our computation of expected coalescence times in eq. 5.4 provides a basis for

obtaining the commonly used measure of genetic differentiation, pairwise FST between

populations. Using the results of Slatkin (1991) on pairwise FST between populations

at small mutation rates, we can write FST = (T − T 0)/T , where T 0 is the mean

coalescence time of two lineages randomly drawn from the same population and T is

the mean coalescence time of two lineages randomly drawn from any two populations

(same or different). By using the expected coalescence times in our serial founder

model (eq. 5.4), we can define these times for pairwise comparisons of populations Ei

and Ej (i < j) as T 0 = (1/2)E[Tii] + (1/2)E[Tjj], T diff = E[Tij] (the mean pairwise

coalescence time for two lineages from different populations), and T = (1/2)T 0 +

(1/2)T diff. Therefore, we can write FST as

F ij
ST =

E[Tij]− (1/2)E[Tii]− (1/2)E[Tjj]

E[Tij] + (1/2)E[Tii] + (1/2)E[Tjj]
, (5.9)

where the quantities E[Tij] are defined in eq. 5.4.

5.3 Patterns observed in human population data

In this section we describe a worldwide human population-genetic dataset and

patterns in summary statistics calculated from the dataset. The summary statistics

we investigate are within-population gene diversity, between-population gene identity,

and pairwise FST . Analytical formulas for these summary statistics under the serial

founder model are obtained through eqs. 5.7, 5.8, and 5.9. We compare patterns in

these summary statistics observed in human genetic data to those predicted by specific

models of human evolutionary history. Through these comparisons, we discuss which

models of human history are compatible with patterns of genetic variation observed in

present-day human populations. Note that only one of the three summary statistics
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that we investigate (gene diversity) was discussed by DeGiorgio et al. (2009).

We analyzed data from the Human Genome Diversity Project-Centre d’Etude

du Polymorphisme Humain (HGDP-CEPH) Cell Line Panel (Cann et al., 2002;

Cavalli-Sforza, 2005). We used a set of 783 autosomal microsatellite loci in 1048

individuals sampled from 53 worldwide populations (Ramachandran et al., 2005;

Rosenberg et al., 2005). For a given population, gene diversity was calculated using

eq. 10 of DeGiorgio and Rosenberg (2009), averaged across loci; the values were taken

from Figure 7C of DeGiorgio and Rosenberg (2009). For a pair of distinct populations

A and B, between-population gene identity was calculated as

JAB =
1

L

L∑
ℓ=1

Iℓ∑
i=1

p̂ℓiq̂ℓi,

where p̂ℓi and q̂ℓi are the sample frequencies of the ith distinct allele at locus ℓ in

populations A and B, respectively, and Iℓ is the number of distinct alleles in the pair

of populations at locus ℓ (Nei , 1987). For a pair of distinct populations, FST was

calculated using eq. 5.3 of Weir (1996).

Figure 5.4 displays patterns in the three summary statistics, as observed from the

HGDP dataset. Figure 5.4A shows an approximate linear decline of gene diversity

with increasing geographic distance from a putative East African location of modern

human origins. Figure 5.4B shows a heat map of gene identity between all pairs

of populations, illustrating that pairs of populations closer to Africa generally have

lower between-population gene identity than pairs of populations farther from Africa.

Figure 5.4C displays a heat map of pairwise FST between populations. FST is lower for

pairs of populations that are close geographically than for pairs of populations that are

geographically distant. Additionally, FST values between populations in the Americas

are generally larger than FST values between pairs of non-American populations. In all

three panels of Figure 5.4, a slight jump in the values of summary statistics is visible
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at the boundaries of geographic regions. That is, separate values of gene diversity

computed within populations from the same geographic region, and gene identity

and FST values for pairs of populations from the same geographic region, tend to be

more similar to each other than to corresponding values involving populations from

different geographic regions.

Given the three patterns in summary statistics observed from the HGDP dataset,

we can now compare these patterns with those predicted by models of human

evolutionary history. We consider several special cases of our general serial founder

model that are chosen based on previous investigations of human evolution. These

cases include a modern serial founder model (Ramachandran et al., 2005; Deshpande

et al., 2009; DeGiorgio et al., 2009), a nested regions model in which bottlenecks

between continental regions are more severe than those within continental regions

(Hunley et al., 2009), an instantaneous divergence model in which all populations

diverged at the same time in the past (DeGiorgio et al., 2009), and an archaic serial

founder model in which the founding process started distantly in the past (DeGiorgio

et al., 2009). Using eqs. 5.7, 5.8, and 5.9, we now examine the patterns in gene

diversity, between-population gene identity, and pairwise FST generated by these four

special cases of the general serial founder model. We examine the extent to which each

model can reproduce the patterns observed in worldwide human population-genetic

data in the three statistics.

5.4 Modern serial founder model

5.4.1 Motivation and model

A modern serial founder model (Figure 5.5A) is a special case of our general

formulation of the serial founder model (Figure 5.1). To obtain the DeGiorgio et al.

(2009) serial founder model withK populations, suppose that the bottleneck length is
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Lb generations and that the amount of time between the end of a bottleneck and the

founding of a new population is L generations. In other words, suppose τ2h+1−τ2h = L

for h = 0, 1, . . . , K − 2 and τ2h − τ2h−1 = Lb for h = 1, 2, . . . , K − 1. Let τ0 = 0.

Modern population 1 founds modern population 2 at time τ2(K−1) = τ2K−1 = τD.

Each bottleneck has size Nb diploid individuals, and all other populations have size

N diploid individuals. For the exact serial founder model studied by DeGiorgio et al.

(2009), we setK = 100, Lb = 2, L = 19, τD = 2079, N = 10000, and Nb = 250. These

values were chosen to represent reasonable values for human populations. The value

of τD was chosen to lie within an estimated interval of time for the out-of-Africa

migration (e.g., Relethford , 2008), the value of N was chosen as a commonly used

value to represent the present-day effective population size of human populations

(e.g., Takahata et al., 1995), the value of Nb was chosen to represent a size typical for

small isolated hunter-gatherer populations (Cavalli-Sforza, 2004), the value of Lb was

chosen to represent a process in which individuals migrate in the first generation and

finalize the settlement of a population during the second generation, and the value of

L was chosen such that all founding events were distributed uniformly over τD = 2079

generations. Utilizing this parameterization and a per-generation mutation rate of

µ = 2.5× 10−5, we examine whether the modern serial founder model can or cannot

reproduce observed patterns of human genetic variation.

5.4.2 Patterns generated by the model

Figure 5.6 displays patterns of genetic variation generated by the modern serial

founder model. As was observed previously in simulations (Ramachandran et al.,

2005; Deshpande et al., 2009; DeGiorgio et al., 2009), the modern serial founder

model reproduces the approximate linear decline in gene diversity with distance from

the source population (Figure 5.6A). Figure 5.6B displays a heat map of pairwise

gene identity values between all pairs of modern populations. The heat map shows
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that populations close to the source population have smaller between-population gene

identities than populations far from the source, as is observed in human population

data (Figure 5.4B). Figure 5.6C displays a heat map of FST values between all pairs of

modern populations, demonstrating that pairs of populations that are geographically

distant tend to have larger FST than pairs of populations that are geographically

close. The model largely recovers the pattern observed in human population data

(Figure 5.4C ); however, it also predicts small FST between pairs of populations

that are far from the source population, a pattern that is not observed for human

populations distant from Africa.

The pattern of decrease in gene diversity with increasing distance from a source

population is due to the decrease in pairwise coalescence time within populations

caused by a cumulative increase in genetic drift with increasing distance from the

source. Pairs of lineages from distinct populations distant from the source have the

potential to coalesce more recently than do pairs of lineages close to the source,

thereby explaining the increased gene identity for pairs of populations distant from

the source. However, FST between populations that are geographically distant

from the source is smaller than FST between populations that are close to the

source, as the effect of reduced between-population coalescence times in decreasing

FST for populations distant from the source outweighs the effect of their reduced

within-population coalescence times in increasing FST .

Our results show that the modern serial founder model largely recovers the

patterns observed from human genetic data (Figure 5.4). Two noteworthy exceptions

are that it does not predict either a peculiar pattern of small values of gene identity

observed between Oceanian and non-Oceanian populations (Figure 5.4B) or the large

values of FST observed in the Americas (Figure 5.4C ).
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5.5 Nested regions model

5.5.1 Motivation and model

One aspect of the trends in genetic diversity that was not captured by our

parameterization of the modern serial founder model above is the larger difference

in diversity observed between populations from different continental regions than

between populations from the same continental region (Figure 5.4A). This observation

motivates the nested regions model (Figure 5.5B) simulated by Hunley et al. (2009),

in which the set of populations is distributed across several “regions” separated by

barriers to migration. Examples of such regions include different continents, areas

separated by mountain ranges, or islands within an archipelago. Because crossing

between regions is more difficult than migration within a region, significant genetic

drift might occur during the expansion into a new region. The nested regions model

incorporates this increase in genetic drift during the geographic expansion through

increased bottleneck severity between regions relative to bottleneck severity within

regions.

We incorporate severe bottlenecks into the modern serial founder model

(Figure 5.5A) by increasing the bottleneck lengths to Lr
b = 16 generations instead of

Lb = 2 during the founding of modern populations 15, 29, 43, 57, 71, and 85. Hence,

the length of time between the end of any of these bottlenecks and the founding of

the next population is Lr = 5 generations instead of L = 19, so that the time between

founding events is still Lb + L = 21 generations. These severe bottlenecks subdivide

the set of K = 100 modern populations into R = 7 regions.

5.5.2 Patterns generated by the model

Figure 5.7 depicts patterns of genetic variation generated by the nested regions

model. As was observed in simulations of Hunley et al. (2009), the nested regions
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model reproduces the approximate linear decline in gene diversity with distance

from the source population, with small discontinuities in genetic diversity at region

boundaries (Figure 5.7A). Similarly, as was observed in the simulations of Hunley

et al. (2009), the nested regions model reproduces the patterns of between-population

gene identity observed from human data, with pairs of populations far from the

source displaying larger gene identity than pairs of populations close to the source

(Figure 5.7B). Also, in the nested regions model, pairs of populations that are

geographically distant tend to have larger FST than pairs of populations that are

geographically close (Figure 5.7C ). The nested regions model predicts regional

boundaries in the gene identity and FST heat maps (Figures 5.7B and C ) that partly

reproduce the block structure in the human population data (Figures 5.4B and C ).

However, as was seen with the modern serial founder model, the nested regions

model predicts small FST between pairs of populations that are far from the source

population, a pattern that is not observed for populations in the Americas (contrast

Figure 5.4C and Figure 5.7C ).

As was seen with the modern serial founder model above, the nested regions model

recovers most of the patterns observed in human population-genetic data (Figure 5.4).

Because of the increased bottleneck severity between regions, unlike the modern serial

founder model, the nested regions model also reproduces the larger differences in

values of the three summary statistics observed between regions compared to values

observed within regions (Figure 5.4).

5.6 Instantaneous divergence model

5.6.1 Motivation and model

DeGiorgio et al. (2009) found that another model, the instantaneous divergence

model, was capable of generating patterns that were compatible with observed
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patterns of within-population gene diversity, linkage disequilibrium, and the ancestral

allele frequency spectrum. Because we only investigated within-population summary

statistics, however, it was not examined whether the gene identity and FST patterns

observed in Figures 5.4B and C could also be generated by the instantaneous

divergence model.

The instantaneous divergence model (Figure 5.5C ) is a model in which all

populations diverge at the same time in the past and populations that are farther from

the source population have a smaller population size than those that are closer to the

source. The motivation for this model is that populations that have traveled a greater

distance from a source population will likely have lost alleles through genetic drift.

The instantaneous divergence model allows for this increased drift for populations that

are located far from the source population by assigning such populations a smaller

size. An increase in genetic drift causes a decrease in gene diversity due to the random

loss of alleles, as also occurs in bottlenecks. DeGiorgio et al. (2009) found that when

the size of population i in the instantaneous divergence model was set so that the

elapsed coalescent time was the same as in modern population i in the modern serial

founder model, the approximate linear trend in gene diversity with distance from

the source population was virtually indistinguishable from that of the modern serial

founder model.

Suppose a modern serial founder model is parameterized as in Figure 5.6A. We

obtain the instantaneous divergence model of DeGiorgio et al. (2009) by setting the

divergence time of all K populations to τD, the ancestral diploid population size to

N , and the diploid size of population i to

Ni =
τD

[τD − (i− 1)Lb]/N + (i− 1)Lb/Nb

, (5.10)

for i = 1, 2, . . . , K, where tD, N , Nb, L, and Lb are the parameters in the modern
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serial founder model in the section “Modern serial founder model” (DeGiorgio et al.,

2009). The value of Ni is chosen so that τD/Ni is the total duration in coalescent

units of population i. To obtain the exact instantaneous divergence model described

by DeGiorgio et al. (2009), we set τD = 2079, N = 10000, Nb = 250, L = 19, and

Lb = 2. These values are the same values used for the modern serial founder model

in Figure 5.6A. Using eq. 5.10 for the size of population i allows population i to

experience the same level of genetic drift as modern population i in the modern serial

founder model.

5.6.2 Patterns generated by the model

Figure 5.8 depicts patterns of genetic variation generated by the instantaneous

divergence model. As was observed in the simulations of DeGiorgio et al. (2009),

the instantaneous divergence model reproduces the approximate linear decline in

gene diversity with increasing distance from the source population (Figure 5.8A).

In contrast, between-population gene identity and pairwise FST yield patterns that

are quite different from those observed in human data (contrast Figures 5.8B and C

with Figures 5.4B and C ). All off-diagonal entries of Figure 5.8B are identical, and

they are the smallest values of gene identity within the heat map. Also, pairs of

populations that are close to the source population have smaller FST than pairs of

populations that are far from the source (Figure 5.8C ).

The approximate linear decline in gene diversity produced by the instantaneous

divergence model (Figure 5.8A) is caused by the loss of alleles and corresponding

decrease in heterozygosity due to increased genetic drift within populations that are

far from the source population (DeGiorgio et al., 2009). However, the fact that

all off-diagonal entries of Figure 5.8B are identical indicates that no correlation

exists with geography for between-population gene identity under the instantaneous

divergence model. This lack of correlation with geography for between-population
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gene identity causes the pattern of pairwise FST values to be driven completely by the

sizes of population pairs. Hence, population pairs far from the source location, which

have smaller population sizes, and therefore smaller within-population coalescence

times, have higher FST values.

Because the approximate linear decline in gene diversity (Figure 5.8A) generated

by the instantaneous divergence model matches the pattern observed from human

genetic data (Figure 5.4A), we can conclude that the pattern of within-population

gene diversity observed from human data reflects the cumulative increase in genetic

drift with increasing distance from Africa (DeGiorgio et al., 2009). However, the

patterns of between-population summary statistics generated by the instantaneous

divergence model (Figures 5.8B and C ) do not match the patterns observed from

human genetic data (Figures 5.4B and C ). Thus, a model that only incorporates

a cumulative increase in genetic drift with increasing distance from a source is not

sufficient to predict observed patterns of between-population genetic diversity.

5.7 Archaic serial founder model

5.7.1 Motivation and model

The serial founder model was motivated as a model to explain how modern humans

expanded out of Africa and colonized the world. Our general serial founder model,

however, does not place restrictions on the time of the first founding event. Therefore,

our general model reduces to an archaic serial founder model (Figure 5.5D) when the

time to the first founding event occurs distantly in the past. The archaic serial

founder model, although it has an identical mathematical form to the modern serial

founder model, is conceptually different in the sense that it is motivated by hypotheses

regarding expansions of ancient hominids out of Africa, whereas the modern serial

founder model is motivated by hypotheses of recent expansion of anatomically modern

134



humans out of Africa. The effect of increasing the time of the first founding event

can be investigated in the serial founder model while holding all other parameters in

the model constant.

In this section, we discuss how the patterns for within-population gene diversity,

between-population gene identity, and pairwise FST change as the serial founding

process is pushed farther into the past. To obtain an archaic serial founder model,

we assume that except for divergence time τD, all parameters are the same as in

the modern serial founder model considered in Figure 5.6. We investigate divergence

times of τD = 5000, 7500, 10000, 16000, and 40000 generations ago. Divergence times

τD = 16000 and τD = 40000 are of particular interest because, assuming a generation

time of 25 years, they approximate estimates of the divergence of modern humans

with Neanderthal (400 kya; Green et al., 2006; Noonan et al., 2006) and Homo erectus

(1 mya; Takahata, 1993) populations, respectively.

5.7.2 Patterns generated by the model

For τD = 5000, a decrease occurs, relative to the modern serial founder model

in which τD = 2079, in the magnitude of the slope of the decline of gene diversity

with increasing distance from the source population (Figure 5.9A). The patterns

of increased gene identity and decreased FST between populations that are far

from the source population relative to between populations that are close to the

source, although still present, are less distinct with the increased divergence time.

Further increasing the divergence time to τD = 7500 (Figure 5.9B) and τD = 10000

(Figure 5.9C ) leads to a progressive decrease in the differences among populations in

values of the three summary statistics. For a serial founder model with a divergence

time of τD = 16000, at a putative time of the Neanderthal divergence, differences

in values among populations for each of the three summary statistics are small

(Figure 5.9D). For the H. erectus serial founder model with a divergence time of
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τD = 40000, differences in values among populations for each of the three summary

statistics are nearly negligible, displaying almost no trend (Figure 5.9E ).

As τD increases, the differences among populations in values of gene diversity,

between-population gene identity, and FST decrease. These smaller differences result

from the smaller degree of influence that ancient bottlenecks have on genetic diversity

in comparison with recent bottlenecks of identical severity. This lack of influence of

ancient bottlenecks on present-day gene diversity is reflected most strongly in the

small difference in gene diversity between population 1 and population 100 in the

H. erectus serial founder model (Figure 5.9E ). Furthermore, with greater τD, the

difference between the divergence time for two populations sampled close to the source

and for two populations sampled far from the source is small relative to τD. This small

difference in divergence times causes between-population summary statistics such as

gene identity and FST to have little correlation with geography (i.e., most off-diagonal

entries have similar values) at large divergence times (Figure 5.9E ).

These results imply that the patterns in gene diversity, gene identity, and

FST observed from empirical data cannot be predicted solely by an archaic serial

founder process using our parameterization; specifically, the observed patterns are

not consistent with a serial founder process that occurs too far back in the past.

Pushing back the time of the first founding event while holding all other parameters

constant decreases the ability of the serial founder model to generate the patterns

observed in Figure 5.4.

5.8 Discussion

In this article, we have derived pairwise coalescence-time distributions for a serial

founder model. Under the model, we have provided analytical formulas for expected

coalescence times, expected homozygosity, and pairwise FST . In addition, we have

analytically described the trend of decreasing gene diversity with increasing distance

136



from the source population, and the patterns observed in between-population gene

identity and pairwise FST . Using coalescence-time densities in a variety of special

cases, we have found that the modern serial founder model and the nested regions

model are consistent with geographic patterns of within- and between-population

genetic diversity observed in human data. Our work demonstrates the utility of using

theoretical computations on between-population summary statistics in conjunction

with similar computations on within-population statistics to predict geographic

patterns in genetic data.

One pattern that was not predicted by any of our models was the large FST

observed in the Americas. Whereas the modern serial founder and the nested regions

models predict small FST between populations far from the source, FST values in

the Americas are large. It is possible that the models provide a poor fit to the

pattern of evolution in the Americas after the initial founding of the Native American

population, as they also are inconsistent with the large differences in gene diversity

among populations in the Americas. During the initial migration into the Americas,

small individual populations may have experienced highly variable levels of genetic

drift as they spread over a large unoccupied region (Wang et al., 2007; Goebel et al.,

2008;Meltzer , 2009). Such a migration process could have given rise to highly variable

levels of genetic diversity across the region, as well as a somewhat irregular pattern

in FST . If we were to modify our model to incorporate this variability along with

stronger bottlenecks or smaller population sizes within the Americas relative to those

in non-American populations, then we might be able to produce patterns that agree

with the observed data. Indeed, Hunley et al. (2009) found that model parameters

can be chosen to enable patterns of within- and between-population genetic diversity

to closely match those empirically observed in the Americas.

Another pattern that was not predicted by any of our models is the small

between-population gene identity observed between pairs of populations, one from
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Oceania and the other not from Oceania (Figure 5.4B). This pattern could potentially

be explained either by an ancient divergence of the Oceanian populations from the

non-Oceanian populations through a separate migration out of Africa to Oceania

(e.g., Derricourt , 2005; Bulbeck , 2007; Field et al., 2007; Szpiech et al., 2008; Kayser ,

2010), or by admixture of the populations in Oceania with an archaic human

population (e.g., Reich et al., 2010). A separate founding process could have generated

low levels of within-population gene diversity for the Oceanian populations while

simultaneously producing the low levels of between-population gene identity between

Oceanian and non-Oceanian populations. Alternatively, because the increase in

between-population coalescence times that would be caused by ancient admixture

would result in a decrease in between-population gene identity, such admixture could

potentially explain the disagreement of the data with our model predictions. Separate

migrations or ancient admixture could potentially be incorporated into a more general

version of our model to investigate the plausibility of these scenarios.

By increasing the time of the first founding event, we have determined that the

archaic serial founder model is not able to reproduce patterns of gene diversity,

between-population gene identity, and pairwise FST observed in human genetic data.

However, limited archaic admixture coupled with a modern serial founder model might

not be incompatible with the patterns we have examined. Recent evidence suggests

that signatures of archaic admixture might exist in modern human population-genetic

data (e.g., Plagnol and Wall , 2006; Garrigan and Hammer , 2006; Green et al., 2010;

Reich et al., 2010) and as discussed above, such admixture could potentially explain

anomalous observations in Oceania. However, this admixture, if it indeed occurred,

must have been insufficient to generate a large signature in most of the patterns that

we have investigated.

Although the patterns of gene diversity produced by the serial founder and

the instantaneous divergence models are virtually indistinguishable (DeGiorgio
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et al., 2009), we have shown that these models can be differentiated using

between-population gene identity and pairwise FST . Ultimately, this potential for

differentiation traces to distinctive distributions of pairwise coalescence times. In the

instantaneous divergence model, each population has a constant size up until time τD

and consequently, the coalescent process simply follows an exponential distribution

until time τD and then another exponential distribution with a different rate after

time τD. In contrast, in the serial founder model, the rate of coalescence inside

a bottleneck is elevated compared to outside the bottleneck. This increased rate of

coalescence causes lineages to merge within a narrow time interval. Because the serial

founder model incorporates multiple bottlenecks, the distribution of coalescence times

is multimodal.

Recently, many studies have found that two-dimensional spatial maps generated

from principal components analysis (PCA) applied to human genetic data closely

match maps of geographic sampling locations of populations (e.g., Lao et al., 2008;

Novembre et al., 2008; Price et al., 2009; Bryc et al., 2010; Wang et al., 2010;

Xing et al., 2010). McVean (2010) demonstrated a close link between pairwise

coalescence times and PCA, in which sampled lineages can be projected onto principal

components through expected coalescence times for pairs of lineages. The coalescence

time distributions provided in this article can potentially be used to interpret PCA

maps, so that PCA maps themselves might be used as summary statistics for testing

evolutionary models.

Estimated coalescence-time distributions might also be utilized more formally for

maximum likelihood estimation of parameters such as bottleneck lengths, bottleneck

sizes, and divergence times (e.g., Thomson et al., 2000; Takahata et al., 2001; Tang

et al., 2002; Rannala and Yang , 2003; Tishkoff and Verrelli , 2003; Garrigan and

Hammer , 2006; Fagundes et al., 2007; Blum and Jakobsson, 2011). Further, these

distributions might also be useful for hypothesis testing; because many of the models
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in this article are nested, likelihood ratio tests can be performed. For extending

our work to perform maximum likelihood inference, it will be desirable to extend

the computations to permit the sampling of multiple lineages in pairs of populations

(i.e., ni lineages from population i and nj lineages from population j). Such an

extension could potentially build upon the work of Marth et al. (2004), who derived

the coalescence-time distribution for a sample of n lineages in a single population

with multiple bottlenecks.

An additional feature of structured population models that would be desirable

to incorporate is migration between populations after their initial founding. In the

archaic serial founder model, some level of migration between neighboring populations

might enable the model to make predictions that more closely match observations

from human genetic data. For the modern serial founder model, simulations have

shown that small to moderate levels of migration have relatively little impact on

observed patterns of genetic diversity (DeGiorgio et al., 2009). In any case, inclusion

of migration would enable us to examine considerably more complex versions of the

models that we have investigated.

Finally, one important quantity that we did not explore is linkage disequilibrium

(LD). In simulations, we previously investigated whether the spatial distribution of

LD observed in worldwide human populations is consistent with a serial founder

model (DeGiorgio et al., 2009). We found that the serial founder model can indeed

predict the observed spatial distribution of LD. Moreover, we found that LD patterns

can be useful in differentiating the patterns predicted by different evolutionary

models. Therefore, incorporation of LD into our theoretical models would provide

a distinct type of statistic that would further enable investigators to distinguish

between models. For example, because excess long-range LD is a signature of ancient

admixture (e.g., Plagnol and Wall , 2006), incorporation of LD statistics would be

useful for determining whether models that consider archaic admixture provide a
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significantly better fit to observed human genetic variation than models that do not

consider admixture. Because LD is such a valuable quantity, it would be informative

to investigate patterns of LD produced by the various models by incorporating

recombination into the theory.
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Figure 5.2: Distributions of coalescence times in the serial founder model. (A)
Serial founder model with four extant populations. In the model, thick
population sizes represent 10000 diploid individuals and thin population
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population expansions are τ0 = 0, τh = τh−1 + 5000 for h = 1, 2, . . . , 6,
and τ6 = τ7 = 30000 generations. (B) Probability density of coalescence
times. Each sub-plot is the probability density of coalescence times for
a pair of lineages sampled from the pair of populations listed in the
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values to part A except that the bottlenecks (thin populations) have 5000
diploid individuals instead of 1000 diploid individuals. The figure can
be compared with the plot for two lineages from population 4 in part B.
Histograms are based on 107 coalescent simulations using ms (Hudson,
2002), and the red lines represent the analytical densities obtained from
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in human population-genetic data. Plots are based on 783 microsatellite
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Figure 5.9: Patterns of genetic variation in an archaic serial founder model, as
a function of varying divergence time τD. The values of the model
parameters for parts A-E are the same as in Figure 5.6A, with
the exception that the divergence time τD, measured in generations,
varies across the plots. The first column is gene diversity of the
populations as a function of distance from the source population, where
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between-population gene identity for pairs of populations. The third
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τD = 7500. (C ) τD = 10000. (D) τD = 16000. (E ) τD = 40000.
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CHAPTER VI

Fast and consistent estimation of species trees

using supermatrix rooted triples

6.1 Introduction

A species tree is a branching pattern representing the divergence of multiple

species, whereas a gene tree depicts the evolutionary history of a single gene. Though

only a single species tree exists, trees for different genes often have conflicting

topologies. This discordance of gene trees with the species tree is due to processes such

as gene duplication, horizontal gene transfer, and incomplete lineage sorting (Page

and Charleston, 1997; Maddison, 1997; Than et al., 2007; Degnan and Rosenberg ,

2009).

When analyzing data from multiple loci, the most frequently occurring gene tree

topology is sometimes used as an estimate of the species tree topology. For example,

in a study of 30 loci, Jennings and Edwards (2005) used the gene tree that was

inferred in 16 of 28 resolved topologies from three ingroup species of Australian grass

finches as the species tree topology. However, even in the absence of complications

such as hybridization (Buckley et al., 2006; Holland et al., 2008; Meng and Kubatko,

2009) and population structure (Slatkin and Pollack , 2008), this procedure is only

justified for studies of three taxa. This is because the most likely three-taxon gene
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tree is expected to match the species tree topology when incomplete lineage sorting is

modeled by the multispecies coalescent (Nei , 1987; Pamilo and Nei , 1988). However,

when a species tree has four taxa and is asymmetric, or has five or more taxa, the most

likely gene tree does not necessarily match the species tree (Degnan and Rosenberg ,

2006; Rosenberg and Tao, 2008). Such anomalous gene trees (AGTs; Degnan and

Rosenberg , 2006) occur when the species tree falls into a particular space of branch

lengths called the anomaly zone. Anomaly zones for four-taxon and five-taxon species

trees are depicted in Figure 2 of Degnan and Rosenberg (2006) and Figures 3–5 of

Rosenberg and Tao (2008), respectively.

The absence of AGTs for rooted three-taxon trees motivates the development

of methods for inferring species trees using rooted triples, or three taxa at a time

(Degnan and Rosenberg , 2006), as has been described for rooted triple consensus

methods (Ewing et al., 2008; Degnan et al., 2009) and supertree methods (Steel and

Rodrigo, 2008; Willson, 2009). Supertree methods generalize consensus methods to

the setting in which input gene trees have overlapping subsets of taxa that need not be

identical (Bininda-Emonds , 2004). Because a rooted tree is completely described by

its set of rooted triples (Steel , 1992), we can utilize a supertree method to construct

the species tree from correctly inferred rooted triples.

Supertree and other phylogenetic methods can be applied to sets of concatenated

alignments, or supermatrices, to infer a species tree. A concatenated alignment

contains sequences of multiple loci linked together to create a single “supergene”

(Rokas et al., 2003; de Queiroz and Gatesy , 2007), thus increasing the size of the

dataset. Though statistical power generally increases with the size of a dataset,

the accuracy of concatenation is currently under debate. Rokas et al. (2003)

reported that the application of phylogenetic inference methods to concatenated

sequence alignments can yield a strongly supported inferred species tree. However,

several studies (Kolaczkowski and Thornton, 2004; Mossel and Vigoda, 2005; Edwards
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et al., 2007; Kubatko and Degnan, 2007) have also shown that inferring trees from

concatenated data with maximum likelihood (ML) can perform poorly when sites are

generated under different tree topologies and can produce bootstrap values that are

misleadingly high (Gadagkar et al., 2005; Kubatko and Degnan, 2007).

Here, we develop a divide-and-conquer approach (Cormen et al., 2001) called

SuperMatrix Rooted Triple (SMRT), which is a polynomial-time algorithm that

circumvents some of the weaknesses of concatenation by linking it with rooted triple

and supertree methods. SMRT assembles rooted triples inferred from concatenated

alignments into a species tree using a supertree algorithm such as modified mincut

(MMC) (Page, 2002). We compare SMRT in which rooted triples are inferred by

maximum likelihood (SMRT-ML) to the method in which all taxa are analyzed

simultaneously by applying ML to a supermatrix (SM-ML). In simulations that

assume a molecular clock, SMRT-ML performs favorably on four- and five-taxon

species trees both inside and outside the anomaly zone. Further, introducing

two model violations—analysis under a molecular clock when gene trees are not

clocklike and analysis under an incorrect substitution model—has little effect on

the performance of SMRT-ML. We illustrate the SMRT-ML procedure using a yeast

dataset frequently analyzed in phylogenetic studies (Rokas et al., 2003; Gatesy and

Baker , 2005; Edwards et al., 2007) and find that SMRT-ML recovers the same species

tree as that found using either SM-ML or the software BEST (Liu, 2008).

Assuming that incomplete lineage sorting is the source of discordance of gene trees

with species trees and that there are no hybridization or horizontal gene transfer

events, we prove that SM-ML is a statistically consistent estimator for three-taxon

clocklike species trees when concatenated sequence alignments are generated from

a coalescent distribution under a molecular clock and a binary substitution model

(Neyman, 1971). Under the same set of assumptions, we then prove in Theorem VI.4

that SMRT-ML is a statistically consistent estimator of a species trees. Therefore,
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our computationally efficient strategy is justified both theoretically and through

simulations in the context of gene tree conflict due to incomplete lineage sorting.

Although we assume here that rooted triples are inferred using a ML method, we

stress that SMRT is a general approach that can utilize rooted triples that have been

inferred from other methods such as parsimony and distance methods as well. We

focus on triples inferred from ML because we compare our method to a method in

which trees are inferred by ML from concatenated alignments.

6.2 Methods

6.2.1 Supermatrix rooted triple (SMRT)

The SMRT approach takes a concatenated alignment of n taxa and breaks it into(
n
3

)
alignments, one for each set of three taxa. A rooted three-taxon tree is inferred for

each alignment using any phylogenetic method by either assuming a molecular clock,

or by including a known outgroup as a fourth taxon to root the tree. The species

tree is then constructed by using the resulting rooted triples as input for a supertree

algorithm. Here, we use MMC, which extends the mincut algorithm (Semple and

Steel , 2000). The mincut algorithm satisfies five desirable properties: (1) the order of

the input set of trees does not affect the method; (2) relabeling the set of taxa of the

input trees produces the same output tree on the relabeled set of taxa; (3) if there

exists a tree that has each input tree as a subtree, then the output tree will display

all of these trees; (4) any taxon that is in the input set of trees is also in the output

tree; and (5) the method is polynomial in the number of distinct taxa (Semple and

Steel , 2000). Page (2002) created MMC by modifying the mincut method so that

uncontradicted nestings are preserved in the output tree.
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6.2.2 Simulation

We examined the performance of SMRT-ML using simulated sequence alignments.

First we chose a species tree σ with topology (((AB)C)D), ((AB)(CD)),

((((AB)C)D)E), (((AB)C)(DE)), or (((AB)(CD))E). Model species tree topologies are

depicted in Figure 6.1. Branch lengths and probabilities for the matching gene tree

topology and most probable nonmatching gene tree topologies are shown in Table 6.1.

The branch lengths chosen for the species tree (((AB)C)D) are the same as those used

in Kubatko and Degnan (2007). One additional case was considered in which both

internal branch lengths equal 0.1 coalescent units for the (((AB)C)D) species tree.

For each species tree and each simulation replicate, using COAL (Degnan and Salter ,

2005) conditional on σ, we simulated m = 100, 200, 300, 400, 500, 600, 700, 800, 900,

1000, 2000, 3000, 4000, 5000, and 6000 independent (within and across each set)

gene trees with branch lengths. Branch lengths were simulated in coalescent units,

t/(2Ne), where t is the number of generations, and Ne is the effective population

size. We converted the branch lengths for each gene tree to mutation units by

multiplying each length by θ/2, where θ = 4Neµ, and µ is the mutation rate per

site per generation. As a consequence, all populations had equal values of θ. For

each gene tree, we converted branch lengths to the expected number of mutations

by multiplying them by θ/2, where θ = 0.01. We generated sequence alignments of

length L = 500 nucleotides (nt) with Seq-Gen (Rambaut and Grassly , 1997). These

m independent alignments were concatenated to create single n-taxon alignments of

length mL.

The concatenated alignments were then broken into all
(
n
3

)
three-taxon alignments

of length mL. We inferred rooted ML trees for the n-taxon alignment, as well as for

all three-taxon alignments, employing an exhaustive search over all tree topologies

from PAUP∗ (Swofford , 2003). All three-taxon rooted trees were entered as input to

the program supertree (Page, 2002), which implements the MMC algorithm. Each
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time PAUP∗ was called, it returned k ≥ 1 tree topologies tied for the most likely

species tree. The count for each of the tied topologies was increased by 1/k. We

repeated this procedure, beginning with the simulation of gene trees, 300 times for

each combination of species tree topology and number of loci. The count for each

tree topology was averaged over all replicate simulations. Unless otherwise stated, the

results are for data simulated under a Jukes-Cantor (JC) model and analyzed under

ML assuming JC and a molecular clock. A schematic of the simulation procedure is

provided in Figure 6.2.

6.2.3 Empirical example

SMRT-ML was applied to analyze a yeast dataset consisting of 106 genes spanning

over 127,000 nt (Rokas et al., 2003). We used ML in PAUP∗ under a GTR + Γ + I

model without a molecular clock on each of the
(
7
3

)
= 35 three-taxon subsets of the

seven ingroup taxa, using the outgroup C. albicans to root the triples. In addition

to the full concatenated alignment, we analyzed concatenated alignments of random

subsets of m = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 genes. For each value of m,

SMRT-ML was applied to 300 random subsets of m genes, and we reported the

proportion of times that SMRT-ML returned either the presumed species tree or a

tree with at least one false clade. Bootstrapping for SMRT-ML was performed by

reading the concatenated sequence data in R (R Development Core Team, 2008) and

using the sample function to create 300 bootstrap eight-taxon alignments, SMRT-ML

was applied to each bootstrap replicate in separate PAUP∗ runs.

156



6.3 Results for simulations

6.3.1 Four taxa

A four-taxon asymmetric species tree is depicted in Figure 6.1A. Figures 6.3A–H

and Figures 6.3I–P display simulation results for this species tree for SM-ML and

SMRT-ML, respectively. As shown by Kubatko and Degnan (2007) and replicated

here, SM-ML is misleading in that increasing the number of loci can make it more

likely to return an incorrect species tree. In contrast, SMRT-ML outperformed

SM-ML on the (((AB)C)D) species tree for all branch lengths tried except for

(x, y) = (0.25, 0.01) (Figures 6.3H,P), where both methods performed poorly. For

these branch lengths, using 6000 loci, SM-ML returned the species tree 52% of

the time, SMRT-ML returned the species tree 54% of the time, and both methods

returned each of the nonmatching trees (((AC)B)D) and (((BC)A)D) less than 25%

of the time. For extremely small branch lengths of 0.01, the proportion of times that

SMRT-ML recovers the species tree topology increases slowly (Figures 6.3I,M,P).

However, the method does not appear to be misleading, suggesting that there is

a tradeoff between consistency and speed of convergence as was seen for consensus

methods by Degnan et al. (2009). For these sets of branch lengths, the proportion

of times that SM-ML returned the species tree either increased just as slowly

(Figure 6.3H) or was misleading (Figures 6.3A,E). Even though SMRT-ML did not

always infer the matching species tree when x = 0.01, it often inferred the partially

unresolved tree ((AB)CD) (e.g., Figures 6.3I,M), which is not misleading for the

species tree topology. On the other hand, for (x, y) = (0.1, 1.0) (Figures 6.3C,K),

both methods converged to the species tree with SMRT-ML converging more quickly

than SM-ML; however, only SMRT-ML was increasingly likely to recover the species

tree as loci were added for all branch lengths tried.

Simulation results on the four-taxon symmetric species tree (Figure 6.1B) are
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shown in Figures 6.4A–H (SM-ML) and Figures 6.4I–P (SMRT-ML). In contrast to

what was observed for the asymmetric tree, for the symmetric tree SM-ML is not

misleading and converges to the true species tree faster than SMRT-ML for each set

of branch lengths tested. This observation is not surprising, given that no anomaly

zone exists for the four-taxon symmetric species tree and that SM-ML simultaneously

analyzes all available sequence data for the four taxa. However, one must also careful

in assuming that SM-ML will perform well outside of the anomaly zone because

the anomaly zone has no obvious relationship to the problems encountered with

concatenation. As with the case for the asymmetric tree, SMRT-ML tends to have

a slow rate of convergence at extremely small branch lengths (Figures 6.4I,M,P).

However, it is still not misleading and frequently returns either the ((AB)CD) or

((CD)AB) partially unresolved tree. Thus, although SMRT-ML can be slower to

converge to the species tree for symmetric four-taxon trees, simulations for both

symmetric and asymmetric four-taxon species trees suggest that SMRT-ML has the

desirable property of not being misleading regardless of the species tree topology or

branch lengths.

6.3.2 Five taxa

Five-taxon trees are illustrated in Figures 6.1C–E. For these trees, SM-ML is

misleading with certain branch lengths (Figures 6.5A–C and 6.6D). In contrast,

SMRT-ML is not misleading under any parameters tested, attaining the correct tree

100% of the time with 6000 genes for all topologies and branch lengths tested.

Similarly to the results presented for four taxa, in cases where both SM-ML

and SMRT-ML recover the species tree (given enough loci), the method that has

faster convergence depends on the topology and branch lengths of the species tree.

For the species tree ((((AB)C)D)E), the only set of branch lengths tested for which

SM-ML was not misleading was (w, x, y) = (1.0, 0.1, 0.1), in which case SMRT-ML
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converged more quickly to the species tree than SM-ML. For these branch lengths,

SMRT-ML recovered the species tree 94% of the time with 1000 loci, whereas SM-ML

recovered the species tree 84% of the time. For the species tree (((AB)(CD))E),

SM-ML showed slightly faster convergence to the species tree for two branch length

combinations (Figures 6.7A,D). For example, with 1000 loci and branch lengths

(w, x, y) = (0.1, 0.1, 0.1), SM-ML and SMRT-ML recovered the species 93% and

91% of the time, respectively. However, for the same species tree topology with

(w, x, y) = (0.1, 0.1, 1.0), SMRT-ML appears to converge more quickly, with the

species tree being estimated ∼ 89% of the time with SMRT-ML using 1000 loci

versus ∼ 60% of the time with SM-ML. Furthermore, whereas SM-ML was never

found to be misleading for four-taxon symmetric species trees, SM-ML can fail to

converge to the species tree for every five-taxon tree shape. SMRT-ML converged to

the species tree for all branch lengths tested on every five-taxon tree shape.

6.3.3 Model violations

To assess how SM-ML and SMRT-ML perform with violations of assumptions, we

made gene trees non-clocklike by independently multiplying each branch by a value

sampled from an exponential distribution with mean 1. The concatenated alignment

generated by these gene trees was then analyzed assuming JC and a molecular clock.

Figure 6.8 shows that, for the (((AB)C)D)) tree, both methods were fairly robust

to violation of the molecular clock (when compared with Figure 6.3). The molecular

clock violation slowed down the convergence to the species tree that was inferred with

clocklike gene trees. For example, the species tree was inferred 98% of the time with

1000 genes under a molecular clock (Figure 6.3K), whereas it was inferred 80% of the

time with 1000 genes and 96% of the time with 3000 genes when the molecular clock

was violated (Figure 6.8K). This trend also held for the symmetric four-taxon species

tree (Figure 6.9) and the three five-taxon species trees (Figures 6.10–6.12). Also, the
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violation of the molecular clock affected SMRT-ML more than SM-ML. For example,

when the molecular clock is violated, it may require 2000 genes instead of 1000 genes

to obtain the same fraction of correctly inferred trees (compare Figure 6.5E with

Figure 6.10E, Figure 6.6E with Figure 6.11E, and Figure 6.7E with Figure 6.12E).

From these results, we conclude that the performance of the two methods is only

slightly influenced by the molecular clock violation.

We introduced a second model violation by generating sequence alignments under

a complex substitution model (General Time-Reversible (GTR)) and then comparing

SM-ML and SMRT-ML when trees were inferred assuming a simple substitution

model (JC). As with the case of the molecular clock violation, the general patterns

displayed by the two methods were not significantly altered (Figures 6.13–6.17).

However, under this substitution model violation, SM-ML was more negatively

affected than SMRT-ML. Based on simulations, SM-ML can converge more quickly

to the wrong tree (compare Figures 6.3A,B with Figures 6.13A,B and Figure 6.7B

with Figure 6.17B) and more slowly to the correct tree (compare Figure 6.3C with

Figure 6.13C and Figure 6.7C with Figure 6.17C) compared to analysis under the

correct model. Furthermore, this model violation can reverse the effect of adding more

data. For example, when both branches of the four-taxon species tree (((AB)C)D)

had lengths of 0.1568, SM-ML was increasingly likely to infer the correct tree when

there was no model misspecification (Fig. 6.3D; 63% probability with 6000 genes),

but decreasingly likely under model misspecification (Figure 6.13D; 26.7% chance

of inferring the matching tree with 6000 genes). However, this model violation can

also favorably influence SM-ML by causing a faster convergence to the correct tree

(compare Figure 6.4A with Figure 6.14A and Figure 6.5B with Figure 6.15B).

In simulations, neither SM-ML nor SMRT-ML performed uniformly better than

the other method for all possible species trees. Table 6.1 gives a summary of these

results and notes whether each method recovered the species tree in more than 50% of
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simulations with 6000 loci of 500 nt each. A “NO” in the table indicates that either the

method was likely to pick one of several trees (including the species tree) or converged

to the wrong tree. Convergence to an incorrect tree only occurred for SM-ML. In

cases where less than 50% probability of recovering the species tree was observed

for SMRT-ML, SMRT-ML typically returned the species tree topology > 40% of the

time and frequently returned some other tree, often a partially unresolved tree with

no false positive clades. We note that a “NO” only occurred for SMRT-ML in the

four-taxon cases where there was one extremely short branch length of 0.01 coalescent

units, leading to a high probability of a partially unresolved tree. SM-ML had poorer

performance as the number of taxa was increased even though branch lengths were

less extreme than for most of the four-taxon simulations. SMRT-ML, however, had

similar performance as the number of taxa increased.

6.4 Results for yeast data

Although the causes of gene tree conflict in the yeast dataset analyzed by Rokas

et al. (2003) are unknown, the analysis of this dataset by several groups (e.g., Gatesy

and Baker , 2005; Edwards et al., 2007) makes it useful for comparing methods of

inferring species trees. Rokas et al. (2003) reported that 20 concatenated genes were

sufficient for maximum parsimony or ML to infer the same tree with high reliability.

On the estimated species tree, the five taxa with the most difficult relationships

to infer form the five-taxon subtree ((((S. cerevisiae, S. paradoxus), S. mikatae),

S. kudriavzevii), S. bayanus).

Using SMRT-ML on all 106 genes, we recovered the species tree found using

SM-ML on the full data (i.e., the same tree that was reported as the estimated

species tree in Rokas et al. (2003)). When a clock was assumed, SMRT-ML returned

the species tree with the five-taxon subtree replaced by (((S. cerevisiae, S. paradoxus),

S. mikatae), (S. kudriavzevii, S. bayanus)). The same result was produced by the
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program BEST (Liu, 2008) analyzing the full data under a molecular clock; however,

the molecular clock assumption is unreasonable because the data are not clocklike at

most loci (Edwards et al., 2007).

To compare the efficiency of species tree estimation methods when methods agree

on the full data, it is useful to consider subsets of the genes. For example, although

Rokas et al. (2003) found that 20 randomly chosen genes were sufficient for SM-ML to

estimate the species tree with high probability, Edwards et al. (2007) found that eight

genes were sufficient using BEST. Because of the tradeoff between consistency and

speed of convergence, we expect SMRT-ML to perform less efficiently than SM-ML

for many cases when both methods have a high probability of returning the same tree,

and this expectation is indeed what we found with the yeast data. The proportion of

times SMRT-ML returned the species tree, inferred from all 106 loci, using random

subsets of 20 loci was approximately 33%, with another 8% of cases returning a tree

that was unresolved with respect to the taxa S. kurdriavzevii and S. bayanus and

the {S. cerevisiae, S. paradoxus, S. mikatae} clade. With 60 genes, the proportion of

times that SMRT-ML returned the species tree increased to 59% (Figure 6.18). The

SMRT-ML method was therefore increasingly likely to return the tree reported by

Rokas et al. (2003) as the number of genes from this dataset was increased.

Using SMRT-ML on the full dataset of 106 genes, the bootstrap support for clades

{S. cerevisiae, S. paradoxus} and {S. cerevisiae, S. paradoxus, S. mikatae} was 99%

and 91%, respectively (as opposed to the 100% bootstrap support observed for the

total concatenated dataset in Rokas et al. (2003)), while the clade {S. cerevisiae,

S. paradoxus, S. mikatae, S. kudriavzevii} had 61% bootstrap support (Figure 6.19)

(see Methods under the “Empirical example” section for how the bootstrap with

SMRT-ML was performed). The clade {S. bayanus, S. kudriavzevii} occurred in 29%

of bootstrap replicates. Thus, although SMRT-ML and SM-ML produced the same

estimated species tree for the 106-gene yeast dataset, SMRT-ML converged to this
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estimated tree more slowly than SM-ML. The speed of approach to this tree could

be either a product of the tradeoff between consistency and speed of convergence

sometimes observed for SMRT-ML, or misleadingly high bootstrap support for

SM-ML (Gadagkar et al., 2005; Kubatko and Degnan, 2007). The slower convergence

of SMRT-ML compared to SM-ML observed for this dataset is not expected to

generalize to all species trees since simulations found that there are also species trees

for which SMRT-ML converges more quickly than SM-ML.

In both simulations and analysis of the yeast data, SMRT-ML was not misleading,

in the sense of becoming increasingly less likely to infer an incorrect tree with more

data, even in cases where SM-ML converged to the wrong tree. To see whether the

observation that SMRT-ML was not misleading is expected to be true in general, we

next assess the properties of SMRT-ML theoretically. We derive the probability that

a site has pattern x for a three-taxon species tree by averaging over gene genealogies

under a simple substitution model. This result is then used to prove that SMRT-ML

is statistically consistent when estimating species trees from coalescent mixtures of

site patterns, at least in a simplified setting.

6.5 Theory

In this section, we begin by developing the probability distribution of site

patterns under a Cavender-Farris-Neyman (CFN) substitution model given a clocklike

three-taxon species tree. This substitution model assumes binary characters with

equal rates of mutation between the characters. Assuming that incomplete lineage

sorting is the source of discordance between gene trees and species trees and that the

species tree has no hybridization or horizontal gene transfer events, we then show that

that the frequency of a certain site pattern in a concatenated alignment converges in

probability to the probability of the site pattern ((Lemma VI.2). From this result,

we provide a proof that SM-ML is a consistent estimator of a clocklike three-taxon
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species tree (Lemma VI.3). Utilizing Lemma VI.3, we show in Theorem VI.4 that

SMRT-ML is consistent for estimating clocklike species trees under the CFN model.

Consider a species tree with three taxa. Denote the true species tree by σ with

speciation times ρ0 and ρ1 (see Figure 6.20). Denote the topology of the species tree

as ((AB)C). The species tree is therefore written as

σ = ((A:ρ1,B:ρ1):ρ0 − ρ1,C:ρ0),

which has clocklike branch lengths. Further, denote the topology of the gene tree

that matches the species tree σ as τ1 and denote the other gene tree topologies as the

star tree τ0 = (ABC) and the two discordant trees τ2 = ((AC)B) and τ3 = ((BC)A).

Random gene trees evolving along the species tree σ can take on any of the

topologies τ1, τ2, or τ3. Define θ as the population mutation rate for each branch

of the tree. For a random gene tree topology, we define t as the total length of the

gene tree and u as the time from the present to the most recent coalescent event in

mutation units.

Our goal is to determine the probability of a site pattern x = (x1, x2, x3) under a

CFN substitution model, where x1, x2, and x3 are the characters at a site for species

A, B, and C, respectively. If two species have the same character at a site, then they

share the same letter. Therefore, the possible site patterns are xxx, xxy, xyx, and

yxx. We note that only the xxy pattern supports the matching gene tree ((AB)C). We

will show that when data are concatenated under a coalescent model and a ML tree is

inferred from the concatenated data, the probability that the ML tree has topology τ1

is higher than the probability of any other bifurcating tree topology. Further, we will

show that this probability approaches 1 as the number of sites approaches infinity.

The probability of a site pattern given the species tree is obtained by conditioning

on the gene genealogy and integrating over the joint density of the two coalescent
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times. The form of the joint density depends on whether both coalescent events

occur more anciently than the root of the species tree σ or whether one coalescent

event occurs more recently than the root of the species tree. This latter case only

occurs when the gene tree matches the species tree. In this case (Figure 6.20A),

define gσ(t, u, τ1) as the joint density for the coalescent times and gene tree topology

τ1. Following Rannala and Yang (2003), this joint density is written as

gσ(t, u, τ1) =
4

θ2
e

2
θ
(ρ0+ρ1−t−u). (6.1)

When all coalescent events occur more ancient than the root and the genealogy has

topology τi (Figures 6.20B–D), the joint density of coalescent times and topology is

fσ(t, u, τi) =
4

θ2
e

2
θ
(2ρ0+ρ1−t−2u). (6.2)

Note that when all coalescent events occur above the root, the form of the joint

density for the gene tree topology and two coalescent times is the same for each of

the three topologies. The probability of site pattern x given that the species tree is

σ is

Pσ(x) =

∞∫
ρ0

ρ0∫
ρ1

Pσ(x | t, u, τ1)gσ(t, u, τ1) du dt

+
3∑

i=1

∞∫
ρ0

t∫
ρ0

Pσ(x | t, u, τi)fσ(t, u, τi) du dt, (6.3)

where Pσ(x | t, u, τi) is the probability of the site pattern given the gene genealogy with

topology τi and the branch lengths u and t−u. The first term in the probability is for

the case that the gene tree matches the species tree and there is a coalescence between

the A and B lineages more recent than the root of the species tree (Figure 6.20A). The

second term is a summation corresponding to the three possible gene tree topologies
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when all coalescent events are more ancient than the root (Figures 6.20B–D).

For a CFN substitution model, Yang (2000) provided the probabilities of the site

pattern x conditional on the gene tree topology with branch length t and u as

P (xxx | t, u, τi) =
1

4
+

1

4
e−4u +

1

2
e−4t

P (xxy | t, u, τ1) =
1

4
+

1

4
e−4u − 1

2
e−4t

P (xyx | t, u, τ1) = P (yxx | t, u, τ1) =
1

4
− 1

4
e−4u, (6.4)

where the equality for xyx and yxx follows by symmetry of A and B with respect to

C in tree τ1. We have dropped the subscript σ in Pσ(· | ·) because the probability of a

site pattern is independent of the species tree given the gene genealogy τi. Similarly,

P (xxy | t, u, τ3) = P (xxy | t, u, τ2) = P (xyx | t, u, τ1)

P (yxx | t, u, τ3) = P (xyx | t, u, τ2) = P (xxy | t, u, τ1)

P (xyx | t, u, τ3) = P (yxx | t, u, τ2) = P (yxx | t, u, τ1). (6.5)

We next derive the full distribution of site patterns for a given species tree σ.
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Using the symmetries in equation (6.5),

Pσ(xxy) =

∞∫
ρ0

ρ0∫
ρ1

P (xxy | t, u, τ1)gσ(t, u, τ1) du dt

+

∞∫
ρo

t∫
ρ0

{
[P (xxy | t, u, τ1) + 2P (xyx | t, u, τ1)]

× fσ(t, u, τi)
}
du dt

=

∞∫
ρ0

ρ0∫
ρ1

1 + e−4u − 2e−4t

4

4

θ2
e

2
θ
(ρ0+ρ1−t−u) du dt

+

∞∫
ρ0

t∫
ρ0

3− e−4u − 2e−4t

4

4

θ2
e

2
θ
(2ρ0+ρ1−2u−t) du dt

=
1 + 2θ + e−4ρ1 − 2e−4ρ0

4 + 8θ
. (6.6)

Analogously,

Pσ(xyx) =

∞∫
ρ0

ρ0∫
ρ1

1− e−4u

4

4

θ2
e

2
θ
(ρ0+ρ1−t−u) du dt

+

∞∫
ρ0

t∫
ρ0

3− e−4u − 2e−4t

4

4

θ2
e

2
θ
(2ρ0+ρ1−2u−t) du dt

=
1 + 2θ − e−4ρ1

4 + 8θ
. (6.7)

By symmetry we have that Pσ(yxx) = Pσ(xyx) and by the law of total probability,

Pσ(xxx) = 1− Pσ(xxy)− Pσ(xyx)− Pσ(yxx)

=
1 + 2θ + e−4ρ1 + 2e−4ρ0

4 + 8θ
. (6.8)

The probability in equation (6.6) is greater than the probability in equation (6.7) if

and only if ρ0 > ρ1, i.e., the root of the species tree is more ancient than the divergence
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of species A and B. Therefore, the probabilities of the segregating site patterns given

the species tree σ are related by Pσ(xxy) > Pσ(yxx) = Pσ(xyx). Hence, the most

probable segregating site pattern is the pattern that supports the species tree.

It is possible to extend the above derivation to other substitution models by

modifying the expression in equation (6.4) and including a term for P (xyz) if there

are more than two possible character states. Extending to site pattern probabilities

for four or more taxa is also accomplished using the same approach but is considerably

more tedious. For example, with four taxa, there are 15 rooted gene tree topologies

rather than three, and the form of the joint density of coalescent times and gene

tree topology depends on the coalescent history, a list of ancestral populations from

the species tree where each coalescence occurs (Degnan and Salter , 2005; Rosenberg ,

2007). For four-taxon trees, there are up to five coalescent histories for a given gene

tree in a species tree, in contrast to the two expressions for three taxa (eqs. (6.1)

and (6.2)). Thus, the probability of a site pattern x is found by summing over

gene trees and computing triple integrals of P (x) with respect to each of the

algebraic expressions taken by the joint densities of coalescent times and gene tree

topologies. Because SMRT-ML only uses alignments of three taxa, we have only

derived three-taxon site pattern probabilities. We next provide two lemmas which

aid in the proof of the theorem that SMRT-ML is consistent.

Lemma VI.2 essentially says that the alignment lengths do not matter

asymptotically (under reasonable conditions), because the proportion of sites with

any given pattern x will approach the probability of the site pattern. In practice the

length of the alignments could affect the rate at which a method using concatenated

data (e.g., SM-ML or SMRT-ML) converges to a particular species tree. Lemma VI.3

says that because the most likely segregating pattern supports the species tree,

SM-ML is consistent on concatenated three-taxon alignments under some assumptions

(e.g., a clocklike species tree, constant ancestral θs, and the CFN substitution
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model). Theorem VI.4 puts these ideas together and states that, because SMRT-ML

constructs the species tree from several SM-ML estimates restricted to rooted triples,

SMRT-ML is a statistically consistent estimator of clocklike species trees under the

CFN model.

We begin by stating assumptions used for proving the lemmas and theorem that

follow:

1. Let the gene tree for the ith locus have topology τ (i) ∈ {τ1, τ2, τ3} and coalescent

times ui and ti (Figure 6.20), where the joint distribution of topology and

coalescent times is given by equations (6.1) and (6.2). Assume that each site j

in locus i is independent given the gene tree and coalescent times and has site

pattern probability P (x | ti, ui, τ
(i)), given by equations (6.6)–(6.8), where the

mutation parameter θ is constant for each ancestral population in the species

tree. This derivation for site pattern probabilities depends on the following

assumptions:

• Mutations occur under the CFN substitution model.

• The species tree is clocklike.

• Incomplete lineage sorting is the source of discordance between gene trees

and species trees.

• There is no hybridization, horizontal gene transfer, or other gene flow

between species.

• There is no population subdivision within species.

2. Consider a concatenated alignment of m non-recombining loci that are

conditionally independent given the species tree, each with finite length Li ≥ 1

for i = 1, 2, . . . ,m. Define qm = (
∑m

i=1 L
2
i )/(

∑m
i=1 Li)

2 and assume that, for any

site pattern x, qm → 0 as m → ∞.
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3. A supertree algorithm is used with the property that if the input trees are

compatible, then the supertree is a rooted phylogenetic tree which displays all

input trees.

The condition under assumption 2 that qm → 0 as m → ∞ allows a version of the

Law of Large Numbers to be applied to site pattern probabilities for concatenated

alignments with different lengths and ensures that the length of the concatenated

alignment does not grow too rapidly. For example, if we concatenate loci of constant

length L, then qm = mL2/(mL)2 → 0 as m → ∞. Similarly, if the gene length is

bounded, so that 1 ≤ Li ≤ B, for some upper bound B, then qm ≤ mB2/m2 →

0. Since real genomes are finite, this assumption is reasonable for biological data.

However, if every new locus were twice the length of the previous locus, say Li = 2i

for i = 1, 2, . . . ,m, then qm → 1/3 as m → ∞. Thus, if the concatenated alignment

grows too quickly, Lemma VI.2 does not apply.

Assumption 3 states that the only characteristic of the supertree method that

is necessary to prove Theorem VI.4 is that the method must return a tree which

displays all input trees when they are compatible. Hence, if all rooted triples are

inferred correctly, then the tree that displays those rooted triples is the species tree

topology. A broad class of supertree algorithms can be used to prove this result

including BUILD (Aho et al., 1981), matrix representation using parsimony (Baum,

1992; Ragan, 1992), mincut (Semple and Steel , 2000), MMC (Page, 2002), matrix

representation using flipping (Chen et al., 2003), and normalized triplet supertrees

(Willson, 2009).

Lemma VI.1 is a version of the Weak Law of Large Numbers that does not require

identically distributed random variables. This lemma is used to prove Lemma VI.2.

Lemma VI.1 (Modified Theorem 5.2.3 of Chung (1974)). Consider the sequence

X1, X2, . . . , Xn, where Xi > 0, of independent random variables each with their

own distribution function. Define Sn =
∑n

i=1 Xi. Further, let {bn} be a sequence
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that approaches infinity and assume that Xi ≤ bn for each i = 1, 2, . . . , n. If

limn→∞
∑n

i=1 E[X2
i ]/b

2
n = 0, then Sn/bn

P−→ E[Sn/bn].

Lemma VI.2. Under assumptions 1 and 2, the proportion of sites with pattern x

converges in probability to P (x).

Proof. First we show that the expected proportion of sites with a given site pattern

x is equal to the probability of that site pattern, P (x). We consider the expected

proportion of sites with each pattern and note that by Lemma VI.1, as the number

of loci approaches infinity, the probability approaches 1 that the proportion of sites

with a given pattern approaches the expected proportion. Let m denote the number

of loci and let Li denote the number of sites at locus i. The total number of sites

is
∑m

i=1 Li. For a site pattern x, let δx,i,j = 1 if site j in locus i has site pattern

x; otherwise δx,i,j = 0. Let Mx,i =
∑Li

j=1 δx,i,j denote the number of sites in locus

i that have site pattern x. Let Sm =
∑m

i=1 Mx,i and let bm =
∑m

i=1 Li. Because

the length of the concatenated alignment is increasing with each additional locus,

we have that bm → ∞ as m → ∞. Note that E[δ2x,i,j] = P (x). Also note that

E[δx,i,jδx,i,k] = P (x,x) for j ̸= k where P (x,x) is the probability of getting pattern

x at two different sites. Note that we do not need to know the actual value of

P (x,x)—only that it is between 0 and 1. Then it follows that

1

b2m

m∑
i=1

E[M2
x,i] =

1

b2m

m∑
i=1

(
Li∑
j=1

E[δ2x,i,j] + 2

Li−1∑
j=1

Li∑
k=j+1

E[δx,i,jδx,i,k]

)

=
1

b2m

m∑
i=1

[P (x)Li + P (x,x)(L2
i − Li)]

=
P (x)− P (x,x)

bm
+ P (x,x)

∑m
i=1 L

2
i

b2m
. (6.9)

The quantity in equation (6.9) approaches 0 as m → ∞ only if qm =
∑m

i=1 L
2
i /b

2
m → 0

as m → ∞. We assumed that qm → 0 as m → ∞. Thus, Lemma VI.1 applies and
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therefore,

∑m
i=1 Mx,i∑m
i=1 Li

=
Sm

bm

P−→ E

[∑m
i=1 Mx,i

bm

]

=

∑m
i=1

∑Li

j=1 P (x)∑m
i=1 Li

=

∑m
i=1 Li∑m
i=1 Li

P (x) = P (x).

Lemma VI.3. Under assumptions 1 and 2, SM-ML is a statistically consistent

estimator of a three-taxon clocklike species tree.

Proof. Let m denote the number of loci. The total number of sites is
∑m

i=1 Li. Let

Mx,i denote the number of sites in locus i that have site pattern x. Further, let

Mx =
∑m

i=1 Mx,i be the number of sites with pattern x in the concatenated alignment.

Suppose three species, A, B, and C, have the species tree σ = ((A:ρ1,B:ρ1):ρ0 −

ρ1,C:ρ0), where ρ0 and ρ1 are measured in coalescent units, and the two ancestral

populations each have the same θ. Further, suppose there are Mxxx, Mxxy, Mxyx, and

Myxx sites with site patterns xxx, xxy, xyx, and yxx, respectively. By Lemma VI.2,

we know that the relative frequency of pattern xxy (Mxxy/
∑m

i=1 Li) converges in

probability to P (xxy). Because xxy is the most likely segregating site pattern

(eqs. (6.6)–(6.8)), it follows that the probability that xxy is the most frequently

occurring segregating site pattern (i.e., Mxxy > Mxyx,Myxx) approaches 1 as m → ∞.

Theorem 3 of Chor et al. (2007) states that if Mxxy > Mxyx,Myxx, then ((AB)C) is

the inferred ML under a molecular clock. Utilizing this theorem, the probability that

the ML tree topology is ((AB)C) approaches 1 as m → ∞.

Theorem VI.4. Under assumptions 1–3, SMRT-ML is a statistically consistent

estimator of a clocklike species tree with three or more taxa.

Proof. Suppose we have an n-taxon species tree. There are
(
n
3

)
subsets of three taxa.

Let the rooted triples on the species tree be enumerated σ1, σ2, . . . , σJ , where J =
(
n
3

)
.
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Let σ⋆
j denote a rooted triple defined on the same taxa as σj but which is not a rooted

triple on the species tree. From equations (6.6) and (6.7) and from equation (6.5), if

x is the most probable segregating site pattern for σj, then Pσj
(x) > Pσ⋆

j
(x). Let the

most frequently occurring segregating site pattern for supermatrix rooted triple j be

x. Applying Lemma VI.2, for any ε > 0, we can choose the number of loci m such

that the probability of Pσj
(x) > Pσ⋆

j
(x) is greater than 1 − ε/

(
n
3

)
. By Lemma VI.3,

the ML estimate for each of these J sets of three taxa is σj, j = 1, 2, . . . , J . Therefore

the probability that all J rooted triples in the species tree are inferred by SMRT-ML

is greater than 1− ε. In this case, the rooted triples will be compatible and the tree

with the same topology as the species tree is uniquely identified by these J triples

by Proposition 4 of Steel (1992). Applying a supertree algorithm to these J rooted

triples with the property that if the input trees are compatible, then the supertree

method returns a tree that displays all of its input trees, the supertree algorithm is

guaranteed to return the matching species tree with probability greater than 1 − ε.

Thus, the supertree method applied to the J supermatrix rooted triples returns the

species tree with probability greater than 1− ε. Therefore, SMRT-ML is statistically

consistent under the CFN substitution model when the species tree is clocklike.

6.6 Discussion

6.6.1 Overview of results and implications

In this study, we have shown that combining concatenation and supertree methods

on rooted triples can overcome the problems caused by incomplete lineage sorting

for concatenation-based ML inference of species trees. From theory, we find that

SMRT-ML is a consistent estimator of species trees when sequences are generated

under a CFN substitution model assuming a molecular clock and equal values of θ

over the species tree.
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Although neither SM-ML nor SMRT-ML performs uniformly better than the

other, a scan of Table 6.1 shows that SMRT-ML often outperforms SM-ML when

no single gene tree has high probability (typically ≤ 25%), and when two gene

trees have very similar probabilities. Because the yeast dataset has considerably

less gene discordance than these cases, it is not surprising that SM-ML needs fewer

loci than SMRT-ML to obtain the same species tree that was inferred from all 106

loci. The yeast data analysis also suggests that it may take a large number of genes

for SMRT-ML to have a high probability of recovering the species tree, and therefore

that SMRT-ML may have an advantage with sizeable genomic datasets. Simulations

show that large amounts of data may also be necessary to resolve phylogenies when

no single gene tree topology predominates.

Through simulations, we find that SMRT-ML is not misleading and often

outperforms SM-ML given sufficiently severe gene tree discordance when sequences

are generated under JC and GTR substitution models. This finding suggests that

SMRT-ML is consistent when assuming models that are more complex than CFN.

However, analytical results for three-taxon trees under more complex models are

difficult to obtain. For example, Chor et al. (2006) found that the exact ML solution

for a rooted three-taxon Jukes-Cantor problem required finding roots of an 11th

degree polynomial.

An attractive property of the SMRT method is computational efficiency. For

each rooted triple, the tree space contains only three trees and the number of branch

lengths needed to optimize is small. Therefore, the total number of trees examined is

3
(
n
3

)
= n(n− 1)(n− 2)/2. In contrast, the total number of rooted tree topologies in

an n-taxon tree space is (2n− 3)!!. Although there are methods, such as Branch and

Bound (Felsenstein, 2004), that can ignore the irrelevant part of the tree space, finding

globally optimal trees under criteria such as likelihood or parsimony is NP-hard (Day

et al., 1986; Chor and Tuller , 2005; Roch, 2006). Because MMC is a polynomial-time
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algorithm (Page, 2002), and only a polynomial number of trees is evaluated using

SMRT, both steps of inferring triples and constructing the tree are polynomial in the

number of taxa. Thus, at least under a simple substitution model, SMRT-ML is a

polynomial-time algorithm for inferring the species tree and is statistically consistent

when gene tree discordance is described by the multispecies coalescent model.

6.6.2 Taxon sampling for species tree inference

An issue that has received a lot of attention in phylogenetics is whether increased

taxon sampling can improve the accuracy of species tree inference. Some researchers

argue that increased taxon sampling generally improves phylogenetic inference (Zwickl

and Hillis , 2002; Hedtke et al., 2006), and others argue that it often does not (Poe

and Swofford , 1999; Rosenberg and Kumar , 2001; Rokas and Carroll , 2005). These

studies have all focused on the effect of taxon sampling on the estimation of gene trees,

prompting the need for investigating its effects on species tree estimation (Degnan

and Rosenberg , 2009).

Some of our results imply that the performance of SM-ML can either be improved

or impaired when extra taxa are sampled, depending on the branch lengths and

topology of the species tree. In general, SMRT-ML is less sensitive to taxon sampling

than SM-ML for the range of species trees examined. As an example where SM-ML

performs worse with more taxa, consider the species trees ((AB)(CD)) with branch

lengths (x, y) = (0.1, 1.0) (Figure 6.4C) and (((AB)(CD))E) with branch lengths

(w, x, y) = (0.1, 0.1, 1.0) (Figure 6.7C). For the four-taxon species tree, SM-ML

recovered the species tree topology ∼ 99% of the time with 1000 loci. The addition

of the E taxon with a short branch length separating the root of the tree from the

most recent common ancestor of A, B, C, and D impaired the performance of SM-ML,

making it incorrectly group E with (AB) 38% of the time with 1000 loci. In contrast,

adding the E taxon to the same four-taxon tree had a much smaller influence on the
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performance of SMRT-ML (compare Figure 6.4K with Figure 6.7G).

To investigate this effect further, we added a sixth taxon separated from the

root of the tree (((AB)(CD))E) by 0.1 coalescent units to create the species tree

(((((AB)(CD))E)F) (Figure 6.21A). Adding the sixth taxon caused the probability

that SM-ML inferred the AGT ((((AB)(CD))(EF)) to approach 1 as more genes were

added (Figure 6.21B). On the other hand, SMRT-ML had a similar performance with

this six-taxon tree on taxa A–F as with the four- and five-taxon subtrees on taxa

A–D and A–E, respectively.

For the five-taxon species tree ((((AB)C)D)E) with branch lengths (w, x, y) =

(1.0, 0.1, 0.1) (Figure 6.5D), SM-ML recovered the species tree 100% of the time given

enough loci. However, when taxon E was removed from this species tree, SM-ML

was misleading on the subtree (((AB)C)D) with branch lengths (x, y) = (0.1, 0.1)

(Figure 6.22), with a probability approaching 1 of returning the AGT ((AB)(CD)).

SMRT-ML was not as influenced by the presence of taxon E for this example, though

the extra taxon slightly hindered the speed of convergence to the species tree. This

example shows not only that increased taxon sampling had a less dramatic influence

on SMRT-ML than SM-ML, but also that the same parameters can produce opposite

effects that aid one method while hurting the other.

6.6.3 Rooted triple consensus

A recent study used rooted triples estimated at each locus as input to the quartet

puzzling algorithm (Ewing et al., 2008) by treating a fourth taxon as a known

outgroup. In quartet puzzling, maximum likelihood trees for all
(
n
4

)
quartets of a

set of n species are estimated and a heuristic algorithm is used to construct the tree

from the inferred quartets (Strimmer and von Haeseler , 1996). The R∗ consensus

method (Bryant , 2003; Degnan et al., 2009) is similar in that it uses rooted triples

at each locus, although these are generated by first inferring gene trees on the full
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set of taxa. R∗ consensus then applies a different non-heuristic algorithm from that

of the quartet puzzling based rooted triple consensus to construct the tree from the

estimated rooted triples. Like R∗ consensus, rooted triple consensus construct the

estimated species tree from m
(
n
3

)
rooted triples, where m is the number of loci.

Neither method requires the estimation of coalescent or population parameters, and

each avoids the problem of AGTs due to incomplete lineage sorting through the use

of rooted triples. R∗ consensus given known gene trees at each locus is proven to be

statistically consistent when gene tree discordance is due to incomplete lineage sorting

(Degnan et al., 2009). A more general approach shows that supertree methods that

have rooted triples as input can be statistically consistent in this setting given certain

covering conditions and bounds on error in gene tree estimation (Steel and Rodrigo,

2008, Proposition 5). SMRT is different from rooted triple consensus methods in two

respects: (1) only the
(
n
3

)
rooted triples from a supermatrix are inferred, and (2)

the resulting triples are input into a supertree algorithm to construct the estimated

species tree.

One advantage of rooted triple consensus and R∗ over SMRT is that they use the

information of all available taxa at a given locus to infer a gene tree whereas SMRT

only uses information on three taxa. Because there may be a lack of phylogenetic

signal among the three taxa analyzed by SMRT, the extra information about the

relationship between taxa used by rooted triple consensus and R∗ can aid in more

accurate estimates of species tree when the total amount of sequence is small.

However, SMRT has the advantage that it is both fast and tractable on a large

number of taxa. Because ML inference of phylogenetic trees is NP-hard (Chor and

Tuller , 2005; Roch, 2006), if gene trees are inferred using ML at each locus, then

both rooted triple consensus and R∗ are NP-hard whereas SMRT is polynomial in

the number of taxa.
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6.6.4 Bayesian approaches

Recent methods, such as BEST (Liu and Pearl , 2007; Liu, 2008) and BUCKy

(Ané et al., 2007), for inferring species trees from multilocus data take a Bayesian

approach. The programBEST simultaneously estimates a joint posterior distribution

of gene trees and species trees (Rannala and Yang , 2008) assuming that gene trees are

distributed according to the coalescent process and that gene tree discordance is due

solely to incomplete lineage sorting. In contrast to BEST, which models discordance

among of gene trees using the coalescent process, BUCKy uses a prior to model the

correlation between gene trees without assuming the source (e.g., incomplete lineage

sorting) of discordance. These methods are attractive in that they are designed to

handle gene-tree discordance. However, both are computationally intensive, relying

on MCMC runs for separate loci and for estimates of the species tree and are therefore

tractable only for small numbers of taxa and loci (Edwards , 2009). Because SMRT

is polynomial in the number of taxa and not heavily affected by the number of loci,

it is especially well-suited for genomic-level data and large numbers of taxa.

6.6.5 Other sources of discordance

SMRT gains its strength from the fact that when gene trees are distributed

according to the multispecies coalescent, there are no anomalous three-taxon trees

when the source of gene-tree discordance is due only to incomplete lineage sorting.

However, in the presence of other sources of discordance, such as hybridization,

horizontal gene transfer, gene duplication, recombination, and population structure

the most probable three-taxon gene tree might not match the species tree (Slatkin

and Pollack , 2008). Hence, if there are forces acting strongly to create gene-tree

discordance other than incomplete lineage sorting, then SMRT may not have enough

information to obtain the correct tree. However, because SMRT has the ability to

infer partially unresolved trees, then it may be the case that forces such as horizontal
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gene transfer will cause SMRT to infer a partially unresolved tree. Future studies

are needed to assess how SMRT and other methods perform under various types and

degrees of gene tree discordance.

6.6.6 Summary

When genetic data from multiple loci are concatenated, the distribution of site

patterns is a mixture that depends on the distribution of gene trees over the loci.

Such mixture distributions on site patterns make it difficult to obtain analytical

results for concatenated data and therefore to understand theoretical properties of

phylogenetic methods that use concatenated data. We have obtained the distribution

of site patterns for three-taxon concatenated sequences under a mixture distribution

due to the multispecies coalescent using the CFN substitution model. Thus, despite

the poor performance of SM-ML for some species trees, there is enough information

in the concatenated alignment, and therefore in the distribution of site patterns, to

recover the species tree topology. SMRT-ML uses this information in the concatenated

alignment to consistently recover the species tree.

The consistency of SMRT-ML shows that the species tree topology is identifiable

from concatenated data in the sense that two distinct species trees (with either

different topologies or the same topology but different branch lengths) cannot have

the same distribution of site patterns. The analytic framework in this paper could be

extended to either more complex substitution models or to larger numbers of taxa to

yield further insights into some of the properties of concatenated data.

As a tool for inferring species trees, SMRT-ML could be extended to cases where

there are multiple individuals sampled per species. Here, there could be multiple

inferred triples for each choice of three species, where one individual from within

each of the three species is chosen randomly, or all possible combinations with one

individual per species are used. If there are n species and i individuals sampled per
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species, this procedure would result in i3
(
n
3

)
inferred rooted triples from which the

species tree could be constructed using a supertree method such as MMC. With

multiple rooted triples estimated on the same choice of three taxa, a supertree

algorithm designed for high levels of conflict in the input triples might be useful,

for example, Normalized Triplet Supertree (Willson, 2009).

We have not investigated the performance of SMRT when combined with methods

of inferring gene trees other than ML, such as parsimony and distance methods. Liu

and Edwards (2009) show that for concatenated data, under similar assumptions as

in this paper, distance methods and in many cases parsimony methods recover the

species tree when SM-ML is misleading. Although, because of long branch attraction

(Felsenstein, 1978), maximum parsimony is not consistent for trees with five or more

taxa, even when there is a molecular clock (Hendy and Penny , 1989). However,

for cases in which rooted three-taxon gene trees can be inferred consistently from

concatenated data—including distance and parsimony methods under a molecular

clock—SMRT is also consistent for larger trees because of the fact that rooted triples

identify a tree, independently of how those rooted triples were inferred. Future studies

using simulation and real data will be needed to further assess the performance of

SMRT methods and its extensions.
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Figure 6.1: Four- and five-taxon clocklike species tree topologies. (A, B) Four-taxon
species tree topologies with branch lengths x, y, and z. (C -E ) Five-taxon
species tree topologies with branch lengths w, x, y, and z. Branch lengths
are in coalescent time units t/(2Ne), where t is the time in generations
and Ne is the effective population size. For all simulations, we let z = 1.
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Figure 6.2: Schematic of our simulation procedure. First, an n-taxon species tree is
chosen with branch lengths, which is fed through COAL (Degnan and
Salter , 2005) to produce a set of n-taxon gene trees simulated under this
species tree. Seq-Gen (Rambaut and Grassly , 1997) is then used to create
alignments of n species based on the gene trees, which are linked to create
a single concatenated alignment. The concatenated alignment is analyzed
under maximum likelihood (SM-ML) with PAUP∗ (Swofford , 2003) to
infer a species tree. The concatenated alignment is also broken into all(
n
3

)
alignments of three species, which are then fed through PAUP∗ to

infer a total of
(
n
3

)
rooted triples. These rooted triples are used as input to

supertree (Page, 2002) to infer a species tree (SMRT-ML). The dashed
gray box represents the part of the procedure that is SMRT-ML.
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Figure 6.3: Results of simulations for the four-taxon tree (((AB)C)D) (Figure 6.1A)
generated under a Jukes-Cantor model with θ = 0.01 and a molecular
clock, and analyzed under maximum likelihood assuming a molecular
clock and a Jukes-Cantor model. (A-H ) SM-ML (resimulated from
Kubatko and Degnan (2007)). (I -P) SMRT-ML. Data for each
combination of branch lengths and number of loci were generated from
300 independent simulations.
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Figure 6.4: Results of simulations for the four-taxon tree ((AB)(CD)) (Figure 6.1B)
generated under a Jukes-Cantor model with θ = 0.01 and a molecular
clock, and analyzed under maximum likelihood assuming a molecular
clock and a Jukes-Cantor model. (A-H ) SM-ML. (I -P) SMRT-ML. Data
for each combination of branch lengths and number of loci were generated
from 300 independent simulations.
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Figure 6.5: Results of simulations for the five-taxon tree ((((AB)C)D)E)
(Figure 6.1C) generated under a Jukes-Cantor model with θ = 0.01 and
a molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-E ) SM-ML. (E -H )
SMRT-ML. Data for each combination of branch lengths and number of
loci were generated from 300 independent simulations..
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Figure 6.6: Results of simulations for the five-taxon tree (((AB)C)(DE))
(Figure 6.1D) generated under a Jukes-Cantor model with θ = 0.01 and
a molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-E ) SM-ML. (E -H )
SMRT-ML. Data for each combination of branch lengths and number of
loci were generated from 300 independent simulations.
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Figure 6.7: Results of simulations for the five-taxon tree (((AB)(CD))E)
(Figure 6.1E) generated under a Jukes-Cantor model with θ = 0.01 and
a molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-E ) SM-ML. (E -H )
SMRT-ML. Data for each combination of branch lengths and number of
loci were generated from 300 independent simulations.
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Figure 6.8: Results of simulations for the four-taxon tree (((AB)C)D) (Figure 6.1A)
generated under a Jukes-Cantor model with θ = 0.01 and a violation of
the molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-H ) SM-ML. (I -P)
SMRT-ML. Data for each combination of branch lengths and number
of loci were generated from 300 independent simulations.
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Figure 6.9: Results of simulations for the four-taxon tree ((AB)(CD)) (Figure 6.1B)
generated under a Jukes-Cantor model with θ = 0.01 and a violation of
the molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-H ) SM-ML. (I -P)
SMRT-ML. Data for each combination of branch lengths and number
of loci were generated from 300 independent simulations.
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Figure 6.10: Results of simulations for the five-taxon tree ((((AB)C)D)E)
(Figure 6.1C) generated under a Jukes-Cantor model with θ = 0.01
and a violation of the molecular clock, and analyzed under maximum
likelihood assuming a molecular clock and a Jukes-Cantor model. (A-D)
SM-ML. (E -H ) SMRT-ML. Data for each combination of branch lengths
and number of loci were generated from 300 independent simulations.
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Figure 6.11: Results of simulations for the five-taxon tree (((AB)C)(DE))
(Figure 6.1D) generated under a Jukes-Cantor model with θ = 0.01
and a violation of the molecular clock, and analyzed under maximum
likelihood assuming a molecular clock and a Jukes-Cantor model. (A-D)
SM-ML. (E -H ) SMRT-ML. Data for each combination of branch lengths
and number of loci were generated from 300 independent simulations.
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Figure 6.12: Results of simulations for the five-taxon (((AB)(CD))E) (Figure 6.1E)
generated under a Jukes-Cantor model with θ = 0.01 and a violation of
the molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-D) SM-ML. (E -H )
SMRT-ML. Data for each combination of branch lengths and number of
loci were generated from 300 independent simulations.
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Figure 6.13: Results of simulations for the four-taxon tree (((AB)C)D) (Figure 6.1A)
generated under a General Time-Reversible model with shape parameter
α = 1, relative frequencies for nucleotides (A, C, G, T) = (0.1, 0.2, 0.3,
0.4), relative rates of substitutions (A↔C, A↔G, A↔T, C↔G, C↔T,
G↔T) = (1.5, 1.5, 0.5, 10.5, 1.0, 6.0), θ = 0.01, and a molecular clock,
and analyzed under maximum likelihood assuming a molecular clock and
a Jukes-Cantor model. (A-H ) SM-ML. (I -P) SMRT-ML. Data for each
combination of branch lengths and number of loci were generated from
300 independent simulations.

195



A

(((AB)C)D)

(((AB)D)C)

(((CD)A)B)

(((CD)B)A)

((AB)(CD))

((AC)(BD))

((BC)(AD))

((AB)CD)

C

I

M

B D

E F G H

J K L

N O P

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

x = 0.01, y = 2.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

x = 0.05, y = 1.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

x = 0.1, y = 1.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

 x = 0.1568, y = 0.1568

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

x = 0.01, y = 1.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

x = 0.05, y = 0.05

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

x = 0.1, y = 0.05

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

x = 0.25, y = 0.01

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

x = 0.01, y = 2.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

x = 0.05, y = 1.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

x = 0.1, y = 1.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

x = 0.1568, y = 0.1568

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

x = 0.01, y = 1.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

x = 0.05, y = 0.05

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

x = 0.1, y = 0.05

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

x = 0.25, y = 0.01

((CD)AB)

Figure 6.14: Results of simulations for the four-taxon tree ((AB)(CD)) (Figure 6.1B)
generated under a General Time-Reversible model with shape parameter
α = 1, relative frequencies for nucleotides (A, C, G, T) = (0.1, 0.2, 0.3,
0.4), relative rates of substitutions (A↔C, A↔G, A↔T, C↔G, C↔T,
G↔T) = (1.5, 1.5, 0.5, 10.5, 1.0, 6.0), θ = 0.01, and a molecular clock,
and analyzed under maximum likelihood assuming a molecular clock and
a Jukes-Cantor model. (A-H ) SM-ML. (I -P) SMRT-ML. Data for each
combination of branch lengths and number of loci were generated from
300 independent simulations.
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Figure 6.15: Results of simulations for the five-taxon tree ((((AB)C)D)E)
(Figure 6.1C) generated under a General Time-Reversible model with
shape parameter α = 1, relative frequencies for nucleotides (A, C, G,
T) = (0.1, 0.2, 0.3, 0.4), relative rates of substitutions (A↔C, A↔G,
A↔T, C↔G, C↔T, G↔T) = (1.5, 1.5, 0.5, 10.5, 1.0, 6.0), θ = 0.01, and
a molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-D) SM-ML. (E -H )
SMRT-ML. Data for each combination of branch lengths and number of
loci were generated from 300 independent simulations.

197



E

A B C D

F G H

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

w = 0.1, x = 0.1, y = 0.1

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

w = 0.1, x = 1.0, y = 0.1

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

w = 0.1, x = 0.1, y = 1.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

w = 1.0, x = 0.1, y = 0.1

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

w = 0.1, x = 0.1, y = 0.1

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

w = 0.1, x = 1.0, y = 0.1

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

w = 0.1, x = 0.1, y = 1.0

0 2000 4000 6000

0

0.2

0.4

0.6

0.8

1

Number of genes

w = 1.0, x = 0.1, y = 0.1

(((AB)C)(DE))

(((AC)B)(DE))

(((BC)A)(DE))

(((DE)C)(AB))

((AB)(DE)C)

Figure 6.16: Results of simulations for the five-taxon tree (((AB)C)(DE))
(Figure 6.1D) generated under a General Time-Reversible model with
shape parameter α = 1, relative frequencies for nucleotides (A, C, G,
T) = (0.1, 0.2, 0.3, 0.4), relative rates of substitutions (A↔C, A↔G,
A↔T, C↔G, C↔T, G↔T) = (1.5, 1.5, 0.5, 10.5, 1.0, 6.0), θ = 0.01, and
a molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-D) SM-ML. (E -H )
SMRT-ML. Data for each combination of branch lengths and number of
loci were generated from 300 independent simulations.
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Figure 6.17: Results of simulations for the five-taxon tree (((AB)(CD))E)
(Figure 6.1E) generated under a General Time-Reversible model with
shape parameter α = 1, relative frequencies for nucleotides (A, C, G,
T) = (0.1, 0.2, 0.3, 0.4), relative rates of substitutions (A↔C, A↔G,
A↔T, C↔G, C↔T, G↔T) = (1.5, 1.5, 0.5, 10.5, 1.0, 6.0), θ = 0.01, and
a molecular clock, and analyzed under maximum likelihood assuming
a molecular clock and a Jukes-Cantor model. (A-D) SM-ML. (E -H )
SMRT-ML. Data for each combination of branch lengths and number of
loci were generated from 300 independent simulations.
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Figure 6.18: Proportion of times SMRT-ML recovers the estimated species tree or
at least one false clade for random subsets of genes from the original
data set. The two proportions do not add up to 100% because in some
cases a partially unresolved tree, which does not have any false clades,
is returned by SMRT-ML.
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replicates.
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Figure 6.20: A three-taxon gene tree within a model species tree with notation used
in the paper. In all cases, the species tree has the topology ((AB)C).
Dots represent coalescent events. (A) and (B) depict the same gene tree
topology with different coalescent histories. The gene tree in (C ) has
the ((AC)B) topology; the gene tree in (D) has the ((BC)A) topology.
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Figure 6.21: Results of simulations for a six-taxon tree with topology
((((AB)(CD))E)F). (A) Species tree. (B) SM-ML and SMRT-ML
applied to simulated data under a Jukes-Cantor model with θ = 0.01
satisfying a molecular clock analyzed assuming a molecular clock.
Data for each combination of branch lengths and number of loci were
generated from 300 independent simulations.
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Figure 6.22: Results of simulations for a four-taxon tree with topology (((AB)C)D).
(A) Species tree. (B) SM-ML and SMRT-ML applied to simulated data
under a Jukes-Cantor model with θ = 0.01 satisfying a molecular clock
analyzed assuming a molecular clock. Data for each combination of
branch lengths and number of loci were generated from 300 independent
simulations.
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CHAPTER VII

Consistency of phylogenetic consensus methods in

the presence of ancestral population structure

7.1 Introduction

Recently, much attention has been given to the development of methods that

consistently infer the correct species tree from discordant gene trees (Rannala and

Yang , 2008). This work has largely focused on incomplete lineage sorting—which

occurs when lineages from two different species fail to coalesce in the population

immediately ancestral to the split of the two species—as a source of gene tree

discordance (Degnan and Rosenberg , 2009).

Consensus methods, each of which takes a set of gene trees as input and returns

a species tree estimate according to a specific rule (Bryant , 2003), have provided one

important source of methods for species tree inference. A consensus method Ĉ is a

statistically consistent estimator of a species tree topology under some model if for

each species tree σ, Ĉ applied to a set of gene trees randomly generated under the

model, assuming that the species tree is σ, converges in probability to the topology

of σ as the number of gene trees approaches infinity. Statistical consistency is a

desirable property because it is reasonable to expect that as more data are gathered,

evidence should accumulate in support of the true value of the parameter being
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estimated. Degnan and Rosenberg (2006) showed that when gene trees are distributed

according to the multispecies coalescent model of the evolution of gene lineages

conditional on a species tree, an extreme case of incomplete lineage sorting arises

in which the most likely gene tree topology does not match the species tree topology.

This inconsistency implies that species tree estimation must use information other

than the most frequently occurring gene tree topology to accurately infer the species

tree topology. Indeed, many consensus methods relying on other principles provide

statistically consistent estimators of the species tree topology under the multispecies

coalescent model. This collection of methods includes STEAC (Liu et al., 2009),

STAR (Liu et al., 2009), R* Consensus (Degnan et al., 2009), GLASS (Mossel and

Roch, 2010), and Maximum Tree (Liu et al., 2010).

In its simplest form, the multispecies coalescent model assumes that each modern

species and each ancestral species has a constant population size, each pair of lineages

within a given ancestral species has an equal chance of coalescing, and each species

is unstructured. Because the multispecies coalescent model assumes that random

mating occurs within species, when ancestral species are structured, as has been

hypothesized for various species (e.g., Garrigan et al., 2005; Thalmann et al., 2007;

White et al., 2009), it is unclear whether methods that are consistent under the

multispecies coalescent continue to be consistent.

The difficulty of species tree estimation in the presence of ancestral population

structure lies in the way that population structure alters the probability distribution

of gene trees given a species tree compared to the unstructured case (Slatkin and

Pollack , 2008). Using a three-taxon example, Slatkin and Pollack (2008) showed

that with ancestral population structure, the probability distribution of gene tree

topologies can have a certain asymmetry, and the most likely three-taxon gene

tree topology need not match the species tree topology. These consequences of

the multispecies coalescent with ancestral population structure do not occur in the
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standard multispecies coalescent.

Here, we describe an extension of the structured ancestral population model

considered by Slatkin and Pollack (2008). Using our extended structured model,

we evaluate the consistency of several consensus methods, employing a single

counterexample to show that many methods are inconsistent. For each inconsistent

method, we show that it is in fact misleading in the sense that for a certain fixed

species tree σ and a particular set of parameters, the probability that the consensus

tree contains a clade not present on σ approaches 1 as the number of loci approaches

infinity. To evaluate the behavior of the various consensus methods in practice

(i.e., the speed at which they converge to or diverge from the correct bifurcating

species tree topology), we perform simulations, assuming an island migration model

as our structured ancestral population model. As is predicted by our theoretical

results, the only method that does not provide strong support for an incorrect species

tree topology is GLASS/Maximum Tree. However, from simulations using model

species trees both with and without ancestral population structure, we show that

GLASS/Maximum Tree performs poorly when little information exists in sequence

alignments (e.g., an absence of substitutions between species, causing inferred gene

trees to have branches of length zero). From these results, we conclude that increased

attention is needed to the development of consensus methods that accurately infer

species trees in the presence of ancestral population structure.

7.1.1 Model

We use the notation in Table 7.1. Suppose time is measured in generations.

Consider an ultrametric n-taxon bifurcating species tree σ with n ≥ 3 taxa (i.e.,

each leaf has an identical sum of branch lengths to the root, in units of generations).

Then we can always find a set of species A, B, and C on σ with the relationship

((A:τ3,B:τ3):τ2 − τ3,C:τ2), where τ2 > τ3 > 0 and τ2 and τ3 are measured in
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generations.

Each internal branch along the species tree specifies an ancestral population.

An n-taxon species tree contains n − 1 ancestral populations, including the branch

above the root. Label the ancestral populations of σ by recursively visiting the

root, then the left subtree, and finally the right subtree (a pre-order traversal of σ).

Each ancestral population might be a structured population and suppose that the

structured population model is invariant across L independent loci (gene trees), so

that each of the L gene trees can be viewed as a random variate conditional on the

same assumed species tree. Let D(i) be the number of demes in ancestral population

i (the number of demes is a finite positive integer), let N(i) be the vector of sizes

for the D(i) demes in ancestral population i (each population size is a finite positive

integer), and let M(i) be the backward migration matrix between demes in ancestral

population i (Figure 7.1).

Denote a structured ancestral population model by S = S(σ,D,N,M,Ψ),

where D = [D(1), D(2), . . . , D(n−1)], N = [N(1),N(2), . . . ,N(n−1)], M =

[M(1),M(2), . . . ,M(n−1)], and Ψ is a (n +
∑n−1

i=1 D(i)) × (n +
∑n−1

i=1 D(i)) matrix that

describes how demes connect across species divergences. Each row (column) of Ψ

corresponds to a distinct deme among the extant and ancestral populations. The

first n rows (columns) correspond to the n extant populations, the next D(1) rows

(columns) correspond to the D(1) demes in ancestral population 1, the next D(2)

rows (columns) correspond to the D(2) demes in ancestral population 2, and so on,

until the last D(n−1) rows (columns) correspond to the D(n−1) demes in ancestral

population n− 1. Extant populations each contain only a single deme because they

are unstructured. The element Ψjk provides the probability that a lineage merges

into deme k from deme j at the moment in which, going back in time, deme j ends

and deme k begins. If, going back in time, deme k does not directly receive lineages

from deme j at the moment that deme j ends and deme k begins, then Ψjk = 0. By
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construction, each row ofΨ sums to 1. Therefore,Ψ provides probability distributions

on the locations in the ancestral populations of σ into which lineages sampled from

the taxa of σ can merge.

For each ancestral population i, M
(i)
xy is the per-generation probability of backward

migration from deme x(i) to deme y(i) for a lineage in deme x(i). Assume that in any

ancestral population i, demes x(i) and y(i) communicate. In other words, the migration

rate from deme x(i) to deme y(i) is nonzero, or for any pair of lineages there otherwise

exists an indirect migration path through other demes from deme x(i) to deme y(i).

This assumption encodes the idea of what we mean by a structured population and,

by ensuring that demes communicate in the ancestral population above the root,

it guarantees that with probability 1 the coalescence process will terminate. The

relationship between species A, B, and C within the n-taxon species tree σ, and the

structured ancestral population model, are illustrated in Figure 7.1.

We are interested in computing the probabilities P[E | S] of events E, conditional

on model S. Such probabilities are possible to compute by connecting models of

individual populations along the branches of species tree σ with rules given by model

S about what happens to lineages at divergence times.

7.1.2 Counterexample

We use a single counterexample to prove that, at least in part of the parameter

space of our structured population model, Democratic Vote (Degnan and Rosenberg ,

2006, 2009), STAR (Liu et al., 2009), STEAC (Liu et al., 2009), R∗ Consensus

(Bryant , 2003; Degnan et al., 2009), Rooted Triple Consensus (Ewing et al., 2008),

Minimize Deep Coalescences (MDC; Maddison, 1997; Maddison and Knowles , 2006;

Than and Nakhleh, 2009), and Majority-Rule Consensus (Degnan et al., 2009) are

misleading in that the probability that the consensus tree contains a clade not on the

species tree goes to 1 as the number of loci goes to infinity. Consider a sample of
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n individuals, one from each species within an n-taxon species tree σ. Figure 7.2A

displays a model of three species A, B, and C that have the topological relationship

((AB)C) within an n-taxon species tree σ. Certain internal branches are made long so

that σ resembles a three-taxon species tree, in the sense that coalescences of lineages

from the n− 3 taxa other than A, B, and C with lineages from A, B, and C are very

likely to occur on these long internal branches (Figure 7.2B).

Let λA be the subtree of σ that contains species A and that descends from the

split of species A and B, let λB be the subtree of σ that contains species B and

that descends from the split of species A and B, and let λC be the subtree of σ that

contains species C and that descends from the split of species (AB) and C. Further,

let ΓA, ΓB, and ΓC denote the sets of taxa at the leaves of subtrees λA, λB, and λC,

respectively. By definition, ΓA∩ΓB = ∅, ΓA∩ΓC = ∅, ΓB∩ΓC = ∅, and ΓA∪ΓB∪ΓC

is the set of all taxa on species tree σ. Given a set of taxa X, we denote the tree

displayed by phylogenetic tree T restricted to X by T |X. We denote the topology

of phylogenetic tree T as top(T ). To show that a consensus method is misleading, it

suffices to find a set of branch lengths on a fixed species tree σ such that as the number

of loci approaches infinity, the probability approaches 1 that the inferred species tree

contains a clade not on σ. Therefore, we only need to find one counterexample to

prove that a consensus method is misleading.

In our counterexample, we suppose that certain internal branches are long enough

so that for a fixed set of taxa X ∈ {ΓA,ΓB,ΓC}, fixed species tree σ, and random

gene tree T , P[top(T |X) = top(σ|X) | S] is arbitrarily close to 1. Formally, for

fixed arbitrarily small δ > 0, we make certain internal branches long enough so that

1 − δ < P[top(T |X) = top(σ|X) | S] < 1 for set X. To prove that a consensus

method is a misleading estimator of top(σ), it is sufficient to show that the species

tree estimate on the basis of the consensus method does not display the relationship

((AB)C) in the limit as the number of gene trees goes to infinity.
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There are two ancestral populations of interest, one directly ancestral to the split

of species A and B at time τ3 (denoted by A2) and one directly ancestral to the split

of species (AB) and C at time τ2 (denoted by A1). Both ancestral populations A1 and

A2 contain D ≥ 2 demes, each of size N diploid individuals, that exchange migrants

according to migration matrices M(1) and M(2). For simplicity, both for i = 1 and

i = 2, we assume a symmetric island migration model in which M
(i)
xy = m for each

pair of distinct demes x(i) and y(i) in ancestral population Ai (Wakeley , 2009). We

also assume that all other ancestral populations in the n-taxon tree σ have only one

deme (i.e., they are unstructured). At time τ2, for each x = 1, 2, . . . , D, deme x(2)

in A2 merges into deme x(1) in A1. At time τ3, lineages from the λA subtree merge

into deme j(2) in A2 and lineages from the λB subtree merge into deme k(2) ̸= j(2) in

A2. At time τ2, lineages from the λC subtree merge into deme k(1), the same deme

into which lineages from the λB subtree, which had entered k(2) in A2, merge if they

have not coalesced or migrated in A2. The following list summarizes the assumptions

made in this counterexample.

1. Assumptions about species tree σ

(a) The species tree σ is fixed and has n ≥ 3 taxa.

(b) Certain internal branches on σ are sufficiently long that for random gene

tree T , fixed set of taxa X ∈ {ΓA,ΓB,ΓC}, and fixed arbitrarily small

δ > 0, P[top(T |X) = top(σ|X) | S] > 1− δ.

2. Assumptions about the structure of the populations (i.e., D, N, and M)

(a) All populations have one deme except for ancestral populations A1 and

A2, which each have a fixed equal number of demes, D ≥ 2.

(b) Each deme has a fixed population size of N diploid individuals.

(c) The structured population model is an island migration model in which

the per-generation backward migration rate between each pair of distinct
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demes within ancestral population A1 and within ancestral population A2

is a fixed value m.

3. Assumptions about Ψ

(a) At time τ2, for each x = 1, 2, . . . , D, deme x(2) in A2 merges into deme x(1)

in A1.

(b) At time τ3, lineages from the λA subtree merge into deme j(2) in A2 and

lineages from the λB subtree merge into deme k(2) ̸= j(2) in A2.

(c) At time τ2, lineages from the λC subtree merge into deme k(1) in A1.

We have constructed the counterexample based on assumptions 1–3 so that for a

specific set of taxa A, B, and C with topological relationship ((AB)C) on σ, we can fix

τ2−τ3, D, and an ancestral population migration ratem such that for arbitrarily small

ε > 0, the probability that a random gene tree will display the topology ((AB)C) is

less than ε. For example, in Figure 7.2B, given fixed arbitrarily small ε > 0, fixed

τ2 − τ3 and D and fixed sufficiently small m, with probability greater than 1 − ε,

the lineage from A and the lineage from B will not migrate, and the lineages from

B and C will coalesce before either lineage coalesces with the lineage from A. This

high probability for coalescence of lineages from B and C causes a large proportion

of random gene trees, greater than 1 − ε, to display the nonmatching topological

relationship ((BC)A).

Define an “event” as either a migration of a lineage from one deme to another

deme within an ancestral population or a coalescence of two lineages. Let pS(X,Y)

be the probability under model S(σ,D,N,M,Ψ) that a lineage sampled from species

X and a lineage sampled from species Y are in the same deme at the speciation time

of X and Y. Consider three sampled lineages, one each from species A, B, and C. By

construction of the counterexample, pS(A,B) = 0 because lineages from A merge into

deme j(2) and lineages from B merge into deme k(2) ̸= j(2). Within the time interval
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[τ3, τ2), the time to a migration event in which the lineage from deme j(2) exits the

deme is exponentially distributed with rate (D − 1)m and the time to a migration

event in which the lineage from deme k(2) exits the deme is exponentially distributed

with rate (D−1)m. Therefore, the time to the first migration event (either from deme

j(2) or from deme k(2)) is exponentially distributed with rate (D− 1)m+(D− 1)m =

2(D − 1)m per generation (Wakeley , 2009, p. 150, eq. 5.23). Hence, the probability

of zero migration events over the interval [τ3, τ2)—neither for the lineage from A nor

for the lineage from B—is

β1 = e−2(D−1)m(τ2−τ3).

Treating D and τ2 − τ3 as fixed finite positive values, for sufficiently small migration

rate m, β1 is arbitrarily close to 1. Note, however, that m need not be small for β1

to be close to 1—for example, if m is instead a fixed finite positive value and τ2 − τ3

is sufficiently small.

Many possible migration paths exist that can cause a lineage sampled from species

B to be located in deme k(1) of population A1 (the same deme into which lineages

from species C merge) at time τ2. For instance, there could be no migration events

or there could be multiple migration events that eventually bring the lineage sampled

from species B back into deme k(1) at time τ2. Because β1 is the probability of

only one of many possible ways of obtaining a lineage sampled from species B in

deme k(1) at time τ2, it is necessarily a lower bound for pS(B,C). It follows that

β1 < pS(B,C) < 1, and similarly, a bound can be placed on pS(A,C) such that

0 < pS(A,C) < 1 − β1. Hence, pS(A,C) is arbitrarily close to 0 and pS(B,C) is

arbitrarily close to 1 for sufficiently small migration rate m holding τ2 − τ3 fixed, or

for sufficiently small τ2 − τ3 holding m fixed. Because the lineages from A and B are

in different demes at time τ3, pS(A,B) = 0.

Let PS [T ] denote the probability of gene tree topology T under model

S(σ,D,N,M,Ψ). If no migration event occurs in the interval [τ3, τ2), then the
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lineage from species A is in deme j(1) and the lineages from species B and C are

in deme k(1) ̸= j(1) at time τ2. Within the time interval [τ2,∞), the time to the first

migration event that causes the lineage from deme j(1) to migrate is exponentially

distributed with rate (D − 1)m, the time to the first migration event that causes

one of the two lineages from deme k(1) to migrate is exponentially distributed with

rate 2(D − 1)m, and the time to the event in which the two lineages from deme

k(2) coalesce is exponentially distributed with rate 1/(2N). Therefore, the time to

the first event (migration or coalescence) on the interval [τ2,∞) is exponentially

distributed with rate (D − 1)m + 2(D − 1)m + 1/(2N) = 3(D − 1)m + 1/(2N)

per generation (Wakeley , 2009, p. 150, eq. 5.23). Hence, the probability that the

first event in the interval [τ2,∞) is a coalescence between the lineages from species

B and C is [1/(2N)]/[3(D − 1)m + 1/(2N)]. Treating the parameters D and N

as fixed finite positive values, the probability that the first event in the interval

[τ2,∞) is a coalescence between the lineages from species B and C is arbitrarily close

to 1 for sufficiently small migration rate m. Multiplying by the probability β1 of

observing zero migration events on the interval [τ3, τ2), we obtain a lower bound on

the probability, β2, that the first event on the interval [τ3,∞) is a coalescence event

between the lineages from species B and C

β2 =
1/(2N)

3(D − 1)m+ 1/(2N)
β1 =

1

6(D − 1)Nm+ 1
β1. (7.1)

This probability β2 is arbitrarily close to 1 for sufficiently small migration rate m.

Note, however, that m may not need to be too small for a coalescence between

lineages from species B and C to be the most probable first event on the interval

[τ2, τ3). For example, if τ2 − τ3 is sufficiently small, then β1 is arbitrarily close to

1. Because PS [((BC)A)] ≥ β2, for some constant 1/(c + 1) with c > 0, to get

PS [((BC)A)] > 1/(c + 1), assuming β1 is sufficiently close to 1, we would only need
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m ≈ c/[6(D − 1)N ].

Our counterexample (assumptions 1–3) together with certain parameter values

chosen such that β2 is arbitrarily close to 1 provides a case in which gene trees

strongly support clades that are not present on species tree σ. As we will see in

the next section, the particular gene tree distribution provided by specific choices

for S(σ,D,N,M,Ψ) causes a large class of consensus methods to infer species trees

with clades not present on σ. This lack of concordance between the inferred species

tree topology and σ occurs when the parameters σ, D, N, M, and Ψ are in the

space defined by assumptions 1–3, when τ2 − τ3 and D are fixed, and when fixed m

is sufficiently small.

7.2 Consistency and inconsistency of methods

In this section, under the multispecies coalescent model with ancestral population

structure, we investigate the statistical consistency of consensus methods that

are based on seven different criteria for inferring species tree topologies. The

seven methods involve using a uniquely favored topology (Democratic Vote),

using average coalescence times (STEAC), using average ranks of coalescences

(STAR), using uniquely favored rooted triples (R∗ Consensus and Rooted Triple

Consensus), minimizing the number of deep coalescences (MDC), taking the

majority-rule (Majority-Rule Consensus), and using minimum coalescence times

(GLASS/Maximum Tree). We show, through the use of the counterexample

developed in the previous section, that consensus methods based on six of the seven

criteria are misleading. We also provide a proof that consensus methods that use

the minimum coalescence times criterion are statistically consistent. The proofs that

Democratic Vote is misleading (Theorem VII.1) and that GLASS/Maximum Tree

is consistent (Theorem VII.7) are provided in the main text. The proofs that the

other consensus methods are misleading (Theorems VII.2-VII.6) are similar and for
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completeness, they are provided in the Appendix.

7.2.1 Uniquely favored topology

An intuitive approach to the inference of species tree topologies is to use the

Democratic Vote consensus method. Democratic Vote estimates a species tree

topology using the most frequently occurring gene tree topology in a sample of

gene trees (Degnan and Rosenberg , 2009). Discordant gene tree topologies with

greater probability than the matching topology have been termed “anomalous gene

trees” (AGTs), and the space of branch lengths in which AGTs arise has been

termed the “anomaly zone” (Degnan and Rosenberg , 2006). Because of the existence

of AGTs, and because of gene tree discordance more generally, it is difficult for

consensus methods to achieve statistical consistency (Degnan et al., 2009). Under

the multispecies coalescent model with no ancestral population structure, the space

in which Democratic Vote is misleading corresponds exactly to the anomaly zone

(Degnan and Rosenberg , 2006). A consequence of this direct correspondence between

Democratic Vote and the anomaly zone is that Democratic Vote is a statistically

consistent estimator of a species tree topology only for three-taxon species trees and

for four-taxon species trees with a symmetric topology.

Slatkin and Pollack (2008) showed that the most likely gene tree topology does

not necessarily match the species tree topology for three-taxon species trees under

a specific multispecies coalescent model with ancestral population structure. This

result implies that in structured ancestral population models, Democratic Vote can

be misleading for three-taxon species tree topologies. Our general structured ancestral

population model, S(σ,D,N,M,Ψ), contains the model of Slatkin and Pollack (2008)

as a special case. Under this general model, we use the counterexample (assumptions

1–3 in the “Counterexample” section) to show that Democratic Vote is a misleading

estimator for the topology of fixed species tree σ with n ≥ 3 taxa under model
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S(σ,D,N,M,Ψ).

To provide intuition as to why Democratic Vote is misleading, assuming the species

tree has topology ((λAλB)λC), note that under the counterexample, if we fix τ2 − τ3

andD and set the migration ratem sufficiently small, then gene trees generated under

model S(σ,D,N,M,Ψ) display a nonmatching topology with probability arbitrarily

close to 1. Because of this large probability, the most frequently occurring gene

tree topology—the Democratic Vote topology—is ((λBλC)λA) instead of ((λAλB)λC).

Thus, Democratic Vote is a misleading estimator for the species tree topology under

model S(σ,D,N,M,Ψ).

Formally, Let P̂ [T ] denote the sample proportion of topology T in a set of L gene

trees.

Theorem VII.1. Consider a species tree σ with n ≥ 3 taxa under model

S(σ,D,N,M,Ψ). Further, consider a consensus method ĈL that estimates top(σ)

from a set of L gene trees using the most frequently occurring gene tree topology.

Then ĈL is a misleading estimator of top(σ).

Proof. We use the counterexample (assumptions 1–3 in the “Counterexample”

section) to show that ĈL is misleading. For ĈL to not be misleading, we must have

that ĈL
P−→ top(σ) as L → ∞. Note that top(σ) = ((λAλB)λC). Consider an

alternative species tree σ⋆ with topology top(σ⋆) = ((λBλC)λA). Set the migration

rate m sufficiently small such that PS [top(σ
⋆)] = PS [((λBλC)λA)] > (1− δ)3β2, which

is arbitrarily close to 1. Using the Law of Large Numbers, P̂ [top(σ⋆)]
P−→ PS [top(σ

⋆)]

as L → ∞. Because PS [top(σ
⋆)] is arbitrarily close to 1, top(σ⋆) ̸= top(σ)

is the uniquely favored topology and so P[ĈL = top(σ⋆) | S] → 1 as L → ∞.

Therefore, ĈL
P−→ top(σ⋆), and ĈL is a misleading estimator of top(σ) under

S(σ,D,N,M,Ψ).
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7.2.2 Average coalescence times

Consider a sample of L independent loci and let T ℓ
XY denote the random

coalescence time in the gene tree of locus ℓ for a lineage sampled from species X

and a lineage sampled from species Y. Define the average random coalescence time

across L loci between one lineage sampled from species X and one lineage sampled

from species Y as tXY = (1/L)
∑L

ℓ=1 T
ℓ
XY. Liu et al. (2009) developed the consensus

method STEAC, which utilizes the average coalescence times tXY, considering each

distinct pair of species X and Y, to infer a species tree. The average time tXY provides

a distance between species X and Y. STEAC creates a distance matrix for all pairs of

species, including an outgroup species, and infers a species tree using neighbor-joining.

The outgroup is then used to root the tree. STEAC is a statistically consistent

estimator of a species tree topology when gene trees are distributed according to the

multispecies coalescent (Liu et al., 2009). This consistency stems from the statistical

consistency of neighbor-joining (Atteson, 1999) and the observation that under the

multispecies coalescent model, for species X, Y, and Z, if the divergence time of

species X and Y is smaller than that for X and Z and for Y and Z, then the expected

coalescence time is smaller for lineages from X and Y than for lineages from X and Z

and for lineages from Y and Z. We show that in the presence of ancestral population

structure, STEAC is a misleading estimator for the topology of fixed species tree σ

with n ≥ 3 taxa under model S(σ,D,N,M,Ψ).

To provide intuition as to why STEAC is misleading, assuming the species tree has

topology ((λAλB)λC), we can fix τ2−τ3 andD and set the migration ratem sufficiently

small such that the lineages from B and C very likely coalesce more recently than

either coalesces with the lineage from A. Thus, the average coalescence time for a pair

of lineages, one sampled from B and one sampled from C, will be smaller than the

average coalescence time for a pair of lineages, one sampled from A and one sampled

from B. Consequently, because of how STEAC uses expected coalescence times to
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estimate a species tree topology, STEAC is misleading.

Theorem VII.2. Consider a species tree σ with n ≥ 3 taxa under model

S(σ,D,N,M,Ψ). Define the rule R such that for species X, Y, and Z, X and Y

join more recently in the past than do species X and Z and species Y and Z when

tXY < tXZ and tXY < tYZ. Consider a consensus method ĈL that estimates top(σ)

from a set of L gene trees using average coalescence times tXY for all distinct pairs of

species X and Y according to rule R. Then ĈL is a misleading estimator of top(σ).

7.2.3 Average ranks of coalescences

Coalescence ranks describe the relative order of internal nodes in a rooted tree

topology. A ranking is an integer assignment with n for the root, and monotonically

decreasing with ancestor/descendent relationships. The minimum rank in a tree is

2. There are several ways of assigning the ranks. For example, for the topology

(((AB)C)D), the root node has rank 4, the node connecting clade {AB} to C has

rank 3, and the node connecting A and B has rank 2 (Figure 7.3A). For the topology

((AB)(CD)), the root node has rank 4. Three possible configurations of ranks exist

for the other internal nodes:

• The node connecting A and B has rank 2, and the node connecting C and D

has rank 2 (Figure 7.3B) In this ranking, the rank of an internal node is the

number of leaves descending from it.

• The node connecting A and B has rank 3, and the node connecting C and D

has rank 3 (Figure 7.3C ) In this ranking, the rank of an internal node is the

rank of the node directly ancestral to it minus 1. This ranking is the ranking

used by STAR (Liu et al., 2009).

• The node connecting A and B has rank 2, and the node connecting C and D has

rank 3 (Figure 7.3D) In this ranking, the rank of an internal node is the rank
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relative to all other internal nodes in the tree. Each possible value for a rank

(i.e., ranks 2, 3, . . . , n) is used once. This is the common method for assigning

ranks to nodes in a tree.

The examples of coalescence ranks in Figure 7.3 all share the property that the rank

of an internal node y is larger than the rank of a different internal node x, if node y

lies along the path to the root from node x. This property defines what we mean by

a rank.

STAR, a consensus method developed by Liu et al. (2009), assumes that the rank

of the root node in an n-taxon tree is n. Then, descending toward the leaf nodes,

internal nodes are assigned the rank of the node directly ancestral to it minus 1.

Consider a sample of L independent loci and let Rℓ
XY denote the random coalescence

rank in the gene tree of locus ℓ for a lineage sampled from species X and a lineage

sampled from species Y. Denote the random average coalescence rank across L loci

between a lineage sampled from species X and a lineage sampled from species Y

as rXY = (1/L)
∑L

ℓ=1 R
ℓ
XY. The STAR consensus method utilizes the average ranks

of coalescences rXY, for each distinct pair of species X and Y, to infer a species

tree. The average rank rXY provides a distance between species X and Y. Analogous

to the procedure for STEAC, STAR creates a distance matrix for all pairs of species

(including an outgroup) and infers a species tree using neighbor-joining. The outgroup

is then used to root the tree. STAR is a statistically consistent estimator of a

species tree topology when gene trees are distributed according to the multispecies

coalescent (Liu et al., 2009). This consistency stems from the statistical consistency

of neighbor-joining and the observation that under the multispecies coalescent model,

for species X, Y, and Z, if the divergence time of species X and Y is smaller than that

for X and Z and for Y and Z, then the expected rank in the gene tree is smaller for

the coalescence of lineages from X and Y than for the coalescence of lineages from X

and Z and for the coalescence of lineages from Y and Z. We show that in the presence
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of ancestral population structure, STAR is a misleading estimator for the topology

of fixed species tree σ with n ≥ 3 taxa under model S(σ,D,N,M,Ψ).

Similar to STEAC, assuming the species tree has topology ((λAλB)λC), we can fix

τ2 − τ3 and D and set the migration rate m sufficiently small such that the average

coalescence rank for a pair of lineages, one sampled from B and one sampled from C,

will be smaller than the average coalescence rank for a pair of lineages, one sampled

from A and one sampled from B. Because STAR uses average coalescence ranks in the

same way that STEAC uses average coalescence times to infer species tree topologies,

STAR is misleading.

Theorem VII.3. Consider a species tree σ with n ≥ 3 taxa under model

S(σ,D,N,M,Ψ). Define the rule R such that for species X, Y, and Z, X and Y

join more recently in the past than do species X and Z and species Y and Z when

rXY < rXZ and rXY < rYZ. Consider a consensus method ĈL that estimates top(σ)

from a set of L gene trees using average ranks of coalescences rXY for all distinct

pairs of species X and Y according to rule R. Then ĈL is a misleading estimator of

top(σ).

7.2.4 Uniquely favored rooted triples

Define a uniquely favored rooted triple among a set of three taxa X, Y, and Z as

the rooted topological relationship among X, Y, and Z with the largest frequency in a

sample of rooted gene trees. Because AGTs do not exist for three-taxon species trees

under the multispecies coalescent model, consensus methods have been developed that

infer species trees based on the topologies of uniquely favored rooted triples. These

consensus methods are R∗ Consensus (Bryant , 2003; Degnan et al., 2009) and Rooted

Triple Consensus (Ewing et al., 2008). R∗ Consensus constructs a species tree from

uniquely favored rooted triples through an exact algorithm. Following Degnan et al.

(2009), the set K is a clade in the R∗ Consensus tree if for each distinct pair of taxa
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X′,X′′ ∈ K and every taxon Z ̸∈ K, ((X′X′′)Z) is a uniquely favored rooted triple. The

Rooted Triple Consensus tree is constructed with a heuristic algorithm that combines

the
(
n
3

)
uniquely favored rooted triples using the tree puzzle heuristic (Ewing et al.,

2008). Degnan et al. (2009) proved that R∗ Consensus is a statistically consistent

estimator of a species tree topology when gene trees are distributed according to the

multispecies coalescent model. We show that in the presence of ancestral population

structure, R∗ Consensus and Rooted Triple Consensus are misleading estimators for

the topology of fixed species tree σ with n ≥ 3 taxa under model S(σ,D,N,M,Ψ).

Analogous to the case of Democratic Vote, assuming the species tree has topology

((λAλB)λC), we can fix τ2 − τ3 and D and set the migration rate m sufficiently small

such that the probability that a gene tree displays topology ((λBλC)λA) is arbitrarily

close to 1. From this high probability, each rooted triple displayed by ((λBλC)λA) is a

uniquely favored rooted triple as the number of loci tends to infinity. Because a rooted

binary tree topology is defined by its set of rooted triples (Steel , 1992, Proposition 4),

each of the rooted triples are in the R∗ and Rooted Triple Consensus trees. In

particular, the R∗ Consensus and Rooted Triple Consensus trees are ((λBλC)λA).

Consequently, R∗ Consensus and Rooted Triple Consensus are misleading.

Theorem VII.4. Consider a species tree σ with n ≥ 3 taxa under model

S(σ,D,N,M,Ψ). Define the rule R such that for species X, Y, and Z, X and Y

join more recently in the past than do species X and Z and species Y and Z when

P̂ [((XY)Z)] > P̂ [((XZ)Y)] and P̂ [((XY)Z)] > P̂ [((YZ)X)]. Consider a consensus

method ĈL that estimates top(σ) from a set of L gene trees using uniquely favored

rooted triples according to rule R. Then ĈL is a misleading estimator of top(σ).

7.2.5 Minimizing deep coalescences

Another sensible approach to inferring species trees from gene trees in the

presence of incomplete lineage sorting is to minimize the number of deep coalescences
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(Maddison, 1997). A coalescence event for species X and Y is called “deep” if the

event does not occur in the population directly ancestral to the split of species X and

Y in the species tree. The MDC criterion seeks to find a species tree that minimizes

the number of lineages that do not coalesce in the first population in which they

have the opportunity to find a common ancestor. Recently, Than and Nakhleh (2009)

presented an exact method to infer a species tree from gene trees using the MDC

criterion. A subsequent study showed that when gene trees are distributed according

to the multispecies coalescent model, MDC is a misleading estimator of a species

tree topology for four-taxon asymmetric species trees and for species trees with five

or more taxa (Than and Rosenberg , 2011). In this section, we provide a theorem

(proven in the Appendix) which states that in the presence of ancestral population

structure, MDC is a misleading estimator for the topology of fixed species tree σ with

n ≥ 3 taxa under model S(σ,D,N,M,Ψ).

Assuming the species tree has topology ((λAλB)λC), fix τ2 − τ3 and D and set the

migration rate m sufficiently small such that gene trees display topology ((λBλC)λA)

with probability arbitrarily close to 1. The number of extra lineages that are needed

to reconcile a gene tree with topology ((λBλC)λA) and species trees with topologies

((λAλB)λC) and ((λBλC)λA) is one and zero, respectively. Because the probability of

observing a gene tree with topology ((λBλC)λA) is high, then the species tree with

topology ((λBλC)λA) will minimize the number of deep coalescences (i.e., the number

of extra lineages needed to reconcile the set of gene tree topologies with the species

tree topology). Because ((λBλC)λA) does not match the species tree topology, MDC

is misleading.

Theorem VII.5. Consider a species tree σ with n ≥ 3 taxa under model

S(σ,D,N,M,Ψ). Further, consider a consensus method ĈL that estimates top(σ)

from a set of L gene trees by minimizing the number of deep coalescences. Then ĈL

is a misleading estimator of top(σ).
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7.2.6 Majority-rule

One widely used consensus method, termed Majority-Rule Consensus, constructs

a species tree using only clades that appear with a frequency greater than some fixed

α, α ∈ [0.5, 1) (Bryant , 2003). The Majority-Rule Consensus tree is either resolved

(bifurcating) or unresolved (multifurcating), partially unresolved, or fully unresolved.

For the case of α = 0.5, Majority-Rule Consensus has been shown to be a statistically

inconsistent, but not misleading, estimator of a species tree topology when gene trees

are distributed according to the multispecies coalescent (Degnan et al., 2009). In

this section, we provide a theorem (proven in the Appendix) which states that in the

presence of ancestral population structure, Majority-Rule Consensus is a misleading

estimator for the topology of fixed species tree σ with n ≥ 3 taxa under model

S(σ,D,N,M,Ψ).

Assuming the species tree has topology ((λAλB)λC), by fixing τ2 − τ3 and D and

setting the migration rate m sufficiently small such that gene trees display topology

((λBλC)λA) with probability arbitrarily close to 1, all clades on ((λBλC)λA) appear

with frequency greater than fixed α. All clades with frequency greater than α appear

on the Majority-Rule Consensus tree. Consequently, Majority-Rule Consensus is

misleading.

Theorem VII.6. Consider a species tree σ with n ≥ 3 taxa under model

S(σ,D,N,M,Ψ). Further, consider a consensus method ĈL that estimates top(σ)

from a set of L gene trees by only using clades present with a frequency greater than

fixed α, α ∈ [0.5, 1). Then ĈL is a misleading estimator top(σ).

7.2.7 Minimum coalescence time

Consider a sample of L independent loci. Define the minimum coalescence time

across L loci between one lineage sampled from species X and one lineage sampled

from species Y as tmin
XY = min

ℓ=1,...,L
T ℓ
XY. The final method we examine is one that uses the
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minimum coalescence time tmin
XY , considering each distinct pair of species X and Y, to

infer a species tree. GLASS (Mossel and Roch, 2010) and Maximum Tree (Liu et al.,

2010) are two names for the same method that constructs species trees using these

minimum coalescence times. The minimum time tmin
XY provides a distance between

species X and Y. GLASS/Maximum Tree creates a distance matrix for all pairs of

species and infers a species tree using single-linkage clustering. GLASS/Maximum

Tree is a statistically consistent estimator of a species tree topology when gene trees

are distributed according to the multispecies coalescent (Mossel and Roch, 2010; Liu

et al., 2010). In this section, we show that in the presence of ancestral population

structure according to our model S(σ,D,N,M,Ψ), GLASS/Maximum Tree is a

statistically consistent estimator for the topology of fixed species tree σ with n ≥ 3

taxa under model S(σ,D,N,M,Ψ).

To provide intuition as to why GLASS/Maximum Tree is consistent, note that an

assumption of model S(σ,D,N,M,Ψ) is that demes within an ancestral population

communicate through a path of nonzero migration. Because of this communication

between demes, as the number of gene trees grows large, for some gene tree a

pair of lineages sampled from distinct species will likely coalesce in the population

directly ancestral to the divergence of those species. Because GLASS/Maximum Tree

uses minimum coalescence times to estimate a species tree topology, as the number

of gene trees grows large, the single-linkage clustering algorithm applied to these

minimum coalescence times will yield a tree topology that matches top(σ). Therefore,

GLASS/Maximum Tree is a statistically consistent estimator for the species tree

topology under model S(σ,D,N,M,Ψ).

Theorem VII.7. Consider a species tree σ with n ≥ 3 taxa under model

S(σ,D,N,M,Ψ). Further, consider a consensus method ĈL that estimates top(σ)

from a set of L gene trees using single-linkage clustering applied to the set of minimum

coalescence times tmin
XY for each distinct pair of species X and Y. Then ĈL is a
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statistically consistent estimator of top(σ).

Proof. This proof is similar to that of Mossel and Roch (2010) for GLASS. Suppose

we have L independent loci. For ĈL to be consistent, we must have that ĈL
P−→

top(σ) as L → ∞. Let b be the length of the shortest internal branch in species

tree σ. Fix the species tree σ and fix the structured ancestral population model

S(σ,D,N,M,Ψ). Define fk, k = 1, 2, . . . , n − 1, as the probability under model

S(σ,D,N,M,Ψ) that, going back in time, no coalescence occurs between any pair of

lineages within b generations from entering ancestral population Ak. Then over the

set of L gene trees, the probability that, going back in time, no coalescence occurs

between any pair of lineages within b generations from entering Ak is (fk)
L. It follows

that over the set of L gene trees, the probability that, going back in time, at least one

coalescence occurs between each pair of lineages within b generations from entering

Ak is 1 − (fk)
L. Therefore, over the set of L gene trees and the set of ancestral

populations, the probability that, going back in time, at least one coalescence occurs

between each pair of lineages within b generations from entering each of the n − 1

ancestral populations is

fmin =
n−1∏
k=1

[1− (fk)
L].

Because the demes in S(σ,D,N,M,Ψ) communicate, we have 0 < fk < 1 for k =

1, 2, . . . , n − 1. It follows that fmin → 1 as L → ∞. Consequently, as L → ∞, for

each pair of lineages sampled from a pair of species, the minimum coalescence time

for those lineages lies within the population directly ancestral to the split of the two

species. Hence, applying single-linkage clustering to the set of tmin
XY for all distinct

pairs of species X and Y yields top(σ), and so P[ĈL = top(σ) | S] → 1 as L → ∞.

Therefore, ĈL
P−→ top(σ), and ĈL is a statistically consistent estimator of top(σ)

under S(σ,D,N,M,Ψ).
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7.3 Simulations

7.3.1 Performance of methods on true gene trees

7.3.1.1 Simulation procedure

To examine how robust the eight consensus methods are to ancestral population

structure, we evaluated the performance of the methods using simulations. These

simulations enable us to investigate the performance of the consensus methods

on a finite number of loci, rather than solely their asymptotic behavior. The

consensus methods we investigated are Democratic Vote, STEAC, STAR, R∗

Consensus, Rooted Triple Consensus, MDC, Majority-Rule Consensus (with α =

0.5), and GLASS/Maximum Tree. We used the three-taxon species tree σ =

((A:1.0,B:1.0):0.1,C:1.1) illustrated in Figure 7.4A. The ancestral populations each

follow an island migration model with D = 10 demes and a scaled migration rate

between demes of M = 4Nem, where Ne is a reference effective number of diploid

individuals in a population. Note that because both time and migration rate are

scaled by the same effective population size Ne, the specific value of Ne does not

matter. Because we are assuming an island migration model, within each ancestral

population, for all i ̸= j ∈ {1, 2, . . . , 10}, the migration rate from deme i to deme j

is M . Time in our model is measured in coalescent units T = t/(2Ne), where t is

measured in generations. Going back in time, the lineage from species A merges into

deme 1 in ancestral population A2, the lineage from species B merges into deme 10

of ancestral population A2, and the lineage from species C merges into deme 10 of

ancestral population A1. At time τ2, lineages in deme x(2) of A2 merge into deme

x(1) of A1 for each x = 1, 2, . . . , 10. This model is precisely the model used for the

counterexample within the Theory section with the number of demes set to 10.

We generated gene trees for L = 100, 200, . . . , 2000 independent loci (with each

set of L gene trees generated independent of each other set of gene trees) using the
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coalescent simulator ms (Hudson, 2002), which enables the simulation of gene trees

given a species tree model. These L gene trees were then used as input to each of the

consensus methods (each of which was applied to the same set of L gene trees), and

a species tree estimate was obtained as output. We repeated this process for a total

of 1000 independent replicate simulations of L loci.

7.3.1.2 Results

The results for these simulations are displayed in Figure 7.4B. For scaled migration

rate M = 10.0, the tree topology with greatest support for every consensus method

except for Majority-Rule Consensus is ((AB)C), which matches the species tree.

Majority-Rule Consensus instead provides greatest support for the star phylogeny

(ABC), reaching a frequency of 1.0 by 200 gene trees. This result for Majority-Rule

applied to three-taxon gene trees is not surprising because Majority-Rule Consensus

will return an unresolved three-taxon topology if there does not exist an input gene

tree topology with frequency greater than 0.5 (Degnan et al., 2009). Because the

internal branch length is small (0.1 coalescent units) and because the migration rate

between demes is large (M = 10.0), it is unlikely that any three-taxon gene tree

will have frequency greater than 0.5 as the number of input gene trees gets large.

The method that performs best is GLASS/Maximum Tree, reaching probability

1 of estimating species tree topology ((AB)C) by 800 gene trees. Although the

other six consensus methods provide the strongest support to ((AB)C) at 2000 gene

trees, the methods still have low support for ((AB)C), with frequencies of ∼0.55 for

STAR, ∼0.54 for Democratic Vote, Rooted Triple Consensus and MDC, ∼0.53 for R∗

Consensus, and ∼0.49 for STEAC.

Decreasing the migration rate to M = 1.0, we find, as with the case for

M = 10.0, that GLASS/Maximum Tree has highest support for topology ((AB)C).

GLASS/Maximum Tree also takes longer compared to the case for M = 10.0 to
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converge to the correct topology, reaching a frequency of 1.0 for the ((AB)C) topology

with 1900 genes instead of 800 genes with the case of M = 10.0. As with the case of

M = 10.0, Majority-Rule Consensus provides greatest support for (ABC), reaching a

frequency of 1.0 by 200 genes. In contrast to the results for M = 10.0, we find that

the other six consensus methods no longer have their highest support for the correct

tree topology. Instead, the most favored topology is ((BC)A), reaching a frequency

at 2000 gene trees of ∼0.99 for Democratic Vote, STAR, R∗ Consensus, Rooted

Triple Consensus, and MDC and a frequency of ∼0.96 for STEAC. By construction

of the simulation, with sufficiently small migration, we would expect that each of

the consensus methods (except for GLASS/Maximum Tree) would infer the topology

((BC)A) with highest frequency.

Reducing the migration rate to M = 0.1, we find that GLASS/Maximum Tree

continues to support the correct species tree topology ((AB)C). Unlike for the two

higher migration rates, GLASS/Maximum Tree does not infer the correct topology

with a frequency of 1.0 by 2000 gene trees, obtaining ((AB)C) with frequency

∼0.64 at 2000 gene trees. However, the frequency of ((AB)C) when inferred

by GLASS/Maximum Tree increases as a function of the number of gene trees.

Consequently, we expect that the frequency would approach 1.0 with enough gene

trees, as Theorem VII.7 predicts. Indeed, as expected, the other seven consensus

methods provide highest support to the topology ((BC)A) with a frequency of 1.0

for all sets of L = 100, 200, . . . , 2000 gene trees tested. Majority-Rule gives greatest

support for the ((BC)A) topology instead of the (ABC) topology as in the cases

for M = 1.0 and M = 10.0 because, when the migration rate is sufficiently small

(M = 0.1), the probability is far greater than 0.5 of a gene tree displaying topology

((BC)A).
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7.3.2 GLASS/Maximum Tree from inferred gene trees

7.3.2.1 Simulation procedure

The theoretical and simulation results for GLASS/Maximum Tree presented in

the previous sections has only incorporated genealogical discordance due to the

stochasticity of the coalescent process. However, an additional form of stochasticity

that can cause genealogical discordance is mutation. To examine the behavior

of GLASS/Maximum Tree when gene trees are estimated instead of known with

certainty, we applied GLASS/Maximum Tree to gene trees that were inferred from

sequence alignments. We examined the influence of mutation on GLASS/Maximum

Tree under two scenarios: a scenario with and a scenario without ancestral population

structure. The species tree used in this analysis is identical to the species tree

used in the previous section and in Figure 7.4. The only exception is that for

the unstructured ancestral population analysis, we let the number of demes in each

ancestral population equal one. To create very structured ancestral populations, we

will use the scaled migration rate M = 0.1 for the structured ancestral population

model. We generated gene trees for L = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200,

300, 400, 500, 600, 700, 800, 900, and 1000 independent loci (with each set of L

gene trees generated independent of each other set of gene trees) using ms (Hudson,

2002). To convert branch lengths from coalescent units to mutation units (average

number of mutations along the branch), we multiplied each length by θ/2, where

θ = 4Neµ = 0.01, and µ is the mutation rate per site per generation. Each gene tree

was input into Seq-Gen (Rambaut and Grassly , 1997), which generated sequence

alignments of length 500 nucleotides under a Jukes-Cantor substitution model. For

each sequence alignment, we used PAUP∗ (Swofford , 2003) to infer rooted gene

trees with maximum likelihood assuming the Jukes-Cantor substitution model and

a molecular clock. GLASS/Maximum Tree was then applied to the L inferred gene
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trees. We repeated this process for a total of 1000 independent replicate simulations

of L loci. Unlike our other simulation, this simulation incorporated mutation.

7.3.2.2 Results

Under the model with no ancestral population structure, when the number of

loci is small, GLASS/Maximum Tree is increasingly likely to infer the correct species

tree topology ((AB)C) as the number of loci increases (Figure 7.5A). However, the

frequency of the phylogeny with zero branch lengths (ABC)0 = (A:0,B:0,C:0) also

increases as the number of loci increases. This increase in frequency of (ABC)0 is

caused by maximum likelihood estimating gene trees with branches of length zero due

to no mutations. Once a single input tree has branches of length zero between a pair

of species, the GLASS/Maximum Tree estimate must also have branches of length

zero between the pair of species. As the number of loci increases, the probability

increases that the inferred GLASS/Maximum Tree will contain branches of length

zero. This increased probability is reflected in the simulations in which the frequency

of (ABC)0 increases and the frequency of ((AB)C) decreases as the number of loci

gets increasing large.

Similar to the unstructured ancestral population case, when ancestral populations

are structured, the inferred frequency of (ABC)0 increases as the number of loci

increases (Figure 7.5B). Because the structured ancestral model is the same as that

used in Figure 7.4 with M = 0.1, the probability is small that a gene tree will display

the ((AB)C) topology. This low probability for the relationship ((AB)C) is reflected

in the small fraction of species trees that have topology ((AB)C) in Figure 7.5B.

By incorporating the mutation process in addition to the genealogical process, we

find GLASS/Maximum Tree is increasingly likely to infer an unresolved tree as the

number of loci increases. This result indicates that GLASS/Maximum Tree may

perform poorly in practice, as gene trees can only be estimated and are, therefore,

231



not known with certainty.

7.4 Discussion

In this article, we have described a general structured ancestral population model

that extends the basic multispecies coalescent. Using this model, we have proven

that in the presence of ancestral population structure, many commonly used consensus

methods for inferring species trees from gene trees are no longer statistically consistent

(Table 7.2). The only method we found to be consistent is GLASS/Maximum Tree,

which relies on minimum coalescence times across gene trees between pairs of species.

This result, however, is discomforting because this method has the limitation that

if little information exists in only a single locus in a sample collection of loci, it

is possible to obtain an estimated divergence time of 0 between species (Figure 7.5).

Although using the minimum coalescence times between pairs of species is statistically

consistent when gene trees are known exactly, the utility of GLASS/Maximum Tree

in practice is uncertain.

The observation that most consensus methods evaluated are misleading in the

presence of ancestral population structure prompts the need to develop consensus

methods that are robust to ancestral structure. Although our model is more general

than the multispecies coalescent model, it still provides a simplification of true

ancestral population structure. For example, our model assumes that the migration

matrix, the number of demes, and the sizes of the demes are constant along an

internal branch of the species tree. Real ancestral population structure will probably

involve changes in population sizes (e.g., bottlenecks), changes in the number of

demes (e.g., fission and fusion of demes), and changes in the migration rates between

demes over time. However, because our model is a simplification of more complex

structured population models, we expect that if consensus methods are inconsistent

under our model, then the situation will only get worse under more complicated
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models. Consequently, more studies need to be performed to empirically characterize

the properties of ancestral population structure. These studies can be accomplished

by looking at the frequencies of gene trees because certain types of discordance, such

as asymmetries in the frequencies of gene trees, are signatures of ancestral population

subdivision (Slatkin and Pollack , 2008). Results from such studies may be useful

in developing consensus methods that are robust to gene tree discordance caused by

specific types of subdivided ancestral populations.
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Figure 7.1: Model for the relationship among species A, B and C in a fixed species
tree σ. Ancestral population A1 has D

(1) demes and ancestral population
A2 has D

(2) demes. Migration occurs between the D(1) demes in ancestral
population A1 and between the D(2) demes in ancestral population A2.
At τ2 and τ3, going back in time, lineages merge into specific demes in
ancestral populations A1 and A2 according to the matrix Ψ (see “Model”
section).
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Figure 7.2: Counterexample used to prove that consensus methods are misleading.
(A) Certain internal branches are made long so that the n-taxon species
tree σ resembles a three-taxon species tree. (B) Lineages from species
A, B, and C are in red and lineages from other taxa that have coalesced
along the branches leading to species A, B, and C are in blue. The lineage
from species A merges into deme j(2) of ancestral population A2, the
lineage from species B merges into deme k(2) ̸= j(2) of ancestral population
A2, and the lineage from species C merges into deme k(1) of ancestral
population A1. The migration rates out of demes are small, so that the
lineages from A, B, and C each have low probabilities of leaving the deme
in which they started. As a consequence, the probability is high that the
lineage from B coalesces with the lineage from C before it coalesces with
the lineage from A.
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Figure 7.3: Four possible coalescence ranks of four-taxon trees. (A) Coalescence
ranks for an asymmetric four-taxon tree. (B) Coalescence ranks for
a symmetric four-taxon tree in which the rank of an internal node is
the number of leaves descending from it. (C ) Coalescence ranks for a
symmetric four-taxon tree in which the rank of an internal node is the
rank of the node directly ancestral to it minus 1. (D) Coalescence ranks
for a symmetric four-taxon tree in which the rank of an internal node is
assigned relative to all other internal nodes in the tree. In this ranking,
each possible value for a rank (i.e., ranks 2, 3, . . . , n) is used once.
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Figure 7.4: Simulation results for the three-taxon species tree ((AB)C). (A) Species
tree with a structured ancestral population model. Time is measured
in coalescent units t/(2Ne), where t is time in generations and Ne is a
reference diploid effective population size. The structured population
model is an island migration model with D = 10 demes in each ancestral
population. The scaled migration rate between deme x and deme y ̸= x
is M = 4Nem, which corresponds to M/4 individuals per generation in
each direction. Species A merges into deme 1 and species B and C each
merge into deme 10. (B) Simulation results for scaled migration rates
M = 10.0, M = 1.0, and M = 0.1. Each tree topology is represented by a
distinct color. Each consensus method is represented by a distinct symbol.
For each consensus method, the tree topology traced is the topology for
that method that has the highest frequency at 2000 gene trees. The
frequency of a topology is calculated as the fraction among 1000 replicate
simulations for which that topology was inferred.
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Figure 7.5: Inference of species trees using GLASS/Maximum Tree under a
Jukes-Cantor substitution model (per-site mutation rate θ = 0.01)
when gene trees are generated under the three-taxon species tree σ =
((A:1.0,B:1.0):0.1,C:1.1). Time is measured in coalescent units t/(2Ne),
where t is time in generations and Ne is a reference diploid effective
population size. (A) Simulation results with no ancestral population
structure. (B) Simulation results with ancestral population structure.
The structured population model is an island migration model with
D = 10 demes in each ancestral population (the same model as in
Figure 7.4A). The scaled migration rate between deme x and deme
y ̸= x is M = 4Nem = 0.1, which corresponds to one individual per 40
generations in each direction. Species A merges into deme 1 and species
B and C each merge into deme 10. Each tree topology is represented by a
symbol: an open triangle for a tree with zero branch lengths (ABC)0 and
a closed triangle for ((AB)C). The frequency of a topology is calculated
as the fraction among 1000 replicate simulations for which that topology
was inferred.
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7.6 Appendix

In this section, we provide proofs that STEAC, STAR, R∗ Consensus, Rooted

Triple Consensus, Minimize Deep Coalescences, and Majority-Rule Consensus are

misleading estimators of a species tree topology under model S(σ,D,N,M,Ψ).

7.6.1 Average coalescence times

Under model S(σ,D,N,M,Ψ), define the expected time to coalescence at a

random locus for a random lineage sampled from species X and a random lineage

sampled from species Y as ES [TXY].

Proof of Theorem VII.2. We use the counterexample (assumptions 1–3 in the

“Counterexample” section) to show that ĈL is misleading. For ĈL to not be

misleading, we must have that ĈL
P−→ top(σ) as L → ∞. Note that top(σ) =

((λAλB)λC). Because the migration model is the same across loci, we will drop the

superscript in T ℓ
AB and T ℓ

BC for convenience.

Denote the expected coalescence time for two random lineages residing in the

same deme by E[T | same ] and the expected coalescence time for two random lineages

residing in different demes by E[T | diff ]. We can write the expected coalescence time

for a random lineage sampled from species A and a random lineage sampled from

species B as

ES [TAB] = τ3 + E[T | same ]pS(A,B) + E[T | diff ][1− pS(A,B)],

where τ3 is the divergence time of species A and B. Under the assumptions of the

counterexample, because pS(A,B) = 0,

ES [TAB] = τ3 + E[T | diff ].
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The expected coalescence time for a random lineage sampled from species B and a

random lineage sampled from species C is

ES [TBC] = τ2 + E[T | same ]pS(B,C) + E[T | diff ][1− pS(B,C)]

= τ2 + E[T | diff ]− pS(B,C)(E[T | diff ]− E[T | same ]),

where τ2 is the divergence time of species B and C. In an island migration model with

D demes, E[T | same ] = 2ND and E[T | diff ] = 2ND+(D−1)/(2m) (Wakeley , 2009,

p. 152, eqs. 5.26 and 5.27). It follows that

ES [TBC]− ES [TAB] = (τ2 − τ3)− pS(B,C)(E[T | diff ]− E[T | same ])

= (τ2 − τ3)−
D − 1

2m
pS(B,C).

Recall from the counterexample that pS(B,C) > β1, and that when holding τ2 − τ3

and D constant and setting the migration rate m sufficiently small, β1 is arbitrarily

close to 1. Set m sufficiently small such that

pS(B,C) >
2(τ2 − τ3)

D − 1
m. (7.2)

Consequently, ES [TBC] < ES [TAB]. For ĈL to be misleading, we need to obtain

tBC < tAB as L → ∞. By the Law of Large Numbers, Slutsky’s Theorem (Serfling ,

1980, Theorem 1.5.4), and Corollary B of Serfling (1980), tBC − tAB
P−→ ES [TBC] −

ES [TAB] < 0 as L → ∞ and, hence, tBC < tAB. Because tBC < tAB as L → ∞,

P[ĈL = top(σ) | S] → 0 as L → ∞. Therefore, ĈL ̸ P−→ top(σ), and ĈL is a misleading

estimator of top(σ) under S(σ,D,N,M,Ψ).
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7.6.2 Average ranks of coalescences

Let ES [R
ℓ
XY] denote the expected rank of a coalescent event for a random lineage

from species X and a random lineage from species Y in a gene tree from locus ℓ under

S(σ,D,N,M,Ψ).

Proof of Theorem VII.3. We use the counterexample (assumptions 1–3 in the

“Counterexample” section) to show that ĈL is misleading. For ĈL to not be

misleading, we must have that ĈL
P−→ top(σ) as L → ∞. Note that top(σ) =

((λAλB)λC). Because the migration model is the same across loci, we will drop the

superscript in Rℓ
AB and Rℓ

BC for convenience.

Define qXY = P[τ3 ≤ TXY < τ2 | S]. The expected rank for a lineage sampled from

species A and a lineage sampled from species B in species tree σ is

ES [RAB] = ES [RAB | τ3 ≤ TAB < τ2]qAB + ES [RAB | τ2 ≤ TAB](1− qAB)

= ES [RAB | τ2 ≤ TAB]− qAB(ES [RAB | τ2 ≤ TAB]− ES [RAB | τ3 ≤ TAB < τ2]).

Note that because species B and C cannot coalesce more recently than time τ2, qBC =

0. The expected rank for a lineage sampled from species B and C is then

ES [RBC] = ES [RBC | τ3 ≤ TBC < τ2]qBC + ES [RBC | τ2 ≤ TBC](1− qBC)

= ES [RBC | τ2 ≤ TBC].

It follows that

ES [RBC]− ES [RAB] = (ES [RBC | τ2 ≤ TBC]− ES [RAB | τ2 ≤ TAB])

+ qAB(ES [RAB | τ2 ≤ TAB]− ES [RAB | τ3 ≤ TAB < τ2]).

Recall from the counterexample that when holding τ2−τ3 and D constant and setting
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the migration rate m sufficiently small, the probability of zero migration events over

the interval [τ3, τ2) (i.e., β1) is arbitrarily close to 1. If no migration event occurs

on the interval [τ2, τ3), then there cannot be a coalescence between a lineage from A

and a lineage from B. Consequently, holding τ2 − τ3 and D constant and setting m

sufficiently small, qAB is arbitrarily close to 0. Set m sufficiently small such that

qAB <
ES [RAB | τ2 ≤ TAB]− ES [RBC | τ2 ≤ TBC]

ES [RAB | τ2 ≤ TAB]− ES [RAB | τ3 ≤ TAB < τ2]
. (7.3)

Consequently, ES [RBC] < ES [RAB]. For ĈL to be misleading, we need to obtain

rBC < rAB as L → ∞. By the Law of Large Numbers, Slutsky’s Theorem (Serfling ,

1980, Theorem 1.5.4), and Corollary B of Serfling (1980), rBC − rAB
P−→ ES [RBC]−

ES [RAB] < 0 as L → ∞ and, hence, rBC < rAB. Because rBC < rAB as L → ∞,

P[ĈL = top(σ) | S] → 0 as L → ∞. Therefore, ĈL ̸ P−→ top(σ), and ĈL is a misleading

estimator of top(σ) under S(σ,D,N,M,Ψ).

7.6.3 Uniquely favored rooted triples

Proof of Theorem VII.4. We use the counterexample (assumptions 1–3 in the

“Counterexample” section) to show that ĈL is misleading. For ĈL to not be

misleading, we must have that ĈL
P−→ top(σ) as L → ∞. Note that top(σ) =

((λAλB)λC). Consider an alternative species tree σ⋆ with topology top(σ⋆) =

((λBλC)λA). Set the migration rate m sufficiently small such that PS [top(σ
⋆)] =

PS [((λBλC)λA)] > (1 − δ)3β2, which is arbitrarily close to 1. By the Law of Large

Numbers, P̂ [top(σ⋆)]
P−→ PS [top(σ

⋆)] as L → ∞. Because PS [top(σ
⋆)] has probability

arbitrarily close to 1, the set of rooted triples displayed by top(σ⋆) is the set of

uniquely favored rooted triples. Because a rooted bifurcating tree topology is defined

by its set of rooted triples (Steel , 1992, Proposition 4), P[ĈL = top(σ⋆) | S] → 1 as

L → ∞. Therefore, ĈL
P−→ top(σ⋆), and ĈL is a misleading estimator of top(σ)
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under S(σ,D,N,M,Ψ).

7.6.4 Minimizing deep coalescences

Consider fixed species tree σ and fixed gene tree topology T and let xl(top(σ), T )

denote the number of extra lineages contributed by the topology of σ for gene tree

topology T . Consider the set of all possible n-taxon rooted bifurcating tree topologies

G. The number of extra lineages contributed by the topology of σ is

xl(top(σ)) =
∑
T ∈G

xl(top(σ), T )P̂ [T ]. (7.4)

Proof of Theorem VII.5. We use the counterexample (assumptions 1–3 in the

“Counterexample” section) to show that ĈL is misleading. For ĈL to not be

misleading, we must have that ĈL
P−→ top(σ) as L → ∞. Note that top(σ) =

((λAλB)λC). Consider an alternative species tree σ⋆ with topology top(σ⋆) =

((λBλC)λA). From the counterexample, we know that certain branch lengths of the

species tree are sufficiently long such that for fixed set X ∈ {ΓA,ΓB,ΓC} and fixed

arbitrarily small δ > 0, P[top(T |X) = top(σ|X) | S] > 1 − δ. Using eq. 7.4, the

difference in the number of extra lineages contributed by the topologies of σ and σ⋆

is

∆xl(top(σ), top(σ
⋆)) = xl(top(σ))− xl(top(σ⋆))

=
∑
T ∈G

[xl(top(σ), T )− xl(top(σ⋆), T )]P̂ [T ].

Note that xl(top(σ), top(σ⋆)) = 1 and xl(top(σ⋆), top(σ⋆)) = 0. Set the migration

rate m sufficiently small such that PS [top(σ
⋆)] = PS [((λBλC)λA)] > (1− δ)3β2, which

is arbitrarily close to 1. It follows that, for each T ∈ G\{top(σ⋆)}, PS [T ] is arbitrarily

close to 0. For ĈL to be misleading, we need to obtain ∆xl(top(σ), top(σ
⋆)) > 0 as L →

∞. For fixed arbitrarily small ε close to 0, and by the Law of Large Numbers, Slutsky’s
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Theorem (Serfling , 1980, Theorem 1.5.4), and Corollary B of Serfling (1980), as

L → ∞,

∆xl(top(σ), top(σ
⋆))

P−→
∑
T ∈G

[xl(top(σ), T )− xl(top(σ⋆), T )]PS [T ]

= [xl(top(σ), top(σ⋆))− xl(top(σ⋆), top(σ⋆))]PS [T ] + ε

= PS [T ] + ε

> 0.

Because ∆xl(top(σ), top(σ
⋆)) > 0 as L → ∞, P[ĈL = top(σ) | S] → 0 as L →

∞. Therefore, ĈL ̸ P−→ top(σ), and ĈL is a misleading estimator of top(σ) under

S(σ,D,N,M,Ψ).

7.6.5 Majority-rule

Proof of Theorem VII.6. We use the counterexample (assumptions 1–3 in the

“Counterexample” section) to show that ĈL is misleading. For ĈL to not be

misleading, we must have that ĈL
P−→ top(σ) as L → ∞. Note that top(σ) =

((λAλB)λC). Consider an alternative species tree σ⋆ with topology top(σ⋆) =

((λBλC)λA). Fix α ∈ [0.5, 1). Set δ > 0 arbitrarily small and recall from the

counterexample that PS [top(σ
⋆)] = PS [((λBλC)λA)] > (1 − δ)3β2, and that when

holding τ2 − τ3 and D constant and setting the migration rate m sufficiently small,

β2 is arbitrarily close to 1. For ĈL to be misleading, all clades displayed by

top(σ⋆) must have frequency greater than α. By the Law of Large Numbers,

P̂ [top(σ⋆)]
P−→ PS [top(σ

⋆)] as L → ∞. Because PS [top(σ
⋆)] has probability

arbitrarily close to 1, all clades displayed by top(σ⋆) have a frequency greater than α

and so P[ĈL = top(σ⋆) | S] → 1 as L → ∞. Therefore, ĈL
P−→ top(σ⋆), and ĈL is a

misleading estimator of top(σ) under S(σ,D,N,M,Ψ).
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CHAPTER VIII

An empirical evaluation of species tree inference

strategies using a multilocus dataset from North

American pines

8.1 Introduction

In phylogenetic studies, it has become increasingly common to sequence large

numbers of individuals across many loci. These multilocus datasets provide the

potential to improve the accuracy of phylogeny inferences over large sets of taxa.

However, for a variety of reasons, topologies of trees inferred at different loci might

not match (Rannala and Yang , 2008). One source of this gene tree discordance is

incomplete lineage sorting—the phenomenon in which sets of sampled lineages fail

to coalesce in the population in which they are first capable of coalescing (Degnan

and Rosenberg , 2009). If incomplete lineage sorting occurs, then gene trees might not

match the species tree, and further, species tree inference methods can be misled by

the discordance of gene trees at multiple loci (Degnan and Rosenberg , 2006; Kubatko

and Degnan, 2007; Degnan et al., 2009).

Recently, three main families of approaches have been used for estimating

species tree topologies from multilocus sequence data: consensus, concatenation,

and Bayesian methods. Consensus methods construct species tree topologies from
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gene trees according to a deterministic set of rules that are based on features of

the input set of trees (Bryant , 2003). These methods have the property that their

input is a set of gene trees that are constructed from individual loci, allowing for

a separate evolutionary history to be inferred at each locus. However, because

genetic lineages in different species sometimes have relatively few sequence differences,

there might not be enough information in a locus to accurately infer gene trees.

Concatenation methods concatenate a set of multiple alignments and, also according

to a deterministic procedure, infer a species tree as the estimated tree based on

the concatenated alignment. These methods have the property that they construct

species trees from a large number of loci considered simultaneously, utilizing as much

sequence information as is available to infer a species tree in a single step. However,

concatenation methods combine all loci to form a single locus, and because different

loci may have different evolutionary histories that are disregarded in the concatenation

step, joining loci in this way can lead to incorrect species tree inferences. Bayesian

methods infer species trees by modeling the evolution of sequences among all sampled

loci. These methods have the property that in addition to inferring the evolutionary

history among all sequences, they also provide a level of confidence for their species

tree estimates. However, because these methods explore large spaces of evolutionary

histories rather than algorithmically construct estimated trees, they are extremely

computationally intensive and are typically applicable only to smaller datasets.

Simulation studies are commonly used to investigate the performance of species

tree inference methods on multilocus datasets with a finite number of loci. These

studies have the advantage of knowing the true species tree but the disadvantage

that they can explore only a small portion of the evolutionary parameter space.

An alternative approach is to evaluate the performance of methods on an empirical

dataset in which the space of parameter values is defined by the actual evolutionary

history of a group of species. Several recent studies have empirically investigated
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the performance of phylogenetic tree construction methods from multilocus datasets.

These studies have examined a variety of organisms, including birds (Jennings and

Edwards , 2005; Brumfield et al., 2008; Carling and Brumfield , 2008; Liu et al., 2008),

insects (Carstens and Knowles , 2007; Linnen and Farrell , 2008), newts (Themudo

et al., 2009), plants (Buerki et al., 2011), primates (Takezaki and Nei , 2008;Hird et al.,

2010), rice (Cranston et al., 2009), rodents (Belfiore et al., 2008), snakes (Kubatko

et al., 2009), and yeast (Rokas et al., 2003; Gatesy and Baker , 2005; Edwards et al.,

2007; Liu et al., 2008). While some of these studies have been able to construct

highly-supported species trees, other studies could not do so, likely due to high levels

of genealogical discordance.

In one such study, Syring et al. (2007) found that samples from a multilocus

dataset of North American pines displayed widespread genealogical discordance. This

pattern of incomplete lineage sorting is a common feature of long-lived shrubs and

trees (e.g., Bouillé and Bousquet , 2005; Ma et al., 2006; Willyard et al., 2009), and

likely has its genesis in a combination of factors such as large effective population

size, long generation time, and high levels of gene flow (Savolainen and Pyhäjärvi ,

2007; Eckert and Carstens , 2008). Because discordance is needed for different

algorithms to produce different estimates, samples from a variety of North American

pine species can provide a sensible dataset in which to study the performance of

species tree inference methods in the presence of gene tree discordance. In this study,

we take an empirical approach to the evaluation of species tree inference methods

by examining the performance of 72 strategies for inferring species tree topologies

using a multilocus dataset from North American pines. Each “phylogenetic inference

strategy” consists of three components: a method of constructing species trees from

gene trees (e.g., consensus or concatenation), a gene tree inference method (e.g.,

maximum likelihood or neighbor-joining), and an outgroup species. Our dataset

consists of ∼48 kilobases (kb) of sequence spanning 123 nuclear loci that have been
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sequenced in 120 individuals sampled from eight ingroup species of Pinus subsection

Strobus and three outgroup species of Pinus subsection Gerardianae. We apply

techniques from multivariate statistical analysis to sets of inferred species trees to

compare and contrast characteristics of species trees estimated by different strategies

and to identify groups of strategies that behave similarly. From these results,

we provide recommendations for inferring species tree topologies from multilocus

sequence data.

8.2 Methods

8.2.1 North American white pine dataset

A total of 120 individuals were sequenced in eight ingroup species of North

American white pines from Pinus subsection Strobus (Pinus albicaulis, P. ayacahuite,

P. chiapensis, P. flexilis, P. lambertiana, P. monticola, P. strobiformis, and P.

strobus) and three outgroup species from Pinus subsection Gerardianae (P. bungeana,

P. gerardiana, P. squamata), the identified sister lineage to Pinus subsection Strobus

(Syring et al., 2005, 2007). Sequence data were pre-processed and organized using

PineSAP (Wegrzyn et al., 2009), a bioinformatics pipeline that combines Phred

(Ewing et al., 1998), Phrap (Lee and Vega, 2004), and MUSCLE (Edgar , 2004a,b)

to call bases and align sequencing reads. Following this pre-processing step, the data

were manually assembled and aligned using CodonCode (CodonCode Corporation,

Dedham, MA). Bases were called using a minimum Phred score (Ewing and

Green, 1998; Ewing et al., 1998) of 25 for aligned bases. All polymorphisms were

visually validated. All alignments were further aligned to resequencing data from

P. taeda (unpublished data) using the profile-profile option in MUSCLE (Edgar ,

2004a,b). These alignments are publicly available as part of the Dendrome project

(http://loblolly.ucdavis.edu/bipod/ftp/).

251



Of 245 loci sequenced initially, 37 were dropped from further consideration due

to low overall quality of sequence reads. An additional 15 loci were dropped due to

possible chloroplast or mitochondrial contamination, on the basis of BLAST analysis

against pine organellar sequences deposited in GenBank (Parks et al., 2009). Two

loci were dropped due to sequence similarity to retroelement-like proteins. This

process resulted in a core set of 191 high-quality nuclear gene alignments for the

11 target species. We then eliminated 68 loci for which at least one of the 11 species

contained no data. This filter reduced the dataset to 123 loci, covering ∼48 kb of

aligned sequence data.

Coding regions (i.e., site annotations) could confidently be identified for 112

of the 123 loci by further analysis using tBLASTx against protein-coding genes

in Arabidopsis, Oryza, Picea, and Populus. For these 112 loci, the gene for the

highest-scoring tBLASTx hit, in combination with the expressed sequence tag from

loblolly pine, was used to identify coding regions. Site annotations for each alignment

were validated with BLASTp analysis of the amino acid sequences derived from the

inferred coding intervals against the gene that was used to derive the site annotations.

Of the 48 kb of data available, ∼62% represents exonic regions, ∼18% represents

intronic regions, ∼1% is from 5’ UTRs, and ∼19% is from 3’ UTRs.

8.2.2 Overview of the analysis

The procedure for obtaining results for each of the 72 phylogenetic inference

strategies (listed in Table 8.1) is illustrated by a flow diagram in Figure 8.1. For

a given strategy, we started from a dataset D with L loci. We then created a

bootstrap dataset by randomly choosing with replacement B sets of L loci. Next, we

applied a gene tree inference method to each bootstrap replicate dataset. Based on

the set of inferred gene trees in a bootstrap replicate, we then applied a species tree

construction method to estimate a species tree topology with one of the three outgroup
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species from Pinus subsection Gerardiana. For each phylogenetic inference strategy,

we constructed B = 1000 independent bootstrap datasets, thereby estimating 1000

species tree topologies. From these species tree topologies, we created a list of clades,

each with a corresponding count of its number of appearances in the 1000 bootstrap

replicates. These clade lists were then analyzed to assess similarity and difference

among the estimates produced by different strategies.

8.2.3 Creating datasets

The final set of 123 loci in our dataset contains many loci that are highly conserved

across multiple species. Because of the high level of conservation, for these loci, little

information exists for identifying relationships among lineages. Thus, if methods

for inferring gene trees were applied to certain loci, the resulting gene trees would

be highly unresolved and would therefore provide little information to species tree

construction methods.

To circumvent this problem, we instead analyzed four carefully selected subsets of

the initial dataset (Table 8.2). Two of these are datasets of multiple alignments that

contain information on a single individual per species (Ds andDs,0). The other two are

datasets of multiple alignments that contain information on multiple individuals per

species (Dp and Dp,0). These four datasets are constructed such that each possesses

desirable properties for certain strategies in the collection of 72 phylogenetic inference

strategies, providing the strategies with as much information as possible to infer

resolved phylogenies. One of the two datasets with a single individual sampled per

species is optimized for locus-by-locus gene tree inference (Ds,0), whereas the other

is optimized for gene tree inference from a concatenated alignment (Ds). Similarly,

one of the two datasets with multiple individuals sampled per species is optimized for

locus-by-locus gene tree inference (Dp,0), whereas the other is optimized for gene

tree inference using multiple loci simultaneously (Dp). The procedures used for
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constructing these datasets are described in subsequent sections on “Datasets with

one individual per species” and “Datasets with multiple individuals per species”.

Let Sk, k = 1, 2, . . . , 11, denote the set of individuals from pine species

k, considering eight ingroup species (S1, S2, . . . , S8) and three outgroup species

(S9, S10, S11). Denote the amount of overlapping non-gap non-missing sequence

between a pair of individuals x and y by nxy and denote the number of non-gap

non-missing nucleotide differences between a pair of individuals x and y by dxy

(0 ≤ dxy ≤ nxy). Further, denote the final dataset of L = 123 loci by D =

{A1,A2, . . . ,AL}, where Aℓ is the set of aligned sequences at locus ℓ for individuals

from all 11 pine species. It is from this dataset D that we create the four optimized

datasets as summarized in Table 8.2 and Figure 8.2.

8.2.3.1 Datasets with one individual per species

The first dataset, denoted Ds, consists of alignments with a single individual

sampled per species at each locus (not necessarily the same individual across

loci). That is, we generate a dataset of multiple alignments at each of L loci

with only one individual per species, thereby creating multiple alignments of 11

“individuals”. This dataset is used by phylogenetic inference strategies that utilize the

concatenation-based species tree construction methods with the maximum likelihood,

maximum parsimony, and neighbor-joining gene tree inference methods (see sections

“Inferring gene trees” and “Inferring species trees” for method details). To create

Ds, we choose the subset of 11 sequences As
ℓ at locus ℓ by first maximizing the total

amount of overlap sequence n(As
ℓ) =

∑
x,y∈As

ℓ ,x ̸=y nxy and then, if there is a tie for the

overlap n(As
ℓ), maximizing the total number of substitutions d(As

ℓ) =
∑

x,y∈As
ℓ ,x ̸=y dxy.

In other words, for any other set of aligned sequences A ⊆ Aℓ at locus ℓ with only

one individual sampled per species, the amount of overlapping non-gap non-missing

sequence in A is no larger than in As
ℓ, i.e., n(A) ≤ n(As

ℓ). Further, for any other
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set of aligned sequences A ⊆ Aℓ at locus ℓ with only one individual sampled per

species and n(A) = n(As
ℓ), the total number of pairwise sequence differences in A is

no larger than in As
ℓ, i.e., d(A) ≤ d(As

ℓ). If multiple sets of 11 individuals share the

same values of n and d, then we choose the set of 11 individuals randomly among

the tied sets. We choose the “optimal” set of 11 individuals at each locus in this

way both to maximize the sequence contributions of individual loci to the inference

of gene trees (maximizing n) and to maximize the potential for creating resolved gene

trees (maximizing d).

The second dataset, denoted Ds,0, is a subset of Ds with Ls,0 ≤ L loci that

consists of only those loci in Ds for which there exists at least one nucleotide

difference between each distinct pair of species (other than pairs from distinct

outgroups). This condition of at least one nucleotide difference between pairs of

species provides the potential to construct bifurcating gene trees. Dataset Ds,0 is used

by phylogenetic inference strategies that utilize consensus methods with maximum

likelihood, maximum parsimony, and neighbor-joining (see sections “Inferring gene

trees” and “Inferring species trees” for method details).

8.2.3.2 Datasets with multiple individuals per species

The third dataset, denoted Dp, is identical to our starting dataset D. Similarly

to dataset Ds, dataset Dp contains all L loci in D. In specifying dataset Dp, however,

we do not make the restriction that at each locus, only one individual is sampled

per species. Thus, strategies that use Dp consider all available sampled sequences

when estimating species tree topologies. Dataset Dp is used by phylogenetic inference

strategies that employ the concatenation-based species tree construction methods

with the neighbor-joining gene tree inference method using multiple individuals (see

sections “Inferring gene trees” and “Inferring species trees” for method details).

Consider a bootstrapped dataset D of L loci sampled randomly with replacement
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from Dp. Define

Pall
ij =


0 , i = j∑

Aℓ∈D

∑
x,y∈Aℓ

dxy1{x∈Si,y∈Sj}∑
Aℓ∈D

∑
x,y∈Aℓ

nxy1{x∈Si,y∈Sj}
, i ̸= j,

(8.1)

where 1{x∈Si,y∈Sj} is an indicator random variable that equals 1 if x ∈ Si and y ∈ Sj

and 0 otherwise. The pairwise distance matrix defined by eq. 8.1 is used to estimate

gene trees for all strategies applied to Dp. Given a distinct pair of species Si and Sj,

the entry Pall
ij represents the p-distance (fraction of nucleotide differences; Felsenstein,

2004) averaged over pairs of individuals, one from species i and the other from species

j.

The fourth dataset, denoted Dp,0, is a subset of Dp with Lp,0 ≤ L loci. This subset

consists of only those loci in Dp for which there exists a pair of individuals in each

distinct pair of species (other than pairs from distinct outgroups) with at least one

nucleotide difference between them. Define

Pℓ
ij =


0 , i = j∑

x,y∈Aℓ
dxy1{x∈Si,y∈Sj}∑

x,y∈Aℓ
nxy1{x∈Si,y∈Sj}

, i ̸= j,
(8.2)

where 1{x∈Si,y∈Sj} is an indicator random variable that equals 1 if x ∈ Si and y ∈ Sj

and 0 otherwise. The numerator of Pℓ
ij represents the number of pairwise sequence

differences, summed over pairs of individuals, one sampled from species Si and the

other sampled from species Sj, at locus ℓ. The denominator of Pℓ
ij represents the

total sum across pairs of individuals, one from Si and the other from Sj, of the

non-gap non-missing sequence shared between pairs of individuals at locus ℓ. To

construct Dp,0, we create a subset of Dp that consists only of those loci in Dp

for which there exists a nonzero p-distance (i.e., Pℓ
ij > 0) between each distinct

pair of species (excluding pairs from distinct outgroups). This dataset is utilized

by phylogenetic inference strategies that employ consensus methods with gene trees
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inferred by neighbor-joining using multiple individuals (see sections “Inferring gene

trees” and “Inferring species trees” for method details). Similarly to dataset Ds,0,

this condition of a nonzero p-distance between pairs of species provides the potential

to construct bifurcating gene trees.

8.2.4 Inferring gene trees

For each of the four datasets Ds, Ds,0, Dp, and Dp,0, we inferred gene trees from

bootstrap replicate datasets (Efron and Tibshirani , 1993) that contain loci randomly

sampled with replacement from the dataset. For strategies applied to datasets Ds and

Ds,0, we inferred gene trees from sequence alignments by applying either maximum

likelihood (ML; Felsenstein, 2004, ch. 9) under a general time-reversible substitution

model (Felsenstein, 2004, ch. 13), maximum parsimony (MP; Felsenstein, 2004, ch. 1),

or neighbor-joining (NJ; Felsenstein, 2004, ch. 11) to a p-distance matrix calculated

between pairs of alignments. For strategies applied to Dp and Dp,0, we inferred gene

trees by applying neighbor-joining to thePall and Pℓ p-distance matrices, respectively.

We term the method for inferring gene trees from the Pall and Pℓ p-distance matrices

“neighbor-joining using multiple individuals” (NJM). All gene trees were inferred

using PAUP∗ (Swofford , 2003).

8.2.5 Inferring species trees

The six species tree construction methods used in this study are Concatenation

(Rokas et al., 2003; de Queiroz and Gatesy , 2007), SuperMatrix Rooted Triple

(SMRT; DeGiorgio and Degnan, 2010), STEAC (Liu et al., 2009), STAR (Liu et al.,

2009), Rooted Triple Consensus (RTC; Ewing et al., 2008), and Minimize Deep

Coalescences (MDC; Maddison, 1997; Than and Nakhleh, 2009). Concatenation and

SMRT are concatenation-based and STEAC, STAR, RTC, and MDC are consensus

methods. These methods were chosen to represent a range of species tree construction
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methods suitable for rapid computation in the variety of scenarios that were of interest

to consider. Due to their computational burden, we did not investigate Bayesian

methods.

Consider a set of L loci (multiple alignments) with m ingroup species and an

outgroup species. Concatenation methods concatenate the L multiple alignments to

create a single “super locus” consisting of a multiple alignment of the m + 1 species

across L loci. From this multiple alignment, a gene tree is inferred and this gene

tree is taken as the species tree estimate. Similarly, SMRT creates a concatenated

alignment of the m+ 1 species from a set of L multiple alignments. However, SMRT

then constructs from this concatenated alignment all
(
m
3

)
concatenated alignments

of three ingroup species and an outgroup species. Rooted three-taxon gene trees are

then inferred from each of the
(
m
3

)
concatenated alignments. A supertree algorithm is

then applied to the set of rooted three-taxon gene trees to estimate anm-taxon species

tree topology. This study uses the Modified Mincut supertree algorithm implemented

in the program supertree (Page, 2002) to construct a species tree from rooted

three-taxon gene trees.

Consider a set of (m+ 1)-taxon gene trees (m ingroup and one outgroup species)

inferred at each of L loci. STEAC estimates a species tree topology by using estimated

mean coalescence times. For distinct species Si and Sj, the mean coalescence time is

computed as the estimated divergence time for Si and Sj, averaged over all L gene

trees. These mean coalescence times specify a distance between each pair of species

and are placed into a distance matrix. Neighbor-joining is applied to the matrix to

estimate the species tree topology.

STAR estimates a species tree topology by using average coalescence ranks. STAR

assumes that the rank of the root of a gene tree is equal to the number of species

in the tree (m + 1 in our case). Internal nodes of a gene tree are then assigned the

rank of the node directly ancestral to it minus one. For distinct species Si and Sj, the
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average coalescence rank is computed as the rank of the node that connects Si and Sj,

averaged over all L gene trees. Similarly to the algorithm of STEAC, these average

coalescence ranks specify a distance between each pair of species and are placed into

a distance matrix. Neighbor-joining is applied to the matrix to estimate the species

tree topology.

RTC estimates a species tree by using rooted three-taxon tree topologies. At

each locus ℓ, ℓ = 1, 2, . . . , L, RTC finds the set of
(
m
3

)
rooted tree topologies of three

ingroup and one outgroup species that are displayed by the inferred gene tree at

locus ℓ. After applying this procedure to all loci, RTC applies the quartet puzzling

algorithm (Strimmer and von Haeseler , 1996) to the set of
(
m
3

)
L rooted three-taxon

tree topologies to estimate the species tree topology.

A coalescence event between a pair of lineages is considered “deep” if the

coalescence does not occur in the first population in which the pair of lineages is

capable of coalescing. Given a gene tree, the number of deep coalescences on a species

tree is defined as the total number of “extra lineages”, summed across branches of

the species tree topology, that is needed to fit the gene tree within the species tree

topology. Here, the number of extra lineages for a branch is one fewer than the number

of lineages that survive to the root of the branch; if incomplete lineage sorting does

not occur, then only one lineage persists from a branch to its ancestor, and there

are no extra lineages. For a set of L gene trees, the number of deep coalescences for

a species tree is the total number of deep coalescences for the species tree given a

gene tree, summed across the L gene trees. MDC estimates a species tree topology

by minimizing the number of deep coalescences. That is, MDC finds a species tree

topology for which the number of deep coalescences that will fit the set of L gene

trees within the species tree topology is minimal.

259



8.2.6 Multivariate analysis

In our study, we want to determine which of the 72 phylogenetic inference

strategies perform similarly. Consider a 72×145-dimensional data matrix S in which

rows represent the 72 strategies and columns represent 145 observed clades, among

the
∑8−1

k=2

(
8
k

)
= 246 possible non-trivial clades of eight species. Entry Sij in column i

and row j of S is the number of times that strategy i infers clade j in 1000 bootstrap

replicates across loci.

Principal components analysis (PCA) was applied to S to create a 72 ×

2-dimensional matrix V in which the rows represent the 72 strategies and the

first and second columns represent the first and second principal components,

respectively. Plotting 72 strategies onto the space defined by the first and

second principal components yields a two-dimensional spatial “map” of phylogenetic

inference strategies.

To compare spatial maps of phylogenetic inference strategies, we used Procrustes

analysis (Dryden and Mardia, 1998; Cox and Cox , 2001; Gower and Dijksterhuis ,

2004). In particular, we compared the spatial distribution of a subset of 72 − r

strategies when analyzed alone to the spatial distribution for all 72 strategies. The

comparison enabled us to quantify the influence that a set of r strategies with a

particular feature (i.e., species tree construction method, gene tree inference method,

or outgroup species) has on the spatial distribution of all 72 strategies. Consider

a set of strategies Σ = {σ1, σ2, . . . , σ72−r} that is a proper subset of the full set of

72 strategies. Consider a (72 − r) × 145-dimensional data matrix SΣ in which rows

represent the 72 − r strategies in set Σ and columns represent 145 observed clades

(i.e., SΣ is a submatrix of S, in which the 72− r rows corresponding to strategies in

Σ are selected from S). Consider a (72 − r) × 2-dimensional target matrix X and a

(72− r)×2-dimensional comparison matrix Y. X is matrix V restricted to the set of

strategies Σ. Y is a matrix representing the first two principal components in the PCA
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applied to matrix SΣ. Now consider a (72− r)× 2-dimensional matrix Z = bYT+C

that is a transformation of Y, where b is a scaling factor, T is a 2 × 2-dimensional

matrix that rotates and reflects Y, and C is a (72− r)× 2-dimensional matrix that

has constant columns and that is used to translate the matrix. Procrustes analysis

seeks to find b, T, and C to minimize the sum of squared differences between X and

some (72− r)× 2-dimensional matrix Z⋆ = bYT+C. That is, Z⋆ is formally defined

as Z⋆ = argminZ{
∑72−r

i=1

∑2
j=1(Xij −Zij)

2}. Then the dissimilarity measure between

X and Z⋆ is computed as

∑72−r
i=1

∑2
j=1(Xij − Z⋆

ij)
2∑72−r

i=1

∑2
j=1(Xij − µj)2

, (8.3)

where µj =
1

72−r

∑72−r
i=1 Xij is the jth dimension of the centroid of X, computed across

all row vectors ofX. This measure takes the sum of squared differences between points

on the spatial maps defined by X and Z⋆ and normalizes it by the sum of squared

differences between the points on the spatial map defined by X and the centroid of

those points.

Define a cluster as a set of strategies and let the centroid of a cluster of strategies be

the location in the 145-dimensional space of clades whose coordinates are the means

of those of all strategies in the cluster. Hierarchical clustering was performed by first

creating a matrix of Euclidean distances between all
(
72
2

)
pairs of 145-dimensional

vectors represented by the matrix S. Define the within-cluster sum of squared

Euclidean distance as the squared Euclidean distance between a point in a cluster

and the centroid of the cluster, summed over all points in the cluster. From the

72× 72-dimensional matrix of Euclidean distances between strategies, a dendrogram

relating the 72 strategies was constructed using the Ward algorithm (Ward , 1963).

The Ward algorithm iteratively merges clusters until all points are contained within

a single cluster. The nesting of clusters created by the Ward algorithm defines the
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dendrogram among a set of points. For a given iteration, two clusters are merged if

their merged cluster has a smaller within-cluster sum of squared Euclidean distances

than any other potential merged cluster.

We performed K-means clustering on the 72 145-dimensional vectors, using K

clusters, K = 2, 3, . . . , 9. Given a number of clusters K, the 72 strategies were

separated into K clusters on the basis of the squared Euclidean distance between

all pairs of the 72 strategies in a 145-dimensional space. For each K, we ran 104

replicates with random starting locations. For specified K, each replicate yielded a

total within-cluster sum of squared distances for the set of K clusters. This total

within-cluster sum of squared distances represents the within-cluster sum of squared

distances between points in a cluster and the cluster centroid, summed over all K

clusters. For a givenK, we chose the set of cluster assignments that had the minimum

total within-cluster sum of squared distances, where the minimum was taken over all

104 replicate starting locations.

To compute the correlation coefficient between a pair of strategies, we calculated

the Pearson correlation coefficient between the pair by only using points in the

145-dimensional vector that were nonzero in both strategies being compared.

8.3 Results

We accounted for the variable outcomes of individual phylogenetic inference

strategies by applying the strategies to bootstrap (Efron and Tibshirani , 1993)

datasets instead of their respective full datasets. Our analysis identified 145 distinct

clades observed in the set of 72 phylogenetic inference strategies, among 246 possible

non-trivial clades on eight species, across 1000 bootstrap replicates for each strategy.

From these clades, we created a 72×145 matrix S in which each row is a phylogenetic

inference strategy and each column is a clade. The value of Sij, the cell in row i and

column j, is the number of times among the 1000 bootstrap replicates that strategy
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i inferred a species tree with clade j. This summarized dataset S of clade counts was

used for all further analyses.

8.3.1 Clade size

We first investigated the level of balance (Sackin, 1972; Colless , 1982; Shao and

Sokal , 1990; Kirkpatrick and Slatkin, 1993) in the tree topologies inferred by each

phylogenetic inference strategy. The distribution of clade sizes (number of taxa within

a clade) provides a basis for measuring tree topological balance. Topologies with

numerous small clades tend to be more balanced than topologies with large clades.

For example, consider the topologies Tbal = (((AB)(CD))((EF)(GH))) and Tunbal =

(((((((AB)C)D)E)F)G)H). Topology Tbal is the most balanced eight-taxon topology

whereas Tunbal is the most unbalanced eight-taxon topology. Considering non-trivial

clades, Tbal has four clades of size two and two clades of size four. Tunbal has one clade

each of size two, three, four, five, six, and seven. Thus, the clades of Tbal are smaller

than those of Tunbal. The mean clade size for Tbal is ∼2.67 and the mean clade size

for Tunbal is 4.5.

Figure 8.3A displays the cumulative distribution of clade sizes for each of the 72

phylogenetic inference strategies, considering all 1000 bootstrap replicate species trees

for each strategy. The cumulative distribution of clade sizes increases most quickly

for strategies based on MDC, for which most of the distribution is located in clades

of size two. In contrast, the cumulative distribution of clade sizes increases most

slowly for strategies based on SMRT and STEAC, for which much of the probability

distribution is located in clades of size six and seven. Figure 8.3B displays a bar

graph of the mean clade size for each of the 72 phylogenetic inference strategies.

This graph shows that among all six species tree construction methods, the 12 MDC

strategies have the smallest mean clade size as well as the smallest variance in mean

clade size across the 12 combinations of outgroup and gene tree inference method. In
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contrast, SMRT and STEAC in general have the largest mean clade size. However,

all 12 SMRT strategies infer trees with large mean clade size, whereas the mean clade

size of STEAC varies across the 12 combinations of outgroup and gene tree inference

method. Interestingly, the mean clade size averaged over all 12 strategies based on

MDC is ∼2.79, a value that is close to the mean clade size for Tbal of ∼2.67.

8.3.2 Clustering of strategies

We next used PCA, hierarchical clustering, K-means clustering, and correlation

analysis on the matrix of clades S to identify phylogenetic inference strategies that

perform similarly. Figure 8.4 displays plots of the first two principal components,

which account for 38.94% and 18.96% of the variation across strategies, respectively.

Figure 8.4A shows that separate clusters are formed by strategies that are based

on Concatenation, SMRT, and STEAC, and that strategies based on STAR, RTC,

and MDC form a cluster together. Further, a large “super cluster” is formed

by strategies that are based on Concatenation, SMRT, and STEAC, and another

large super cluster is formed by strategies that are based on STAR, RTC, and

MDC. These super clusters have a nice interpretation in that one super cluster

contains topologically-based strategies (STAR, RTC, and MDC) and the other super

cluster contains strategies that are not strictly topologically-based (Concatenation,

SMRT, and STEAC). Strategies are classified as topologically-based if they only use

information on tree topologies to construct a species tree. In contrast, strategies are

classified as not strictly topologically-based if they use information other than the

gene tree topologies, such as sequence or branch length information, to construct a

species tree. Relabeling the points in Figure 8.4A according to gene tree inference

method, Figure 8.4B shows that strategies that are based on NJM form a cluster,

and that there are no separate clusters for strategies that are based on ML, MP, or

NJ. Figure 8.4C, which labels points according to outgroup, shows that no strategies
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separate into clusters based on the choice of outgroup.

From Figure 8.4, we can see that much of the variation across the 72 phylogenetic

inference strategies, as explained by PCA, is caused by NJM. Strategies based on

NJM are more similar in clade outcomes to other strategies based on NJM than they

are to other strategies that are not based on NJM. The magnitude of this effect can

be quantified using Procrustes analysis, which demonstrates that NJM has a large

influence on the spatial relationship among all other phylogenetic inference strategies

(Figure 8.5). Interestingly, the cluster formed by NJM separates into two sub-clusters,

one cluster of strategies based on MDC and another cluster of strategies not based

on MDC. These sub-clusters are not surprising because of the distinctive bias that

MDC exhibits toward balanced tree topologies (Figure 8.3).

Figure 8.6 shows the results of our cluster and correlation analyses. The main

clusters formed by phylogenetic inference strategies involve strategies based on the

species tree construction methods Concatenation, SMRT, STEAC, and MDC or the

gene tree inference method NJM (Figure 8.6). The clusters of strategies formed by

K-means and the large groupings of strategies formed by hierarchical clustering are

quite similar. Additionally, the correlation coefficient between clade vectors inferred

by pairs of phylogenetic inference strategies is generally higher for pairs of strategies

that are placed into the same cluster by eitherK-means or hierarchical clustering than

for pairs of strategies that are not placed into the same cluster by either K-means or

hierarchical clustering (Figure 8.6).

Interestingly, the clustering of strategies found by PCA in Figure 8.4 matches

well with the clusters and groupings observed in Figure 8.6. In Figure 8.6, three

large clusters are formed and are represented by the subtree to the left of the root

of the dendrogram and the two subtrees that are rooted by the subtree to the right

of the root of the dendrogram. These clusters correspond closely to the blue, pink,

and orange colors in the K-means clustering with K = 3. The two subtrees to the
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right of the root (or pink and orange clusters defined by K-means clustering) involve

strategies that are based on NJM (pink K-means cluster or left subtree of the right

subtree of the dendrogram) or strategies that are based on species tree construction

methods that are topologically-based (orange K-means cluster or right subtree on the

right subtree of the dendrogram). That is, strategies that correspond to the orange

cluster are based on either STAR, RTC, or MDC. In contrast, the subtree to the left of

the root (or the blue cluster defined by K-means clustering) contains only strategies

that use species tree construction methods that are not strictly topologically-based

(i.e., Concatenation, SMRT, or STEAC).

From the results of Figures 8.4 and 8.6, we find that phylogenetic inference

strategies form three basic clusters: a cluster that involves strategies that are based

on NJM, a cluster that involves strategies that are topologically-based, and a cluster

that involves strategies that are not strictly topologically-based.

8.3.3 Clade flow

In this section, we identify phylogenetic inference strategies that do and do not

robustly infer clades that are supported by the other strategies. Figure 8.7 displays

a heat map that represents the “flow” of clades between phylogenetic inference

strategies. The cell at row i and column j in the heat map represents the fraction

of clades inferred by strategy i that were not inferred by strategy j. As can be

seen from the mostly white and yellow boxes for rows corresponding to strategies

based on NJM, the heat map shows that strategies based on NJM tend to infer

clades that are supported by other strategies. That is, if a species tree topology is

inferred by a strategy that is based on NJM, then clades displayed by that topology

will often also be present on species tree topologies inferred by other strategies. In

Figure 8.5, we found that strategies based on NJM contribute to the most variation

across strategies. A possible explanation for this observation is that the flow of clades
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is largely unidirectional. That is, if a strategy is based on NJM, then clades that are

inferred by that strategy also tend to be supported by other strategies; however, if a

strategy not based on NJM infers a clade, then that clade is not frequently supported

by strategies based on NJM. Because clades that are inferred by strategies based on

NJM also tend to be supported by other strategies, it follows that strategies based on

NJM tend to infer clades that are also supported by other strategies that are based on

NJM. This sharing of clades among strategies based on NJM causes those strategies

to be more similar to each other than they are to strategies not based on NJM. In

contrast to the results for NJM, as can be seen from the mostly dark boxes for rows

corresponding to strategies based on MDC, strategies based on MDC tend to infer

clades that are not supported by other strategies (especially when compared with

strategies based on NJM).

Similarly to the behavior of MDC, strategies that are based on Concatenation,

SMRT, and STEAC together with ML, MP, or NJ share more clades with other

such strategies (mostly white and yellow boxes) than with the remaining strategies

(mostly dark boxes). In contrast, as was observed with NJM, strategies based on

STAR and RTC together with ML, MP, or NJ share similar numbers of clades

among other such strategies as with the remaining strategies (mostly yellow boxes).

These results suggest that strategies that are topologically-based (i.e., STAR and

RTC) tend to infer clades that are also supported both by other strategies that

are topologically-based and by strategies that are not strictly topologically-based,

whereas strategies that are not strictly topologically-based (i.e., Concatenation,

SMRT, and STEAC) tend to infer clades that are not supported by strategies that

are strictly topologically-based (i.e., STAR, RTC, and MDC).
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8.3.4 Representative topologies

We next wanted to use a set of representative species tree topologies to highlight

similarities and differences in topologies constructed by various strategies. Topologies

were estimated using the Greedy Consensus algorithm (Bryant , 2003) applied to

clade counts. Because our previous results (Figures 8.4-8.6) indicate that the choice

of outgroup species does not strongly influence the overall inferred topologies, it is

sensible to average across outgroups. Therefore, we first present topologies for each

of the 24 species tree-gene tree inference method pairs constructed from clade counts

that were averaged over the three outgroups (Figure 8.8). Next, to obtain a clearer

picture of the types of topologies that are inferred by the six species tree inference

methods, we present topologies for each of the six species tree inference methods,

constructed from clade counts that were averaged over gene tree inference methods

and outgroup species (Figure 8.9). Finally, to assess the influence that various gene

tree inference methods have on the overall inferred species tree topology, we present

topologies for each of the four gene tree inference methods, constructed from clade

counts that were averaged over species tree inference methods and outgroup species

(Figure 8.10).

Figure 8.8 displays 24 topologies with clade support values for each combination of

a species tree construction method and a gene tree inference method. The clade {P.

chiapensis, P. strobus} is generally highly supported, appearing for 22 of 24 strategies,

with support ranging from 382 to 982 among 1000 bootstrap replicates. The smallest

support values for {P. chiapensis, P. strobus} occur in strategies that use SMRT

with ML, MP, and NJ, producing support values of 382, 406, and 395, respectively.

The largest support values for {P. chiapensis, P. strobus} occur in strategies that

use NJM, with values ranging from 824 to 982. Further, although strategies based

on SMRT with ML, MP, and NJ yield lower support values than other strategies,

when SMRT is combined with NJM, the support for {P. chiapensis, P. strobus} is
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905. In addition, although two of the strategies based on STEAC do not support the

clade {P. chiapensis, P. strobus}, when STEAC is combined with NJM, the support

for the clade is 982. Another clade that is highly supported is {P. ayacahuite, P.

flexilis, P. strobiformis}. This clade is observed across all strategies, with support

among non-MDC strategies out of 1000 bootstrap replicates ranging from 858 to

1000. Strategies that use MDC with ML, MP, and NJ yield support values for {P.

ayacahuite, P. flexilis, P. strobiformis} of 560, 407, and 415, respectively. However,

using MDC with NJM yields a support value of 933 for {P. ayacahuite, P. flexilis,

P. strobiformis}. Across the 24 trees, the topological positions of P. albicaulis, P.

lambertiana, and P. monticola are variable and are generally poorly supported. Each

of these species is found in a variety of positions across all trees.

Figure 8.9 displays six topologies with clade support values for each species tree

construction method. Similarly to Figure 8.8, the clade {P. chiapensis, P. strobus}

is generally highly supported across all six species tree construction methods, with

support ranging from 522 to 876 among 1000 bootstrap replicates. Also, as in

Figure 8.8, the clade {P. ayacahuite, P. flexilis, P. strobiformis} is highly supported

across all six species tree construction methods, with support ranging from 579 to 999

among 1000 bootstrap replicates. From these topologies, we can also observe that

in agreement with the clade size distribution, strategies based on Concatenation,

SMRT, and STEAC tend to produce more unbalanced trees than strategies based

on STAR, RTC, and MDC (Figure 8.3). Strategies based on Concatenation, SMRT,

and STEAC support topologies in which P. lambertiana is on the opposite side of the

root from the other seven species. In contrast, strategies based on STAR, RTC, and

MDC place P. monticola and P. lambertiana as sister species. These results support

the observations from Figures 8.4, 8.6, and 8.7 that strategies based on species tree

construction methods that are topologically-based behave differently from strategies

that are not strictly topologically-based.
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Figure 8.10 displays four topologies with clade support values, considering each

gene tree inference method and combining species tree construction methods for each

gene tree inference method. Similar to Figures 8.8 and 8.9, the clades {P. chiapensis,

P. strobus} and {P. ayacahuite, P. flexilis, P. strobiformis} are generally highly

supported across all four gene tree inference methods, with supports among 1000

bootstrap replicates respectively ranging from 610 to 931 and from 858 to 988.

8.4 Discussion

In this article, we have empirically evaluated strategies for inferring species tree

topologies from multilocus sequence data. We have found that MDC tends to infer

balanced topologies, whereas SMRT and STEAC tend to infer more unbalanced

topologies. This bias toward balanced topologies exhibited by MDC is a consequence

of the nature of the criterion that MDC uses to construct species trees. Because

balanced trees have fewer nodes between their root and their leaves than do

unbalanced trees, they have fewer opportunities for incomplete lineage sorting events

to occur. With fewer opportunities for incomplete lineage sorting, the expected

number of deep coalescence events is smaller than for unbalanced trees. Thus, because

MDC infers trees by minimizing the number of deep coalescences among species tree

candidates, it is likely that MDC will be biased toward choosing balanced topologies.

The strategies that we have examined fall into three classes in terms of the

species tree inferences they produce: strategies that use information on all available

sequenced individuals (i.e., NJM), strategies that are topologically-based (i.e.,

STAR, RTC and MDC), and strategies that are not strictly topologically-based

(i.e., Concatenation, SMRT, and STEAC). This result is surprising because the

strategies that are not strictly topologically-based take quite different approaches to

construct species trees (i.e., STEAC is a consensus method whereas Concatenation

and SMRT are concatenation-based methods). We also found that strategies that are
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topologically-based tend to support clades that are also supported by other strategies,

whereas strategies that are not strictly topologically-based tend to infer clades that

are not supported by strategies that are topologically-based. A possible reason for

this observation could be differences in mutation rate at various loci. That is, if

a phylogenetic inference strategy is not strictly topologically-based, then a single

locus can have a strong influence on the overall species tree inferred by that strategy.

For example, because STEAC uses branch length information to infer a species tree

topology, if the mutation rate is high at a locus, then the branch lengths of the gene

tree inferred at that locus will likely be large (i.e., sequences will have many mutations

and, hence, estimated gene trees will have large divergence times). As a consequence,

these large branch lengths could skew the average branch lengths that are used by

STEAC to construct a species tree topology. Also, because both Concatenation and

SMRT combine all loci and treat this combination of loci as one large superlocus, a

locus with many mutations could have considerable influence on the species tree that

is inferred by either of these two methods.

Our analyses have highlighted several important characteristics of phylogenetic

inference strategies that enable us to provide recommendations for inferring rooted

phylogenies from large-scale multilocus data. First, it is beneficial to examine multiple

strategies, considering some methods that use only topological information (e.g.,

STAR, RTC, and MDC) and others that use more than just topological information

(e.g., Concatenation, SMRT, and STEAC). If species tree topologies returned by

these different classes of species tree construction methods are identical, then an

investigator can be more confident in the inferred tree topology. Second, species

estimates should probably not be based solely on species tree construction methods

that appear to be biased toward certain types of topologies (e.g., MDC). Instead, it

is preferable to utilize these types of species tree construction methods in conjunction

with other methods. For example, after obtaining an unbalanced inferred tree from
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an inference method, if MDC also infers the same unbalanced topology, then we might

feel confident that the true species topology is actually unbalanced. Finally, it is best

to utilize as much information as is available on individuals at every locus. That is,

if multiple individuals are sampled within species at a given locus, then we should

use all available sequence data from the species (e.g., NJM). This point is supported

by the observation that clades inferred by NJM tend to “flow” to other strategies

(Figure 8.7).
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outgroup O

Estimate the species tree 

using either STAR, STEAC, 

RTC, or MDC for each of 
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33

3×4 + 3 + 3 + 3×3 + 3×3 + 3×3×4 = 72 phylogenetic inference strategies

Figure 8.1: Flow diagram representing the procedure in which we obtained results
on the behavior of phylogenetic inference strategies. A boldface number
attached to a downward arrow indicates the number of phylogenetic
inference strategies that are generated by the box immediately above
the arrow. Absence of a number indicates a value of 1. The number of
phylogenetic inference strategies for a particular path from the topmost
box to the bottommost box of the diagram is calculated as the product
of the boldface numbers visited during the traversal of the path. The
number of phylogenetic inference strategies analyzed is 72, the sum over
all paths from the topmost to the bottommost box in the diagram.
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Figure 8.2: Schematic for creating the four subsetsDs, Ds,0, Dp, andDp,0 from dataset
D (see Table 8.2). For the matrices of datasets D, Ds, Ds,0, Dp, and
Dp,0, each row is an individual and each column is a locus. Thick black
lines in these matrices separate the individuals in different species. Gray
boxes indicate a missing sequence. (A) At each locus, a single sequence
from each species (indicated in red) is selected from dataset D. These
selected sequences are used to create Ds such that there exists a single
sequence sampled per species at each locus. Sequences from a subset of
loci in Ds (indicated in yellow) are used to create dataset Ds,0 such that
each locus has at least one nucleotide difference between each distinct
pair of species other than pairs from distinct outgroups. (B) Dataset
Dp is the full starting dataset D. At each locus ℓ, a distance matrix is
created according to eq. 8.2. Sequences from a subset of loci (indicated
in red) in Dp are used to create dataset Dp,0 such that each locus has a
nonzero p-distance between each distinct pair of species other than pairs
from distinct outgroups. Observe that the Dp,0 matrix includes loci 3
and 7, which are not included in the Ds,0 matrix. The reason that loci
3 and 7 are included in dataset Dp,0 but not in dataset Ds,0 is that in
Dp,0, pairs of species contain at least one pair of individuals with different
sequences, whereas in Ds,0, at least one pair of the 11 selected individuals
have identical sequences. Therefore, the set of loci in Dp,0 is a superset
of the set of loci in Ds,0, and the number of loci in dataset Dp,0 is always
greater than or equal to the number of loci in dataset Ds,0.
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Figure 8.3: Distribution of clade size for all 72 phylogenetic inference strategies. (A)
Cumulative distribution of clade sizes. Each line represents a strategy, of
which there are 12 per color. (B) The mean clade size for a phylogenetic
inference strategy was calculated as the mean size over all clades inferred
across 1000 bootstrap replicates. Vertical lines centered at the top of each
vertical bar represent the standard errors of mean clade sizes.
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Figure 8.4: Principal components analysis of phylogenetic inference strategies.
Principal components analysis was applied to 72 phylogenetic inference
strategies, in which each strategy represents a point in a 145-dimensional
space of clades. The plots show the first and second principal components.
Each of the three plots represents the same 72 points in the space
of principal components 1 and 2 with the exception that the three
plots have points colored differently to highlight different features of the
phylogenetic inference strategies. (A) Colors represent different methods
for constructing species trees (Concatenation, SMRT, STEAC, STAR,
RTC, and MDC). (B) Colors represent different gene tree inference
methods (ML, MP, NJ, and NJM). (C ) Colors represent different
outgroups (P. gerardiana, P. bungeana, and P. squamata). The points
on each graph represent different combinations of the three factors that
form phylogenetic inference strategies. Each line in part A represents
the resultant vector (scaled by a constant to lie within the span of the
72 points) for all 12 points of a certain method for constructing species
trees. Each line in part B represents the resultant vector for all 18 points
of a certain gene tree inference method (scaled by a constant). Each line
in part C represents the resultant vector for all 24 points of a certain
outgroup (scaled by a constant). Each of the constants used to scale
resultant vectors in parts A, B, and C are distinct to parts A, B, and
C, respectively. Each of the six shaded regions in part A and the shaded
region in part B is a convex hull of the points from a particular species
tree or gene tree inference method.
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Figure 8.5: Procrustes analysis of the principal component plots in Figure 8.4.
Principal components analysis of phylogenetic inference strategies was
performed as in Figure 8.4 with the exception that the principal
components analysis was applied to each of 13 subsets F1,F2, . . . ,F13

of phylogenetic inference strategies for which one feature of a strategy
is removed. F1,F2, . . . ,F6 are subsets containing 60 strategies, in
which one of the six species tree construction methods is not included,
F7,F8, . . . ,F10 are subsets containing 54 strategies, in which one of the
four gene tree inference methods is not included, and F11,F12,F13 are
subsets containing 48 strategies, in which one of the three outgroup species
is not included. In other words, we performed principal components
analysis on 13 different datasets: six in which a species tree construction
method was removed (Concatenation, SMRT, STEAC, STAR, RTC,
and MDC), four in which a gene tree inference method was removed
(ML, MP, NJ, and NJM), and three in which an outgroup was removed
(P. gerardiana, P. bungeana, and P. squamata). The results of each
principal components analysis were projected into the two-dimensional
plane spanned by their first and second principal components. The
points in each two-dimensional plane were compared to the points in
Figure 8.4A through Procrustes analysis. Each comparison gives a
dissimilarity measure computed using eq. 8.3.
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Figure 8.6: Cluster and correlation analysis of phylogenetic inference strategies. Each
leaf of the dendrogram corresponds to a different phylogenetic inference
strategy for obtaining the rooted phylogeny of eight ingroup pine species.
Blue squares directly below the dendrogram indicate the features used
to construct a rooted phylogeny for the eight pine species. The first six
rows below the dendrogram represent different species tree construction
methods. The next four rows below the dendrogram represent gene
tree inference methods. The following three rows below the dendrogram
represent the outgroup species. The dendrogram was constructed by
hierarchical clustering using the Ward algorithm (Ward , 1963) applied to
a matrix of Euclidean distances between all

(
72
2

)
pairs of 144-dimensional

vectors (each dimension representing a distinct clade). The remaining
nine rows below the outgroups show the results of K-means clustering
applied to the 72 144-dimensional vectors withK clusters,K = 2, 3, . . . , 9.
Below the cluster analysis is a heat map of the correlation coefficients
between all

(
72
2

)
pairs of phylogenetic inference strategies. An entry in

the heat map represents the Pearson correlation coefficient between a
pair of strategies by only using points in the 144-dimensional vector that
were nonzero in both strategies being compared.

284



0.00

Concatenation

SMRT

STEAC

STAR

RTC

MDC

ML

MP

NJ

NJM

P. gerardiana
P. bungeana
P. squamata

O
u

tg
ro

u
p

s
p

e
c

ie
s

In
fe

re
n

c
e

m
e

th
o

d

S
p

e
c

ie
s

 tre
e

c
o

n
s

tru
c

tio
n

m
e

th
o

d

C
o
n
c
a
te
n
a
ti
o
n

S
M
R
T

S
T
E
A
C

S
T
A
R

R
T
C

M
D
C

M
L

M
P

N
J

N
J
M

P
. 

g
e

ra
rd

ia
n

a
P

. 
b

u
n

g
e

a
n

a
P

. 
s
q

u
a

m
a

ta

Outgroup

species

Inference

method

Species tree

construction

method

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 

 

Figure 8.7: Heat map representing the “flow” of clades between phylogenetic inference
strategies. We use clade flow to measure the proportion of clades
inferred by one strategy that are not inferred by a different strategy
(i.e., the proportion of clades that do not “flow” from one strategy to
another strategy). Phylogenetic inference strategies are ordered using the
dendrogram. The cell at row i and column j represents the fraction of
clades inferred by strategy i that were not inferred by strategy j. Darker
colors indicate lower levels of “flow” from a row to a column.
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Figure 8.8: Consensus trees of phylogenetic inference strategies averaged over
outgroups. For a given subset T of the 72 phylogenetic inference strategies
considered in this article, the bootstrap support for each of the clades that
appeared in at least one tree was averaged over the set of strategies T to
create a set of counts C for each of the clades. Greedy consensus trees
(Bryant , 2003) were then created using the clade counts in the set C.
Each clade count in the set C has a maximum value of 1000, because
each element of C is an average over values that each have a maximum
value of 1000. Each consensus tree is the greedy consensus tree based
on clade counts averaged over outgroup species. These trees disregard
branch-length information.
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Figure 8.9: Consensus trees of phylogenetic inference strategies averaged over
outgroups and gene tree inference methods. For a given subset T of the 72
phylogenetic inference strategies considered in this article, the bootstrap
support for each of the clades that appeared in at least one tree was
averaged over the set of strategies T to create a set of counts C for each
of the clades. Greedy consensus trees (Bryant , 2003) were then created
using the clade counts in the set C. Each clade count in the set C has
a maximum value of 1000, because each element of C is an average over
values that each have a maximum value of 1000. These trees disregard
branch-length information. (A) Trees constructed using the 12 strategies
that utilize Concatenation; (B) SMRT; (C ) STEAC; (D) STAR; (E )
RTC; (F ) MDC.
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Figure 8.10: Consensus trees of phylogenetic inference strategies averaged over
outgroups and species tree construction methods. For a given subset
T of the 72 phylogenetic inference strategies considered in this article,
the bootstrap support for each of the clades that appeared in at least one
tree was averaged over the set of strategies T to create a set of counts
C for each of the clades. Greedy consensus trees (Bryant , 2003) were
then created using the clade counts in the set C. Each clade count in
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an average over values that each have a maximum value of 1000. These
trees disregard branch-length information. (A) Trees constructed using
the 18 strategies that utilize ML; (B) MP; (C ) NJ; (D) NJM.
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CHAPTER IX

Conclusion

In this dissertation, I have explored genetic variation at multiple levels, including

variation within populations, among populations within a species, and among species.

Using theory from population genetics, simulations, and genomic data, I have

developed methods for measuring genetic variation, developed and analyzed methods

that utilize genetic variation to infer population and species relationships, and

used genetic variation to investigate the origins of anatomically modern humans.

The inference tools developed and analyzed within this dissertation will enable

investigators to more accurately assess genetic variation. The precise inferences of

genetic variation can facilitate further understanding of evolutionary relationships

both within and among populations and species. In addition, my results on modeling

human origins provide compelling support for out-of-Africa hypotheses of human

origins.

Chapters II and III involved the derivation of a set of unbiased estimators for

a measure of genetic variation known as gene diversity (Nei , 1973). My results

expanded upon previous work (Nei and Roychoudhury , 1974) by allowing for the

inclusion of related individuals within samples. In addition, I derived an estimator

that alleviates the bias generated by related individuals in the most general case

of arbitrary ploidy, enabling investigators to apply my estimator to loci located on
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haploid, diploid, and polyploid loci, and on sex chromosomes. Finally, I derived the

exact variance formula for the general case of arbitrary ploidy. Given knowledge of

a particular sample and locus under study, my theoretical, simulation, and empirical

results suggest whether it is best (in terms of bias and mean squared error) to calculate

gene diversity by correcting for related individuals, by removing related individuals

from the dataset, or by neither correcting for nor removing related individuals. Given

the generality of my derivations, my estimators are useful for characterizing genetic

variation within a variety of organisms. In particular, to investigate patterns of

worldwide human genetic variation, I applied the estimators to the human genetic

datasets utilized in Chapters IV and V to correct the bias generated by related

individuals within samples.

In Chapters IV and V, I investigated patterns in genetic variation predicted

by various models of human evolutionary history and qualitatively compared the

patterns to those observed from human genetic data. I found that a model

representing the out-of-Africa hypothesis (Relethford , 2008), termed the serial founder

model (Ramachandran et al., 2005), generated patterns of genetic variation that

are consistent with those observed from human data. In addition, I found that

variants of the serial founder model that incorporated small to moderate levels of

gene flow between neighboring populations as well as small levels of archaic admixture

are also consistent with the observed patterns. In contrast, I found that a model

representing a version of the multiregional hypothesis (Relethford , 2008), termed the

archaic persistence model, generated patterns of genetic variation that were opposite

to those observed from human data. Additionally, by considering the instantaneous

divergence model, I found that patterns of within-population genetic variation are

driven primarily by a cumulative increase in genetic drift with increasing distance

from a source population (i.e., a population within Africa). By considering genetic

variation between populations, I found that the serial founder model, in contrast to the
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instantaneous divergence model, can predict observed patterns of between-population

genetic variation through its incorporation of a hierarchical set of divergences. My

results, therefore, provide strong support to the out-of-Africa hypothesis for the

origins of anatomically modern humans.

Chapters VI, VII, and VIII took a different perspective on the topic of genetic

variation by investigating phylogenetic tree reconstruction algorithms. Leveraging the

coalescent process and the distribution of gene tree topologies under a species tree

model (Degnan and Salter , 2005), I developed and evaluated methods for inferring

species trees from multilocus data. In particular, due to a desirable property of the

distribution of rooted three-taxon tree topologies under the coalescent (Degnan and

Rosenberg , 2006), I developed a computationally efficient, accurate, and statistically

consistent estimator of species tree topologies that performs well on genome-scale

sequence datasets. My proof of statistical consistency for this method was particularly

useful because it considered stochasticity due to both a coalescent and a mutation

process, illustrating how our method would perform when applied to sequence data

instead of known genealogies. In addition, I investigated the statistical consistency

of several popular phylogenetic consensus methods (Maddison, 1997; Degnan and

Rosenberg , 2006; Ewing et al., 2008; Degnan et al., 2009; Liu et al., 2009, 2010; Mossel

and Roch, 2010) for inferring species trees from gene trees when non-random mating

(or ancestral structure) exists within ancient species. I found a slightly discomforting

result for the performance of these consensus methods in that all of the methods

except one, GLASS/Maximum Tree (Liu et al., 2010; Mossel and Roch, 2010), were

statistically inconsistent under this structured population scenario; further, with

simulations confirmed my theoretical predictions. In addition, when stochasticity

due to the mutation process is considered, simulations showed that GLASS/Maximum

Tree performs poorly even in the absence of ancestral structure, indicating that in

practice, the methods may not perform well as the available data increases. However,
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due to the observation of Slatkin and Pollack (2008) that ancestral population

structure produces a certain asymmetry in the distribution of gene trees, it may be

possible to leverage this asymmetry to develop methods for inferring species trees that

account for ancestral population structure. Finally, I investigated the performance

of phylogenetic inference strategies on a finite set of loci using an empirical dataset

from North American pines. I found that phylogenetic inference strategies cluster

into three distinct categories: those that utilize sequence information from all sampled

individuals among a set of species, those that use only topological information to infer

species trees, and those that do not strictly use topological information to infer species

trees. In addition, I found that the Minimize Deep Coalescences method (Maddison,

1997; Than and Nakhleh, 2009) is biased toward balanced tree topologies. These

three chapters will provide investigators with tools as well as guidance for accurately

inferring species tree topologies from multilocus sequence data.

Through the understanding of evolutionary processes, we are capable of making

inferences of within- and between-population evolutionary histories with the use

of observed genetic variation. By leveraging the genetic variation encoded in our

genomes and the genomes of other species, we can provide insight into our relationship

with other species in the tree of life.
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Tavaré, S. (1984), Line-of-descent and genealogical processes, and their applications
in population genetics models, Theor. Popul. Biol., 26, 119–164.

Thalmann, O., A. Fischer, F. Lankester, S. Pääbo, and L. Vigilant (2007), The
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