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ABSTRACT

METHODS TO CONTROL FOR OVERT AND HIDDEN BIASES IN COMPARATIVE
STUDIES

by
Carrie A. Hosman

Chair: Ben B. Hansen

When the goal of a comparative study is to ascertain the effect of some treatment

condition, problems arise when it is not randomly assigned to units. In the absence

of random assignment, units compared cannot be expected to be similar in terms

of pretreatment covariates, yet the validity of resulting causal inferences relies on

this equivalence. This thesis develops techniques that build upon existing methods

to analyze comparative studies, lifting certain of their limitations. These methods

focus on reducing bias due to nonequivalence of covariates across groups and can be

easily combined with techniques that aim to reduce other biases, such as those that

arise from a mismatch in the sample and target population.

To reduce bias in estimates from comparative studies, the best analysis ensures

the likeness of the distributions of measured confounders across comparison groups.

Methods such as matching or post-stratification on the measured covariates group

similar units, and analysis is performed within subgroups. We apply this bias-



reducing idea to the Peters-Belson method, which assesses the existence of a dispar-

ity with regression models, to restrict comparisons to groups of units with similar

covariate distributions. Propensity scores are a common way to organize units into

groups. In practice, the propensity score is estimated by a parametric model, and

the literature is divided regarding the selection of the best model. Consistent with

one thread of the literature, we develop a method that improves the propensity score

model by focusing it on covariates most relevant to an outcome of interest with the

creation of a multidimensional prognostic score. By improving the propensity score

model, units compared are more similar, and resulting analyses have greater validity.

While adjusting for measured confounders can sometimes suffice in the analysis of

comparative studies, additional methods – broadly known as methods of sensitivity

analysis – aim to quantify the potential impact of unmeasured confounders on the

effect estimate. We introduce a method of sensitivity analysis for a linear regression

model that is unique in its simplicity and ability to assess the impact of unmeasured

confounders on the entire confidence interval, rather than only the point estimate.



CHAPTER I

Introduction

In order to assess the impact of influences as diverse as medical interventions,

educational programs, and neighborhood effects, methods of analysis are necessary

that can be used with or without a randomized experiment. With a randomized

experiment, it is readily assumed that there are no systematic differences in groups

that received various treatment conditions prior to the application of treatment. This

assumption may be spurious in practice, especially in experiments with small sample

sizes. In addition, with an observational study, this assumption of no systematic

differences across groups is not so easily made. Frequently, observational studies are

subject to such differences, but specific statistical techniques can raise awareness of

this disparity and allow adjustments to be made to the data prior to the estimation

of treatment effects. Many methods exist in the current literature to address the

potential dissimilarities in covariate distributions that result from a lack of random

assignment; however, these methods have limitations that should be addressed. The

aim of this dissertation is to discuss several of these existing methods, while offering

possible solutions to the shortcomings of the techniques.

1
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1.1 Observational Studies

Cochran’s often cited definition of an observational study describes it as hav-

ing the objective “to elucidate cause-and-effect relationships” in an investigation in

which “it is not feasible to use controlled experimentation, in the sense of being able

to impose the procedures or treatments whose effects it is desired to discover, or

to assign subjects at random to different procedures” (Cochran, 1965). This defini-

tion presents the prominent issue in parameter estimation in observational studies;

without “controlled experimentation” – that is, the random assignment of units to

treatments – standard techniques used to assess treatment effects in experiments are

not necessarily valid. With the random assignment of treatments to units, we can

follow the ideas of Fisher (1935) who argued that randomization was the “reasoned

basis for inference” in experiments. With randomization, we can assume that there

are no systematic differences between the group of subjects who received the treat-

ment under study and those who did not; theoretically, the two groups should be

comparable in terms of measured and unmeasured covariates, characteristics typi-

cally observed prior to receiving treatment (Rosenbaum, 2002). Randomization may,

of course, create chance imbalances between the two groups, but standard statistical

techniques can manage any uncertainty created by these imbalances.

When assessing information from an observational study, it is often difficult to

disentangle the effects of pretreatment covariates from the effects of treatment itself

as it is possible a certain effect can be caused by factors besides the particular

treatment of interest. As Cornfield et al. (1959) explained, “a universe in which

cause and effect always have a one-to-one correspondence with each other would be

easier to understand, but it is obviously not the one we inhabit”. Consequently, an
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analyst must make satisfactory adjustments to prevent pretreatment differences from

impacting the estimation of the treatment effect parameter. Pretreatment differences

can only be accounted for if they are known; it is impossible to know and measure

every possible way in which units will differ prior to treatment. Methods of adjusting

for imbalances in the measured, or observed, covariates can be defined as adjusting

for overt bias. For unmeasured confounders, it is instructive to know the extent to

which such confounders could bias our estimates. Methods of sensitivity analysis

attempt to quantify the extent of this bias, and these sensitivity analyses comprise

an assessment of hidden bias, or bias due to unmeasured confounders.

With observational studies that lack random assignment, it is important to check

the similarity of treatment groups in order to compare groups with similar covariate

distributions. Methods to adjust for this overt bias often involve some type of match-

ing or stratification with the goal of placing treatment and control units into groups

with similar covariate distributions. The adjustment methods can be viewed as data

pre-processing methods; after the pre-processing steps are completed, under certain

assumptions and with appropriate techniques, the data are analyzed as though they

were from a block-randomized experiment. In this way, these adjustment methods

aim to bring an observational study closer to an experimental ideal in which there are

no systematic differences in covariates across treatment groups. Fundamentally, the

goal of these pre-processing steps is to alert an analyst to situations in which groups

with dissimilar distributions of covariate distributions are being compared and refo-

cus treatment effect estimation on groupings of units in which covariate distributions

appear to be alike. When situations arise in which careful design of a comparative

study does not result in distributions of covariates that appear as though they could

have been produced from a block-randomized experiment, proper analysis methods
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that bring attention to any differences are crucial. In these cases, the credibility of

analysis relies on the ability of the adjustment methods to ensure the the similarity

of the units being compared.

1.1.1 The potential outcomes framework

To better discuss effect estimation for observational studies, it is useful to under-

stand the potential outcomes framework, which is discussed at length by Holland

(1986). The general potential outcomes framework is applicable to experiments and

observational studies, but this discussion focuses on a few details about the applica-

tion to observational studies specifically. The potential outcomes framework begins

with the set of potential outcomes for a population of units, U , and a particular

cause or treatment of interest. If we allow Z to be the variable that denotes the level

of treatment to which a unit u was exposed, for any u, we can have either Z(u) = 1

or Z(u) = 0, denoting that the unit u received either the treatment or control condi-

tion, respectively. Let Y represent the outcome where we denote Yt(u) and Yc(u) as

the response observed for the same unit u under treatment and control conditions,

respectively. Typically, we want to determine the causal effect for each unit u, which

is simply the difference in the responses under each condition, or Yt(u)− Yc(u).

The response actually observed can be written as Y (u) = Z(u)Yt(u) + (1 −

Z(u))Yc(u). Each unit u can only receive either the treatment or control condi-

tion, so only one of either Yt(u) or Yc(u) can be observed – not both simultaneously

for the same unit. This conundrum was coined the Fundamental Problem of Causal

Inference by Holland (1986) because, if we cannot know Yt(u) and Yc(u) simultane-

ously for one unit u, then we cannot observe the causal effect of the treatment on

unit u. The statistical solution to this problem, which depends heavily on certain

assumptions which will be discussed, makes use of information on many different
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units to establish an average causal treatment effect. Instead of simply observing

Yt(u)−Yc(u), we find a treatment effect, often referred to as the Average Treatment

Effect (ATE)

(1.1) τ = E(Yt(u)− Yc(u)) = E(Yt(u))− E(Yc(u)),

which allows us to look separately at those units for which Z(u) = 1 and Z(u) = 0

to estimate τ , as we do not have access to information from some parallel reality in

which treated units are observed under the control condition and control units are

observed under the treatment condition. In a randomized experiment, a difference in

average outcomes observed under treatment and under control provides an unbiased

estimate of the ATE. In an observational study, however, substantial bias can exist if

the units for which Z(u) = 1 have a different distribution of pretreatment covariates

that that of those units for which Z(u) = 0. An estimate of the ATE may capture a

treatment effect or it may simply be a consequence of the difference in pretreatment

covariates.

In order to obtain an estimate of the average causal effect of treatment, two

assumptions must be made. First, it is assumed that the response of a particular unit

varies depending on the treatment received by that unit, but it does not depend on

the treatments assigned to any other units. This is what is known as the “stable unit

treatment value assumption” or SUTVA. In addition, the treatment assignment is

assumed to be strongly ignorable. Letting x be a matrix of observed covariates, it can

be said that the treatment assignment is strongly ignorable if for a unit u, the vector

of potential outcomes (Yt(u), Yc(u)) is independent of the treatment assignment Z(u)

conditional on x, and if at each value of x, there is a positive probability of receiving

each treatment. In other words, if we take Yt and Yc to be vectors of potential
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outcomes for all units, treatment assignment is strongly ignorable if

(1.2) (Yt, Yc) ⊥⊥ Z|X = x

and if,

(1.3) 0 < P (Z = z|X = x) < 1

for Z = 1 or Z = 0 and for all x.

There are many methods to test the assumption of strong ignorability (see, for

example, Rosenbaum (1984), Hong and Raudenbush (2006)), but in many analyses

of observational studies, it is assumed to hold. If strong ignorability holds, the causal

model described above can be used to represent an investigation of a cause and effect

relationship in an observational study. The reliability of the assumption of strong

ignorability forms the major difference between using the causal model in observa-

tional studies and experiments: in randomized experiments, treatment assignment is

strongly ignorable, whereas in observational studies, ignorable treatment assignment

is only an assumption (Rosenbaum, 2002)

Despite the difficulties that arise in analyzing observational studies, they are an

essential source of information for researchers in many disciplines. With an under-

standing of the potential outcomes framework for observational studies and models

to describe cause and effect relationships in them, issues that arise in using observa-

tional studies to estimate parameters can be discussed more concretely.
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1.2 Limitations of existing methods and proposed improvements

Techniques to analyze observational studies encompass two themes: adjustment

methods for observed information to avoid bias from comparing units that are dis-

similar and sensitivity analyses to assess how sensitive conclusions are to bias from

unmeasured confounders. These methods, and consequently the methods developed

in this dissertation, pertain to internal rather than external validity. Although these

new methods are illustrated on data for which external validity may be desired, this

consideration is beyond the scope of this work. Methods to appraise and account

for bias due to observed and unobserved confounders, however, are readily combined

with statistical techniques that aim for external validity and generalizability, and the

exploration of these connections form a related set of research (see, for example, Stu-

art et al. (2011)). Within each subsequent chapter of this dissertation, the literature

on techniques to reduce and assess bias due to observed and unobserved confounders

is explored to ground the discussion and illustrate the need to improve existing meth-

ods. There is a wealth of existing techniques that fall under both themes, and the

developments in subsequent chapters build on these methods to improve upon them.

1.2.1 Drawing observational studies toward an experimental ideal

The first thread of the work discussed in this dissertation develops methods for

accounting for overt bias in order to bring any comparative study toward the ideal

of an experiment. Chapter II centers on a method used to assess a disparity in some

outcome of interest between a majority and minority group. The technique, known as

the Peters-Belson method (from the work of Peters (1941) and Belson (1956)), offers

a clear framework to assess a disparity. When it is applied to observational data

or an experiment in which resulting covariate distributions are not similar across
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comparison groups, the technique is subject to criticism due to the potential for

problematic extrapolation. The method involves fitting a regression surface to a

majority group, extrapolating the fit to a minority group, and estimating the average

residual of that minority group to examine the effects of being a member of that

minority group. To remedy problems due to differences in covariate distributions,

the method outlined in Chapter II incorporates propensity score matched sets into

the analysis of the data. This modification focuses analysis on comparing similar

units in order to improve the resulting confidence interval estimates. The method

is motivated by a simulation study and illustrated with a case study of the effects

of neighborhood characteristics on health outcomes. In addition to the discussion of

the use of propensity scores, a diagnostic is developed to help an analyst select the

best outcome model.

Chapter III explores a dimension reduction technique for covariate information

that aims to improve the propensity score (Rosenbaum and Rubin, 1983). The

propensity score, or the conditional probability of receiving treatment given the

observed covariates, is used to create groupings of units with similar covariate dis-

tributions; conditioning on the true propensity score, the distributions of covariates

are the same across treatment and control groups (for more detail of this result, see

Rosenbaum and Rubin (1983)). In practice, the propensity score is estimated, and

this model can sometimes be led astray by variables that have little relationship to

the outcome of interest (Brookhart et al., 2006). We develop a method to improve

the standard propensity score estimation by using recently developed prognostic

scores. Prognostic scores, introduced as an alternative or complement to propen-

sity scores, extract the part of the covariate space most relevant to an outcome of

interest (Hansen, 2008); in this way, it is a dimension reduction method. In Chap-



9

ter III, a method for selecting multiple prognostic scores is developed and illustrated

on a study of the effects of an educational intervention on standardized test scores.

Additionally, the use of a diagnostic and associated theory are discussed to help an

analyst select the optimal dimensions for the prognostic score. The multidimensional

prognostic score addresses the criticism that propensity score estimation done in a

standard manner may not yield the most useful propensity score for the ultimate goal

of estimating the effect of treatment on the treated units. The procedure focuses a

propensity score on covariates most relevant to an outcome of interest, leading to

less biased estimates of treatment effects.

1.2.2 Adjusting estimates for omitted variable (or hidden) bias

In a randomized experiment, random assignment can, in theory, ensure that the

distributions of both measured and unmeasured confounders are similar across com-

parison groups. Adjustment methods can account for differences in measured con-

founders, but the same methods cannot be applied to unmeasured confounders. Un-

measured confounders that are unable to be ‘controlled’ for in the same way as

observed confounders could affect estimates of the effects of certain interventions,

and methods for sensitivity analysis which derive from the early ideas of Cornfield

et al. (1959) allow a researcher to assess whether potential unmeasured confounders

could nullify or reverse key conclusions of a study. The second thread of research in

this dissertation explores a method to assess sensitivity to bias due to unmeasured

confounders.

Related to ideas presented in Marcus (1997), Lin et al. (1998), Frank (2000), and

Imbens (2003), Chapter IV presents a sensitivity analysis for multiple linear regres-

sion in terms intrinsic to the fitting of multiple regression models. This sensitivity

analysis is unique in that it provides easily applicable formulas that yield adjust-
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ments for confidence interval estimates of treatment effect – including both point

estimates and standard errors. Many common formulations for sensitivity analysis

ignore adjustments to the standard errors, and this oversight can be shown to be

potentially problematic, particularly with smaller samples.



CHAPTER II

Reducing extrapolation in the application of the
Peters-Belson method to an observational study

2.1 Overview

In order to assess the impact of some condition or treatment on an outcome of

interest, many statistical techniques could be used. One such procedure, known as

the Peters-Belson method due to its origination in the work of Peters (1941) and

Belson (1956), offers a method for analyzing the a treatment effect in a clear manner

with familiar regression models. When it is applied to an observational study, it

suffers the drawback of inattention to potential disparities in covariate distributions

across treatment groups. This paper offers a solution to this problem by combining

the Peters-Belson method with propensity score matching. Propensity score match-

ing restricts analysis to groupings of units in which the covariate distributions are

alike to improve the estimation of treatment effects. To alert an analyst to cases

when overfitting of the Peters-Belson model will create additional problems beyond

extrapolation, a diagnostic is presented and illustrated.

2.2 The Peters-Belson method

For much of the past century, statisticians, economists, sociologists, and other

scholars have attempted to explain disparities between groups of people. For exam-

11
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ple, to study a wage gap between the earnings of Ivy League graduates and public

college graduates a natural question arises: how much would a graduate from a pub-

lic college with certain qualifications and experience be expected to earn if he were

in fact a graduate of an Ivy League college? Obviously, this quantity cannot be

known with certainty for someone who is a public college graduate, but the estima-

tion of it is central to the Peters-Belson (PB) method, which originated with the

work of Peters (1941) and Belson (1956). The PB method, which is also known as

the Blinder-Oaxaca method in Economics literature, was at one time a widely used

method for the analysis of observational studies, and it is still applied to compara-

tive studies, particularly for those analyses examining a disparity between a majority

and minority group (Gastwirth and Greenhouse, 1995). It allows the use of stan-

dard regression models to assess these disparities, but it does not force an analyst

to commit to some of the assumptions inherent in using regression models. In the

present example of the effect of college type on earnings, the expected earnings of

a public college graduate had he actually attended an Ivy League college can be

estimated on the basis of observed covariate information with standard statistical

models. Under the assumption of ignorability, a regression model is fit to the con-

trol group to model the relationship between the covariates and the outcome and

predictions from the model offer estimates of expected earnings. By the ignorability

assumption, the distributions of the covariates should be the same for the groups

of public college graduates and Ivy League college graduates. The comparison of

the estimated expected earnings obtained from the model to actual earnings allows

an analyst to detect if a difference exists; if it does, there seems to be an effect on

earnings of attending a public college as opposed to an Ivy League college.
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2.2.1 Limitations of the PB method and proposed solutions

The general PB framework is subject to two limitations that are managed in this

chapter. The central limitation discussed is the potential for the regression model

to extrapolate, and it is especially problematic when the PB method is applied

to observational studies. An additional limitation, one that is less central to this

illustration but still important, arises when the PB method is applied to any type of

study: variability of treatment effects can increase due to potential overfitting and

sampling variability.

To help ameliorate difficulties due to extrapolation, we will illustrate how to com-

bine the Peters-Belson method with optimal propensity score matching. In the con-

text of a cluster-randomized experiment, simulations discussed in Hansen and Bowers

(2009) illustrate that combining the PB method with randomization-based inference

and adjustments for clustering yield good results in terms of the level and power

of the resulting tests. Propensity-score matching in an observational study can be

viewed as mirroring a randomized-block experiment that may have been done if feasi-

bility and ethics allowed, as, within matched sets, observed covariates are distributed

in such a way that treatment could have been randomly assigned. As a result, the

properties of using the Peters-Belson method accounting for clustering should hold

in observational studies with sets resulting from optimal matching on the propensity

score.

To address the second, though not central, limitation that arises in the PB method

of additional variability from overfitting or sampling variability in β̂, Section 2.4.1

develops a diagnostic to alert an analyst to cases in which the additional variability

may be problematic. The specification of the regression model used for the outcome

analysis can be guided by this diagnostic.
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2.2.2 Outline

In this chapter, the framework of the Peters-Belson method and proposed im-

provements to it are discussed in the context of experimental and observational case

studies. The general PB method is explained in the context of an experimental case

study in Section 2.3 to ground intuition before discussing the proposed improvements

in the application of the method to an observational study. Through the develop-

ment of a diagnostic for outcome model selection, Section 2.4 addresses a secondary

limitation of the PB method: potential inflation of the variance of treatment effects.

Though this limitation is not the central challenge addressed in this chapter, it can

arise in the application of the PB method to any type of comparative study. Sec-

tion 2.5 introduces an observational study of health disparities, which is analyzed by

the PB method incorporating propensity score matched sets. To assess the perfor-

mance of the diagnostic developed in Section 2.4, Section 2.6 describes a simulation

study using the observational data to determine if enforcing the diagnostic criterion

improves treatment effect estimates. Finally, in Section 2.7 the flexibility of the

improved Peters-Belson method to examine doses of treatment rather than binary

treatment scenarios is discussed.

2.3 The PB method in the context of an experimental case study

2.3.1 Data: The Milwaukee domestic violence arrest experiment

Before addressing the central problem this chapter aims to solve of resolving issues

when the PB method is applied to an observational study, an experimental case

study is discussed to introduce the PB method and a limitation of it when applied

to any study. The experimental case study is the result of a series of studies of the

effects of arrest on the subsequent behavior of individuals suspected of misdemeanor
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domestic violence. Specifically, this chapter uses data from the study that occurred

in Milwaukee in 1987-1989, which randomized the action taken by police faced with

a suspect accused of misdemeanor domestic violence for incidents and subjects that

met certain eligibility criteria Sherman et al. (1992). If a suspect and incident met

eligibility criteria, responding officers radioed headquarters to receive an assignment

that was randomly selected from sealed envelopes. The three actions officers could

take were to advise the suspect and not arrest him, arrest and promptly release

the suspect, or arrest and hold the suspect. Recidivism rates were measured by

rap sheets, domestic violence hotline calls, and subsequent victim interviews, so

the initial publication of these findings (Sherman et al., 1992) uses many outcome

measures. In addition, the publication explores many binary comparisons including

arrest vs. no arrest, arrest and hold vs. no arrest, and arrest and hold vs. arrest and

release. For purposes of illustrating the PB method, the focus in this section will be

on comparing the two arrest conditions in which those suspects who were assigned

to “arrest and release” are considered the control group, and those suspects assigned

to “arrest and hold” are the treatment group. The outcome of interest is simply the

number of subsequent arrests of the same suspect for any type of offense.

2.3.2 General formulation

Let X be a n×p matrix of covariates, Y be vector of observed outcomes, and Z be

a vector of treatment assignments in which Zi = 0 if unit i is in the control group and

Zi = 1 if unit i is in the treatment group. In the case of the Milwaukee experiment

data, take X to be a 765× 24 matrix of covariate information, Y to be the number

of subsequent arrests recorded for each suspect, and Z to be a vector in which 376

units in the control group have a value of 0 and the 389 units in the treatment group

have a value of 1. In the simplest sense, the PB method aims to test a weak null
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hypothesis and determine if the responses from those units in the treatment group

differ, on average, from the responses that would have been expected had those units

received the control condition instead.

To simplify initial discussions, consider a situation in which there is only one

covariate of interest, or p = 1. For the Milwaukee experiment, one could consider

the number of prior arrests as a single predictor for the number of subsequent arrests.

As was indicated in the introduction, to perform any analysis with the PB method,

an analyst must determine the expected response under the control condition for

a unit that actually received the treatment condition. This can be accomplished

by fitting a regression model, such as a standard ordinary least squares regression

model, of Yc on X in the control group (note that for a unit in the control group,

Yc = Y ). From this model, a vector of estimated coefficients β̂ allows estimation of

predicted values of the response under control, denoted ŷc(β̂), for the treatment group

units based on their observed covariate information. With the Milwaukee experiment

data, this amounts to creating a regression of the number of subsequent arrests on

the number of prior arrests in the group that was arrested and released for which

the number of prior arrests ranges from 0 to 23 prior arrests. The resulting model

is Yc = 0.42 + 0.09X, and this model is used to determine how many subsequent

arrests we would expect for suspects who had been arrested and held supposing they

had been arrested and released instead. Notationally, the model allows estimation of

values of ŷc(β̂) for those subjects who were arrested and held for which the number

of prior arrests ranges from 0 to 19.

Denoting the size of the treatment group as nt, a test of the weak null hypothesis

of no average difference compares Z ′Y/nt (the mean response observed in the treat-

ment group) and Z ′ŷc(β̂)/nt (the mean expected response of the treatment group,
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supposing the units had instead received the control condition). An estimate of

treatment effect is given by

(2.1) D̄ =
Z ′Y

nt
− Z ′ŷc(β̂)

nt
=
Z ′(Y − ŷc(β̂))

nt

To test the weak null hypothesis of no difference between the responses observed in

the treatment group and the responses that would have been expected had those

units been in the control group, an additional assumption is required to conduct

a t-test, where t = D̄/
√

V(D̄) (Gastwirth and Greenhouse, 1995). In order to

compute V(D̄) for this t-test, an analyst must assume that the residual variance of

the outcome model for the treatment group is the same as the residual variance of

the outcome model for the control group. (For further discussion of the computation

of this variance, see Section 2.9.2.) While this assumption is in line with the idea of

no difference between treatment and control groups, it is an assumption not required

by other methods to test hypotheses that can be used with the PB method, as

discussed later in this section. For the Milwaukee experiment data, when we consider

only one covariate of prior arrests, this estimate of treatment effect is given by

D̄ = Z ′Y /nt − Z ′ŷc(β̂)/nt = 0.620 − 0.654 = −0.34, so it appears that arresting

and holding suspects rather than arresting and releasing them reduces the number

of subsequent arrests by 0.34 arrests, on average. A t-test of the form described by

Gastwirth and Greenhouse (1995) results in a test statistic of t = −3.87 and a p-

value of 0.00, indicating that holding suspects after arrest does lead to a statistically

significant reduction in the number of subsequent arrests.

It is rarely the case that an analyst has a single covariate, and when more covari-

ates are considered, Y − ŷc(β̂) will likely be nonzero in the control group. Thus, the

estimate given by Equation 2.1 can be generalized to
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(2.2) D̄ =
Z ′(Y − ŷc(β̂))

nt
− (1− Z)′(Y − ŷc(β̂))

nc

where nc denotes the size of the treatment group. The test of the weak null hypoth-

esis could proceed similarly, comparing Z ′(Y − ŷc(β̂))/nt to (1− Z)′(Y − ŷc(β̂))/nc

rather than Z ′Y/nt and Z ′ŷc(β̂)/nt. With the Milwaukee data, if more covariates

are considered, a new outcome model is created. The outcome model is chosen to be

an OLS model with 24 mostly factor predictors describing the subject, the victim,

the nature of the relationship between the victim and subject as well as their prior

history for the outcome of total subsequent arrests of the same suspect for all of-

fenses. Fitting the model and computing values of ŷc(β̂), Z ′(Y − ŷc(β̂))/nt = 0.014

and (1− Z)′(Y − ŷc(β̂))/nc = −0.077, the the resulting treatment effect estimate

demonstrates that arresting and holding suspects leads to a significant increase of

0.91 subsequent arrests, on average, over arresting and releasing the suspects.

In addition to testing the weak null hypothesis of no average difference, the PB

method can be used to test an array of strong null hypotheses, which revolve around

the test that treatment has no effect whatsoever. Under the strong null hypothesis

that treatment has no effect at all, all units should have the same response whether

or not they are randomly assigned to the treatment or control condition. Note that

in the language of potential outcomes, for a unit i for which Zi = 1, Yi = Yti and for

a unit i for which Zi = 0, Yi = Yci. Thus, under the strong null, we can infer that

Yci = Yti = Yi for all i such that Zi = 1. In the case of the strong null of no effect,

Yc values are implicitly inferred for all units:

(2.3) Yci =

 Yi, Zi = 0

Yi, Zi = 1;
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A strong null hypothesis could also posit a simple constant treatment effect τ , and

Yc values could be inferred for all units such that

(2.4) Yci =

 Yi, Zi = 0

Yi − τ, Zi = 1;

For the strong null hypothesis that arresting and holding suspects decreases the

number of arrests by 1 over arresting and releasing them, an analyst would adjust

the observed number of subsequent arrests in the treatment group by adding 1 to the

number of subsequent arrests; in effect, this adjustment aims to “undo” the effect

of treatment. Other, more complex effects could be tested by inferring Yc values for

the treatment group in a similar manner.

To test these strong null hypotheses with inferred Yc, as before, a model is fit to

the control data so that values of the expected response under the control condi-

tion, or ŷc(β̂) values, can be computed for all units. The inferential part of the PB

framework, however, now aims to compare Yc values to ŷc(β̂) values to determine

if responses under control inferred according to the null hypothesis are equivalent

to those predicted based on covariate information and a model fit to the units that

actually received control. If these are equivalent, the null hypothesis holds; if not,

there is evidence that the stated null hypothesis does not hold.

As inference for a strong null hypothesis does not focus on a test of a difference

in averages, a procedure like a standard t-test is not favorable. Instead, to have

correct level tests of a strong null hypothesis, permutation tests are used. In or-

der to perform inference with residuals defined as ei = Yci − ŷc(β̂) to test a strong

null hypothesis, the use of a permutation test requires a permutation distribution

against which the observation can be compared. This permutation distribution can
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be viewed as a collection all possible mean differences in treatment and control resid-

uals, aggregated across blocks, assuming a null hypothesis. Under the assumption

of no effect whatsoever (aside from any hypothesized effect that was accounted for

in the process of inferring Yc values for the treatment group) the distributions of

the residuals should appear as though treatment were randomly assigned. Thus,

to determine the permutation distribution, treatment assignment is randomly per-

muted, mean differences in treatment and control group residuals are computed, and

these differences are collected to determine the reference distribution against which

the observed value is compared. This permutation distribution offers the benefit of

no additional parametric assumptions for the residuals as well as the correct level

(α) for the test. The permutation test also readily incorporates an experiment with

a blocking structure; to modify the basic permutation test, treatment assignment

is randomly permuted within blocks and aggregating differences in averages across

blocks leads to the reference distribution.

Fundamentally, the PB procedure allows the use of familiar regression models to

assess the impact of some treatment in a randomized experiment; in contrast to a

modeling strategy like regression with a dummy variable, the PB method does not

force an analyst to make the same standard regression assumptions. The use of

the PB method does, however, assume the sample is large enough so that there is

little practical difference between an estimated vector of coefficients, β̂, and a true

underlying vector of coefficients, β0. It is worth noting how the treatment effect es-

timated by the PB method and its variance are affected when this assumption does

not hold and calculations use a β̂ that potentially differs noticeably from β0. In a

randomized experiment, the PB method provides a consistent estimate of treatment

effect even if the outcome model is misspecified, provided the sample size – partic-
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ularly the sample size of the control group – is large enough. If the sample size is

large enough, the estimated β̂ should be close to the underlying model for the data

described by β0, as from the theory of regression models, β̂ can be assumed to be a

consistent estimate of β0. As a result, if ŷc(·) is a continuous function of β and the

sample is large, the estimate of treatment effect based upon β̂ is consistent for the

estimate based upon β0. In a randomized experiment, the units that fall into the

control group can be assumed to be a random sample of all units. Following formulas

for regression estimation in survey sampling, a good estimate of the variance of the

estimated treatment effect denoted by D̄ is given by Var(D̄) = se
2(nt

−1 + nc
−1),

where se
2 is the sample variance of the residuals computed according to some β̂ in

the control group, or se
2 =

∑nc
i=1(Yci − ŷci(β̂))/(nc−1). Variability of β̂ due to issues

with the model and subset of units selected into the control group plays a role in

the variability of the resulting residuals, but no component of the formula for the

variance of D̄ directly describes the variability in β̂. A situation in which β̂ is highly

variable may result in highly variable residuals and a large value of se
2, but an an-

alyst cannot parse out that part of se
2 due to variability in β̂. In practice, if the

variance of D̄ calculated with β̂ differs greatly from the variance calculated with β0

due to excessive variability in β̂, the variance formulas used with the PB method

will not call attention to this discrepancy and cannot alert an analyst to potential

downstream effects on the resulting inferences. To draw attention to scenarios in

which a highly variable β̂ could inflate the resulting estimate of the variance of the

treatment effect, a diagnostic is developed in Section 2.4.
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2.3.3 Preliminary Analysis

To analyze the Milwaukee experiment data, an analyst must specify an outcome

model and hypothesized treatment effect. In this section, we use the OLS outcome

model with all 24 predictors referred to in the previous section. If an analyst wants

to test the strong null hypothesis that treatment has no effect whatsoever, Yc values

in the treatment group are inferred to be the observed number of subsequent arrests,

following the result of Equation 4.5. For this test, the resulting p-value from the

permutation test is 0.46, indicating no evidence of an effect of holding the suspect

after arrest instead of releasing him. To test a strong null hypothesis that arresting

and holding the suspect decreases the number of subsequent arrests by 1 arrest, the

process of inferring Yc values for the treatment group defines them as Yc = Yt + 1 =

Y +1, as the observed Y is also the potential outcome under treatment, or Yt. For the

test that treatment decreases subsequent arrests by 1, the resulting p-value from the

permutation test is effectively 0, meaning that, after adjustment for the covariates

in the outcome model, the data indicate that holding the suspect after arrest rather

than releasing him does not reduce the number of subsequent arrests by even a single

arrest.

In order to obtain interval estimates of treatment effect, a range of treatment

effects is hypothesized, tests are conducted, and the tests are inverted to form con-

fidence intervals. Point estimates and standard errors can also be determined from

these series of tests. The results of this analysis are given by Table 2.1.

Table 2.1: Effect of treatment on subsequent arrests using PB with OLS model
Estimate -0.061
Standard Error 0.082
90% CI (-0.196, 0.074)
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2.4 Diagnostic

While not the main limitation we aim to address in this chapter, the PB method as

applied to any comparative study introduces a limitation: the method could inflate

the variability of treatment effect estimates in the event of potential overfitting and

sampling variability in the estimated coefficients that define the regression model.

The details of how such additional variability could arise are detailed in this section.

To reduce the effects of this additional variability, the regression model needs to

be carefully chosen. In the context of a simple randomized experiment like the

Milwaukee experiment, a diagnostic is developed to address this secondary limitation

that arises in the use of the PB method with any comparative study. The diagnostic

aids in the selection of a regression model, so a model less subject to these issues is

used in subsequent analyses.

2.4.1 Motivation for the diagnostic

Consider the application of the Peters-Belson method to a our simple randomized

experiment. For this subsection in which the diagnostic is motivated, consider the

PB method under two simplifying assumptions. While not necessary for the theory

or application of the diagnostic, the assumptions add clarity to the discussion of its

purpose. First, assume the function µβ(·), where E(Y |X) = µβ(X), is a known and

correctly specified regression model. Additionally, add the assumption previously

incorporated in the preliminary analysis of the experimental data in Section 2.3 that

µβ(·) is a linear function of X. Although this discussion focuses on the linear model

context, the ideas behind the diagnostic apply to a broader class of models in which

sampling variability and overfitting arise. The fitting of the outcome model presents

two challenges to the PB method in this randomized experiment. First, the model
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must be estimated from the data, so it may differ from the underlying correct model.

Also, when fitting a model to data, particularly with the aim of obtaining predictions

for other data, the possibility of overfitting exists. In this section, we introduce a

diagnostic to determine whether these challenges are great enough with a given model

and dataset to impact treatment effect estimates.

In practice, residuals are determined by an estimated β̂. In a general PB frame-

work in which the covariates x are considered fixed constants, different values of β̂

could arise if a different vector for Z or a different vector for Yc is selected from

all possible such vectors. The diagnostic developed in this section is built upon a

conditioning set that conditions on the realized values of Z = z, so the randomness

in β̂ comes from randomness in Yc values. With this conditioning set, the units in

the control group will always be the same units with the same x values, but with

randomly permuted Yc values. The variability of β̂ around the underlying β0 poten-

tially leads to bias and additional variability in treatment effect estimates that rely

upon the values of the residuals, or e(β̂).

To ground ideas about the impact of overfitting in conjunction with sampling

variability, let n be the sample size and p be the number of parameters in β0, and

consider the following situations:

1. n >> p, so β̂ ≡ β0 and sampling variability is approximately 0. Thus, in making

predictions, in-sample prediction error and out-of-sample prediction error are

similar.

2. n is small relative to p, so the model is saturated. Sampling variability in β̂

is nonzero, and in-sample prediction error is very low relative to out-of-sample

prediction error.

Under the assumptions of this subsection in which the model µβ(·) is assumed
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correctly specified and linear, in either of the two cases discussed above, there should

be no bias in the residuals; consequently, there should be no bias in the resulting

estimates of treatment effect (it is worth noting that bias, likely small relative to sam-

pling error, would occur with a nonlinear model). Variability in residuals, however,

(which would propagate to variability of corresponding effect estimates based upon

residuals) differs across the two specified scenarios. In the first case, as prediction

error will be similar for in or out of sample predictions, predictions for treatment and

control groups will have similar errors. As the model is assumed to be correctly spec-

ified, these errors are likely to be small. Thus, V(Yc−µβ̂(x)) < V(Yc), or the residual

variance will be small relative to the overall variability in Yc values. In the second

case, for the control group, predictions will have little or no error, so V(Yc − µβ̂(x))

is approximately zero, but it is likely to be the case that V(Yc − µβ̂(x)) > V(Yc)

in the treatment group as prediction error is high for treatment units. Thus, it is

difficult to determine the relationship between V(Yc − µβ̂(x)) and V(Yc) overall for

the second scenario, and in cases like the present study when treatment units out-

number control units, it may be that V(Yc − µβ̂(x)) > V(Yc) for all units. By this

logic, sample estimates should follow a similar pattern. In the first case, as prediction

error should be similar for treatment and control units, the sample estimate of the

residual variance in the control group, or s2(Yci−µβ̂(xi)), should be a good estimate

of the same quantity for all units and also a good estimate for σ2(Yci − µβ̂(xi)) for

all units. In the second case, s2(Yci − µβ̂(xi)) computed from the control group will

underestimate the same quantity for all units as well as its corresponding population

quantity σ2(Yci − µβ̂(xi)).

Clearly, to have good estimates of treatment effect and corresponding variances

based upon residuals, it would be more preferable to be in a situation like that of the
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first case described. In this section, the diagnostic developed aims to determine if the

model and data at hand present a situation more like the preferable first scenario

or the more problematic second scenario. While the diagnostic does not directly

address the potential for bias (in fact, in the present discussion it is assumed away),

the contribution of bias to the MSE of treatment effects is likely to be small, and

controlling the variability may lessen some bias contributions. Thus, the diagnostic

aims to decide if variance estimation is problematic due to sampling variability in β̂

and overfitting; if so, adjustments can be made to the model to remedy the problem.

The previous discussion incorporating simplifying model assumptions indicated

that if sampling variability in β̂ is small and overfitting is not problematic, variance

estimates from the control group are good estimates of overall variances. In the

computations for the diagnostic, estimated variances will come from the control group

as that is the group for which information is fully observed for the PB framework.

Noting that, the previous discussion leads to our diagnostic, which aims to assess if

sampling variability in the residuals due to sampling variability in β̂ is small relative

to overall variability in the residuals. If sampling variability in the residuals is large

relative to overall variability, then the model and data at hand may be more like the

saturated model of the second scenario. If the sampling variability in the residuals

is small relative to overall variability, then sampling variability does not likely have

large effects on predictions, and the situation at hand is closer to the more preferable

one of the first case discussed. Thus, establishing that sampling variability is small

relative to overall variability indicates that variance contributions to treatment effect

estimates from overfitting in conjunction with sampling variability in β̂ should not

be cause for concern.

The motivation for the diagnostic in this subsection centers around the case of a
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simple randomized experiment with simplifying model assumptions and data that do

not contain a blocking structure. The diagnostic developed in the following subsec-

tions is developed for a general experiment with or without a blocking structure in

the design of the study. With the present experimental case study of the Milwaukee

data, no blocking is present, so to apply the diagnostic to this study, b, or the number

of blocks in the study design, is taken to be b = 1. Much of the diagnostic simplifies

accordingly.

Preliminaries

For the diagnostic for the PB method with any type of regression model for

the outcome model, define common notation. Let nbt and nbc be the number of

treatment and control units, respectively, in block b. Further, define (1/nb) =

[(1/nbc) + (1/nbt)]/2 and n =
∑

b nb. In addition, let 1b be a vector of ones with

nbc + nbt terms. Define a conditioning set C to be

C := {zbi, all b, i; for all b, i and all β, the order statistics of the control group

(Ycbi − ŷcbi(β)) : i = 1, ..., nbc}

By conditioning on the set C, the idea of having randomness in Yc rather than z is

maintained. Additionally, by conditioning on the order statistics, the distribution

of a statistic of interest that is a function of Yc conditional on C is a permutation

distribution. As a result, inference falls into a permutation test framework with a

random rather than fixed β. The permutation test framework also lends itself to

the the consideration of a blocking structure as, in permutation tests, it is useful

to consider relatively homogeneous strata to reduce problems due to excessive unit

variability.
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Write β0 = E(β̂|C) and assume β̂ is a consistent estimate of β0. Let z̄ be a

vector of length
∑

b ntb + ncb, z̄ = ( n1t

n1t+n1c
11, ...,

nbt
nbt+nbc

1b), and for any β, e(β) =

Yc−ŷc(β), where ŷc(β) is a uniformly differentiable mapping (and thus a continuously

differentiable mapping over the parameter space) from β to predicted Yc values.

Define the key statistic for the diagnostic as a quantity that examines treatment and

control differences in residuals: Tn(Y, β) = 2
n
(Z − z̄)′e(β).

Asymptotically, conditional on the set C, there should be no statistically dis-

cernible difference in the comparison of treatment and control residuals when the

residuals are computed using β̂ and β0. In our notation, this amounts to saying that

the difference between Tn(Y, β̂) and Tn(Y, β0) scaled by the standard deviation of

Tn(Y, β0), or (Tn(Y, β̂)−Tn(Y, β0))/SD(Tn(Y, β0)), is zero asymptotically, conditional

on C. The diagnostic introduced in this section aims to determine if this character-

istic exists in large finite samples for a specified model by focusing on the variability

of the scaled difference between Tn(Y, β̂) and Tn(Y, β0), which, by the previous ar-

gument, should be zero asymptotically. In large finite samples, the variability of

this scaled difference should be small, provided the specified model is “good”, where

better models are less subject to problems resulting from overfitting in the presence

of sampling variability. To evaluate a given model with the diagnostic, the ratio of

the variability of
√
n(Tn(Y, β̂)−Tn(Y, β0)) to that of

√
nTn(Y, β0) is examined. Con-

ditional on the set C, it can be shown that the variability of
√
nTn(Y, β0) converges

to some positive finite value, so the denominator of this diagnostic ratio is finite.

Throughout the remainder of this section, we will consider the specific case of the

linear model in which Tn(Y, β) = 2
n
(Z − z̄)(Y − xβ), but the ideas presented are

generalizable to other types of models.
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Sample to sample variability: variability in Tn(Y, β̂)− Tn(Y, β0)

To describe the variability in Tn(Y, β̂)− Tn(Y, β0) conditional on C, use a Taylor

series expansion and the intermediate value theorem to write

(2.5) Tn(Y, β̂) = Tn(Y, β0) + (β − β0)
′5β Tn(Y, β)|β=b,

where b is an intermediate value between β0 and β̂. Subtract Tn(Y, β0) from both

sides:

(2.6) Tn(Y, β̂)− Tn(Y, β0) = (β − β0)
′5β Tn(Y, β)|β=b.

If we define Cβ̂ as limn→∞V(
√
n(β̂ − β0)|C) then by the Central Limit Theorem,

as E(β̂|C) = β0,

√
n(β̂ − β0)→d N(0, Cβ̂)

Use the fact that E[(β̂ − β0)
′5β Tn(Y, β)|β=b|C] = 0 to find

V((β̂ − β0)
′ 5β Tn(Y, β)|β=b|C) = E[((β̂ − β0)

′ 5β Tn(Y, β)|β=b)
2|C]. In the linear

model, 5βTn(Y, β)|β=b = 2n−1x′(Z − z̄) for any value of b, and an upper bound can

be obtained for this variance:

V((β̂ − β0)
′5β Tn(Y, β)|β=b|C) = E[(2n−1(β̂ − β0)

′x′(Z − z̄))2|C]

= 4n−2[(Z − z̄)′x]E[(β̂ − β0)(β̂ − β0)
′|C][x′(Z − z̄)]

= 4n−2[(Z − z̄)′x]V(β̂|C)[x′(Z − z̄)]

≤ 4n−2[(Z − z̄)′x]V(β̂|zbi, all b, i)[x′(Z − z̄)]
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where the final inequality is a result of estimating the variance of β̂ by conditioning on

a smaller conditioning set. By the relationship in Equation 2.6, it follows that V((β̂−

β0)
′5β Tn(Y, β)|β=b|C) = V((Tn(Y, β̂)− Tn(Y, β0))|C), which, in the case of a linear

model, is dominated by 4n−2[(Z − z̄)′x]V(β̂|zbi, all b, i)[x′(Z − z̄)]. V(β̂|zbi, all b, i)

can be estimated robustly from a linear model fit using a sandwich estimator or other

fitting methods that estimate standard errors of estimated coefficients more robustly.

Translating notation, we can view 2n−1x′(Z − z̄) as the difference between two

p × 1 vectors of covariate means where one vector comes from the treatment group

and the other from the control group. If we consider the case in which units are

randomly assigned to treatment groups, the imbalances, or differences in covariates

across treatment and control groups, should follow normal distributions with a mean

of zero (see Hansen and Bowers (2008) for a discussion of these issues). As the sample

size grows to infinity, these normally distributed imbalances should converge to zero,

or, in other words, the variance of the imbalances should converge to zero allowing

the imbalances to converge to their mean. Stating earlier arguments in terms of

our notation, under random assignment, imbalances in the treatment and control

group in terms of average x, which can be written as 2n−1x′(Z − z̄), would have a

normal distribution with an expectation of zero. With a sample size increasing to

infinity, the imbalances would approach zero, so
√
n(2n−1x′(Z − z̄)) = Op(1). Thus,

under random assignment or a comparable design that makes a study not unlike

one with random assignment, which we created with stratification, it follows that

2n−1x′(Z − z̄) = Op(n
−1/2), which entails that 2n−1x′(Z − z̄)→ 0.

From earlier results, we know β̂ − β0 = Op(n
−1/2) as

√
n(β̂ − β0) = Op(1), which

implies (β̂−β0)
′2n−1x′(Z−z̄) = Op(n

−1). Thus, it follows that
√
n(β̂−β0)

′2n−1x′(Z−

z̄) = Op(n
−1/2), or

√
n(β̂ − β0)

′2n−1x′(Z − z̄) → 0. By the continuous mapping
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theorem,

(
√
n(β̂ − β0)

′2n−1x′(Z − z̄))2 = 4n−1[(Z − z̄)′x](β̂ − β0)
2[x′(Z − z̄)]→ 0

By dominated convergence, it follows that

E(4n−1[(Z−z̄)′x](β̂−β0)
2[x′(Z−z̄)]|C) = 4n−1[(Z−z̄)′x]E[(β̂−β0)

2|C][x′(Z−z̄)]→ 0

Thus, convergence of the sample to sample variance is a necessary consquence:

V(
√
n(Tn(Y, β̂)− Tn(Y, β0))|C) ≤ 4n−1[(Z − z̄)′x]V(β̂|zbi, all b, i)[x′(Z − z̄)]→ 0

For the purposes of a diagnostic, we aim to leverage this relationship to show that

an estimate of 4n−1[(Z − z̄)′x]V(β̂|zbi, all b, i)[x′(Z − z̄)] is small in finite samples,

where “smallness” is defined as a fraction of the overall variability as measured by

the variability in Tn(Y, β0).

Overall variability: variability in Tn(Y, β0)

We want to estimate the variability in Tn(Y, β0) conditional on C, and, in order

to make comparisons to the variability in Tn(Y, β̂)−Tn(Y, β0) established previously,

we will use an additional scaling factor of
√
n. It is not straightforward to obtain

V(
√
nTn(Y, β0)) as β0 is unknown. For purposes of making comparisons in a finite

sample based on asymptotic results, if we cannot obtain V(
√
nTn(Y, β0)), it should

be sufficient to make our finite sample comparison using a quantity with the same

asymptotic value as V(
√
nTn(Y, β0)).

For some fixed β, define

(2.7) vn(β) = Var(
√
nTn(Y, β)|C) =

2
∑

b nbs
2[{ebi(β) : i}]∑
b nb
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where s2[{ebi(β) : i}] is the estimated variance of e(β) for stratum b.

This equation arises from the following calculation:

V(Tn(Y, β)|C) = V(2n−1(Z − z̄)′e(β)|C)

=

∑
b V(2(Zb − z̄b)′eb(β)|C)

n2

=

∑
b nb

2(n−1
t + n−1

c )s2[{ebi(β) : i}|C]

n2

=

∑
b 2nbs

2[{ebi(β) : i}|C]

n2

As β0 is a fixed value, vn(β0) = V(
√
nTn(Y, β0)). In an ideal world, we would like

to use vn(β0) in our diagnostic for a finite sample comparison, but this cannot be

obtained. Note that with the conditioning set C, the values of e(β) are random, as

Yc is a random variable, so for β̂, vn(β̂) 6=
√
n(Tn(Y, β̂)) due to randomness in β̂.

For asymptotic results, define v(β) as the limit of vn(β) for a fixed β. Assume vn(β)

converges uniformly to v(β).

In a linear model, for some β, e(β) = Y − xβ is a continuous function, so the

variance of e(β) is continuous provided the stratum sample sizes are greater than 1

(to have a nonzero denominator). Thus, vn(·) is a continuous function. As uniform

convergence preserves continuity, then v is a continuous function.

By the triangle inequality,

(2.8) |vn(β̂)− v(β0)| ≤ |vn(β̂)− v(β̂)|+ |v(β̂)− v(β0)|

For any ε > 0, it must be established that limn→∞ P (|vn(β̂) − v(β0)| ≥ ε) = 0.

Rewriting the inequality of Equation 2.8 in these terms,
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P (|vn(β̂)− v(β0)| ≥ ε) ≤ P (|vn(β̂)− v(β̂)|+ |v(β̂)− v(β0)| ≥ ε)

≤ P (|vn(β̂)− v(β̂)| ≥ ε/2) + P (|v(β̂)− v(β0)| ≥ ε/2)

By the continuous mapping theorem and the consistency of β̂, P (|v(β̂)− v(β0)| ≥

ε/2) → 0 as n → ∞ for any ε > 0. Additionally, as vn(·) converges uniformly to

v(·), for any input value, say a, for every ε > 0, there is an N such that for n ≥ N ,

P (|vn(a) − v(a)| ≥ ε/2) = 0. Thus, P (|vn(β̂) − v(β̂)| ≥ ε/2) → 0 as n → ∞, and it

follows that vn(β̂)→p v(β0). Thus, as we cannot directly compute V(
√
nTn(Y, β0)) =

vn(β0), as our comparison draws on asymptotic results, it is sufficient to use vn(β̂),

as they both achieve the same value as n→∞.

Thus, for the purposes of our diagnostic, we aim to find the square root of the

ratio of 4n−2[(Z − z̄)′x]V(β̂|zbi, all b, i)[x′(Z − z̄)] to n−2
∑

b 2nbs
2[{ebi(β) : i}|C] to

demonstrate that the former is small relative to the latter. After simplification, the

diagnostic relies on assessing the magnitude of

(2.9)

√
2[(Z − z̄)′x]V(β̂|zbi, all b, i)[x′(Z − z̄)]∑

b nbs
2[{ebi(β) : i}|C]

A rule of thumb might be to aim for a ratio of less than 0.2.

2.4.2 Application of the diagnostic to Milwaukee experiment

If an ordinary linear model is used to model the relationship between subsequent

arrests and 24 mostly factor variables that describe the suspect and victim’s demo-

graphic information and past history for the 382 control suspects, the ratio of interest

is 0.47 (as show in Table 2.2), well above our rule of thumb ratio. By our diagnostic,

choosing this outcome model may lead to highly variable treatment effect estimates.
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Table 2.2: Estimates of variabilities and resulting ratio for the computation of the diagnostic under
different model specifications for the experimental case study

Overall Standard Error Standard Error of Difference Ratio
estimated by vn(β̂)1/2 (Tn(Y, β̂)− Tn(Y, β0)) Eq. 2.9

1. Linear model 1.51 0.72 0.47
2. Bayesian linear model 1.51 0.66 0.44
3. Bayesian linear model 1.49 0.44 0.29

with scale parameter of 0.1
4. Bayesian linear model 1.54 0.26 0.17

with scale parameter of 0.03

Methods such as penalized regression and Bayesian regression have the property

that variance estimates better account for issues of collinearity and unusual observa-

tions than standard linear model estimation techniques. Gelman (2004) notes that

problems due to overfitting are of less concern with “reasonable” prior distributions,

and this quality is attractive given the aim of the diagnostic. With a Bayesian lin-

ear model, the additional information from any prior other than a noninformative

prior can act like additional data to help with potential collinearity. In addition,

a Bayesian model with a prior for the coefficients of a t-distribution with a small

degrees of freedom parameter can effectively downweight unusual observations in the

data, not allowing these points to drive the model fit.

In line with these ideas, we choose a Bayesian linear model with a t-prior with

four degrees of freedom for all coefficients, where four is chosen to be small enough to

allow for thick tails without introducing additional difficulties (for example, choosing

df ≤ 2 allows for infinite mean and variance). With this model, we find the variability

of Tn(Y, β0) estimated by vn(β̂) is the same as that obtained from the non-Bayesian

linear model, but the Bayesian linear model reduces variability in the difference

Tn(Y, β̂)−Tn(Y, β0), reducing the overall diagnostic criterion ratio from 0.47 to 0.44.

Specifying a smaller value for the scale parameter of the t-prior for all coefficients

while keeping the mean of zero reduces the variability of Tn(Y, β̂)−Tn(Y, β0) further,
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but with a consequence that resulting parameter estimates will become less stable.

With careful consideration of this consequence, further adjustments to the prior could

be made or variables could be removed from the model to allow the variance ratio

to decrease even more, if desired, to meet or exceed the diagnostic rule of thumb.

By reducing the scale parameter, the estimates of the diagnostic criterion approach

and fall below the rule of thumb ratio of 0.2. To incorporate the diagnostic into the

analysis of this experimental case study, an analyst may choose to use the fourth

model in Table 2.2 in the analyses in Section 2.3. When the model chosen by the

diagnostic is used, the effect estimate decreases substantially, though it is still not

significant, and the standard error increases slightly as compared to the estimates in

Table 2.1.

Table 2.3: Effect of treatment on subsequent arrests: comparing OLS model and model chosen by
the diagnostic

OLS model Bayesian model chosen
by diagnostic

Estimate -0.061 -0.039
Standard Error 0.082 0.083
90% CI (-0.196, 0.074) (-0.176, 0.097)

2.5 Using the PB method to analyze observational data

When the PB method is applied to an experimental study in which distributions

of covariates are balance across treatment groups, the only limitation is that of

additional variability managed by the diagnostic. When the method is applied to

observational data or an experiment without such covariate balance, adjustments are

required due to an additional limitation.
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2.5.1 The central limitation of the PB method: Problematic extrapolation of the
outcome model

While a straightforward way of assessing disparities, the PB method’s assump-

tion of ignorability can be called into question when the framework is applied to an

observational study or experiments that similarity of covariate distributions across

treatment groups. This opens the Peters-Belson method to the critique of extrapo-

lation of the fitted outcome model. When fitting a regression surface to one group

for use in estimating values for another group, an analyst may not be aware of a lack

of overlap in the covariate distributions across the two groups. In the example of

education-based wage disparities, it may be more typical for state college graduates

in a certain field to be younger and have less experience. Perhaps for workers with

less experience, the functional form of the regression model differs, but fitting and

extrapolating a regression model will not call attention to this disparity.

Simulation studies, detailed in Appendix 2.9.1, offer information about the perfor-

mance of the Peters-Belson method when the covariate overlap between comparison

groups in an observational study is not what it would be in a properly randomized

experiment. These simulation studies illustrate that poor estimates of the level and

lower levels of power are obtained when the regression model in PB must extrap-

olate across disparate treatment and control groups to a greater extent. Solutions

to the problem of extrapolation in the Peters-Belson method have been proposed

in the literature. One proposed solution (Ñopo, 2008) is to create “synthetic” ob-

servations, or artificially generated counterfactual observations, without a regression

model. Instead, these “synthetic controls” are weighted combinations of several ex-

isting control observations. The method also imposes a restriction of estimation to

a region of common support, a region of the covariate space in which there are both
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treatment and control observations.

Addressing the problem of extrapolation more generally, one could focus on co-

variate overlap across groups. Propensity scores (Rosenbaum and Rubin, 1983) were

designed to help an analyst to be aware of and avoid extrapolation that could oc-

cur with a regression model. The propensity score is the conditional probability of

receiving treatment given a unit’s observed covariates. If we match or stratify on

the true propensity score, then conditional on this true propensity score, treated and

untreated units should have the same distributions of covariates within subclasses

Rosenbaum and Rubin (1983). When fitting a standard regression model to the

control group in the application of the Peters-Belson method, an analyst can have

a list of predictors in a model and not readily know how the groups compare on

these predictors. By reducing the data down to an easily plotted one dimensional

score, propensity scores afford an analyst the opportunity to clearly see if covariate

distributions do not overlap. Thus, propensity score estimation makes it apparent if

any further analyses such as the estimation of treatment effect would be subject to

errors of extrapolation. In addition, by grouping units with similar propensity scores

into matched sets or strata and only making comparisons between treatment and

control units within these groups, an analyst avoids making comparisons between

units that were not comparable before treatment was applied.

To take advantage of these properties of propensity scores, another solution pro-

posed to reduce problems due to extrapolation in the PB model specifically is to use

inverse propensity score weighting in the outcome model (DiNardo, 2002). Weighting

methods can have problems in a practical context when the fitted propensity scores,

probabilities, are very close to 1 or 0. In simulation results, Frölich (2004) finds

that estimates obtained from pair matching tend to have smaller values of MSE than
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those obtained from weighted regression models. Additionally, Hansen (2004) finds

that optimal full matching, where restrictions on the number of treated and control

units in a matched set are relaxed and not set to be exactly 1 to 1 ratios, typically

outperforms pair matching.

As alluded to in Section 2.2.1, to lessen problems of extrapolation for the fitted

outcome model, our proposed modification to the PB method begins by making any

comparative study look in terms of covariate distributions like a block-randomized

study by forming optimally matched propensity score sets. Analysis proceeds by

incorporating this blocking structure into the analysis as though the blocks were

a feature of experimental design. Thus, the method proceeds as in the analysis

of a randomized experiment, but the permutation test restricts permutation of the

treatment assignment to matched sets.

2.5.2 Observational case study: Chicago Community Adult Health Study

The benefits of supplementing a PB analysis of a disparity with propensity scores

is illustrated on data from the Chicago Community Adult Health Study (CCAHS).

The CCAHS was designed with the objective of increasing the understanding of the

role residential context, in conjunction with individual and household factors, plays

in a variety of health outcomes. Data were collected between May, 2001 and March,

2003, during which 3105 Chicago adults aged 18 and older were interviewed and

some direct physical health measures were made including body size measurements,

weight, and blood pressure. The 3105 adults were sampled from 343 neighborhood

clusters (NCs), which were previously defined by the Project on Human Development

in Chicago Neighborhoods (PHDCN) conducted by Sampson et al. (1997). People

in 80 focal areas previously defined by PHDCN were sampled at twice the rate of

people in nonfocal areas, and one individual was interviewed per household.
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In the CCAHS data, there are many variables along which a researcher could

analyze a disparity between a treatment group (individuals with a certain attribute)

and a control group (individuals absent the certain attribute) due to the nature of

the city of Chicago. Measures of various composite neighborhood-level aspects, such

as affluence, disadvantage and urbanicity were constructed with a factor analysis of

measured neighborhood-level variables.

For this case study, we aim to examine if the impact of neighborhood affluence

on blood pressure. Residents of high affluence neighborhoods will be considered

the control group and those in low affluence neighborhoods will be considered the

treatment group, making the treatment, in effect, the lack of affluence. It may seem

odd to have the lack of a trait be the treatment condition, but, in this case, it is

justifiable due to the nature of the effects of affluence. A control condition should be

relatively homogeneous in its application; it stands to reason that neighborhoods on

the upper end of the affluence scale are more homogeneous as the effects on health

outcomes of, for example, an “upper middle class” or “wealthy” neighborhood should

not differ much. With a less affluent neighborhood, however, there could be much

more variability in the affluence of these neighborhoods and its particular impact on

the lives of the residents of these neighborhoods. For this variability, it makes sense

to consider the lack of affluence to be the treatment condition. While we begin by

considering a binary treatment of low neighborhood affluence and high neighborhood

affluence, Section 2.7 will present ways of modeling the heterogeneity in the “dosage”

of treatment.

As the effects of neighborhood affluence on blood pressure likely depend on other

individual and neighborhood level control variables, attempts to estimate the effects

of affluence will control for demographic factors, health characteristics (including
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eating, sleeping, smoking, drinking, and exercise behaviors), and other neighborhood-

level information.

2.5.3 Fitted propensity score with the CCAHS data

The modification to the standard PB procedure discussed in this paper requires a

propensity score in order to create a blocking structure to mimic a block-randomized

experiment. We aim to fit a propensity score for neighborhood affluence as the

treatment variable, which is a continuous measure in the CCAHS data. Standard

propensity scores are built around a dichotomous treatment variable, so a division is

made in the standardized version of the continuous neighborhood affluence measure

to obtain a binary treatment variable. While it may be more clear to have a treatment

variable that is naturally binary, a binary variable can be created in this manner,

preferably with guidance by a subject matter expert to make a meaningful division.

Figure 2.5.3 shows a density plot of the affluence measure and notes where this cutoff

was made in order to create two groups defined by their exposure to neighborhood

affluence.

Figure 2.1: Measure of neighborhood affluence and cutoff point to create two treatment groups
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ment is modeled as a function of many person-level and neighborhood-level pretreat-

ment variables such as age, sex, race, parental status, marital status, immigration

status, as well as the other neighborhood-level composite factors aside from affluence.

Before matching, a balance test in the form of those described by Hansen and Bowers

(2008) find that the treatment group, or the group that does not live in an affluent

neighborhood, and the control group, those who live in a more affluent neighborhood,

have a statistically significant imbalance overall in terms of the distributions of all

measured variables included in the propensity score model. This finding is echoed by

the boxplots in Figure 2.5.3. The fitted values of this propensity score will be used

to create matched sets and strata in subsequent discussions.

Figure 2.2: Distribution of the linear propensity score in the control (high affluence) and treatment
(low affluence) groups
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2.5.4 Application of the diagnostic to CCAHS data

While the diagnostic in Section 2.4.1 was developed for a randomized experiment,

it can also be applied to the use of the PB method when analyzing a comparative

study incorporating propensity score groupings. If units are placed into groups based

on their propensity scores in such a way that there are no longer statistically sig-
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nificant covariate imbalances across the treatment and control groups within strata,

then within a stratum, covariate imbalances should not be very different from the

normally distributed imbalances that would have been seen under randomization. As

a result, within these created blocks, our intuitions can be guided by those formed

considering the case of random assignment because our study design looks in terms

of balance in covariate distributions as it would appear under random assignment.

For purposes of the diagnostic, if a grouping structure is necessary to approximate a

block-randomized experiment, propensity score strata indexed by b are used rather

than propensity score matched sets. To compute variances of residuals within opti-

mally matched sets, due to the small number of units in each set, potential responses

under control would need to be hypothesized for treatment units in order to have

more than one unit for which a variance could be computed. By using larger “blocks”,

or groupings of units, in the form of propensity score strata, the dependence on a

specific hypothesis is minimized for the purposes of the model diagnostic. Using

balance test routines developed by Hansen and Bowers (2008), the number of strata

is selected to be the smallest number of strata such that there is not a statistically

significant imbalance, which will be important for later results.

When the diagnostic is applied to the CCAHS data, the best choice for the number

of strata is to divide the data into nine strata on the basis of the propensity score.

When nine strata are chosen, there are no significant covariate imbalances within

strata. Thus, if the stratification is taken into account, the design of the study of

the CCAHS data makes covariate distributions within strata similar to those of a

block-randomized experiment. This allows the arguments made in the outline of

the diagnostic to be used. The results for systolic and diastolic blood pressure were

nearly identical, so, for simplicity, the diagnostic is discussed in the context of the
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outcome of systolic blood pressure and several outcome models.

If an ordinary linear model is used to model the relationship between systolic blood

pressure and 17 demographic, health-related, and neighborhood-level variables, the

ratio of interest is 0.2 (as show in Table 2.4), which falls at our rule of thumb

ratio. Modeling the data with such a linear model, however, neglects to account for

clustering effects by neighborhood; for this reason, a multilevel model with a random

effect for neighborhood may be more appropriate. The fit of the multilevel model

reduces the overall variability, or the estimated vn(β̂), but it does not decrease the

variability in Tn(Y, β̂)− Tn(Y, β0), leading to a larger ratio of 0.22.

Table 2.4: Estimates of variabilities and resulting ratio for the computation of the diagnostic under
different model specifications for the observational case study

Overall Standard Error Standard Error of Difference Ratio
estimated by vn(β̂)1/2 (Tn(Y, β̂)− Tn(Y, β0)) Eq. 2.9

1. Linear model 27.63 5.40 0.20
2. Multilevel model 25.05 5.40 0.22
3. Bayesian linear model 27.63 5.30 0.19
4. Bayesian linear model 27.53 4.69 0.17

with scale parameter of 0.1

Following the logic described with the application of the diagnostic to the exper-

imental case study, a Bayesian linear model with a t prior with 4 degrees of freedom

is used for all coefficients. As with the Milwaukee experiment data, we find the

variability of Tn(Y, β0) estimated by vn(β̂) is the same as that obtained from the

non-Bayesian OLS model, but the Bayesian linear model reduces variability in the

difference Tn(Y, β̂)−Tn(Y, β0). As a result, the Bayesian linear model with standard

scale results in a diagnostic ratio of 0.19, the smallest obtained so far. Adjusting the

scale parameter as was done with the experimental case study, the sample to sample

variability decreases, leading to a corresponding decrease in the diagnostic criterion.

After looking at these results, one may choose to use a Bayesian multilevel model,
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as this might combine the abilities of these models to separately reduce the overall

variability and variability of the difference in Tn values. For purposes of our illustra-

tive analysis, we will use the Bayesian linear model with the t(4)-prior and adjusted

scale parameter of 0.1, as a primary goal is to keep the variance contribution due to

sampling variability small.

2.5.5 Assessing the effects of a binary affluence measure on blood pressure

Without any additional covariate adjustment or adjustments for the similarity of

comparison groups, the effects of a lack of affluence on blood pressure can be assessed

by a standard t-test across the two levels of affluence. This analysis yields a differ-

ence in means of 3.2 points and a p-value of 0.0001, so there appears to be a highly

significant relationship between the lack of affluence and blood pressure. Going fur-

ther, and controlling for demographic, health-related, and other neighborhood-level

covariate information with a linear regression model, the effect of a lack of affluence

on blood pressure appears to be an increase of 1.6 points, which is significant at

α = .10. While both of these methods obtain significant results, neither accounts for

the disparity in covariate distributions across treatment and control groups demon-

strated by the boxplots in Figure 2.5.3. ANOVA and OLS regression methods may

not be the best methods of analysis, but they are commonly used to analyze data like

the CCAHS data. The present analysis applying the PB method with and without

the incorporation of propensity matched sets shows the need to not only incorporate

covariate adjustment, but also account for the disparity in covariate distributions

across treatment and control groups.

Based on a strong null hypothesis Yc values are inferred for the treatment group

units as discussed in Section 2.3.2. Using the diagnostic of Section 2.4.1 to guide the

outcome model chosen for the PB analysis, a Bayesian linear model with a t-prior
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with df = 4 and a reduced scale for all coefficients is used for the analysis for the

responses of both systolic and diastolic blood pressure. After an outcome model is

chosen, predicted ŷc values are computed to obtain expected blood pressure values

for all individuals supposing they lived in a high affluence, or control, neighborhood.

With the Yc values and ŷc values for all units, residuals can be obtained. A permu-

tation test is conducted to decide whether or not, after adjusting the Yc values for

the particular strong null hypothesis, it can be determined that there was no (addi-

tional) effect of treatment whatsoever. In order to obtain point estimates, standard

errors, and 90% confidence intervals for both systolic and diastolic blood pressure,

a range of treatment effects is hypothesized in a series of strong null hypotheses for

both systolic and diastolic blood pressures. PB analysis is performed and the result-

ing hypothesis tests are inverted to form confidence intervals. The resulting point

estimates, standard errors, and confidence intervals are presented in Table 2.5 both

with and without adjustment for propensity matched sets.

Table 2.5: Estimated treatment effect of affluence on both systolic and diastolic blood pressure
SYSTOLIC BP DIASTOLIC BP

without matching with matching without matching with matching
point estimate 1.10 0.69 0.77 0.87
standard error 0.75 0.87 0.46 0.52
90% Conf Int. (-0.13, 2.34) (-0.73, 2.12) (0.02, 1.52) (0.01, 1.73)

Table 2.5 illustrates that the incorporation of propensity matched sets may inflate

standard errors, as would be expected with a matching procedure, but it does not

shift treatment effect estimates in a given direction (e.g. toward zero or away from

zero); incorporating the matched sets resulted in a lower estimated treatment effect

for systolic blood pressure, but a higher estimated treatment effect for diastolic blood

pressure. With systolic blood pressure, however, the estimated treatment effects are

not significant. A lack of affluence may seem to increase both types of blood pressure
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with the t-test and OLS regression results, but with the PB method with propensity

matched sets only one of the two results is statistically significant at α = .10.

2.6 Simulation study of diagnostic performance

By selecting a model that obeys the diagnostic presented in Section 2.4.1, we aim

to control the variability in treatment effect estimates that could arise from sampling

variability in β̂ and/or the presence of overfitting to achieve sharper estimates of the

treatment effect. In this section, a simulation study examines to what extent fixing

problems with the variance estimation by imposing the diagnostic leads to improve-

ments in the estimation of the treatment effect. The performance of the diagnostic is

assessed in a randomized setting in this simulation as the primary motivation of the

diagnostic is to ensure that when used in the setting of an experiment, it improves

subsequent treatment effect estimation. We conjecture that controlling the variance

by choosing a model that meets the diagnostic criteria would mainly translate to

improvements in the variance of the estimated treatment effect estimates.

2.6.1 Methodology

This simulation study uses the CCAHS data and permutes data within propensity

score strata, incorporating the assumption that the study design is such that some

values within a stratum are as though they were randomly assigned to units. For

the simulation, the effect of neighborhood affluence on the outcome of systolic blood

pressure will be examined. The simulation is structured so that the true treatment

effect is no effect. The design of the simulation respects the conditioning set C defined

in Section 2.4.1 by permuting values of the residuals within propensity score strata,

which maintains the order statistics of the observed residuals. In addition, to respect

the other part of C, z will be held fixed, so the same units will fall into the treatment
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and control group in every iteration of the simulation. The simulation study assesses

the performance of the diagnostic by considering three different scale parameters for

the t(4)-prior and examining the bias and the variance of the estimated treatment

effect that corresponds to the model for which the diagnostic criteria was met.

First, the data are prepared for the simulation according to the following process:

1. Yc values are inferred for all units under the null hypothesis of no effect. For an

observed response Y , Yc = Y if z = 0 and Yc = Y − τ if z = 1. τ is taken to be

the treatment effect estimated in Section 2.5.5 to uphold the null of no effect,

so τ = 0.69.

2. The outcome model of a Bayesian linear model with a t-prior with 4 degrees

of freedom and a reduced scale parameter of 0.1 for all coefficients is fit to the

control group, and predicted values, or ŷ(β̂), are estimated.

3. From the ŷ(β̂), residuals are computed such that ei = Yci − ŷ(β̂) for all units.

Then, the simulation randomly permutes residuals within strata and performs

analysis according to the following process, storing estimates of treatment effect and

values of the diagnostic ratio in each iteration:

1. Residuals are randomly permuted within propensity score strata to obtain a

vector of permuted residuals ep, and values of Yc
∗ are constructed: Yc

∗ = ep +

ŷ(β̂).

2. Three outcome models, all Bayesian linear regression models with a t-prior of

4 degrees of freedom for all coefficients, are fit, allowing the scale parameter to

be the default value of 2, the reduced value of 0.1, and a further reduced value

of 0.05. Define these models in terms of a value β̂∗j , where j = 1, 2, 3.

3. For each of the three outcome models, residuals e∗ are computed: e∗ = Yc
∗ −
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ŷ(β̂∗j ).

4. Analysis proceeds as in Section 2.5.5 and permutation test estimates of treat-

ment effect are obtained for each of the three models. These values, which can

be called τ̂1, τ̂2, and τ̂3 are stored for each run of the simulation.

5. Additionally, for each of the three outcome models, the value of the diagnostic

ratio is computed and stored. These values will be referred to as d1, d2, and d3.

6. For comparison purposes, a simple estimate of treatment effect is also computed.

This estimate is computed by taking a weighted average of the difference in the

Yc
∗ values in the treatment and control group across propensity strata.

For the estimated treatment effects from the simulation, bias and variance are

computed to evaluate the performance of the diagnostic. As stated, the value of the

treatment effect should be zero under this design, so bias can be determined as the

average deviation from zero across all estimated treatment effects. The variance of

the average treatment effect is estimated by the variance in the simulated treatment

effects.

2.6.2 Results

Table 2.6 presents the results of the simulation study for three models with dif-

ferent scale parameters for the prior distribution. In line with previous conjectures,

bias in the treatment effect estimates is a very small contribution to the MSE of

the treatment effect estimates; variance provides a much larger contribution, so it

is sensible that the diagnostic seeks to control this component. As compared to the

weighted average estimate, the PB method performs better in terms of bias, vari-

ance, and, as a consequence, MSE, regardless of prior chosen. Clearly, adjustments

for covariates and overlap in covariate distributions is beneficial for the estimation
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of treatment effects.

Examining the results by model, achieving a smaller diagnostic value by tightening

the scale on the prior of the coefficients results in greater control of the variance but

also an increase in bias. This bias-variance tradeoff is seen in the change in the

MSE: moving from a scale parameter of 0.1 to 0.05 changes the diagnostic value

and variance, but it barely changes the MSE. In this case, both diagnostic values

are below 0.2, so our rule of thumb would have declared either to be an acceptable

model, and, in terms of MSE, they are comparable. Studying the two models that

straddle the 0.2 threshold for the diagnostic, the model with the prior with the

larger scale has better performance in terms of bias, but the smaller variance for the

model with a tighter prior distribution leads to smaller MSE. Thus, controlling the

variance component by enforcing the diagnostic criterion seems to be beneficial in

terms of variance and MSE, as we conjectured. From this simulation, it appears that

the diagnostic performs as desired in controlling potential problems with estimating

treatment effects and corresponding variances.

Table 2.6: Assessing the diagnostic via simulation in which all prior distributions for the PB models
follow a t(4)-distribution

Avg. Diagnostic Value Bias Variance MSE
PB Model with scale=2 0.211 0.019 0.897 0.897

PB Model with scale=0.1 0.190 -0.025 0.888 0.889
PB Model with scale=0.05 0.163 -0.090 0.880 0.888
Weighted average estimate 0.142 1.000 1.020

2.7 Extending the PB and propensity score framework to doses of treat-
ment

When assessing the effect of some treatment on an outcome of interest, it is

frequently the case that the effect of the treatment varies by the amount of treatment

received. In the case of the CCAHS data, it is reasonable to imagine that the effects of
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living in a disadvantaged neighborhood may differ by the extent of the disadvantage.

Perhaps the effects of severely disadvantaged neighborhoods differ more than those of

more moderately disadvantaged neighborhoods. The Peters-Belson method discussed

in Section 2.5.5 considers the effect of treatment to be homogeneous. In this section,

a method to assess a hypothesis of these “dosage” effects is discussed.

As with the decision between treatment and control groups, with the CCAHS

data, a the continuous outcome measure of neighborhood affluence must be cut to

define doses of treatment. To make this decision, several other covariates are plotted

against neighborhood affluence. When these plots are made, there is repeatedly a

break in this standardized neighborhood affluence measure around -0.45, so this is

chosen to separate a higher level of treatment from a lower level of treatment. As

a simple analysis that does not consider additional covariate adjustment, standard

one-way ANOVA procedures with post-hoc tests can be used to determine if systolic

blood pressure differs across groups. This preliminary analysis shows an overall

significant difference but no difference between high and low levels of treatment and

a significant difference in systolic blood pressure between both the group with a high

level of treatment and the control group as well as the group with a low level of

treatment and the control group. These differences are readily seen by the boxplot

of doses presented in Figure 2.3.

Although the preliminary analysis and boxplot may not indicate a need for the

use of a “dose” effect of treatment, an analyst should confirm that these preliminary

analyses do not present a dose effect due to the lack of adjustment for confounders. To

make this confirmation, the Peters-Belson method incorporating propensity matched

sets can be applied considering doses of treatment. Our modifications to the Peters-

Belson procedure have two key parts: optimally matched propensity score sets and
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Figure 2.3: Systolic Blood pressure different levels of treatment
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an outcome model. Both of these components must be adjusted to accommodate the

consideration of doses.

To adjust the matched sets for the consideration of doses, two propensity scores

are estimated in addition to the standard propensity score with a single treatment

group and control group: one additional score describes the probability of being in

the highest dose of treatment relative to the control group, and the other describes

the same probability in terms of the lower dose of treatment relative to the control

group. In standard optimal matching on propensity scores, a distance between any

two units is computed as the pairwise difference in the linear predictor of the esti-

mated propensity score. The pairwise differences are placed in a distance matrix of

dimension nt×nc where nt is the number of treatment units and nc is the number of

control units. This distance matrix determines the arrangement of units within sets.

With the two propensity scores for different levels of treatment, separate distance

matrices of dimension ndose×nc (where ndose is the number of treatment units in that

particular dose group) are created for each dose of treatment. These matrices are
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formed by determining the Mahalanobis distance of the linear predictor of the esti-

mated overall propensity score and the linear predictor of the dose-specific propensity

score. Matched sets are formed by applying an optimal matching algorithm to the

nt × nc aggregate of the dose-specific matrices.

Following the determination of matched sets, an outcome model from which the

residuals are computed must be selected. The general form of the outcome model can

follow the choices made in Sections 2.5.5 and 2.4.1, but it must be decided how the

dose effect will be incorporated into the analysis. If the analysis should go beyond

a simple treatment effect to a dose effect, should the dose effect be linear? Should

the dose effect be quadratic? In order to make this determination, a comparison

of nested models incorporating these different treatment effects will be made. The

nested models will consider the same covariates as the outcome model used in the

basic Peters-Belson analysis, but, to test the models, they incorporate a fixed effect

for matched set and the specified treatment effect. The effects considered are no

treatment effect of any kind, a simple treatment effect with no dosage effect, a linear

dosage effect, and a quadratic dosage effect. When these nested models are compared,

it appears that an analyst should indeed use a simple treatment effect (p-value =

0.004), but nothing beyond a simple treatment effect (a linear dose effect results in a

p-value = 0.15). This confirms the findings of the preliminary analysis that there is

no evident dose effect of neighborhood affluence on blood pressure. If, however, there

were dosage effects discovered, the outcome model selected by the above procedure

could be used to modify the standard Peters-Belson analysis accordingly in order to

obtain dose-specific estimates of treatment effect.
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2.8 Summary

The Peters-Belson method was developed as a technique to assess the effect of a

disparity on a particular outcome of interest. It offers a clear framework to describe

these effects with standard regression models in the case of a randomized experiment.

Although the framework is useful, the extrapolation of regression models required

by the technique poses a difficulty when the method is applied to an observational

study in which treatment was not randomly assigned. If treatment were not randomly

assigned, the covariate distributions in the treatment and control group could differ

substantially, and this presents problems when using a model fit to the control units

to predict values for treated units.

This chapter presents a solution to reduce problems due to extrapolation by incor-

porating optimally matched sets on the basis of the propensity score. Performing the

analysis within propensity matched sets improves the estimates of treatment effects

by ensuring that the extrapolation of the regression model is performed for units

with similar covariate distributions, aside from treatment status. While the use of

propensity matched sets does increase standard errors of estimates, the protections

against extrapolation have the potential to greatly reduce bias. In addition to po-

tential problems due to extrapolation, the outcome model required for analysis can

be subject to additional problems in the case of overfitting, regardless of the type of

study to which the Peters-Belson method is applied. With greater degrees of over-

fitting, additional contributions to the variability of the treatment effect estimate

could be problematic. The diagnostic presented in Section 2.4.1 offers a guideline to

determine when an analyst should consider adjusting a particular outcome model,

and this guideline seems to be useful as the associated simulation in Section 2.6 indi-
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cates. This chapter illuminates the central drawbacks of the Peters-Belson method,

especially when it is applied to an observational study, and presents solutions and

assessments of these drawbacks; thus, this modified Peters-Belson method and diag-

nostic can be applied to any type of study to assess the effect of some treatment of

interest.

2.9 Appendix

2.9.1 Simulation studies to illustrate problems with extrapolation

To craft simulations illustrate the difficulties when the PB regression model must

extrapolate, a study of SAT coaching by (Powers and Rock, 1999) is used. In this

study, the treatment is taken to be SAT coaching and the outcome of interest is

the math post test score. From the control group only, hypothetical treatment and

control groups will be selected by a biased randomization procedure and called the

pseudo-treatment and pseudo-control group. In order to randomly allocate units to

the pseudo-treatment and pseudo-control groups, a propensity score is estimated.

For the simulation, many propensity models are considered and evaluated on the

difference from true propensity score model (as determined by the fit to the observed

data) and the expected separation in the treatment and control groups on the basis

of the fitted propensity score. The four propensity score models that represent the

combinations of the highest and lowest values of these two measures are used in the

simulation as four different versions of the true propensity model. After restricting

our attention to a randomly chosen subset of the control group data (800 of the

approximately 3500 control group subjects), each version of the true propensity score

is used as the probability of selection into the pseudo-treatment group. By restricting

our attention to the control group, none of these units actually received the treatment

under study, which, in this case, is SAT coaching. Thus, it follows that the true effect
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of treatment across both the pseudo-treatment and pseudo-control groups should

be zero, and the null hypothesis for the simulation study is the hypothesis that

treatment has no effect on the outcome. For each iteration of the simulation, a new

pseudo-treatment and pseudo-control group are selected. Within each iteration, the

Peters-Belson treatment effect comparing the pseudo-treatment and pseudo-control

groups is estimated along with a corresponding standard error. Standard errors are

estimated in two ways: the standard method as incorporated into the analysis by

Gastwirth and Greenhouse (1995) and a permutation test standard error (the ideas

of which are discussed in, among other sources, Hansen and Bowers (2008)).

Under these specifications, the simulation aims to assess the level and power of

the test of the null hypothesis of no effect. To assess the level, the proportion of

times the null hypothesis of no effect is rejected when it should be true is recorded

for each version of the propensity score truth. The nominal level is 5%. To assess

power, a treatment effect of 5 points in either direction is assumed, and the outcome

values of the pseudo-treatment group are adjusted accordingly to allow power to be

tracked and averaged over the assumed positive and negative treatment effect. In

Table 2.7, it is clear for all propensity score “truths” the model-based standard errors

undershoot the nominal level, while having very low levels of power. In contrast, the

permutation-based standard errors inflate the level over the nominal level, while

yielding better power results. Neither formulation, in terms of the level and power,

seems especially promising for this data set which has a lack of covariate overlap

across comparison groups. The different standard errors used are discussed in the

next section.
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Table 2.7: Assessing level and power of hypothesis tests based on the Peters-Belson method via
simulation

Model Difference from Expected SE Version Level (%) Power (%)
true propensity treatment-control

score group separation
1 high high Model 2.8 9

Permutation 5.7 17
2 low low Model 5.4 15

Permutation 10.3 19
3 high low Model 4.3 12

Permutation 7.8 19
4 low high Model 2.8 11

Permutation 7.1 17

2.9.2 A tale of two standard error estimates

For the simulations discussed in Section 2.9.1, two standard error estimates were

used. Regression-based standard errors of Gastwirth and Greenhouse (1995) and

the permutation standard errors, which are like those discussed in Hansen and Bow-

ers (2008), led to different results for coverage and power. The permutation-based

standard errors are consistently smaller than the model-based standard errors. To

illustrate why this is the case, one can examine the formulas and sample calculations

based on one run of the simulation study.

If Z defines the vector of treatment assignment, e defines the vector of residuals,

and Xc and Xt are the covariate matrices for the control and treatment groups,

respectively, the treatment effect D̄(e) can be computed as in Equation 2.2. The

permutation-based estimate of the null variance is defined as

(2.10) VarP (D̄(e)) = se
2(nt

−1 + nc
−1)

while the model-based estimate of the null variance is defined as
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(2.11)

VarM(D̄(e)) = se|Z=0
2(nt

−1 +nc
−1 + (X̄t− X̄c)

′[(Xc− X̄ ′c1)′(Xc− X̄ ′c1)]−1(X̄t− X̄c)).

In one run of the simulation with the SAT data and a simulated sample size of

n = 800 of which nt = 160 and nc = 640, a treatment effect estimate, essentially an

estimate of bias as the treatment effect should be zero, is -0.40. In the same run,

se
2 = Var(e) = 3564 and se|Z=0

2 = Var(e|Z = 0) = 3426.

Thus, for the permutation-based standard error,

VarP (D̄(e)) = 3564(160−1 + 640−1) = 3564(128−1) = 27.85

and for the model-based standard error,

VarM(D̄(e)) = 3426(160−1 + 640−1 + .0032) = 3426(128−1 + .0032) = 37.70

which accounts for the differences in coverage and power for the two versions of the

standard error.



CHAPTER III

Using multidimensional prognostic scores to make valid
comparisons and inferences in observational studies:

Diagnostics and application

3.1 Overview

Even with the most careful design and execution of an observational study, at-

tempts to obtain causal inferences from the study must account for the lack of ran-

domization to treatment conditions. Methods using matching or post-stratification

aim to ensure comparability prior to the application of treatment. These adjustments

can be done for one or several covariates or some score that reduces the dimensionality

of the data such as a propensity score (Rosenbaum and Rubin, 1983). A recently in-

troduced technique to help an analyst restrict comparisons to similar units or groups

of units is the prognostic score, which was developed as a reduction of multivariate

data to a score of lesser dimension in Hansen (2008). In this paper, we illustrate an

extension of the prognostic score to multiple dimensions where the dimensions result

from fits of hypothesized models. The incorporation of a matching adjustment that

relies on the multidimensional prognostic scores will lead to improved comparisons

to estimate causal effects of treatment.

58
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3.2 Introduction

In observational studies, systematic differences between treatment and control

groups can arise prior to the application of treatment due to the lack of random

assignment. As a result, it can be difficult to disentangle the effects of treatment

from these pretreatment differences. To reduce the impact of these pretreatment dif-

ferences, methods such as subclassification – matching or post-stratification – on a

single covariate or a univariate summary measure of the data have been used in a va-

riety of settings. These methods aim to ensure comparisons are made between groups

with covariate distributions similar to what could have been observed under random

assignment. When these adjustments are required for multivariate data, summary

scores of a much reduced dimension can be used in place of a larger covariate matrix.

While the propensity score (Rosenbaum and Rubin, 1983) is commonly used as a

summary measure of multivariate data into a single dimension, the prognostic score

(Hansen, 2008) was introduced as an alternative dimension reduction of multivariate

data, though not necessarily to a univariate score. In contrast to propensity scores

which reflect the treatment assignment as a function of observed covariates, the prog-

nostic score models the relationship between the outcome and covariates to reduce

the data to a smaller dimension. Prognostic scores can be viewed as extracting the

most important part of the covariate space for predicting an outcome of interest. We

will say that this extracted score is a “prognostically relevant” part of the covariate

space with respect to an outcome of interest. By extracting a part of the data that

is the most prognostically relevant, prognostic scores aim to improve the compara-

bility of groups in terms of the covariates that are most important to the outcome of

interest; this comparability can be referred to as the “relevant similarity” of groups
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with respect to this outcome. That is, groups with high levels of comparability in

terms of the covariates most predictive of some outcome can be said to be relevantly

similar.

In this paper, the multidimensional prognostic score presented allows for different

choices of prognostic model specification to be considered, which provides freedom

in the method of extracting the most prognostically relevant linear combination of

covariates from the data. Section 1 provides background information to anchor our

discussion. In Section 2, we introduce an observational study of an educational

intervention on which we illustrate our method. Section 3 outlines the logic of a

multidimensional prognostic score and introduces diagnostics to assess which dimen-

sions of the prognostic score should be used in a further analysis. In Section 4, we

describe the use of multidimensional prognostic scores to improve the propensity

score model and thus offer an improvement in the relevant similarity of the compar-

ison groups with respect to the outcome of interest. Finally, Section 5 discusses the

ability of our pre-processing procedure with multidimensional prognostic scores to

accommodate studies with multiple outcomes of interest.

3.2.1 Methods for design and treatment effect estimation

As detailed in Imbens (2004), methods for treatment effect estimation in obser-

vational studies include regression methods, matching methods, propensity score

methods, or some combination of these three techniques. By simultaneously adjust-

ing for covariate differences and estimating treatment effects for all units, the use

of regression models alone has the potential to confound the comparison between

treatment and control groups. In addition, regression models depend on the model

specification to determine the functional form of the relationships between the co-

variates and outcome. In contrast, matching methods, propensity score methods, or
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some combination are a type of data nonparametric pre-processing in the language

of Ho et al. (2007): they are applied to the data in order to diagnose and help with

group comparability, but by themselves, they do not directly act as methods for

treatment effect estimation.

In the analysis of an observational study, pre-processing can serve as part of a

“design” stage prior to the estimation of treatment effects. The concept of designing

an observational study has been discussed by, among others, Cochran (1965), Rubin

(2008), and Rosenbaum (2010). An observational study should be designed with

careful consideration of the underlying randomized experiment that would have been

conducted had it been ethical or feasible to do so. As part of a design process, an

analyst must be clear on the treatment assignment mechanism, or P(Z|X, Yc, Yt),

and the propensity score is an attempt to recreate this mechanism. In addition to

understanding how treatment was assigned, it is best if there is some known and

understood exclusion criteria for excluding a unit from the experiment; units need to

be included or excluded from the study on the basis of the observed covariates rather

than on the treatment assignment. After treatment is assigned, which is the state of

data seen in an observational study, it may be clear which units belong to a treatment

group, but the selection of a comparison group from among many possibilities can

present a challenge that must be carefully considered. The choice of comparison

group is important as an analyst should aim for treatment and comparison groups

to be as similar as possible in terms of observed information prior to the application

of treatment. When a comparison group is chosen to relate to the treatment group,

an analyst needs to ensure a level of similarity across these groups that could have

been obtained in a randomized experiment. Preprocessing steps like matching can

be viewed as a way to mirror the underlying experimental structure; whereas in
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an experiment, one might block on certain characteristics and randomize within

blocks, in an observational study, matching creates blocks where the distribution of

covariates across groups appears as though treatment had been randomly assigned.

As they are part of a “design” stage analogous to that of an experiment, pre-

processing steps exclude either all outcome data or all outcome data for the treat-

ment units. These adjustments largely focus on the observed covariate information.

Early work in this type of pre-processing (Cochran, 1968) introduced the idea of

matching or stratifying on the observed covariates, X, by focusing on a single covari-

ate. It was established that stratifying on one normally distributed covariate with

equal variances across populations being compared can remove at least 90% of the

bias on that covariate. After using matching or stratification, treatment effects can

be estimated most simply using weighted averages. When adjusting for more than

one observed covariate, a researcher will encounter the so-called “curse of dimen-

sionality”. With multiple covariates, the covariate space is divided into such fine

partitions that many subclasses have one or no units, making comparisons between

treatment groups within these subclasses impossible.

To allow for covariate adjustment when there are multiple covariates that require

adjustment, Rosenbaum and Rubin (1983) developed the propensity score. The

propensity score is the conditional probability of receiving treatment given a unit’s

observed covariates. If we subclassify on the true propensity score, then conditional

on this true propensity score, treated and untreated units should have the same

distributions of covariates within subclasses. After matching on propensity scores,

treatment effects could again be estimated by weighted averages.

Often, regression methods, matching methods, and propensity score methods are

used in combination. For example, an analyst could stratify on the estimated propen-
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sity score and use a regression model to estimate the average treatment effect within

strata. As an alternative, an analyst could stratify or block on one or two covariates,

match on estimated propensity score, and find treatment effects as a weighted aver-

age across matched pairs. These methods either alone or in combination are among

the more commonly used methods of adjustment and estimation.

3.2.2 Assessing the quality of a match

Before estimating treatment effects for settings in which matching was used as

a pre-processing step, it is helpful to assess how well the matching accounted for

pretreatment differences in covariates. Within sets of a good match, distributions

of observed covariates within groups should resemble those that could have been

obtained from a randomized experiment. This quality assessment is crucial whether

matching was done on covariates or a function of covariates like the propensity score.

As was established in the discussion of design, the goal of making treatment groups

similar with respect to observed covariates should guide the choice of subclassification

or matching procedures, but how does one decide how to choose the stratification

or matching that is most appropriate? An analyst could make several choices that

impact the quality of a match. An analyst can choose a variety of distances on which

to match such as Euclidean or Mahalanobis distance. In addition, an analyst can

consider different forms of matching such as greedy matching (where matches are

made without consideration of future matches) or optimal matching (where the best

set of all matches is selected from all possible arrangements). When matching, re-

strictions can be imposed on the number of units allowed from each treatment group

in matched set. For a discussion of these variations and their potential ramifications

see Stuart (2010). Further, when matching is performed on the basis of a propensity

score, Rosenbaum and Rubin (1983) detail the theoretical balancing properties of
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a true propensity score: when subclassifying on the true propensity score, distri-

butions of covariates across treatment groups should be the same Rosenbaum and

Rubin (1983). When using adjustments based on the propensity score, a model must

be specified, and we cannot be certain that the model specified is the true model.

Diagnostics have been developed to assess both the the stratification or matching

chosen and, if a propensity score is used, the specification of the propensity score

model. In this paper, we focus on the diagnostics collectively called balance tests.

To assess comparability of treatment groups, an analyst could use simple t-tests to

compare means across groups, but these t-tests are prone to the problems detailed by

Imai et al. (2008), namely, that the focus is on the means alone. Recent research has

focused on creating balance tests that better compare the distributions of covariates

across treatment groups for data that has been stratified or matched in some way

(Lee (2008), Austin (2009), and Hansen and Bowers (2008)). If the distributions of

the covariates are judged as similar enough across treatment groups, it can be argued

that there are no crucial problems in either the specification of the propensity score

or the stratification scheme chosen. The balance assessment of this stratification or

matching scheme is crucial, as the stratification or matching design on which balance

is tested will be later used to estimate causal effects of treatment.

The balance tests proposed in Hansen and Bowers (2008) rely on randomization-

based inference. These tests draw on the advantages of performing inference with

randomization-based methods; namely, they allow the data to be viewed as is and

not as a sample from some superpopulation. As a result, these tests do not make

appeals to distributional assumptions. To perform these balance tests for propensity

score subclassification, the randomization distribution is computed and a measure

of the difference in the covariate values between treatment and control groups is
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compared to this distribution. The randomization distribution is computed by ran-

domly permuting the treatment assignments within subclasses while assuming the

treatment has no effect on the covariate values; in other words, the distribution of

standardized differences can be found by collecting the standardized differences that

would be computed under all possible realizations of the treatment assignment vector

within each subclass. With this distribution, it can be assessed whether the observed

standardized differences are significant, which implies that the particular covariate

being examined appears to differ in its distribution across treatment groups. An

overall balance test combines the results across all covariates to obtain a χ2 test

statistic and corresponding p-value to obtain an aggregate measure of the relative

lack of comparability in covariates across treatment groups.

3.2.3 Prognostic scores

The prognostic score (Hansen, 2008) is a dimension reduction technique used to

improve the similarity of comparison groups in terms of covariates most important

to the outcome. Prognostic scores reduce a potentially large covariate matrix to a

few dimensions that have the capacity to deconfound Y and Z. In other words, after

adjustment for a prognostic score, Z can be viewed as independent of Y , allowing

treatment effects to be estimated as in a randomized experiment. To illustrate the

idea of a prognostic score, suppose X1 is some subset of X and that adjusting for X1

is sufficient to deconfound an observational study by removing associations between

Y and Z. Also suppose X2 is some subset of X such that X2 ⊆ XC
1 and adjusting

for X2 in addition to X1 does not further remove associations between Y and Z.

Thus, adjustments for X2 are irrelevant to the broader goal of deconfounding an

observational study with a particular outcome of interest to make it appear more

like a randomized experiment. If a reduction of X were defined as the set (X1, X2)
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then, by the above discussion, X1 could be said to be prognostically relevant, while

X2 can be viewed as prognostically irrelevant. The prognostically relevant reduction

selected as the prognostic score need not be a minimal or unique reduction of the

data. Adjustments for the prognostic score aim to achieve similarity in units to be

compared. Clearly, units that are alike in terms of all X will be similar in terms of

the part of X that is prognostically relevant, which, in the previous illustration, is

X1. However, units that share similarities on X1 may not be alike for all parts of X.

Thus, while accounting for X1 would ensure similarity of units on that prognostically

relevant subset of X, X1 need not be the only such prognostically relevant subset for

which this could hold.

When two units are similar in terms of the prognostically relevant part of X, we

say that those units have relevant similarity with respect to some outcome of inter-

est and the particular reduction considered. In order to determine the prognostically

relevant part of X and assess relevant similarity, an analyst must choose one set of

potential outcomes – Yt values or Yc values – on which to base determinations. It

can be reasoned that the estimate of interest is the effect of treatment on only the

treated units (ETT) rather the average treatment effect (ATE) for all units. An

overall estimate of treatment effect would assume a constant average treatment for

all units, whether or not they could reasonably receive the treatment. As Heckman

(1997) argues, a researcher interested in improving policy is probably not concerned

with the effects of, for example, a job training program on a millionaire; it is more

reasonable to examine the effects of a job training program on the the subjects who

utilized the program, as they are individuals like those who would reasonably be

affected by any policy related to such a program. By obtaining an estimate of the

ETT, an analyst can answer the question: what is the benefit of the job training pro-
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gram to those who participated in comparison to what they would have experienced

without participation in the program? Often, this is the far more relevant question

for interventions examined by observational data. Further, focusing the estimation

procedure on potential outcomes under control links the ideas of prognostic scores to

older techniques in the literature used to estimate treatment effects when treatment is

some level of disadvantaged or minority status. This method, which originated with

the work of Peters (1941) and Belson (1956), became known as the Peters-Belson

procedure and focuses on predicting potential outcomes under control for treatment

units supposing they were members of the control group. Unlike prognostic scores,

the Peters-Belson procedure aims to estimate treatment effects; prognostic scores are

a pre-processing method. In addition to these reasons for preferring to use Yc values

over Yt values to assess similarity, the control group is typically larger, thus, there

are more measured values of Yc.

To formalize the ideas of prognostic scores defined with respect to potential out-

comes under control, define Ψ(X) as some reduction of X. The function Ψ(X) could

be defined through any standard dimension reduction methods; a basic form would

be the linear combination of covariates determined by a linear regression model.

We can say Ψ(X) is a prognostic score if and only if conditioning on it removes

associations between the covariates and potential outcomes under control such that

Yc ⊥ X|Ψ(X) for any X ∈ A, where A is a measurable set (Hansen, 2008). When

associations between covariates and potential outcomes are removed, there should

be no systematic association between uncontrolled variation in covariates and the

outcomes. Thus, any resulting links between treatment conditions and outcomes are

more likely to be the result of the treatment itself and less likely to be the result

of uncontrolled background information. In the absence of bias due to unobserved
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information that was not included in the covariate matrix X, Yc ⊥ Z|Ψ(X) for any

X ∈ A, where A is a measurable set (Hansen, 2008). In other words, conditioning

on the prognostic score removes associations between the potential outcomes under

control and the treatment assignment. Specifically, provided there is no level of the

prognostic score at which units receive the treatment with certainty, an ETT esti-

mate can be computed. If Yc ⊥ z|X and with probability one, P(z = 1|Ψ(X)) < 1,

then

τETT = E(Yt − Yc|z = 1)

= E[E(Y |z = 1,Ψ(X))− E(Y |z = 0,Ψ(X))|z = 1]

Results on the deconfounding properties of the prognostic score and the ETT es-

timate will be important to ground the discussion of the multidimensional prognostic

score in Section 3.4. In the present development of a multidimensional prognostic

score, however, rather than conditioning directly on a prognostic score to estimate

treatment effects, a function of it will be used. Namely, estimation will condition on a

propensity score formed with prognostic score dimensions, or a prognostic-propensity

score, as discussed in Section 3.5. While the discussions in this paper will focus on

prognostic scores as a pre-processing step in the design of an observational study,

the ultimate aim of the pre-processing is an ETT estimate similar to that defined as

τETT .

3.3 Study of an educational intervention

To illustrate our extension of the prognostic score to multiple dimensions, we use

a study of an educational intervention in schools in Texas. The initial reviews of the

program compared a subset of Texas schools that elected to adopt the program to
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others that did not. As adoption of the program was by choice, the problem inherent

to observational studies arises: the absence of random assignment of schools to receive

or not receive the program may lead to systematic imbalances in the treatment and

control groups. To examine the effectiveness of the intervention by assessing student

progress, data from the Texas Assessment of Knowledge and Skills (TAKS) is used,

which is publicly available data from the Texas Education Agency.

The data set contains measurements aggregated to the school level for demo-

graphic characteristics and test outcomes. For each school, multiple years of data

are included: measurements were taken in 2005, 2006, and 2007. There are 1475

control schools, schools that did not receive the intervention, which provide 4425

observations across the three years of data collection. In addition, there are 177

treatment schools that were involved in the program for one, two, or three years of

the period of the study. These treatment schools provide 322 observations. With

different observations for the same school across several years, the observations in

the data set can be viewed as school-year observations, a combination of data for

both the school and year. The data provides 11 outcome measures to assess student

progress, including one aggregate outcome measure for Algebra 1 performance; our

analyses focus on this aggregate outcome measure.

If we fit a standard propensity score model with logistic regression to the data, we

can use the estimated propensity scores to provide intuition regarding the overlap in

the covariates of the treatment and control groups. Side-by-side boxplots, appearing

in Figure 3.1 illustrate the extent of the overlap an analyst might see if she fit

propensity scores to the large set of covariate information available without attention

to which covariates may be more prognostically relevant. The overlap is minimal and

seems to indicate problems for further inference. Some have suggested that situations
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such as these are hopeless for further data analysis, and do not consider potential

adjustments to the propensity score specification (Rubin, 2007). This paper develops

techniques to improve this standard pre-processing of observational data through an

enhanced propensity score model.

Figure 3.1: Boxplots comparing the linear propensity scores of all control (left) and treatment
(right) schools
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3.4 The multi-dimensional prognostic score

In contrast to the single dimension of propensity scores, prognostic scores can have

many dimensions. Analysts comfortable with propensity score methods may view

the potential for multiple dimensions as a drawback; an advantage of the propensity

score machinery is its ability to transform a wealth of covariate information into a

univariate representation, ameliorating problems due to the so-called curse of dimen-

sionality. The extra dimensions in a prognostic score can arise for two reasons: the

continuous nature of Yc and the consideration of multiple models.
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Propensity scores capture the relationship between a typically binary Z and multi-

dimensional X, while prognostic scores capture the relationship between a continuous

Yc and multidimensional X. The single dimension of a propensity score estimates

the relationship E[Z|X] = P(Z = 1|X). As we can write P(Z = 0|X) as 1−E[Z|X],

then computing E[Z|X] provides all the information that could be obtained for the

conditional distribution of Z given X. With a continuous Yc, however, modeling

E[Yc|X] as the prognostic score does cannot provide us with the same completeness

of information about the conditional distribution of Yc given X. Using additional

dimensions for the prognostic score may help add to the ability of the prognostic

score to capture the conditional distribution of Yc given X.

Aside from the difference between a binary Z and a continuous Yc, the multiple

dimensions of a prognostic score help account for model misspecification. With

a propensity score, one commits to a single dimension and a single model for a

propensity score, but it is difficult to know how to select the best propensity score

model. Many agree that standard variable selection techniques are not adequate

because the goal of a propensity score model should not be to best predict treatment

(Brookhart et al., 2006). With prognostic scores, each dimension can be the result

of a different model without choosing an absolutely “correct” specification. Each

model represents a unique way of extracting the most prognostically relevant part of

the covariate space. As many specifications are possible, the fitted prognostic score

is less subject to the criticism of an incorrect model specification. Empirical results

suggest the additional dimensions greatly improve the ability of an analyst to achieve

this comparability.
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3.4.1 Diagnostics for prognostic score specifications

With prognostic scores, diagnostics provide goodness of fit tests of the proposed

prognostic score dimension(s). The goal of prognostic scores is to extract the linear

combination of known covariates that is prognostically relevant, or predictive of an

outcome of interest, based on a model fit in the control group. Prognostic score

diagnostics are assessed for the proposed dimensions for the control group alone to

determine if the proposed prognostic scores capture all of the prognostically relevant

part of X. For prognostic scores, we define a concept called prognostic balance:

prognostic balance is a measure of association between covariates and outcomes for

control group units with a small distance on the estimated prognostic score. An

assessment of this prognostic balance provides an indication as to how well the chosen

prognostic dimensions fit the data, making it an important diagnostic step in selecting

the best prognostic score for use in later adjustments and analyses. The machinery of

diagnostic tests for prognostic balance builds on that discussed for propensity score

diagnostics in Section 3.2.2

The assessment of prognostic balance relies on comparisons within matched pairs

of control units. If there is no significant association between the outcomes and the

covariates in the control group as determined by examining these matched pairs,

then theoretical results in Hansen (2008) indicate that further pre-processing steps

can be taken with the proposed prognostic dimensions. To match pairs in the best

way possible, the diagnostic uses optimal matching, which is a matching routine

that considers all possible collections of matches among all units and selects the best

collection of all possible. A method for performing an optimal full match for pairs

in a nonbipartite setting – a setting in which any unit can, in theory, be matched to

any other unit other than itself – is provided by Lu et al. (2001), which applies the
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algorithm devised by Derigs (1988). In order to measure the “distance” between any

two units, a matrix of all possible pairwise distances is constructed. Between any

two units, their separation is defined by a Mahalanobis distance on the estimated

prognostic score dimensions. From these distances, the optimal matching routine

chooses the best matching arrangement for all units that minimizes the sum of the

matched pair distances across pairs. Although other methods could be used in a

diagnostic for prognostic scores, optimal matching in this way allows an analyst to

rule out problems with the matching procedure as a cause of troublesome prognostic

balance results. In nonbipartite matching, to disallow very poor matches from being

made, dummy observations are included in the matching routine. As a result, school-

year observations that are very unlike any other observation in terms of measured

covariates, such as demographic composition or pretest scores, are not included in

the assessment of prognostic balance. In addition to using these dummy observations

in the nonbipartite matching, for computational ease, control subjects are matched

on the prognostic score within quintiles of the first dimension of the prognostic score

(or on the prognostic score itself if the score is unidimensional).

Following the creation of matched pairs of control units, hypothesis tests are

used to assess the prognostic balance, which can be viewed as a measure of the

“goodness of fit” of a prognostic score specification. In this situation, goodness of fit

refers to how well the prognostic score pairings account for the association between

the outcome and a given covariate. If the prognostic score is a good fit, within

matched pairs, there should be no association between the Yc value and X values.

If we suppose we have a single covariate X and Yc were binary so that each pair

contained one unit with each value of Yc, matched set differences on X across the

two levels of Yc could be computed. The differences could be aggregated across
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sets with a weighted average to provide a statistic, but a distribution would need

to be chosen to conduct a hypothesis test. Permutation tests allow this assessment

to be conducted in the absence of any additional distributional assumptions. By

permuting the values of Yc between the X values in a matched pair and computing a

collection of aggregated pairwise differences across all pairs, a reference distribution

can be obtained to which we can compare the realized value of the statistic. It is

not the typical case for an outcome of interest to be binary, but similar logic can be

applied for a continuous outcome. Rather than computing differences across the two

values of Yc, with a continuous outcome, measures of correlation with a covariate

in the form of regression coefficients are used. These measures of correlation can

be added across sets to obtain a statistic. The reference distribution is computed

similarly to that with a binary Yc, except all possible sums of correlations – rather

than differences – are collected for a reference distribution.

The measure of prognostic balance can be defined as the coefficient of Yc in a

regression of Xi on Yc and S, with S defined to be a factor variable of subclass

membership. Another way of defining this prognostic balance for a single covariate

Xi is

(3.1) β̂YcXi =

∑
S(XiS − X̄iS)′(YcS − ȲcS)

(Yc − Ȳc)′(Yc − Ȳc)

where XiS is a vector of values of Xi in stratum S, YcS is a vector of Yc values in

stratum S, and X̄iS and ȲcS are the means of these vectors, respectively.

In the present study, more than one covariate is of interest, so a summary measure

that incorporates all covariates is needed. The permutation test gives rise to covari-

ances between balance coefficients, which are denoted as Cov(β̂YcXi , β̂YcXj) for any

i and j. These can be collected into a covariance matrix V where the (i, j)th entry
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is Cov(β̂YcXi , β̂YcXj). If we let β̂Yc be the vector of imbalance coefficients defined in

Equation 3.1 for all covariates or columns of X the measure of imbalance across all

covariates can be defined as a statistic d where d = β̂′YcV β̂Yc , using results developed

by Hansen and Bowers (2008). The statistic d follows an approximate χ2 distribu-

tion, which allows a test of the null hypothesis that the prognostic score dimensions

chosen are a good fit for the data. This balance assessment provides appraisals of the

prognostic score dimensions across all covariates of interest, but offers little guidance

regarding the potential problems that may lead to a lack of fit of selected prognos-

tic score dimensions. Investigating covariate imbalance by matched pair with the

balance plots introduced in Section 3.4.3 provides additional insights.

3.4.2 Choosing the dimensions of a multi-dimensional prognostic score

A prognostic score aims to reduce the dimensionality of the covariates by modeling

the response as a function of the covariates for the control group with the aim of

extracting the linear combination of covariates most highly related to the outcome.

In this way, the prognostic score can be viewed as a dimension reduction technique

for the covariates fit to the control group alone. Many statistical analysis procedures

could be used to execute this dimension reduction, and different model considerations

comprise candidates for prognostic score dimensions. In many instances, several

models for data are justifiable, and an analyst must choose between them. When

the data suggest multiple valid models to determine the most prognostically relevant

part of the covariate space, they can be considered candidates for dimensions of the

prognostic score. In this case study, the following dimensions will be considered for

reasons which will be subsequently explained:

1. Ordinary least squares model
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2. Ridge regression model

3. Weighted least squares regression

4. Inverse of the sample size of each school

From one perspective, the linear combination of covariates that seems to mat-

ter most is the linear combination determined by an OLS model. Although OLS

regressions are easy to implement and widely understood, they have a few obvious

limitations and may not always serve as the best model. In the education interven-

tion data, when the model includes all the covariates that might be deemed relevant

for a prognostic score model, singularity in the design matrix prevents the OLS model

from computing some coefficients. To accommodate the additional information with-

out removing covariates from the model, the linear combination of covariates that

results from a ridge regression could be considered as a candidate for a prognostic

dimension. The ridge regression model, fit using the generalized cross validation

estimate of the penalty provides another, yet related, set of fitted values that could

be viewed as the estimated prognostic scores.

An additional candidate dimension for the prognostic score that augments the

single dimension fit by either OLS or ridge regression imagines data in which, rather

than aggregating information to the school level due to convenience or privacy con-

cerns, individual data nested within schools was obtained. If this were the case, the

data would have included individual-level and school-level information. This would

lead to a multilevel modeling framework with a school-level random effect. In this

framework, the error term in the model has a variance from both levels: the error

term for the model would have variance of σ2
2 +σ2

1/ms where σ2
2 is the variance of the

errors for the students and σ2
1 is the variance for the errors for the school effect with

ms the school size in number of students. Viewing the data in this way, an analyst
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might wish to couple the OLS fitted values with the reciprocal of the school size (as

the reciprocal of school size is bounded) to incorporate this background multilevel

model idea with the given information. The reciprocal of school size alone or in

combination with the linear model fitted values provides another possible dimension

of the multidimensional prognostic score to investigate.

An equally logical but distinct way of obtaining the most prognostically relevant

linear combination of covariates builds on the OLS model by weighting school-year

observations and fitting a weighted least squares, or WLS, model. Thinking in terms

of the multilevel modeling framework outlined above, the variance of the errors is

defined by

var(ε) = σ2
2 + σ2

1/ms

= σ2
2

(
1 +

σ2
1

σ2
2

1

ms

)
For the control schools, the data contains 3 years of information for each school.

Using this information, an estimate of the variability between schools and within

schools can be obtained and used as estimates of σ2
1 and σ2

2, respectively. Thus,

it is natural to select (1 +
σ2
1

σ2
2

1
ms

)
−1

as our weight, substituting the estimates of the

two variances in place of the true values. When a WLS model is fit using these

weights, the variance structure of the speculated multilevel model is incorporated into

the standard regression model. The fitted values from this model provide another

candidate dimension for the prognostic score.

If an analyst had other justifiable models to extract the most prognostically rel-

evant part of the covariate space, he could continue to obtain an even larger set of

candidate models. Rather than deciding between the models or devising some system
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of weights to take a weighted average across the candidate models, several models

with attractive features can be considered. Using various combinations of these can-

didate dimensions, the prognostic balance is assessed to determine the goodness of

the fit of different prognostic scores; the diagnostic uses a measure of prognostic

balance to determine which combination of these candidate models will provide the

dimensions to the chosen prognostic score. Table 3.1 provides results for the balance

assessments of many one, two, three, and four dimensional prognostic scores. The

columns of Table 3.1 present the proportion of controls matched by the nonbipartite

matching routine, the χ2 statistic that results from the balance assessment, and the

corresponding p-value.

The prognostic balance appraisals presented in Table 3.1 indicate that if an analyst

includes multiple dimensions in the prognostic score, the prognostic score will be a

good fit for the data. The analyst who otherwise would have struggled to select

only one model or may have devised some scheme for combining models to select

only one dimension finds a benefit by utilizing multiple candidate dimensions. The

p-value for the balance assessment for all four candidate dimensions is a robust

0.49; that of the standard OLS fit alone is a paltry 0.013. Adding in just one

more dimension to the dimension fit by OLS, specifically the fitted ridge regression

estimates, improves the fit of of the prognostic model: for this specification of a

multidimensional prognostic score, the p-value is 0.77, which is, in fact, the highest p-

value across all specifications. Not all two-dimensional prognostic scores fit the data

as well as the combination of the OLS and ridge regression fitted values. Among

the three-dimensional prognostic score specifications presented in the table, there

is comparatively little difference across the three fits. While it appears that the

additional dimension may fit worse than the best two-dimensional prognostic score,
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the results with the educational intervention data show the goodness of fit of the

prognostic model is far less dependent on the specific dimensions selected when an

analyst uses more dimensions.

For purposes of illustration, much of the current discussion will focus on the four-

dimensional prognostic score. For this specification of the prognostic score, we can

further assess the fit through balance plots.

Table 3.1: Results of prognostic balance across pairs when performing a non-bipartite matching
with sinks on the prognostic scores indicated

Prognostic score dimensions used % controls matched χ2 statistic (df = 110) p-value
One dimension:
OLS 92 146 0.012
Ridge Regression 91 149 0.008
WLS 90 254 0.000
Reciprocal of school size 96 716 0.000

Two dimensions:
OLS and Ridge 96 99 0.77
OLS and WLS 96 126 0.14
OLS and reciprocal of size 93 115 0.35

Three dimensions:
OLS, Ridge, and WLS 97 101 0.72
OLS, Ridge, and reciprocal of size 97 110 0.48
OLS, WLS, and reciprocal of size 96 106 0.59

Four dimensions:
OLS, Ridge, WLS, and reciprocal of size 97 110 0.48

3.4.3 Balance plots to further assess prognostic balance

In addition to examining the measure of prognostic balance for a covariate X

across all subclasses, we can plot the cumulative contribution to the prognostic bal-

ance measure across subclasses. To introduce these plots, we focus on pair matching;

thus, subclasses are pairs of units. If we plot the contribution of each pair to the

measure with pairs ordered in some manner – such as by propensity score averages
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or prognostic score differences – we can gain a better understanding of the sources

of the imbalance. The endpoint of each cumulative sum of prognostic balance aligns

with the z-statistics provided using the balance tests of Hansen and Bowers (2008).

The overall imbalance can be decomposed into the sum of the imbalance across pairs

or strata as in Equation 3.1. Thus, for each matched pair denoted by S, the contri-

bution to the measure of prognostic balance on Xi for that pair is one piece of the

summation in 3.1:

(3.2)
(XiS − X̄iS)′(YcS − ȲcS)

(Yc − Ȳc)′(Yc − Ȳc)
.

The plots present prognostic balance against ordinal scales – rather than interval

scales – of either prognostic score distance or propensity score average within pairs;

that is, the pairs are ordered by increasing distance or average and the values are

labeled at regularly spaced intervals in terms of the number of pairs. In addition, to

help an analyst better focus on the prognostic balance in control units, the measures

are weighted in a manner inversely proportional to the probability of being in the

control group (or, 1 − E(Z|X) where E(Z|X) is the estimated propensity score).

This weighting magnifies any lack of prognostic balance in school-year observations

in the control group that seem to be most strongly like treated school-year observa-

tions on the basis of the observed covariate information. Without the weights, an

analyst would still have an accurate picture of prognostic balance; the weighting is

an additional tool to indicate potential problems.

Plots of prognostic balance by propensity score average, for example, can indicate

if more of the problems with prognostic balance are due to regions with large or

small propensity scores. Figure 3.2 presents prognostic imbalance across pairs as a

function of average propensity scores. In Figure 3.2, the plots shown present two
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racial composition variables: the percent white and the percent black in a given

school. Neither would yield a measure so large to be ruled a statistically significant

lack of fit; however, while the plot for the percent black has similar features to

random fluctuation with no problematic trends, the plot for the percent white shows

trending in the rightmost section of the plot. This trending can indicate a potential

problem as a pattern similar to random fluctuation is what one should expect if any

departures from prognostic balance were not systematic across pairs. The region of

the trending on this plot indicates that pairs with the highest average propensity

score, units that are most like treatment units among all the control units, seem to

have a systematic imbalance in the percentage of the student body that is white. A

variable of this nature could be addressed by additional covariate adjustment in the

process of making estimations of causal effects, which will be discussed in Section 3.5.

In a similar manner, plots of this prognostic balance by prognostic score distance

within pairs can show if more imbalance comes from poorly matched pairs (i.e. pairs

with far apart units). The plots of Figure 3.3 show the balance in two covariates

ordered by matched pair distances on prognostic score, ordering pairs from best

matched to most poorly matched. In Figure 3.3, the pretest score for the Algebra

1 measurement, A1SS.py, is clearly imbalanced as the sum of the standardized im-

balance measure exceeds the line indicating a corresponding p-value of less than 5%.

The other variable presented shows no real problem with imbalance.

The assessment of prognostic balance with the balance plots offers some guidance

to the researcher about next steps to take or issues to be keenly aware of when moving

on to the next steps in adjustment and effect estimation. Significantly imbalanced

covariates can be included in the prognostic-propensity model along with a prognostic

score of any dimension to offer additional adjustment for these problematic covariates
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Figure 3.2: Two selected balance plots with pairs arranged by average propensity score within the
matched pair

 

Figure 3.3: Two selected balance plots with pairs arranged by matched Mahalanobis distance on
the estimated prognostic score

 

as will be discussed in Section 3.5.
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3.5 Using the extended prognostic score in a prognostic-propensity score

Investigations into propensity scores and diagnostics examine which variables are

most crucial to include in a propensity score to get the best estimates of treatment

effects. Rubin and Thomas (1996) suggest including all variables thought to be

related to the outcome variable whether or not those same variables are related to the

treatment variable. In fact, including variables related to the treatment but unrelated

to the outcome can decrease the efficiency of the estimate of treatment effect based

on a propensity matching; if a variable has some relationship to the outcome, the

increase in bias due to omitting such a variable may outweigh any decreases in

efficiency (Rubin, 1997). More recent simulation results by Brookhart et al. (2006)

confirm these assertions. A propensity score model, typically a logistic regression

model, that is optimized to predict treatment assignment need not be optimal in

terms of mean squared error of subsequent treatment effect estimates. Standard

variable selection routines one might perform on a propensity score model would

eliminate covariates that do not aid in predicting the treatment value. From their

simulation studies, Brookhart et al. (2006) find that including covariates unrelated to

the treatment or those related in some small, chance way, removes nonsystematic bias

due to chance associations between the treatment and particular covariate. Further,

they recommend not excluding covariates unless there is strong prior evidence that

a particular covariate is unrelated to the outcome of interest.

Many sources indicate it is advisable to include covariates most relevant to the

outcome of interest in the propensity score model. In order to do that clearly, it

must be decided which covariates are related to the outcome of interest. If this

assessment is made using all information available about the study population, as
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is the case in Brookhart et al. (2006), it is as though the analyst is using results

of the outcome analysis in the creation of the propensity score, which is part of a

pre-processing step and should be separate from outcome analyses. The prognostic

dimensions discussed in Section 3.4.2 are, by construction, strongly related to the

outcome of interest and incorporate information from the covariates. Forming a

propensity score with the prognostic score dimensions produces a propensity score

focused on a set of linear combinations of the covariates most relevant to the outcome

of interest – precisely what previous research has indicated yields the best propensity

score – without previewing the results of the outcome analyses. We call this type of

propensity score a prognostic-propensity score following Hansen (2008).

To create a prognostic-propensity score using these dimensions, we first compute

the fitted values of the prognostic score for the treatment group using the models

previously estimated using the control group. In the educational intervention data,

this amounts to using the model fit on the 4425 control units to obtain predictions for

the 322 treatment units. For the dimension that is the reciprocal of the school size,

the data from the treatment group can be used directly. As 117 of the control units

were matched to dummy observations for the prognostic score diagnostics, we can

reason that they are very unlike the other units under study in terms of observed

covariates. As a result, when creating the prognostic propensity score, only 4308

controls, or 4630 total units are used. With the prognostic dimensions for the 4630

units, we can form a propensity score using the dimensions as the predictors in the

propensity score model. A logistic regression model is fit using these predictors and

the treatment indicator as the response.

The propensity scores estimated by this model can be used to improve our es-

timates of treatment effects in any of the standard methods that utilize propensity
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scores. The boxplots in Figure 3.4 present the distribution of the propensity scores

and prognostic-propensity scores for the four-dimensional prognostic score in the

control group as compared to the treatment group. There is little overlap in the

distribution of linear propensity scores estimated in the standard way across treat-

ment and control groups, but there is substantial overlap in the distribution of the

linear prognostic-propensity scores as is apparent in the boxplots of Figure 3.4. It

is this overlap that forms the foundation for any causal inferences an analyst de-

sires to make. The use of the prognostic-propensity score improves the accuracy of

the estimation of causal effects as a consequence of the improvement in the relevant

similarity of the comparison groups with respect to the outcome of interest – in this

case, test scores. Assessing overlap across treatment groups on the covariates most

relevant to the outcome, where these covariates are defined by the fitted prognostic

score dimensions rather than the true prognostic scores, is justified by the results

presented in the Appendix.

Figure 3.4: Boxplots comparing the distributions of the linear propensity scores for only the units
that could be matched in the prognostic score diagnostic for a) the standard propensity
score, and b) the prognostic-propensity score fit with the four-dimensional prognostic
score. In both plots, the control group is on the left and the treatment group, the right.

a. b.
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As indicated in Section 3.4.3, individual covariates strongly out of balance in the

prognostic score balance diagnostics can be included along with the fitted prognostic

dimensions to further improve balance prior to making causal inferences. We can

identify problematic covariates of two types. A covariate can be problematic if its

z-statistic, the sum of standardized imbalance across pairs, is significant. In the

the illustration with the data, two pretest scores – one for a specific object and the

overall Algebra 1 pretest score – have a significant lack of prognostic balance. They

are included along with the four prognostic score dimensions to form a modified

prognostic-propensity score. The distribution of the fitted values for this prognostic-

propensity score are shown in the boxplots in the third panel of Figure 3.5 (the first

and second panel present the same figures from Figure 3.4 for comparison).

Balance plots provide another method of identifying a problematic covariate to

add to the predictors in the prognostic-propensity score model. Even if a covariate

is not deemed to have a statistically significant lack of prognostic balance, it is a

candidate to include in the prognostic-propensity score if the balance plots indicate

its imbalance is systematic in the regions of the plot corresponding to pairs with close

matches or relatively large propensity scores. If we include a covariate of this nature,

such as the percentage of students in a school who are white based on the balance

plots in Figure 3.2, in combination with the two imbalanced pretest measures, a third

prognostic-propensity score can be estimated. The distribution of the fitted values

from this propensity score is presented in the final panel of Figure 3.5, and indicates

changes in the balance between the distributions of the fitted values across treatment

and control groups as compared to the two previous prognostic-propensity scores.

The use of prognostic scores in combination with propensity scores aims to focus

the propensity score on the covariates most relevant to the outcome of interest to



87

Figure 3.5: Boxplots comparing the distributions of the linear propensity scores for only the units
that could be matched in the prognostic score diagnostic for a) the standard propensity
score, and b) the prognostic-propensity score fit with the four-dimensional prognostic
score c) the prognostic-propensity score with significantly imbalanced covariates, and
d) the prognostic-propensity score with significantly imbalanced covariates and a prob-
lematic covariate diagnosed by the balance plots. All plots present the control group
on the left and the treatment group on the right.

a. b. c. d.
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achieve comparability across treatment and control groups. Using these variations of

the prognostic-propensity score an analyst can greatly improve upon the overlap in

the distributions of propensity scores for units being compared, and thus also improve

the overlap in the most prognostically relevant covariates as indicated to the across

treatment and control groups. This prognostic-propensity score can be used in much

the same way as a standard propensity score; for example, an analyst can stratify or

match on the propensity score and estimate treatment effects as a weighted average

across matched sets or strata. To assess improvements to the overlap on the con-

structed covariates most relevant to the outcome, the prognostic score dimensions,

we can apply balance tests in the way they are applied to propensity-matched or

propensity-stratified data sets. Table 3.2 presents balance test p-values across dif-

ferent scenarios to assess covariate balance between treatment and control groups.

The p-value in the first column is small if statistically significant imbalances exist

between treatment and control groups for either all the variables in the propensity

score model by default or all the variables in the prognostic-propensity score model,

if a prognostic-propensity score model was fit. The p-value in the second column
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is small if statistically significant imbalances exist between treatment and control

groups for the four prognostic score dimensions selected in Section 3.4.2.

Table 3.2: Balance comparisons between treatment and control groups without and with stratifica-
tion on several propensity and prognostic-propensity scores

All variables in the Four prognostic
model for propensity or score dimensions

prognostic-propensity score
No stratification 0.00 0.00

Stratified on standard propensity score 0.03 0.02

Stratified on prognostic-propensity score
with 4 dimensions 0.77 0.77

Stratified on prognostic-propensity score
with 4 dim. and 2 covariates 0.59 0.46

Stratified on prognostic-propensity score
with 4 dim. and 3 covariates 0.45 0.28

The first row of Table 3.2 indicates, in the absence of stratification on any esti-

mated score, highly statistically significant imbalances exist between treatment and

control groups for all variables included in the propensity score model and the four

prognostic score dimensions. The remaining rows of Table 3.2 incorporate stratifica-

tion of units into quintiles on the basis of either the propensity score or a prognostic-

propensity score, using a standard recommendation for removing bias in comparative

studies. The balance test p-values then indicate if statistically significant imbalances

in covariates exist within strata; consequently, if treatment effect estimation is per-

formed within strata, and there is no statistically significant imbalance in covariates

within strata, estimates of treatment effect should be less biased than corresponding

estimates not accounting for the stratification. Based on the results in the table,

stratification on the standard propensity score still leaves statistically significant

imbalances within strata between treatment and control groups. This conclusion

seems logical based on the overlap that appears in plot (a) of Figure 3.5. While
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stratifying on one of the prognostic propensity-scores creates strata in which there

is no statistically significant imbalance on the four prognostic score dimensions, the

prognostic-propensity scores with additional covariates added do not indicate any ad-

ditional improvement in covariate balance in this case study. The balance results of

Table 3.2, viewed in conjunction with the plots in Figure 3.5, provide evidence of the

benefit to a comparative study in terms of covariate balance from incorporating mul-

tidimensional prognostic-propensity scores. As a consequence of these improvements

in covariate balance between treatment and control groups, using the prognostic-

propensity scores discussed in this section in place of the standard propensity score

should produce improved estimates of treatment effects that are less subject to sys-

tematic differences in the distributions of the covariates most related to the outcome

across treatment groups due to the lack of random assignment.

3.6 The case of multiple outcomes of interest

In the preceding sections, the argument for multidimensional prognostic scores

is illustrated on data with one primary outcome of interest. Frequently, an ana-

lyst is faced with multiple outcomes of interest and believes the data pre-processing

should make comparison groups relevantly similar with respect to all outcomes. With

prognostic scores alone, achieving this relevant similarity is difficult or impossible;

however, the prognostic-propensity score allows for data pre-processing considering

multiple outcomes. This section presents a brief illustration of how the techniques

of multidimensional prognostic scores and prognostic-propensity scores can be em-

ployed for studies with multiple outcomes of interest.

The data offers an aggregate measure of Algebra I performance in addition to

ten individual measures, or objects, that aggregate to the composite measure. The
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individual measures are highly related to the aggregate measure; a regression of the

composite measure on the ten separate dimensions yields an R2 of 0.988. Suppose

an analyst, faced with ten separate outcome measures for mathematics performance,

wants to use prognostic scoring for an adjustment method. As the different outcomes

are related in this case, one possibility would be to create an aggregated outcome

measure and create prognostic scores for that outcome as described in Section 3.4.2.

This method would seem illogical if the outcomes had no relation to each other; for

example, if the different outcomes were for reading, mathematics, and writing scores,

an analyst may have difficulty composing an aggregated outcome measure without

the input of education experts who could devise a weighting for the three scores. We

view the creation of prognostic scores as part of data pre-processing, so an analyst

need not struggle to obtain one outcome measure. Prognostic scores from multiple

outcomes can be created according to the process described in Section 3.4.2, and all

dimensions can be included as predictors in the prognostic-propensity score model.

As a brief illustration, prognostic scores were fit using prognostic scores fit for both

the aggregate outcome and the ten separate outcomes with OLS regression alone

(the prognostic score for the aggregate outcome is identical to the OLS fit described

in Section 3.4.2). For each of the ten separate outcomes, prognostic balance was

assessed with respect to the outcome used as the response variable in the prognostic

score model. For the prognostic score fit to the aggregated measure of Algebra

performance, prognostic balance was assessed with respect to the aggregated measure

as well as the ten separate outcomes. Table 3.3 summarizes the results. Prognostic

balance with respect to a given object or outcome is always better for the prognostic

score fit to the specific outcome rather than the prognostic score created from the

aggregated measure. Prognostic balance with respect to the aggregated outcome
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for the score created from it is much worse than the prognostic balance for the

individual outcome scores. Based on prognostic balance results, if an analyst is

choosing dimensions of a prognostic score for her prognostic-propensity score, it is

clear that the scores from the individual outcomes are the better choice. After

deciding to use a variety of individual outcomes, an analyst can follow the logic

detailed in Section 3.4.2 to refine the prognostic score selections, possibly adding

additional scores for outcomes on the basis of different modeling perspectives.

Table 3.3: Results of prognostic balance across pairs with multiple outcomes for three selected
outcomes

Response in Balance assessed % controls χ2 statistic
prognostic score model with respect to matched (df = 110) p-value

Object 8 Object 8 91% 103 0.67
A1SS Object 8 92% 165 0.00

Object 9 Object 9 91% 86 0.96
A1SS Object 9 92% 283 0.00

Object 10 Object 10 90% 112 0.43
A1SS Object 10 92% 192 0.00

A1SS A1SS 92% 146 0.01

After an analyst settles on which individual outcomes to include and how to model

these outcomes, further pre-processing steps can be taken. Prognostic-propensity

scores can be fit for both the single dimensional prognostic score fit to the aggregated

outcome and the ten-dimensional prognostic score fit to the separate object measures.

On the basis of the resulting prognostic-propensity scores, the observations can be

stratified into quintiles for a quick test of the comparability of covariates in the treat-

ment and control groups. For these prognostic-propensity scores fit from simplistic

OLS model-based prognostic scores, the covariates are quite imbalanced regardless

of which prognostic-propensity score is used. When the prognostic-propensity score

with the ten-dimensional prognostic score is used, however, the p-value for the bal-
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ance test described in Hansen and Bowers (2008) is roughly twice that of the p-value

for the balance test with the prognostic-propensity score for the single dimensional

prognostic score. Thus, with the resulting prognostic-propensity score, the multidi-

mensional prognostic score in which the dimensions are defined by separate outcomes

improves comparability of the treatment groups more than that created using an ag-

gregated outcome measure.

3.7 Discussion

Prognostic scores prove useful in their contributions to the pre-processing step of

balancing the distributions of covariates in an observational study. They provide an

analyst with the advantage of blinding himself to the results of the outcome analysis

when creating the prognostic score and subsequent adjustments that are part of the

pre-processing of the data. From a design perspective, it is advantageous for the esti-

mation of prognostic scores to remain part of the pre-processing of the data and not

use any outcome data from the treatment group. As has been discussed, adjustment

methods for observational studies aim to establish comparability of groups prior to

the assessment of treatment effects, and this objective would be lost if the estima-

tion of prognostic scores is performed outside of a design stage. From an estimation

perspective, fitting prognostic score models to the control group helps to estimate

the effect of treatment on the treated units, without assuming a constant treatment

effect across groups.

When the distributions of pretreatment covariates are similar across comparison

groups within matched sets, the estimation of causal effects of treatment is im-

proved. By determining the most prognostically relevant part of the covariate space,

estimated prognostic scores can improve the fitting of the standard propensity score
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model. The present extension of the prognostic score allows the consideration of

several different model specifications to create a multidimensional prognostic score.

As a result, an analyst can consider a variety of models to establish the relationship

between the responses for the control group and the corresponding covariates without

determining that one is necessarily the true model. Diagnostics in the form of tests

and plots to assess prognostic balance provide appraisals of the chosen dimensions

of the prognostic score. These estimated prognostic scores can be included as pre-

dictors in a prognostic-propensity model with or without the presence of additional

covariates for further covariate adjustment to provide an improved propensity score

that is formed from covariates most relevant to an outcome of interest. In turn, the

estimated prognostic-propensity scores can be used like standard propensity scores

to aid in the design of observational studies. The routine of estimating a multidi-

mensional prognostic score and the corresponding prognostic-propensity score offers

an improvement to the standard pre-processing of observational data via propensity

scores alone.

3.8 Appendix: Justification for balance checking on estimated prognos-
tic scores

In the discussion of the prognostic-propensity score in Section 3.5, a standard

notion of covariate distribution overlap across treatment groups is assessed with box-

plots. For further study of this propensity balance on prognostic scores, an analyst

could apply a version of the tests introduced in Hansen and Bowers (2008). Rather

than assessing similarity in covariate distributions, an analyst would be assessing

similarity in the distributions of the linear combinations of covariates deemed to be

most relevant to the outcome of interest – the prognostic score dimensions. These

tests could be conceptualized as randomization t-tests of the treatment coefficient in
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a regression of the covariate in question on the treatment variable and a fixed effect

for pair or stratum membership.

Ideally, this comparability would be ascertained on the true prognostic scores,

the exact values of combinations of covariates most relevant to the outcome, rather

than estimates of these values. With a dimension fitted by a linear model, this is

the difference between assessing similarities on dimensions defined by Xβ0, where

β0 is the vector defining the true most prognostically relevant linear combination of

covariates, rather than an assessment using Xβ̂.

In Proposition III.1 and its proof, we establish the similarity between checking

balance on an estimated and actual prognostic score via an asymptotic argument.

We argue conditionally on the number of treated units per block, or
∑nb

i=1 Zbi = mb,

for b ∈ [1, B], assuming there are nb units in block b. Z, a random variable, is the

vector of treatment assignments and is uniform on all {0,1}-valued vectors such that∑nb
i=1 Zbi = mb. x is a matrix of covariates, which are considered to be fixed values.

The asymptotic argument is made not for a single sequence of observations, but for a

sequence of experimental populations, ν = 1, 2, ... in which increasing ν corresponds

to increasing the number of observations. This follows the structure of proof used in

Hansen and Bowers (2008).

3.8.1 Definitions

Define

(3.3) dZ(xνβ) =

∑B
b=1 hνb{(Z ′νbxνbβ/mνb)− (1− Z ′νb)xνbβ/(nνb −mνb)}∑B

b=1 hνb

where hνb is the harmonic mean of nνb −mνb and mνb, or, respectively, the number

of control units and the number of treatment units in block b for population ν.

Multiplying hνb through, it can be seen that
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dZ(xνβ) =

∑B
b=1 hνb{(Z ′νbxνbβ/mνb)− (1− Z ′νb)xνbβ/(nνb −mνb)}∑B

b=1 hνb

=

∑B
b=1{Z ′νbxνbβ −

mνb
nνb

(Z ′νbxνb + (1− Z ′νb)xνb)β}∑B
b=1 hνb

=

∑B
b=1{Z ′νbxνbβ −mνb

Pnνb
i=1 xbi
nνb

β}∑B
b=1 hνb

=

∑B
b=1{Z ′νbxνbβ − E(Z ′νbxνbβ)}∑B

b=1 hνb

Define Sνbxx as the as the sample covariance matrix of xν in block b. Then,

(3.4) V0(β) =
β′(
∑B

b=1 hνbSνbxx)β

(
∑B

b=1 hνb)
2

If β̂ = 0, define V(β0)

V(β̂)
= 0.

For fixed β, V(dZ(xνβ)) = V0(β).

V(dZ(xνβ)) = V

(∑B
b=1{Z ′νbxνbβ − E(Z ′νbxνbβ)}∑B

b=1 hνb

)
=

V(
∑B

b=1{Z ′νbxνbβ})
(
∑B

b=1 hνb)
2

=
β′V(

∑B
b=1{Z ′νbxνb})β

(
∑B

b=1 hνb)
2

=
β′(
∑B

b=1 hνbSνbxx)β

(
∑B

b=1 hνb)
2

= V0(β)

Proposition III.1. For measures of balance denoted by dZ(xβ), it can be shown that

(3.5)
dZ(xν β̂)

V
1/2
0 (β̂)

− dZ(xνβ0)

V
1/2
0 (β0)

= Op(ν
−1/2)
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3.8.2 Conditions

1. x is a matrix of finite constants with a fixed number of columns (described by

p).

2. Over all populations indexed by ν, mνb
nνb

, or the fraction of units in the treatment

group in block b, is bounded away from 0 and 1.

3. For Sνbxx as defined previously, we assume
PB
b=1 hνbSνbxx

(
PB
b=1 hνb)

2
→p Sxx as ν → ∞,

where Sxx is non-negative definite.

4. β0 is finite and β0
′SXXβ0 > 0.

5. Suppose f(yi, xi, β) is a possible likelihood for the data (though possibly mis-

specified) and logf(yi, xi, β) is differentiable. Define Q̂ν(β) = ν−1
∑ν

i=1 logf(yi, xi, β)

and let β̂ν be the maximizer of Q̂ν(β). Assume Q̂ν(β) is a concave function,

a property that can be established for the log-likelihoods of many ordinary re-

gressions and generalized linear models.

If we suppose there exists a function Q0(β) such that Q̂ν(β) →p Q0β for all β.

Define β0 to be the unique maximizer of Q0(β), where β0 is an element of the

interior of the convex set that describes the parameter space. Then, β̂ν exists

with probability approaching one and β̂ν → β0 as ν →∞.

3.8.3 Proof

We can begin by writing

dZ(xν β̂ν)

V0(β̂ν)
=

{
dZ(xν(β̂ν − β0))

V
1/2
0 (β0)

+
dZ(xνβ0)

V
1/2
0 (β0)

}√
V0(β0)

V0(β̂ν)

which implies the LHS of Equation 3.5 can be written as

dZ(xν(β̂ν − β0))

V
1/2
0 (β0)

√
V0(β0)

V0(β̂ν)
+
dZ(xνβ0)

V
1/2
0 (β0)

(√
V0(β0)

V0(β̂ν)
− 1

)
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First, it can be shown that as ν →∞√
V0(β0)

V0(β̂ν)
→p 1

By the continuous mapping theorem, it is sufficient to show in the above that the

square of the LHS converges to the square of the RHS.

By definition,

V0(β0)

V0(β̂ν)
=
β0
′(
∑B

b=1 hνbSνbxx)β0/(
∑B

b=1 hνb)
2

β̂′ν(
∑B

b=1 hνbSνbxx)β̂ν/(
∑B

b=1 hνb)
2

By conditions 3, 4, 5, and another application of the continuous mapping theorem,

V0(β0)

V0(β̂ν)
=
β0
′(
∑B

b=1 hνbSνbxx)β0

β̂′ν(
∑B

b=1 hνbSνbxx)β̂ν
→p

β0
′Sxxβ0

β0
′Sxxβ0

= 1

as ν →∞.

Thus,
√

V0(β0)

V0(β̂ν)
→p 1 and

(√
V0(β0)

V0(β̂ν)

)
− 1→p 0.

Hansen and Bowers (2008), Section 3.2, summarizes conditions under which we

can establish the following asymptotic distribution result, taking weights defined as

wb = hbPB
b=1 hb

(normalized harmonic mean weights):

dZ(xνβ0)

V
1/2
0 (β0)

=
dZ(xνβ0)

V1/2(dZ(xνβ0))
→d N(0, 1)

as ν →∞.

By an application of Slutsky’s Theorem, as ν →∞:

dZ(xνβ0)

V
1/2
0 (β0)

(√
V0(β0)

V0(β̂ν)
− 1

)
→d 0

It remains to show

dZ(xν(β̂ν − β0))

V
1/2
0 (β0)

√
V0(β0)

V0(β̂ν)
= Op(ν

−1/2)
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Write

dZ(xν(β̂ν − β0))

V
1/2
0 (β0)

=
dZ(xν(β̂ν − β0))

V1/2(xνβ0)

=

∑B
b=1(Z

′
νbxνb − E(Z ′νbxνb))

V1/2{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))}

(β̂ν − β0)

∑B
b=1(Z

′
νbxνb − E(Z ′νbxνb))V

−1/2{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))} is a 1×p vec-

tor for a given value of ν or a ν× p matrix for all ν. For any k ∈ [1, p], we can define

β̃ such that the kth term of β̃ equals 1, and for all i not equal to k, the ith term of

β̃ equals 0. Thus, xk = xβ̃ and xbk = xbβ̃.

For a selected k, terms of a column of length ν of this ν × p matrix are defined:

∑B
b=1(Z

′
νbxνbk − E(Z ′νbxνbk))

V1/2{
∑B

b=1(Z
′
νbxνbk − E(Z ′νbxνbk)}

V1/2{
∑B

b=1(Z
′
νbxνbβ̃ − E(Z ′νbxνbβ̃))}

V1/2{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))}

Noting E(
∑B

b=1(Z
′
νbxνbk − E(Z ′νbxνbk))) = 0, by the Central Limit Theorem,

∑B
b=1(Z

′
νbxνbk − E(Z ′νbxνbk))

V1/2{
∑B

b=1(Z
′
νbxνbk − E(Z ′νbxνbk)}

→d N(0, 1)

as ν →∞.

For all k ∈ [1, p], define σk as a positive constant such that β̃′Sxxβ̃/β0
′Sxxβ0 = σk

2.

We can show that as ν →∞,

V1/2{
∑B

b=1(Z
′
νbxνbβ̃ − E(Z ′νbxνbβ̃))}

V1/2{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))}

→p σk

It is equivalent to show its square converges to σk
2. The square of the LHS can

be written as
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(
V1/2{

∑B
b=1(Z

′
νbxνbβ̃ − E(Z ′νbxνbβ̃))}

V1/2{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))}

)2

=
V{
∑B

b=1(Z
′
νbxνbβ̃ − E(Z ′νbxνbβ̃))}

V{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))}

=
β̃′[
∑B

b=1 hνbSνbxx]β̃

β0
′[
∑B

b=1 hνbSνbxx]β0

→p
β̃′Sxxβ̃

β0
′Sxxβ0

= σk
2

Combining previous results, for some k ∈ [1, p] with Slutsky’s Theorem, as ν →p

∞, it can be established that each column of

dZ(xν)

V1/2(dZ(xνβ0))

√
V0(β0)

V0(β̂ν)

converges to a normal distribution:

∑B
b=1(Z

′
νbxνbk − E(Z ′νbxνbk))

V1/2{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))}

√
V0(β0)

V0(β̂ν)
→d N(0, σk

2)

which implies

∑B
b=1(Z

′
νbxνbk − E(Z ′νbxνbk))

V1/2{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))}

√
V0(β0)

V0(β̂ν)
= Op(1)

By the Central Limit Theorem and results for general regression models,

√
ν(β̂ν − β0)→d N(0, A−1BA−1)

where B = E[ε2x′x], where ε = Y − x′β0 and A = E[x′x].

Thus, (β̂ν − β0) = Op(ν
−1/2). It also follows that for any k ∈ [1, p], we can look

at any term k in both vectors β̂ν andβ0 and see that

√
ν(β̂νk − β0k)→d N(0, A−1BA−1

[k,k])
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implying (β̂νk − β0k) = Op(ν
−1/2).

If we notice

dZ(xν(β̂ν − β0))

V
1/2
0 (β0)

√
V0(β0)

V0(β̂ν)

is equivalent to

(3.6)

p∑
k=1

(β̂νk − β0k)

∑B
b=1(Z

′
νbxνbk − E(Z ′νbxνbk))

V1/2{
∑B

b=1(Z
′
νbxνbβ0 − E(Z ′νbxνbβ0))}

√
V0(β0)

V0(β̂ν)

and also, by previous results, each of the k terms in (3.6) is Op(ν
−1/2). Thus, the

sum of the k terms is also Op(ν
−1/2), which ultimately implies (3.5).



CHAPTER IV

The sensitivity of linear regression coefficients’ confidence
limits to the omission of a confounder

4.1 Overview

Omitted variable bias can affect treatment effect estimates obtained from obser-

vational data due to the lack of random assignment to treatment groups. Sensitivity

analyses adjust these estimates to quantify the impact of potential omitted variables.

This paper presents methods of sensitivity analysis to adjust interval estimates of

treatment effect — both the point estimate and standard error — obtained using

multiple linear regression. Taking into account the impact an omitted variable could

have on the standard error of the treatment effect is important to inferences obtained

from multiple regression; the narrowing or widening of a confidence interval can al-

ter inferences made about treatment in a different manner than a shift in the point

estimate. The methods are demonstrated on data from Connors et al.’s (1996) study

of right heart catheterization and health outcomes.

4.2 Introduction

In analyzing data to determine the causal effect of a treatment with a multiple

linear regression model, the estimated coefficient of the treatment assignment in-

dicator is often taken to be an estimate of the treatment effect. This approach is

101
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valid provided the standard linear model assumptions are met and that there are no

unaccounted for differences in the treatment and control groups. In the case of an

observational study in which there is no random assignment to treatment, there is

potential for an unmeasured confounder to exist that would bias the effect estimate

as measured by the fitted regression coefficient. Adjusting for as many covariates

as an analyst has available can greatly reduce the potential impact of omitting a

single variable, but the possibility still exists that the omission could still have a

considerable effect. Rather than viewing the conclusions from observational data

analyzed with multiple regression as invalid, a better approach is to quantify the

potential change an omitted confounder could have on the treatment effect estimate

if it were able to be measured and included in the regression model. For this purpose,

a sensitivity analysis can be formulated.

Methods of sensitivity analysis quantify the degree of bias from omitted con-

founders that would change or nullify conclusions of a study. Types of sensitiv-

ity analyses for various models and data structures have been discussed by Corn-

field et al. (1959), Seber (1977), Rosenbaum and Rubin (1983), Rosenbaum (1988),

Rosenbaum (1991), and Copas and Li (1997), Robins et al. (2000), Marcus (1997),

Lin et al. (1998), Frank (2000) and Imbens (2003), among others. Early literature

on sensitivity analysis examines the effect of an omitted variable on point estimates.

Much of the current literature on sensitivity analysis directly addresses the effect of

omitted variables on inferences; however, these effects are examined in the context

of relatively specialized methods. The methods of sensitivity analysis presented in

this paper have many advantages over prior methods, but a key advantage is that

our methods apply to one of the most widely used multivariate analytic techniques

– multiple regression. The typical procedure of the existing methods for sensitivity
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analysis for the omission of a confounder in a multiple regression model aims to

describe relationships between omitted variables and variables present in the model

and use these relationships to adjust point estimates, confidence limits, or p-values.

The method of sensitivity analysis presented here follows this familiar outline, but

it has several advantages over the existing methods. The procedure proposed in this

paper describes the relationship between omitted and measured confounders in terms

intrinsic to multiple regression with two simple quantities (Section 4.3), so additional

regression fits can calibrate intuition about these relationships in practice when the

omitted confounder is unknown (Angrist and Imbens (2002) discuss this calibration

in a related context). Two quantities are used so one can track associations between

the omitted variable and the treatment assignment, while the other quantity can

track the relationship with the response variable, controlling for all of the measured

confounders. Depending on the confoundedness of an omitted variable with both the

treatment and outcome, the interval estimate of treatment effect could shift at its

center, widen, or narrow, or some combination of changing in width and point esti-

mate. Importantly, our method, in contrast to many methods of sensitivity analysis,

adjusts both the point estimate and standard error of the treatment effect, allowing

for completely adjusted inferences. While sensitivity analyses are important to help

understand observational data as best as we are able, sensitivity analyses for omitted

variables are not restricted to observational data, sensitivity analyses are useful in

any analysis in which there is a possibility for an unobserved variable to affect the

results.

Section 4.2 continues with an introduction to a case study and associated data.

Section 4.3 details the two key quantities underlying our sensitivity analysis and how

they are calibrated and used to adjust the point estimate and standard error of treat-
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ment effect. Section 4.4 presents a key theoretical results underlying the modification

of confidence limits to account for an omitted confounder. In Section 4.5, we show

that our method is not limited only to the context given in the previous sections:

it is readily adaptable to situations in which multiple confounders are omitted and

situations in which an analyst desires to combine propensity score matching with

ordinary multiple regression.

4.2.1 A case study

The methods introduced in this paper are applied to data from the much-debated

Connors et al. (1996) study of a critical-care procedure known as pulmonary artery or

right heart catheterization (RHC). RHC is a procedure that was first used in 1970 to

perform continuous measurements of right heart pressures and blood flow in critically

ill patients and became the standard in the treatment of such patients, without first

being tested by a randomized controlled trial. Observational studies that preceded

the Connors et al study (e.g. Gore et al. (1987) and Zion et al. (1990)) determined

that RHC did not have the effects physicians expected; successful outcomes were not

more likely in patients who received the RHC. These studies were criticized due to

the potential of an omitted variable to lead to a systematic bias in the results; it may

be that patients who received RHC differed in terms of this omitted variable from

those whose care was not managed with the procedure. Connors et al. (1996) used a

large sample and considerable adjustments for pre-treatment confounders found that

not only did the procedure not appear to be beneficial, receiving the RHC procedure

seemed to worsen patient outcomes. Since the Connors et al study, five randomized

clinical trials have been conducted (Rhodes et al. (2002); Sandhan et al. (2003);

Shah and Stevenson (2004); Richard and et al (2003); Harvey et al. (2005)), which

supported most findings of the observational findings of Connors et al. (1996). The
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procedure is still widely used despite these findings. In our analysis, we quantify

the effect an omitted confounder could have on the effect of RHC on the length of a

patient’s hospital stay.

4.2.2 The SUPPORT data

The data analyzed in Connors et al. (1996) is from the Study to Understand

Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT). The

study collected data at five centers on the decision-making and outcomes of seriously

ill, hospitalized adult patients. Patients included in the study had to meet certain

entry criteria and particularly a predefined level of severity of illness. These patients

were studied in two phases. Phase I was a prospective observational study of 4301

patients designed to describe the process of decision making and care of critically

ill patients. Phase II was a cluster RCT of an intervention (the delivery of patient

preferences regarding treatment to the physicians) to improve decision making and

outcomes for severely ill patients. Intervention was found not to affect physicians’

decisions or patient outcomes, so phase I and phase II data sets were combined and

all 5735 SUPPORT patients who were admitted to an ICU in the first 24 hours of

study were analyzed together, regardless of phase status.

For all SUPPORT patients, initial disease categories upon admission to the hos-

pital were recorded (such as acute respiratory failure, chronic obstructive pulmonary

disease, cirrhosis, colon cancer, etc.). In addition, measurements to assess physio-

logical status were recorded throughout the hospital stay, and the present analysis

makes use of these physiological measurements on the first day of the hospital stay.

Demographic information was obtained from the patient or surrogate interviews. Pa-

tients were coded as having had RHC if it was performed within the first 24 hours of

the study. As mentioned previously, the outcome of interest is the length of hospital
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stay; measured in days, it is the difference between the entrance to and exit from

the hospital. The outcome variable, length of hospital stay, is right-skewed, so our

analysis will work with a log-transformed version of the outcome variable.

4.2.3 Data preparation and preliminary analysis

Before estimating a treatment effect and applying our sensitivity analysis meth-

ods, we use variable selection with the RHC data to purposely omit some variables.

After backward stepwise variable selection, 19 variables remain in the model and

approximately 30 other variables can be considered “omitted” in future analyses.

Stepwise variable selection often has the consequence of inflating standard errors

(Faraway, 1992). To account for this potential inflation, we utilize a nonparametric

bootstrap in which regressions are computed for bootstrapped samples to obtain a

distribution of t-statistics of the estimated regression coefficients for the treatment.

From this distribution, bootstrapped quantiles of the t distribution can be obtained.

These quantiles will be used in future confidence intervals, though they are similar

to the quantiles of the relevant t -distribution. From the regression model with the

19 covariates, our preliminary estimate of the effect of RHC on the length of hospital

stay is about 0.11, which indicates that RHC lengthens hospital stays by about 12%.

Confidence intervals on both the log scale and percent increase scale are presented

in Table 4.1.

From this initial data analysis, the need to consider adjustments to an entire

interval can be seen with the case of the variable DNR, which indicates the presence

of a do-not-resuscitate order on file on the date of entry. The interval for treatment

effect with DNR in the model is (0.06, 0.16), but if DNR is excluded from the model,

the interval changes to (0.09, 0.20). A single variable has the potential to shift both

the point estimate and interval width, indicating the need to consider both in a
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Table 4.1: Effect of RHC on length of stay: 95% confidence intervals
CI on log-scale CI for percent increase

Effect of RHC on (0.06, 0.16) (6%, 18%)
length of hospital stay

method of sensitivity analysis.

4.3 Effect estimates accounting for omitted variables

To understand how an omitted variable, W , would affect the coefficient on the

treatment variable, Z, in a hypothetical regression of a given outcome on these and

other variables,

(4.1) Y = αXT + βZ + δW + e ,

we can begin by examining how included variables affect the treatment coefficient in

the regression that was actually performed,

(4.2) Y = aXT + bZ + e.

The current section demonstrates this process and its uses in sensitivity analyses.

4.3.1 Sensitivity Zone

To relate interval estimates for β to those for b, we quantitatively describe the

omitted variable, W , in terms of its relationship with both the treatment variable

and outcome variable conditional on the other included covariates. The extent to

which a variable is confounded with the treatment variable is of central importance

to assessing omitted variable bias. If a regression of the treatment assignment Z on

all of the confounders X is fit, each of the t-statistics associated with the regression

coefficients provide a measure of association between Z and a given confounder. To

obtain a measure of the relationship between Z and W , a similar process can be
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used. Rather than regressing Z on X alone, Z is regressed on X and W , and the

t-statistic associated with W , denoted tW , is taken to be a measure of what we will

call treatment-confoundedness. In the case of a non-continuous Z – a binary Z, for

example– a nonlinear model may have to be used to allow the t-statistics to serve

as inferential statistics, however, in the sensitivity analysis, the t-statistics from a

linear model are used for purely descriptive purposes.

To assess a confounder’s impact on a regression model, it is typical to compare

values of R2 for models with and without the specific confounder. Comparing R2

values allows an estimation of the association between the outcome variable and the

particular confounder of interest, conditional on all other confounders in the model.

Similarly, as R2 captures the proportion of variation explained, one could assess

the impact of a particular variable by comparing the proportion of variation not

explained, or 1 − R2. To capture the association between an omitted variable and

an outcome variable, define ρ2
y·w|zx as [(1 − R2

noW ) − (1 − R2
withW )]/(1 − R2

noW ), or

the proportionate reduction in unexplained variance when W is added as a regressor

(Christensen, 1996, Ch. 6). For a sensitivity analysis, we require values of both tW

and ρ2
y·w|zx, and the collection of permissible values for (tW , ρ

2
y·w|zx) will be referred

to as the sensitivity zone, following Small (2007).

If each of the 19 regressors in the model are placed in the role of W one at a

time and “omitted” from the model, values of tW and ρ2
y·w|zx can be obtained for

each of these variables. Table 4.2 presents these results, indicating the variability

in the possible associations of W with the treatment variable and of W with the

response variable, conditional on the other included covariates. Some variables,

such as the PaO2/FIO2 ratio, are highly confounded with treatment (tW = 15.2),

but have a small relationship with the response (ρ2
y·w|zx = 0.1%). Other variables,
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such as the DNR order, have a substantially stronger association with the outcome

(ρ2
y·w|zx = 3.3%), but slightly weaker, though still relatively strong, relationship

with the treatment variable (tW = 6.5). Many variables – such as upper GI bleed,

white blood cell count, body temperature, and heart rate – have little relationship

to either treatment or response in comparison to the other variables present in the

model. Proposition IV.1 and Proposition IV.2 will illuminate the relative importance

of these variations among the confounders and their corresponding impact on the bias

and standard error of the treatment effect.

Table 4.2: Selected included covariates’ relation to treatment and response variables, given remain-
ing included variables

confounding % decrease in unexplained
with RHC (|tW |) variation by adding W

(rounded) (100ρ2
y·w|zx )

income 6.8 0.3
initial disease cat. 1 48.1 3.4
initial disease cat. 2 20.2 0.8

Comorbidities illness:
renal disease 2.1 0.2

Upper GI bleed 0.7 0.1
Day 1 Measurements:

APACHE score 5.1 0.1
white blood cell ct 0.5 0.0

heart rate 2.5 0.0
temperature 2.3 0.1
PaO2/FIO2 15.4 0.1

albumin 2.3 0.7
hematocrit 3.3 0.9

bilirubin 2.2 0.1
sodium 3.1 0.1
PaCo2 6.8 0.2

DNR 6.5 3.3
PH 3.7 0.3

Admit Diagnosis Categories:
neurology 5.9 0.2

hematology 3.6 0.1
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4.3.2 Benchmarking the sensitivity zone

If W is an omitted variable, how can tW and ρ2
y·w|zx be computed, as they seem to

rely on knowledge about W? An analyst must use information from the measured

variables to guide intuition about potential bounds for the sensitivity zone; this

process will be referred to as benchmarking the sensitivity zone. In the present

study of the RHC data, we have access to a collection of variables omitted from

the stepwise procedure, a procedure which eliminates variables from the model on

the basis of their conditional relationship with the outcome. To calibrate intuitions

about the treatment-confoundedness tW , these deliberately omitted variables can be

used, while variables present in the model can guide ideas about the value of ρ2
y·w|zx.

To determine a bound for tW , we use the variables omitted by the stepwise pro-

cedure, a process that should have little to do with the treatment-confoundedness of

the variables. By placing these variables in the role of W , tW values can be obtained

for each of these variables as they were obtained for the included variables in Ta-

ble 4.2. For example, for the average blood pressure on the day of entry, tW = 8.6,

while for an indicator variable of a patient’s immunosuppresion, tW = 0.4. The range

of values of tW obtained by these regressors offers an idea of a typical range of such

values for variables in this application. If other data were available, values for tW

could be obtained by performing similar calculations for variables of interest in an

external data set.

An analyst could select bounds for ρ2
y·w|zx with substantive knowledge of how a

certain W may plausibly affect R2 if such information were available. In its absence,

bounds for ρ2
y·w|zx can be benchmarked using variables in the model. When the

covariates included in our model are placed in the role of W one at a time (see

Table 4.2), 17 of the 19 regressors yield values of ρ2
y·w|zx of less than 1%. Only
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two variables have corresponding ρ2
y·w|zx values of approximately 3%, and only when

placing all of the included covariates collectively in the role of W – fitting an intercept

only model – does ρ2
y·w|zx come close to 10%. Based on this information, for the

purposes of our sensitivity analysis, we consider ρ2
y·w|zx ≤ .01 to be a reasonable

bound and ρ2
y·w|zx ≤ .10 to be a conservative upper bound.

4.3.3 Relating the sensitivity zone to bias and standard error

If b is the coefficient of treatment in the absence of W and β is the coefficient of

treatment if W is included in the model, then the bias in the effect estimate due to

W is given by Proposition IV.1.

Proposition IV.1. If R2
y·zx < 1 and tW is finite, then

(4.3) b− β = SE(b)tWρy·w|zx.

A proof is given in Section 4.4.2.

Bias due to the omission of W is the product of the standard error of the esti-

mated Z-coefficient, the treatment-confoundedness of W , and the value of ρy·w|zx.

As |ρy·w|zx| ≤ 1, the value of tW can potentially have a much larger impact on the

bias; however, the effect of even a very large tW will negligible if ρy·w|zx is very small.

We can illustrate this notion by considering some of the variables previously men-

tioned. Recall that PaO2/FIO2 ratio is highly confounded with treatment but has

a small association with the outcome, DNR order has a moderately large value of

the treatment-confoundedness but is – relatively speaking – highly associated with

the outcome variable, and the presence of an upper GI bleed has a very small asso-

ciation with both treatment and outcome. Consequently, the biases from omitting

PaO2/FIO2, DNR order, and upper GI bleed are approximately 0.012, 0.030, and 0,

respectively (or, about half a standard error, one standard error, and zero standard
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errors, respectively), indicating the relative contributions of the values of tW and

ρy·w|zx to the bias calculation. While large values of treatment-confounding lead to

bias, the magnitude of the bias is both a function of the treatment confoundedness

and the proportionate reduction in unexplained variation produced by adding W .

If sensitivity analysis only focuses on omitted variable bias, part of the effect of

an omitted variable can be overlooked. Table 4.3 presents the effects of excluding

several of the variables included in the length of stay model of the RHC data in the

second column (df = 5700). With the tW = 0.7 and ρ2
y·w|zx = 0.1%, the variable

upper GI bleed had little effect on bias, and Table 4.3 illustrates that omitting or

including upper GI bleed has no effect on the standard error of the treatment effect.

In contrast, excluding the variable DNR order increases the standard error (from

0.0260 to 0.0264), while excluding PaO2/FIO2 decreases standard error (from 0.0260

to 0.0255). The changes to standard error are more noticeable for non-negligible

values of tW and ρ2
y·w|zx. In the column corresponding to the RHC study, in which

df = 5700, the changes in the standard errors due to variable exclusion are moderated

by the large sample size. If, instead, a smaller sample size is considered and the

corresponding df = 50, the effects on the standard errors are much more substantial.

Adjusting for PaO2/FIO2 in the small sample size scenario more than doubles SE(β),

and this change could greatly alter subsequent inferences. It appears that assessing

the sensitivity of the standard error estimate to the omission of a confounder is

crucial with moderate or small samples.

The findings illustrated in Table 4.3 are reflected in Proposition IV.2, which for-

mally demonstrates how to adjust the standard error estimates of b to align them

with those of β.
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Table 4.3: RHC-coefficient and its standard error after removing specified variables.
Excluded Standard Error
Variable Estimate df=5700 df = 50
no exclusion 0.112 0.0260 0.278
DNR order 0.143 0.0264 0.206
GI bleed 0.112 0.0260 0.274
PaO2/FIO2 0.122 0.0255 0.115

Proposition IV.2. If R2
y·zx < 1 and tW is finite, then

(4.4) SE(β) = SE(b)

√
df + tW

2

df− 1

√
1− ρy·w|zx2.

Here df = n − rank(X) − 1, the residual degrees of freedom after Y is regressed on

X and Z.

Proposition IV.2 will be strengthened in Proposition IV.6, which is proved in the

Appendix.

Similar to the bias of β, the standard error of β is both a function of |ρy·w|zx| and

|tW |, but the two values of the sensitivity zone act in opposite directions on SE(β).

Proposition IV.2 uses the term
√

1− ρy·w|zx2 as opposed to ρy·w|zx. This explains

why a variable like PaO2/FIO2 could decrease SE(β), while another variable like

DNR could increase the standard error. The df term in Proposition IV.2 leads to

the sample size effects shown in Table 4.3. With a large sample size, a large value of

df is an obvious consequence, and the effects of tW and ρy·w|zx on the standard error

are overpowered by the sample size effects.

4.4 Sensitivity Intervals

Propositions IV.1 and IV.2 can be combined to provide a closed-form expression

for the adjusted interval estimate of the treatment effect of Z on an outcome Y

for a potential omitted variable W , controlling for all measured confounders X.

The desired interval estimates are of the form β ± qSE(β), and revolve around the



114

estimated quantities b, SE(b), and our sensitivity zone (tW , ρy·w|zx). Bounds are

placed on the values in the sensitivity zone such that we can obtain a union of

intervals for tW ≤ T and ρ2
y·w|zx ≤ D, for non-negative T and D. This union of

intervals results in an expression for a single adjusted interval we call the sensitivity

interval following Rosenbaum (2002). Proposition IV.3 describes how sensitivity

zones map to sensitivity intervals.

For ρ2 ∈ [0, 1] and dfw > 0 define f by

(4.5) f(t, ρ2, q, dfw) =


t|ρ|+ q

√
(1 + 1

dfw
(1 + t2))(1− ρ2), ρ2 ≤ g(t, q, dfw)√

t2 + q2 · (1 + 1
dfw

(1 + t2)), ρ2 > g(t, q, dfw);

where g(t, q, dfw) = sin2{arctan[tq−1(1 + dfw
−1(1 + t2))−1/2]}.

Proposition IV.3. Let Y , X, Z and W be as in (4.1) and (4.2), with both regres-

sions fit either by ordinary least squares or by weighted least squares with common

weights. Let ρy·w|zx and tW be as defined in § 4.3.1; suppose R2
y·zx < 1, |tW | < ∞.

Fix q > 0. Then

(4.6) β ± qSE(β) ⊂ b± f(|tW |, ρ2
y·w|zx, dfw, q)SE(b)

where f is given by (4.5) and dfw = df − 1 is the residual degrees of freedom in the

regression of Y on X, Z, and W .

The proof of Proposition IV.3 follows later in this section.

4.4.1 Applying Proposition IV.3

As detailed in Section 4.3.2, a process called benchmarking can help an analyst se-

lect values of ρ2
y·w|zx and tW that are reasonable for a given application. For studying

the effects of RHC on length of stay, bounds for ρ2
y·w|zx of 1% and 10% are selected on



115

the basis of values in Table 4.2. It is also instructive to consider situations in which

no bound can be put on ρ2
y·w|zx, but these would be highly pessimistic sensitivity

analyses. Values of tW are chosen to reflect the magnitude of tW values that can

be computed for variables omitted from the stepwise elimination. Table 4.4 presents

sensitivity intervals for hypothetical omitted variables in which the hypothetical vari-

ables have tW values of the confounders listed in the table, and the selected bounds

for ρ2
y·w|zx.

Table 4.4:
95% sensitivity intervals for the treatment coefficient, with the putative unobserved vari-
able’s treatment-confounding (|tW |) hypothesized to be no greater than the treatment-
confounding of 6 deliberately omitted variables. The decrease it would bring to the
variance of response residuals is hypothesized to be no greater than either of 2 index
values, 1% and 10%, or is not restricted.

Treatment % decrease in unexplained variation
confounding (100ρ2

y·w|zx)
Variable benchmark 1% 10% Unrestricted

Insurance class 12.2 most (0.03, 0.20) (-0.04, 0.26) (-0.21, 0.43)
Respiratory eval. 8.9 some (0.04, 0.19) (-0.01, 0.23) (-0.12, 0.35)

Mean blood press. 8.6 some (0.04, 0.19) (-0.01, 0.23) (-0.12, 0.34)
Cardiovascular eval. 8.5 some (0.04, 0.19) (-0.01, 0.23) (-0.11, 0.34)

Weight (kg) 6.1 some (0.04, 0.18) (0.01 , 0.21) (-0.05, 0.28)
Immunosuppression 0.4 least (0.06, 0.16) (0.06 , 0.16) (0.06 , 0.16)

In Table 4.4, Proposition IV.3 is applied, allowing the contributions of tW and

ρ2
y·w|zx values to the sensitivity interval to be jointly examined. The highly pessimistic

case, in which no bound is put on ρ2
y·w|zx, leads to interval estimates that are highly

sensitive to omitted confounders except in the case of very low levels of treatment

confounding. Putting a bound of 1% or 10% on ρ2
y·w|zx, the interval estimates are

resistant to the omission of a confounder in cases where treatment-confoundedness

is similar to that of most of the variables included in the model. For variables with

larger levels of treatment confounding, those with tW values similar to insurance class

or mean blood pressure, omitting such a variable noticeably changes the interval

estimate of treatment effect.
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4.4.2 Theoretical results underlying sensitivity formulas

Propositions IV.1, IV.2, and IV.3 extend better-known descriptions of bias in re-

gression coefficients’ point estimates due to variable omission (e.g., Seber, 1977, p.66)

to interval estimates. Much of the earlier literature on variable omission considers

only adjustment to the point estimate but not the standard error. Developments

from the pre-computer era offer formulas for the numerical adjustment of multiple

regression results for the addition or removal of a covariate in place of refiguring

the entire regression (Cochran, 1938). In this section, the proof of Proposition IV.1,

which relates to these earlier developments, and the proof of Proposition IV.3 are

presented.

Consider X to be a matrix containing a column of 1’s (or columns from which

a column of 1’s can be recovered as a linear combination) and let Y , Z, and W

be column vectors of common length, equal to the number of rows of X. An inner

product is defined as (A,B) :=
∑
wiaibi/

∑
wi, where wi is a quadratic weight for

the ith observation (in the case of unweighted least squares regression, wi ≡ 1). Write

1 for the column vector of 1s. For vectors A, B, and C, let Pj(A|B,C) represent the

projection of A into the subspace spanned by B and C. Variances and covariances are

defined as follows: σab·c := (A−Pj(A|C), B−Pj(B|C)), σ2
a·c = σaa·c;σab = σab·1, σ2

a =

σ2
a·1. Partial correlations are then given as: ρab := σab/(σaσb); ρab·c := σab·c/(σa·cσb·c).

Denote the degrees of freedom available for estimating b as df = n −m − 1, where

m = column.rank(X) . The nominal standard error estimates for b̂ and β̂ (cf. (4.2)

and (4.1)) are then

(4.7) SE(b) =
df−1/2σy·zx

σz·x
, SE(β) =

(df − 1)−1/2σy·zxw

σz·xw
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Proof of Proposition IV.1. To show b− β = SE(b)tWρy·w|zx, write

(4.8) Pj(W |Z,X) =: B∗Z + C∗Xt.

Using (4.2), (4.1), and (4.8), the bias in the treatment coefficient can be written

as b̂− β̂ = B∗δ̂ , a well-known result (Seber, 1977, p. 66).

WriteW⊥x forW−Pj(W |1,X), Z⊥x for Z−Pj(Z|1,X), Y ⊥zx for Y−Pj(Y |1, Z,X),

andW⊥zx forW−Pj(W |1, Z,X). Then Pj(W⊥x |Z⊥x) = B∗Z⊥x , and Pj(Y ⊥zx |W⊥zx) =

δ̂W⊥zx . These formulas implyB∗ = σwz·x/σ
2
z·x and δ̂ = σyw·zx/σ

2
w·zx = ρyw·zxσy·zx/σw·zx,

so that b−β = B∗δ̂ can be written as the product of σy·zx/σz·x, σwz·x/(σz·xσw·zx) and

ρyw·zx. Introducing mutually cancelling factors of (df)±1/2 to the first and second of

these and applying (4.7) turns this into the product of SE(b), (df)1/2σwz·x/(σz·xσw·zx)

and ρyw·zx. But tW is just the ratio of σwz·x/σ
2
w·x to σz·wx/[(df)1/2σw·x], which sim-

plifies to the second of these terms. The result follows.

Proof of Proposition IV.3. The proof of Proposition IV.3 can be divided into two

cases depending on inequality comparing ρ2
y·w|zx and g(t, q, c) as defined in the propo-

sition.

If ρ2
y·w|zx > g(tw, q, c):

For a fixed q and tw, by Proposition IV.1 and Proposition IV.2, the desired con-

fidence interval β ± qSE(β) can be represented as follows:

β − qSE(β) = b̂+ l(arcsinρy·w|zx)

β + qSE(β) = b̂+ u(arcsinρy·w|zx)
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where arcsinρy·w|zx ∈ (−π/2, π/2) and

(4.9) l(θ) := asinθ − dcosθ

(4.10) u(θ) := asinθ + dcosθ,

a := −tWSE(b), and d :=
√

(t2W + df)/(df − 1)SE(b). By calculus, u(·) can be

seen to have its maximum over (−π/2, π/2) at arctan a/d ∈ (−π/2, π/2). By algebra

and trigonometric identities, that maximum is
√
a2 + d2. Similarly, over (−π/2, π/2),

l(·) takes its minimum value of −
√
a2 + d2 at arctan −a/d. The part of Proposi-

tion IV.3 for ρ2
y·w|zx > g(tw, q, c) follows.

If ρ2
y·w|zx ≤ g(tw, q, c):

Note that as θ varies in (−π/2, π/2), the function u(θ) (4.10) takes its maxi-

mum at arctana/d, or arctan −tW√
(t2W+df)/(df−1)

and l(θ) takes its minimum value at

arctan tW√
(t2W+df)/(df−1)

.

For some ρ such that 0 ≤ ρ ≤ sinarctan |tW |√
(t2W+df)/(df−1)

. Let ρy·w|zx ∈ [−ρ, ρ], then

(4.11) arg max
ρy·w|zx

u(arcsinρy·w|zx) =

 ρ, tW < 0

−ρ, tW > 0

(4.12) arg min
ρy·w|zx

l(arcsinρy·w|zx) =

 −ρ, tW < 0

ρ, tW > 0

To verify (4.11), note u(arcsin(·)) takes only one maximum as its argument ranges

over [−1, 1] at
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sin arctan
|tW |√

(t2W + df)/(df − 1)
≥ ρ

Thus, u(arcsinρy·w|zx) must take its maximum as ρy·w|zx ranges over [−ρ, ρ] at one

of the endpoints of that interval. (4.12) is established by similar reasoning.

4.5 Extensions

In Sections 4.4 and 4.3, our method of sensitivity analysis is presented for a

single omitted variable with the only confounder controls made by including such

confounders as predictors in the linear model. While this method is applicable to

many modeling scenarios, it has limitations; extensions presented in this section

allow our sensitivity analysis method to be adapted to a broader range of contexts.

The method can be used in the case of multiple variable omissions (or similarly,

when a single omitted confounder is a factor variable with more than two levels). In

addition, confounder controls can be made not only by including more predictors in

the model; our method can be used when an analyst incorporates propensity score

matched sets to control for background information.

4.5.1 Several variables omitted at once

In the event that W is a factor variable with more than two levels or a collection of

omitted variables (any case in which rank(W ) > 1 in the design matrix), our method

applies with some adjustments. The manner for describing the relationship of W

with the outcome variable, ρy·w|zx, can be conceptualized and benchmarked as before.

Rather than describing treatment-confoundedness with tW , we use FW instead, where

FW is the F -statistic from an ANOVA model comparison of models with and without

W . In the case of a univariate W , FW = t2W , so the propositions presented in this

section are generalizations of earlier formulas. A correction for degrees of freedom
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must be made to earlier propositions. For W such that rank(W ) > 1, define t2W to

be [k ∗ df/(df + 1 + k)]FW . Proposition IV.1 can be generalized to put a bound on

the bias when W is not univariate.

Corollary IV.4. Suppose R2
y·zx < 1, t2w is finite, and rank(W ) = k > 1. Then

(b− β)2 ≤ V̂ (b)
k(df)

df + 1− k
Fwρ

2
y·w|zx; or equivalently

|b− β| ≤ SE(b)tW |ρy·w|zx|.

Proof of Corollary IV.4. Without loss of generality, W is uncorrelated with Z and

X: if not, replacing W with W−Pj(W |X,Z) leaves Z-coefficients and their standard

errors unchanged. Define W̃ = Pj(Y ⊥x,z|W ), where Y ⊥x,z = Y −Pj(Y |X,Z). Again

without loss of generality, W = (W̃ ,W2, . . .Wk), where W̃ ⊥ (W2, . . .Wk). Writing

(4.13) Pj(Y |Z,X,W ) =: α + βZ + γXT + δ1W̃ + δ2W2 + · · ·+ δ̂kWk ,

it is immediate that δ2, . . . , δk = 0, since W2, . . . ,Wk are orthogonal to Pj(Y ⊥x,z|W ),

and hence orthogonal to Y ⊥x,z. Projecting (4.13) onto the span of Z,X, and then

equating the Z-coefficient in what results with the Z-coefficient in (4.2) yields

(4.14) β + δ1B
∗
1 = b,

where B∗1 is defined by Pj(W̃ |Z,X) = B∗1Z + C∗X. In other words, b and β are

related just as they would have been had W been of rank 1, rather than k, consisting

only of W̃ .

Corollary IV.4 requires that relationships between quantities for W and W̃ be es-

tablished. Lemma IV.5 establishes these relationships and is proved in the appendix.
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Lemma IV.5. Suppose R2
y·zx < 1, t2w is finite, and rank(W ) = k. Then

1. ρ2
y·w|zx = ρ2

y·w̃|zx

2. t2
W̃
≤ k df

df+1−kFW

The desired result now follows from (4.14), Proposition IV.1, and Lemma IV.5.

When rank(W ) > 1, Proposition IV.2 can be generalized to Proposition IV.6,

which is proved in the appendix.

Proposition IV.6. Suppose R2
y·zx < 1, t2W is finite, and rank(W ) = k, k > 1. Then

(4.15) V̂ (β) = V̂ (b)

[
df + t2W
df − k

]
(1− ρ2

y·w|zx).

The sensitivity intervals in Proposition IV.3 follow algebraically from the bias and

standard error representations (4.3) and (4.4), they work for W of arbitrary rank.

The proofs of Proposition IV.3 and the following are essentially the same.

Proposition IV.7. In the setting of Proposition IV.3 except with rank(W ) > 1,

(4.6) holds with dfw = df − rank(W ) and tW = {[k(df)/(df + 1− k)]FW}1/2.

The ideas of Proposition IV.7 have already been applied earlier in Section 4.4 in

the case of the variable “Insurance class”, which is a factor variable with 6 levels.

The value of tW presented in Table 4.4 is an adjusted version of
√
FW .

4.5.2 Propensity-adjusted estimates of treatment effects

Observational studies, in the absence of random assignment to treatment groups,

are subject to the criticism that covariate distributions differ across treatment groups.

Stratification on the propensity score is a method of covariate adjustment commonly

used with observational studies in an attempt to balance covariate distributions
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across treatment groups. The propensity score is an individual’s probability of re-

ceiving treatment, in this case RHC, conditioned on the observed covariates (Rosen-

baum and Rubin, 1983). The standard recommendation dictates that stratification

into five subclasses on the basis of the propensity score can remove 90% of the bias

due to imbalances in observed covariates across treatment groups (Rosenbaum and

Rubin, 1984). After creating propensity subclasses, a straightforward way of obtain-

ing treatment effect estimates is to use the coefficient of the treatment variable in a

regression of the outcome on an indicator of propensity subclass and the treatment

variable. In this way, interval estimates of the treatment effect should be comparable

to those seen in Table 4.4, but with the additional adjustment to balance observed

covariates across treatment groups in acknowledgement of the lack of randomization.

The propensity matched set regression models could also be viewed as an analogue

to “controlling for” variables by including them in an OLS model. Typically, when

OLS regression models are used, variable selection, as was performed in Section 2,

is advisable; in the case of computing propensity scores, the established advice is to

put all variables in the propensity score without variable selection, regardless of the

additional impact on the propensity score (Rubin and Thomas, 1996). The methods

used in both Section 4.1 and 4.2 could be viewed as different ways of adjusting for

the approximately fifty variables for which one could account with this data. Of

course, propensity matched set adjusted regressions are typically more advisable in

the analysis of observational data.

To illustrate the sensitivity analysis results with various propensity score adjusted

regressions, propensity subclasses must be created. The model used to estimate the

propensity score is a logistic regression model in which the predictors are all variables

that could be reasonably assumed to be measured prior to a patient’s treatment with
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RHC and the response is the indicator of receiving RHC. A randomization-based test

is used to test for covariate balance across the treatment groups: this test aims to see

if the covariate distributions observed across treatment groups could have reasonably

resulted from a randomized experiment (for motivation and specifics of this test,

refer to Hansen and Bowers (2008)). The test indicates that with the standard

five subclasses it cannot be reasonably concluded that the covariate distributions

across treatment groups could have resulted from a randomized experiment. With

six subclasses, however, there is not a significant imbalance in the observed covariates

at a level of α = 0.10

In the case of propensity-adjusted regressions, benchmarking follows a similar

process with adjustments to account for the propensity score strata. To compute

values of tW , one at at time, variables are withheld from the propensity score, the

subclassification into sextiles is made, and the variable of interest is then added into

the regression model with an indicator for propensity matched set and the treatment

assignment variable. The t statistic corresponding to the variable under study is the

taken to be the tW value for that variable. These values are presented for several

covariates in the right side of Table 4.5. Values of ρ2
y·w|zx can be determined as before,

and in this section, we consider the same bounds considered in Table 4.4.

Table 4.5 presents the results of the sensitivity analysis methods in the setting of

propensity adjusted regressions for a subset variables (the entire table is presented

in the Appendix in Table 4.7). The columns on the left side of Table 4.5 are columns

of Table 4.4 presented here for comparison, and the right side of Table 4.5 displays

similar results for propensity score matched set adjusted regressions. From Table 4.5,

one can observe that the more associated an omitted variable is with the treatment

variable, the propensity matched set adjusted regressions are more stable. For the
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variables that have high associations with treatment, such as respiratory evaluation

and mean blood pressure, the confidence intervals obtained from the propensity score

matched set regressions fall well within those obtained by applying the sensitivity

analysis methods to the OLS regressions. For variables with less association with

treatment, such as immunosuppression and weight, the intervals obtained from sensi-

tivity analyses on the OLS regressions fall slightly (though not substantially) within

those obtained for the propensity matched set regressions. As has been seen in earlier

results of Table 4.4, the association of an omitted variable with the treatment vari-

able largely controls the outer limits of the confidence intervals, so it logically follows

that for variables with moderate or large associations with treatment, the propensity

score, which is formulated based on relationships to the treatment variable, should

better control these outer limits.

Table 4.5:
Sensitivity intervals for the treatment effect after ordinary covariance and propensity-
score adjustment, illustrating that propensity adjustment better limits sensitivity to the
omission of adjustment variables. For covariance adjustment, tW is limited by the con-
foundedness with the treatment of 6 variables that had been eliminated by a preliminary
variable-selection procedure, as in Table 4.4; for propensity adjustment, limits on treat-
ment confounding are set by separately removing each of these and calculating their tW ’s
after propensity adjustment for remaining variables.

OLS regression Propensity adjusted regression
|tw| ρ2

y·w|zx ≤ .01 ρ2
y·w|zx ≤ .1 |tw| ρ2

y·w|zx ≤ .01 ρ2
y·w|zx ≤ .1

Insurance class 12.2 (0.03, 0.20) (-0.04 , 0.26) 8.6 (0.02, 0.18) (-0.03, 0.23)
Respiratory eval 8.9 (0.04 , 0.19) (-0.01 , 0.23) 3.1 (0.04, 0.17) (0.02, 0.19)

Mean blood press. 8.6 (0.04 , 0.19) (-0.01 , 0.23) 6.8 (0.03, 0.18) (-0.01, 0.22)
Cardiovascular eval 8.5 (0.04 , 0.19) (-0.01 , 0.23) 5.4 (0.03, 0.17) (0, 0.20)

Weight (kg) 6.1 (0.04, 0.18) (0.01 , 0.21) 5.1 (0.03, 0.18) (0, 0.21)
Immunosuppression 0.4 (0.06 , 0.16) (0.06 , 0.16) 0.5 (0.04, 0.16) (0.04, 0.16)

4.6 Summary

With a multiple regression analysis in which the estimated coefficient of the treat-

ment variable is taken as an estimate of treatment effect, there is potential for an

unobserved variable to impact the the resulting effect estimate. Methods of sen-
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sitivity analysis presented here can be used to ascertain the extent to which an

unmeasured confounder could alter an interval estimate of treatment effect rather

than only assessing its impact on the point estimate or p-value. Our method makes

use of two key quantities: the association of an omitted variable with the response

variable as measured by ρy·w|zx and its association with the treatment variable, or

treatment-confounding, represented as tW . A sensitivity analysis in which a reason-

able bound for ρy·w|zx is used yields narrower confidence intervals than a sensitivity

analysis without such bounds, and the present analysis illustrates how such a bound

could be chosen from examination of the data. The value of tW may need to be more

carefully chosen by an analyst and tends to have a greater impact on the resulting

interval estimates of treatment effect, and estimating its value could make use of

external data sources, if available. With adjusted interval estimates, an analyst can

present a more realistic picture of the effect of some treatment, acknowledging that

some useful information may not have been measured. While some may skeptically

toss aside conclusions reached from a study in which an omitted variable could affect

the results, with careful consideration of the potential omitted variables, an analyst

can bolster resulting inferences by determining the extent to which such a variable

could alter the treatment effect estimate.

4.7 Appendix

The appendix contains two pieces: proofs of theoretical results and tables of

sensitivity intervals analogous to earlier tables.

4.7.1 Proofs of theoretical results

Proof of Lemma IV.5. Under the conditions of the lemma, (1) and (2) can be estab-

lished:
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1. In a regression of Z and X on Y , adding W̃ has the same effect on the Z-

coefficient and model R2 as adding W . Thus, (1) holds.

2. Furthermore, W̃ ∈ span(W ), so W̃ explains no more variation in Z than does

W . Thus, R2
z·w|x ≥ R2

z·w̃|x, which implies
ρ2z·w|x

1−ρ2z·w|x
≥ ρ2z·w̃|x

1−ρ2z·w̃|x
. As the ANOVA

F-statistic is defined as

FW =
(σ2

z·x − σ2
z·xw)/(k)

σ2
z·xw/(df + 1− k)

=
df + 1− k

k

ρ2
z·w|x

1− ρ2
z·w|x

and rank(W̃ ) = 1, so t2
W̃

= df
ρ2z·w̃|x

1−ρ2z·w̃|x
. The result follows.

Proof of Proposition IV.6. To relate SE(b) and SE(β), begin by rewriting some of

the variance terms:

(4.16)

σ2
y·zxw = Var(Y ⊥zxw)

= Var(Y ⊥zx − Pj(Y ⊥zx|W⊥zx))

= Var(Y ⊥zx − σy·zx
σw·zx

W⊥zx))

= σ2
y·zx − σ2

y·zxρ
2
yw·zx,

so that

σy·zxw = σy·zx
√

1− ρ2
yw·zx.

Since ρ2
z·w|x is the proportionate reduction in residual variance when W is added

to the regression of Z on X,
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(4.17) σ2
z·xw = σ2

z·x(1− ρ2
z·w|x).

Thus

(4.18)
SE(β) = (df−k)−1/2σy·zxw

σz·xw

√
1−ρ2yw·zx
1−ρ2zw·x

= SE(b)
√

df
df−k

√
1−ρ2yw·zx
1−ρ2zw·x

.

Now from the definition of the ANOVA F -statistic and (4.17),

FW =
(σ2

z·x − σ2
z·xw)/(k)

σ2
z·xw/(df + 1− k)

=
df + 1− k

k

ρ2
z·w|x

1− ρ2
z·w|x

,

whence

1

1− ρ2
z·w|x

= 1 +
k

df + 1− k
FW .

In Section 4.5.1, tW is defined for multivariateW in such a way that t2W = [k(df)/(df+

1−k)]FW . Since k = rank(W ), in case of univariate W to say that t2W = [k(df)/(df+

1 − k)]FW is the same as to assert t2W = FW — a well-known relationship between

regression coefficients’ t-statistics and ANOVA F statistics. It follows that

1

1− ρ2
z·w|x

=
df + t2W
df

,

which combines with (4.18) to give (4.15).

4.7.2 Result tables for largest models

Table 5 and Table 6 present sensitivity results — analogues to those shown in

Table 4.5— for all variables in the OLS and propensity score models, respectively.
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Table 4.6: Sensitivity adjustments to 95% t-intervals in a OLS regression. The first column repre-
sents the confidence interval that results if the row-variable, V , is added to the regression
with the 18 covariates in Table 4.2. (For comparison, the baseline interval adjusting only
for these 18 covariates is (0.06, 0.16). Columns 2–4 give the union of intervals resulting
from adding covariates W that are no more confounded with the treatment than V ,
t2W ≤ t2V , but which better predict the response (decreasing unexplained variation by
1%, 10%, or by any amount).

Interval containing β̂ ± qSE(β̂), if t2W ≤ t
2
V and

V t2W ρ2y·w|zx ≤ .01 ρ2y·w|zx ≤ .1 ρ2y·w|zx ∈ [0, 1]

Background characteristics:
initial disease category 1 32.4 (−0.02,0.27) (−0.21,0.46) (−0.76, 1.01)
initial disease category 2 17.6 (0.01 ,0.22) (−0.09,0.32) (−0.36, 0.60)

insurance class 9.4 (0.02 ,0.18) (−0.03,0.23) (−0.16, 0.36)
education 2.3 (0.04 ,0.16) (0.03 ,0.17) (0.02 , 0.18)

income 1.4 (0.04 ,0.16) (0.04 ,0.16) (0.03 , 0.17)
race 1.2 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
sex 0.7 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
age 0.5 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)

Comorbidities illness:
transfer from another hosp. 4.4 (0.04 ,0.17) (0.01 ,0.19) (−0.03, 0.23)

dementia 3.5 (0.04 ,0.16) (0.02 ,0.18) (−0.01, 0.21)
psychological disorder 3.3 (0.04 ,0.16) (0.02 ,0.18) (0.00 , 0.21)

renal disease 2.1 (0.04 ,0.16) (0.03 ,0.17) (0.02 , 0.18)
existing cancer 1.1 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)

GI bleed 0.8 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
myocardial infarction 0.6 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
cardiovascular disease 0.5 (0.05 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
congestive heart fail. 0.5 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
immunosuppression 0.5 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)

liver disease 0.4 (0.05 ,0.16) (0.05 ,0.16) (0.05 , 0.16)
malignant tumor 0.2 (0.05 ,0.15) (0.05 ,0.15) (0.05 , 0.15)

pulmonary disease 0.1 (0.05 ,0.15) (0.05 ,0.15) (0.05 , 0.15)

Day 1 Measurements:
PaO2/FIO2 15.1 (0.02 ,0.21) (−0.07,0.29) (−0.29, 0.52)

respiration rate 9.0 (0.03 ,0.18) (−0.02,0.23) (−0.14, 0.35)
mean blood press. 6.8 (0.03 ,0.17) (−0.01,0.21) (−0.09, 0.29)

PaCo2 6.7 (0.02 ,0.16) (−0.02,0.20) (−0.10, 0.28)
heart rate 5.6 (0.03 ,0.17) (0.00 ,0.20) (−0.06, 0.26)

weight (kg) 4.8 (0.03 ,0.17) (0.01 ,0.19) (−0.04, 0.24)
DNR order 4.7 (0.05 ,0.19) (0.03 ,0.22) (−0.02, 0.26)
potassium 4.7 (0.03 ,0.17) (0.01 ,0.19) (−0.04, 0.24)

PH 4.0 (0.03 ,0.16) (0.01 ,0.18) (−0.03, 0.22)
APACHE score 3.9 (0.03 ,0.16) (0.01 ,0.18) (−0.02, 0.22)

sodium 3.3 (0.03 ,0.16) (0.02 ,0.18) (−0.01, 0.20)
hematocrit 2.3 (0.04 ,0.17) (0.03 ,0.18) (0.02 , 0.19)
creatinine 2.0 (0.04 ,0.16) (0.03 ,0.17) (0.02 , 0.18)

temperature 1.8 (0.04 ,0.16) (0.03 ,0.17) (0.03 , 0.17)
albumin 1.8 (0.04 ,0.16) (0.04 ,0.17) (0.03 , 0.18)
bilirubin 1.4 (0.04 ,0.16) (0.04 ,0.16) (0.03 , 0.16)

urine output 1.2 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
white blood cell ct 0.3 (0.05 ,0.15) (0.05 ,0.15) (0.05 , 0.15)

coma score 0.2 (0.05 ,0.15) (0.05 ,0.15) (0.05 , 0.15)

Admit Diagnosis Categories:
cardiovascular 6.4 (0.03 ,0.17) (−0.01,0.20) (−0.08, 0.28)

trauma 3.8 (0.04 ,0.17) (0.02 ,0.19) (−0.02, 0.22)
respiratory 3.8 (0.04 ,0.16) (0.02 ,0.18) (−0.02, 0.22)
neurology 3.5 (0.03 ,0.16) (0.01 ,0.18) (−0.01, 0.21)

hematologic 2.9 (0.04 ,0.16) (0.03 ,0.18) (0.01 , 0.20)
gastrology 2.9 (0.04 ,0.16) (0.02 ,0.18) (0.01 , 0.20)

renal 1.8 (0.04 ,0.16) (0.03 ,0.17) (0.03 , 0.17)
orthopedic 1.3 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
metabolic 1.3 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.17)

sepsis 1.0 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
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Table 4.7: Sensitivity adjustments in a regression incorporating propensity subclasses. The first
column represents the confidence interval that results if the row-variable, V , is excluded
from the propensity adjustment but then added to the outcome model as a regressor,
alongside propensity subclasses. (For comparison, the baseline interval adjusting for all
50 variables by propensity subclassification is (0.04, 0.16).) Columns 2–4 give the union
of intervals resulting from adding regressors W to the outcome model which (given the
50-variable propensity adjustment) are confounded with the treatment variable no more
than V was (given the 49-variable propensity adjustment that excluded V itself), but
which better predict the response (decreasing unexplained variation by 1%, 10%, or by
any amount).

Interval containing β̂ ± qSE(β̂), if t2W ≤ t
2
V and

V |tW | ρ2y·w|zx ≤ .01 ρ2y·w|zx ≤ .1 ρ2y·w|zx ∈ [0, 1]

Background characteristics:
initial disease category 1 27.6 (−0.01,0.26) (−0.18,0.43) (−0.66, 0.91)
initial disease category 2 14.9 (0.02 ,0.22) (−0.07,0.31) (−0.31, 0.55)

insurance class 8.6 (0.02 ,0.18) (−0.03,0.23) (−0.15, 0.36)
education 1.8 (0.04 ,0.17) (0.03 ,0.18) (0.03 , 0.18)

income 1.4 (0.04 ,0.16) (0.03 ,0.17) (0.03 , 0.17)
race 1.0 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.17)
sex 0.7 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
age 0.3 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)

Comorbidities illness:
transfer from another hosp. 4.3 (0.03 ,0.17) (0.01 ,0.20) (−0.03, 0.24)

dementia 3.4 (0.04 ,0.17) (0.02 ,0.19) (−0.01, 0.22)
psychological disorder 3.0 (0.03 ,0.17) (0.02 ,0.18) (0.00 , 0.20)

renal disease 1.7 (0.04 ,0.16) (0.03 ,0.17) (0.03 , 0.18)
GI bleed 0.9 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.17)

existing cancer 0.8 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
congestive heart fail. 0.7 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)

cardiovascular disease 0.6 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
myocardial infarction 0.6 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)

immunosuppression 0.5 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
malignant tumor 0.4 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)

pulmonary disease 0.1 (0.04 ,0.16) (0.05 ,0.16) (0.04 , 0.16)
liver disease 0.1 (0.04 ,0.16) (0.05 ,0.16) (0.04 , 0.16)

Day 1 Measurements:
PaO2/FIO2 13.3 (0.02 ,0.21) (−0.06,0.28) (−0.27, 0.49)

respiration rate 7.4 (0.03 ,0.18) (−0.02,0.23) (−0.12, 0.32)
mean blood press. 6.9 (0.03 ,0.18) (−0.01,0.22) (−0.10, 0.31)

weight (kg) 5.1 (0.03 ,0.18) (0.01 ,0.21) (−0.05, 0.26)
potassium 4.2 (0.03 ,0.17) (0.01 ,0.19) (−0.03, 0.24)

DNR order 4.9 (0.06 ,0.20) (0.03 ,0.23) (−0.02, 0.28)
heart rate 4.7 (0.03 ,0.18) (0.01 ,0.20) (−0.04, 0.25)

PaCo2 4.6 (0.03 ,0.17) (0.00 ,0.20) (−0.04, 0.24)
PH 3.4 (0.03 ,0.16) (0.01 ,0.18) (−0.02, 0.21)

sodium 3.2 (0.04 ,0.17) (0.02 ,0.19) (−0.00, 0.21)
APACHE score 3.2 (0.03 ,0.17) (0.02 ,0.18) (−0.01, 0.21)

hematocrit 2.6 (0.04 ,0.17) (0.03 ,0.19) (0.01 , 0.20)
albumin 1.9 (0.04 ,0.17) (0.03 ,0.18) (0.03 , 0.18)

creatinine 1.9 (0.04 ,0.16) (0.03 ,0.17) (0.02 , 0.18)
temperature 1.8 (0.04 ,0.16) (0.03 ,0.17) (0.02 , 0.18)

bilirubin 1.5 (0.04 ,0.16) (0.03 ,0.17) (0.03 , 0.17)
urine output 1.1 (0.04 ,0.16) (0.03 ,0.16) (0.03 , 0.16)

coma score 0.5 (0.04 ,0.16) (0.04 ,0.16) (0.04 , 0.16)
white blood cell ct. 0.0 (0.04 ,0.16) (0.05 ,0.16) (0.04 , 0.16)

Admit Diagnosis Categories:
cardiovascular 5.4 (0.03 ,0.17) (0.00 ,0.20) (−0.07, 0.26)

trauma 3.8 (0.03 ,0.17) (0.01 ,0.19) (−0.02, 0.22)
respiratory 3.1 (0.04 ,0.17) (0.02 ,0.19) (0.00 , 0.21)
neurology 2.9 (0.03 ,0.17) (0.02 ,0.18) (0.00 , 0.20)

hematologic 2.4 (0.04 ,0.17) (0.03 ,0.18) (0.02 , 0.20)
gastrology 2.3 (0.04 ,0.17) (0.03 ,0.18) (0.02 , 0.19)

renal 1.8 (0.04 ,0.16) (0.03 ,0.17) (0.02 , 0.18)
sepsis 1.2 (0.04 ,0.16) (0.04 ,0.17) (0.03 , 0.17)

orthopedic 1.2 (0.04 ,0.16) (0.03 ,0.17) (0.03 , 0.17)
metabolic 1.1 (0.04 ,0.16) (0.04 ,0.17) (0.04 , 0.17)
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