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CHAPTER 1

Introduction

1.1 Cognitive Radio Networks

Due to the ever-increasing demand for new wireless servicesand applications for any-

time and anywhere connectivity in our daily businesses and lives, we expect to face a

shortage of available wireless spectrum in the near future.However, this spectrum-shortage

problem is known to be rooted in the conventionalstaticspectrum-allocation policy where

only licensed devices can operate on a designated spectrum band. For example, according

to a recent measurement report, an average of only5.2% of wireless spectrum under3GHz

was being actively used, indicating that a large fraction ofspectrum bands are un-/under-

utilized at any given location and time [98].

Cognitive radios (CRs) have recently been proposed as an attractive means to miti-

gate the imminent spectrum-scarcity problem [72]. In cognitive radio networks (CRNs),

secondary (unlicensed) users (SUs) can opportunisticallyaccess temporarily available li-

censed spectrum bands, i.e., spectrum bands not being used by the primary (licensed) users

(PUs). Such opportunistic spectrum access is also referredto asdynamic spectrum access

(DSA). As an initial step towards realizing this new conceptof DSA, the Federal Commu-

nications Commission (FCC) has recently approved the operation of unlicensed CR devices

in TV spectrum bands (a.k.a. TV white spaces) [49, 50]. This decision creates new oppor-

tunities for improving the efficiency of wireless spectrum resources without the restrictions

of the conventional static spectrum access policy, thus facilitating the accommodation of
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new wireless services and increased user demands.

Meanwhile, various standardization efforts are under development to utilize spectrum

opportunities, such as IEEE 802.22 Wireless Regional Area Networks (WRANs) [1], 802.11af

[2] and Ecma 392 [77]. For instance, the IEEE 802.22 WRANs [1]is the first standard us-

ing TV white space, and it aims to provide a last-mile wireless broadband access to rural

areas.

Although DSA has been recognized as a promising solution to the spectrum-scarcity

problem by significantly improving the wireless spectrum efficiency, its realization entails

several technical and political challenges. In this thesis, we identify the two main chal-

lenges that hinder the realization of DSA. The first and most fundamental challenge is

PUs’ concern about potential interference from SUs’ communications. If PUs allow unli-

censed users (or SUs) to opportunistically access their licensed spectrum bands, they risk

an increased level of interference caused by SUs’ communications. Such interference can

degrade the quality of PUs’ service, which can easily lead tothe loss of PUs’ business.

Therefore, SUs must provide efficient mechanisms to protectPUs’ communications, such

as spectrum sensing.

The second challenge is the lack of economic incentives to PUs for spectrum sharing.

Even if SUs can almost perfectly avoid interfering with PUs’communication, PUs may still

not be fully convinced to open up their spectrum resources tounlicensed users since there is

no clear incentive for them to share their spectrum. Therefore, we need to provide efficient

economic mechanisms, such as spectrum pricing strategies,that can provide incentives to

both PUs and SUs by facilitating their interactions. Without resolving the above two main

challenges, DSA will not widely accepted.

To address these challenges, we propose an efficient and robust spectrum-management

framework that addresses several key CR-unique challenges, such as spectrum sensing,

security, mobility and the dynamic spectrum market.
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1.1.1 Efficient Detection of Primary Users

Accurate sensing of spectrum condition is key to the realization of DSA, so it can help

mitigate the spectrum-scarcity problem. The main goal of spectrum sensing is to accu-

rately detect, in real time, the presence/absence of primary signals on a spectrum band.

However, achieving this goal is not easy since the FCC imposes very strict detection re-

quirements to protect primary communications from potential interference from SUs. For

example, in 802.22 WRANs, SUs must be able to detect a primarysignal as weak as -20 dB

within 2 seconds with high accuracy, i.e., both mis-detection and false-alarm probability

less than 0.1 [38]. Unfortunately, this stringent performance requirement cannot be met

with one-time sensing with a single sensor regardless of theunderlying sensing technique,

e.g., energy/feature detection [127, 131, 133].

In order to improve the detection performance, distributed(or cooperative) spectrum-

sensing [55, 106] has recently emerged as a viable means to enhance the detection per-

formance by exploiting sensor-location diversity. In cooperative sensing, the base station

(BS) directs multiple cooperative sensors to perform spectrum sensing simultaneously and

collects the sensing results (i.e., measured received primary signal strengths) to make a

final decision as to the existence of a primary signal. Another approach to improve de-

tection performance in the temporal domain is sensing scheduling. In sensing scheduling,

the BS schedules spectrum sensing multiple times to exploitthe temporal variations in re-

ceived primary signal strengths. The BS can schedule sensings until it accumulates enough

information to make a decision with high accuracy.

In CRNs, spectrum sensing must be able to detect heterogeneous types of PUs. For

example, in 802.22, there are two types of PUs in TV white space: large-scale, e.g., TV,

andsmall-scale, e.g., wireless microphone (WM) signals. In this thesis, wechose the terms

large- andsmall-scalePUs based on the size of the spatial signal footprint, and different

approaches are required for their detection. For the detection of large-scale PUs, coop-

erative sensors need to be chosen carefully by the BS since sensors may exhibit different

detection performance based on their location and wirelessconditions. Moreover, the BS

needs to schedule spectrum sensing optimally to minimize sensing overhead and detection
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latency. The detection of small-scale PUs is even more challenging due to their unpre-

dictable spatial and temporal usage patterns and their small signal footprint. Therefore,

knowing the PUs’ characteristics, e.g., location and transmit-power level, is important for

efficient opportunistic spectrum reuse.

1.1.2 Robust Detection of Primary Users

Spectrum sensing is vulnerable to attacks and device failures, such as primary user

emulation [11, 26] or sensing report manipulation attacks [28]. These sensing-targeted at-

tacks or malfunctioning sensors can severely undermine thedetection of primary signals

and spectrum white spaces because the fusion rule for a final decision on a PU’s pres-

ence/absence relies solely on measurement results reported by the sensors, i.e., received

signal strengths (RSSs). Therefore, sensing-targeted attacks can disable accurate spectrum

sensing, the basic premise of DSA. In this thesis, we refer tothese unique sensing-targeted

attacks in CRNs assensing-disorder attacks.

A sensing-disorder attack aims to obscure the existence of aprimary signal or white

space by manipulating the spectrum-sensing information (e.g., measured RSSs) either by

raising or lowering the signal strengths that they report tothe BS. When no primary sig-

nal exists, attackers can raise RSSs to generate an illusionof a primary signal. Otherwise,

attackers can lower RSS to veil the presence of a primary signal. In both cases, attack-

ers mislead the fusion center (i.e., base station, BS) to make an incorrect decision on the

presence/absence of a primary signal, causing either wasteof spectrum resources or un-

acceptable interference to the primary communications. For the detection of a small-scale

primary signal, a sensing-disorder attack can significantly increase the error for the local-

ization of a primary transmitter, resulting in the waste of spectrum opportunities in the

space domain.

While sensing-disorder attacks can be easily launched withthe aid of programmable

software-defined radio (SDR) devices, their detection is difficult. Unlike the ordinary

Denial-of-Service (DoS) attacks that exhaust all the network resources, they can be eas-

ily mounted by using SDR devices, such as USRP [3] and Sora [84]. These open-source
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SDR platforms can be an attractive target for attackers because of their accessibility to low-

layer protocol stacks like PHY and MAC. Detecting these attacks, however, is very diffi-

cult. While security mechanisms such as MAC-layer or crypto-based authentication work

well in traditional wireless networks, lack of primary-secondary communications precludes

their usage in CRNs. Moreover, detection difficulty is exacerbated by the volatile nature

of the wireless medium itself, which makes it hard to differentiate between legitimate and

manipulated sensing reports. Despite the grave consequence of these threats, they have

been overlooked in the design of existing distributed spectrum-sensing schemes.

1.1.3 Mobile Cognitive Radios

The main goal of DSA is to allow CR-equipped SUs to safely coexist with PUs without

disrupting PU communications. To achieve this goal, various aspects of DSA, such as spec-

trum sensing [88, 100, 104], spectrum sharing [102, 164], and security [103], have been

studied extensively. Most existing efforts, however, focus on stationary CRNs, in which

the location of both PUs and SUs are known to the BS in secondary systems, and thus,

they may not be suitable when SUs aremobile. We envision that future mobile devices will

incorporate CR-functionality and will be capable of dynamic and flexible spectrum access.

Various standardization efforts for mobile CRs are being developed to utilize spectrum

white spaces, such as 802.11af [2] and Ecma 392 [77].

Enabling DSA for mobile SUs entails new practical challenges. First, existing spectrum-

availability models are derived based solely on PUs’ temporal traffic statistics and might

thus be unsuitable for CRNs with mobile CRs/SUs. Unlike in stationary CRNs (e.g., [1]),

in which spectrum opportunity (or availability) is mostly affected by PUs’ temporal chan-

nel usage patterns, in mobile CRNs, availability can also change as SUs move towards or

away from PUs that are actively transmitting data. Second, protecting PUs from the SU

mobility-induced interference is a challenging problem that calls for an efficient spectrum-

sensing strategy tailored to mobile CRNs. Mobile SUs may need to sense spectrum more

frequently to avoid interfering with PU communications. However, frequent spectrum sens-

ing may not only incur significant time overhead [88], but also quickly drain the battery of
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mobile CR devices due to the power-intensive nature of spectrum sensing [7, 68]. Third,

mobile SUs will experience heterogeneous spectrum opportunities across space and time

domains based on the geographical distribution of PUs and SUs’ mobility patterns. The

three challenges mentioned above are interrelated. Hence,to fully realize the benefits of

DSA for mobile SUs, they must be considered jointly.

1.1.4 Dynamic Spectrum Market

The dynamic spectrum market (DSM) will play a key role in realizing DSA by facili-

tating spectrum trading between legacy spectrum owners andsecondary consumers. This

spectrum trading can be encouraged by a suitable pricing model through which DSM pro-

vides attractive economic incentives to legacy spectrum owners, and cost-effective spec-

trum access to secondary consumers. This will, in turn, enable more efficient and flexible

usage of spectrum resources. Such a DSM already exists in various forms, such as mobile

virtual network operators (MVNO) [4] and online spectrum markets (e.g.,specex.com

[5]).

A wide range of heterogeneous frequency bands will be available in the DSM consider-

ing the current trend of deregulating wireless resources. For example, the TV white space

recently opened for unlicensed usage spans a wide range of frequencies over the VHF/UHF

bands. Given this availability, it is natural for WSPs to want heterogeneous spectrum bands

so as to avoid interference between them. Due to the difference in propagation profile (i.e.,

frequency-dependent attenuation rate), heterogeneous channels have different transmission

and interference ranges, even with the same transmit power.Rational secondary consumers

would be able to evaluate the value/utility of different channels and exploit the capability

of their SDRs to access the different ranges of spectrum bands available in the market.

Another important but largely overlooked feature of DSM is the necessity of sharing

leased spectrum bands with other SUs, which is a common feature of wireless communi-

cations. This feature has some implications in establishing the way market participants in-

teract with each other. In a DSM, WSPs sublease their spectrum resources to multiple SUs

in the same geographical area to maximize their revenue, exploiting the spatial reusability
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of wireless spectrum resources. Such spectrum sharing complicates the spectrum price-

demand relationship, making the DSM different from the traditional market where goods

are exclusively owned by buyers [97]. For example, when SUs share a leased channel,

quoting a low spectrum price would lead to paradoxical results: A low price may attract

more users, but it will also increase the level of interference among SUs, thus discouraging

SUs from accessing it even at a low price. Therefore, understanding this price-demand

relationship is of great importance to the design of WSPs’ optimal spectrum pricing and

SUs’ WSP selection strategies.

1.2 Research Contributions

The main objective of this research is to improve spectrum efficiency in CRNs. Specif-

ically, this thesis presents new techniques and frameworksthat allow SUs to accurately

monitor spectrum conditions with high efficiency and robustness, and facilitate PU-SU

interactions in DSM by providing economic incentives to PUsfor spectrum sharing (see

Fig. 1.1). The main research contributions are summarized as follows.

• Efficient Detection of Large-Scale Primary Users: In CRNs, regulatory bodies, such

as the FCC, enforce extremely demanding detectability requirements to protect PUs’

communications, which can hardly be achieved with one-timesensing using only a
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single sensor. To overcome this challenge, we present a spectrum sensing framework

that minimizes the sensing overhead by jointly optimizing cooperative sensing and

sensing scheduling, while meeting the desired detection performance.

Specifically, we design an optimal sensing framework for large-Scale PU detection in

CRNs that directs the base station (BS) to manage spectrum sensing by (i) constructing

each primary signal’s spatial profile of received signal strengths (RSSs) as a detection

criterion, (ii) selecting an optimal set of sensors for cooperative sensing, and (iii) find-

ing an optimal time to stop sensing. The evaluation results show that the proposed

sensing framework significantly reduces sensing overhead while meeting the detection

requirements set by the FCC.

• Robust Detection of Large-Scale Primary Users: In CRNs, making distributed sens-

ing secure is challenging because of two unique CR-features—openness of a low-layer

protocol stack in SDR devices and nonexistence of communications between primary

and secondary devices. Moreover, cooperative sensors can be faulty or erroneous due

to hardware/software defects. As a result, the sensing reports that they produce may

have non-zero offsets.

As a first step towards addressing this challenge, we proposean attack-tolerant co-

operative sensing scheme for large-scale PU detection. In the proposed scheme, the

fusion center cross-checks sensors’ measurement results with neighboring sensors to

prevent compromised (or faulty) sensors from affecting thefinal decision at the fusion

center. The key idea is to pre-filter abnormal sensing reports by exploiting shadow

fading correlation in RSSs among neighboring sensors by means of a correlation filter.

Our evaluation results show that the proposed sensing framework can still meet the

detection requirements even in the presence of attackers.

• Efficient Detection of Small-Scale Primary Users: In CRNs, detecting small-scale

primary signals such as WMs is a challenging problem, due to their small signal foot-

print and the unpredictability of their spatial and temporal usage patterns. To overcome

these challenges, we propose a small-scale PU detection framework based on the fol-

lowing two key observations: (i) we identify the data-fusion range for cooperative
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sensing as a key factor in effective small-scale primary detection, and (ii) we observe

that sensing performance is sensitive to the accuracy of location and transmit-power

level information available to the secondary network.

Based on these observations, we propose an efficient sensingframework that iteratively

performs location/transmit-power estimation and cooperative sensing with adaptive

sensor selection based on the estimates, to achieve near-optimal detection performance.

Our in-depth evaluation results show that our proposed small-scale primary detection

framework provides high detection accuracy while maintaining a low false-triggering

rate.

• Robust Tracking of Mobile Small-Scale Primary Users: In CRNs, in order to en-

hance utilization of spatial spectrum opportunities, SUs must be able to accurately and

reliably track the location of small-scale mobile PUs. To accomplish this, we propose

a framework, for accurate, attack/fault-tolerant tracking of small-scale mobile PUs.

The key idea is that it exploits the temporal shadow fading correlation in the primary

signal strengths measured at cooperative sensors induced by the primary’s mobility. To

realize this idea, we augment the conventional Sequential Monte Carlo (SMC)-based

target tracking with shadow-fading estimation. By estimating shadow-fading gain be-

tween the primary transmitter and sensors, the proposed framework will not only sig-

nificantly improve the accuracy of primary tracking in the absence of attack, but will

also successfully tolerate sophisticated attacks, such as“slow-poisoning,” preserving

localization accuracy and improving spatial spectrum efficiency.

• Mobile Cognitive Radio Networks: We envision that future mobile devices will in-

corporate CR-functionality and be capable of dynamic and flexible spectrum access.

To enable DSA for mobile CRs, we identify and address fundamental challenges posed

by mobile SUs that do not exist in the case of stationary CRNs where the locations of

PUs and SUs are knowna priori to the secondary BS.

Specifically, we model spectrum availability from the mobile CR devices’ perspective.

Based on the spectrum availability model, we design an efficient spectrum-sensing

strategy to protect PUs’ communications from SUs’ mobility-induced interference. In
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addition, to better utilize spatio-temporal spectrum opportunities, we design an opti-

mal distributed channel-access strategy for mobile SUs. Wedemonstrate the accuracy

of our SU mobility-aware spectrum availability model via in-depth simulation study.

Moreover, our evaluation results show that our proposed spectrum sensing and access

mechanisms significantly improve SUs’ throughput performance and reduce energy

consumption due to spectrum sensing, while protecting PUs’communications.

• Optimal Spectrum Pricing in DSM : In future wireless environments, a wide range

of spectrum resources will be available in the market as a result of the current trend

of deregulation of wireless spectrum. To obtain useful insights on the impact of spec-

trum heterogeneity, we introduce a new DSM model where WSPs with heterogeneous

spectrum resources compete for a higher market share.

In particular, we propose a new spectrum price-demand modelbased on the desire of

SUs to maximize their own utility, by evaluating the key contributing factors, such

as the impact of spectrum heterogeneity, spatial spectrum sharing, and total spectrum

demand. We then derive SUs’ optimal WSP selection strategy based on a mean-field

approach to study how spectrum heterogeneity affects market equilibrium. Finally, we

model the pricing strategies among WSPs as a non-cooperative game and identify the

key factors that influence the Nash Equilibrium (NE) points,taking into account the

price-demand relation caused by the utility maximizing behavior of SUs.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents an efficient

cooperative sensing framework based on spatial-RSS profileof a primary signal. The

proposed framework minimizes sensing overhead while meeting the detectability require-

ments. Chapter 3 proposes a secure cooperative spectrum sensing framework, calledADSP,

for the detection of large-scale PUs.ADSP accurately detects and filters out compromised

or erroneous sensing reports by exploiting shadow fading correlation in sensing reports

among nearby sensors. Chapter 4 presents a small-scale primary detection framework,

calledDeLOC. DeLOC allows SUs to accurately detect small-scale PUs by jointly per-
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forming cooperative sensing and location/transmit-powerestimation. Chapter 5 proposes a

robust mobile small-scale PU tracking system, calledSOLID.SOLID enables accurate and

robust location tracking of mobile primary transmitter, thus achieving high spatial spectrum

efficiency. Chapter 6 develops optimal spectrum sensing andaccess strategies for mobile

cognitive radios. The proposed schemes protect primary communications from mobile cog-

nitive radios while minimizing energy consumption by spectrum sensing. Chapter 7 studies

optimal spectrum pricing and WSP selection strategies for aduopoly DSM in which WSPs

compete with heterogeneous spectrum resources. Finally, the thesis concludes with Chap-

ter 8.
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CHAPTER 2

Efficient Detection of Large-Scale Primary Users

2.1 Introduction

In DSA networks, spectrum opportunities can be detected in various ways, such as

spectrum sensing [57, 81], beacon protocol [18, 86], or geo-location database [21, 63, 110].

Spectrum sensing directly detects the presence or absence of a primary signal in a target

spectrum band. To protect PUs’ communications, spectrum sensing must meet strict re-

quirements set by regulatory bodies, such as the Federal Communications Commission

(FCC). For example, in the IEEE 802.22 Wireless Regional Area Networks (WRANs)

[1, 138], a primary signal as weak as−20 dBm must be detected with high accuracy, i.e.,

both false-alarm and mis-detection probabilities must be less than10% [38]. Unfortu-

nately, this stringent requirement cannot be met using one-time sensing with a single sen-

sor, regardless of the underlying PHY-layer sensing schemes, e.g., energy/feature detection

[127, 131, 133]. A second method for detecting a primary signal, or the beacon protocol,

has also been proposed to detect the existence of a primary signal more efficiently. How-

ever, the beacon protocol requires legacy devices to be equipped with an external beacon

device. Therefore, it may not be a feasible solution for already widely-deployed legacy

systems because of the high cost involved. Moreover, such modifications violate the basic

premise of DSA—opportunistic spectrum access should require no modification to legacy

systems. Thus, the beacon protocol cannot obviate the need for spectrum sensing. Alter-

natively, a geo-location database can be used to identify spectrum availability at a given
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time and location [110]. Such a database can be constructed and maintained by regulatory

bodies, such as the FCC in the US or Ofcom in the UK, or by a trusted third party. A

database can be used for spectrum bands on which PU activities are relatively predictable,

e.g., DTV signals with long ON/OFF periods. In fact, the FCC recently mandated the

use of a geo-location database for accessing TV band white-spaces [50]. Algorithms and

frameworks for implementing geo-location databases for TVspectrum bands are currently

under development [63, 110]. However, it may require a considerable amount of time to

construct a database with a complete spectrum map. Looking up the database to check

spectrum availability also consumes system resources.

In this chapter, we focus on improving spectrum-sensing performance via joint design

of two MAC-layer sensing methods,cooperative sensingand sensing scheduling. This

joint design allows SUs not only to overcome the performancedeficiency of PHY-layer

sensing, but also to make the tradeoff between performance gain and sensing overhead. In

cooperative sensing, a fusion center (a base station) directs multiple sensors at different

locations to perform spectrum sensing simultaneously during each sensing (quiet) period,

thus exploiting sensor location diversity [20, 35, 55, 57, 106, 122, 143, 144]. Schedul-

ing sensing also aims to improve detection performance by having SUs perform spectrum

sensing at various time intervals, thereby exploiting temporal variations in received signal

strengths (RSSs) at each sensor [39, 81]. However, all SUs (sensors)1 must remain silent

during sensing periods so that SU signals are not misinterpreted as a primary signal [112].

These periods of silence waste precious resources, such as energy and time, and ultimately

degrade the quality-of-service (QoS) of SU communications. Therefore, the fusion center

must carefully select a set of cooperative sensors and optimally schedule sensing periods

so as to minimize sensing-induced interruptions, while guaranteeing the required detection

performance, even for weak primary signals.

To address this practical challenge, we propose an efficientspectrum-sensing frame-

work that jointly exploits spatial and temporal RSS variations to minimize sensing over-

head subject to the detectability requirements. In particular, we address the following three

1We use the termsSUsandsensorsinterchangeably since we focus on the sensing functionality of SUs in
this thesis.
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key issues in MAC-layer spectrum sensing: (i) which sensorsto use for cooperative sens-

ing, (ii) how to incorporate their heterogeneous sensitivities in data fusion, and (iii) how to

minimally schedule spectrum sensing.

2.1.1 Contributions

This chapter makes the following main contributions.

• Introduction of a new concept of spatial RSS-signature-based cooperative sensing

that exploits the spatial variations in RSSs among cooperating sensors bylearning

the RSS distributions at sensor locations. This is a feasible and useful approach in

CRNs where sensor locations arestationary, thus making their RSS distributions

unique and (pseudo) time-invariant.

• Development of a simple and near-optimallinear data-fusion rule for detection of a

primary signal based on a one-time sensing via a linear discriminant analysis (LDA).

This is based on the observation that, when energy detectionis employed in a low

SNR environment such as IEEE 802.22 WRANs, spatial RSS distributions can be

approximated as multi-dimensional Gaussian with a common covariance matrix. The

theoretical performance of the LDA-based decision rule under shadow fading is also

presented.

• Proposal of an optimization framework for minimizing the sensing overhead of co-

operative sensing, which consists of: (i) an algorithm for selecting an optimal set of

sensors for cooperative sensing , and (ii) an online sensing-period scheduling algo-

rithm that finds anoptimal stopping timevia a sequential probability ratio test (SPRT)

based on the sensing results.

• In-depth simulation to demonstrate the benefits of the proposed spectrum-sensing

algorithms. Our simulation results show that the proposed RSS-profile-based detec-

tion schemes for both one-time (i.e., LDA-based) and sequential (i.e., SPRT-based)

sensing significantly improve detection performance over the conventional decision
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fusion rules, such as the OR-rule.2 The results also show that our algorithms for

sensor selection reduce the average sensing overhead significantly.

2.1.2 Organization

The remainder of this chapter is organized as follows. Section 2.2 briefly reviews the

IEEE 802.22 WRAN and the energy-detection technique, followed by our approach to ex-

ploiting the spatio-temporal variations in RSSs for spectrum sensing. Section 2.3 presents

our RSS-signature-based detection scheme for one-time sensing and its theoretical perfor-

mance. Section 2.4 introduces our cooperative sensing algorithms designed to (i) select an

optimal set of sensors and (ii) find an optimal time to stop sensing. Section 2.5 evaluates

the performance of the proposed algorithms, Section 2.6 reviews related work on spectrum

sensing. Section 2.7 concludes the chapter.

2.2 Preliminaries

In this section, we first introduce the DSA network model, spectrum sensing for incum-

bent detection, and then outline our proposed spectrum-sensing framework.

2.2.1 DSA Network Model

We consider a DSA network in which primary and secondary systems coexist in the

same geographical area, as shown in Fig. 2.1. We assume a large-scale stationary primary

system, such as DTV users in TV spectrum bands. A secondary system is an infrastructure-

based network and each cell consists of a single base station(or fusion center) and multiple

sensors. The fusion center selects sensors and directs themto perform sensing by schedul-

ing sensing (quiet) periods multiple times. At the end of each sensing period, sensors report

their measurement results to the fusion center sequentially. Based on the sensing reports,

the fusion center will make a final decision on the presence orabsence of a primary signal

2The OR-rule is the most common decision-fusion rule in the absence of prior knowledge of RSS distri-
butions [35, 55, 81, 127, 129].
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and will announce the decision to the SUs in the cell. We assume the existence of a sepa-

rate control channel which provides reliable communication between the fusion center and

sensors.

2.2.2 Spectrum-Sensing Model

Spectrum sensing consists of PHY- and MAC-layer mechanisms. For PHY-layer sens-

ing, we assume energy detection instead of other sensing techniques, such as matched-filter

detection [87], cyclostationary feature detection [94] and compressed sensing [160]. The

energy detector is one of the most widely-used because of itssimple design and low com-

plexity; it simply measures signal power on a target frequency band and does not requirea

priori knowledge of primary-signal-specific features.

Regarding the existence of a primary signal on a given channel, there are two hypothe-

ses, i.e.,

yi(n) =




wi(n) H0 (no primary signal)

si(n) + wi(n) H1 (primary signal exists),

whereyi(n) is the signal received by a sensor,si(n) is the primary signal, andwi(n) is an

independent and identically distributed (i.i.d.) additive white Gaussian noise (AWGN) at

sensori in then-th time slot within the sensing duration. The test statistic of the energy

detector is an estimate of average RSS [127]:

Ti =
B

M

M∑

n=1

yi(n) ∗ yi(n), (2.1)

whereB is the channel bandwidth, andM is the number of signal samples during a sensing

period. The test statistic can be approximated as a Gaussiandistribution using the central

limit theorem (CLT) because the signal sample size,M , is sufficiently large, even with a

short sensing duration (e.g.,1ms). For example, assuming that the signal is sampled at the

Nyquist rate, a sensor can obtainM = 6 × 103 samples for a6MHz TV channel within

1ms [129].
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Then, the probability density function (p.d.f.) of the teststatisticTi at sensori is given

as [127]:

Ti ∼





N
(
NB, (NB)2

M

)
H0

N
(
Pi +NB, (Pi+NB)2

M

)
H1,

(2.2)

wherePi is the received primary signal strength andN is the noise spectral density.

We make two additional assumptions as follows.

A1. The separation between the primary transmitter and sensorsis relatively larger than

the separation between sensors, which is reasonable in large-scale networks such as

the IEEE 802.22 WRANs [137].

A2. The impact of multi-path fading on spectrum sensing is negligible due to a wide chan-

nel bandwidth (e.g., larger than the coherent bandwidth) asin DTV signal detection

in IEEE 802.22 WRANs [127].3

Based on the above assumptions, the received primary signalstrength at sensori can be

expressed asPi = PR·eYi , wherePR is the average RSS within a cell, andeYi is the shadow-

ing gain between the primary transmitter and sensori. Shadow fading can be characterized

by the shadowing dB-spread,σdB, and it has the relationshipσ = 0.1 ln(10) σdB.

Remark: It is important to note that instationarysecondary systems where SUs do

not move, the shadowing gainYi is a specific realization of a normal random variable

Y ∼ N(0, σ2). Thus, the channel gain is also (pseudo) time-invariant anddetermined based

on sensor locations. We will show that there is no correlation among stationary sensors in

Section 2.4.1.

2.2.3 Outline of the Proposed Approach

The performance of energy detection is highly susceptible to signal-to-noise ratio (SNR),

thus limiting its ability to meet the FCC’s requirement of accurately detecting a primary

signal as weak as−20dB SNR. Moreover,noise uncertainty[142] at sensors also pre-

3The detection performance of the energy detector under multi-path fading can be found in [41].
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Figure 2.1: DSA network model: SUs perform spectrum sensing simultaneously during
each sensing period and report their measurement results tothe fusion center.

vents the applicability of energy detection to such a weak primary signal. To overcome

these challenges and design an efficient spectrum sensing algorithm, we exploit bothspa-

tial andtemporalvariations of RSSs among collaborating sensors. As mentioned earlier, in

DSA networks with static sensor deployment, the measured RSS at each sensor is (pseudo)

time-invariant. This allows the fusion center tolearn the RSS distributions at sensors and

construct their spatial RSS profile. Upon collecting the sensing results during each sched-

uled sensing period, the fusion center compares the observed RSS values with the RSS

profile. A similarity between the RSS distribution and the primary signal can be inter-

preted as an indication of the presence of a primary signal, and vice versa. Using the

RSS profile, the fusion center can adopt the sequential hypothesis testing framework for

sensing scheduling, and can minimally schedule sensing periods only until it accumulates

sufficient observations to determine whether or not a primary signal exists within a certain

performance bound.

Fig. 2.2 illustrates our proposed spectrum-sensing framework, where the fusion center

directs an optimally-chosen set of sensors to perform sensing until a decision is made on

the existence of a primary signal, using a sequence of reported RSS values.
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Figure 2.2: An illustration of the proposed spectrum-sensing framework: The base station
(or fusion center) selects an optimal set of sensors (black nodes) for cooperative
sensing and schedule sensing periods until it accumulates sufficient information
to make a final decision.

2.3 RSS-Profile-Based Cooperative Sensing

In this section, we present the construction of a spatial RSSprofile, formulate the prob-

lem of incumbent detection based onone-timesensing as a binary classification problem via

linear discriminant analysis(LDA), and analyze its detection performance. We then char-

acterize wireless network conditions, under which sensingscheduling is needed to meet

desired detection requirements.

2.3.1 Construction of a Spatial RSS Profile

We propose to build a spatial profile of RSS distributions at multiple sensor locations,

which will be used as a main reference for incumbent detection. Fig. 2.3 shows an example

of spatio-temporal variations of the test statistics of theenergy detector (i.e.,T in Eq. (2.1))

at15 sensors in various locations within a secondary cell. ThespatialRSS diversity is due

mainly to the different sensors’ locations (thus differentchannel gains from the primary

transmitter), whereas thetemporalRSS variations are due mainly to the measurement error

of the energy detector. The intensity of temporal variations depends on the sensing time

19



0
5

10
15

20
15

10
5

0
2.5

3

3.5

4

4.5

x 10
−13

sensor indextime

te
st

 s
ta

tis
tic

s 
(T

)

Figure 2.3: Example time sequences of test statistics{Ti} for 1 ≤ i ≤ 15 wherePR =
−110 dBm,NB = −95.2 dBm,M = 6× 103, andσdB = 5.5 dB. They clearly
show spatial and temporal variations in the test statistics.

(i.e.,M in Eq. (2.1)); the shorter the sensing time, the larger the temporal RSS variation

due to the increase in measurement error. The fusion center can construct a unique profile

of RSS distributions for a given set of sensors and sensing times. For RSS profiling, we

assume a large enough training period (including both ON/OFF periods of the primary

transmitter) for accurate estimation of RSS distributions.

Recall that the distribution of test statistic,T (equivalent to the estimated RSS), of the

energy detector can be approximated as Gaussian (see Eq. (2.2)) using the CLT in both

ON/OFF periods. Thus, the RSS profile ofns stationary sensors is anns-dimensional

Gaussian distribution, the parameters of which can be easily estimated using well-known

techniques, such as maximum-likelihood estimation (MLE) as:

π̂k = Nk/Nobs, (2.3)

µ̂k =

Nk∑

n=1

xn/Nk, (2.4)

Σ̂k =

Nk∑

n=1

(xn − µ̂k)(xn − µ̂k)
T/Nk, (2.5)

whereNk is the number of observations underHk wherek ∈ {0, 1}, Nobs the number of
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total observations in the training period, andπ̂k is a priori probability of class (hypothesis)

k. µk andΣk represent the mean vector and the covariance matrix during ON(1)/OFF(0)

periods. Since the RSS distributions at each sensor location are (pseudo) time-invariant

due to the static deployment of SUs, the RSS profile can be usedreliably without frequent

updating.

2.3.2 Detection with One-Time Sensing Based on Linear Discriminant

Analysis (LDA)

We now present a detection rule using an RSS profile, given a one-time sensing mea-

surement. Letx = [T1, . . . , Tns
]T denote the vector of test statistics of the energy detector

measured byns cooperating sensors. Then, the incumbent detection problem can be cast

into a binary Gaussian classification problem where the observed test statisticx ∈ R
ns×1

belongs to one of two classes,H0 orH1, where

H0 : x ∼ N(µ0,Σ0) (no primary signal)

H1 : x ∼ N(µ1,Σ1) (primary signal exists),

whereµk ∈ R
ns×1 andΣk ∈ R

ns×ns are the estimated mean vector and the covariance

matrix of RSS distributions underHk, respectively. Note thatΣ0 = σ2
n I whereI is an

ns × ns identity matrix andσ2
n = (NB)2/M .

Under the general assumption of unequal covariance matrices, i.e.,Σ0 6= Σ1, the opti-

mal decision rule for our detection problem can be found viaquadratic discriminant anal-

ysis (QDA) [65]. Although QDA provides optimal detection performance for a general

multivariate Gaussian with unequal covariance matrices, its quadratic decision boundaries

do not yield a closed-form expression for detection performance [12].

In our problem, the quadratic decision rule can actually be linearized usinglinear dis-

criminant analysis(LDA) on the basis of the following two important observations, i.e.,

the covariance matrix underH1, Σ1, can be:

1. assumed as an identity matrix with fixed sensor locations, and then,
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Figure 2.4: Error performances of QDA vs. LDA. The performance difference is insignif-
icant even in a very low SNR environment. These are the results of a Monte
Carlo simulation with107 runs.

2. approximated asΣ1 ≈ Σ0 = σ2
n I in a very low SNR environment.

Regarding the first observation, the covariance matrixΣ1 may not appear to be an

identity matrix because of the existence of shadow correlation in primary signal strengths

[60]. However, as mentioned earlier, when sensor locationsare fixed, their RSSs are also

(pseudo) time-invariant and the randomness in the test statistics comes only from the noise

processes (i.e., measurement errors), which are independent of each other. Thus, the corre-

lation of RSSs between any pair of sensors does not exist, so we can assume thatΣ1 is also

an identity matrix asΣ0 (see Section. 2.4.1).

Regarding the second observation, the received primary signal strength may be sig-

nificantly lower than that of the noise power for a very weak primary signal. For exam-

ple, the FCC requires the detection of a DTV signal as weak as−20 dB, assuming the

typical noise levelNB = −95.2dBm [133]. Therefore, it is reasonable to assume that

Pi + NB ≈ NB ∀i, and thus,Σ1 ≈ Σ0 = σ2
n I. Fig. 2.4 justifies these assumptions by

showing that the error performances of QDA and LDA are almostthe same in very low

SNR environments.

Based on the above observations, we compute the log-likelihood of the two hypotheses
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H0 andH1 as:

log

(
Pr(H1|x)
Pr(H0|x)

)
= log

g1(x)

g0(x)
+ log

π1
π0

= log
π1
π0
− 1

2
(µ1 + µ0)

TΣ−1(µ1 − µ0) + xTΣ−1(µ1 − µ0), (2.6)

wheregk(x) is the estimated Gaussian distribution of the sensing reports, x, underHk

andΣ is the common covariance matrix.πk is a priori probabilities of hypothesesHk as

defined in Eq. (2.3).

From Eq. (2.6), we have the following linear discriminant function,δk(x), as:

δk(x) = xTΣ−1µk −
1

2
µT

kΣ
−1µk + log(πk). (2.7)

That is, the fusion center will assume hypothesisHk whereδk is maximized, i.e.,Hk =

argmaxk δk(x).

In our two-class problem, the fusion center will assumeH1 if the following condition

holds:

xTΣ−1(µ̂1 − µ̂0) >
1

2
µ̂T
1 Σ̂

−1µ̂1 −
1

2
µ̂T
0 Σ̂

−1µ̂0 + log
π0
π1
. (2.8)

Otherwise, the fusion center will assumeH0.

Note that the fusion center may not have an accurate estimation of a priori probability

of a primary signal. In such a case, the fusion center can setπ0 = π1 = 0.5. Then, we have

a simple distance-based decision rule for incumbent detection:

‖x− µ0‖
H1

≷

H0

‖x− µ1‖. (2.9)

Eq. (2.9) indicates that, under both hypotheses, the decision is made based solely on the

distance between the observed RSS vector,x, and the mean vectors of the RSS profile,µk.

Although Eq. (2.9) is optimal in minimizing detection errorperformance (i.e., the sum of

false-alarm and mis-detection probabilities), the detection requirements are often expressed

in terms of mis-detection probability for a fixed false-alarm probability. In what follows,
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we analyze the performance of the proposed RSS-profile basedspectrum sensing.

2.3.3 Theoretical Performance

Let T(x) , wTx denote the test statistic for incumbent detection, which iscalculated

based on the observed RSS vectorx, wherew , (µ1 − µ0) ∈ R
ns×1. Note that‖w‖

is the Euclidean distance between the centroids of two Gaussian distributions under both

hypotheses, where the centroids are the vectors of average RSSs at sensor locations. It can

be easily shown that the test statisticT(x) follows a Gaussian distribution, i.e.,T(x) ∼
N
(
wTµk, σ

2
n‖w‖2) underHk.

Then, the probability of false alarm under our LDA-based decision rule with the deci-

sion thresholdη ∈ R is given as:

PLDA
FA , Pr(T(x) > η |H0) = Q

(
η −wTµ0

σn‖w‖

)
, (2.10)

whereQ(·) is the Q-function. Using Eq. (2.10), the decision thresholdη can be derived for

the desiredPLDA
FA as:

η = σn · ‖w‖ ·Q−1
(
PLDA
FA

)
+wTµ0. (2.11)

Then, based on Eqs. (2.10) and (2.11), the probability of mis-detection,PLDA
MD , is given

as:

PLDA
MD , Pr(T(x) < η |H1) = 1−Q

(
Q−1

(
PLDA
FA

)
− ‖w‖

σn

)
. (2.12)

Eq. (2.12) indicates that, when the desired false-alarm probability,PLDA
FA , is given, the

achievable mis-detection,PLDA
MD , depends on the noise varianceσ2

n = (NB)2

M
in energy

detection and the distance‖w‖. That is,PLDA
MD decreases as the sensing duration (thus the

numberM of sensing samples) increases, since a large number of samples would make the

decision more accurate due to the reduced noise variance (measurement error).

Recall thatw is defined as the difference in RSSs under both hypotheses, i.e., w ,

(µ1 − µ0) = [P1, . . . , Pns
]T . Therefore,‖w‖ under shadow fading is given as:

‖w‖ =
[ ns∑

i=1

P 2
i

]1/2
= PR ·

[ ns∑

i=1

(
eYi
)2
]1/2

, (2.13)
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wherePR is the average RSS in the secondary cell due to path loss andYi is a location-

dependent realization of a random variableY ∼ N(0, σ2) whereσ = 0.1 ln(10) σdB.

To understand the impact of shadow fading on detection performance (in terms ofPLDA
MD

given a fixedPLDA
FA ), we study the distribution of‖w‖ in Eq. (2.13). Although there is no

closed-form expression available for the power sum of log-normal random variables in

Eq. (2.13) [123], the power sum can be approximated accurately by rendering the sum

itself as another log-normal random variable [52].

Let eZ
′ ∼ e2Y1 + e2Y2 + · · · + e2Yns . Then, by following the result in [52], the sum

can be approximated by matching its mean and variance witheZ
′

. The first two moments

of eZ
′

areE[eZ
′

] = eµZ′+σ2
Z′

/2 andE[e2Z
′

] = e2µZ′+2σ2
Z′ . Our final goal is to approximate

the square root of the power sum, i.e.,eZ = (eZ
′

)1/2, which is still a log-normal random

variable. Thus, by equating the first two moments ofeZ
′

and the power sum,
∑ns

i=1(e
Yi)2,

and then takingeZ = (eZ
′

)1/2, we have‖w‖ ≈ PR · eZ with the random variableeZ ∼
Log-N(µZ , σ

2
Z) where:

σ2
Z =

1

4
log

[
(e4σ

2 − 1)

ns
+ 1

]
(2.14)

and

µZ =
1

2
log(ns) + σ2 − σ2

Z

4
. (2.15)

Assuming that the sensors experience independent log-normal shadow fading, we can

derive the average mis-detection probability as:

P
LDA

MD =

∫ ∞

−∞

[
1−Q

(
Q−1

(
PLDA
FA

)
− PR · ez

σn

)]
· fz · dz,

wherefz = 1
σZ

√
2π

exp
[
− (z−µZ )2

2σ2
Z

]
, −∞ < z <∞.

Fig 2.5 shows examples of RSS distributions under various wireless environments. The

figure shows that the centroids of the two Gaussian distributions will have a larger separa-

tion, ‖w‖, with a higher average primary signal strengthPR, or a longer sensing timeTS.

As indicated in Eq. (2.12), a larger separation between the two RSS distributions increases

the incumbent detection performance.

Fig. 2.6 plots mis-detection probabilities,PMD, for a given false-alarm probability.
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Figure 2.5: Distribution of the measured RSS vector from three cooperating sensors un-
der various wireless environments. The yellow (blue) dots indicate the vector
of measured test statistics underH0 (H1). The simulation parameters are set
NB = −95.2 dBm andσdB = 5.5 dB.

The figure shows that the mis-detection performance increases as the average primary sig-

nal strength decreases. It shows that spectrum sensing witha single sensor may not be

sufficient to protect primary communications. To further improve detection performance

while introducing minimal sensing overhead, in what follows, we jointly optimize sensor

selection, sensing time, and scheduling sensing.

2.3.4 The Necessity of Sensing Scheduling

We now characterize the network conditions under which the fusion center must sched-

ule spectrum sensing multiple times to meet a given detectability requirement. As we

observed in previous sections, the performance of one-timespectrum sensing depends on

various network parameters, such as average primary signalstrength,PR, the number of

sensors for sensing collaborationns, and detection requirements,PFA andPMD. In prac-
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Figure 2.6: Detection performance of RSS-profile-based cooperative spectrum sensing. The
incumbent mis-detection performance for a given false-alarm probability in-
creases as the average primary received signal strengths,PR, decreases. The
simulation parameters are setns = 1, NB = −95.2 dBm,M = 6 × 103, and
σdB = 5.5 dB.

tice, the fusion center may avoid scheduling sensing multiple times by employing a larger

number of sensors for cooperative sensing. We define the minimum number of sensors,n∗
s,

to meet a given detection requirement as:

n∗
s = argmin

ns

{
ns : P FA, PMD ≤ ξ

}
. (2.16)

Fig. 2.7 plots the minimum number of sensors required to achieve the desired level of

detection probability,ξ. This figure shows that the required number of sensors increases

exponentially as the average primary signal strength,PR, decreases. The number of sensors

also increases as the detection requirement,ξ, becomes stricter. For example, whenPR =

−116dBm, more than70 sensors are required to achievePFA, PMD ≤ 0.01. In practice, it

may be difficult to find such a large number of sensors within a cell, and more importantly,

having such a large number of sensors may incur significant overhead. Therefore, in a

low SNR environment with strict detection requirements, the fusion center must schedule

sensing multiple times to make the best tradeoff between performance and overhead.
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Figure 2.7: Minimum number of sensors required to achieve a desired incumbent detec-
tion performance with one-time sensing. The fusion center must employ more
sensors as the average primary signal strength decreases oras the detection re-
quirement,ξ, becomes more strict. The simulation parameters are setNB =
−95.2 dBm,M = 6× 103, andσdB = 5.5 dB.

2.4 Optimal Cooperative Sensing Framework for Sensing

Overhead Minimization

In this section, we first propose an adaptive online algorithm that finds an optimal stop-

ping time for scheduling sensing periods, subject to the detection requirements, given a set

of collaborative sensors. We then present an algorithm to find an optimal set of sensors and

an optimal sensing duration that minimizes the average sensing-time overhead.

2.4.1 Correlation Analysis

Before presenting an optimal sensing scheduling algorithm, we would like to show that

there is no correlation in RSSs among stationary sensors. Aswe discussed in Section 2.3.2,

the randomness in sensing results (i.e., the output of the energy detector) comes only from

measurement noise, which is independent for each sensor. Toillustrate this, we measure

the Pearson’s correlation coefficient between a pair of sensors. The Pearson’s correlation
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Figure 2.8: Distribution of test statistics measured as two sensors over 103 sensing periods.
The correlation coefficient of the measurements isρ̂1,2 ≈ 0.0053. The simula-
tion parameters are set asNB = −95.2 dBm,M = 6×103, andσdB = 5.5 dB.

coefficient of sensing reports from the sensorsi andj can be estimated as:

ρ̂i,j = Corr(i, j) =

∑n
i=1(Ti − E[Ti])(Tj − E[Tj ])

(n− 1)σ̂iσ̂j
, (2.17)

whereσ̂i andσ̂j are the sample standard deviations of test statisticsTi andTj, i.e.,

σ̂i =

(
1

n− 1

n∑

i=1

(
Ti − E[Ti]

)2) 1
2

. (2.18)

Fig. 2.8 plots103 sets of test statistics(T1, T2) measured at two sensors. Interestingly,

the corresponding Pearson coefficient is only about0.0053, indicating that the sensing re-

sults from the two sensors are not correlated. This is in sharp contrast to most previous

work, in which avoiding shadow fading correlation is one of the most important criteria for

the selection of sensors [81, 125].

This implies that when the fusion center can obtain the average primary signal strength

at each sensor (via estimation or learning), then the physical separation between cooperat-

ing sensors may not critically affect detection performance. Note that, in stationary DSA

network environments, such as the IEEE 802.22 WRANs, where all the sensors (called
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CPEs) in the network do not move, the fusion center can easilyobtain the RSS at each

sensor, e.g., by simply observing the reports from the sensors.

2.4.2 Optimal Stopping Rule for Sensing Scheduling

The fusion center can schedule sensing multiple times before making a final decision,

and thus, it receives a sequence of observations (i.e., measured RSSs) from the sensors.

This makes sequential detection suitable for our problem. In particular, among the various

sequential detection schemes, we adopt Wald’sSequential Probability Ratio Test(SPRT)

[147] since it is optimal in the sense of minimizing the average number of observations,

given bounded probabilities of false-alarm and mis-detection.

Let tn , σ−1
n · ‖w‖−1 ·T(xn) denote thenormalizedtest statistic based on the observed

RSS vectorxn in then-th sensing period. The decision statisticΛN is the log-likelihood

ratio based onN sequential observations (i.e., test statistics)t1, . . . , tN as:

ΛN , λ(t1, . . . , tN ) = ln
f1(t1, . . . , tN)

f0(t1, . . . , tN)
, (2.19)

wherefk(t1, . . . , tN) is the joint p.d.f. of the sequence of observations under hypotheses

Hk ∀k. Recall that{tn}Nn=1 are Gaussian, and without loss of generality, we assume that

they are i.i.d. Then, Eq. (2.19) becomes:

ΛN =

N∑

n=1

λn =

N∑

n=1

ln
f1(tn)

f0(tn)
, (2.20)

wherefk(tn) isN(θk, 1) with θk , E[tn |Hk] =
wTµk

σn‖w‖ ∀k. Then, we have:

λn = ln
f1(tn)

f0(tn)
= (θ1 − θ0) tn +

1

2
(θ20 − θ21). (2.21)

Based on Eqs. (2.20) and (2.21), the decision statisticΛN can be expressed as:

ΛN = (θ1 − θ0)
N∑

n=1

tn +
N

2
(θ20 − θ21). (2.22)
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Then, in SPRT, a decision is made based on the observed sequence of test statistics,

{tn}Nn=1, using the following rule:

ΛN ≥ B ⇒ acceptH1 (primary signal exists)

ΛN < A ⇒ acceptH0 (no primary signal)

A ≤ ΛN < B ⇒ take another observation,

whereA andB (0<A<B<∞) are the detection thresholds that depend on the desired

values ofPFA andPMD.

Let α∗ andβ∗ denote the desired values of false-alarm and mis-detectionprobabilities,

respectively. Then, the decision boundaries are given by [147]:

A = ln
β∗

1− α∗ and B = ln
1− β∗

α∗ , (2.23)

and the actual achievable error probabilities, denoted asα andβ, have the following rela-

tionships:

α ≤ α∗

1− β∗ , β ≤ β∗

1− α∗ , and α + β ≤ α∗ + β∗. (2.24)

Eq. (2.24) indicates that the actual achievable error probabilities, i.e.,α andβ, can only be

slightly larger than the desired valuesα∗ andβ∗. For example, with the desired values of

α∗ = β∗ = 0.1, the actual valuesα andβ will be no larger than0.111.

2.4.3 Sensing Delay Analysis

Recall that our goal is to minimize the number of times the spectrum needs to be

sensed, with the decision thresholds derived from target detection probabilities as shown in

Eq. (2.23). We therefore consider the number of sensing periods scheduled until a decision

is made (i.e., either the boundaryA orB is reached) as our main performance metric. The

average number of sensing periods,E[N ], required for decision-making can be computed
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as:

E[ΛN ] = E[N ]× E[λ |Hk]. (2.25)

First, using Eq. (2.21), the average value ofλ underHk can be derived as:

E[λ |Hk] = (θ1 − θ0) θk +
1

2
(θ20 − θ21). (2.26)

The average ofΛN can then be found as follows. SupposeH0 holds, thenΛN will reach

B (i.e., false alarm) with the desired false alarm probability α∗; otherwise, it will reachA.

Thus, using Eq. (2.23), we have:

E[ΛN |H0] = α∗ ln
1− β∗

α∗ + (1− α∗) ln
β∗

1− α∗ . (2.27)

Based on Eqs. (2.25), (2.26) and (2.27), we can derive the average required number of

sensing periods for decision-making as:

E[N |H0] =
α∗ ln 1−β∗

α∗
+ (1− α∗) ln β∗

1−α∗

(θ1 − θ0) θ0 + 1
2
(θ20 − θ21)

. (2.28)

Similarly, we can derive:

E[N |H1] =
(1− β∗) ln 1−β∗

α∗
+ β∗ ln β∗

1−α∗

(θ1 − θ0) θ1 + 1
2
(θ20 − θ21)

. (2.29)

Based on Eqs. (2.19)–(2.29), Algorithm 1 describes our online algorithm for scheduling

sensing periods that finds the optimal stopping time for sensing.

In practice, the number of sensing periods that can be scheduled before the fusion center

makes a final decision can be upper-bounded byNmax due to several factors, such as the

detection delay requirement, inter-sensing interval, initial sensing delay, and sensing time

[132]. For example, in the 802.22 WRAN standard draft, secondary users must be able

to detect the return of a primary user within 2 seconds [38]. Therefore, we set a threshold

Pth—a design parameter—such that the fusion center must reach aconclusion withinNmax

sensing periods with a probability greater than or equal toPth.

Let Nopt denote the optimal stopping time of sensing under Algorithm1. Then, we
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want to derive the probability of satisfyingNopt ≤ Nmax, which should be no less thanPth.

Although an approximate expression for the distribution ofNopt can be derived, we instead

derive a lower bound of the probability for computational efficiency [147].

SupposeΛNmax
≥ B. Then, we haveNopt ≤ Nmax, so the following inequality holds:

Prob
(
Nopt ≤ Nmax) ≥ Prob(ΛNmax

≥ B
)
. (2.30)

SinceNmax is sufficiently large in practice, we can use the central limit theorem (CLT),

and the inequalityΛNmax
≥ B can then be written as:

ΛNmax
−Nmax E[λ |H1]√
Nmax σ1(λ)

≥ B −Nmax E[λ |H1]√
Nmax σ1(λ)

, (2.31)

whereσ1(λ) is the standard deviation ofλ underH1, which can be derived asσk(λ) =

(θ1 − θ0) ∀k from Eq. (2.21). Then, the left-hand side of Eq. (2.31) is normally distributed

with zero mean and unit variance whenH1 is true.

Therefore, based on Eqs. (2.30) and (2.31), we have the following lower bound of the

probability that the BS makes a decision withinNmax observations:

Prob
(
Nopt ≤ Nmax

)
≥ Q

(
B −Nmax E[λ |H1]√

Nmax σ1(λ)

)
. (2.32)

This lower bound will be considered in our algorithm for selecting an optimal set of sensors

as described next.

2.4.4 Algorithm for Joint Optimization of Sensor Selectionand Sens-

ing Time

We now turn to the problem of finding an optimal set of sensors and an optimal sensing

time that together minimize average sensing overhead. LetΦ denote thetotal setof sen-

sors in the network available for cooperative sensing with estimated RSS distributions via

training. The key idea is to utilize a subsetΩ ⊆ Φ of sensors with relatively high average

RSS values, and also to select the sensing timeTS, thus minimizing both the number of
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Algorithm 1 ONLINE SENSING SCHEDULING

The fusion center does the following

1: while each roundn ∈ [1, Nmax] of sensing perioddo
2: Receive results of energy detector (i.e., RSS)xn from sensors
3: tn ← σ−1

n · ‖w‖−1 · T(xn) // Calculate test statistic
4: ΛN ← ΛN + (θ1 − θ0) tn + 1

2 (θ
2
0 − θ21)

5: if ΛN ≥ B then
6: A primary exists and we schedule fine-sensing (or initiate the channel vacation procedure)
7: else ifΛN < A then
8: A primary does not exist
9: else ifn == Nmax then

10: Schedule fine-sensing for in-depth measurement
11: else
12: Schedule another sensing period and wait for the observation
13: end if
14: end while

cooperating sensors and the number of sensing periods in incumbent detection, while guar-

anteeing the detectability requirements. Given a subset ofsensors,Ω, and sensing timeTS,

the total expected sensing overhead before the fusion center accumulates enough sensing

samples can be expressed as:

O(Ω, TS) = min
{
max

{
E[N(Ω)], 1

}
, Nmax

}
× TD(Ω, TS), (2.33)

whereTD(Ω, TS) is the total time duration for a single sensing, which consists of a sensing

period and a measurement reporting period:

TD(Ω, TS) = TS + |Ω| × TR, (2.34)

whereTS is the sensing duration andTR is the duration of a time-slot for reporting the

sensing result to the fusion center.

Then, based on Eqs. (2.32), (2.33), and (2.34), our problem of finding an optimal set of
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Algorithm 2 JOINT OPTIMIZATION OF SENSOR SELECTION AND SENSING TIME

1: Initialize the desired detection parametersPFA,PMD,Pth

2: Initialize the set of available sensorsΦ = {χ1, . . . , χns}
3: Initialize the optimal set of sensorsΩ∗ ← ∅
4: Initialize the set of sensing timeTS ∈ [1, 2, 3, 4, 5] ms
5: Initialize the sensing overheadO∗ ←∞
6: while Φ 6= ∅ do
7: χ∗ ← argmaxχi∈Φ{Pi} // Pi = PR · eYi

8: Φ← Φ \ {χ∗}
9: Ω← Ω∗ ∪ {χ∗}

10: for eachTS ∈ TS do
11: TD(Ω, TS)← TS + |Ω| × TR

12: N∗ ← min{max{E[N(Ω, PFA, PMD, TS)], 1}, Nmax}
13: O(TS)← N∗ × TD(Ω, TS)
14: end for
15: T ∗

S ← argminTS∈TS
{O(TS)}

16: Omin ← O(T ∗
S)

17: if Omin > O∗ andPr(Nopt ≤ Nmax) ≥ Pth then
18: return (Ω∗, T ∗

S)
19: else
20: Ω∗ ← Ω
21: O∗ ← Omin

22: end if
23: end while

sensors can be formally stated as:

Find (Ω∗, T ∗
S) = arg min

Ω⊆Φ,TS∈TS

O(Ω, TS)

subject to Pr(Nopt ≤ Nmax) ≥ Pth,

PFA ≤ α,

PMD ≤ β,

whereα andβ are the desired false-alarm and mis-detection probabilities.

For this, we propose a simple algorithm as described in Algorithm 2. The idea is that

we sort the sensors in descending order of average RSS (i.e.,Pi) and then add sensors

to Ω from the top of the list until the total sensing overhead increases by adding another

sensor, and the detection constraint (i.e.,Pth) is satisfied (line17). The algorithm provides

an optimal solution with a low computational overhead, i.e., O(|Φ| · |TS|), where|Φ| and
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|TS| are the total number of available sensors and sensing times,respectively. On the other

hand, the exhaustive search requiresO(2|Φ|·|TS| − 1). The algorithm is shown to reduce

sensing overhead significantly (see Section 2.5.3), while guaranteeing the desired level of

detection performance (in terms of false-alarm and mis-detection probabilities).

2.5 Performance Evaluation

This section comparatively evaluates the proposed algorithms using MATLAB-based

simulation under realistic wireless environments.

2.5.1 Simulation Setup

We consider a DSA network with a large-scale primary transmitter (e.g., a TV trans-

mitter) and multiple secondary users (or sensors). To demonstrate the efficacy of the

proposed schemes in realistic wireless environments, we consider the network parame-

ters, which are used widely in IEEE 802.22 WRANs. We assume that noise power is

NBi = −95.2±∆i dBm, which is commonly used in IEEE 802.22 WRANs [133], where

∆i is the noise uncertainty (in dB) at sensori andB is channel bandwidth. The channel

bandwidth is set toB = 6MHz as in the TV channels. We consider shadow fading with

dB-spreadσdB = 5.5 (dB), which is also typical in rural area networks such as 802.22

WRANs [137]. Throughout the simulation, we assume that the time-slot duration for re-

porting a RSS measurement (TR) is fixed at0.2ms, and thatns = 10 cooperating sensors,

unless specified otherwise. For RSS profiling,104 samples were used for estimating the

RSS distributions. This consumes only a total sensing time of 10 seconds, assuming the

sensing time ofTS = 1ms. We fix the desired false-alarm probability atPMD = 0.01 and

Pth = 0.95, throughout the evaluation.

To demonstrate the benefits of the proposed sensing algorithms, we evaluate the perfor-

mance of the following decision- and data-fusion rules: (i)the OR-rule, (ii) Equal Gain

Combining (EGC), (iii) Maximal Ratio Combining (MRC), and (iv) RSS-profile-based

sensing. The OR-rule is a simple decision fusion rule, in which the fusion center con-
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Figure 2.9: Performance of detection schemes for one-time sensing withns = 10 sensors.
RSS-profile-based cooperative sensing (denoted as LDA) shows near-optimal
performance even in a very low SNR environment.

cludes that there exists a primary signal if at least one sensor reports the existence of a

primary signal. The other two data-fusion rules, EGC and MRC, are different in that EGC

does not require any channel state information at the sensors, whereas MRC requires chan-

nel state information. EGC and MRC are known to be near-optimal in high and low SNR

regions, respectively [95].

2.5.2 Performance of RSS-Profile-Based Detection for One-Time Sens-

ing

We first evaluate the performance of the proposed LDA-based detection scheme for

one-timesensing, assuming that the sensors are randomly selected.

2.5.2.1 Performance Comparison

Fig. 2.9 compares the performance of the testing schemes fordifferent average RSS

values. The figure shows that mis-detection probability,PMD, increases as average primary

signal strength,PR, decreases for all the tested schemes. It also indicates that the OR-rule

performs the worst because it does not fully utilize the sensing results; in the OR-rule,
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Figure 2.10: Effect of number of cooperating sensors for one-time sensing. RSS-profile-
based sensing outperforms the OR-rule since it better exploits the diversity of
the sensors.

sensors make a binary decision on the presence or absence of aprimary signal locally

and report it to the fusion center. Among the data-fusion rules, MRC outperforms EGC

because MRC exploits the SNR information at the sensors, whereas EGC does not require

channel estimation. It also shows that our RSS-profile-based detection (denoted as LDA)

significantly outperforms the OR-rule and EGC, thanks to itsability to set the near-optimal

detection threshold (i.e., an(ns − 1)-dimensional hyperplane) based on the spatial RSS

profile. Moreover, the performance of the RSS-profile-basedscheme is close to MRC,

thanks to its ability to exploit sensor heterogeneity.

2.5.2.2 Effects of Number of Sensors

Fig. 2.10 shows the impact of the number of cooperative sensors on incumbent de-

tection performance. In our simulations, the average signal strength (PR) is set toPR =

−116dBm, which is the DTV signal detection threshold in IEEE 802.22 WRANs. The

figure shows that RSS-profile-based detection performs welleven with a small number of

sensors compared to the OR-rule. This is because, in RSS-profile-based detection, all the

sensors contribute to the enhancement of detection performance via RSS-profile, thus fully

exploiting spatial RSS diversity. On the other hand, in the OR-rule, only a few sensors with
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Figure 2.11: Effect of noise uncertainty for AWGN and shadow fading environments. RSS-
profile-based spectrum sensing works well even when the average RSS is below
SNRwall, thus overcoming the noise uncertainty.

high RSSs (e.g., above the detection threshold) contributeto the detection of a primary

signal.

2.5.2.3 Effects of Noise Uncertainty

Noise uncertainty is one of the main obstacles in using energy detection in a very low

SNR environment such as 802.22 WRANs [142]. Noise uncertainty creates a performance

barrier calledSNRwall, below which signal detection is infeasible irrespective of sensing

time or the number of cooperative sensors.SNRwall, in fact, depends solely on noise

uncertainty as [142]:

SNRwall =
ρ2 − 1

ρ
, (2.35)

whereρ = 10∆/10 and∆ (in dB) is the noise uncertainty. We assume that noise uncertainty

is bounded by1dB for all sensors,4 with a correspondingSNRwall of −98.5dBm.

Fig. 2.11 shows that, when the OR-rule is employed, the detector completely fails to

detect signals belowSNRwall under the AWGN channel. However, under the practical

4This is a reasonable assumption since noise uncertainty canbe bounded by±1 (dB), considering sev-
eral contributing factors such as calibration error, thermal noise variation, changes in LNA amplifier gain,
etc. [130].
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Figure 2.12: Impact of sensing time on detection performance. The amountof time a sensor
spends on sensing for one-time sensing affects the detection performance.

assumption that noise uncertainty is independent at the sensors, the RSS-profile-based de-

tection works well for signals belowSNRwall, even with a one-time sensing. Detection

performance further improves under shadow fading, i.e.,σdB = 5.5dB, thanks to its ability

to exploit spatial RSS diversity.

2.5.2.4 Effects of Sensing Time

Fig. 2.12 plots the mis-detection performance for various sensing time durations,TS ∈
[1, 20]ms. As we observed in Eq. (2.12), the detection performance not only depends on the

average primary signal strength,PR, but also on the sensing time. The figure shows that,

as sensing time increases, the mis-detection rate decreases for all tested values ofPR. This

is because the more samples the detector is provided with, the more accurate the sensing

results, thus eliminating ambiguity on the existence of a primary signal. As described in

Algorithm 2, the fusion center finds a combination of an optimal set of sensors and an

optimal sensing timeT ∗
S that minimizes the average sensing overhead.
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Figure 2.13: Average number of sensing periods scheduled to meet the detectability require-
ment ofPMD, PFA ≤ 0.01.

2.5.3 Performance of Online Sensing Scheduling with Optimal Sensor

Selection

We now evaluate the performance of the proposed online sensing scheduling by jointly

optimizing the selection of sensors and sensing time.

2.5.3.1 Impact on Incumbent Detection Delay

Fig. 2.13 shows the average number of sensing periods that must be scheduled to meet

the detection requirements. The figure shows that our SPRT-based online sensing schedul-

ing algorithm significantly reduces the average number of sensing periods compared to the

OR-rule-based scheduling scheme, thanks to its ability to fully utilize the sensing results

via RSS-profiles. As a result, our algorithm expands the feasible region of the energy de-

tector significantly. On the other hand, the OR-rule benefitsrelatively less from scheduling

sensing periods because RSSs do not change over time (exceptthe measurement errors) at

fixed sensor locations.

For the OR-rule, the false-alarm probability at each sensor, P̃FA, to achieve the global
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Figure 2.14: Impact of sensing time on sensing overhead under optimal sensor selection and
sensing scheduling algorithms. A longer sensing time becomes more desirable
as the average primary signal strength decreases, and vice versa.

false-alarm probability,PFA, can be calculated as:

P̃FA = 1− (1− PFA)
1/(ns×niter), (2.36)

wherens is the number of cooperative sensors andniter is the number of sensing periods

for sensing scheduling.

The detection threshold for a local decision to achieve the desired false-alarm probabil-

ity P̃FA can be derived from Eq. (2.36) as:

η = NB
(
1 +

1√
M
Q−1(P̃FA)

)
, (2.37)

whereM is the number of sensing samples.

From Eqs. (2.36) and (2.37), the mis-detection probabilityfor individual sensors can be

derived as:

P̃MD = Q

( √
M

PR +NB

(
PR +NB − η

))
, (2.38)

wherePR is the average primary received signal strength.

Finally, the global mis-detection probability of the OR-rule is given asPMD =
(
P̃MD

)ns×niter .
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Figure 2.15: Performance of the optimal sensor selection algorithm. Ourproposed sensor
selection algorithm reduces sensing overhead significantly over the algorithm
without sensor selection.

2.5.3.2 Impact on Sensing Overhead

We now demonstrate the performance of our optimal sensor-selection algorithm in

terms of the reduction in sensing overhead. Sensing overhead is defined as the average

fraction of time (in%) spent on sensing within a 2 second interval, which is thechannel

detection time(CDT) period (see Eq. (2.33)). Fig. 2.14 shows the sensing time overhead

for various sensing timesTS ∈ [1, 3, 5]ms. The figure shows that a larger sensing time,

i.e.,TS = 5ms, is favored in low SNR environments, whereas a smaller sensing time, i.e.,

TS = 1ms is desirable in relatively high SNR environments, in which sensing scheduling

may not be needed to achieve detection requirements.

Fig. 2.15 compares the average sensing-time overhead, i.e., the fraction of time spent

on spectrum sensing and reporting the sensing results within a sensing interval, with the

optimal selection of sensors and sensing time against the average sensing overhead without

sensor selection. A sensing interval is assumed to be 2 s, which is equivalent tochan-

nel detection time(CDT) in IEEE 802.22 WRANs. The figure shows that our algorithm

minimizes the average sensing overhead by up to94% because it selects only a subset of

sensors with high average RSSs, thus minimizing both the number of sensing rounds and
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the sensing result reporting time.

2.6 Related Work

Various aspects of cooperative sensing have been studied, such as cooperation gain

[55, 57], sensor selection [125], and performance-overhead tradeoffs [71, 88, 102]. The

benefits of sensor collaboration have been reported to diminish as the degree of shadowing

correlation among sensors increases [55, 56, 57, 106]. To minimize the detrimental ef-

fects of shadowing correlation on cooperative sensing, several sensor-selection algorithms

have been introduced. For example, Selénet al. [125] proposed heuristic algorithms for

selecting an uncorrelated set of sensors, given different levels of information about sensor

locations. In a similar vein, Kim and Shin [81] suggested selecting sensors based on their

geographical separation, so as to make the sensors uncorrelated from each other. While

these approaches seek to avoid shadow fading correlation among them, we show that, when

sensors arestationary, there is virtually no shadowing correlation among sensors. Based

on this observation, we show that shadowing correlation (orseparation between sensors) is

not a determining factor in stationary DSA networks.

Sensing scheduling has also been studied as an efficient way of improving incumbent

detection performance [31, 67, 85, 152, 166]. For example, Hoanget al. [67] developed

an adaptive sensing scheduling mechanism that takes into account both time-varying chan-

nel and traffic conditions. In the IEEE 802.22 WRAN standard draft, a two-stage sensing

mechanism has been proposed to provide flexible scheduling of quiet periods [78]. Re-

cently, a sequential hypothesis testing framework has beenproposed as an attractive way to

minimize the sensing delay for given detection requirements (in terms of false-alarm and

mis-detection probabilities). Laiet al. [85] presented sequential detection of primary sig-

nals using the cumulative sum (CUSUM) algorithm. Similar toour work, Zouet al. [166]

proposed a sensing scheduling scheme based on the frameworkof sequential probabil-

ity ratio testing (SPRT) under the assumption of unknown primary signal characteristics.

However, the interactions between cooperative sensing andsensing scheduling have not

been considered. We on the other hand, jointly optimize the sensor selection to minimize
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overall sensing overhead.

In essence, our work seeks to fill this important gap by jointly optimizing sensor selec-

tion and sensing scheduling, thus synergetically improving spectrum sensing performance.

An extensive survey of cooperative sensing in DSA networks can be found in [8].

2.7 Conclusion

In this chapter, we proposed to jointly optimize cooperative sensing and sensing schedul-

ing, in order to minimize average sensing overhead, while guaranteeing the desired level

of detection requirements. Our spectrum sensing frameworkexploits the spatio-temporal

variations in received primary signal strength by constructing a spatial RSS-profile for an

incumbent signal. We showed that the RSS distribution of a primary signal can be accu-

rately approximated as a Gaussian distribution in low SNR environments and we analyzed

the detection performance of the RSS-profile-based detection scheme. We also showed that

there is virtually no correlation among stationary sensors. Based on these observations, we

formulated the problem of sensing scheduling as a sequential hypothesis test, which finds

an optimal time to stop scheduling sensing subject to given detection requirements. We also

proposed an optimal algorithm that makes the tradeoff between detection performance and

sensing overhead. Our evaluation results have shown that the proposed sensing algorithms

reduce sensing overhead by up to94% in practical scenarios.
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CHAPTER 3

Secure Detection of Large-Scale Primary Users

3.1 Introduction

Accurate sensing of spectrum condition is key to the opportunistic use of licensed spec-

trum bands in CRNs. However, reports from sensors can be manipulated by attackers in

various ways, such as primary signal emulation [11, 26] and sensing results falsification

[28]. These sensing-targeted attacks can severely undermine incumbent detection perfor-

mance because the fusion rule for a final detection decision relies solely on reported RSSs.

Sensing-targeted attacks pose a significant threat as they can disrupt opportunistic spectrum

access, the basic premise of DSA. We call these unique sensing-targeted attacks in DSA

networkssensing-disorder attacks.

A sensing-disorder attack aims to obscure the existence/absence of a primary signal

by manipulating spectrum sensing information (e.g., measured RSSs) either by raising or

lowering the signal strength. When no primary signal exists, attackers or compromised

sensors can manipulate their reports (i.e., RSSs) to generate the illusion of a primary signal.

For example, in the IEEE 802.22 WRANs [38], an attacker can report a fake sensing report

to force all users in the entire cell (of radius up to100 km) to immediately vacate the channel

[120]. Once users in the cell vacate the channel, the attacker can freely use the channel

without interruption. When there is a primary signal, on theother hand, attackers can

lower the RSSs to veil the presence of a primary signal, leading to an unacceptable level of

interference to the PUs. In both cases, attackers mislead the fusion center, i.e., base station
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(BS), to make an incorrect decision on the presence/absenceof a primary signal, wasting

spectrum resources or causing unacceptable interference to the primary communications.

Therefore, there is a clear incentive for attackers to launch sensing-disorder attacks.

While sensing-disorder attacks can be easily launched withthe aid of programmable

SDR devices, their detection is difficult. Unlike ordinary Denial-of-Service (DoS) attacks

that exhaust all the network resources, they can be easily mounted by using SDR devices,

such as USRP [3] and Sora [84]. These open-source SDR platforms can be attractive targets

for attackers because of their accessibility to low-layer protocol stacks like PHY and MAC

[155]. Detecting these attacks, however, is not an easy task. While secure mechanisms such

as MAC-layer or crypto-based authentication work well in traditional wireless networks,

lack of primary-secondary communications precludes theirusage. Moreover, the detection

of attacks is exacerbated by the volatile nature of the wireless medium itself, which makes

it hard to differentiate between legitimate and deliberately-manipulated sensing reports.

We thus need to devise a mechanism that can protect cooperative sensing from the above-

mentioned attacks.

In this chapter, we propose an attack-tolerant distributedsensing protocol (ADSP) for

the IEEE 802.22 WRANs that filters out abnormal sensing reports (caused by either adver-

saries or malfunctioning sensors) by exploiting shadow-fading correlation in RSSs. This

RSS-based filtering is motivated by the fact that attackers cannot control the physical-layer

signal propagation.

3.1.1 Contributions

This chapter makes several main contributions as follows.

• Proposal of a novelcorrelation filterfor detection of abnormal sensing reports that (i)

exploitsshadow-fading correlationin RSSs without any additional communication,

(ii) safeguards spectrum sensing against attacks that increase either the incumbent

false-alarm (type-1) or mis-detection (type-2) rates, and(iii) minimizes processing

and sensing overheads. Despite their importance, type-2 attacks have not been con-

sidered before.
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• Introduction of cluster-based cooperative sensing to exploit shadowing correlation.

Correlation between sensors, which is entailed by sensor clustering, is known to

have a detrimental impact on incumbent detection performance [55, 56, 106]. Our

evaluation study, however, shows that the proposed clustering does not incur any per-

ceivable performance degradation even in a very low SNR environment. Therefore,

sensor clustering is an efficient and useful approach to sensing-disorder attacks.

• Development of a new data fusion rule tailored to attack-tolerance. Specifically, we

proposeweighted gain combining(WGC) that adaptively assigns different weights to

sensing reports according to their statistical significance based on the normal shad-

owing profile. As a result, it minimizes the influence of unfiltered attacks (due to

their small deviations) on a final decision, further improving attack-tolerance.

• Design of a sensing scheduling scheme that guarantees satisfaction of the detection

requirements of 802.22 even in the presence of attacks, while minimizing the number

of sensing rounds. AlthoughADSP significantly improves attack-tolerance, our sim-

ulation results indicate that the detection requirements of 802.22 may not be satisfied

with one-time sensing. To solve this problem, we propose an optimal stopping time

for sensing scheduling using sequential hypothesis testing so as to meet detectability

requirements.

• In-depth evaluation ofADSP in a realistic two-dimensional shadow fading environ-

ments in IEEE 802.22 WRANs. Most previous work uses a simple but inaccurate

one-dimensional model. Our simulation results show that the proposed filtering

scheme successfully withstands attacks by reducing the false-alarm rate up to99.2%

and achieving up to97.4% of maximum achievable detection rate.

3.1.2 Organization

The remainder of this chapter is organized as follows. Section 3.2 describes the system

and attack models used in this chapter. Section 3.3 presentsour proposed approach for

attack detection, and the generation of a realistic two-dimensional shadowing field. Sec-
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tion 3.4 details our approaches to filter design and data-fusion, and Section 3.5 proposes a

sensing scheduling algorithm. Section 3.6 evaluates the performance ofADSP and Section

3.7 reviews related work. Section 3.8 concludes the chapter.

3.2 System and Attack Model

We first describe the IEEE 802.22 WRANs and the signal propagation and sensing

models to be used throughout the chapter. We then introduce the data-fusion model, and

finally, present the attack model.

3.2.1 IEEE 802.22 WRANs

We consider an IEEE 802.22 WRAN, an infrastructure-based cellular system where

each cell consists of a BS and the associated end-users called consumer premise equip-

ments(CPEs). The CPEs represent households in a rural area, and are thus stationary.

The typical coverage of each 802.22 cell is33 km (up to100 km). The main goal of IEEE

802.22 WRANs is to provide broadband wireless access in rural areas by allowing oppor-

tunistic access of TV white spaces recently opened up by the FCC [48]. The BS, which we

assume adversaries cannot compromise, schedules the sensing of channels and decides on

the presence/absence of a primary signal in each channel, based on sensing reports from

a setC of collaborating sensors. Among different types of PUs in TVbands, we focus on

detecting DTV signals with6MHz channel bandwidth in the US. We consider an 802.22

cell located at the edge of the keep-out-radius (i.e.,150.3 km) of a TV transmitter, and the

entire secondary network (or cell) lies within the detection range of the DTV signal.

3.2.2 Signal Propagation and Sensing Models

The received primary (DTV) signal strength at sensor (CPE)i can be expressed as the

propagation model [59]:

Pi = Po

(do
di

)α
eXi , (Watt) (3.1)
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wherePo is the signal strength at the primary transmitter,α the path-loss exponent,do the

reference distance, anddi the distance from the primary transmitter to the sensori. Shadow

fading is accounted for ineXi whereXi∼N(0, σ2) ∀i. Log-normal shadow fading is often

characterized by its dB-spread,σdB , which has the relationshipσ = 0.1 loge(10)σdB. We

assume that in the energy detector for PHY-layer sensing which measures the power level

over the wide6MHz-wide DTV channel, the effect of multi-path fading can beignored

[127, 131] as is commonly assumed in the literature [91, 100].1

The energy detector is widely used for its simple design and efficiency [40, 127]. Al-

though the feature detector is more reliable, it takes much longer (e.g.,24ms for the field-

sync detector for ATSC) [131] because it looks for a specific signature of the primary signal

that appears infrequently. The test statistic of the energydetector is an estimate of average

RSS (including the noise power), and can be approximated as aGaussian using the Central

Limit Theorem (CLT) as [38]:

Ti ∼





N
(
No,

N2
o

M

)
H0 (no primary signal)

N
(
Pi+No,

(Pi+No)2

M

)
H1 (primary signal exists),

(3.2)

wherePi is the received power of a primary signal,No the noise power, andM the number

of signal samples. We assume that sensors measure the entire6 MHz DTV channel at the

Nyquist rate for 1 ms, i.e.,M=6× 103.

3.2.3 Data-Fusion Model

We consider data fusion as the rule for incumbent detection.While decision fusion

reduces the overhead in reporting sensing results, it is difficult to thwart sensing-disorder

attacks, since it only provides a binary value based on a local decision.

In fading channels, equal gain combining (EGC) is known to have near-optimal perfor-

mance without requiring estimation of the channel gains. EGC has the following decision

1For signal-specific sensing techniques, e.g., FFT-based pilot sensing [128], the effect of multipath fading
may not be ignored.
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statistic:

TΣ ,
Ns∑

i=1

wi Ti, (3.3)

whereTi is the test statistic of the energy detector at sensori, Ns is the number of col-

laborating sensors, and the sensors have an identical weight, i.e.,wi = 1 ∀i. The decision

thresholdη to achieve the desired level of false-alarm probabilityQ∗
FA can be derived

as [40]:

η = Q−1(Q∗
FA)

√
NsNo√
M

+NsNo, (3.4)

whereQ(·) is the well-known Q-function. The performance of EGC will beused as a

baseline in evaluating the efficacy of the proposed scheme.

In order to achieve better attack-tolerance, we proposeweighted gain combining(WGC)

in ADSP that adjusts the weights{wi}i∈C so as to minimize the impact of attack mis-

detection on the final decision.

3.2.4 Attack Model

3.2.4.1 Attack Scenarios and Types

Sensing can be disrupted as follows.

• A sensor is compromised, and then manipulates its sensing reports, i.e., raises or

lowers RSSs.

• A sensor is malfunctioning or faulty, yielding readings that differ from the actual

RSS.

A common consequence of the above two cases is that sensing reports to the fusion

center are distorted, thus increasing the probability thatthe fusion center will make a wrong

decision. To solve this problem efficiently, we focus on the detection of any abnormal

sensing reports instead of pinpointing the actual cause of abnormality.

Note that another possible attack scenario is a primary useremulation attack (PUEA),

as studied in [11, 26, 91]. However, PUEA is relatively easy to detect mainly because the
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attacker has only a coarse-grained control of RSSs at sensors since signals are broadcast.

In the above two scenarios, however, the attacker has a fine-grained control of RSSs at

individual sensors, making their detection more difficult.Therefore, we will focus on the

above two attack scenarios.

3.2.4.2 Attack Types

We consider two types of attacks that can be mounted (or caused) by attackers (or faulty

nodes):

• Type-1 Attacks increase thefalse-positiverate (classifying a non-primary signal or

no signal as a primary signal) by raising RSSs, and

• Type-2 Attacks increase thefalse-negativerate (causing failure to detect a primary

signal) by lowering RSSs.

We assume that the attackers know the presence/absence of a primary signal regardless

of the decision made by the fusion center, and launch type-1 (type-2) attacks underH0

(H1); otherwise, attacks only serve to improve incumbent detection performance.

3.2.4.3 Sensing Reports in the Presence of Attacks

Under the above model, a final sensing report to the fusion center can be expressed (in

Watt) as:

Ri = Pi · 1{H1} +No + Ei︸ ︷︷ ︸
energy detector output (Ti)

+Di ∀i ∈ C, (3.5)

where1{·} is an indicator function,Ti is the test statistic of the energy detector (in Eq. (3.2))

including the measurement errorEi, andDi ∈ R is the deviation orattack strength, tam-

pered with by a compromised (or faulty) sensor;Di = 0 for normal sensors. Note that no

loss of reporting packets is assumed, so we can focus on the detection of abnormal sensing

reports.
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3.3 The Proposed Approach

We now present the design rationale behindADSP, its framework, and the methodology

to generate a spatially-correlated shadow fading field.

3.3.1 Design Rationale

To maximize attack-tolerance and preserve the detection accuracy of data fusion,ADSP

employs anomaly detection based on statistics. Specifically, ADSP exploits physical-layer

signal propagation characteristics, or the spatial correlation in RSSs among neighboring

sensors. The key insight behindADSP is that, in shadow fading environments, RSSs at

nearby sensors are likely to be highly correlated, which canbe used to identify manipu-

lated sensing reports. The adversaries must be aggressive in raising or lowering the RSSs

reported to the fusion center in order to influence the outcome of the final decision. How-

ever, any sensing report that significantly deviates from what is expected is deemed sus-

picious of being compromised or erroneous, and will hence bediscarded or penalized by

the fusion center in making a final decision. Adversaries must, therefore, lower their attack

strength, reducing the chance for the fusion center to make awrong decision; otherwise,

they must risk getting caught by the detector. This way, the fusion center can achieve a

high level of attack-tolerance, provided the majority of its neighbors behave well.

3.3.2 ADSP Framework

ADSP resides at the fusion center (i.e., BS) and consists of the following three building

blocks:

• sensing managerthat manages sensor clusters and directs the sensors to report their

readings at the end of each scheduled sensing period,

• attack detector that detects and discards (or penalizes) abnormal sensing reports

based on the pre-established shadowing correlation profile, and

• decision maker that determines the presence or absence of a primary signal based
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Figure 3.1: TheADSP framework: Compromised (or malfunctioning) sensors mightcon-
taminate their sensing reports{Ri}. The attack detector filters out these con-
taminated sensing reports based on the shadowing correlation profile and then
feeds the remaining ones to the fusion center. This process is repeated until the
decision statistic at the fusion-center reaches one of the predefined thresholds,
i.e.,A andB, in order to guarantee satisfaction of the detection requirements of
802.22.

on filtered sensing results using sequential hypothesis testing.

These three components closely interact with each other andform a robust distributed sens-

ing system. Fig. 3.1 depicts theADSP framework, which can be implemented at the 802.22

BS without requiring any modification to sensors (i.e., CPEs).

One important and unique feature of the attack detector is the ability to tolerateboth

type-1 and type-2 attacks. This feature is attributed to the fact that the detectorcross-checks

sensing reports and the assumption that the majority of the sensors behave well. As a result,

under type-1(2) attacks, their sensing reports with relatively high (low) values are likely

to be flagged by more of their neighboring sensors, thus making our scheme applicable

regardless of the existence of a primary signal. This makes the system design simple and

efficient, while achieving high attack-tolerance.

3.3.3 Generation of Spatially-Correlated Shadow Fading

To incorporate spatially-correlated shadow fading in our analysis and simulation, we

need a shadowing correlation model in which the statistics accurately reflect the real-world

wireless shadowing environment. Note that one must rely on amodel-based approach

since measurement data for shadow fading is very scarce, andconducting a field test is too

expensive. Gudmundson’s model [60] is one of the most widely-used models in accounting

for shadowing correlation. However, it cannot capture spatial shadowing correlation, and
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Figure 3.2: Spatially-correlated shadowing random fieldp(·, ·): (a) An example ofp(·, ·)
with exponentially-decaying spatial correlation, where the dB-spread and decor-
relation distance are assumed to beσdB = 4.5 dB andDcorr = 150m, respec-
tively, and (b) Illustration of the two-dimensional auto-correlation function of
shadow fading.

hence, analyses based on this model might yield results thatare significantly different from

those in real-world wireless environments, as evidenced inboth the theoretical study in

[109] and empirical measurements in [117]. Recently, the authors of [119] proposed a

statistical modeling approach to characterization of spatial spectrum behavior of primary

signals in the context of DSA networks.

Along the same line as in [119], we generate spatially-correlated shadow fading in a

two-dimensional area by applying the convolution method proposed in [53]. We refer to

the thus-generated data set as ashadowing random fieldp wherep(x, y) represents the

shadowing gain at a unit grid area, i.e.,∆m×∆m, centered at the coordinate(x, y) ∈ R
2.

The shadowing random fieldp(·, ·) is assumed to be an isotropic,2 wide-sense station-

ary, and log-normally distributed random field with zero mean and exponentially-decaying

spatial correlation. Then, the covariance between the two points θi = (xi, yi) andθj =

(xj , yj) in p is given as:

E
[
p(θi),p(θj)

]
= Rp(dij) = σ2 · e−dij/Dcorr , (3.6)

wheredij = ‖p(θi) − p(θj)‖ is the Euclidean distance between the locationsθi andθj, σ

is the standard deviation of shadow fading, andDcorr is the decorrelation distance, which

2Note that we do not consider angular dependency in shadowingcorrelation for analytical tractability.
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Figure 3.3: Comparison of auto-correlation function: Theoretical model (solid line) vs. syn-
thetic data from a random fieldp(·, ·) (dotted line).

depends on local wireless environments (e.g., urban or suburban).3

Fig. 3.2(a) shows an example of ashadowing random fieldin a 2 km×2 km region,

which clearly exhibits a strong spatial correlation in shadow fading. This is clearly shown

in Fig. 3.2(b), which depicts the two-dimensional auto-correlation of shadow fading. To

demonstrate the accuracy of this method, Fig. 3.3 compares the one-dimensional auto-

correlation function (ρ) of a random field against the Gudmundson’s empirical model with

σdB = 4.5 dB andDcorr = 150m. The figure indicates that the synthetic data in the shad-

owing random field accurately emulates real-world shadowing correlations. Note that our

attack detection scheme inADSP only requires the one-dimensional auto-correlation func-

tion of the shadowing field, which can be estimated by the service provider at the time of

system deployment.

3The measurement study in [10] indicates that a typical decorrelation distance is in the range of120 −
200m in suburban areas.
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3.4 Detection of Abnormal Sensor Reports via Correla-

tion Analysis

In this section, we formulate the anomaly-detection problem as a hypothesis testing,

and present the design of a correlation-based filter. To further improve the attack-tolerance

of ADSP, we propose a new data-fusion rule, called theweighted gain combining(WGC).

For cooperative sensing, the designated sensors (grouped in clusters) report their energy-

detector’s output along with their location information tothe fusion center, at the end of

each sensing period.4 The location information is required to exploit the shadowing cor-

relation in RSSs; it may be available at the fusion center since the sensors (i.e., CPEs) in

802.22 are stationary and 802.22 standard draft mandates the BS to have sensors’ location

information. Sensors can employ existing secure localization protocols (e.g., [27, 116]) to

obtain accurate sensor location information.

3.4.1 Characterization of the Correlation in Sensing Reports

We first study the correlation structure of the sensing reports. A key observation is that

the correlation structure of shadowing components{eXi} is preserved in the sensing reports

{Ri} when there is no attack (or misbehavior), i.e.,Di = 0. To simplify the analysis, we

further assume that the variance of the measurement error can be approximated asσ2
E≈ N2

o

M

regardless of the presence/absence of a primary signal.5

Under the above conditions, and treating all the other termsin Eq. (3.1) (excepteXi and

Ei) as constants, we can express sensori’s report in Eq. (3.5) as:

Ri = C1 e
Xi + C2 + Ei (Watt), (3.7)

whereC1 = Po

(
do/di

)α
, C2 = No, andEi ∼ N(0, N

2
o

M
) is the measurement error of the

energy detector. The correlation in shadowing componenteXi does not change when we

4We consider two-dimensional sensor coordinates for simplicity, while the actual terrain profile is three-
dimensional.

5This assumption is reasonable in a very low SNR environment,e.g.,−20dB, where the average primary
signal power is only about1% of the noise power, i.e.,E[Pi]=0.01×E[No].
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add/multiply the same number to all of the shadowing components.

Moreover, the variance of measurement error is much smallerthan that of a shadowing

component, i.e.,σ2
E < σ2

X , since the number of samplesM is sufficiently large even with

a short sensing time, e.g.,M =6×103 for the duration of 1 ms. So, the correlation in the

received sensing reports{Ri} almost preserves the correlation of the shadow fadingeXi ,

i.e.,Corr(Ri, Rj)≈Corr(eXi, eXj ).

3.4.2 Cluster-based Hypothesis Testing

While we exploit shadowing correlation for attack detection, the degree of correlation

decreases exponentially with the distance between sensors. Therefore, we formsensor

clustersamong the sensors in close proximity, such that sensors within the same cluster are

highly correlated. A measurement study in [124] indicates that households in rural areas

tend to be clustered, and thus, it is reasonable to assume that a BS can identify several

sensor (i.e., CPE) clusters within its own cell of typical radius of 33 km. If such sensor

clusters exist, the BS can easily identify them based on their location information. If such

sensor clusters do not exist, additional sensors can be deployed to form such sensor clusters.

Therefore, for each collaborative sensori∈C, the correlation-filter checks if the sensor

exhibits proper correlation behavior based on the following hypothesis testing for each

neighbor within its cluster:

Ha
0 : Corr(Ri, Rj) = ρ(dij) ∀j ∈ N(i), (3.8)

where the neighbor setN(i) is defined as the sensors belonging to the same cluster of sensor

i. As a result of this cross-checking, the number of flags raised by neighboring sensors will

be used as a filtering criterion (see Section 3.5.3 for details). We will henceforth focus on

the analysis of shadowing correlation in sensing reports.
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3.4.3 Correlation Analysis for Filter Design

Although the shadowing correlation coefficient(ρ) is an obvious metric for the above

hypothesis testing (i.e., Eq. (3.8)), it is not suitable fordirect use in our problem because

estimation of the correlation coefficient would require a sequence of samples; this can

incur significant time and energy overhead for sensing, and can also deter the detection of

returning PUs. Therefore, we detect per-sample abnormal behavior by examiningsimilarity

between the sensing reports using their conditional probability distributions. This is an

alternative, but efficient approach since higher correlation entails greater similarity, which

can be measured via a conditional distribution of sensor reports, as we will describe next.

In order to capture the similarity between sensing reports,we first derive the probability

distribution ofRi, which is the sum of non-zero mean normal (i.e.,Ei) and log-normal (i.e.,

eXi) random variables, as indicated in Eq. (3.7). To the best of our knowledge, there is no

closed-form expression for such a distribution. However, aclose examination of Eq. (3.7)

implies thatRi can be approximated as ashifted log-normal random variable, i.e., the sum

of a log-normal random variable and a constant.

Let us denote the sensing reports by a shifted log-normal random variable, i.e.,Ri =

eZi+No+C whereZi∼N(µZ , σ
2
Z). From Eq. (3.7), we have the following approximation

after simple manipulation:

eZi +No + C ≈ eXi+lnC1 +No + Ei, (3.9)

whereZi ∼ N(µZ , σ
2
Z) andXi ∼ N(0, σ2

X) with σX = σ. We set the constantC = 4 σE

whereσE= No√
M

so that the probability of the right-hand side of Eq. (3.9) becomes less than

C is close to zero (i.e.,≈ 3× 10−5). This is important to preserve the non-negativeness of

the log-normal random variableeZi.

Then, we estimate the mean and variance ofeZi using a moment-matching method. By

matching the mean and variance of both sides of Eq. (3.9), we have:

σ̂2
Z = log

[
C2

1 (e
σ2
X − 1) e2µX+σ2

X + σ2
E

(C1 eµX+σ2
X
/2 + µE + C)2

+ 1

]
, (3.10)
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and

µ̂Z = log

[
C1 e

µX+σ2
X
/2 + µE + C

eσ̂
2
Z
/2

]
. (3.11)

The derivations of Eqs. (3.10) and (3.11) are straightforward, and thus omitted due to space

limitation.

Fig. 3.4 shows an example of such approximation. While the figure indicates that the

sensing reports can be accurately estimated by such a distribution, it becomes less accurate

as the sensing durationTS increases. Note, however, that we want to capture the correlation

among sensors in a tractable form, not necessarily as an accurate approximation only com-

plicates the analysis without yielding a noticeable improvement in detection performance.

The impact of the approximation error will be discussed in Section 3.6.

Based on Eqs. (3.9), (3.10), and (3.11), the p.d.f. of a sensor report can be expressed as:

fR(r) =
1

(r − C) σZ
√
2π

exp

[
− (ln(r − C)− µZ)

2

2 σ2
Z

]
, z ≥ 0. (3.12)

Recall that we are interested in studying the similarity of sensing reports measured at

nearby (thus spatially-correlated) sensors. To measure the similarity exists between sensing

reports, we derive the conditional p.d.f. of sensor i’s report Ri given the neighboring sensor
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j’s reportRj=rj using Eq. (3.12) as:

fRi|Rj
(ri|rj) =

fZi,Zj
(zi, zj)

fZj
(zj)

=
1

(ri − C) σRi|Rj

√
2π

exp

[
− 1

2

(
ln(ri − C)− µZi|Zj

σZi|Zj

)1/2]
, (3.13)

where

µZi|Zj
= µZi

+ ρij
σZi

σZj

[
ln(rj − C)− µZj

]
(3.14)

and

σZi|Zj
= σZi

√
1− ρ2ij(dij). (3.15)

Eq. (3.15) indicates that standard deviationσZi|Zj
decreases as the correlationρij increases,

and thus greater similarity between sensing reports.

Eqs. (3.13), (3.14), and (3.15) indicate that the conditional distribution of sensing re-

ports is also log-normally distributed. We thus set the lower and upper thresholds on the

sensing reports based on the conditional p.d.f. in Eq. (3.13), and then mark any outlier

that resides outside of the thresholds. To set the thresholds, we first derive the cumulative

distribution function (c.d.f.) of sensori’s reportri, given sensorj’s reportrj as:

FRi|Rj
(x) = Pr(Ri ≤ x |Rj = rj) =

1

2
+

1

2
erf

[
ln(x− C)− µZi|Zj

σZi|Zj

√
2

]
, x ≥ 0, (3.16)

where erf(x)= 2√
π

∫ x

0
e−t2dt.

Using Eq. (3.16), the thresholdsTH{L,U} with a100×(1− ε)% confidence interval can

be derived as:

TH{L,U}(ε) = exp
[√

2 · erf−1
(
g(ε)

)
· σZi|Zj

+ µZi|Zj

]
+ C, (3.17)

where

g(ε) =





ε− 1 for THL

1− ε for THU

0 ≤ ε ≤ 0.5, (3.18)

whereµZi|Zj
andσZi|Zj

are the conditional mean and standard deviation in Eqs. (3.14) and
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(3.15), respectively.

Therefore, the null hypothesisHa
0, i.e.,Corr(Ri, Rj) = ρ(dij), cannot be rejected if

ri ∈ [THL, THU ], as depicted in Fig. 3.5, whereas the attack false-alarm probability can

be calculated asP a
FA = Pr(ri < THL) + Pr(ri > THU). Note that the thresholds are

set differently for neighboring sensors, depending on their relative distance and measured

RSSs.

Clearly, there is a tradeoff in determining the threshold parameterε, i.e., the higher the

threshold, the higher (lower) the false-alarm (mis-detection) rate for attack detection. The

impact of the thresholds on incumbent detection performance will be studied in Section

3.6.

3.4.4 The Proposed Data-Fusion Rule

While the correlation filter accurately detects RSS deviations in sensing reports, we

observed that it often mis-detects small deviations (e.g.,≤0.3 dB). These small deviations

can still influence the data-fusion results in a very low SNR environment due to the high

sensitivity of the fusion decision to RSSs. Therefore, as a second line of defense, we

propose a new data-fusion rule, namelyweighted gain combining(WGC), to provide a

better attack-tolerance to such small deviations. The ideais to assign different weights to

the sensing reports according to their significance level based on the conditional c.d.f. in

Eq. (3.16). This way, the mis-detected (unfiltered) attacksare highly likely to be assigned

relatively small weights compared to legitimate sensing reports because of their lack of
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significance. Thus, the weights in WGC are defined as:

wi ,

∑
j∈Nv(i)

wij

|Nv(i)|
where wij = 1− 2

∣∣FRi|Rj
(ri | rj)− 0.5

∣∣, (3.19)

whereNv(i) is the set of valid neighbors of sensori whose reports passed the filter. The

thus-obtained weights are used in calculating the decisionstatistic.

The simulation results (in Section 3.6) show that the WGC fordata-fusion significantly

reduces the attack false-alarm and mis-detection probabilities. However, the results also

indicate that the detectability requirement of 802.22, i.e., QFA, QMD ≤ 0.1, might not be

met under weak attack strengths (e.g.,≤ 0.3dB) as they cannot be easily differentiated

from the normal sensing reports. To remedy this and to meet the detectability requirements

of 802.22 regardless of attack strengths, we next present a sequential hypothesis testing

framework for sensing scheduling.

3.5 The Proposed Data-Fusion Rule via Sequential Hy-

pothesis Testing

In this section, we first formulate the incumbent detection problem as a sequential hy-

pothesis testing, subject to the detection requirements of802.22. We then provide a de-

scription ofADSP.

3.5.1 Attack-Tolerant Sensing Scheduling via SPRT

In ADSP, the BS schedules the sensing periods (stages) until it obtains a sufficient

amount of information for making a final decision. Thus, the BS receives a sequence of

measured test statistics from the sensors. This makes sequential detection suitable for our

problem. In particular, among various sequential detection techniques, we adopt Wald’s

Sequential Probability Ratio Test(SPRT) [147] since it is optimal in the sense of minimiz-

ing the average number of observations, given bounded false-alarm probabilityQFA and

mis-detection probabilityQMD. Therefore, by adopting the SPRT along with WGC, the
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BS can meet the detection requirement of 802.22 under the existence of malicious sensors

by carefully designing the decision statistic as we discussnext.

3.5.1.1 Design of Decision Statistic

For SPRT, the distributions of the weighted test statisticsof the sensors that passed the

filter should be available to the BS under both hypotheses. Inpractice, however, it is not

feasible to derive a closed-form expression for such distributions. Therefore, instead of

relying on the exact distributions ofTΣ, we exploit the threshold property ofTΣ as our

main decision criterion.

Let ϑn denote a Bernoulli random variable defined as:

ϑn ,





0 if TΣ,n ≤ ηn

1 if TΣ,n > ηn,

(3.20)

whereTΣ,n is the sum of test statistics from the valid sensors, i.e., those who passed the

filter, in sensing stagen, andηn is the decision threshold, which depends on the num-

ber of valid sensing reports and the desired false-alarm probability Q∗
FA (see Eq. (3.4) in

Section 3.2).

Our detection problem is thus a binary Gaussian classification problem where the ob-

served test statisticϑn ∀n belongs to one of two classes,H0 orH1, where:

H0 : ϑ ∼ Bernoulli(φ0) (no primary signal)

H1 : ϑ ∼ Bernoulli(φ1) (primary signal exists),

When there is no attack, the random variablesφ0 andφ1 can be defined as:

φ0 , Pr(ϑn = 1 |H0) = Q∗
FA, (3.21)

φ1 , Pr(ϑn = 1 |H1) = Q∗
D = 1−Q∗

MD. (3.22)
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In this case, there should be a significant difference between φ0 andφ1, i.e.,φ1�φ0.6

However, the actual achievableQFA andQD under attack scenarios can be higher and

lower than the desired values, respectively, due to performance deficiency of the filter. For

example, Fig. 3.9 in Section 3.6 indicates thatφ1 − φ0 can be as low as0.08 under weak

attacks, thus rendering it difficult for the BS to make a correct decision.

Therefore,φ0 andφ1 are the key parameters in our design of SPRT, which must be care-

fully set so as to meet the detection requirements of 802.22 under various attack scenarios.

Thus, we set:

φ
′

0 = Q∗
FA + ε0 and φ

′

1 = Q∗
D − ε1, (3.23)

whereε0, ε1 ∈ R with the constraintφ
′

1 > φ
′

0.

We set the values ofε0 and ε1 empirically, based on the observations made in our

simulation study. Note that inaccurate values ofφ
′

0 andφ
′

1 might introduce additional

detection delay. However, as long asφ
′

0 used by the BS is closer to the true distribution

underH0 thanφ
′

1, or vice versa, the SPRT will terminate with the desired level of detection

probabilities.

3.5.1.2 Optimal Stopping Rule for Sensing Scheduling

In SPRT, a decision is made based on the observed sequence of test statistics,{ϑn}Nn=1,

using the following rule:

ΛN ≥ B ⇒ acceptH1 (primary signal exists)

ΛN < A ⇒ acceptH0 (no primary signal)

A ≤ ΛN < B ⇒ take another observation,

whereA andB (0<A<B<∞) are the detection thresholds that depend on the desired

values ofQFA andQMD. The decision statisticΛN is the log-likelihood ratio based onN

6For example, the detection requirement of 802.22 isφ1 − φ0=Q∗

D −Q∗

FA=0.9− 0.1=0.8.
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sequential observations (i.e., test statistics)ϑ1, . . . , ϑN as:

ΛN , λ(ϑ1, . . . , ϑN ) = ln
Pr(ϑ1, . . . , ϑN |H1)

Pr(ϑ1, . . . , ϑN |H0)
. (3.24)

Assuming that{ϑn}Nn=1 are i.i.d., Eq. (3.24) becomes:

ΛN =
N∑

n=1

λn =
N∑

n=1

ln
Pr(ϑn |H1)

Pr(ϑn |H0)
(3.25)

Eq. (3.25) can be rewritten as:

ΛN = sN ln
φ

′

1

φ
′

0

+ (N − sN ) ln
1− φ′

1

1− φ′

0

, (3.26)

wheresN =
∑N

n=1 1{ϑn=1} denotes the number of sensing stagesn whereϑn=1.

3.5.2 Performance Analysis

We now quantify the performance of our SPRT-based sensing scheduling in terms of

(i) detection performance, i.e.,QFA andQMD, and (ii) average number of sensing rounds

needed to meet the detectability requirements.

3.5.2.1 Detection Performance

In SPRT, the desired detection performance can be guaranteed by setting the decision

thresholdsA andB as follows. Leta∗ andb∗ denote the desired values ofQFA andQMD,

respectively. Then, the decision boundariesA andB are given by [147]:

A = ln
b∗

1− a∗ and B = ln
1− b∗
a∗

, (3.27)

and the actual achievable error probabilities, denoted asa andb can only be slightly larger

than the desired valuesa∗ andb∗.

66



3.5.2.2 Sensing Scheduling Overhead

Recall that our objective is to meet the detection requirements of 802.22 even in the

presence of malicious/mal-functioning sensors. Thus, we aim to minimize the number of

times the spectrum needs to be sensed, with the decision thresholds derived from the target

detection probabilities as shown in Eq. (3.27). Therefore,we are interested in analyzing

the number of sensing rounds until a decision is made (i.e., either the boundary A or B is

reached).

The average number of sensing rounds (also called quiet periods in 802.22) required to

make a decision, denoted byE[N ], can be computed as:

E[N ] = E[ΛN ]
−1 × E[λ |Hk]. (3.28)

First, using Eq. (3.26), the average value ofλ under both hypotheses can be derived as:

E[λ |H0] = E

[
ln

1− φ′

1

1− φ′

0

]
and E[λ |H1] = E

[
ln
φ

′

1

φ
′

0

]
(3.29)

Next, the average ofΛN can be found as follows. SupposeH0 holds, thenΛN will reach

B (i.e., false alarm) with the desired false-alarm probability a∗; otherwise, it will reachA.

Thus, using Eq. (3.27), we get:

E[ΛN |H0] = a∗ ln
1− b∗
a∗

+ (1− a∗) ln b∗

1− a∗ . (3.30)

Based on Eqs. (3.28), (3.29) and (3.30), we can derive the average number of required

sensing rounds for decision-making as:

E[N |H0] =
a∗ ln 1−b∗

a∗
+ (1− a∗) ln b∗

1−a∗

E

[
ln

1−φ
′

1

1−φ
′

0

] . (3.31)

Similarly, we can deriveE[N |H1].
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3.5.3 Protocol Description

We now present the attack-tolerant distributed sensing protocol (ADSP) with the pro-

posed WGC for final fusion. Algorithm 4 describes the overalldata-fusion procedure in

ADSP. At the end of each sensing period, the fusion center collects sensing reports{Ri}
from the collaborating sensors, which are co-located in clusters. Then, the fusion center

activates the correlation filter to selectively discard abnormal sensing reports and updates

the decision statisticΛn based on the remaining sensing reports with their weights. Note

that the weights are assigned after the filtering process (line 11) so that the filtered abnor-

mal sensing reports have no influence on them. The fusion center repeats this process until

the decision statistic reaches one of the predefined thresholds, i.e.,A andB.

Algorithm 4 details the filtering procedure. For each sensing report, the filter counts the

number of flags raised by neighbors in the cluster. Then, the filter will returnIsnormal=0

if more thanβ∈ [0, 1] fraction of the neighboring sensors mark it as abnormal, whereβ is a

design parameter; otherwise, it will returnIsnormal=1. The filter also returns the weight

vector (wi) for future use in the final data-fusion process (i.e., WGC).The computational

complexity of the algorithm is bounded byO(m2) wherem is the number of sensors in a

cluster.

Remark: Although the key assumptions we have made, i.e., negligible multipath fad-

ing and presence of sensor clusters, are valid for the DTV signal detection in IEEE 802.22

WRANs, they might not always hold, depending on a given DSA environment, thus lim-

iting the practicality of ADSP. For example, multipath fading in sensing reports may be

negligible when sensors are mobile, or a primary signal is sensed with narrow channel

bandwidth. However, relaxation of such assumptions may require a major modification to

ADSP, and thus, extension ofADSP to such challenging environments is left as our future

work.

3.6 Performance Evaluation

The performance ofADSP is evaluated via MATLAB-based simulations. We first de-

scribe the simulation setup and then present the simulationresults for both types of attacks

68



20m

2
0
m

sensor (CPE)

dmax

d
m
in

Figure 3.6: Sensor cluster: An illustration of sensor cluster with 6 sensors in an 802.22
WRAN cell.

under various attack scenarios.

3.6.1 Simulation Setup

To demonstrate the effectiveness ofADSP, we consider an IEEE 802.22 WRAN envi-

ronment with a single DTV transmitter with6MHz bandwidth and multiple sensors (i.e.,

CPEs) located at the edge of thekeep-out radiusof 150.3 km from the DTV transmitter

[127]. An 802.22 cell of radius30 km is considered for our evaluation, and we generate a

two-dimensional shadowing field (using the method discussed in Section 3.3.3) with a unit

grid of 20× 20m2 to emulate a realistic shadow fading environment in a cell. Throughout

the simulation, we assume5 sensor clusters located randomly within the cell, with6 sen-

sors in each cluster; the sensors are located in different grids, and the distances between

sensors within a cluster range fromdmin = 20m to dmax = 20
√
5m, as shown in Fig. 3.6.

We consider the attack scenario where one-third of the sensors are malicious in each clus-

ter. Table 3.1 lists the system parameters used in our simulation. Each simulation is run

on 5×104 randomly-generated shadowing fields, and their average values are taken as the

performance measures.
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Table 3.1: System parameters used in simulations

Parameter Value Comments

Ns 30 Number of collaborating sensors

Nc 5 Number of clusters

TS 1ms Sensing duration

M 6× 103 # of signal samples per sensing

σdB 4.5 dB Shadow fading dB-spread

Dcorr 150m Decorrelation distance

∆ 20m Dimension of a grid

No −95.2 dBm Noise power

γ −20 dB Signal-to-noise ratio (SNR)

Q∗
FA 0.01 Target false-alarm probability

β 0.34 Attack detection threshold

3.6.2 Impact of Sensor Clustering

While ADSP exploits shadowing correlation via sensor clustering, correlated sensor

readings are, in general, known to degrade detection performance as they limit diversity

gain [55, 56, 106]. Therefore, we first study the effect of sensor clustering on detection per-

formance to understand the efficiency vs. robustness tradeoff in ADSP. Fig. 3.7 compares

the achieved incumbent detection probabilities (QD) with and without sensor clustering

(i.e., sensors are randomly selected by the BS). As expected, cooperative sensing with-

out clustering yields higher detection probability than with sensor clustering with−20 dB

SNR. However, the performance gap decreases as more sensorsare involved in cooperative

sensing, e.g., sensing with5 clusters achieves94% of that without clustering. Note that

this performance with clustering gets even closer to that ofrandom selection as the SNR

increases. Therefore, we can conclude that sensor clustering is not critical to incumbent

detection, while it provides an efficient means of attack detection.

3.6.3 Attack Detection Performance

As a first line of defense, the attack detector inADSP must be able to correctly identify

any abnormal sensors within each cluster and discard their reports before making a final
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Figure 3.7: Impact of sensor clustering: Sensor clustering withNc=5 achieves94% of the
detection performance without clustering.

decision. Fig. 3.8 shows the performance of our correlation-based filter under both types

of attacks. The lower and upper thresholds (i.e.,TH{L,U}) for the correlation filter are set

using Eq. (3.17) with a99% confidence interval, i.e.,ε = 0.01. The figures indicate that

the attack detection rate, i.e., probability that a manipulated sensing report will be correctly

filtered, increases with attack strength under both attack types. This is because the larger

the deviation from the normal profile, the easier it is to identify them. However, the attack

false-alarm rate also increases with attack strength because normal sensing reports will be

mistakenly flagged more frequently by the manipulated sensing reports, and as a result,

normal sensing reports will be classified as attacks more frequently. The figures show that

ADSP performs well against both types of attacks.

3.6.4 Attack-Tolerance for One-Time Sensing

We now demonstrate the robustness ofADSP to both type-1 and type-2 attacks for one-

time sensing. Fig. 3.9 plots the incumbent false-alarm (QFA) and detection (QD) probabil-

ities under type-1 and type-2 attacks, respectively. Note thatQFA andQD arenormalized

with respect to the maximum achievable values in the absenceof attacks. The figure shows

that the correlation filter is efficient in mitigating the effect of attacks on incumbent detec-
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Figure 3.8: Attack detection performance of the correlation filter: Thedetection and false-
alarm probabilities of our correlation filter increase withattack strength under
both types of attacks.

tion performance, e.g.,99.2% for type-1 and97.4% for type-2 attacks, thanks to its ability

to accurately filter out manipulated sensing reports. By contrast, withoutADSP (denoted by

EGC in Fig. 3.9),QFA andQD rapidly converge to 1 and 0, respectively, as attack strength

increases, i.e., attacks have maximal influence on the data-fusion results.

We make the following four main observations. First, the performance ofADSP suffers

in cases of low attack strengths (e.g.,<0.4dB for type-1 attack). This is because such low

attack strengths do not exhibit deviations significant enough to be detected (thus causing

under-filtering), yet they affect data-fusion decisions. The proposed weighted gain com-

bining (WGC) mitigates this performance deficiency for bothtypes of attacks by adaptively

adjusting sensing reports’ weights based on their statistical significance. However, WGC

performs as well as, or even worse than, EGC when the attack strength is either (i) ex-

tremely low so that most attacks will not be filtered out or (ii) large enough so that most (or

all) attacks are filtered out, as can be seen in Fig. 3.9 withε=0.01. This is because, in the

first case, the unfiltered attacks will decrease the weights of the legitimate sensing reports,

while sharing large weights among themselves. On the other hand, in the second case,

the legitimate sensing reports with extreme values are likely to be assigned small weights

despite their critical role in accurate detection of incumbents.

Second,ADSP outperforms the statistics-based filtering method proposed in [79] (de-

noted by Outlier in Fig. 3.9). The fusion center filters out the sensing reports outside the
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Figure 3.9: Attack-tolerance ofADSP: ADSP (a) minimizes the false-alarm probability by
up to 99.2% for type-1 attacks, and (b) achieves97.4% of maximum achiev-
able detection probability (i.e., with20 normal sensing reports in5 clusters) for
type-2 attacks.

range[ e1−δ ·eiqr, e3+δ ·eiqr ] wheree1 ande3 represent the first and third quartile of the

samples, respectively, andeiqr=e3−e1 is the interquartile range (see Eq. (4) in [79]). This

method does not require sensor clustering, and thus, one might think that it performs well

when attack strength is strong enough to be easily detected as an outlier. However, the per-

formance depends strongly on the filtering range, i.e., the choice ofδ, the result of which

varies with attack scenarios. For example, whenδ = 0.7, performance suffers fromover-

filtering with a high attack mis-detection rate. On the other hand, when δ=1, performance

suffers fromunder-filtering, and as a result,QFA andQD converge to1 and0, respectively,

even in the case of high attack strength. In contrast,ADSP accurately detects manipulated

sensing reports by considering shadowing correlation.

Third, even in the case of high attack strength,ADSP does not completely eliminate the

effects of attacks for the following reasons. First, the fixed threshold parameterε does not

work optimally for all attack strengths, thus causing either over- or under-filtering, both of

which degrade detection performance. The over-filtering caused by a large threshold value

(e.g.,ε=0.1) turned out to lower bothQFA andQD, as shown in Fig. 3.9. Second, as a re-

sult of filtering, the fusion center will have fewer samples to be used for data fusion. Since

data fusion is sensitive to the number of samples used, especially in very low SNR envi-

ronments (as shown in Fig. 3.7), incumbent detection performance degrades. For example,

with 20 sensing reports remaining after filtering out all10 manipulated sensing reports, the
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Figure 3.10: Impact of threshold parameter (ε): (a)QFA andQD exhibit different behaviors
under variousε values, and (b) the number of valid sensing reports for data
fusion depends on both filter threshold and attack strength.

average achievableQD is 0.88, which corresponds to the normalizedQD of 0.93 in Fig. 3.9.

Fourth, in the absence of attacks, the correlation filter incurs a small increase in both

QFA andQD. This is caused by the inaccuracy in the log-normal approximation of sensing

reports, which causes over-filtering even in the case of no attacks. We observed that this

performance anomaly can be mitigated by reducing the sensing durationTS (e.g.,<1ms),

which makes the approximation more accurate because the distribution of sensing reports

more closely resembles a normal distribution.

3.6.5 Tradeoff in Setting the Detection Threshold

We now study the impact of the filtering threshold on attack detection performance.

Fig. 3.10(a) plots the impact of the filtering thresholdε on incumbent detection perfor-

mance. In this simulation, we fixed the attack strength at0.1dB for both types of attacks.

The figure shows thatQFA monotonically decreases asε increases for both fusion rules,

implying that filtering out more sensing reports always helps to lower the false-alarm rate

of incumbents. For the same reason, however, a largeε degrades the detection probability

QD. This can be explained by the heavy-tail of a log-normal distribution of shadow fading;

filtering out high RSSs at the tail lowers the decision statistics significantly, thus reducing

the chance of generating false-alarms (or detecting incumbents). Another observation is
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Figure 3.11: Average number of sensing rounds under various attack strengths: the num-
ber of sensing rounds needed to meet the detectability requirement, i.e.,
QFA, QMD≤0.01, both under the filter thresholdε=0.1 and−20 dB SNR.

that WGC outperforms EGC for type-2 attacks, thanks to its ability to adjust the weights

for sensing reports based on their significance. However, the performance gain decreases

asε increases. For type-1 attacks, WGC also outperforms EGC in case of under-filtering,

e.g.,ε∈ [0.01, 0.06], as discussed in Section 3.6.4.

Fig. 3.10(b) shows the average number of valid sensing reports (i.e., those that passed

the filter). It clearly indicates that the filter becomes moreaggressive in rejecting sensing

reports asε increases, thus reducing the number of sensing reports to beused for making a

final fusion decision. Therefore, the filter must be carefully designed to make the tradeoff

between false-alarm and detection probabilities, while considering their dependency on

attack strength.

3.6.6 Meeting the IEEE 802.22 Detection Requirements via Sensing

Scheduling

Here we evaluate the performance of the sensing scheduling algorithm in ADSP in

terms of the number of sensing rounds (i.e., detection delay). Fig. 3.11 shows the number

of sensing rounds needed to meet the detectability requirement ofQFA, QMD≤0.01, which

is below the requirements of IEEE 802.22, i.e.,QFA, QMD≤0.1. Figs. 3.11(a) and 3.11(b)

plot the mean and standard deviation of the number of sensingrounds. The figures indi-
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cate that the average number of sensing rounds is maximized when the attack strength is

relatively small, i.e.,0.12dB, thus confirming the observation made in Fig. 3.9. In 802.22,

sensing rounds can be scheduled as frequent as once every10ms, i.e., one MAC frame size

in 802.22. Therefore, Fig. 3.11 implies thatADSP can meet the incumbent detection timing

requirement of 802.22, i.e., the returning primary signal must be detected within2 seconds,

since the maximum required number of sensing rounds remainsbelow5.

3.7 Related Work

The problem of ensuring robustness in distributed sensing has been studied in [28, 79,

108]. Chenet al. [28] proposed a robust data-fusion scheme that dynamicallyadjusts the

reputation of sensors based on the majority rule. Similarly, in the IEEE 802.22 standard

draft, a voting rule [108] has been proposed for secure decision fusion. However, the voting

rule may not work well in a very low SNR environment where a majority of sensors fail

to detect the primary signal. Kaligineediet al. [79] presented a pre-filtering scheme based

on a simple outlier method that filters out extremely low or high sensor reports. However,

their method may not be suitable for a very low SNR environment such as 802.22 WRANs,

where a final data-fusion decision is very sensitive to smalldeviations in RSSs. The defense

against Primary User Emulation Attack (PUEA) has also been studied in [11, 26]. Chen

et al. [26] proposed an RSS-based location verification scheme to detect a fake primary

transmitter. This scheme, however, requires the deployment of a dense sensor network for

estimating the location of a signal source, and thus, incurshigh system overhead. Anandet

al. [11] analyzed the feasibility of PUEA and presented a lower-bound on the probability of

a successful PUEA. However, they did not address the impact of PUEA on the performance

of cooperative sensing.

The problem of enforcing/enticing secondary users to observe spectrum etiquette has

also been studied. Woyachet al. [150] studied how to entice secondary users to observe

spectrum etiquette by giving them incentives via a game-theoretic approach. In a similar

context, Liuet al. [91] studied the problem of detecting unauthorized use of a licensed

spectrum. They exploited the path-loss effect as a main criterion for detecting anomalous
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spectrum usage and presented a machine-learning approach for more general cases. In

contrast, we focus on intelligent filtering of suspicious sensor reports.

In a broader context, our work is related to work on secure data aggregation [43, 157,

163] and insider attack detection [90] in wireless sensor networks. However, the problem

we consider differs in that it focuses on an important, realistic case where attackers manip-

ulate sensor reports to mislead the fusion center in making afinal decision on detection of

a primary signal.

In summary, ADSP differs from previous work in several key aspects. First, we exploit

shadow-fading correlation for anomaly detection, which has not been considered before.

Second, ADSP is unique in that it enables normal spectrum sensing operation even in a

hostile environment byproactivelyfiltering out suspicious sensor reports, and scheduling

sensing multiple times, while most previous work focuses onone-time sensing. Third,

ADSP can detect attacks that purposely lower the RSS to obscure the existence of a pri-

mary signal (i.e., type-2 attacks), while most previous work focused on detecting spoofed

primary signals (i.e., type-1 attacks).

3.8 Conclusion

The design of reliable distributed sensing for opportunistic spectrum use is a major re-

search challenge in DSA networks. To address this challenge, we have developed a novel

attack-tolerant distributed sensing protocol (ADSP) that selectively filters out abnormal sen-

sor reports, and thus maintains the accuracy of incumbent detection. The key idea behind

this mechanism is that the measured primary signal strengthat nearby sensors should be

correlated due to shadow fading, which has not been considered before. To realize this

idea, we proposed a sensor clustering method and designed filters and data-fusion rules

based on the correlation analysis of sensor reports. We alsoproposed a sensing schedul-

ing scheme based on sequential hypothesis testing that findsan optimal stopping time for

sensing, while meeting the detection requirements of 802.22. ADSP can be readily imple-

mented in 802.22 WRANs, incurring very low processing and communication overhead.

We evaluatedADSP in realistic shadowing environments of 802.22 WRANs, demonstrating
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its ability to tolerate both type-1 and type-2 attacks.
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Algorithm 3 ATTACK-TOLERANT DISTRIBUTED SENSING WITH WEIGHTED GAIN COM-
BINING

ProcedureADSP WGC({Ri}, QFA, β)

1: while each sensing roundn do
2: TΣ,n ← 0 /* Decision statistic */
3: Nnormal ← 0 /* Number of normal sensing reports */

// Step 1. Check (ab)normality of sensing reports
4: for each sensor clusterSk k = 1, . . . , Nc do
5: for each sensori ∈ Sk do
6: (Isnormal(i),wi)← CorrFilter (i, {Rj}j∈N(i), β)
7: end for
8: end for

// Step 2. Update decision statistic
9: for each sensor clusterSk k = 1, . . . , Nc do

10: for each sensori ∈ Sk do
11: if Isnormal(i) == 1 then
12: Updatewi using Eq. (3.19)
13: TΣ,n ← TΣ,n +wiRi

14: Nnormal ← Nnormal + 1
15: end if
16: end for
17: end for
18: TΣ,n ← TΣ,n ×Nnormal/

∑
wi /* Normalization */

19: Calculate the decision thresholdηn using Eq. (3.4)
20: if TΣ,n > ηn then

21: Λn ← Λn−1 + ln
φ
′

1

φ
′

0

22: else
23: Λn ← Λn−1 + ln

1−φ
′

1

1−φ
′

0

24: end if

// Step 3. Make a final decision
25: if Λn ≥ B then
26: return 1 /* Primary exists */
27: else ifΛn < A then
28: return 0 /* Primary does not exists */
29: else
30: Schedule another sensing round and wait for the observation
31: end if
32: end while
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Algorithm 4 FILTERING ALGORITHM BASED ON CORRELATION ANALYSIS

ProcedureCorrFilter (i, {Rj}j∈N(i), β)

1: blacklist counter(i)← 0 /* Initialize the counter */
2: wi ← [ 0, . . . , 0 ]T /* Initialize the weight vector */
3: Isnormal← 1 /* Initialize the indicator */
4: for each neighborj ∈ N(i) do
5: Updatewij using Eq. (3.19)
6: if Corr(Ri, Rj) 6= ρ(dij) using Eq. (3.17)then
7: ++ blacklist counter(i)
8: end if
9: end for

10: if blacklist counter(i) > β ·N(i) then
11: Isnormal← 0 /* Mark it as abnormal */
12: end if
13: return (Isnormal,wi)
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CHAPTER 4

Efficient Detection of Small-Scale Primary Users

4.1 Introduction

Unlike the detection oflarge-scaleprimary signals (e.g., TV signals), detection of

small-scale primary devices, such as wireless microphones(WMs), is very difficult and

still remains to be an open problem for the following reasons. First, while a TV signal has

a large transmission range (up to150 km), the WM signal has a small spatial footprint due

to its weak transmission power (typically10-50mW) [118]. This indicates that the 802.22

needs a separate dense sensor network for WM detection [107], or more preferably, an effi-

cient cooperative sensing mechanism tailored to WM detection, which is the main focus of

this chapter. Second, the ON-OFF patterns of WMs have high spatial and temporal varia-

tions [14]. WMs can be turned on at any location and at any timewithout prior notification

to secondary users. They are usually mobile and used at each location for a short period of

time. Therefore, it is practically infeasible to maintain adatabase for WMs [63] or to pro-

file all the possible locations and schedules of WM usage in real time. More importantly,

this unpredictability makes it hard for the base station (BS) to select proper sensors for

cooperative sensing. Third, despite its small footprint, aWM must be detected according

to the strict sensitivity requirement imposed by the FCC. For example, the 802.22 standard

draft specifies that sensors must be able to detect WM signalsas weak as−114 dBm over a

200KHz band within2 seconds, with both false-alarm and mis-detection probabilities less

than0.1. However, a recent measurement study [115] indicates that sensors suffer from a
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high false-alarm rate when detecting WM signals due to theirweak signal strengths [33].

The detection of WMs is important for efficient spectrum utilization, especially in the

space domain. For example, when a WM signal is detected by thesensors without know-

ing/estimating the transmitter’s location, all the secondary users located within the cell

of typical radius 33 km (up to 100 km) may need to vacate the channel. Considering the

small transmission range of a WM signal, i.e., 100-150 m, this can cause significant under-

utilization of spectrum in the space domain. Therefore, secondary users in 802.22 must be

able to accurately detect the presence of a WM signal, and also estimate the WM transmit-

ter’s location.

Despite its practical importance, however, little work hasbeen done on the detection

of small-scale primary signals. To the best of our knowledge, the disabling beacon pro-

tocol, recently proposed by the 802.22 Task Group 1 (TG 1) [36, 86], is the only known

solution. The disabling beacon protocol aims to enhance WM detection by transmitting

a specially-designed signal before starting WM devices. Itis suitable for carrying addi-

tional information, such as the signature/authenticationand geo-location of WMs, which

helps improve spectrum efficiency via better spatial [34, 58, 107] and frequency reuse [24].

However, the disabling beacon protocol still has the following limitations. First, we do not

expect that all WM users will be equipped with a separate beacon device in the near future

in view of the fact that most users have not even registered their WMs. Second, the trans-

mit power of the beacon message is limited to the same level asthe WM’s (i.e.,250mW

in a UHF band), and thus, beacons cannot compensate for the low sensor density in 802.22

[36]. Finally, the disabling beacon protocol incurs a significant sensing-time overhead (i.e.,

5-100ms) [36] compared to simple energy detection, which may takeonly 1ms.

Motivated by these practical needs and problems, we proposean efficient sensing frame-

work for detection of small-scale primaries using cooperative sensing. To cooperatively

detect small-scale primary signals, the BS must carefully select a set of sensors by estimat-

ing the primary transmitter’s characteristics, such as itslocation and transmit-power. We

first assume this information is available to secondary users, and derive the optimal fusion-

range within which the sensors cooperate to minimize detection delay, i.e., the number

of sensing rounds needed for detecting a primary signal. Based on our analytical find-
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ings, we then design—without assuming the availability of information on the primary

transmitter’s characteristics—a practical framework, called DeLOC, which performs joint

cooperative sensing and location/transmit-power estimation, in order to meet detectability

requirements, while minimizing detection delay.

4.1.1 Contributions

This chapter makes the following main contributions.

• Introduction of a novelspatio-temporaldata-fusion scheme with the following salient

features: it (i) exploits physical-layer signal propagation characteristics in thespace

domain by finding an optimal fusion range for cooperative sensing, and (ii) makes

statistics-based decisions in thetimedomain by identifying an optimal time to stop

scheduling sensing. This spatio-temporal fusion providesuseful and practical in-

sights and can be used as a general framework for designing sensing schemes.

• Identification and characterization of the impact of data-fusion range and sensor den-

sity on the performance of small-scale primary detection inCRNs. We derive a

closed-form expression for theoptimal fusion range that minimizes the average de-

tection delay. Moreover, we show that the optimal fusion range does not depend on

sensor density and that the minimum required sensor densityfor given detectability

constraints decreases inversely proportional to the average detection delay.

• Development of a framework forjoint small-scale primary detection and location/transmit-

power estimation, calledDeLOC. DeLOC iteratively performs cooperative sensing

and location/transmit-power estimation until the fusion center (i.e., the BS) collects

a sufficient amount of information to make a final decision. This approach allows

sensing and estimation to refine each other over multiple scheduled periods.

• Design of a new data-fusion rule tailored to small-scale primary detection. Specif-

ically, we propose asequential probability ratio test with ascending weight(SPRT-

AW) for DeLOC that intentionally delays decision-making at the BS by assigning

small weight to decision statistics in early detection stages when location and transmit-
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power estimates are inaccurate. Our simulation results show thatDeLOC combined

with SPRT-AW achieves high detection accuracy, while minimizing detection delay

in a realistic 802.22 WRAN environment.

4.1.2 Organization

The remainder of this chapter is organized as follows. Section 4.2 describes the net-

work, signal-propagation and spectrum sensing models, andbriefly introduces our ap-

proach to WM signal detection. Section 4.3 studies the impact of the data-fusion range

on the performance of WM detection and location/transmit-power estimation. Section 4.4

formulates the sequential hypothesis testing problem for WM detection and derives an op-

timal fusion range that minimizes average detection delay.Section 4.5 details our proposed

iterative sensing framework,DeLOC, which incorporates location and power estimation,

and presents the SPRT-AW based data-fusion rule. Section 4.6 evaluates the performance

of DeLOC, and Section 4.7 reviews related work. Section 4.8 concludes the chapter.

4.2 Preliminaries

In this section, we introduce the network model, the wireless signal-propagation model,

the WM sensing model, and the data-fusion model.

4.2.1 Network Model

We consider a CRN consisting of primary and secondary users in the same geographical

area. In general, there are two types of PUs: large-scale (e.g., TV transmitters) and small-

scale (e.g., WMs). Here we focus on detecting small-scale PUs. While the techniques that

we propose can be applied to other small-scale primary transmitters, we will focus on WM

detection in IEEE 802.22 WRANs. WMs use a weak transmit powerof around10-50mW,

or below [34, 118], and its transmission range is only150-200m, which is much smaller

than the typical 802.22 cell radius of33 km. We assume that WMs can use any UHF

band and are turned on at random locations and at any time for relatively short periods of
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time. In 802.22, the secondary spectrum users are calledconsumer premise equipments

(CPEs), which represent households in rural areas. Such CPEs are stationary and their

locations are known to the BS. CPEs transmit/receive data to/from the BS, and function

as spectrum sensors during the quiet periods reserved for primary detection. All the CPEs

within the cell must be silent during quiet periods, and employ the spectrum sensors to

measure the received signal strengths (RSSs) and report them to the BS for data-fusion.

We assume secondary users have been deployed in an areaA, i.e., an IEEE 802.22 WRAN

cell, following a point Poisson process with densityρ, i.e.,nA ∼ Poi(n; ρ|A|). We also

assume that sensor densityρ, as the typical density of CPEs (i.e., households) in rural areas

is very low (around1.25/km2) [139].

4.2.2 Signal-Propagation and WM Sensing Models

We assume that sensorn’s received primary signal strength can be characterized bythe

following propagation model:

Pn = Po

(do
dn

)α
eXneYn (Watt), (4.1)

wheredo is the reference distance (e.g.,1m), Po the received primary signal strength at

the reference distance,α the path-loss exponent, anddn the distance from the primary

transmitter to sensorn. Shadow fading and multi-path fading are accounted for ineXn

andeYn, respectively, whereXn ∼ N(0, σ2) ∀n. The log-normal shadow fading is often

characterized by its dB-spread,σdB, which has the relationshipσ=0.1 ln(10)σdB.

We make the following assumptions regarding the WM signal detection: Sensors

A1) use energy detection for sensing, and

A2) sense an entire6MHz-wide TV channel.

Regarding A1, feature detection cannot be applied for WM detection because, unlike

TV signals, there is no standard modulation specified by the FCC Report and Order (R&O)

for WM signals [49]. The test statistic at sensorn can be approximated as Gaussian using
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the Central Limit Theorem (CLT) as in [127]:

Tn ∼





N
(
No,

N2
o

Ms

)
H0 (no primary signal)

N
(
Pn+No,

(Pn+No)2

Ms

)
H1 (primary signal exists),

(4.2)

wherePn is the power of a received primary signal at sensorn, No the noise power, i.e.,

−95.2 dBm for a TV channel with6MHz bandwidth [137], andMs the number of signal

samples, e.g.,6×103/ms for6MHz TV band at the Nyquist rate.

Regarding A2, WMs use a relatively narrow frequency band, i.e.,200KHz, compared

to a 6MHz TV band. Therefore, sensing the entire TV channel simplifies the sensing

design at the cost of decreased measured signal-to-noise ratio (SNR) due to the increased

noise level over a6MHz-wide channel.

In each sensing round (i.e., quiet periods), the BS directs aset of sensors to perform

sensing for a sensing duration ofTS (e.g., 1 ms), and the sensors report their readings to the

BS for data fusion at the end of each sensing round.

4.2.3 Data-Fusion Model

For the data fusion rule at the BS, we assume Equal Gain Combining (EGC) for a single-

round sensing. EGC is known to have near-optimal performance without requiring the

estimation of channel gains [141], and has the following decision statisticTΣ ,
∑ns

n=1 Tn,

whereTn is the test statistic (i.e., measured RSS) of the energy detector at sensorn, and

ns is the number of cooperative sensors. EGC will be used to characterize the impact of

the fusion range on detection performance (in Section 4.3).In DeLOC, the BS performs a

sequential hypothesis testing for primary detection, and the test statistic of EGC, i.e., sum

of the RSSs measured at cooperating sensors, is used in updating the decision statistic for

hypothesis testing (in Section 4.4).
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Figure 4.1: TheDeLOC framework: When a sensor reports a test statistic above a predefined
threshold (ξ), DeLOC for a small-scale primary signal, i.e., WM, is triggered by
the BS that initiates and repeats the iteration between cooperative sensing and
location/transmit-power estimation until the BS collectsenough information to
make a final decision.

4.2.4 The Proposed Approach

Fig. 4.1 illustrates our proposed spectrum-sensing framework, DeLOC, which is tai-

lored to the detection of small-scale primary signals such as WMs. When a large-scale

primary signal exists, all the sensors within the network (e.g., an 802.22 cell) must va-

cate the channel regardless of the presence of small-scale primary signals. Thus, when a

large-scale primary signal exists,DeLOC will not be triggered.1 To minimize energy con-

sumption and communication overhead,DeLOC for WM sensing is triggered only when

a sensor reports a test statistic above a predefined threshold (ξ) during the normal sensing

mode for detection of large-scale primaries (i.e., TV signals). In our simulation study, we

setξ = No + 3.5 σo whereNo andσo = No√
Ms

are the mean and standard deviation of the

test statistics underH0. Note that the BS can run multiple instances ofDeLOC in parallel,

corresponding to different triggering events at differentgeographical locations.

Upon triggering the detection process, the BS iteratively performs the location/transmit-

power estimation and cooperative sensing until it collectsa sufficient amount of informa-

1Note that large-scale primary signals can be reliably detected using either existing sensing schemes (e.g.,
[100]) or a geo-location database [63]. The detection of large-scale primary signals is not within the scope of
this chapter.
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tion, i.e., measured test statistics, to make a final decision on the presence of a WM. In

each sensing stage, the BS first estimates the location and transmit power of a WM, and

based on this estimation, it computes an optimal fusion range (R∗
f ) for cooperative sensing.

Then, based on the test statistics reported from the sensors, the BS updates the decision

statistic, and compares it with predefined lower (A) and upper (B) thresholds, to make a

final decision. The thresholds are designed to guarantee thedesired false-alarm and mis-

detection probabilities (see Eq. (4.7) in Section 4.4). If the test statistic is below the lower

threshold, then the BS assumes the absence of a primary transmitter, e.g., the event was

falsely triggered by measurement error. If the test statistic exceeds the upper threshold, the

BS assumes the presence of a primary transmitter at the estimated location, and then takes

an appropriate action, e.g., vacating the channel or disabling nearby secondary users. Oth-

erwise, the BS schedules another sensing event with the sensors within the optimal sensing

range, thus accumulating detection confidence in the temporal domain.

4.3 Cooperative Sensing for Small-scale Primary Detec-

tion

In this section, we first study the impact of sensor cooperation on the detection of small-

scale PUs. In particular, we investigate the impact of the data-fusion range and localization

error on the performance of signal detection.

4.3.1 To Cooperate or Not?

Although cooperative sensing is shown to help improve sensing performance of large-

scale PUs [100, 101], its relevance for small-scale primarydetection is less obvious. On

one hand, a large number of sensors may be needed for cooperation, because WM signals

usually have small footprints, and their spatial-temporalON-OFF patterns are highly un-

predictable. On the other hand, those sensors located far from the WM will report only

noise power. Thus, employing a large number of noisy reportsmay adversely affect de-

tection performance, since the energy detector cannot extract the primary signal from the
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Figure 4.2: Impact of data-fusion range: The figures show the existence of an optimal fusion
rangeRf in terms of maximizing detection probabilityQD. Sensor density,
sensing duration, shadow fading dB-spread, path-loss exponent, and the required
false-alarm probability are set toρ=1.25× 10−6/m2, TS=1ms,σdB=5.5 dB,
α=4, andQFA=0.01, respectively.

noise. The set of sensors chosen for cooperative sensing mayalso affect the accuracy of

location and transmit-power estimations, which play an important role in detecting WMs.

In what follows, we thus investigate the impact of fusion range and location uncertainty on

detection performance.

4.3.2 Impact of the Data-Fusion Range

Fig. 4.2 shows the impact of data-fusion range on the detection probabilityQD subject

to a given false-alarm probabilityQFA = 0.01 using MATLAB-based simulation. Intu-

itively, when the range is small, enlarging the range increases sensor diversity, thus im-

proving sensing performance. However, as the range increases further, the test statistics

measured from the sensors more closely resemble the noise level, adversely affecting de-

tection performance. This implies the existence of an optimal fusion range that maximizes

sensing performance. Fig. 4.2 also indicates that the optimal range depends on the transmit

power of the primary transmitter. (Also, see Fig. 4.5(a) in Section 4.6 for more detail.)
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Figure 4.3: Impact of localization error: Detection performance degrades as location es-
timation becomes less accurate. The simulation parametersare set toρ =
1.25 × 10−6/m2, TS =1ms,σdB =5.5 dB,α=4, QFA=0.01, andRf =2 km,
respectively.

4.3.3 Impact of Location-Estimation Error

Ideally, the BS performs data fusion with a set of sensors located within the data-fusion

range centered around the primary transmitter. In practice, however, the unpredictability of

a primary’s location can significantly degrade the quality of incumbent detection because

it makes it difficult to select a proper set of sensors for datafusion.

Fig. 4.3 plots WM detection probability (QD) with one-time sensing for various loca-

tion estimation errors. The figure shows that detection performance degrades drastically

as the localization error increases beyond a certain level,e.g.,1 km. Even a small differ-

ence in one-time detection performance can greatly affect the average number of sensing

rounds to achieve the desired false-alarm and mis-detection probabilities. Moreover, accu-

rate location estimation is necessary for efficient coexistence between a WM and secondary

users onceDeLOC detects the presence of the WM signal. Therefore, reasonably accurate

localization is necessary in our design of small-scale primary detection.
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4.4 Detection of Small-scale Primary via Spatio-Temporal

Data-fusion

In this section, we first formulate the small-scale primary detection problem as a se-

quential hypothesis testing problem. We then derive the optimal data-fusion range that

minimizes average detection delay. We finally show that the sensor density required to

meet a certain detectability constraint decreases inversely proportional to the average num-

ber of sensing rounds scheduled for detection.

4.4.1 Hypothesis Testing

Let θt= [T1, . . . , T|St|]
T denote the vector of test statistics (i.e., RSSs) measured at the

sensing staget by a setSt of cooperating sensors. A sensor is selected by the BS if it is

within the fusion rangeRf from the WM transmitter. Note that the fusion range, and hence

the set of cooperating sensors, can differ in each sensing stage according to the WM’s

estimated location and transmit-power level. Letθ = [θT1 , . . . , θ
T
N ]

T denote theM × 1

vector of test statistics measured at sensors overN sensing stages, whereM =
∑N

t=1|St|.
As shown in Eq. (4.2), the test statistics can be estimated tobe Gaussian regardless of the

existence of a primary signal [127].

Our detection problem is thus a binary Gaussian classification problem where the ob-

served test statisticθ belongs to one of two classes,H0 orH1, where:

H0 : θ ∼ N(µ0,Σ0) (no primary signal)

H1 : θ ∼ N(µ1,Σ1) (primary signal exists),

whereµk andΣk are the mean vector and covariance matrix of the test statistics under

Hk, k ∈ {0, 1}. The average test statistics under each hypothesis areµ0 = No×1 and

µ1 = (PR + No)×1, whereNo andPR are the average noise power and received primary

signal power at sensors, respectively.2

2Since the BS does not have the exact distribution of the received primary signal strengths, the BS can set
PR to−107dBm, which is the detectability requirement in 802.22 [36].
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The covariance matrixΣ0 can be expressed asΣ0=σ
2
o I, whereI is anM×M identity

matrix andσ2
o = N2

o

Ms
. Note that the correlation among sensor reports is negligible under

the assumption that the locations of the sensors and WM transmitter are fixed during the

detection process [100]. Moreover, in a very low SNR environment, it is reasonable to

assumePn + No ≈ No ∀n, and hence the covariance matrixΣ1 can be approximated as

Σo≈Σ1=σ
2
o I.

4.4.2 Sensing Scheduling via Sequential Probability RatioTest

In DeLOC, the BS schedules the sensing periods (stages) until it obtains a sufficient

amount of information for making a final decision. Via sensing scheduling, the BS receives

a sequence of test statistics{θt}Nt=1 from the sensors. We adopt Wald’sSequential Proba-

bility Ratio Test(SPRT) [147] to process the statistics and determine when tostop sensing.

SPRT is optimal in the sense of minimizing the average numberof observations, given

bounded false-alarm probabilityQFA and mis-detection probabilityQMD. It enables the

BS to reduce erroneous triggering of WM detection by optimizing its decision thresholds.

The decision statisticΛN is the log-likelihood ratio derived from a sequence of test

statisticsθ1, . . . , θN as follows:

ΛN , λ(θ1, . . . , θN) = ln
f1(θ1, . . . , θN)

f0(θ1, . . . , θN)
, (4.3)

wherefk(θ1, . . . , θN) is the joint p.d.f. of the sequence of test statistics under the hypothesis

Hk k∈{0, 1}.
With SPRT, a decision is made based on the observed sequence of test statistics,{θt}Nt=1,

using the following rules:

ΛN ≥ B ⇒ acceptH1 (primary signal exists)

ΛN < A ⇒ acceptH0 (no primary signal)

A ≤ ΛN < B ⇒ take another observation,

whereA andB (0<A<B<∞) are the detection thresholds that depend on the desired
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values ofQFA andQMD.

Let λt be the log-likelihood ratio at sensing staget, i.e., λt = ln f1(θt)
f0(θt)

. Recall that

{θt}Nt=1 are Gaussian, and assume they are independent and identically distributed (i.i.d.).

Then, Eq. (4.3) becomes:

ΛN =

N∑

t=1

λt =

N∑

t=1

ln
f1(θt)

f0(θt)
=

N∑

t=1

|St|∑

n=1

ln
f1(T̃n)

f0(T̃n)
, (4.4)

where the test statistic can be approximated as Gaussian using the Central Limit Theorem

(CLT) asT̃n∼N(µk, σ
2
o) underHk, as shown in Eq. (4.2).

We now consider thenormalizedtest statistics (i.e., RSSs) to simplify the derivation

of the average number of sensing rounds. LetT̃n , Tn · σ−1
o denote the normalized test

statistic, i.e.,tn|Hk
∼N(φk, 1) whereφk=

µk

σo
, ∀k. Then, we have:

λt =

|St|∑

n=1

ln
h1(T̃n)

h0(T̃n)
= (φ1 − φ0)

|St|∑

n=1

T̃n +
1

2

|St|∑

n=1

(φ2
0 − φ2

1), (4.5)

wherehk(·) is the p.d.f. ofT̃n|Hk
.

Based on Eqs. (4.4) and (4.5), the decision statisticΛN can be expressed as:

ΛN = (φ1 − φ0)
N∑

t=1

|St|∑

n=1

T̃n +
1

2

N∑

t=1

|St|∑

n=1

(φ2
0 − φ2

1)

= (φ1 − φ0)

M∑

n=1

T̃n +
M

2
(φ2

0 − φ2
1), (4.6)

whereM =
∑N

t=1|St| is the total number of test statistics collected by the BS throughN

sensing stages.

SPRT can meet the desired detectability requirements by carefully setting the detection

thresholdsA andB. Leta∗ andb∗ denote the desired values ofQFA andQMD, respectively.

Then, the decision boundaries are given by [147]:

A = ln
b∗

1− a∗ and B = ln
1− b∗
a∗

, (4.7)
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and the actual achievable error probabilities can only be slightly larger than the desired

valuesa∗ andb∗.

4.4.3 Minimization of the Average Detection Delay

Recall that our goal is to minimize the number of sensing rounds that the BS has to

schedule to meet the desired detection performance requirements, e.g.,QFA, QMD≤0.01.

Thus, we first derive a closed-form expression for the average number of sensing rounds

required until a decision is made (i.e., either boundaryA orB is reached).

The average number of sensing rounds required for making a decision (denoted by

E[N ]) can be computed as [147]:

E[N ] = E[λ |Hk]
−1 × E[ΛN ]. (4.8)

First, using Eq. (4.5), the average value of the log-likelihood ratioλ under hypothesis

Hk can be derived as:

E[λ |Hk] = (φ1 − φ0)E

[ |St|∑

n=1

T̃n|Hk

]
+

1

2
E

[ |St|∑

n=1

(φ2
0 − φ2

1)

]
. (4.9)

Next, the expectation ofΛN in Eq. (4.8) can be found as follows. SupposeH1 holds,

thenΛN will reach the decision boundaryA with the desired mis-detection probabilityb∗;

otherwise, it will reachB. Thus, using Eq. (4.7), we have:

E[ΛN |H1] = b∗ ln
b∗

1− a∗ + (1− b∗) ln 1− b∗
a∗

. (4.10)

Based on Eqs. (4.8), (4.9) and (4.10), we can derive the average number of sensing

rounds needed for decision-making as:

E[N |H1] =
b∗ ln b∗

1−a∗
+ (1− b∗) ln 1−b∗

a∗

(φ1 − φ0)E
[∑|St|

n=1 T̃n|H1

]
+ 1

2
(φ2

0 − φ2
1)E
[
|St|
] . (4.11)

Similarly, the average number of sensing rounds underH0, i.e.,E[N |H0], can be derived.
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Eqs. (4.9), (4.10), and (4.11) indicate that the average number of sensing roundsE[N ]

depends on: (i) the average number of sensors within the fusion range, which can be easily

calculated asE[|St|] = ρπR2
f , under the assumption of the point Poisson distribution of

sensors, i.e.,|St| ∼ Poi(n; ρπR2
f ), and (ii) the sum of their reported test statistics, i.e.,

E[
∑|St|

n=1 T̃n|Hk
].

As will be shown below, the sum of test statistics is affectedmainly by three parameters:

(i) sensor density(ρ), (ii) transmit-power level of the primary device(Po), and (iii) data-

fusion range(Rf), assuming other parameters remain constant. In general, sensor density is

known at the BS at the time of system deployment, and the transmit power can be estimated

based on measurements (which will be detailed in Section 4.5.1). Therefore, we opt to

derive an optimal fusion rangeR∗
f that minimizes the average number of sensing rounds,

thus minimizing detection delay.

4.4.4 Approximation of the Sum of Test Statistics

Unfortunately, it is infeasible to derive a closed-form expression for the exact distri-

bution of the sum of test statistics. This is because it depends on various random factors

including the number of sensors within the fusion range, their locations relative to the pri-

mary transmitter, channel gains between the primary transmitter and the sensors, and the

measurement error of the energy detector. Therefore, as a first step to derive an optimal

fusion range, we approximate the sum of test statistics in Eq. (4.11) as a shifted log-normal

random variable.

Let TΣ(ρ,Rf ) denote the sum of the test statistics measured at the sensorswithin the

fusion radiusRf from the WM transmitter, in a network with sensor densityρ. Then, under

H1, it can be approximated as:

E
[
TΣ(ρ,Rf )

]
= E

[∑

n∈St

Tn|H1

]

= E

[∑

n∈St

N(Pn +No, σ
2
o)
]

≈ E

[∑

n∈St

Pn

]
+ E

[∑

n∈St

No

]
, (4.12)
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wherePn is the received primary signal strength at sensorn andSt ≡ S(ρ, Rf ) for brevity.

The approximation in Eq. (4.12) is made based on the observation that, assuming the sens-

ing duration of1ms, the measurement error of the energy detector is relatively smaller than

the average received primary signal strength, i.e.,σ2
o � (Pn +No).

Based on Eq. (4.12), we now focus on approximation of the sum of received primary

signal strengths, which can be rewritten asE[
∑

n∈St
Pn]=Po E[

∑
n∈St

g(dn)e
XneYn ] where

Po is the primary’s transmit power,g(dn) is the sensorn’s channel gain due to path-loss, i.e.,

g(dn) = (do/dn)
α, andeXn andeYn are the channel gains from shadowing and multi-path

fading, respectively. We approximate the sum of channel gains due to path-loss, denoted

by GΣ(ρ, Rf )=
∑

n∈St
g(dn), as a log-normal random variable. Previous numerical studies

have shown that the aggregate interference of Poisson-distributed transmitters to a single

receiver can be accurately approximated as a log-normal distribution [99]. Conversely,

assuming the reciprocity of the RF path, we can also approximate the sum of received

primary signal strengths at sensors as a log-normal random variable. It has been shown

that the impact of fading on received signal strengths is nota critical factor in such an

approximation [69]. The effects of log-normal shadowing and multi-path fading in an

average sense will be incorporated later (see Eq. (4.17)).

DenoteGΣ(ρ, Rf )∼Log-N(µG, σ
2
G). Then, the p.d.f. ofGΣ(ρ, Rf ) is given as:

pG(ρ,Rf )(x) =
1

xσG
√
2π

exp

(
− (ln x− µG)

2

2σ2
G

)
, (4.13)

where theµG andσ2
G have the following relationships [99]:

m1(ρ, Rf ) = eµG+ 1
2
σ2
G and m2(ρ, Rf ) = e2µG+σ2

G(eσ
2
G − 1). (4.14)

Heremk(ρ, Rf ) is thekth cumulant ofG(ρ,Rf ), given as:

mk(ρ, Rf) = ρπ(R2
f − ε2)

∫ Rf

ε

2r

(R2
f − ε2)

g(r)kdr

=
2ρπ dkαo
(kα− 2)

(
1

εkα−2
− 1

Rkα−2
f

)
, (4.15)
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wheredo is the reference distance andε is the minimum separation between the primary

transmitter and the sensors, which is set toε=75m in our simulation.3

From Eqs. (4.14) and (4.15), the log-normal random variableGΣ(ρ, Rf) ∼ Log-N(µG, σ
2
G)

can be approximated as:

µG =
1

2
ln

(
m4

1

m2
1 +m2

)
and σ2

G = ln

(
1 +

m2

m2
1

)
. (4.16)

Therefore, from Eqs. (4.12) and (4.16), and by incorporating the effects of shadowing and

multi-path fading assuming the fading is i.i.d. for each sensor, the sum of received primary

power at the cooperating sensorsSt can be expressed as:

E

[∑

n∈St

Pn

]
= Po · E[eX ] · E[eY ] · E[GΣ(ρ, Rf)], (4.17)

whereE[eX ] = e
1
2
σ2

, σ = 0.1 ln(10)σdB, andE[GΣ(ρ, Rf)] = eµG+ 1
2
σ2
G . For multi-path

fading, we assume Rayleigh fading with zero mean, and thus,E[eY ]=1.

Then, from Eqs. (4.12) and (4.17), the average of the sum of normalized test statistics

can be expressed as:

E

[ |St|∑

n=1

T̃n|H1

]
= E

[
TΣ(ρ,Rf ) σ

−1
o

]

=
(
Po e

1
2
σ2

E[GΣ(ρ, Rf )] +NoρπR
2
f

)
σ−1
o . (4.18)

Finally, based on Eqs. (4.9) and (4.18), the first term in Eq. (4.8) for calculating the

average number of sensing roundsE[N |H1] can be derived as:

E[λ |H1] =
1

2
(φ2

0 − φ2
1) ρπR

2
f + (φ1 − φ0)

×
(
Po e

1
2
σ2

E[GΣ(ρ, Rf )] +NoρπR
2
f

)
σ−1
o , (4.19)

whereφ0 =
No

σo
andφ1 =

No+PR

σo
are the average normalized test statistics under both hy-

3This is reasonable because the probability that there exists at least one sensor withinε=75m from the
WM transmitter is1− Poi(0; ρπε2)≈0.02 given sensor density ofρ=1.25× 10−6/m2.
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potheses.

The average number of sensing roundsE[N |H1] can be derived by substituting Eqs. (4.10)

and (4.19) into Eq. (4.8).

4.4.5 Optimal Data-Fusion Range

Based on the analyses above, we now derive an optimal data-fusion range that mini-

mizes the average detection delay, i.e., the number of sensing rounds needed to meet the

detection performance requirements.

Proposition 4.1 Let J(Rf ),E[λ |H1] in Eq. (4.19). Then, the optimal fusion range that

minimizes the average number of sensing roundsE[N ] is given as:

R∗
f = argmax

Rf

J(Rf ) = Rf

∣∣∣∂J(Rf )

∂Rf
=0

=

(
a1(α− 2)

2a2

) 1
α

, (4.20)

where

a1 =
2(φ1 − φ0)Po e

1
2
σ2
ρπdαo

σo(2− α)
, (4.21)

and

a2 =
1

2
(φ2

0 − φ2
1)ρπ +

(φ1 − φ0)Noρπ

σo
. (4.22)

Proof. See Appendix A. �

Proposition 4.1 indicates that the optimal fusion range that minimizes detection delay

depends on various system parameters, such as transmissionpower (Po), noise power (No),

shadow fading (σ), and path-loss exponent (α).

Based on Proposition 4.1, we have the following counter-intuitive observation:

Corollary 4.1 The optimal fusion range (R∗
f ) is independent of the sensor densityρ.

One might think that the optimal fusion range should decrease as sensor density in-

creases, since more sensors (near the WM transmitter) with high RSSs become available

for data fusion. However, this is not the case because the performance of EGC depends

on how far a cooperating sensor’s report (i.e., the measuredRSS) is from the noise power

level, which is independent of sensor density (see Fig. 4.6 for details).
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4.4.6 Impact of Sensing Scheduling

We now show that sensing scheduling can reduce the minimum sensor density required

for given detection constraints. While the achievable performance gain via cooperative

sensing has been studied extensively [100, 101, 106], the impact of sensing scheduling on

the sensor density requirement has not been studied.

Proposition 4.2 The minimum sensor density required to meet certain detectability re-

quirements isinverselyproportional to the average number of times to sense.

Proof. Based on Eqs. (4.8), (4.10), (4.15) and (4.19), the requiredsensor density for a

given average number of sensing roundsE[N ] can be expressed as:

ρ =
σ2
o

E[N ]
×

b∗ ln b∗

1−a∗
+ (1− b∗) ln 1−b∗

a∗

PR

[
Poe

1
2
σ2
(

1
ε2
− 1

R2
f

)
− 1

2
πR2

fPR

] , (4.23)

wherea∗ andb∗ are the desired false-alarm and mis-detection probabilityvalues. Eq. (4.23)

indicates that the sensor densityρ is inversely proportional to the average number of sensing

rounds. Therefore, the proposition follows.�

Propositions 4.1 and 4.2 are derived based on the assumptionthat the WM’s location

and transmit-power level are knowna priori to secondary users. However, such information

may not be available in practice, and thus the benefits of our analytical findings cannot be

realized without an efficient way of estimating the WM’s location and transmit power. This

motivates our approach of integrating sensing with location and transmit-power estimation,

which we discuss next.

4.5 DeLOC: The Iterative Approach

We now introduceDeLOC, an iterative algorithm that expedites the detection of small-

scale primary signals via joint data-fusion and location/transmit-power estimation. We first

describe the estimation techniques, and then the proposed data-fusion rule and the iteration

method employed byDeLOC.
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4.5.1 Estimation Techniques

4.5.1.1 Estimation of WM Location

As we observed in Fig. 4.3, a reasonable approximation, if not accurate, of the WM’s

location is sufficient for improving detection performance. In DeLOC, the BS estimates and

updates the WM’s location based on the RSSs reported by the sensors. In particular, the BS

employs aweighted centroid methodproposed in [151], which estimates the WM’s location

via a weighted average of the sensors’ locations, where the weight equals the corresponding

sensor’s report. The BS further refines the estimation via anexponential moving average

over multiple sensing stages.

More specifically, let̂ϑt=(x̂t, ŷt)∈R2 denote the estimated location of the primary at

sensing staget. Then, the WM’s location is estimated as [92, 151]:

ϑ̂t = (1− β) ϑ̂t−1 + β

(
∑

n∈St

Pn∑
m∈St

Pm
ψn

)
,

wherePn is the received primary signal power at sensorn, ψn = (xn, yn) the location of

sensorn, andβ∈(0, 1) the smoothing factor.

Note thatDeLOC uses a simple existing localization method to estimate the PU’s lo-

cation in each round, but it is not restricted to any specific localization algorithm, so other

localization methods, such as the semi range-based method proposed by Maet al. [96], can

also be used.

4.5.1.2 Estimation of Transmit Power

In DeLOC, the BS estimates the WM’s transmit-power based on the WM’s estimated

location and the reported RSSs using the method proposed in [159] as:

P̂o,t(dB) = 10 log10

(1
k

)
+

10

|St|
∑

n∈St

(
log10(Pn) + α log10(dn)

)
,

wherek = po d
α
o P

−1
o . po is the measured signal power at reference distancedo, Pn the

received primary signal strength at sensorn, anddn the distance between the WM trans-
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Algorithm 5 DeLOC: ALGORITHM FOR JOINT DETECTION AND ESTIMATION OF

SMALL -SCALE PRIMARY USERS
At the end of a sensing period, the BS does the following

1: for Each triggering eventdo
2: t← 1 // Initialization
3: while t ≤ MaxNumIter do
4: t← t+ 1
5: θt ← Receive sensing results from cooperating sensorsSt

6: Λt ← Λt−1 + λ
f(t)
t // Update the decision statistic

7: if Λt ≥ B then
8: A primary exists and hence returns the estimated location and transmit-power level
9: else ifΛt < A then

10: A primary does not exist (i.e., the event is triggered by a ghost primary) and hence
terminates the iteration

11: else
12: (ϑ̂t+1, P̂o,t+1)← Estimate the location and transmit power of the primary transmitter
13: R∗

f,t+1← Calculate the optimal fusion range
14: St+1← Select a set of sensors located withinR∗

f,t+1 from the estimated primary trans-
mitter location

15: Schedule another sensing round and wait for the observation
16: end if
17: end while
18: return No primary signal exists
19: end for

mitter and sensorn, i.e.,dn =
√

(x̂t−xn)2 + (ŷt−yn)2. Note that the test statistics of the

energy detector include noise power, so the received primary signal strengthPn needs to

be estimated from the test statistics by subtracting the average noise powerNo from the

measurements.

WhileDeLOC employs simple location and power estimation techniques, the estimation

accuracy can be further improved by using more sophisticated techniques at the cost of

more computation.

4.5.2 The Proposed Data-Fusion Rule

While DeLOC improves small-scale primary detection performance via iterative co-

operative sensing and estimation, we observed that it oftenterminates in the early stages

mis-detecting the WM. This is because, initially, the BS’s location and transmit-power es-

timates are inaccurate, resulting in many noisy sensor reports during data fusion. This
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preventsDeLOC from fully exploiting its unique feature—an iterative refinement of esti-

mation and fusion.

To overcome this problem, we propose a new data-fusion rule for DeLOC, asequential

probability ratio test with ascending weight(SPRT-AW), to prevent the BS from making

biased decisions in early stages. The idea is to assign smaller weights to the decision

statistics in early stages, and gradually increase the weights as the location and transmit-

power estimates become more accurate. Specifically, we use the following rule to update

the decision statistic:

Λt = Λt−1 + λ
f(t)
t where f(t)=

1

1 + e1−t
t ∈ N, (4.24)

where we use the sigmoid functionf(t) such that the exponent of test statistics increases

from 0.5 to 1 as t increases. Consequently, the test statistics in later stages count more

in decision-making. The resulting decision statistics will be used in updating theΛt in

Eq. (4.4), and compared with the upper (B) and lower (A) thresholds to make a decision.

4.5.3 Description ofDeLOC Protocol

As described in Fig. 4.1,DeLOC is triggered only when a sensor’s report is above a

certain predefined thresholdξ, which is suspected as a WM signal. The triggering threshold

must be chosen carefully by the BS to balance the false- and mis-triggering ofDeLOC.

Upon triggering, the BS assumes the triggering sensor’s location as the WM’s location, and

employs additional sensors within the fusion range for WM detection in the next scheduled

sensing round. If there are multiple triggering sensors in close proximity, the BS considers

the sensor with highest RSS. In each sensing round, the BS iterates the following two steps:

(i) location and transmit-power estimation and (ii) data-fusion, until the decision statistic

for data fusionΛ reaches one of the thresholds. The BS also terminates the iteration after

scheduling sensing rounds forMaxNumIter. Algorithm 5 detailsDeLOC.
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4.6 Performance Evaluation

In this section, we evaluateDeLOC using MATLAB-based simulation. We first de-

scribe the simulation setup and then present the impact of the fusion range on detection

performance and its dependency on transmit-power. We also show the relationship between

detection delay and sensor density. Finally, we demonstrate the performance ofDeLOC in

comparison with other testing schemes.

4.6.1 Simulation Setup

In the simulation, we consider a realistic 802.22 environment where sensors are ran-

domly distributed over a30 km×30 km area. The average sensor density is set to1.25/km2,

as typically used in 802.22 WRANs [107], unless specified otherwise. We assume a WM

randomly located in the area with effective transmit-powerbelow25mW, as indicated by

the measurement study in [36]. The maximum number of sensingrounds scheduled within

the 2-secondchannel detection period(CDT) is limited toMaxNumIter=100.4 The dura-

tion of a single sensing period is assumed to be 1 ms. The path-loss exponent isα=4, and

the shadow fading dB-spread isσdB = 5.5dB, which is typically assumed for rural areas.

We also assume that the signal-propagation parameters are knowna priori to the secondary

system. The triggering threshold inDeLOC is configured asξ=No + 3.5 σo, which gives

the false-triggering rate of2.3×10−4. The simulation results are obtained from5×103

randomly-generated topologies.

To evaluate the efficacy ofDeLOC, we compare the performance of the following four

sensing schemes: (i) Oracle (the ideal case), (ii)DeLOC with SPRT-AW, (iii)DeLOC, (iv)

DeLOCwithout localization, and (v)DeLOCwithout transmit-power estimation. InOracle,

the location and transmit-power information is available to the BS, so the BS always uses

the optimal fusion range for sensing without the need for estimation. Thus, Oracle will

be used as a performance reference. InDeLOC without localization, the location of the

triggering sensor is regarded as the primary’s location. InDeLOCwithout power estimation,

4This is reasonable since the BS can schedule sensing as frequently as once every10ms, i.e., one MAC
frame size in 802.22.
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Figure 4.4: Impact of the data-fusion range on detection performance: (a) the average num-
ber of sensing rounds decreases as the fusion range increases, whereas (b) the
detection probability is maximized whenRf =1 km, which is close to the ana-
lytical result. Here the WM’s transmit power is set to1mW.

the power level is assumed to be randomly chosen in[0, 25]mW.

4.6.2 Impact of Fusion Range

Fig. 4.4 shows the impact of the data fusion range on detection performance in terms

of detection delay and accuracy. The figures indicate that too small a fusion range suffers

from the lack of cooperating sensors, which makes it difficult for the BS to collect enough

information, i.e., measured RSSs, to make a decision withinMaxNumIter, resulting in a low

detection probability. On the other hand, too large a fusionrange, i.e., beyond1 km, suffers

from having many noisy reports, misleading the BS to promptly conclude that there is no

primary signal, increasing the chance of mis-detection. Fig. 4.4(b) shows that the detection

probabilityQD is maximized when the fusion range is1 km, which closely matches the

analytical result, i.e.,1.03 km.

An additional observation from our simulation results is that false-alarms occur only16

times over5×103 iterations, i.e.,QFA=16/5000=0.0032, thus achieving the false-alarm

requirement ofQFA≤0.01.
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Figure 4.5: Optimal Fusion Range: (a) shows the impact of transmit-power on the optimal
fusion range, indicating that the analytical results (the bar graph) closely match
the simulation results (the line graph), thus validating the analytical results. (b)
shows that the optimal fusion rangeR∗

f that maximizes detection performance
(QD) does not depend on sensor density.

4.6.3 Optimal Fusion Range

Fig. 4.5(a) plots the optimal fusion range for various transmit-power levels, and indi-

cates that our analytical results (Proposition 4.1 in Section 4.4.5) closely match the simula-

tion results. The figure also shows that to detect a high transmit-power WM, it is better (in

the sense of reducing sensing delay) to extend the fusion range, thus increasing the number

of cooperating sensors. On the other hand, to detect a WM withvery weak transmit-power,

it is better to have a small number of sensors, thus reducing the number of noisy reports.

Fig. 4.5(b) indicates that the optimal fusion range (in the sense of maximizing the detection

probabilityQD) remains the same over different sensor densities, thus confirming Corol-

lary 1 in Section 4.4.5.

4.6.4 Impact of Sensor Density

Although sensor density does not affect the optimal fusion range, a higher sensor den-

sity (hence more sensors within fusion range) can still improve sensing performance by ex-

ploiting diversity of measurement. Fig. 4.6(a) shows the average number of sensing rounds

(i.e., detection delay) required to meet the detection performanceQFA, QMD≤0.01, which

obviously decreases with sensor density. The figure also indicates that the average num-
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Figure 4.6: Impact of sensor density on detection performance: (a) the detection delay de-
creases rapidly as sensor density increases, and (b) the detection accuracy in-
creases as the sensor density increases. In the simulation,the transmit power is
set asPo=2mW.

ber of sensing rounds is almost inversely proportional to sensor density, thus confirming

Proposition 4.2 in Section 4.4. Fig. 4.6(b) further shows that the detection probabilityQD

increases with increasing sensor density.

4.6.5 Performance ofDeLOC

To demonstrate the efficacy ofDeLOC, we compare its performance with the other four

testing schemes under the detection constraintsQFA, QMD ≤ 0.01. As shown in Fig. 4.7,

when the WM’s transmit-power increases, detection performance (with respect to delay

and detection probability) increases for all testing schemes. We make three additional

observations.

First, Fig. 4.7(a) shows that the average number of sensing rounds for decision-making

is below10, which may take only100ms as the BS can schedule sensing periods as fre-

quently as every10ms, i.e., one MAC frame size in 802.22. In addition, the detection

probability of DeLOC with SPRT-AW meets the detection requirement of 802.22, i.e.,

QMD≤0.1, even for a very weak transmit-power of1mW, as indicated in Fig. 4.7(b).

Second, Fig. 4.7(b) shows thatDeLOC with SPRT-AW performs close to Oracle in

terms of detection rate, and outperforms all other schemes that use regular SPRT. As men-

tioned earlier, the SPRT inDeLOC often makes a wrong decision (mis-detection of a WM)
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Figure 4.7: Performance ofDeLOC: DeLOC (a) requires only a small number of sensing
rounds for WM detection, and (b) achieves a high detection rate even for a very
weak signal power, e.g.,Po=1mW.

in early detection stages because of the large number of noisy reports due to the inaccurate

location and power estimates.DeLOC with SPRT-AW mitigates this problem by discount-

ing the decision statistics in early stages.

Third, Fig. 4.7(b) shows thatDeLOCwithout localization outperforms theDeLOCwith-

out transmit-power estimation. This is because power estimation plays an important role

in finding the optimal fusion range, and thus, errors in powerestimation results in signif-

icant performance degradation. On the other hand, the location-estimation error is small

compared to the typical fusion range, and thus it does not cause significant performance

degradation, as already shown in Fig. 4.3.

These simulation results clearly demonstrate that the joint design of data-fusion and

location and transmit-power estimation maximizes the benefits of spatial-temporal sensing

for detecting small-scale primaries, such as WMs in 802.22.

4.7 Related Work

Despite its practical importance, there has only been limited research in MAC-layer

solutions to WM detection. Most existing work focuses on PHY-layer signal detection

techniques [26, 161], which have short sensing ranges and require a separate dense sensor

network for WMs. Mishraet al. [107] studied the minimum sensor density required for
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detecting WM signals based on energy detection. They showedthat when the path-loss

exponent is4 or higher, the average sensor density in rural areas (i.e.,1.25/km2) is not suf-

ficient for detecting WMs. Recently, the 802.22 Working Group established Task Group 1

to develop a standard for the disabling beacon protocol [120]. Although the disabling bea-

con can protect WM signals better, it has several practical limitations as discussed in Sec-

tion 4.1. Moreover, the disabling beacon is restricted to WMs because the sensing relies on

specialized signal features. In contrast, ourDeLOC algorithm is agenericMAC-layer sens-

ing scheme for small-scale primary detection, which can be incorporated into the beacon

protocol while overcoming its limitations. Chouinard [34]proposed a coexistence model

between WMs and 802.22 WRANs by exploiting the WM signal’s small footprint and its

narrow bandwidth, i.e.,200KHz. However, they do not account for location estimation,

which greatly affects the spatial reuse of spectrum.

Sequential detection of PUs has been studied by others [28, 85, 100]. Chenet al.

[28] proposed a weighted sequential probability ratio test(WSPRT) that assigns differ-

ent weights to sensor reports based on the sensors’ reputations in order to minimize the

impact of manipulated (or erroneous) sensor reports in making a final decision on the pres-

ence/absence of a primary signal. By contrast, SPRT-AW introduced inDeLOC is designed

to intentionally defer the final decision at the BS, so as to reduce the effects of any wrong

decision made in early stages when localization and power estimation are relatively inac-

curate.

Chenet al. [29] proposed a scheme for verifying a PU’s location, calledLocDef. Its

main idea is that if the estimated location of the signal source differs significantly from

the known location of the primary transmitter, i.e., a TV transmitter, then the BS assumes

that the signal is transmitted from a fake PU. By contrast, the location and transmit-power

estimation introduced inDeLOC aim to improve detection performance of small-scale pri-

mary signals, e.g., WMs, by helping the BS select an optimal set of cooperating sensors. In

addition, when there is a WM signal,DeLOC returns the estimated location and transmit-

power of the detected WM, so that the BS may use this information for admission control

and transmit-power control of the secondary users to achieve better spectrum reuse in the

space domain. Another key difference is thatDeLOCmakes use of a sparse sensor network,

108



whereasLocDefrequires a dense sensor network for location verification.

The work presented in this chapter is also related to the existing body of research on the

coverage of sensor networks. Using a theoretical analysis,Xing et al. [153] showed that

data fusion via sensor cooperation can improve the coverageof sensor networks over the

conventional detection schemes based on a disc model. Whileour approach also empha-

sizes the importance of data fusion, we adopt sensing scheduling to improve the detection

performance of small-scale primaries. We characterize theimpact of various factors on

WM detection, and establish a practical framework that accounts for the unpredictability

of each WM’s transmit-power and location.

4.8 Conclusion

The detection of small-scale primary signals is a critical,but challenging problem in

realizing DSA in CRNs. To address this problem, we proposed anovel spatio-temporal fu-

sion scheme that exploits (i) spatial diversity by cooperative sensing with an optimal fusion

range, and (ii) temporal diversity by scheduling a series ofsensing stages with an optimal

stopping time. We modeled the detection problem as a hypothesis test, approximated the

sum of sensor readings as a log-normal random variable, and then solved a convex opti-

mization problem, to obtain the optimal fusion range that minimizes the average detection

delay. We also proposed a new sensing algorithm calledDeLOC that iterates between coop-

erative sensing and location/transmit-power estimation to further improve sensing perfor-

mance under realistic settings. Our evaluation results show thatDeLOC reduces detection

delay significantly while achieving high detection performance.
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CHAPTER 5

Robust Tracking of Mobile Small-Scale Primary Users

5.1 Introduction

Unlike the detection of large-scale primaries, e.g., DTV users, where localization is not

the primary concern in opportunistic spectrum reuse, accurately tracking the physical lo-

cation ofmobilesmall-scale primaries, such as wireless microphones (WMs), is crucial in

achieving the core objectives and functionalities of CRNs,such as spatial spectrum reuse

[34], interference management [64, 146], routing decisions [37], and falsified primary sig-

nal detection [29, 91]. For example, knowing the location ofthe primary transmitter en-

ables secondary users (SUs) to reuse licensed spectrum moreefficiently without causing

excessive interference to primary communications [34, 64,126, 146]. Without knowing

the location of a WM, however, all the SUs (also called CPEs) in an 802.22 cell (of radius

up to 100 km) must immediately vacate the current operating channel upon detection of

the WM, resulting in significant waste of spatial spectrum opportunities [34]. Furthermore,

location information is also very useful for cooperative sensing by enabling the base station

(or fusion center) to select an optimal set of sensors, especially when detecting a very weak

primary signal, like a WM signal [105].

However, CRN faces unique challenges, such as the absence ofprimary-secondary co-

ordination and low sensor density, that make it difficult to accurately track mobile pri-

maries. According to the FCC, opportunistic spectrum access should require no modifica-

tion to the primary system [47]. Thus, SUs (sensors) must rely solely on measured received
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signal strengths (RSSs) (obtained via spectrum sensing) for primary tracking. This makes

the primary tracking vulnerable to attacks, since the tracking process can be disrupted by

malicious or faulty sensors that report incorrect RSSs. A sensing report falsification attack

can be easily launched by attackers due to the open nature of low-layer protocol stacks in

SDR devices, such as USRP [3] and Sora [84]. Moreover, low sensor density in CRNs ham-

pers the accurate tracking of mobile PUs, e.g., the average sensor density in 802.22 WRANs

is only about1.25/km2 [107]. Inaccurate location estimation may ultimately cause SUs to

generate excessive interference to the primary system, violating the basic premise of CRNs

and discouraging PUs from sharing their licensed spectrum bands with SUs. Therefore,

there is a clear need for an efficient and secure tracking scheme for small-scale mobile PUs

in CRNs.

In this chapter, we address the problem of reliably trackingsmall-scale mobile PUs in

CRNs. Specifically, we design an RSS-based tracking scheme,calledSOLID, which allows

accurate, attack/fault-tolerant tracking of mobile PUs byjointly estimating the location of a

primary and shadow-fading gains in the RSSs. The shadowing estimation inSOLID greatly

improves localization performance. Besides, by monitoring temporally-correlated shadow

fading,SOLID accurately detects manipulated or erroneous sensor reports, thus achieving

high robustness. The key motivation behind exploiting temporal shadowing correlation

in attack detection is based on the observation that malicious sensors cannot control the

physical-layer signal-propagation characteristics. While we focus on the robust tracking of

WMs’ location in 802.22 WRANs, our proposed techniques aregenericand can be used

for detecting other types of small-scale primaries or, in a broader context, target tracking in

wireless sensor networks.

5.1.1 Contributions

This chapter makes the following main contributions.

• Development of a new tracking scheme,SOLID, that jointly estimates the mobile

PU’s location and shadow-fading gains using an adaptive filter. By exploiting the

temporal correlation in shadow fading,SOLID (i) improves localization accuracy
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and (ii) accurately identifies abnormal sensing reports. Tothe best of our knowledge,

this is the first attempt to incorporate shadow fading into cooperative localization.

• In-depth evaluation ofSOLID in a realistic shadow-fading environment under var-

ious attack scenarios. Our extensive simulation study shows that, under no attack,

SOLID lowers the average localization error by up to88% compared to the conven-

tional Sequential Monte Carlo (SMC) based tracking scheme,since the two compo-

nents ofSOLID—SMC-based localization and shadow-fading estimation—refines

each other throughout the tracking process.

• High attack- and fault-tolerance ofSOLID. Our evaluation results show thatSOLID

can detect compromised sensing reports with high accuracy,e.g., attack-false alarm

and mis-detection rates below 1 % and 7 %, respectively. It also shows that in a

realistic shadowing and multi-path environment,SOLID lowers the average error by

up to89% even under “slow-poisoning” attacks.

• Investigation of the tradeoff in the design of the attack detector inSOLID. When

the base station (BS) filters out sensors or sensing reports too aggressively (or con-

servatively), the localization can suffer from lack of samples (compromised sensing

reports). Via in-depth simulation, we identify the impact of attack detection thresh-

olds, and the results provide practical guidelines for the design of a robust and effi-

cient tracking scheme.

5.1.2 Organization

The rest of this chapter is organized as follows. Section 5.2describes the system mod-

els and assumptions, and introduces the attack models. Section 5.3 presents our proposed

approach for attack detection, and the underlying localization protocol. Section 5.4 details

our approach for the estimation of shadow fading, and the design of SOLID’s attack de-

tector. Section 5.5 evaluates the performance ofSOLID, and Section 5.6 reviews related

work. Section 5.7 concludes the chapter.
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5.2 System and Attack Models

In this section, we describe the network, spectrum sensing,and signal-propagation

models that we use throughout this chapter. We then provide an overview of our model

of tracking a small-scale mobile primary transmitter and introduce the attack model.

5.2.1 CR Network Model

We consider a CRN that consists of primary and secondary users/devices in the same

geographical area. The secondary network is an infrastructure-based network, such as an

IEEE 802.22 WRAN, in which each cell consists of a base station (BS) and multiple sen-

sors, calledcustomer premise equipments(CPEs). The main goal of IEEE 802.22 WRANs

is to provide Internet access to rural areas by reusing unused TV spectrum bands, without

causing excessive interference to PUs. In an 802.22 WRAN, the BS manages the DSA of

the SUs in the network by (i) scheduling sensors to perform spectrum sensing, and (ii) per-

forming data fusion and primary location estimation to determine the presence or absence

of a primary signal based on the sensing reports. For spectrum sensing, the BS employs

the sensors located within a fusion range centered at the estimated primary location for

cooperative spectrum sensing [105].

We assume that sensors are stationary and that the BS has the location information of the

sensors within its own cell. For example, the IEEE 802.22 WRANs standard draft requires

the BS to know the sensor locations. We assume that the sensors have been deployed in an

areaA, e.g., an IEEE 802.22 WRAN cell, following a point Poisson process with average

densityρ. Unlike in a typical wireless sensor network environment, where sensors are

densely distributed, we assume a low sensor densityρ because the typical density of CPEs

in rural areas is only1.25/km2 [139]. We assume that the BS and sensors communicate

over a common control channel.
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Figure 5.1: An illustrative example of small-scale primary tracking: The BS tracks the lo-
cation of a mobile PU (e.g., a WM) based on the sensing reports(i.e., received
primary signal strengths) from the sensors located within the fusion range (the
dotted circle).

5.2.2 Spectrum-Sensing and Signal-Propagation Models

Due to the lack of primary-secondary cooperation, primary tracking must be done based

only on the received primary signal strengths measured at cooperative sensors.1 We con-

sider energy detection [127] for spectrum sensing in the PHY-layer. Energy detection is the

most widely-used PHY-layer sensing technique due to its simple design and low sensing

overhead. The test statistics of the energy detector are an estimate of the sum of received

primary signal and noise power [127]. We assume that the BS employs only the sensors

located close to the primary transmitter, i.e., located within the fusion rangeRs from the

estimated location of a primary transmitter, for location tracking. The BS directs the coop-

erative sensors to perform spectrum sensing at a periodic time intervalt ∈ T, and reports

their sensing results to the BS for localization. Fig. 5.1 depicts an example scenario of

tracking a mobile primary transmitter in a CRN.

Assuming that the noise power is much smaller than the received primary signal strength,

sensorn’s measurement in sensing time slott can be expressed (in dB) as [46]:

Pt,n = Po + α10 log(do)− α10 log(dt,n) +Xt,n + Yt,n (5.1)

1Cooperative sensors refer to a set of sensors in a 802.22 WRAN, which are employed by the BS for
spectrum sensing.
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whereα is the path-loss exponent,do the reference distance,Po the received primary signal

strength at the reference distance,dt,n the distance between the primary transmitter and

sensorn in time slott. Log-normal shadow fading, denoted byXt,n, can be characterized

by dB-spread,σdB , whereXt,n ∼ N(0, σ2
dB).

2 We assume that non-fading components,

such as antenna and device losses, are approximated as an i.i.d. Gaussian random variable

with zero mean and varianceσ2
m, denoted asYt,n∼N(0, σ2

m) ∀n.

Let St denote a set of cooperating sensors in time slott. Then, the received primary

signal strength at cooperating sensors in Eq. (5.1) can be expressed in a vector form as:

Pt = H(dt) + X̂t +Yt, (5.2)

whereH(dt) = [ h(dt,1), . . . , h(dt,|St|) ]
T represents the channel gain due to path-loss,

whereh(dt,i)=Po+α10 log(do)−α10 log(dt,i). The shadow fading gain and noise vectors

are denoted bŷXt andYt, respectively.

5.2.3 Attack Model

The main objective of attackers (compromised sensors) is todisrupt the primary trans-

mitter localization/tracking process by manipulating their sensing reports. Specifically, we

consider the following two attack scenarios: a sensor is

• compromised, reporting manipulated (i.e., higher or lower than real) RSSs to the BS,

• malfunctioning or faulty, generating sensor readings that significantly deviate from

the true RSS.

The above two cases render the sensing reports to the fusion center (i.e., the BS) in-

accurate, degrading the localization/tracking performance. Such large localization error

will require SUs to be more conservative in reusing spectrumopportunities, resulting in a

waste ofspatialspectrum opportunities (see Section 5.5.7). Therefore, weopt to design an

attack- or fault-tolerantprimary tracking mechanism that successfully tolerates such ma-

2Measurement studies [10] indicate that a typicalσdB values are4-8dB depending on geographical envi-
ronments, e.g., urban or suburban.
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Figure 5.2: TheSOLID framework:SOLID provides high accuracy and robustness in mo-
bile primary tracking by (i) estimating/monitoring shadow-fading gains between
the primary transmitter and sensors using the Kalman Filter, and (ii) detecting
and filtering out abnormal sensing reports based on the shadowing-correlation
profile.

nipulated (or erroneous) sensing reports. Although there exist other security threats, such

as jamming or denial-of-service attacks, in the primary tracking process, the sensing report

manipulation attack that we consider in this chapter is stealthier due to the attacker’s ability

to control the sensing reports in a finer-grained manner.

5.3 The Proposed Approach

We first describe the overall architecture ofSOLID and present its design rationale.

We then introduce thesequential Monte Carlo(SMC) localization process that underlies

SOLID.

5.3.1 SOLID Architecture

SOLID (Fig. 5.2) resides at the BS and consists of the following three building blocks:

• location estimator that tracks the location of a small-scale mobile primary transmitter

based on sensing reports,

• shadowing estimatorthat tracks the shadowing gain at cooperative sensors usingthe

Kalman Filter (KF), and
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• attack detector that detects and discards abnormal sensing reports, and updates the

normal profile.

The above three components synergistically interact with each other and collectively

enable accurate and robust PU tracking. Based on the estimated primary location, the

sensor manager selects sensors to cooperate with each otherbased on their (ab)normality

and proximity to the primary transmitter.3

In particular, the shadowing estimator introduced inSOLID offers two main benefits:

• It improves localization accuracy by mitigating the effectof shadow fading in RSSs

((a) in Fig. 5.2), and

• It enables accurate detection of abnormal sensing reports ((b) in Fig. 5.2).

SOLID also minimizes communication and processing overhead since it exploits physical-

layer signal-propagation characteristics, extracted from the cooperative sensing results.

5.3.2 Design Rationale for Attack Detection

To maximize attack-tolerance and preserve localization accuracy,SOLID exploits the

temporalcorrelation in shadow fading in received primary signal strengths. The key in-

sight behind the attack detector is that, in shadow-fading environments, the sequence of

RSSs measured at each sensor is highly likely to be correlated as indicated in measurement

studies (e.g., [10, 60]). Thus, the attack detector takes ananomaly-detectionapproach to

identifying and discarding abnormal sensing reports in thelocalization process. So, if at-

tackers raise or lower the sensing results (i.e., RSSs) reported to the BS in order to influence

the localization result,SOLID can easily detect them by examining the consistency of the

sensing reports with the estimated primary location and theprevious history of sensing

reports. Hence, the attacker must lower its attack strengthto evade detection bySOLID,

exerting only a negligible impact on localization.

One important, but not so obvious feature of the attack detector in SOLID is that it is

cooperative, in the sense that the accuracy of shadowing-gain estimation depends heavily

3Although there are many sophisticated sensor-selection methods for target tracking (e.g., [30]), optimal
sensor-selection is not our focus.
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on the location estimate, which is updated based on reports from all the cooperating sensors.

In other words, the robustness of attack detection is directly correlated with localization

accuracy.

5.3.3 SOLID: Sequential Monte Carlo Combined with Shadow-Fading

Estimation

SOLID employssequential Monte Carlo(SMC) [70] as the baseline scheme for track-

ing small-scale mobile PUs. SMC has been widely used as a localization method in mobile

wireless systems [13, 121]. The key idea of SMC is to represent the required posterior den-

sity function by a set of random samples (or particles) with their associated weights, and

then compute the estimated location by taking their weighted average.SOLID augments

the conventional SMC with shadow-fading estimation to further improve the tracking ac-

curacy and achieve robustness against malicious/faulty sensors.

Let {φ |φt = (xt, yt) t ∈ N} denote the sequence of a mobile primary’s locations in

two-dimensional coordinates wheret is the index for (sensing) time slot. The BS estimates

the primary transmitter’s location based on the vector of received primary signal strengths,

denoted byPt in Eq. (5.2).

Let the particle set denote the set of tuples{(θ(i)
t
, w

(i)
t )}Ns

i=1 where each sampleθ(i)
t

is associated with its weightw(i)
t , where

∑Ns

i=1w
(i)
t = 1, andNs is the number of particle

samples. Then, the PU tracking process inSOLID consists of the following 6 steps.

Step 1:At the end of sensing periodt, SOLID drawsNs new samples4 using transition

probabilitiesp(θ(i)
t
|θ(i)

t−1), given by:

p(θ
(i)
t |θ(i)t−1) =





1
π(vmax+β)2

if d(θ(i)t , θ
(i)
t−1) < vmax

0 otherwise,
(5.3)

wherevmax is the maximum speed of the mobile primary transmitter, andβ is used to

generate better samples [121]. We setβ=0.2 vmax empirically in our simulations.

4Initially, SOLID randomly selectsNs sample pointsθ0={θ(i)0 }Ns

i=1 in the detection region to represent
candidate locations of the mobile PUs.
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Step 2: After generatingNs new samples using Eq. (5.3),SOLID updates the weights

associated with the samples as:

w
(i)
t = w

(i)
t−1L(Pt | θ(i)t

), (5.4)

where the likelihoodL(Pt | θ(i)t
) can be calculated based on multivariate Gaussian in

Eq. (5.2), i.e.,L(Pt | θ(i)t
) ∼ N(H(dt) + X̂t, σ

2
m IN×N), andIN×N is an identity matrix

whereN = |St| is the number of cooperating sensors in time slott. The weights are nor-

malized such that
∑Ns

i=1w
(i)
t =1.

Step 3: Based on Eqs. (5.3) and (5.4),SOLID approximates the posterior density

p(φt|P1:t) as:

p(φt|P1:t) ≈
Ns∑

i=1

w
(i)
t δ(φt − θ(i)t

), (5.5)

whereδ(·) is theDirac delta measure.

Step 4: Then,SOLID estimates the location of the primary transmitter by takingthe

weighted average of the samples:

φ̂t , (x̂t, ŷt) =
( Ns∑

i=1

w
(i)
t x

(i)
t ,

Ns∑

i=1

w
(i)
t y

(i)
t

)
. (5.6)

Step 5:SOLID then calculates the effective number of particles, i.e.,N̂eff =(
∑Ns

i=1(w
(i)
t )2)−1,

and compare it against the given thresholdNthr. If N̂eff < Nthr, SOLID re-samples the

particles using the posterior probability in Eq. (5.5) to replace the current particle set with

this new one, and sets the weightsw(i)
t =1/Ns for i∈St. Steps 1-4 repeat themselves until

the effective number of particles,̂Neff , is equal to, or greater than a given thresholdNthr.

Step 6: Given the estimated primary transmitter in Eq. (5.6),SOLID estimates the

shadow-fading gainŝXt between the primary transmitter and the sensors using the Kalman

filter. We will detail this in Section 5.4.

Algorithm 6 describes the primary tracking process ofSOLID.
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Algorithm 6 SMC WITH SHADOW-FADING ESTIMATION

At the end of each sensing roundt ∈ T, SOLID does

// 1. Localization
1: Initialization
2: θ(i)0 ∼ p(θ0), w

(i)
0 = 1/Ns for i = 1, . . . , Ns

3: N̂eff ← 0 // Effective number of particles
4: while (N̂eff < Nthr) do
5: for i = 1 toNs do
6: Drawθ(i)

t
∼ p(φt |θ(i)t−1) using Eq. (5.3)

7: Updatew(i)
t using Eq. (5.4)

8: end for
9: Calculate the total weightWt =

∑Ns

i=1w
(i)
t

10: for i = 1 toNs do
11: w

(i)
t ← w

(i)
t /Wt // Normalization

12: (x̂t, ŷt)←
(∑Ns

i=1w
(i)
t x

(i)
t ,
∑Ns

i=1 w
(i)
t y

(i)
t

)

13: N̂eff ← (
∑Ns

i=1(w
(i)
t )2)−1

14: end for
15: end while
16: return (x̂t, ŷt)

// 2. Shadowing Estimation
17: Estimate the shadowing gainsX̂t using Eq. (5.11)

5.4 Detection of Abnormal Sensor Reports via Monitor-

ing Shadowing Correlation

In this section, we describe the shadowing-estimation component inSOLID, and dis-

cuss the attack-detection algorithm.

5.4.1 Monitoring Shadow Fading for Attack Detection

For the analysis and simulation ofSOLID, we need a method to generate temporally-

correlated shadow fading that accurately represents real-world shadowing environments.

For this, we use the Gudmundson’s empirical shadow fading model [60] to generate temporally-

correlated shadowing gains between the primary transmitter and sensors.
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5.4.1.1 Construction of Shadowing Profile

SOLID constructs and maintains theprofileof normal shadow-fading behavior for each

cooperative sensorn, based on the history of reports from the sensors during the primary

transmitter tracking process. We define the basicprofile element(PE) of sensorn as the

shadowing component in the received primary signal strengths in Eq. (5.1), i.e.,

Xt,n = Pt,n − Po − α10 log(do) + α10 log(d̂t,n)− Yt,n, (5.7)

wherePt,n is the sensorn’s measurement report at sensing periodt, d̂t,n the estimated

distance between the primary transmitter and sensorn, which is obtained via SMC, and

Yt,n∼N(0, σ2
m) the noise power.

Suppose that, at timet, SOLID has processedk(≥1) PEs for sensorn. Note thatk may

vary with sensors based on the time they joined the cooperative sensor set. This sequence

of PEs exhibit a strong temporal correlation, becauseSOLID keeps track of each sensor’s

shadowing gain at each sensing period (e.g., once every 2 seconds). To exploit the temporal

correlation in PEs, we define a profile vector consisting of the entire history of PE records:

Xt,n(k; 1) = [Xn(t), . . . , Xn(t− k + 1)]T , 1 ≤ n ≤ N. (5.8)

Thus the estimates of the shadowing gainXt,n provide a compact description of the normal

shadowing profile. We henceforth omit the subscriptt for brevity.

5.4.1.2 Shadowing Estimation Using Kalman Filter

We now describe howSOLID accurately estimates the PE (i.e., shadowing gain) from

the observed primary signal strengths. Specifically, the attack-detector inSOLID wants to

find the shadow-fading estimator that minimizes the mean squared errors (MSE):

MSEn(k; 1) = E

{
t∑

τ=t−k+1

∣∣∣Xn(τ)− X̂n(τ)
∣∣∣
2
}
, (5.9)
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wherek is the index of the sensing stage since sensorn joined the set of cooperative sensors.

We thus need an efficient estimator that minimizes the MSE in Eq. (5.9).

To meet this requirement,SOLID employs the Kalman filter (KF) [66], a recursive

estimator that produces optimal estimates by minimizing the mean squared errors. In the

KF, the system can be modeled as:

Sn(k + 1) = Φn(k)Sn(k) +Wn(k), (5.10)

whereSn(k) represents the state (i.e., shadowing gain) of the system,Φn(k) is the state-

transition matrix that relates the stateSn(k) to the next stateSn(k+1),Wn(k)∼N(0,Q) is

the system noise vector where the covariance matrixQ represents the degree of variability

in the state variables.

The measurement of the system is defined as:

Xn(k) = Hn(k)Sn(k) +Vn(k), (5.11)

where the matrixHn(k) represents an observation model that relates the true statevariable

Sn(k) to the measurementsXn(k). In our model,Hn(k) is the channel gain between

the primary transmitter and sensorn in Eq. (5.2), and it is updated in each sensing time

slot based on the estimated location of the primary transmitter. The measurement noise

is denoted asVn ∼N(0,R), where the covariance matrixR represents the measurement

uncertainty. We consider the measurement noise in spectrumsensing due to noise power

(i.e.,Yt,n in Eq. (5.1)) by settingR=σ2
m, and settingQ=0.12 empirically.

5.4.2 Attack Detection and Filtering

A compromised or malfunctioning sensor node may report a falsified sensing value to

the BS. Such manipulated sensing reports may render the localization less reliable, ham-

pering an efficient reuse of spectrum opportunities in the spatial domain. To mitigate this

problem,SOLID verifies the trustworthiness of sensing reports and filters out or penalizes

the bad ones before performing the localization.

122



Algorithm 7 ATTACK-DETECTION ALGORITHM IN SOLID
For every newly joint cooperating sensorn, the BS performs

1: Initialization
2: k ← 0
3: blacklist count(n)← 0
4: while n ∈ St do
5: k ← k + 1 // Start thekth iteration
6: The BS estimatesXn(k) using Kalman filter
7: ComputePEDn(k) using Eq. (5.13)
8: if PEDn(k) > η then
9: if ++ blacklist count(n) ≥ NB then

10: blacklistn
11: end if
12: if Sensorn is blacklistedthen
13: Exclude sensorn from localization
14: end if
15: end if
16: end while

SOLID activates an instance of attack-detection scheme wheneverthe BS employs a

sensor for cooperative sensing. The attack detector inSOLID quantifies the deviation of

a sensor’s shadowing gain from the value predicted from its history by monitoring the

prediction error, which can be computed as:

en(k) = Xn(k)−Hn(k) Ŝn(k | k − 1), (5.12)

whereXn(k) is the observed shadow fading in Eq. (5.7).

We introduce a metric for attack detection inSOLID, calledprediction error distance

(PED) that indicates the Euclidean distance in two consecutive prediction errors, i.e.,

PEDn(k) =
∣∣ en(k)− en(k − 1)

∣∣. (5.13)

This is a very useful, yet simple, metric because the prediction error is correlated under

no attack, and consequently, the difference in two consecutive errors is kept small (see

Fig. 5.5(a)). We also observed from our simulation results thatPEDn(k) is smaller than

the prediction error itself.

The attack detector inSOLID raises a flag on sensorn’s report as compromised (or
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abnormal) if:

PEDn(k) ≥ η, (5.14)

whereη ∈ R is a pre-defined threshold for detecting anomalies.SOLID classifies a sensor

as malicious and excludes it from the localization process if the cumulative number of

flags raised is greater thanNB, which is a design parameter. Algorithm 7 describes the

pseudocode of the attack-detection algorithm inSOLID.

5.5 Performance Evaluation

SOLID is evaluated using MATLAB-based simulation. We first describe the simula-

tion setup and show the efficacy of shadow-fading estimationin SOLID in the absence

of attacks. We then demonstrateSOLID’s robustness against various attack scenarios in-

cludingslow-poisoningattacks, and show the tradeoff in determining the attack-detection

threshold. Finally, we showSOLID’s efficacy in spatial spectrum reuse.

5.5.1 Simulation Setup

We consider a CRN where sensors are randomly distributed according to a point Pois-

son process in a6 km× 6 km area with the average sensor density of3/km2, unless other-

wise specified. We assume a WM with a transmit-power of250mW, which is the maximum

transmit-power allowed by the FCC in the UHF band [36]. For WM’s mobility, we assume

a Random Waypoint model without pause time [158], which is frequently used in simula-

tions in wireless networks. We assume that the WM moves at a fixed speed of5m/s with a

destination randomly selected in the simulated network area. For each testing scenario, we

ran simulations over at least60 randomly-generated secondary network topologies to study

average behavior.

For WM sensing, we fix the sensing interval at2 seconds, and during each sensing

period, sensors measure the RSS using the energy detector for 1ms, as is typically assumed

in 802.22 WRANs [100]. The radius of the fusion range for cooperative sensing is fixed

at Rs = 1 km, which is shown to be near-optimal for WM sensing in an 802.22 WRAN
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Figure 5.3: Comparison of the tracking performance under no attack:SOLID outperforms
conventional SMC-based tracking thanks to its ability to accurately estimate
shadow-fading gains.

[105]. The shadow fading dB-spreadσdB is assumed to be 5 dB, as it is typically assumed

in IEEE 802.22 WRANs. The shadowing-decorrelation distance is set to 150 m,5 and the

path-loss exponentα is 4. We assume these parameters are estimated at the time of system

deployment, and thus knowna priori to the secondary system.

For WM tracking, we set the number of samples for SMC toNs = 40 and set the re-

sampling thresholdNthr empirically in the rangeNthr ∈ [3, 5], depending on the network

environment. In what follows, the figures of localization error plot the average as well as

± 0.25 σ interval.

5.5.2 Performance ofSOLID under No Attack

SOLID’s accurate localization of a primary transmitter will not only allow better spa-

tial spectrum reuse, but will also enable high robustness against malicious/malfunctioning

sensors. Here we demonstrate, in the absence of attacks, theefficacy of shadow-fading

estimation inSOLID. Fig. 5.3 plots examples of mobile primary transmitter tracking dur-

ing a period of100 s. The SMC-based tracking suffers from large tracking errordue to

the shadow-fading-induced unpredictability in RSSs (Fig.5.3(a)), whereasSOLID closely

tracks the primary transmitter’s location for the entire tracking process (Fig. 5.3(b)). In

5A measurement study [10] indicates that a typical decorrelation distance is in the range of120-150m in
suburban areas.
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Figure 5.4: Tracking performance under no attack:SOLID (a) successfully withstands
shadow fading-induced unpredictability, (b) achieves high performance gain
when the measurement noise (σm) is small, and (c) outperforms SMC-based
tracking for various sensor densities.

what follows, we demonstrate the efficacy of shadow-fading estimation under various net-

work parameters.

5.5.2.1 Effects of Shadow Fading

Fig. 5.4(a) shows that SMC-based tracking suffers from the unpredictability in RSSs

due to shadow fading, resulting in a fast increase of error asσdB increases. By contrast,

SOLID maintains a small average localization error (< 35m) for all simulated scenarios

thanks to its estimation of the primary location and shadow-fading gains, which refine each

other throughout the tracking process.

5.5.2.2 Effects of Noise Power

The measurement noise (including the effects of multi-pathfading) in RSSs can ad-

versely affect the accuracy of shadow-fading estimation. Fig. 5.4(b) shows that the average

localization error increases with noise power (σm) since a largeσm makes the shadow-

fading estimation becomes less accurate. Therefore, it is crucial to combat or reduce the

effect of noise powerσm at each cooperative sensor in order to fully benefit from shadow-

fading estimation inSOLID.

Although the standard deviation of Rayleigh fading,σm, can be as large as5.5dB in

practice, one can use many existing techniques to significantly reduce the effect of multi-
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path fading, e.g., exploiting antenna diversity [9]. For sensors with a single transceiver,

this can be accomplished by extending the sensing time (longer than the channel coherence

time) [135] at the expense of increased sensing overhead (e.g., time and energy). In what

follows, we assume the standard deviation of the noise poweris fixed atσm=0.3dB.

5.5.2.3 Effects of Sensor Density

Fig. 5.4(c) plots the localization error for various average sensor densities. The figure

shows that the average localization error decreases as the sensor density increases for both

schemes. However, the error drops faster withSOLID, significantly outperforming the

SMC-based tracking scheme thanks to its ability to accurately track the shadow fading

gains. When the average sensor density isρ=3.5/km2, SOLID reduces the error by up to

88% compared to the SMC-based tracking.

5.5.3 Performance of Attack Detector

To illustrate the performance of theSOLID’s attack detector, we consider a simple

exemplary scenario where a malicious sensor injects manipulated sensing reports at time

slot 50. The malicious sensor introduces a deviation (orattack strength) from its actual

measured RSSs by0 (no attack),1, 3, and5 dB, where the deviation direction (i.e.,±)

is randomly chosen. Fig. 5.5 shows that the deviation injected by an attacker at the50-th

iteration increases theprediction error distance(PED) proportionally to the attack strength,

yielding high detection accuracy. The figures show that evena small deviation (e.g., 1 dB)

causes an abrupt increase in PED, and can thus be easily detected bySOLID, thanks to

its ability to closely estimate/track temporally-correlated shadow fading in the measured

RSSs.

5.5.4 Attack-Tolerance ofSOLID

We now demonstrateSOLID’s attack-tolerance while varying two key attack parame-

ters;attack strengthandattack population. We fix the attack frequency at0.3, i.e., compro-

mised sensors launch attacks independently with probability 0.3 in each sensing stage. We
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Figure 5.5: The attack-detection capability ofSOLID: SOLID can accurately detect even a
small deviation in sensor reports (i.e., RSSs) since such a deviation boosts the
prediction error distance (PED), which makes it easy forSOLID to detect any
abnormal sensing reports.

set the detection and blocking thresholds toη=5dB andNB=2, respectively.

To demonstrate the efficacy ofSOLID, we compare the following three testing schemes:

(i) SMC-based tracking, (ii) SOLID without attack detector, and (iii) SOLID with attack

detector.

5.5.4.1 Impact of Attack Strength

Here we show the impact of attack strength on the localization accuracy, while varying

the attack strengths in the range between0 and10dB. We assume that the attack population

is 30%, i.e., each sensor is compromised with probability0.3.

Fig. 5.6 shows that the localization performance of SMC-based tracking suffers from

large attack strengths due to the lack of ability to detect and filter out manipulated sensing

reports. For a similar reason, the localization error ofSOLID without attack detectoralso

increases with increasing attack strengths. However, thisscheme significantly lowers the

average error compared to the SMC-based tracking, thanks toits ability to accurately track

the shadowing gains.
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Figure 5.6: Attack-tolerance ofSOLID: SOLID successfully tolerates attacks thanks to its
ability to exploit temporal shadowing correlation to accurately detect abnormal
sensing reports.

In contrast,SOLID with attack detectormaintains a low localization error even in the

case of large attack strengths. This performance superiority can be explained as follows.

On one hand, the attack detector inSOLID successfully withstands weak attacks, i.e.,<

η=5dB, because such attacks do not influence the localization outcome much even though

they can evade the attack detector. On the other hand, the attack detector can easily detect

strong attacks, i.e.,> η=5 dB, thanks to its ability to detect large deviations in shadowing

estimation caused by manipulated sensing reports.

However, Fig. 5.6 shows that the localization error ofSOLID with attack detectorstill

increases slowly with increasing attack strength for the following two reasons. First, the

detection delay (i.e.,NB) allows an attacker to influence the localization outcome. Second,

the localization error induced by the attackers increases the attack false-alarm rate, i.e., mis-

classifying legitimate sensors as malicious/faulty, thusincreasing the fraction of attackers

in the set of cooperative sensors.
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Figure 5.7: Impact of attacker population: The localization accuracy of SOLID depends on
the design of attack detection thresholdη, making tradeoff between under- and
over-filtering.

5.5.4.2 Impact of Attacker Population

Next, we examine the impact of the attacker population by varying the fraction of com-

promised sensors from0% to50%. We fix the attack strength at5 dB. As expected, Fig. 5.7

shows that a larger attacker population degrades localization performance because it is

harder to identify compromised sensors. Moreover, a large fraction of compromised sen-

sors will remove a large number of sensors from the cooperating group, which, in turn,

negatively affects the localization performance. Nevertheless, the localization error is sig-

nificantly lowered bySOLID with attack detectorcompared to the conventional SMC-

based tracking scheme even with a large fraction of compromised sensors, demonstrating

its robustness against attacks.

5.5.5 Tolerance against “Slow-Poisoning” Attack

To further demonstrateSOLID’s high attack-tolerance, we evaluateSOLID’s tracking

performance under a challenging,slow-poisoningattack, such that malicious sensors incre-
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Figure 5.8: Attack-tolerance ofSOLID against slow-poisoning attack:SOLID successfully
tolerates slow-poisoning attacks, successfully safeguarding the tracking process.

mentally raise the attack strength by∆att (dB) in order to evade detection, while disrupting

the localization process. Specifically, we assume that a malicious sensor reports the falsi-

fied valueP a
t,n(k) in thekth sensing stage after joining the set of cooperative sensors,i.e.,

P a
t,n(k) = Pt,n + k ·∆att.

Fig. 5.8 shows thatSOLID performs well under a slow-poisoning attack, even without

the attack detector, while the performance of the SMC-basedtracking suffers greatly from

the attack. Thus, the figure demonstrates thatSOLID efficiently mitigates the effects of a

slow-poisoning attack.

5.5.6 Tradeoff in Determining the Attack Detection Threshold

We now study the impact of detection thresholdη. In our simulation, we fixed the

attack strength at5 dB, and measure the localization accuracy and attack detection perfor-

mance (in terms of false-alarm and mis-detection probabilities), while varying the detection

threshold in the rangeη∈ [2, 14]dB.

Fig. 5.9(a) indicates that the localization performance ofSOLID suffers in the case
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Figure 5.9: Impact of attack detection threshold: The attack detectionthresholdη affects (a) the
localization accuracy, as well as (b) false-alarm and mis-detection probabilities. In sim-
ulations, the attack strength is fixed at5 dB.

of low detection thresholds, i.e.,η < 6 dB, due mainly toover-filtering, i.e., some of the

well-behaving sensors are flagged as malicious and then their reports are discarded. On

the other hand, too high a detection threshold, i.e.,η > 6dB, also degrades localization

performance because ofunder-filtering, where some of the attackers evade detection, thus

adversely influencing the localization process.

Fig. 5.9(b) clearly shows the tradeoff in determining the attack-detection thresholdη in

terms of false-alarm (denoted byPFA) and mis-detection (denoted byPMD) probabilities.

SOLID is shown to achieve near-zeroPMD and to maintain a low false-alarm rate, i.e.,

PFA < 6%, unless the detection threshold is significantly larger than the attack strength,

i.e.,η>10dB.

Therefore, the attack detection threshold must be carefully chosen to make the tradeoff

between false-alarm and mis-detection probabilities, while considering their dependency

on attack strengths andSOLID’s tolerance to weak attacks, as observed in Fig. 5.6.

5.5.7 Improvement in Spatial Spectrum Reuse

The SUs located within a keep-out-radius ofRe from a small-scale PU (e.g., a WM)

must vacate the channel to avoid excessive interference to primary communications [34].

The keep-out-radius needs to be enlarged when the localization is inaccurate, thus reducing
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Figure 5.10: Spatial spectrum opportunity loss (SSOL) due to localization error: SOLID
significantly reduces the spatial spectrum loss thanks to its ability to accurately
track the location of the mobile primary transmitter.

spatial spectrum utilization.SOLID achieves high spatial spectrum efficiency by providing

accurate location of mobile primary transmitters. We quantify the improvement in spectrum

efficiency made bySOLID by introducing the metric ofspatial spectrum opportunity loss

(SSOL), which is defined as the extended area for PU protection due to the inaccuracy of

PUs’ localization. Assuming a localization error ofε, the spatial spectrum opportunity loss

due to the inaccuracy of the tracking process can be roughly approximated asSSOL ≈
π(Re + ε)2 − πR2

e=πε
2 + 2πReε.

Fig. 5.10 compares the spatial spectrum opportunity loss ofthe SMC-based tracking

andSOLID, assuming the keep-out-radius ofRe = 2 km, which is reasonably sufficient

to give a typical WM transmission range of100-150m. The figure clearly indicates that

SOLID maintains smallSSOL, improving spatial spectrum efficiency substantially. Note

that the improved spectrum efficiency can be translated to other performance metrics, such

as bandwidth of SUs.
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5.6 Related Work

Spatial Spectrum Reuse in CRNs:Reusingspatial spectrum opportunities is impor-

tant for efficient utilization of spectrum resources, but has received little attention. The

IEEE 802.22 Working Group (WG) proposed a coexistence modelwith a wireless mi-

crophone (WM) to maximize spatial spectrum reuse [34], assuming that the location of

WMs is available to secondary systems. This, however, may not be valid for mobile WMs

where the geo-location database is not available. Recently, we proposed a small-scale PU

detection/localization scheme, calledDeLOC [104]. While DeLOC provides an efficient

mechanism for initial detection of PUs, this chapter focuses on attack-tolerant tracking of

mobile PUs.

Secure Spectrum Sensing in CRNs:Chenet al. [29] proposed an RSS-based location

verification scheme, calledLocDef, to detect a fake primary signal. Liuet al. [93] de-

veloped a primary signal verification scheme by jointly exploiting the location-dependent

link signature, i.e., multi-path fading profile, and conventional cryptographic authentica-

tion methods. The problem of ensuring the robustness in distributed sensing has also been

studied [28, 79, 103]. Min and Shin [103] proposed an attack-tolerant secure cooperative

sensing scheme that exploits shadow-fading correlation inRSS among close-by sensors.

Unlike these, we focus on a new type of attack, i.e., disruption of location tracking of a

mobile primary transmitter by falsifying sensor reports.

Secure Mobile Target Tracking:The problem of node localization and target tracking

has been studied extensively in the area of wireless sensor networks [15, 42, 61, 136, 162].

The primary tracking in CRNs, however, faces unique challenges. In CRNs, it is not de-

sirable to modify the primary system, and thus, the receivedprimary signal strengths in-

formation obtained via spectrum sensing is only available to the secondary system. The

solution approach taken bySOLID to overcome this challenge differs from others in that it

only relies on the PHY-layer signal-propagation characteristics (i.e., temporally-correlated

shadow fading) to accurately detect malicious sensors, which has not been considered be-

fore.
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5.7 Conclusion

In this chapter, we have introducedSOLID, which enables accurate and robust loca-

tion tracking of small-scale mobile PUs in CRNs. By jointly performing localization and

shadow-fading estimation,SOLID significantly improves the accuracy of mobile PU track-

ing and masks the effect of manipulated sensing reports by accurately detecting and filter-

ing out manipulated sensing reports. Our in-depth evaluation results, in realistic wireless

environments, show thatSOLID reduces localization error significantly both in the ab-

sence/presence of attacks, including the “slow-poisoning” attack. The enhanced primary

tracking capability offered bySOLID enables the secondary system to make a great im-

provement in overall spectrum efficiency.

In the future, we would like to study scenarios in which multiple attackers collude

to disrupt the tracking process. It would also be interesting to devise an optimal attack

strategy that can maximally influence the primary tracking performance. We also plan to

design secure primary tracking in ad-hoc CRNs.
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CHAPTER 6

Opportunistic Spectrum Access for Mobile Cognitive

Radios

6.1 Introduction

In this chapter, we study the problem of enabling DSA formobileCR devices by iden-

tifying and addressing three fundamental challenges. First, existing spectrum-availability

models are derived based solely on PUs’ temporal traffic statistics and might thus be

unsuitable for CRNs with mobile CRs/SUs. Unlike in stationary CRNs (e.g., [1]), in

which spectrum opportunity (or availability) is mostly affected by PUs’ temporal chan-

nel usage patterns, in mobile CRNs, availability can also change as SUs move towards or

away from PUs that are actively transmitting data. To overcome this limitation, we model

channel availability—that reflects the fluctuation of spectrum opportunities induced by SU

mobility—as a two-state continuous-time Markov chain (CTMC) and verify its accuracy

via in-depth simulation.

Second, protecting PUs from SU mobility-induced interference is a challenging prob-

lem that calls for an efficient spectrum-sensing strategy tailored to mobile CRNs. Mobile

SUs may need to sense spectrum more frequently to avoid interfering with PU communi-

cations. However, frequent spectrum sensing may not only incur significant time overhead

[88], but also quickly drain the battery of mobile CR devicesdue to the power-intensive

nature of spectrum sensing [7, 68]. To address this challenge, we propose the use ofguard
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distanceto minimize the required spectrum sensing for mobile SUs, while providing suf-

ficient protection to primary communications. Guard distance is an additional separation

between PUs and SUs to prevent mobile SUs from causing excessive interference. Further,

based on our proposed channel-availability model, we jointly optimize the guard distance

and spectrum-sensing interval to maximize the reuse of spectrum opportunities in the space

and time domains.

Third, mobile SUs experience heterogeneous spectrum opportunities across the space

and time domains based on the geographical distribution of PUs and SUs’ mobility pat-

terns. To better utilize such heterogeneous spectrum opportunities, we derive an optimal,

distributed channel-access strategy in a closed form within the convex optimization frame-

work. Our channel-access strategy incorporates three key factors that diversify spectrum

access opportunities across different channels: (i) SU-mobility-aware spectrum sensing

adaptation, (ii) heterogeneity in PUs’ spatial distributions and channel-usage patterns, and

(iii) spectrum sharing among SUs. Our proposed channel-access strategy is shown to sig-

nificantly improve secondary network throughput, fairnessand energy-efficiency in spec-

trum sensing.

The three challenges mentioned above are interrelated. Hence, to fully realize the ben-

efits of DSA for mobile SUs, they must be considered jointly. To the best of our knowl-

edge, our work is the first to extensively investigate SU mobility in regard to the channel-

availability model, spectrum sensing and access strategies.

6.1.1 Contributions

In summary, this chapter makes the following main contributions.

• Introduction of a novel spectrum-availability model: We show via analysis that the

channel availability experienced by a mobile SU can be accurately modeled as a two-

state Markov model under reasonable assumptions. We further verify the accuracy

of this model via in-depth simulations.

• Design of mechanisms for protection of primary communications: We identifyguard

distanceas a key enabler of efficient spectrum reuse while protectingPU communica-

137



tions. We jointly consider guard distance and spectrum sensing interval to maximize

reusable spatio-temporal spectrum opportunities.

• Optimal distributed channel-selection strategy: Based on our channel availability

model, we derive an optimal, distributed channel-selection strategy that maximizes

secondary network throughput. We also show how the optimal strategy is influenced

by parameters, such as SU density and speed.

6.1.2 Organization

The remainder of this chapter is organized as follows. Section 6.2 introduces the system

models that will be used throughout this chapter. Section 6.3 presents our new channel-

availability model for mobile SUs. Sections 6.4 and 6.5 detail the design of spectrum

sensing and access schemes that maximize secondary networkthroughput. Section 6.6

evaluates the performance of the proposed schemes, and Section 6.8 concludes the chapter.

6.2 System Model

In this section, we present a mobile CRN model, along with distributed spectrum sens-

ing and channel-access models.

6.2.1 Mobile CRN Model

We consider a CRN with infrastructure-basedfixedprimary networks andmobilead-

hoc secondary networks in the same geographical area, as shown in Fig. 6.1. We assume

that each cell of the primary system consists of a single central node (e.g., access point)

and receivers. From now on, we refer to each primary cell as a PU. We assume that there

is a non-empty setK of licensed channels, and that PUs operating on the same channel

belong to the same type of system and have the sametemporalchannel-usage statistics,

e.g., channelbusy/idle durations.1 Primary transmitters are assumed to be distributed,

1We use the termsbusy/idle to indicate PUs’ temporal traffic patterns, and use ON/OFF toindicate the
availability of a channel seen from a mobile SU’s perspective.
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Figure 6.1: Illustration of a mobile CRN: Mobile CR devices (solid dots with arrow) can
opportunistically use the licensed channels only when the distance from any
active PUs (triangles and rectangles) is greater than a certain threshold (i.e.,
protection region) so as to avoid excessive interference toPUs. The circles with
solid (dotted) lines indicate the protection region of active (inactive) PUs with
(without) data transmission.

following a point Poisson process, with a different averagedensity for each channel, i.e.,

np,i ∼ Poisson(k; ρp,i), wherenp,i is the number of primary transmitters andρp,i is the

average PU density on channeli∈K. We assume that primary transmitters on the licensed

channeli ∈ K are separated by at least twice their transmission range in order to avoid

interference [156]. Such a PU distribution can be obtained by eliminating overlapping PUs

in the original Poisson process, resulting in aMarten Hardcore Process[140]. We assume

that SUs know the average density of PUs on each channel, and PUs’ temporal channel-

usage characteristics. We further assume that SUs do not know the availability of a channel

at a specific time and location unless they perform spectrum sensing.

6.2.2 Distributed Spectrum Sensing & Access Models

We assume that SUs aremobiledevices with CR-functionality that allows them to ac-

cess any licensed channels in the setK. However, they do not have the capability of access-

ing a geo-location spectrum database to obtain local spectrum-availability information.2

2The FCC specifies two types (Mode I and II) of portable devicesthat can access TV white space [49].
Mode I devices are required to access the geo-location database, whereas Mode II devices are not required to
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Figure 6.2: Opportunistic channel access model: An SU periodically senses its current op-
erating (in-band) channel (the gray block) until it detectsa primary signal, fol-
lowed by channel switching (the black block). The sensing interval is dynami-
cally adapted based on the SU’s speed and PUs’ spatio-temporal channel usage
statistics.

Therefore, we assume that SUs rely on local spectrum sensing(e.g., feature detection) to

detect channel availability—i.e., the presence/absence of primary signals—at a given time

and location. SUs are assumed to use feature detection (e.g., [51]) for PHY-layer sensing.

Feature detection is known to provide high accuracy withoutcollaboration amongst SUs

even at a low SNR [142]. Thus, it is better suited for ad-hoc secondary networks, in which

SU collaboration may not be feasible due to the needs for information exchange and global

time synchronization [112].

Once an SU identifies available channels via spectrum sensing, it contends with neigh-

boring SUs to access the channel via a random access scheme such as CSMA. SU channel

access behavior is depicted in Fig. 6.2. We assume that SUs always have packets to transmit

and always use the maximum transmission power allowed by a regulatory body.

6.3 Modeling Channel Availability for Mobile Secondary

Users

In this section, we characterize the spectrum opportunity that corresponds to PUs’

spatio-temporal channel usage patterns, propose a new SU mobility-aware channel avail-

ability model, and demonstrate its accuracy via simulation.

have such access capability.
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6.3.1 Characterizing Spatio-Temporal Spectrum Opportunity

We first introduce the keep-out-radius and guard distance for protecting PUs from in-

creased interference caused by SU mobility. We then quantify the spatio-temporal spectrum

opportunities available to mobile SUs.

Definition 6.1 (Keep-out radius) The keep-out radius is defined as the minimum distance

between a primary transmitter and SUs under theinterference temperature limit(ITL) set

by the regulatory body (e.g., the FCC), i.e.,

Re,i = inf
{
d ∈ R

∣∣∣ Itot(ρs,i, d) ≤ ITL

}
, (6.1)

whereItot(ρs,i, d) is the average interference generated by SUs (separated by least distance

d from the primary transmitter) at a primary receiver locatedat the edge of the primary

coverage area andρs,i is the density of SUs on channeli.

The aggregate SU interference at a primary receiver locatedat the edge of the primary

transmission range (i.e., at distanceRo from the primary transmitter) can be bounded as

[145]:

IUi (ρs,i, Re,i) =
2πPod

α
o ρs,i

α− 2

(
Re,i − Ro

)2−α
, (6.2)

wherePo is the transmission power of SUs,do the short reference distance (e.g.,5m), α

the path-loss exponent,ρs,i the average SU density on channeli, Ro the PUs’ transmission

range, andRe,i the primary keep-out radius.

From Eq. (6.2), the keep-out radius necessary for channeli to meet the interference

constraint,IUi ≤ITL, is given as:

R∗
e,i(ρs,i) =

[( (α− 2)

2πPodαoρs,i
· ITL

) 1
2−α

]+
+Ro, (6.3)

where[•]+,max{•, 0}.
One important observation from Eq. (6.3) is that the keep-out radius of channeli in-

creases with the density of channel-i SUs,ρs,i, as shown in Fig. 6.3(a). This is because
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as SU density increases (i.e., more SUs access channeli), the keep-out radius must be

expanded to meet the interference constraint.

The keep-out radius in Eq. (6.3), however, assumesstationarySUs, and thus, it may

not be sufficient to protect PUs from interference caused by mobile SUs. To protect PUs

further from such SU mobility-induced interference, we introduce an additional protection

layer (guard distance), denoted byεi.

Definition 6.2 (Primary protection region) LetPi denote a set of primary transmitters on

channeli. A primary protection region(PPR) of primary transmitterj ∈ Pi, denoted as

Ωi,j , is defined as a unit disk centered at the primary transmitterj located at(xi,j , yi,j),

i.e.,

Ωi,j =
{
(x, y)∈R2

∣∣∣ ‖(xi,j, yi,j)− (x, y)‖ ≤ Re,i + εi

}
, (6.4)

whereRe,i is thekeep-out radius, andεi is the guard distance.

Thus, if an SU is located within a PPR of active PUs on channeli, it refrains from using

the same channel to avoid causing interference.

Then, the average fraction of the union of PPRs on channeli in the entire network is

[89]:

χi(ρs,i) = 1− e−ρp,iπ(Re,i(ρs,i)+εi)
2

, (6.5)

whereρs,i is the average SU density on channeli.

The average fraction of areas where the channel is availableat any given time can be

approximated as:

γi ≈ (1− χi) + χi$idle,i = 1− χi$busy,i, (6.6)

where$idle,i=1−$busy,i is the steady-state probability that a PU on channeli is in idle

state, i.e., not transmitting data.

6.3.2 Assumptions for Modeling Channel Availability

To model channel availability from a mobile SU perspective,we make the following

three main assumptions:
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Figure 6.3: Impact of SU density on spatial spectrum opportunity: The keep-out radius for
primary protection (a) increases with increasing SU density, and thus (b) spatial
spectrum opportunity decreases. The simulation parameters are set toRo =
250m, ITL=0.1mW,ρp=1/km2, andα=4.

A1.) PUs’ traffic statistics, i.e.,busy/idle periods follow exponential distributions.

A2. The time interval that an SU moves inside a PPR follows exponential distributions.

A3.) The time during which an SU is located within a PPR follows exponential distribu-

tions.

RegardingA1, the exponential distribution is the most widely used for modeling PU

traffic patterns in CRNs. A recent measurement study [149] indicates that the PU channel-

usage pattern can indeed be accurately approximated as an exponential distribution unless

the averagebusy/idle periods are very long.3

RegardingA2, let Thit denote the first (hitting) time that a mobile SUn moves into an

active PU’s PPR (i.e., inbusy state). Then, the analysis ofThit is analogous to the hitting

time of a stationary object in wireless sensor networks, which can be considered as a PU in

a mobile CRN. By borrowing the analysis in [89],Thit can be approximated as [89]:

Thit,n ∼ Exp(2(Re,i + εi)v̄nρp,i$busy,i), (6.7)

wherev̄n is the average speed of SUn.

3For such channels with longbusy/idle periods, a long-tail distribution, such as log-normal distribu-
tion, is more suitable.
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Figure 6.4: Mobility-aware channel availability model as a continuous-time Markov chain
(CTMC): A channel is available for a (mobile) SU either when (i) the SU located
outside the PPRs (denoted asPPR) or (ii) the primary transmitter of the PPR that
the SU belongs to is inidle state.

RegardingA3, the time duration in which an SU stays within a PPR can be derived

from the link-lifetime distribution analysis in mobile ad-hoc networks [148]. According to

[148], the link lifetime, i.e., the time duration during which the transmitter-receiver pair are

located closer than a transmission range, can be accuratelyapproximated as an exponential

distribution with intensity,v̄
R

, wherev̄ is the average relative speed of the transceiver and

R is the transmission range.

6.3.3 Mobility-Aware Channel Availability Model

We now opt to design a mobility-aware channel availability model for mobile CRNs.

For this, we first define three states–i.e.,busy, idle, andPPR–based on the SU’s loca-

tion relative to the PPRs and PUs’ traffic patterns, as shown in Fig. 6.4. We assume that

channeli is available (i.e., OFF state) when a mobile SU is located outside the PPR of any

activeprimary transmitters on channeli (i.e.,idle or PPR); otherwise, the channel is not

available (i.e., ON state). We can thus reduce the Markov chain into a two-state model by

merging the statesidle andPPR into an OFF state, as shown in Fig. 6.4.

The ON/OFF state transitions occur in the following cases.
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• ON→OFF: An SU moves out of the protection region of an active PU or a PUstops

transmitting data.

• OFF→ON: An SU moves into the protection region of an active PU or a PU starts

transmitting data.

We now derive the distributions of ON and OFF durations basedon the Markov model

in Fig. 6.4.

6.3.3.1 Distribution of “ON” Period

The sojourn time of the ON state of channeli follows an exponential distribution [148]:

Ton,i ∼ Exp
(
λbusy,i +

v̄n
Re,i + εi

)
, (6.8)

whereλbusy,i is the rate at which a PU resumes data transmission,v̄n the average speed

of an SU,4 andRe,i and εi are the keep-out radius and the guard distance on channeli,

respectively.

6.3.3.2 Distribution of “OFF” Period

The OFF period duration can be thought of as the hitting time of thebusy state, having

eitheridle or PPR as an initial state. The OFF→ON state transition rate,λoff , can be

derived using the detailed balance equation, i.e.,$on,iλon,i = $off,iλoff,i, based on the

stationary distributions of ON/OFF states, which can be approximated from Eq. (6.6), i.e.,

$on,i=1− γi and$off,i=γi, and the ON→OFF transition rateλon,i in Eq. (6.8), i.e.,

λoff,i =
χi$busy,i

1− χi$busy,i

(
λbusy,i +

v̄n
Re,i + εi

)
, (6.9)

and thus, the sojourn time of the OFF state is given as:

Toff,i ∼ Exp(λoff,i). (6.10)

4Although the speed of an SU can vary depending on its movementpattern, we consider average speed in
the analysis for mathematical tractability.
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Figure 6.5: Comparison of channel ON/OFF duration distributions: Our analyses on channel
ON/OFF durations closely match the simulation results, thus corroborating the
validity of the proposed model. In the simulation, we use theRandom Waypoint
model with no pause time where an SU uniformly chooses its speed in[1, 10] m/s
and destination with a fixed interval of60 seconds. The average PU and SU
densities are set to2 and10 (per km2), respectively. We set$idle,i = 0.4 and
λidle,i=0.01∀i ∈ K.

The above analysis for channel modeling will be used for designing efficient spectrum

sensing scheduling and distributed access strategy in Sections 6.4 and 6.5.

6.3.3.3 Model Verification

To show the accuracy of the proposed channel-availability model, we measure the chan-

nel ON/OFF periods observed from a mobile SU via simulation for2×104 seconds. Fig. 6.5

shows that the empirical results closely match the analytical results, indicating the accuracy

of the proposed model. To further quantify the accuracy, we measure the similarity between

the empirical c.d.f. and the analytical c.d.f. usingKullback-Leibler Divergence(KLD) [83].

The KLD for two exponential distributions with intensitiesµo andµ1 can be calculated as:

DKL(µo‖µ1) = log(µo)− log(µ1) +
µ1

µo

− 1. (6.11)

Table 6.1 summarizes the average and standard deviation of KLD for the ON/OFF

durations while varying the maximum speed of SUs in the rangeof [2, 10]m/s. It shows

that the KLD remains low for all simulated scenarios. In fact, the case wherevmax=10m/s
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Table 6.1: Kullback-Leibler divergence for channel model

DKL,OFF DKL,ON

vmax (m/s) mean std mean std

2 0.0441 0.0513 0.0069 0.0028

4 0.0413 0.0456 0.0202 0.0269

6 0.0301 0.0410 0.0848 0.0511

8 0.0875 0.0485 0.0982 0.0415

10 0.2335 0.0942 0.3134 0.1605

corresponds to the case in Fig. 6.5.

6.4 Primary Protection via Joint Optimization of Spec-

trum Sensing Interval and Guard Distance

In this section, we jointly design the sensing interval and guard distance to protect PU

communications from mobile SUs. We first derive the minimum spectrum sensing inter-

val for mobile SUs, and then the optimal guard distance that maximizes spatio-temporal

spectrum opportunities.

6.4.1 Mobility-Aware Spectrum Sensing

In order to avoid causing excessive interference to primarycommunications, SUs must

perform spectrum sensing frequently enough to detect a primary signal before they move

into the PPR of active PUs. We assume that SUs can perfectly detect the presence of a

primary signal via spectrum sensing when they are located within the PPR of any active

PU. In practice, SUs may need to adjust sensing parameters toidentify their locations

relative to the PPRs, but this is not within the scope of this chapter.

There are two conditions under which an SU performs spectrumsensing: (i) when the

c.d.f. of the channel OFF state at a given time exceeds a predefined threshold,ξ (0<ξ<1),

to detect the returning PUs, or (ii) when an SU travels a certain distance since the previous

sensing time, to prevent an SU from moving into the keep-out radius, whichever comes
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Figure 6.6: Minimum sensing interval: Sensing interval depends on (a) the SUs’ average
speed,v̄, and (b) the average PU density,ρp. In our simulation, we set the
parametersξ=0.3, ε=40m, ρs=10/km2, ρp=1/km2, Ro=250m, v̄=5m/s,
λidle,i=0.1, and$idle,i=0.4∀i ∈ K.

first.

Then, the minimum sensing interval required on channeli is given as:

t∗i = max

{
Ts,i,min

{
− ln(1− ξ)

λoff
,
εi
v̄

}}
, (6.12)

whereλoff is the intensity of the channel OFF period distribution in Eq. (6.9),εi the guard

distance, and̄v the average speed of an SU. Note that a lower probabilityξ will lead SUs

to sense the channel more frequently.

Eq. (6.12) indicates that the minimum sensing interval depends not only ontemporal

features such as primary traffic statistics, but also onspatial features such as the SUs’

average speed̄vn and the PU densityρp,i.

Fig. 6.6(a) shows that when an SU moves slowly (RegionI for the caseε=40m), the

sensing interval will be determined by PU traffic patterns, i.e.,λbusy andλidle, whereas,

when it moves quickly (RegionII ), the interval will be determined by the speed of SUs.

We have made a similar observation regarding PU density in Fig. 6.6(b).
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6.4.2 Design of Optimal Guard Distance

The selection of guard distance,ε, entails an interesting tradeoff in exploring spectrum

opportunities in the time and space domains. That is, a larger guard distance (thus enlarging

the areas of PPRs) will reduce spatial spectrum opportunities. However, this allows SUs to

perform sensing less frequently and spend more time on data transmission, thus increasing

the spectrum opportunities in the temporal domain.

Definition 6.3 (Average channel utilization)Average channel utilizationis defined as the

average fraction of time a mobile SU can access the channeli∈K, i.e.,

ui,n = E

{
1−

∑Ns,i,n

j=1 Ts,i − Tsw,i

Ti

}
, (6.13)

whereNs,i,n is the number of times SUn performs spectrum sensing within the channel

access epochTi. Ts,i andTsw,i are the times spent for a one-time sensing and switching

for channeli, respectively. Without loss of generality, we assumeTs = Ts,i ∀i andTsw =

Tsw,i ∀i.

Definition 6.4 (Spatio-temporal spectrum opportunity) The availabilityof channeli ∈K

in the spatio-temporal domain, denoted asΛi, is defined as the long-term average fraction

of the time a mobile SU can access the channel, i.e.,Λi=γiui whereγi andui are defined

in Eqs.(6.6)and (6.13), respectively.

Fig. 6.7(a) plots the spatio-temporal channel availability Λi for various guard distances

εi. As shown in the figure, whenεi is too small (i.e.,εi<3m),Λi is 0 because of the need to

sense the channel continuously, i.e.,t∗i =Ts,i. Whenεi is relatively small,Λi suffers from a

large (temporal) sensing overhead, whereas whenεi is too large,Λi suffers from decreased

spatial spectrum opportunities.

Proposition 6.1 (Optimal guard distance) The optimal guard distanceε∗ that maximizes

spatio-temporal spectrum opportunity,Λi, is given as:

ε∗i =
Re,iv̄ Ts,i +

√
(Re,iv̄Ts,i)2 +

2v̄Ts,i(Re,i−v̄ Ts,i)

πρp,i$busy,i

2(Re,i − v̄Ts,i)
, (6.14)
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whereRe,i is the keep-out radius,̄v the average speed of SUs,Ts,i the sensing time,ρp,i the

primary density, and$busy,i the steady-state probability of abusy state for channeli.

Proof The average fraction of area which is not covered by the PPRs can be approximated

asγi(εi) ≈ e−f(εi) from Eq. (6.6) wheref(εi)=ρp,i$busy,iπ(Re,i + εi)
2. Assuming switch-

ing overhead is negligible compared to the average OFF period, i.e.,Tsw � λ−1
off , ui can

be approximated asui ≈ 1 − v̄ Ts,i

εi
. Then, the channel availability in the spatio-temporal

domain can be expressed as:

Λi(εi) ≈ γi(εi)ui(εi) ≈ e−f(εi)
(
1− v̄ Ts,i

εi

)
. (6.15)

It can be easily shown that∂
2 Λi(εi)
∂ ε2i

<0. By taking the first-order derivative ofΛ(εi) and

setting it to zero, we have:

∂Λi(εi)

∂ εi
= e−f(εi)

(
− 2ρp,i$busy,iπ(Re,i + εi)

(
1− v̄ Ts,i

εi

)
+
v̄ Ts,i
ε2i

)
= 0. (6.16)

For mathematical simplicity, we assume that the term2ρp,i$busy,iπεi can be approxi-

mated as0 in Eq. (6.16), which provides the following quadratic equation:

(Re,i − v̄ Ts,i)ε2i −Re,iTs,iεi −
v̄ Ts,i

2πρp,i$busy,i

= 0. (6.17)

Then, by solving Eq. (6.17), the proposition follows.

Interestingly, Fig. 6.7(b) shows that the optimal guard distance increases as SUs’ aver-

age speed increases. This results from balancing the tradeoff between temporal and spatial

spectrum opportunities—i.e., it is better to increase the guard distance at the cost of reduced

spatial spectrum opportunity, than to reduce the sensing interval. The figure shows that our

analytical results closely match the exhaustive-search-based simulation results.
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Figure 6.7: Optimal guard distance (ε∗): (a) Channel availabilityΛi depends significantly on
the design of guard distance, and (b) optimal guard distancediffers for different
SU mobilities. The parameters are set toρs = 10/km2, λidle,i = 0.1, $idle,i =
0.4∀i ∈ K, andρp=2/km2 in (b).

6.5 Distributed Spectrum Access Strategy in Mobile CRNs

We now derive an optimal channel selection (access) strategy that maximizes each sec-

ondary link’s throughput. In multi-user CRNs, it is important to consider the channel con-

tention overhead, as it can affect the achievable throughput significantly. However, it may

be infeasible for mobile SUs to estimate the interference oneach channel in real time.

Thus, we assume that all the SUs in the network follow the samechannel access strategy,

and derive the optimal strategy by taking into account SUs’ mobility-dependent spectrum

opportunity as well as channel access contention among SUs as follows.

Let us denote the mixed channel selection vector byp = [p1, p2, . . . , p|K|]
T where

∑
i∈K pi = 1. Then, the total number of SUs selecting channeli in the network can be

approximated asNpi, whereN is the total number of SUs in the network, which can be

estimated asN ≈ ρsA. A is the entire network coverage area andρs is the average SU

density. The probability that an arbitrarily-chosen SU on channeli hasm ∈ N interfer-

ing neighbors, that have chosen the same channel, follows a Binomial distribution, i.e.,

Mi∼B(m;Npi − 1, fi). Here,fi=
πR2

I,i

A
is the ratio of the SU’s interference region to the

total network area, whereRI,i is the interference range of an SU on channeli.
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The expected throughput of secondary linkn can then be expressed as:

E[Rn] =
K∑

i=1

pi

Npi−1∑

m=0

Λi

m+ 1

(
Npi − 1

m

)
fm
i (1− fi)Npi−m−1

=
1

N

K∑

i=1

Λi

(1− (1− fi)Npi

fi

)
, (6.18)

whereK= |K| is the total number of licensed channels.

Then, the problem of finding an optimal channel selection strategyp? can be cast into

the following optimization problem (P1):

minimize F(p) = −
K∑

i=1

Λi

(1− f̄Npi
i

fi

)

subject to
K∑

i=1

pi = 1 and p � 0,

wheref̄i=1− fi for brevity.

To find the optimal sensing strategyp?, we first show the convexity ofF(p) by exam-

ining the second-order derivative ofF(p) w.r.t. pi, i.e.,

∂2 F(pi)

∂ p2i
= f̄Npi

i (ln(f̄N
i ))2 > 0. (6.19)

The inequality in Eq. (6.19) is straightforward. Hence,F(p) is convex inp∈ [0, 1]K .

Since the objective function is convex and constraints are affine, we now have a convex

optimization problem. The Lagrangian with multipliersλ∈RK andν∈R is given as:

L(p, λ, ν) =

K∑

i=1

Λi(f̄
Npi
i ln(f̄N

i )))−
K∑

i=1

λipi + ν(

K∑

i=1

pi − 1)

= −
K∑

i=1

((λi − ν)pi − Λi(f̄
Npi
i ln(f̄N

i ))− ν,

whereλ�0 andν=0.

Then, the Lagrange dual function, i.e., the minimum value ofthe Lagrangian overp, is
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Algorithm 8 OPTIMAL CHANNEL SELECTION ALGORITHM

1: // Initialization
2: p← [ 1K , . . . , 1

K ]T // p is channel selection probability
3: pprev ← p

4: ∆←∞
5: ε← 0.01 // condition for the convergence
6: while (∆ > ε) do
7: Update the SU density on each channelρs,i ← ρspi
8: Update the keep-out radiusRe,i using Eq. (6.3)
9: Update the optimal guard distanceε∗i using Eq. (6.14)

10: Update the spatio-temporal channel availabilityΛi(ε
∗
i )

11: Update the channel selection vectorp using Eq. (6.23)
12: ∆← p− pprev

13: pprev ← p

14: end while
15: return p

given as:

g(λ, ν) = inf
p
L(p, λ, ν)

=

K∑

i=1

inf
p
(−(λi − ν)pi + Λi(f̄

Npi
i ln(f̄N

i )))− ν.

It can be easily shown that there existsp such that the constraints hold with strict

inequality, i.e.,pi> 0 ∀i ∈ K and
∑K

i=1 pi=1. Therefore, according to Slater’s condition,

strong duality holds with zero optimal duality gap.

The Karush-Kuhn-Tucker (KKT) conditions are given as:

p? � 0,

K∑

i=1

p?i = 1 (6.20)

p?i

(
λ? + Λif

−1
i f̄Npi

i ln(f̄N
i )
)
= 0 (6.21)

λ? + f−1
i f̄Npi

i ln(f̄N
i ) ≥ 0. (6.22)

By solving the above system of equations, we can derive the optimal channel selection

strategy,p?, as described in the following proposition.

Proposition 6.2 (Optimal channel selection strategy) The optimal channel selection vector
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p? that maximizes the expected secondary network throughput is:

p?i =





[
− ln(Λi)+ln(fi)+ln(−N ln(f̄i))−ln(λ?)

N ln(f̄i)

]+
if $idle,i > 0

0 if $idle,i = 0,

(6.23)

whereΛi=γiui ∀i ∈ K andλ? is a constant s.t.
∑K

i=1 pi=1.

Eq. (6.23) indicates that the channel selection probability pi increases as the channel

availabilityΛi increases, thus confirming our intuition. Interestingly, the optimal channel

selection vectorp? in Eq. (6.23) depends on SU density on each channel as the number

of SUs affects the selection of guard distance (in Eq. (6.6)), influencing the amount of

spatial spectrum opportunity. This coupling between channel selection strategy and spatial

channel availability requires an iterative algorithm to find the optimal strategy, as described

in Algorithm 8.

Proposition 6.2, however, provides the following counter-intuitive observation:

Corollary 6.1 The optimal channel selection probability becomes more uniform as the

number of SUs in the network increases, i.e.,∀i ∈ K,

p?i →
1

K
as N →∞, (6.24)

whereK is the number of licensed channels, andN is the total number of SUs in the

network.

Corollary 6.1 indicates that the optimal channel selectionprobability becomes almost

independent of spatio-temporal spectrum opportunities asSU density approaches infinity.

The is because, when there exists a large number of SUs, the benefit from heterogeneous

spatio-temporal spectrum opportunities becomes negligible due to the high level of inter-

ference among SUs.
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6.6 Performance Evaluation

We evaluate the performance of the proposed spectrum sensing and distributed channel-

selection schemes. We first describe the simulation setup, channel-selection schemes for

performance comparisons, and performance metrics. Then, we present key evaluation re-

sults.

6.6.1 Simulation Setup

We consider a CRN in which mobile SUs coexist with PUs in a5 km× 5 km area.

Throughout the simulation, we assume that there are5 licensed channels,5 and that the

average channelidle probability is in the range of[0.3, 0.7], unless specified otherwise.

We also assume thatλidle is 0.1 for all the channels and that average density of SUsρs

ranges in[1, 10]/km2. We assume that the path-loss exponentα is 4, the SUs’ transmit

powerPo is 100mW, the reference distancedo is 1m, the PUs’ transmission rangeRo

is 250m, the interference temperature limit (ITL) is 0.1mW, and the sensing triggering

thresholdξ is 0.3. We further assume that channel sensing and switching timesareTs =

0.5 s andTsw=1 s, respectively.

To comparatively evaluate the efficacy of the proposed channel-selection scheme, we

compare the following: (i) random channel selection (RAND), (ii) optimal channel selec-

tion strategy based only on PUs’ temporal channel usage statistics (OPT-T), and (iii) op-

timal channel selection strategy based on PUs’ spatio-temporal channel usage statistics

(OPT-ST). In RAND, SUs randomly select a channel with an equal probability. InOPT-T,

SUs use the channel-selection probability in Eq. (6.23) while settingγi = $idle,i ∀i ∈ K

(thus eliminating the impact of heterogeneous PU density onchannels). On the other hand,

In OPT-ST, SUs fully exploit the spatio-temporal channel-usage characteristics of PUs.

To quantify the efficacy of the proposed algorithms, we use the following three main

performance metrics:

• normalized secondary network throughput, i.e.,
∑

n Rn

N
,

5Although the number of available channels depends on wireless environments, we observed similar re-
sults for different numbers of channels.
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Figure 6.8: Optimal channel-selection probability: (a) The optimal channel-selection strat-
egy depends on the average channel availability ($idle), but (b) the effects of
PU traffic statistics decreases as SU density increases. Theparameters are set to
$idle=[0.3, 0.4, 0.5, 0.6, 0.7], v̄ is fixed at4m/s, andρp,i=1/km2 ∀i ∈ K.

• throughput fairness (Jain’s index [75]), i.e.,(
∑

n Rn)2

N
∑

n R2
n

, and

• normalized energy consumption in spectrum sensing, i.e., the fraction of time a CR

device spent on sensing during channel access,

whereRn is the throughput of secondary linkn, andN is the total number of secondary

links in the network.

6.6.2 Optimal Channel Selection

6.6.2.1 Impact of Temporal Channel Availability

We first study the impact of PUs’ temporal channel-usage statistics on the optimal

channel-selection strategy. For this, we fix the PU density at ρp,i = 1/km2 ∀i ∈K and set

different channelidle probabilities, i.e.,$idle = [0.3, 0.4, 0.5, 0.6, 0.7] ($idle increases

with increasing channel index).

Fig. 6.8(a) shows SUs’ preference to access channels with a higher average channel

idle probability, i.e.,pi> pj when$idle,i>$idle,j. Interestingly, when SUs are densely

populated, i.e.,ρs = 10/km2, the impact of PUs’ temporal channel-usage statistics on the

channel-selection strategy decreases. This is clearly shown in Fig. 6.8(b) where the largest

difference in the channel-selection probability (i.e.,|max(p?) −min(p?)|) decreases with
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increasing SU density. Intuitively, as the number of SUs in the network increases, their

channel access time decreases due to the need for sharing thechannel. Thus, as the density

tends to infinity, the achievable throughput of SUs becomes close to 0, regardless of the

PUs’ channel usage statistics.

6.6.2.2 Impact of Spatial Channel Availability

Fig. 6.9 shows the impact of PU density on the optimal channel-selection strategy. In

the simulation, we assume a different PU density on each channel, while assuming that tem-

poral channel usage statistics, i.e.,$idle, are the same for all channels. The figure indicates

that, the lower the PU density (channel index), the higher the channel-selection probability.

However, PU density becomes less influential as the average SU density increases, similar

to the case in Fig. 6.8(b).

6.6.2.3 Impact of SUs’ Speed

Fig. 6.10 shows the impact of SUs’ average speed on spatio-temporal channel availabil-

ity Λi (in Figs. 6.10(a)-(b)), and on the optimal channel-selection strategyp? (Figs. 6.10

(c)-(d)). As shown in the figures, the SUs’ speed has different consequences on channel
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Figure 6.10: Impact of SUs’ speed onΛ andp?: The spatio-temporal channel availability
depends on the SUs’ speed, thus affecting the optimal channel-selection strat-
egyp?. The parameters are set toρp=[0.1, 0.2, 0.5, 1, 2]/km2, ρs=10/km2,
and$idle,i=0.4∀i ∈ K.

availability (Λ), depending on the density of PUs on each channel;Λ decreases faster when

PU density is high. As a result, the SUs’ preference to accesschannels with a low PU den-

sity increases as their speed increases. The simulation settings are described in Fig. 6.10.

6.6.3 Performance Comparison

Next, we compare the performance of the three channel-selection schemes (i.e.,RAND,

OPT-T, andOPT-ST) in terms of throughput, fairness, and energy-efficiency. In the simu-

lations, we set the average PU density on each channel toρp=[0.1, 0.2, 0.5, 1, 2]/km2. The

channel idle probabilities$idle are randomly selected in[0, 1] such that
∑

i∈K$idle,i =

1 for each network topology. The results are obtained from simulation runs over103

randomly-generated topologies. Figs. 6.11 and 6.12 plot the average and± 0.25 σ inter-

vals of throughput and fairness, under various SUs’ speed and density.
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Figure 6.11: Performance of the proposed distributed channel-selection algorithm:OPT-ST
outperforms other channel-selection schemes in terms of (a) network through-
put and (b) fairness (Jain’s index), under all simulated scenarios. In the simu-
lation, the average SU density was fixed atρs=1/km2.

6.6.3.1 Throughput and Fairness

Fig. 6.11(a) shows that the proposedOPT-ST outperforms the other channel-selection

schemes (i.e.,OPT-T andRAND) under all simulated scenarios, thanks to its ability to

optimally select channels by exploiting the heterogeneousspatial/temporal spectrum op-

portunities of each channel. On the other hand, the performance ofOPT-T decreases

as SU speed increases, because the spatial spectrum opportunity becomes more diverse

with higher SU mobility (see Fig. 6.10), which is not considered inOPT-T. Fig. 6.11(b)

indicates thatOPT-ST achieves the highest fairness among the three channel-selection

schemes, as it correctly incorporates the impact of heterogeneous spectrum opportunities

and channel access contention among SUs in the optimal channel selection strategy.

Fig. 6.12 shows the impact of SU density on throughput performance. As shown in the

figure, the throughput degrades as SU density increases, mainly because of the increased

level of SUs’ contention for channel access. In addition, the performance ofOPT-ST be-

comes close toRAND’s as the density increases, since the optimal channel-selection strategy

tends to become similar to a uniform distribution, which canbe seen inRAND, in a dense

network, as observed in Fig. 6.9.
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Figure 6.12: Impact of SU density on throughput performance: The performance of
OPT-ST decreases as the average SU density increases. In the simulation,
the SUs’ speed is fixed at4m/s.

6.6.3.2 Energy Saving in Spectrum Sensing

Finally, we study the energy-saving perspective in spectrum sensing. Frequent spec-

trum sensing can consume a considerable amount of energy, especially in battery-powered

mobile CR devices. Fig. 6.13 plots the CR’s normalized energy consumption in different

settings, including use of a fixed guard distance (i.e.,ε=20, 40m) and use of the optimal

guard distance (ε∗). The figure indicates that energy consumption due to spectrum sensing

in mobile CR devices can be reduced by up to74% while ensuring primary protection.

6.7 Related Work

Spectrum sensing has been studied extensively as a key technology for primary detec-

tion and protection [23, 67, 71, 88, 100, 134, 149]. Most existing work, however, focuses

on optimizing the sensing interval based on PUs’temporalchannel-usage statistics. To val-

idate such channel models, Wellenset al. [149] studied the impact of channel-occupancy

statistics obtained from extensive measurements on the performance of MAC-layer sens-

ing schemes. They showed that the channels with longerbusy/idle periods follow ex-
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Figure 6.13: Energy savings via the use of optimal guard distance: SUs cansave energy
significantly due to spectrum sensing via the optimal guard distance, while
meeting the primary interference constraints.

ponential distributions and that spectrum sensing and access strategies designed under the

assumption of exponentially-distributed PU traffic are highly efficient. However, such mod-

els hinge on the assumption ofstationaryCRNs, in which both PUs and SUs are stationary.

Thus, they may not be suitable formobileCRNs, in which channel availability depends on

dynamically changing SUs’ locations. By contrast, we modelchannel availability from a

mobile SU’s perspective by incorporating the impact of SU mobility (e.g., speed).

Despite its practical importance, the problem of allowing mobile SUs in CRNs has re-

ceived little attention. The IEEE 802.22 standard draft provides a two-stage sensing (TSS)

mechanism [22], but it is designed exclusively for the detection of a stationary TV transmit-

ter, and does not specify any efficient mechanisms for spectrum sensing for portable/mobile

CRs. Recently, the FCC [49] imposed a minimum sensing interval of 60 seconds for TV

band devices (TVBD). However, this may not be sufficient to protect PUs from interference

induced by SU mobility. Moreover, while most previous work focused on either schedul-

ing spectrum sensing [100] or spatial CR deployment [64, 145] for primary protection, we

jointly exploit guard distance and the sensing interval to maximizespatio-temporal spec-

trum opportunities for mobile SUs.
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6.8 Conclusion

Taking mobility into consideration is vitally important for full realization of the benefits

of DSA in CRNs. In this chapter, we considered the case of a CRNwith mobile SUs.

We identified and addressed the three fundamental challenges in maximizing spectrum

efficiency in mobile CRNs. In particular, we presented a novel channel-availability model,

a mobility-aware spectrum-sensing strategy, and an optimal distributed channel-selection

(or access) strategy tailored to mobile CRNs. Our evaluation results verified the correctness

of our channel-availability model under various SU mobility patterns. Our performance

comparison study has also shown that the channel-access strategy improves the throughput

and fairness of mobile SUs significantly over the conventional strategy that relies solely on

PUs’ temporal channel-usage statistics.

162



CHAPTER 7

Optimal Spectrum Pricing in Dynamic Spectrum Market

7.1 Introduction

In this chapter, we propose a new spectrum-pricing model in adynamic spectrum mar-

ket (DSM), where, in order to maximize their profits, wireless service providers (WSPs)

compete withheterogeneousspectrum resources—channels with disparate center frequen-

cies and propagation profiles. In our model, we assume the availability of a wide range

of heterogeneous bands in the spectrum plane, and analyze the spectrum pricing-demand

relationship between WSPs (in the service plane) and SUs (inthe user plane). In the user

plane, SUs sublease andshare the spectrum that provides the maximum utility. These

features—spectrum heterogeneity and spectrum sharing—are essential for us to understand

the WSPs’ pricing competition in a DSM, but have not been explored well.

Based on a realistic price-demand model, we formulate WSPs’pricing competition as

a non-cooperative game, taking into account the SUs’ desireto maximize their utility. Here

“utility” refers to spectrum consumers’ judgements about the tradeoff between achievable

capacity and spectrum leasing cost. We examine the existence and uniqueness of the spec-

trum price Nash equilibrium (NE), which depends upon SU density (i.e., total spectrum

demand1) and spectrum heterogeneity. Our investigation into the effects of three essen-

tial features—(i) spectrum heterogeneity, (ii) spectrum sharing among SUs, and (iii) total

spectrum demand (i.e., SU density)—provides useful insights and practical guidelines for

1We refer to “spectrum demand” as the number of SUs in a DSM rather than the SUs’ bandwidth demand.
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designing spectrum pricing and purchase strategies in DSM.

7.1.1 Contributions

In summary, this chapter makes the following contributions:

• Introduction of a new DSM model where WSPs with heterogeneous spectrum re-

sources compete for a higher market share. We demonstrate the impact of spectrum

heterogeneity via in-depth measurements on a GNURadio/USRP testbed. To the best

of our knowledge, this is the first attempt to analyze the impact of spectrum hetero-

geneity in a DSM.

• Investigation of a new spectrum price-demand model based onthe desire of SUs

to maximize their own utility, by evaluating the impact of spectrum heterogeneity,

spatial spectrum sharing, and total spectrum demand.

• Derivation of SUs’ optimal WSP selection strategy based on amean-field approach

to study how spectrum heterogeneity affects market equilibrium. Our mean-field ap-

proach simplifies the market model using a set of differential equations, and is shown

to effectively approximate an exact model using large-dimension Markov chains.

• Modeling of the pricing strategies among WSPs as a non-cooperative game and iden-

tification of the key factors that influence the NE points, taking into account the

price-demand relation caused by the utility maximizing behavior of SUs.

7.1.2 Organization

The remainder of this chapter is organized as follows. Section 7.2 describes the duopoly

DSM model and formulates the pricing game among WSPs as a non-cooperative game.

Section 7.3 shows the impact of spectrum heterogeneity via in-depth measurements on a

software-defined radio testbed. Section 7.4 analyzes the impact of SU density on their

achievable utility by analyzing mutual interference amongSUs. Section 7.5 studies the

SUs’ optimal WSP selection strategies that maximize achievable utility. Section 7.6 de-

rives the WSPs’ optimal spectrum pricing strategy based on arealistic price-demand func-
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tion. Section 7.7 reviews existing work for spectrum pricing in DSM. Finally, Section 7.8

concludes this chapter.

7.2 System Model and Assumptions

In this section, we present a signal propagation model for our analysis which will be

used throughout this chapter. We then define the DSM model, utility functions of SUs and

WSPs, and formulate the pricing competition of WSPs as a non-cooperative game.

7.2.1 A Dynamic Spectrum Market (DSM) Model

We consider a duopoly DSM where two WSPs compete in the same geographical area,

as illustrated in Fig. 7.1. Each WSP is assumed to have long-term access rights for a li-

censed channel with a different center frequency, obtainedfrom primary spectrum owners,

for example, via auction [80, 165]. WSPs then grant access rights to their channels to

multiple SUs by advertising the spectrum price, either via database query or direct broad-

casting over a dedicated control channel. WSPs have access to complete information about

customer population (i.e., SU density) and their preferences (i.e., SUs’ utility).2 Each WSP

possesses a single channel for leasing, and we focus on the case where the WSPs’ leased

channels have considerably different center frequencies,thus exhibiting disparate wireless

signal propagation characteristics.

Interactions among DSM participants can be modeled as a 3-tier structure [25, 76] (see

Fig. 7.1) consisting of: (i) thespectrum plane, where licensed spectrums are auctioned and

sold to wireless service providers (WSPs), (ii) theservice plane, where WSPs sublease the

spectrum by enticing SUs with competitive prices and good spectrum quality, and (iii) the

user plane, where SUs choose the WSP that maximizes their utility. Although spectrum

pricing competition in DSM has been studied extensively [45, 73, 113, 114], most existing

work has not considered spectrum-heterogeneity as a primary factor in establishing the

pricing strategy (except [154]).

2Learning mechanisms can be used to infer such information when it is not available [154].
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Figure 7.1: A duopoly dynamic spectrum market model: WSPs compete with heterogeneous
channels (leased from the primary spectrum owners) to entice more SUs in the
same geographical area in order to maximize profit.

For the user plane, we consider an ad-hoc secondary network consisting of a set,N, of

transmitter-receiver pairs, referred to as SUs. Each pair constitutes a basic unit for spectrum

leasing; in essence, SUs purchase short-term rights to access the channels from a WSP at a

fixed spectrum price set by the WSP. We assume that SUs are SDR devices (e.g., USRP [3])

with CR-capability. By exploiting the ability to access a wide range of spectrum bands, SUs

aim to maximize their utility (i.e., the difference betweenthe channel capacity and spectrum

leasing cost in Eq. (7.2)) by choosing the “best” WSP. SUs arerandomly deployed in areas

following a point Poisson process [17, 32] with average density ρ, i.e., the distribution of

the number of active links within the deployment area,A, isnA ∼ Poisson(n; ρ|A|). Note

that although we consider an ad hoc secondary network, our analysis can also be applied to

an infrastructure-based network model, where communication between an access point (or

base station) and its associated clients is one-to-one at any given time.
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7.2.2 Signal Propagation and Spectrum Reuse Model

Signal propagation is known to depend on the center frequency of each channel: the

lower the frequency band, the better the signal propagationcharacteristics. For ease of

analysis without losing key insights to be gained from spectrum heterogeneity, we con-

sider the following simple signal propagation model that reflects the impact of spectrum

heterogeneity [59]:

PR = Po gc(r) = Po

(co
fc

)α
r−α, (Watts) (7.1)

wherePR is the received signal power,Po the transmission power,co the speed of light,

i.e., co =3 × 108 m/s,fc the center frequency of the channelc, r the distance between the

transmitter and receiver, andα (> 2) the path-loss exponent.3 We assume that all the SUs in

the network use the same fixed transmission power levelPo. While we use a simple signal

propagation model, more realistic models (e.g., [74]) could be used for specific wireless

environments (e.g., indoor or outdoor) at the cost of complexity of analysis. Since shadow

or multi-path fading is shown to not affect average interference significantly [69], we do

not consider it in our model.

Buddhikotet al. [19] suggested three different models for spectrum sharing, which are

referred to asexclusive use, shared use, andcommonsmodels. These models overcome

the limitations of the traditionalcommand-and-controlmodel. In order to focus on the im-

pacts of spectrum heterogeneity in a DSM, in this chapter we consider theexclusive use

model, in which primary spectrum owners grant their exclusive spectrum access rights to

a third party (e.g., WSPs). This exclusive model is suitablefor spectrum bands with rela-

tively long ON/OFF primary activity periods, e.g., DTV channels. Besides, this model can

provide high quality-of-service (QoS) and reliability because it does not require frequent

performance of spectrum sensing by SUs, or frequent serviceinterruptions due to primary

activities.
3We assume that the path-loss exponent isα> 2 so that the cumulative interference does not diverge as

the network size grows.
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7.2.3 Utility-Maximizing Spectrum Demand and User Preference

One of our main contributions is to derive a realistic price-demand function in the DSM,

driven by SUs’ desire to maximize their utility. Specifically, the utility function of SUi∈N,

which is associated with WSP (channel)c,4 is defined as the difference between the SUs’

achievable link capacity and spectrum price:

Ui(c) = B log
(
1 +

Pogc,i
Ic,i +No

)
− pc, (7.2)

whereB is channel bandwidth,gc,i the channel gain between the secondary transmitter and

receiver,No the noise power level, andPo the transmit power. (Per FCC regulation, there

is a cap on transmit-power levels for SUs.) The average of cumulative interference power

caused by the SUs on channelc at the receiver of linki is denoted byIc,i, andpc denotes the

spectrum price (per unit time). To simplify the analysis, weassume that all the secondary

transmitter-receiver pairs are separated by the same distance, and thus the channel gaingc,i

only depends on channel frequency, i.e.,gc,i = gc ∀i. For the similar reason, we assume

Ic,i = Ic ∀i. Henceforth, we omit the subscripti for brevity. We consider a fixed (unit)

bandwidth demand from SUs, i.e.,B=1 for all channels.

LetC={c, a} denote the set of WSPs (channels) in a DSM. Based on the utility function

in Eq. (7.2), SUi selects the channelci ∈ C that maximizes expected utility, i.e.,

c∗i = argmax
c∈C

Ui(c), (7.3)

whereC is the set of channels available at WSPs, e.g.,C={a, c} for a duopoly DSM.

7.2.4 Spectrum Pricing Game among WSPs

The main objective of WSPs is to maximize their profit by leasing the licensed channel

to multiple SUs at the highest possible leasing price. Therefore, WSPs play a pricing game

4We equate a WSP with its channel(s).
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to compete for market share. The payoff (profit) function of aWSPc ∈ C is defined as:5

Vc(pc, p−c) = Nc(pc, p−c) · pc − bc, (7.4)

whereNc is the number of SUs associated with WSPc (spectrum demand),pc the spectrum

leasing price, andbc the fixed investment cost, i.e., the fee paid to the primary spectrum

owner for the long-term spectrum lease (per unit time).

Note that analyzing the price-demand relationship, i.e.,Nc(pc, p−c), is not straightfor-

ward. Traditional economic models tends to assume a known relation between WSPs’ price

and SUs’ demand. However, in our model, the spectrum demandNc, i.e., the number of

SUs on channelc, depends not only on WSPs’ spectrum leasing prices{pc, p−c}, but also

on the channel quality (capacity) determined by the frequency-dependent co-channel inter-

ference, as shown in Eq. (7.2). SUs can freely choose the WSP that maximizes their payoff.

Thus, WSPs must consider spectrum heterogeneity in devising an optimal spectrum pricing

strategy that maximizes profit.

Based on the WSPs’ utility in Eq. (7.4), the spectrum pricinggame among WSPs can

be defined as shown below.

Definition 1 (Spectrum pricing game between WSPs) A spectrum pricing game between

the WSPs can be formalized as a strategic choice:

p∗c = argmax
pc∈R

Vc(pc, p−c), (7.5)

wherep−c denotes the price chosen by competing WSPs.

In what follows, we first demonstrate the impact of spectrum heterogeneity in Sec-

tion 7.3, analyze SU utility in Section 7.4, and derive the optimal WSP selection and spec-

trum pricing strategies in Sections 7.5 and 7.6, respectively.

5Let the subscript−c denote the competitor of WSPc.
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Figure 7.2: Software-defined radio testbed: GNURadio/USRP2 nodes are placed at different
locations on the fourth floor of the CSE Building at the University of Michigan.

7.3 Characteristics of Spectrum Heterogeneity

In this section, we demonstrate the effects of spectrum heterogeneity on received signal

strength (RSS) via measurements on our software-defined radio testbed. We first describe

our experimental setup and then present the measurement results.

7.3.1 Experimental Setup

To evaluate the impact of spectrum heterogeneity, we constructed a GNUradio/USRP2

[6] testbed on the fourth floor of the Computer Science and Engineering (CSE) Building at

the University of Michigan. This floor has multiple offices and conference rooms and rel-

atively straight corridors, which allow us to evaluate the impact of spectrum heterogeneity

under both line-of-sight (LOS) and non-line-of-sight (NLOS) settings.

We deployed 5 USRP2 nodes in the topology shown in Fig. 7.2. Weplaced the trans-

mitter at a fixed location in the corridor (denoted as circledT in the figure), and purposely

placed 4 receiver nodes at different locations (e.g., corridors and offices, denoted as1-4 in

the figure) to test various signal-propagation environments. The measurements were done

at night to minimize the effects of environmental changes, such as moving people/obstacles

and interference from other networks. This allows us to focus on evaluating the impact of

spectrum heterogeneity on network performance without theneed to deal with all the tran-

sient network dynamics, e.g., the fluctuations in RSS due to moving obstacles.
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We equipped the USRP2 nodes with two different sets of daughterboards and antennae

that operate on different spectrum bands. For high-frequency spectrum, we mounted the

VERT2450 (dual Band 2400–2480 MHz and 4.9–5.9 GHz omnidirectional antenna) on a

XCVR2450 board (2.4–2.5 GHz and 4.9–5.85 GHz dual-band daughterboard). For low-

frequency bands, we mounted the VERT900 (824-960 MHz omnidirectional antenna) on a

WBX board (50 MHz to 2.2 GHz daughterboard). Both the XCVR2450 and WBX have the

same transmit power level (20 dBm).

We use the benchmark dbpsk encoding/decoding module in GNURadio to test the sig-

nal quality on different spectrum bands. The bit rate is set to 0.1 Mbps and each BPSK

symbol goes through a raised-root-cosine filter with 8 taps,resulting in a signal bandwidth

of 50 KHz. Through experiments, we found that the transmit power of the testbed increases

linearly with transmit gain. Therefore, we set the transmission gain of both XCVR2450 and

WBX to the maximum, to ensure that they have the same output power.

7.3.2 Experimental Results

To evaluate the effect of spectrum heterogeneity, we measured the signal-to-noise ratio

(SNR) of a transmitted signal on three different frequency bands, i.e.,907MHZ, 2.478GHz,

5.728GHz, at four different receiver locations. Receiver location1 is LOS setting, and the

rest are NLOS settings. The measurement lasted 5 minutes foreach experiment. Note that

the USRP RF circuits have different gains for different frequency bands. Hence we first

calibrate the output power for different frequency bands, so that they may have comparable

SNRs at short distances. In this way, the hardware artifactsare isolated and for each link,

the signal quality only depends on its frequency.

Fig. 7.3 plots the empirical cumulative distribution function (c.d.f.) of the measured

SNR. The figure clearly indicates the impact of spectrum heterogeneity: the lower the

frequency, the higher the SNR, regardless of the receiver locations. Fig. 7.3(d) shows

that, when the receiver is in the NLOS setting, high frequency bands, i.e.,2.478GHz and

5.728GHz, suffer from significant deterioration in signal strength because of the obstacles

(i.e., the walls between the transmitter and receiver). On the other hand, the low frequency
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(c) Location 3 (NLOS)
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Figure 7.3: Impact of spectrum heterogeneity: The distribution of measured SNR depends
significantly on the center frequency of the channel; the lower the frequency, the
higher the SNR due to the better signal propagation characteristics.

band, i.e.,907MHz, achieves a relatively high SNR thanks to its good wall-penetration

characteristics.

Next, we study the signal propagation characteristics of different spectrum bands by

measuring the RSS (in dB). We place the transmitter at a fixed location and vary the

transmitter-receiver separation from15m to 45m in an indoor, LOS setting. Fig. 7.4 il-

lustrates that low frequency band shows consistent advantage for all the distance settings.

In addition, RSS linearly decreases when the logarithmic distance, i.e.,10 log10(d), be-

tween the transmitter-receiver pair increases, regardless of the center frequency. This again

verifies the trend predicted by the empirical propagation model in Eq. (7.1).
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Figure 7.4: Signal propagation over heterogeneous spectrum: RSS decreases almost linearly
as the logarithmic distance between the transmitter and receiver increases.

7.4 Analysis of Secondary Utility under Spectrum Hetero-

geneity

In this section, we characterize co-channel interference (i.e., Ic,i in Eq. (7.2)) among

SUs to capture the effects of spectrum heterogeneity and spectrum sharing on the achiev-

able capacity of SUs.

For spectrum sharing among co-channel SUs, we consider the physical model [62]

where all the SUs can transmit at the same time. We consider the physical model rather than

the protocol model [62].6 Note that, although we consider the physical model, the main

insights would not be different for the protocol model. We approximate the distribution

of co-channel interference,Ic, on channelc∈C, by quantifying the interference from SUs

located inside and outside the interference range,Rc
I , which is defined asRc

I , sup{r ∈
R
∣∣Po gc(r)> η} whereη is a predefined threshold that depends on the desired data rate,

modulation scheme, etc.

We first approximate the sum of co-channel interference caused by SUs located inside

the interference range as a Gaussian random variable. In practice, secondary systems main-

tain a certain distance between them to avoid interference,so we assume that the minimum

distance between secondary transmitters is sufficiently large (e.g.,> 10m). The total in-

terference at a fixed point in a uniformly-distributed wireless network can be accurately

6The physical and the protocol models [62] are most widely used for modeling wireless interference.
In the former, SUs can transmit data concurrently but share the channel via a non-orthogonal multiplexing
protocol (e.g., CDMA). In the latter, SUs multiplex the channels using an orthogonal scheme (e.g., OFDMA),
and the per-user capacity is inversely proportional to the number of interfering neighbors.
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approximated as a Gaussian random variable [82].7

Let Gin,c =
∑

Sc
gc(r) denote thenormalizedinterference (i.e., sum of channel gains)

from a setSc of co-channel SUs located inside the interference range. Then, the probability

density function (p.d.f.) of Gaussian random variableGin,c∼N(µc, σ
2
c ) is given as:

Gin,c(x) =
1√
2π

exp

(
− (x− µc)

2

2 σ2
c

)
, (7.6)

where the mean (m1) and variance (m2) of the interferenceGin,c is given as [99]:

mk(ρ, c) = ρcπ((R
c
I)

2 − ε2)
∫ Rc

I

ε

2r

((Rc
I)

2 − ε2)(gc(r))
kdr

=
2ρcπ

(kα− 2)

(
co
fc

)αk(
1

εkα−2
− 1

(Rc
I)

kα−2

)
, (7.7)

whereε is the minimum separation distance from the receiver.

We now quantify the total interference caused by SUs locatedoutside the interference

range.

Lemma 7.1 The total interference caused by SUs on channelc located outside the inter-

ference region (i.e., unit disk of radiusRc
I centered at the receiver) can be approximated

as:

Iout,c = 2π Po

(co
fc

)α ρc (Rc
I)

2−α

α− 2
. (7.8)

Proof See Appendix B.

Finally, based on Eqs. (7.7) and (7.8), the interference caused by SUs on channelc can

be approximated asIc∼N(µc, σ
2
c ) where

µc = E[Iin,c] + Iout,c =
(co
fc

)α 2πρcPo

α− 2

( 1

εα−2

)
(7.9)

σ2
c =

ρcπPo

α− 1

(co
fc

)2α( 1

ε2α−2
− 1

(Rc
I)

2α−2

)
, (7.10)

7Note that we can ignore the impact of multi-path fading on channel selection because the time scale of
channel switching is much larger than the average fading duration.
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whereρc is the density of SUs (links) on channelc. Similarly, we can derive interference for

channela (i.e.,µa andσ2
a). Eq. (7.9) indicates that the total interference linearlyincreases

with SU density on channelc, ρc, which can be approximated asρc ≈ Nc

|A| whereA is the

entire network area.

The interference distribution in Eqs. (7.9) and (7.10) is a function of center frequency

fc, which serves as the basis for developing an optimal WSP selection strategy and for

analyzing the pricing game among WSPs with heterogeneous spectrum bands.

7.5 Optimal WSP Selection Strategy via Mean-Field Ap-

proach

In this section, we derive the optimal WSP selection strategy for SUs using a mean-

field approach, assuming that the WSPs possess different spectrum bands. We begin with

a mean-field approximation of the spectrum market. We then prove its convergence, and

derive the optimal WSP selection strategy in the mean-field regime.

7.5.1 A Mean-Field Model for Spectrum Market

The mean field method [16] is a simple and effective way of analyzing the state evolu-

tion of a large number of interacting objects. In particular, it is suitable for analyzing how

the local behavior of individual nodes affects the global properties of a large-scale network.

In our problem, an SU’s behavior is described by its type (i.e., its preferred WSP), and the

global properties are the steady-state distribution of SU types.

Our mean-field approach uses differential equations to approximate the evolution of

the market, whose state converges to the fixed point of the equation (namely, themean-

field limit) under certain conditions [16]. In what follows, we first usea mean-field model

to describe how the DSM evolves, and then justify the convergence of the market to its

mean-field.
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7.5.2 Evolution and Convergence of the Market

We first provide the following key definitions:

• A link is defined as a connected transmitter-receiver pair withactivetraffic. There-

fore, a link can be considered “newly joined” if it has just switched from an idle

period to a period of bursty transmission.

• Let N be the number of active links. Links can “join” and “depart” according to

a Poisson distribution. However, we assume that the link population evolves to a

steady state, such that the departure rate equals the arrival rate, and the total number

of links remains roughly constant.

• Let λ be the traffic rate of a link. We also assume that the ON-OFF traffic pattern of

a link is bursty, following a Poisson distribution with rateλ.

• LetNc(t) denote the total number of active links using channelc at timet. Links are

classified according to the channel that they use, i.e., a link i is of typec, if it selects

channelc ∈ C.

We study the evolution of the spectrum market within a short period of time,∆t. The

number of newly joined secondary links within this period isN λ∆t. This is also the

number of departed links within∆t, since we focus on a steady state of the SU population

when the departure rate equals the arrival rate. Each newly joined link leases a channel

from a WSP with a short-term contract. Note that active linksthat have already leased a

channel are in transmitting/receiving mode, and must maintain their current channel (WSP)

selection.

Let Pc be the probability that, for a randomly selected linki, channelc provides the

maximum utility, i.e.,

Pc = Pr
{
c = argmax

c∗∈C
Ui(c

∗)
}
, ∀c ∈ C, (7.11)

where the utilityUi(c) is defined in Eq. (7.2). Then, among the newly joined links within

∆t, the number of links selecting channelc isN λ∆t Pc.
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The total number of channelc SUs, i.e., links using channelc, in the network at time

(t+∆t) is:

Nc(t +∆t) = Nc(t) +N λ∆t Pc −Nc(t) λ∆t. (7.12)

Eq. (7.12) describes the evolution of a market. The market equilibrium can be defined as a

fixed point of the market evolution:

∂Nc(t)

∂t
=
Nc(t +∆t)−Nc(t)

∆t
= N λPc −Nc(t) λ = 0

⇐⇒ Pc =
Nc(t)

N
. (7.13)

Eq. (7.13) indicates that the probability that an SU selectsWSPc is equivalent to the

fraction of SUs using channelc, which is referred to as thechannel occupancy measure,

i.e.,Πc(t) = Nc(t)/N . Intuitively, the occupancy measure,Πc(t), reflects the market share

of WSPc at timet.

Proposition 7.1 (Convergence of channel occupancy) The channel-occupancymeasure

Π={Πa,Πc} converges to a deterministic process in the continuous-time domain.

Proof See Appendix C.

From now on, we will focus on deriving the channel (WSP) selection probabilityPc

in the mean-field model of Eq. (7.12), which depends primarily on three key factors: (i)

amount of interferenceIc on channelc, (ii) spectrum leasing pricespc, and (iii) total spec-

trum demandρ. Note that the interference intensityIc depends on the occupancy measure

of channelc, which, in turn, affects the channel-selection probability Pc. This circular

dependency eventually converges to a fixed point, i.e., the mean-field limit of market dy-

namics.

7.5.3 SUs’ Optimal Selection of WSPs

We now analyze the SUs’ optimal channel (WSP) selection strategy, assuming that

each SU is a rational market entity that selects a WSP to maximize his utility. In making a

strategic choice, each SU takes into account the achievablecapacity and leasing cost, but
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Pc = Q

(
( co
fa
)α 2πρPo

α−2
( 1
εα−2 )(e

pc−paPc − Pa) +No(e
pc−pa( fc

fa
)α − 1)

( co
fa
)α
√

πρPo

α−1

√
Pa(

1
ε2α−2 − 1

(Ra
I
)2α−2 ) + e2(pc−pa)Pc(

1
ε2α−2 − 1

(Rc
I
)2α−2 )

)
(7.14)

Pa = 1− Pc. (7.15)

cannot directly affect the price set by the WSPs. This model mirrors a real-world market

economy where customers are obedient price-takers, but thejoint effect of their choices

causes the sellers to compete and reach an equilibrium price.

We derive the optimal WSP selection strategy in a mean-field regime for given spectrum

pricesp= {pa, pc}. For an arbitrarily-chosen SU in a DSM, the probability thatchannelc

provides better utility is:

Pc = Pr
(
Uc − Ua > 0

)

= Pr
(
log
( Pogc
Ic +No

)
− log

( Poga
Ia +No

)
> pc − pa

)

= Pr
(
log
(Ia +No

Ic +No

)
> pc − pa − α log

(fa
fc

))

= Pr
(
Ia +No − epc−pa

(fc
fa

)α
(Ic +No) > 0

)
, (7.16)

wherepc (pa) andfc (fa) are the price and center frequency of channelc (a), respectively.

Note that a more commonly used approach for analyzing the equilibrium state is to

equate the user’s utility, i.e.,Ui(c) = Ui(a) (e.g., [114]). However, such an equilibrium

state may not be reached depending on the network environment, as will be shown in

Section 7.6.4.

For given prices, the channel-selection probabilityPc depends solely on the interfer-

ence statistics on channelc. In Eq. (7.16), the interference power on each channel can be

approximated as a normal random variable as derived in Section 7.4.

Let Ica = Ia + No − γca(Ic + No) whereγca = epc−pa( fc
fa
)α. Note thatNo andγca are

constants, andIca is thus the difference between the two Gaussian random variables, which
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is also Gaussian. Then,Ica∼N(µca, σ
2
ca) where

µca = µa +No − γca(µc +No) (7.17)

σ2
ca = σ2

a + γ2caσ
2
c , (7.18)

where the mean and variance of the interference are shown in Eqs. (7.9) and (7.10). Then,

the channel-selection probability is:

Pc = Pr(Ica > 0) = Pr
(Ica − µca

σca
>
−µca

σca

)
= Q

(−µca

σca

)
, (7.19)

whereQ(x)= 1
2π

∫∞
x
e−

t2

2 dt. Using Eqs. (7.9), (7.10), (7.18) and (7.19), one can derivethe

channel-selection probabilities.

Proposition 7.2 (WSP selection strategy) For the case with two WSPs (channels)c and

a, the mean-field limit of the channel-selection strategyPc andPa follows Eqs. (7.14)

and (7.15).

Proposition 7.2 indicates that the mean-field limit of the WSP selection strategy is in-

fluenced not only by the spectrum prices, but also by the channel heterogeneity reflected

by interference ranges (Rc
I ,R

a
I ) and center frequencies (fc,fa). This clearly indicates that

spectrum heterogeneity can affect the optimal spectrum pricing that maximizes the WSP’s

profit. Proposition 7.2, however, shows that SUs’ traffic intensityλ does not affect the

system’s steady-state.

Proposition 7.3 (Asymptotic behavior of WSP-selection strategy) The optimal WSP-selection

probability becomes more uniform as SU density increases, i.e.,

Pc → 0.5 as ρ→∞, (7.20)

whereρ is the average SU density, which can be approximated asρ≈ N
|A| .

Proof As ρ→∞, the WSP-selection probabilityPc in Eq. (7.14) reduces to:

lim
ρ→∞

Pc = Q
(
+∞ (epc−paPc − Pa)

)
. (7.21)
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Then, we have:

lim
ρ→∞

Pc =





1 Pc <
Pa

epa−pa

0.5 Pc =
Pa

epa−pa

0 Pc >
Pa

epa−pa
.

(7.22)

In Eq. (7.22), there exists a unique solution, i.e.,limρ→∞ Pc = 0.5 whenpc = pa. On

the other hand, whenpc 6= pa, there is no solution becausepc = pa is the unique NE point

under the conditionρ→∞. We will detail the price NE in Section 7.6.

Proposition 7.3 indicates that the WSP-selection probability becomes independent of

spectrum heterogeneity when the number of SUs in the network, N , approaches infinity.

This is because, when there exist a large number of interferers, interference power domi-

nates noise power, i.e.,Ic�No, and as a result, the benefit from low frequency becomes

negligible.

7.5.4 Numerical Results

Here we present numerical results that show the behavior of the channel-occupancy

measure under different DSM settings.

Fig. 7.5(a) shows the impact of heterogeneous channel frequencies on the channel oc-

cupancy,Πa andΠc. In the simulations, we fix the center frequency of channela at

fa = 500MHz and increase the frequencyfc up to 2.5GHz. We set spectrum prices to

pa= pc=1, to eliminate the effect of prices on channel occupancy. Thefigure shows that,

whenfc<fa, Πc> 0.5, due to the favorable signal-propagation characteristicsof channel

c; on the other hand, whenfc > fa, Πc < 0.5 for the same reason. Interestingly, channel

occupancy depends on average secondary network density (i.e., total spectrum demand)ρ.

This is because, in a dense network where interference powerexceeds noise power, i.e.,

No�Ic, the benefit of favorable signal-propagation characteristics diminishes. As a result,

the channel-occupancy curve becomes flatter. Note that whenfc = fa, Πc = Πa = 0.5,

regardless of SU density.

Fig. 7.5(b) shows the channel-occupancy measure while varying average SU density in

the rangeρ∈ [0, 200]/km2. Here we fix the center frequencies atfa=500MHz and assume
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Figure 7.5: Characterization of channel-occupancy measure: (a) The occupancy of chan-

nel c, Πc, increases as the frequency ratiofc
fa

decreases, and (b) channel occu-
pancy becomes less sensitive to spectrum heterogeneity as the network density
increases. The parameters are set toε=100m, andPo=100mW, and spectrum
prices are fixed atpa=pc=1.

fc ∈ {500MHz, 750MHz, 1GHz}. The figure indicates that the channel occupancyΠa is

always greater than or equal to0.5 due to its favorable signal-propagation characteristics.

When SU density is low, the channel occupancyΠa is close to1 as most SUs tend to

enjoy the favorable signal-propagation characteristics of channela without worrying about

mutual interference. Under these conditions, the DSM behaves monopolistically. However,

as SU density increases, the channel-occupancy measureΠa decreases because, in such a

high interference regime, it becomes harder for SUs to exploit the benefits of favorable

signal-propagation characteristics. Thus, the DSM behaves like a duopoly. The figure also

shows that the occupancy measure approaches0.5 in all the tested cases, confirming the

correctness of Proposition 7.3.

7.6 Equilibrium of the Spectrum-Pricing Game

In this section, we study the impact of spectrum price on the WSP’s profit as defined in

Eq. (7.4), and characterize the Nash equilibrium (NE) points of pricing strategies.
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Figure 7.6: Profit of WSPs: The achievable profit of WSPs depends on spectrum leasing
pricesp=(pa, pc) and spectrum heterogeneity (i.e., channel frequency). We fix
the center frequencies atfa = 500MHz andfc =1GHz, and set SU density to
ρ=50/km2.

7.6.1 Impact of Spectrum Price on WSP’s profit

Here we evaluate the impact of the WSPs’ spectrum-pricing strategyp = (pa, pc) on

their achievable profits. Without loss of generality, we setthe heterogeneous spectrum

bands atfa=500MHz andfc=1GHz. However, we observed similar patterns for different

frequency bands. We fixed SU density atρ = 50/km2, and set the investment costs in

Eq. (7.4) atba = bc = 0 to eliminate their impact on WSPs’ profit, which will be studied

separately in Section 7.6.6.

Fig. 7.6 shows that WSPa always achieves a higher profit than WSPc, i.e.,Va > Vc,

thanks to its favorable spectrum profile. Fig. 7.6(a) shows that the profit of WSPa (i.e.,Va)

monotonically increases as competing WSPc increases its pricepc. This is because WSPa

tends to entice more customers due to channela’s better signal-propagation characteristics.

The advantage becomes more pronounced when the competitor WSPc sets a higher price

and loses part of its market share. In contrast, as shown in Fig. 7.6(b), when WSPc quotes

a higher price than that of WSPa, its achievable profit remains0, i.e., WSPa monopolizes

the market. This indicates that channelc is not competitive unless the price of channela

rises above a certain threshold.

Fig. 7.7 shows the impact of relative price,pc
pa

, on WSPs’ profit with respect to SU

densityρ (i.e., spectrum demand). We set pricepa = 1 and vary the pricepc from 0 to
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2.5. Here we have made three observations. First, the relationship between price ratio and

profit is a concave function as shown in Fig. 7.7. When the price ratio is relatively low,

WSPc’s profit decreases as the price ratio further decreases. Despite the fact that a lower

price attracts more SUs, the advantage is limited by increased interference among them.

When the ratio is relatively high, the profit also decreases as the ratio further increases, due

to the significant decrease in customers. Second, when the price ratio,pc
pa

, is above a certain

threshold, the profitVc becomes0 (i.e., the profit curve becomes flat) since the high price

makes channelc unattractive to customers. However, such a threshold increases with an

increasing SU density (i.e., spectrum demand) where WSPs can take advantage of a large

number of customers. Third, in a sparse network with low SU density, profitVc is maxi-

mized whenpc� pa because the interference on channela remains negligible, even when

most users are associated with WSPa. In contrast, in a dense network,Vc is maximized

whenpc ≈ pa because all SUs will suffer from high interference regardless of the chan-

nel characteristics. Therefore, WSPa loses its competitive advantage of superior signal

propagation characteristics. Note that this corresponds to our findings in Proposition 7.3 in

Section 7.5.3.
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7.6.2 Nash Equilibrium for Pricing Game

In a DSM, WSPs must carefully set the spectrum price, since too high a price results in

loss of market share, while too low a price will limit their achievable profits. We capture

this tradeoff with the notion of Nash equilibrium (NE).

Definition 2 (Spectrum price Nash equilibrium) An NE in the duopoly game is defined as

a strategy set{p∗c , p∗a} that satisfies:

p∗c = argmax
pc

Vc(pc, p
∗
a) (7.23)

p∗a = argmax
pa

Vc(p
∗
c , pa). (7.24)

Intuitively, an NE strategy set implies that no player can increase its profit by unilater-

ally adjusting the price. With the above definition, we can derive the NE of the duopoly

game. Unfortunately, it is difficult to find a closed-form expression for the NE. Hence, we

numerically solve Eqs. (7.23) and (7.24) using a simple iterative search algorithm to obtain

the NE price.

7.6.3 Existence and Uniqueness of Nash Equilibrium

Based on the above definition of NE, we examine the existence and uniqueness of the

NE points when SU density changes, which is equivalent to changing the spectrum demand

over the entire network. In the simulation, we consider a representative scenario in which

the frequency of WSPa is lower than that of WSPc, i.e.,fa = 500MHz andfc = 1GHz,

and thus, we expect the NE points to be formed such thatp∗a>p
∗
c .

8

Fig. 7.8 shows the best responses of WSPs under different SU densities. We have

made three key observations. First, the WSPc’s best response (solid lines) increases as

the spectrum pricepa increases, and vice versa. This is because the WSPs compete over

the same pool of customers in a given network coverage area, and hence, WSPs’ optimal

spectrum pricing is always relative to the competitors’ spectrum prices. That is, if WSPa

8Although we presented the NEs for a specific set of frequencies, we observed from simulations a similar
behavior for other frequency bands.

184



0 0.5 1 1.5 2
0

0.5

1

1.5

2

p
a

p c

 

 

best response of WSP c
best response of WSP a

2

1

(a) ρ = 10/km2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

p
a

p c

 

 

best response of WSP c
best response of WSP a

Nash equilibrium

1

2

(b) ρ = 20/km2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

p
a

p c

 

 

best response of WSP c
best response of WSP a

Nash equilibrium

1

3

(c) ρ = 50/km2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

p
a

p c

 

 

best response of WSP c
best response of WSP a

Nash equilibrium

1
3

(d) ρ = 100/km2

Figure 7.8: Best response functions for the WSPs: The existence and uniqueness of the NE
depends on spectrum heterogeneity as well as the secondary network density. In
the simulation, we setfa=500MHz, fc=1GHz, andba=bc=0.

quotes a high spectrum price, then the SUs’ achievable utility from WSPa will decrease,

changing their preference to the competitor, i.e., WSPc. This will allow WSPc to increase

its pricepc to reach an equilibrium point.

Note that this relative behavior of spectrum pricing provides an economic incentive to

WSPs for collusion. However, such a collusion can be prevented in practice for the fol-

lowing reasons. There will be alternative technologies to access the wireless spectrum,

e.g., IEEE 802.11, and hence, WSPs will lose their competitiveness as they advertise un-

reasonably high prices. Moreover, rational SUs would not purchase the spectrum if their

achievable utility (i.e., difference between capacity andprice) is too low, i.e., less than0.

Therefore, WSPs cannot set spectrum prices arbitrarily to increase their profit.

Second, when SU density is low, i.e.,ρ=10/km2, the price NE does not exist because
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prices increase with SU density. We assume zero investment cost, i.e.,ba=bc=
0, in the simulation.

total spectrum demand is not high enough for WSPs to make a profit. Althoughpc=pa=0

can also be considered as an NE point, the WSPs will avoid thisstrategy since this NE point

will provide a negative revenue to both WSPs. That is, to attract customers, WSPs have to

lower their prices until they reach0, and thus, there is no economic incentive for WSPs to

participate in the market. In contrast, with high secondarydensity, i.e.,ρ > 20/km2, the

NEs are formed at some positive values, thus providing economic incentives to WSPs.

Third, Fig. 7.8 indicates that the best responses exhibitphase transitions(the transition

thresholds denoted as 1,2,3), resulting in a different number of NEs depending on market

settings. For example, the figures show that the growing rateof the best responses of WSPa

(dashed lines) changes at certain thresholds (denoted as1). This is because whenpa remains

below the threshold, it is optimal for WSPa to increase the pricepa at a higher pace thanpc,

i.e., ∆pa
∆pc

>1, to take advantage of channela’s superior spectrum characteristics. However,

whenpa increases beyond the threshold, the high spectrum price limits the growth of the

utility of SUs. As a result, channelc becomes more attractive than channela, and thus,
∆pa
∆pc

<1. Similarly, the best response of WSPc has the threshold property denoted as2 and

3 in the figures.

One interesting observation is that, in dense networks, i.e., ρ=50, 100/km2, the price

pc increases faster thanpa until pa reaches the threshold3. This is because, despite channel
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a’s higher quality, when the pricepa is too low compared to the NE price, WSPc can quote

a higher price, i.e.,pc > pa to maximize its own profit, benefiting from a large number of

customers.

7.6.4 Market Dynamics under Various SU Densities

As we observed in Section 7.5, SU density (or spectrum demand) is a critical factor

in WSPs’ pricing competition. Here we investigate the impact of SU density on market

dynamics by examining the NE prices, WSPs’ profit, and SUs’ utility.

Fig. 7.9(a) shows the difference between the NE prices, i.e., p∗a − p∗c , as a function of

SU density. When the density is low, i.e.,ρ<10/km2, NE does not exist as we observed in

Fig. 7.8(a), and WSPs cannot make a profit because the market (spectrum demand) is too

small. As the density increases, however, the NE price of channela (p∗a) grows drastically,

whereas the pricep∗c remains0 due to its inferior spectrum profile. This means WSPc

cannot make profit if they quote a price greater thanpc>0. As a result, WSPamonopolizes

the market, as more clearly shown in Fig. 7.9(b) (shaded region). As the density further

increases, however, WSPc starts to share the market, i.e.,duopolybecause the SUs on

channela begin to suffer from co-channel interference.

Fig. 7.9(b) shows WSPs’ profit defined in Eq. (7.4) for variousSU densities. As we

discussed, when density is low, WSPa dominates (monopolizes) the market, i.e.,Va > 0
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andVc = 0, thanks to its superior spectrum profile. As the SU density increases beyond

a certain density threshold (i.e.,ρ = 12/km2), the market becomesduopolyand the dif-

ference in achievable profit decreases as the size of the market grows. Such a threshold

density depends on spectrum heterogeneity. Fig. 7.10 clearly shows that the range of SU

density below which WSPa monopolizes the market increases as the center frequency of

channelc increases. For example, whenfc = 2fa, WSPa will dominate the market until

SU density becomes larger thanρ= 13/km2. In addition, such a boundary of SU density

increases super-linearly, partly because of the relationship between received signal strength

and center frequency:PR ∝ f−α
c , as indicated in Eq. (7.1).

Fig. 7.11 shows SUs’ achievable utilities on each channel, i.e.,Ua andUc. The figure

shows that, whenρ < 13/km2, the utility on channela exceeds that of channelc, i.e.,

Ua > Uc, thus forming the monopoly market. On the other hand, in the duopoly market,

there is no difference in achievable utilities, and thus themarket is stabilized.
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7.6.5 Price NE under Spectrum Homogeneity

To demonstrate the impact of secondary density, while separating it from spectrum

heterogeneity, we consider threehomogeneousspectrum bands, i.e.,fa, fc ∈ {500 MHz,

600 MHz, 700 MHz}, and plot the corresponding NE points in Fig. 7.12. Due to spectrum

homogeneity, the NE prices are equal, i.e.,p∗a = p∗c , regardless of the secondary density.

We set the leasing costba = bc =0 to eliminate its impacts on NE prices. From Fig. 7.12,

we have two main observations. First, the equilibrium priceincreases with increasing sec-

ondary density (i.e., total spectrum demand) due to the increasing number of customers. In

addition, the lower the frequency band, the higher the pricefor any given secondary density,

since low-frequency bands return higher utility (i.e., capacity minus spectrum price) to the

SUs. Second, the equilibrium price converges faster with low frequency bands due mainly

to the large interference power (range) of low frequency bands. This is because the po-

tential benefit of using low frequency bands (i.e., a longer transmission range) diminishes

faster with secondary density due to their large interference range.
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profit in the market is determined by the channel frequencyfc and secondary
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7.6.6 Impact of Spectrum Investment Cost

Our analysis on WSPs’ pricing game can provide a practical guideline on WSPs’ spec-

trum investment decisions, such as a purchasing strategy from the spectrum owners (e.g.,

via auction) in the spectrum plane, as shown in Fig. 7.1. Let us consider a spectrum market

where WSPa operates with a channel at frequencyfa = 500MHz, which is obtained at

costba=1. Then, WSPc ponders whether to join the market by purchasing a channel with

fc from legacy spectrum owners at pricebc, which we refer to asspectrum investment cost.

Fig. 7.13 shows the maximum investment costbmax
c , beyond which the profit becomes

negative, i.e., WSPc cannot make a profit in the market. The maximum investment cost

depends on spectrum heterogeneity as well as SU density. Thefigure indicates that the

maximum investment costbmax
c is always lower thanba = 1 due to channelc’s inferior

spectrum profile, but it approachesba as the SUs density increases in the market or channel

c has a better spectrum profile, i.e., a lower value offc.
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7.7 Related Work

The problem of optimal spectrum pricing in spectrum market has been studied exten-

sively, and we discuss some of the work closely related to ours. Niyatoet al. [113] an-

alyzed spectrum pricing competition in cognitive radio networks with multiple primary

service providers. Inaltekinet al. [73] considered heterogeneous channel conditions due

to nodes’ physical distances from the base station in wireless IP networks. Jiaet al. [76]

studied the duopoly wireless spectrum market where two WSPscompete for bandwidth

and price to maximize their profit. Duanet al. [45] studied WSPs’ investment and pric-

ing mechanisms by considering SUs’ physical-layer wireless characteristics. In [44], they

also studied WSPs’ optimal spectrum investment and pricingdecisions in cognitive radio

networks where spectrum availability dynamically changesdue to the unpredictability of

PUs’ channel usage patterns. Gajićet al. [54] studied pricing competition among WSPs

via a two-stage multi-leader-follower game. Mutluet al. [111] studied measurement-based

on-line pricing for secondary spectrum access and developed a pricing framework for an

unknown demand function and call-length durations. However, none of the above studies

considered the heterogeneity of a wide range of available spectrum bands in the spectrum

market and spectrum sharing among co-located SUs in accessing the leased spectrum re-

sources.

The closest to our study is [80] which considered two CR-specific features: (i) band-

width (supply) uncertainty due to PUs’ activities, and (ii)spatial reuse of wireless spectrum.

They studied an interesting market scenario where multipleWSPs compete with each other

by jointly optimizing the spectrum price based on time and location-dependent spectrum

availability. Such fine-grained coordination, however, might not be suitable for a highly dy-

namic wireless environment due to its high computation and communication overhead. In

contrast, we assume a decentralized DSM where individual spectrum consumers purchase

the payoff-maximizing spectrum, just as in a real-world market economy. Spectrum price

stabilizes when multiple WSPs competing for market share reach a Nash equilibrium.
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7.8 Conclusion

The dynamic spectrum market (DSM) is a promising paradigm toprovide economic

incentives that facilitate DSA. In this chapter, we identified two key factors in a DSM—

spectrum heterogeneity and spectrum sharing among SUs—andstudied their impact on

price competition among wireless service providers (WSPs)in a three-step approach. We

first observed that SUs must share the wireless spectrum in the spatial domain, and es-

tablished the effect of SU density (spectrum demand) on achievable utility when they are

associated with the same WSP. We then derived the SUs’ optimal WSP selection strat-

egy that maximizes the utility, for given spectrum profile and leasing prices. Finally, we

formulated WSPs’ spectrum pricing as a non-cooperative game and identified its Nash

equilibrium points. Our analysis demonstrates that spectrum heterogeneity significantly

influences WSPs’ spectrum pricing, especially in a sparse network. In a dense network, the

benefit of a lower-frequency band diminishes due to severe co-channel interference, and

thus, spectrum heterogeneity has less impact on spectrum pricing.

In the future, we would like to investigate the impact of spectrum heterogeneity on

WSPs’ auction strategy in the spectrum plane. It would also be interesting to extend the

analytical framework to a DSM with multiple WSPs. Moreover,we plan to study the de-

pendency of an optimal spectrum price on other system parameters, e.g., maximum trans-

mission power.
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CHAPTER 8

Conclusions and Future Directions

This thesis focused on improving efficiency and robustness in spectrum management

for DSA. Despite the promises of improved spectrum efficiency that can mitigate the im-

minent spectrum-scarcity problem, several practical challenges must be addressed in order

to realize the benefits of DSA. This thesis has first identifiedthe two important and funda-

mental challenges that hinder the realization of DSA—i.e.,PUs’ fear of interference from

SUs’ communications and lack of economic incentive for sharing their spectrum resources.

Then, the thesis has presented a comprehensive spectrum management system for CRNs,

which provides novel approaches and enabling techniques invarious aspects of DSA, in-

cluding energy-efficiency, attack-tolerance, mobility, and spectrum pricing. In what fol-

lows, the main research contributions of the thesis are summarized, and future research

directions are discussed.

8.1 Primary Contributions

This thesis makes the following contributions toward efficient and robust spectrum

management for CRNs.

• Efficient Detection of Large-Scale Primary Users: The detection of large-scale

PUs is challenging due to the stringent detection requirements imposed by regulatory

entities like the FCC, which cannot be met by a single sensor with one-time sensing.

To improve detection performance while minimizing servicedisruptions by spectrum
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sensing, we proposed a joint sensor selection and sensing scheduling framework that

exploits the spatio-temporal variations in received primary signal strength by con-

structing a spatial RSS-profile for an incumbent signal. Specifically, we formulated

the problem of sensing scheduling as a sequential hypothesis test and presented an

optimal sensor-selection algorithm that minimizes the average sensing overhead. The

evaluation results have shown that the proposed sensing algorithms reduce sensing

overhead by up to94% for practical scenarios.

• Secure Detection of Large-Scale Primary Users: In CRNs, sensors (or SUs) can

be compromised by an attacker or malfunctioning due to hardware/software defects,

and thus their reports cannot be fully trusted at the fusion center. Such manipulated

or erroneous sensing reports can cause either waste of spectrum opportunities or ex-

cessive interference to PUs’ communications. To remedy this problem, we developed

a novel attack-tolerant distributed sensing protocol, calledADSP, that selectively fil-

ters out abnormal sensor reports or penalizes them, and thusmaintains the accuracy

of incumbent detection.ADSP exploits shadow fading correlation in the measured

primary signal strength at nearby sensors. To realize this idea, we proposed a sensor

clustering method, and designed filters and data-fusion rules based on the correlation

analysis of sensing reports. The evaluation results in realistic shadow-fading envi-

ronments have shown thatADSP can meet the detection requirements, even in the

presence of attacks.

• Efficient Detection of Small-Scale Primary Users: The detection of small-scale

PUs is more challenging than that of large-scale PUs due to their unique features,

such as unpredictable channel usage patterns, small signalfootprint, and mobil-

ity. To meet this challenge, we proposed a sensing algorithmtailored to small-

scale PU detection, calledDeLOC that iterates between cooperative sensing and

location/transmit-power estimation to further improve sensing performance. In par-

ticular, we developed a novel spatio-temporal fusion scheme that exploits (i) spatial

diversity by cooperative sensing with an optimal fusion range, and (ii) temporal di-

versity by scheduling a series of sensing stages with an optimal stopping time. Our
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evaluation results have shown thatDeLOC reduces detection delay significantly while

achieving high detection performance.

• Robust Tracking of Mobile Small-Scale Primary Users: In CRNs, SUs must be

able to accurately and reliably track the location of small-scale mobile PUs to bet-

ter utilizespatialspectrum opportunities, while protecting primary communications.

However, it is challenging to accurately track the locationof mobile PUs because

the tracking process must rely solely on the reported sensing results, which can be

easily compromised by malicious sensors (or attackers). Toremedy this problem,

we presented a framework, calledSOLID, for accurate, attack/fault-tolerant track-

ing of small-scale mobile PUs, such as wireless microphones. Our evaluation results

have shown thatSOLID lowers the localization error significantly regardless of the

presence or absence of attackers.

• Opportunistic Spectrum Access for Mobile Cognitive Radios: It is important for

CRNs to incorporate mobility of SUs to fully realize the benefits of DSA as various

future mobile devices are expected to incorporate CR functionality. In this thesis, we

identified and addressed three fundamental challenges posed by mobile SUs that do

not exist in the case of stationary CRNs. We showed via analysis that the channel

availability experienced by a mobile SU can be modeled as a two-state Markov chain,

and introduced guard distance in the space domain for efficient spectrum reuse. To

further enable efficient spectrum sharing, we derived an optimal distributed channel-

selection (access) strategy that maximizes the secondary network throughput perfor-

mance. The evaluation results have shown that the proposed spectrum sensing and

distributed channel access schemes significantly improve network throughput and

fairness, while reducing the SUs’ energy consumption for spectrum sensing.

• Optimal Spectrum Pricing in Dynamic Spectrum Market : The dynamic spec-

trum market (DSM) is a key economic means for realizing the opportunistic spec-

trum access that will mitigate the anticipated spectrum-scarcity problem. In DSM,

determining the optimal spectrum leasing price is an important, challenging prob-

lem that requires a comprehensive understanding of market participants’ interests
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and interactions. In this thesis, we studied spectrum pricing competition in a DSM

characterized by a duopoly, where two wireless service providers (WSPs) lease spec-

trum access rights and secondary users (SUs) purchase the spectrum use to maxi-

mize their utility. We identified two essential, but previously-overlooked, properties

of DSM: (i) heterogeneous spectrum resources at WSPs and (ii) spectrum sharing

among SUs. The proposed analytical framework has importantimplications for the

impact of spectrum heterogeneity in a real-world DSM, and provides practical guide-

lines for WSPs’ pricing strategies.

8.2 Future Research Directions

This section describes several additional research issuesthat are related to the extension

and application of CR technologies in future wireless networks.

• Mobile Wireless Systems with Cognitive Radio Capabilities: CR technologies

can be widely used in future wireless systems to further improve wireless spectrum

efficiency. One interesting direction is to apply the CR sensing technologies in het-

erogeneous wireless networks. For example, due to the pervasive usage of mobile

portable devices, such as smartphones, mobile data usage over cellular networks has

increased dramatically over the past several years. Therefore, off-loading such mo-

bile data traffic to Wi-Fi networks is a viable option for wireless service providers to

provide high quality wireless Internet access without the need for purchasing expen-

sive bandwidth resources. Advanced spectrum sensing techniques, such as sensing

scheduling algorithms, can be applied in the design of energy-efficient mechanisms

for Wi-Fi opportunity discovery for mobile smartphone users.

• Leveraging Spectrum Heterogeneity in Future Wireless Networks: With the cur-

rent trend of spectrum deregulation, we envision that a widerange of spectrum re-

sources will be available in future wireless environments.Regarding spectrum het-

erogeneity, in Chapter 7, we studied the problem of optimal spectrum pricing in a

DSM, in which WSPs compete for a market share with heterogeneous spectrum re-
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sources. Such spectrum heterogeneity can be leveraged for improving network per-

formance in various aspects, such as resource allocation (e.g., channel and transmit-

power), protocol design, and network optimization. For example, the IEEE 802.11af

Working Group aims at the operation of Wi-Fi networks on TV white spaces. How-

ever, the current MAC-layer protocol design, e.g., CSMA/CA, is tailored to operate

optimally on high frequency bands, i.e.,2.4GHz and5.7GHz ISM bands. There-

fore, it is of practical importance to study the impact of spectrum heterogeneity on

the performance of MAC and upper layer protocol stacks and incorporate them into

the design of future wireless systems.
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APPENDIX A

Proof of Proposition 4.1

To minimize the average number of sensing roundsN in Eq. (4.8), we need to find the

data-fusion range that maximizes the expected test statistic, i.e.,E[λ |Hk]. Note thatE[ΛN ]

is a function of desired false-alarm and mis-detection probability, and does not depend on

the fusion range, as indicated in Eq. (4.10). LetJ(Rf ),E[λ |H1] in Eq. (4.19). Then, we

have:

J(Rf ) , E[λ |H1]

=
1

2
(φ2

0 − φ2
1)ρπR

2
f +

φ1 − φ0

σn
(Po e

1
2
σ2

m1 +NoρπR
2
f )

= a1R
2−α
f + a2R

2
f + a3, (A.1)

where

a1 =
2 (φ1 − φ0)Po e

1
2
σ2
ρπdαo

σn(2− α)
, (A.2)

a2 =
1

2
(φ2

0 − φ2
1)ρπ +

(φ1 − φ0)Noρπ

σn
, (A.3)

a3 =
2 (φ1 − φo)Po e

1
2
σ2
ρπdαo

σn(α− 2)εα−2
. (A.4)

To find an optimal value ofRf , we need to show the concavity ofJ(Rf ) w.r.t.Rf . The
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first order derivative ofJ(Rf ) is given as:

∂J(Rf )

∂Rf
= a1(2− α)R1−α

f + 2a2Rf . (A.5)

Then, the second order derivative is given as:

∂2J(Rf )

∂R2
f

= a1(2− α)(1− α)R−α
f + 2a2

=
4(φ1 − φ0)ρπ

σn

(
(1− α)Po e

1
2
σ2
( do
Rf

)α
+No −

(φ1 + φ0)σn
2

)

≈ 2ρπ
(
1− 2α

)(PR

σn

)2
. (A.6)

In practice,α > 1
2
, so it is easy to show that∂

2J(Rf )

∂R2
f

< 0 and henceJ(Rf ) is concave.

Therefore, the optimal fusion rangeRf can be derived from Eq. (A.5) as:

R∗
f = argmax

Rf

J(Rf ) = Rf

∣∣∣∂J(Rf )

∂Rf
=0

=

(
a1(α− 2)

2a2

) 1
α

. (A.7)

Thus, the proposition holds. �
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APPENDIX B

Proof of Lemma 7.1

Since the interfering nodes are distributed uniformly outside the interference rangeS,

the nodes inside a differential element arear dr dθ generates the following amount of in-

terference:

dIout(ρ, c) = Po g(r) ρc r dr dθ = Po

(co
fc

)α
r1−α ρc dr dθ. (B.1)

Then, based on Eq. (B.1), the total interference cause by nodes located outside the

interference regionS, i.e., unit disk of radiusRc
I centered at the receiver, can be calculated

as:

Iout(ρ, c) =

∫

outside the disk
dIout(ρ, c)

=

∫ 2π

0

∫

A−S

Po

(co
fc

)α
r1−α ρc dr dθ

(a)

≤

∫ 2π

0

∫ +∞

Rc
I

Po

(co
fc

)α
r1−α ρc dr dθ

= Po

(co
fc

)α
ρc

∫ 2π

0

r2−α

2− α

∣∣∣∣
+∞

Rc
I

dθ

= 2π Po

(co
fc

)α ρc (Rc
I)

2−α

α− 2
. (B.2)

Eq. (B.2) indicates thatIout can be upper-bounded by a constant value shown in the last

line. Note that the inequality(a) is based on the fact that the amount of interference in a

finite network is lower than or equal to that of the network with infinite size.
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APPENDIX C

Proof of Proposition 7.1

We prove that theoccupancy measureΠc(t) converges to a deterministic process in the

continuous-time domain, i.e., the mean-field limit of the Markov process. We first rescale

the original discrete-time Markov process, and define a new continuous-time processΠ′
c(t),

such thatΠ′
c(

t
N
) = Πc(t).

In [16], Benaı̈met al.established the sufficient conditions for the convergence of anN-

dimensional Markov process towards the mean field limit, fora largeN . Specifically, five

conditions need to be satisfied for the convergence. Specificto our model, the conditions

can be interpreted as follows.

C1 The system resource does not scale withN .

C2 Intensity vanishes at rateo(N).1

C3 Second moment of intensity must be bounded.

C4 Transition matrix of the resource is a smooth function of1
N

and the mean field limit.

C5 Intensity is a smooth function of1
N

and the mean field limit.

Note that C1 and C4 can be easily satisfied since no explicit channel resource is defined

within our model. In fact, the links’ state transitions implicitly change the channel status.

So, we proceed to prove that C2, C3, and C5 are satisfied in our model.

1In this paper,f(x)=o(g(x)) if limx→∞

f(x)
g(x) =0.
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Proof for C2. LetNn be the number of nodes in the network. Each node can be a data

source, following a Poisson distribution with rateλ. Consider a time slot[t, t + δ] where

δ= ∆t
N

. Define the number of arrivals within[t, t + δ] asÑ(t, t + δ), which is the number

of state transitions of each source node, withinδ. According to the Poisson property,

Pr
(
Ñ(t, t+ δ) = 1

)
= λ δ e−λδ. (C.1)

Therefore, the intensity—i.e., the total number of state transitions in the system—is:

Nn · Pr(Ñ(t, t + δ) = 1) = Nn · λ δ e−λδ

= Nn · λ
∆t

N
e−λ∆t

N

(a)

≤

√
AN

πR2
· λ∆t

N
e−λ∆t

N

= o(N), (C.2)

where the inequality (a) is due toN ≤ N2
n

(
πR2

A

)
whereR is the transmission range of SUs.

Proof for C3. LetWN(t) denote the number of source nodes that make a transition at

time slott. The number of links that make a transition is bounded by the number of source

nodes, henceWN(t)=Nn.

E
[
WN(t)2

]
= N2

n ≤ N2 A

NπR2
= N2ε(N)2. (C.3)

Proof for C5. Given the occupancy measureΠc(t) at time slott, the drift can be obtained

directly from Eq. (7.12). Specifically, given thatNc(t)=m, then the drift is given as:

E
[
Nc(t+ 1)−Nc(t) |Nc(t) = m

]
= N λPc −mλ,

which is obviously a smooth function of1
N

.
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