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CHAPTER 1

Introduction

1.1 Cognitive Radio Networks

Due to the ever-increasing demand for new wireless seraicdspplications for any-
time and anywhere connectivity in our daily businesses ares,| we expect to face a
shortage of available wireless spectrum in the near futdogvever, this spectrum-shortage
problem is known to be rooted in the conventiostatic spectrum-allocation policy where
only licensed devices can operate on a designated spectmd Bor example, according
to a recent measurement report, an average offoal of wireless spectrum und8iGHz
was being actively used, indicating that a large fractiospg#ctrum bands are un-/under-
utilized at any given location and time [98].

Cognitive radios (CRs) have recently been proposed as eacite means to miti-
gate the imminent spectrum-scarcity problem [72]. In ctigairadio networks (CRNS),
secondary (unlicensed) users (SUs) can opportunistieattgss temporarily available li-
censed spectrum bands, i.e., spectrum bands not being yifieel frimary (licensed) users
(PUs). Such opportunistic spectrum access is also refesrasdynamic spectrum access
(DSA). As an initial step towards realizing this new concapDSA, the Federal Commu-
nications Commission (FCC) has recently approved the tiparaf unlicensed CR devices
in TV spectrum bands (a.k.a. TV white spaces) [49, 50]. Thiggion creates new oppor-
tunities for improving the efficiency of wireless spectruesources without the restrictions

of the conventional static spectrum access policy, thusiteeng the accommodation of



new wireless services and increased user demands.

Meanwhile, various standardization efforts are under lbgveent to utilize spectrum
opportunities, such as IEEE 802.22 Wireless Regional Aetavbrks (WRANS) [1], 802.11af
[2] and Ecma 392 [77]. For instance, the IEEE 802.22 WRANsq1he first standard us-
ing TV white space, and it aims to provide a last-mile wirslbsoadband access to rural
areas.

Although DSA has been recognized as a promising solutiohécspectrum-scarcity
problem by significantly improving the wireless spectruriicefncy, its realization entails
several technical and political challenges. In this thesis identify the two main chal-
lenges that hinder the realization of DSA. The first and mastdémental challenge is
PUs’ concern about potential interference from SUs’ comications. If PUs allow unli-
censed users (or SUs) to opportunistically access theindied spectrum bands, they risk
an increased level of interference caused by SUs’ commtioica Such interference can
degrade the quality of PUs’ service, which can easily leathéloss of PUs’ business.
Therefore, SUs must provide efficient mechanisms to pr&®®elf communications, such
as spectrum sensing.

The second challenge is the lack of economic incentives t® fBlUspectrum sharing.
Even if SUs can almost perfectly avoid interfering with Poeimmunication, PUs may still
not be fully convinced to open up their spectrum resourceslicensed users since there is
no clear incentive for them to share their spectrum. Theeefoe need to provide efficient
economic mechanisms, such as spectrum pricing stratélgas;an provide incentives to
both PUs and SUs by facilitating their interactions. Withasolving the above two main
challenges, DSA will not widely accepted.

To address these challenges, we propose an efficient anst sgictrum-management
framework that addresses several key CR-unique challesged as spectrum sensing,

security, mobility and the dynamic spectrum market.



1.1.1 Efficient Detection of Primary Users

Accurate sensing of spectrum condition is key to the retiinaof DSA, so it can help
mitigate the spectrum-scarcity problem. The main goal @cspim sensing is to accu-
rately detect, in real time, the presence/absence of pyisignals on a spectrum band.
However, achieving this goal is not easy since the FCC ingpusey strict detection re-
guirements to protect primary communications from potdntiterference from SUs. For
example, in 802.22 WRANS, SUs must be able to detect a prisignal as weak as -20 dB
within 2 seconds with high accuracy, i.e., both mis-detecnd false-alarm probability
less than 0.1 [38]. Unfortunately, this stringent perfonee requirement cannot be met
with one-time sensing with a single sensor regardless afitiaerlying sensing technique,
e.g., energy/feature detection [127, 131, 133].

In order to improve the detection performance, distribtadcooperative) spectrum-
sensing [55, 106] has recently emerged as a viable meanfhtmes the detection per-
formance by exploiting sensor-location diversity. In cemgiive sensing, the base station
(BS) directs multiple cooperative sensors to perform spatsensing simultaneously and
collects the sensing results (i.e., measured receivedapyisignal strengths) to make a
final decision as to the existence of a primary signal. Ano#pproach to improve de-
tection performance in the temporal domain is sensing sdimegfd In sensing scheduling,
the BS schedules spectrum sensing multiple times to expleitemporal variations in re-
ceived primary signal strengths. The BS can schedule sgnaitil it accumulates enough
information to make a decision with high accuracy.

In CRNs, spectrum sensing must be able to detect heterogemgoes of PUs. For
example, in 802.22, there are two types of PUs in TV white spkage-scale e.g., TV,
andsmall-scalee.g., wireless microphone (WM) signals. In this thesischvese the terms
large- andsmall-scalePUs based on the size of the spatial signal footprint, arfdrdift
approaches are required for their detection. For the deteof large-scale PUs, coop-
erative sensors need to be chosen carefully by the BS simsersemay exhibit different
detection performance based on their location and wireesditions. Moreover, the BS

needs to schedule spectrum sensing optimally to minimizsisg overhead and detection



latency. The detection of small-scale PUs is even more ehgithg due to their unpre-
dictable spatial and temporal usage patterns and theid sigakl footprint. Therefore,
knowing the PUs’ characteristics, e.g., location and tratpower level, is important for

efficient opportunistic spectrum reuse.

1.1.2 Robust Detection of Primary Users

Spectrum sensing is vulnerable to attacks and device ésijusuch as primary user
emulation [11, 26] or sensing report manipulation atta@8&j.[ These sensing-targeted at-
tacks or malfunctioning sensors can severely undermineetection of primary signals
and spectrum white spaces because the fusion rule for a feaidn on a PU’s pres-
ence/absence relies solely on measurement results reégnytihe sensors, i.e., received
signal strengths (RSSs). Therefore, sensing-targetackattan disable accurate spectrum
sensing, the basic premise of DSA. In this thesis, we reférdse unique sensing-targeted
attacks in CRNs asensing-disorder attacks

A sensing-disorder attack aims to obscure the existencepoih@ary signal or white
space by manipulating the spectrum-sensing informatian, (sneasured RSSs) either by
raising or lowering the signal strengths that they repoth®BS. When no primary sig-
nal exists, attackers can raise RSSs to generate an illamprimary signal. Otherwise,
attackers can lower RSS to veil the presence of a primaryabkign both cases, attack-
ers mislead the fusion center (i.e., base station, BS) teeraakincorrect decision on the
presence/absence of a primary signal, causing either wasigectrum resources or un-
acceptable interference to the primary communicationsthi@detection of a small-scale
primary signal, a sensing-disorder attack can signifigantirease the error for the local-
ization of a primary transmitter, resulting in the waste péstrum opportunities in the
space domain.

While sensing-disorder attacks can be easily launched théhaid of programmable
software-defined radio (SDR) devices, their detection fBcdit. Unlike the ordinary
Denial-of-Service (DoS) attacks that exhaust all the ndtwesources, they can be eas-

ily mounted by using SDR devices, such as USRP [3] and Sofa [B#ese open-source



SDR platforms can be an attractive target for attackersusecaf their accessibility to low-
layer protocol stacks like PHY and MAC. Detecting thesedki$a however, is very diffi-
cult. While security mechanisms such as MAC-layer or cryipised authentication work
well in traditional wireless networks, lack of primary-seclary communications precludes
their usage in CRNs. Moreover, detection difficulty is exhated by the volatile nature
of the wireless medium itself, which makes it hard to différate between legitimate and
manipulated sensing reports. Despite the grave consegu#rtbese threats, they have

been overlooked in the design of existing distributed spetisensing schemes.

1.1.3 Mobile Cognitive Radios

The main goal of DSA is to allow CR-equipped SUs to safely extexith PUs without
disrupting PU communications. To achieve this goal, va@spects of DSA, such as spec-
trum sensing [88, 100, 104], spectrum sharing [102, 164], security [103], have been
studied extensively. Most existing efforts, however, ®aun stationary CRNs, in which
the location of both PUs and SUs are known to the BS in secgralatems, and thus,
they may not be suitable when SUs amebile We envision that future mobile devices will
incorporate CR-functionality and will be capable of dynarmand flexible spectrum access.
Various standardization efforts for mobile CRs are beingettped to utilize spectrum
white spaces, such as 802.11af [2] and Ecma 392 [77].

Enabling DSA for mobile SUs entails new practical challendérst, existing spectrum-
availability models are derived based solely on PUs’ terapwaffic statistics and might
thus be unsuitable for CRNs with mobile CRs/SUs. Unlike atishary CRNs (e.qg., [1]),
in which spectrum opportunity (or availability) is mostlifected by PUs’ temporal chan-
nel usage patterns, in mobile CRNs, availability can alssnge as SUs move towards or
away from PUs that are actively transmitting data. Seconatepting PUs from the SU
mobility-induced interference is a challenging problerattballs for an efficient spectrum-
sensing strategy tailored to mobile CRNs. Mobile SUs mayneeense spectrum more
frequently to avoid interfering with PU communications.whyer, frequent spectrum sens-

ing may not only incur significant time overhead [88], buadgiickly drain the battery of



mobile CR devices due to the power-intensive nature of specsensing [7, 68]. Third,
mobile SUs will experience heterogeneous spectrum oppitids across space and time
domains based on the geographical distribution of PUs argl 8idbility patterns. The
three challenges mentioned above are interrelated. Hémdelly realize the benefits of

DSA for mobile SUs, they must be considered jointly.

1.1.4 Dynamic Spectrum Market

The dynamic spectrum market (DSM) will play a key role in id@a DSA by facili-
tating spectrum trading between legacy spectrum ownersecohdary consumers. This
spectrum trading can be encouraged by a suitable pricinghtiocbugh which DSM pro-
vides attractive economic incentives to legacy spectrumers; and cost-effective spec-
trum access to secondary consumers. This will, in turn, lemabre efficient and flexible
usage of spectrum resources. Such a DSM already existsiougsdorms, such as mobile
virtual network operators (MVNO) [4] and online spectrumrkeds (e.g.specex. com
[5]).

A wide range of heterogeneous frequency bands will be @laila the DSM consider-
ing the current trend of deregulating wireless resources.ekample, the TV white space
recently opened for unlicensed usage spans a wide rangegofefncies over the VHF/UHF
bands. Given this availability, it is natural for WSPs to wheterogeneous spectrum bands
So as to avoid interference between them. Due to the diféeranpropagation profile (i.e.,
frequency-dependent attenuation rate), heterogeneamsiets have different transmission
and interference ranges, even with the same transmit p&aéional secondary consumers
would be able to evaluate the value/utility of different ohals and exploit the capability
of their SDRs to access the different ranges of spectrumsavallable in the market.

Another important but largely overlooked feature of DSMhg nhecessity of sharing
leased spectrum bands with other SUs, which is a commonréeafwireless communi-
cations. This feature has some implications in establgsthie way market participants in-
teract with each other. In a DSM, WSPs sublease their spaaeaources to multiple SUs

in the same geographical area to maximize their revenudgiérg the spatial reusability
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Figure 1.1: An overview of the thesis proposal.

of wireless spectrum resources. Such spectrum sharingloatgs the spectrum price-
demand relationship, making the DSM different from the ittadal market where goods
are exclusively owned by buyers [97]. For example, when Stdsesa leased channel,
guoting a low spectrum price would lead to paradoxical tssuA low price may attract
more users, but it will also increase the level of interfeeeamong SUs, thus discouraging
SUs from accessing it even at a low price. Therefore, unaledstg this price-demand
relationship is of great importance to the design of WSP&nogd spectrum pricing and

SUs’ WSP selection strategies.

1.2 Research Contributions

The main objective of this research is to improve spectrdinieficy in CRNs. Specif-
ically, this thesis presents new techniques and framewirdsallow SUs to accurately
monitor spectrum conditions with high efficiency and robess, and facilitate PU-SU
interactions in DSM by providing economic incentives to Fisspectrum sharing (see

Fig. 1.1). The main research contributions are summarigddlws.

e Efficient Detection of Large-Scale Primary UsersIn CRNs, regulatory bodies, such
as the FCC, enforce extremely demanding detectabilityireouents to protect PUS’

communications, which can hardly be achieved with one-ts@esing using only a



single sensor. To overcome this challenge, we present @argpesensing framework
that minimizes the sensing overhead by jointly optimizirgmerative sensing and
sensing scheduling, while meeting the desired detectidoqmeance.

Specifically, we design an optimal sensing framework fayéaBcale PU detection in
CRNs that directs the base station (BS) to manage spectmsingey (i) constructing
each primary signal’s spatial profile of received signasgths (RSSs) as a detection
criterion, (ii) selecting an optimal set of sensors for cagpive sensing, and (iii) find-
ing an optimal time to stop sensing. The evaluation resiitsvsthat the proposed
sensing framework significantly reduces sensing overhduale wieeting the detection

requirements set by the FCC.

Robust Detection of Large-Scale Primary Usersin CRNs, making distributed sens-
ing secure is challenging because of two unique CR-featdogenness of a low-layer
protocol stack in SDR devices and nonexistence of commtiaitabetween primary
and secondary devices. Moreover, cooperative sensorseciaulty or erroneous due
to hardware/software defects. As a result, the sensingtsefitat they produce may
have non-zero offsets.

As a first step towards addressing this challenge, we proposstack-tolerant co-
operative sensing scheme for large-scale PU detectiorhelptoposed scheme, the
fusion center cross-checks sensors’ measurement resthts@ighboring sensors to
prevent compromised (or faulty) sensors from affectingfie decision at the fusion
center. The key idea is to pre-filter abnormal sensing regoytexploiting shadow
fading correlation in RSSs among neighboring sensors byimefa correlation filter.
Our evaluation results show that the proposed sensing fankecan still meet the

detection requirements even in the presence of attackers.

Efficient Detection of Small-Scale Primary Users In CRNs, detecting small-scale
primary signals such as WMs is a challenging problem, dubd small signal foot-
print and the unpredictability of their spatial and temposage patterns. To overcome
these challenges, we propose a small-scale PU detectioevrark based on the fol-

lowing two key observations: (i) we identify the data-fusicange for cooperative



sensing as a key factor in effective small-scale primargctain, and (ii) we observe
that sensing performance is sensitive to the accuracy afimt and transmit-power
level information available to the secondary network.

Based on these observations, we propose an efficient sdresimgwork that iteratively
performs location/transmit-power estimation and codjperasensing with adaptive
sensor selection based on the estimates, to achieve niaabgetection performance.
Our in-depth evaluation results show that our proposedl|ssnale primary detection
framework provides high detection accuracy while maintgjra low false-triggering

rate.

Robust Tracking of Mobile Small-Scale Primary Users In CRNs, in order to en-
hance utilization of spatial spectrum opportunities, SuWstnbe able to accurately and
reliably track the location of small-scale mobile PUs. Toauplish this, we propose
a framework, for accurate, attack/fault-tolerant tragkirfi small-scale mobile PUs.
The key idea is that it exploits the temporal shadow fadingetation in the primary
signal strengths measured at cooperative sensors indydkd primary’s mobility. To
realize this idea, we augment the conventional Sequentiadt®Carlo (SMC)-based
target tracking with shadow-fading estimation. By estimg@tshadow-fading gain be-
tween the primary transmitter and sensors, the proposetetwark will not only sig-
nificantly improve the accuracy of primary tracking in thesabce of attack, but will
also successfully tolerate sophisticated attacks, sutbl@s-poisoning,” preserving

localization accuracy and improving spatial spectrum iefficy.

Mobile Cognitive Radio Networks: We envision that future mobile devices will in-
corporate CR-functionality and be capable of dynamic andile spectrum access.
To enable DSA for mobile CRs, we identify and address funadatehallenges posed
by mobile SUs that do not exist in the case of stationary CRNere/the locations of
PUs and SUs are knovanpriori to the secondary BS.

Specifically, we model spectrum availability from the mellR devices’ perspective.
Based on the spectrum availability model, we design an efficpectrum-sensing

strategy to protect PUs’ communications from SUs’ mobiiitguced interference. In



addition, to better utilize spatio-temporal spectrum apyndties, we design an opti-
mal distributed channel-access strategy for mobile SUsd&veonstrate the accuracy
of our SU mobility-aware spectrum availability model viadepth simulation study.
Moreover, our evaluation results show that our proposedtapa sensing and access
mechanisms significantly improve SUs’ throughput perfaroegaand reduce energy

consumption due to spectrum sensing, while protecting blsimunications.

e Optimal Spectrum Pricing in DSM: In future wireless environments, a wide range
of spectrum resources will be available in the market as atre$ the current trend
of deregulation of wireless spectrum. To obtain usefulghts on the impact of spec-
trum heterogeneity, we introduce a new DSM model where WSishgterogeneous
spectrum resources compete for a higher market share.

In particular, we propose a new spectrum price-demand nmadedd on the desire of
SUs to maximize their own utility, by evaluating the key atmiting factors, such

as the impact of spectrum heterogeneity, spatial specthamrgy, and total spectrum
demand. We then derive SUs’ optimal WSP selection strataggdon a mean-field
approach to study how spectrum heterogeneity affects magkelibrium. Finally, we

model the pricing strategies among WSPs as a non-coopegdive and identify the
key factors that influence the Nash Equilibrium (NE) poitéking into account the

price-demand relation caused by the utility maximizingdnabr of SUs.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Chadteresents an efficient
cooperative sensing framework based on spatial-RSS puaffige primary signal. The
proposed framework minimizes sensing overhead while mgétie detectability require-
ments. Chapter 3 proposes a secure cooperative spectramgiamework, calledDSP,
for the detection of large-scale PUSDSP accurately detects and filters out compromised
or erroneous sensing reports by exploiting shadow fadingeladion in sensing reports
among nearby sensors. Chapter 4 presents a small-scalaryritetection framework,

called DeLOC. DeLOC allows SUs to accurately detect small-scale PUs by joindy p
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forming cooperative sensing and location/transmit-pastimation. Chapter 5 proposes a
robust mobile small-scale PU tracking system, caB€lll D. SOLI Denables accurate and
robust location tracking of mobile primary transmitteysrachieving high spatial spectrum
efficiency. Chapter 6 develops optimal spectrum sensingaandss strategies for mobile
cognitive radios. The proposed schemes protect primaryraamcations from mobile cog-
nitive radios while minimizing energy consumption by spest sensing. Chapter 7 studies
optimal spectrum pricing and WSP selection strategies thrapoly DSM in which WSPs
compete with heterogeneous spectrum resources. Firalyhesis concludes with Chap-

ter 8.
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CHAPTER 2

Efficient Detection of Large-Scale Primary Users

2.1 Introduction

In DSA networks, spectrum opportunities can be detectedaimous ways, such as
spectrum sensing [57, 81], beacon protocol [18, 86], orlgeation database [21, 63, 110].
Spectrum sensing directly detects the presence or absémacprionary signal in a target
spectrum band. To protect PUs’ communications, spectrursiisg must meet strict re-
guirements set by regulatory bodies, such as the FederahfDomations Commission
(FCC). For example, in the IEEE 802.22 Wireless RegionalaAxetworks (WRANS)
[1, 138], a primary signal as weak a0 dBm must be detected with high accuracy, i.e.,
both false-alarm and mis-detection probabilities mustdss ithanl0 % [38]. Unfortu-
nately, this stringent requirement cannot be met usingtione-sensing with a single sen-
sor, regardless of the underlying PHY-layer sensing sckeeg., energy/feature detection
[127, 131, 133]. A second method for detecting a primaryaigor the beacon protocol,
has also been proposed to detect the existence of a pringgrgl shore efficiently. How-
ever, the beacon protocol requires legacy devices to beeediwith an external beacon
device. Therefore, it may not be a feasible solution foragewidely-deployed legacy
systems because of the high cost involved. Moreover, suchfitations violate the basic
premise of DSA—opportunistic spectrum access should reequa modification to legacy
systems. Thus, the beacon protocol cannot obviate the weeapéctrum sensing. Alter-

natively, a geo-location database can be used to identdgtgpm availability at a given
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time and location [110]. Such a database can be construstethaintained by regulatory
bodies, such as the FCC in the US or Ofcom in the UK, or by adcusitird party. A
database can be used for spectrum bands on which PU astargaelatively predictable,
e.g., DTV signals with long ON/OFF periods. In fact, the FG€eantly mandated the
use of a geo-location database for accessing TV band whéees [50]. Algorithms and
frameworks for implementing geo-location databases foisp¥ctrum bands are currently
under development [63, 110]. However, it may require a amrsible amount of time to
construct a database with a complete spectrum map. Loolpripeidatabase to check
spectrum availability also consumes system resources.

In this chapter, we focus on improving spectrum-sensin{pp@ance via joint design
of two MAC-layer sensing methodspoperative sensingnd sensing schedulingThis
joint design allows SUs not only to overcome the performaaheiciency of PHY-layer
sensing, but also to make the tradeoff between performagioeagd sensing overhead. In
cooperative sensing, a fusion center (a base station)tslinealtiple sensors at different
locations to perform spectrum sensing simultaneouslyngueach sensing (quiet) period,
thus exploiting sensor location diversity [20, 35, 55, 506,1122, 143, 144]. Schedul-
ing sensing also aims to improve detection performance binga&Us perform spectrum
sensing at various time intervals, thereby exploiting terapvariations in received signal
strengths (RSSs) at each sensor [39, 81]. However, all Si#s¢ss) must remain silent
during sensing periods so that SU signals are not misirgexgras a primary signal [112].
These periods of silence waste precious resources, sucteag/eand time, and ultimately
degrade the quality-of-service (QoS) of SU communicatidrierefore, the fusion center
must carefully select a set of cooperative sensors and afyischedule sensing periods
S0 as to minimize sensing-induced interruptions, whilerguoieeing the required detection
performance, even for weak primary signals.

To address this practical challenge, we propose an effisigattrum-sensing frame-
work that jointly exploits spatial and temporal RSS vadas to minimize sensing over-

head subject to the detectability requirements. In pdeicwe address the following three

We use the termSUsandsensorsnterchangeably since we focus on the sensing functigrafisUs in
this thesis.
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key issues in MAC-layer spectrum sensing: (i) which sensoisse for cooperative sens-
ing, (ii) how to incorporate their heterogeneous sensidésgiin data fusion, and (iii) how to

minimally schedule spectrum sensing.

2.1.1 Contributions

This chapter makes the following main contributions.

e Introduction of a new concept of spatial RSS-signatureetdasooperative sensing
that exploits the spatial variations in RSSs among coopgyaensors byearning
the RSS distributions at sensor locations. This is a feasibtl useful approach in
CRNs where sensor locations astationary thus making their RSS distributions

unique and (pseudo) time-invariant.

e Development of a simple and near-optiniaear data-fusion rule for detection of a
primary signal based on a one-time sensing via a linearidigzant analysis (LDA).
This is based on the observation that, when energy deteistiemployed in a low
SNR environment such as IEEE 802.22 WRANS, spatial RSSilnlisitvns can be
approximated as multi-dimensional Gaussian with a commwaréance matrix. The
theoretical performance of the LDA-based decision ruleansthadow fading is also

presented.

e Proposal of an optimization framework for minimizing theasmg overhead of co-
operative sensing, which consists of: (i) an algorithm festing an optimal set of
sensors for cooperative sensing , and (ii) an online sefs@nigd scheduling algo-
rithm that finds amptimal stopping timeia a sequential probability ratio test (SPRT)

based on the sensing results.

¢ In-depth simulation to demonstrate the benefits of the e@spectrum-sensing
algorithms. Our simulation results show that the propos88-Rrofile-based detec-
tion schemes for both one-time (i.e., LDA-based) and setipldhe., SPRT-based)

sensing significantly improve detection performance olrerdonventional decision

14



fusion rules, such as the OR-rifleThe results also show that our algorithms for

sensor selection reduce the average sensing overheaficsigtty.

2.1.2 Organization

The remainder of this chapter is organized as follows. 8e@i2 briefly reviews the
IEEE 802.22 WRAN and the energy-detection technique, Wl by our approach to ex-
ploiting the spatio-temporal variations in RSSs for speutsensing. Section 2.3 presents
our RSS-signature-based detection scheme for one-tinsengeand its theoretical perfor-
mance. Section 2.4 introduces our cooperative sensingithigs designed to (i) select an
optimal set of sensors and (ii) find an optimal time to stopssen Section 2.5 evaluates
the performance of the proposed algorithms, Section 2i6weswelated work on spectrum

sensing. Section 2.7 concludes the chapter.

2.2 Preliminaries

In this section, we first introduce the DSA network model cspan sensing for incum-

bent detection, and then outline our proposed spectrumsiragiframework.

2.2.1 DSA Network Model

We consider a DSA network in which primary and secondaryesgstcoexist in the
same geographical area, as shown in Fig. 2.1. We assumeessleaite stationary primary
system, such as DTV users in TV spectrum bands. A secondsigrsys an infrastructure-
based network and each cell consists of a single base sfatiusion center) and multiple
sensors. The fusion center selects sensors and directsdghmsrform sensing by schedul-
ing sensing (quiet) periods multiple times. At the end ohesensing period, sensors report
their measurement results to the fusion center sequentBdised on the sensing reports,

the fusion center will make a final decision on the presen@bsence of a primary signal

°The OR-rule is the most common decision-fusion rule in theeabe of prior knowledge of RSS distri-
butions [35, 55, 81, 127, 129].
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and will announce the decision to the SUs in the cell. We assilne existence of a sepa-
rate control channel which provides reliable communicabietween the fusion center and

Sensors.

2.2.2 Spectrum-Sensing Model

Spectrum sensing consists of PHY- and MAC-layer mechanisimsPHY-layer sens-
ing, we assume energy detection instead of other sensingitees, such as matched-filter
detection [87], cyclostationary feature detection [94d @ompressed sensing [160]. The
energy detector is one of the most widely-used because sihiisle design and low com-
plexity; it simply measures signal power on a target freqydyand and does not requiae
priori knowledge of primary-signal-specific features.

Regarding the existence of a primary signal on a given cHatireze are two hypothe-

ses, i.e.,

w;(n) H,y (no primary signal)
yi(n) =
si(n) + w;(n) H, (primary signal exists)

wherey;(n) is the signal received by a sensei(n) is the primary signal, and;(n) is an
independent and identically distributed (i.i.d.) additiwhite Gaussian noise (AWGN) at
sensor; in the n-th time slot within the sensing duration. The test statisfithe energy

detector is an estimate of average RSS [127]:

T, = ”u Zyz(n) * y;(n), (2.1)

whereB is the channel bandwidth, ard is the number of signal samples during a sensing
period. The test statistic can be approximated as a Gaudisimibbution using the central
limit theorem (CLT) because the signal sample si¥k,is sufficiently large, even with a
short sensing duration (e.d.ms). For example, assuming that the signal is sampled at the
Nyquist rate, a sensor can obtaih = 6 x 10® samples for & MHz TV channel within

1 ms [129].
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Then, the probability density function (p.d.f.) of the tesdtisticT; at senso¥ is given
as [127]:

N(NB, &BE H
N(P, + NB, EANER) - g0,

whereP; is the received primary signal strength alids the noise spectral density.

We make two additional assumptions as follows.

Al. The separation between the primary transmitter and semsoetatively larger than
the separation between sensors, which is reasonable srdarmie networks such as
the IEEE 802.22 WRANSs [137].

A2. The impact of multi-path fading on spectrum sensing is wdgke due to a wide chan-
nel bandwidth (e.g., larger than the coherent bandwidtir) 8TV signal detection
in IEEE 802.22 WRANSs [1274.

Based on the above assumptions, the received primary sigeabth at sensaican be
expressed aB;, = Pr-¢Yi, wherePy is the average RSS within a cell, antd is the shadow-
ing gain between the primary transmitter and sems8hadow fading can be characterized
by the shadowing dB-spreadl,z, and it has the relationship= 0.11n(10) o,45.

Remark: It is important to note that istationarysecondary systems where SUs do
not move, the shadowing gairj is a specific realization of a normal random variable
Y ~ N(0,0?). Thus, the channel gain is also (pseudo) time-invariant@atermined based
on sensor locations. We will show that there is no correteéimong stationary sensors in

Section 2.4.1.

2.2.3 Outline of the Proposed Approach

The performance of energy detection is highly susceptixdggnal-to-noise ratio (SNR),
thus limiting its ability to meet the FCC’s requirement otarately detecting a primary

signal as weak as-20dB SNR. Moreovernoise uncertaintyf142] at sensors also pre-

3The detection performance of the energy detector undei-path fading can be found in [41].
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(A)
Primary
transmitter

Geo-location
database

Figure 2.1: DSA network model: SUs perform spectrum sensing simultasigoduring
each sensing period and report their measurement restts fasion center.

vents the applicability of energy detection to such a weakary signal. To overcome
these challenges and design an efficient spectrum sengiodgtaim, we exploit bottspa-
tial andtemporalvariations of RSSs among collaborating sensors. As megdiearlier, in
DSA networks with static sensor deployment, the measurei&® 8ach sensor is (pseudo)
time-invariant. This allows the fusion centerlearn the RSS distributions at sensors and
construct their spatial RSS profile. Upon collecting thesgemresults during each sched-
uled sensing period, the fusion center compares the olis&®S values with the RSS
profile. A similarity between the RSS distribution and thamary signal can be inter-
preted as an indication of the presence of a primary sigmal,véce versa. Using the
RSS profile, the fusion center can adopt the sequential hgpis testing framework for
sensing scheduling, and can minimally schedule sensingdgeonly until it accumulates
sufficient observations to determine whether or not a piyrsanal exists within a certain
performance bound.

Fig. 2.2 illustrates our proposed spectrum-sensing frasnewvhere the fusion center
directs an optimally-chosen set of sensors to perform sgnsitil a decision is made on

the existence of a primary signal, using a sequence of repp&ES values.
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4 ) sensing results
@~

sensors compare with RSS profile _;/

time

Figure 2.2: An illustration of the proposed spectrum-sensing framé&wdihe base station
(or fusion center) selects an optimal set of sensors (bladkes) for cooperative
sensing and schedule sensing periods until it accumulatisiesnt information
to make a final decision.

2.3 RSS-Profile-Based Cooperative Sensing

In this section, we present the construction of a spatial R88le, formulate the prob-
lem of incumbent detection based@me-timesensing as a binary classification problem via
linear discriminant analysi¢LDA), and analyze its detection performance. We then char-
acterize wireless network conditions, under which sensgigeduling is needed to meet

desired detection requirements.

2.3.1 Construction of a Spatial RSS Profile

We propose to build a spatial profile of RSS distributions attiple sensor locations,
which will be used as a main reference for incumbent detectdg. 2.3 shows an example
of spatio-temporal variations of the test statistics ofehergy detector (i.7 in Eq. (2.1))
at 15 sensors in various locations within a secondary cell. §peial RSS diversity is due
mainly to the different sensors’ locations (thus differehtinnel gains from the primary
transmitter), whereas themporalRSS variations are due mainly to the measurement error

of the energy detector. The intensity of temporal variagidepends on the sensing time
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test statistics (T)

time 20 0 sensor index

Figure 2.3: Example time sequences of test statisti@$} for 1 < i < 15 wherePgp =
—110dBm, NB = —95.2dBm, M = 6 x 103, andop = 5.5dB. They clearly
show spatial and temporal variations in the test statistics

(i.e., M in Eq. (2.1)); the shorter the sensing time, the larger theptwal RSS variation
due to the increase in measurement error. The fusion cesrtecanstruct a unique profile
of RSS distributions for a given set of sensors and sensingsti For RSS profiling, we
assume a large enough training period (including both O/@E&riods of the primary
transmitter) for accurate estimation of RSS distributions
Recall that the distribution of test statisti€,(equivalent to the estimated RSS), of the

energy detector can be approximated as Gaussian (see E).y&ng the CLT in both
ON/OFF periods. Thus, the RSS profile nf stationary sensors is amn,-dimensional
Gaussian distribution, the parameters of which can beyeasiimated using well-known

techniques, such as maximume-likelihood estimation (MLE) a

7k = Ni/Nops, (2.3)
Ny

ljl’k: = an/Nk:a (24)
n=1
Ny

Se =Y (X — fu) (X0 — fux)" /Ny, (2.5)
n=1

where N}, is the number of observations undgy, wherek € {0, 1}, N,,s the number of
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total observations in the training period, andis a priori probability of class (hypothesis)
k. u, andX, represent the mean vector and the covariance matrix duriid YJOFF(0)
periods. Since the RSS distributions at each sensor locat® (pseudo) time-invariant
due to the static deployment of SUs, the RSS profile can benetiablly without frequent
updating.

2.3.2 Detection with One-Time Sensing Based on Linear Disoninant

Analysis (LDA)

We now present a detection rule using an RSS profile, giverediore sensing mea-
surement. Lek = [T7,..., T, ]" denote the vector of test statistics of the energy detector
measured by, cooperating sensors. Then, the incumbent detection probéan be cast
into a binary Gaussian classification problem where therobggest statistic € R"s*!

belongs to one of two classeX, or H;, where

Ho : x ~ N(po,30) (no primary signal)
Hy:x ~N(p1,3;1) (primary signal exists)

wherep;, € R**! andX, ¢ R"*" are the estimated mean vector and the covariance
matrix of RSS distributions undék(,, respectively. Note thaE, = 021 wherel is an
ns X ng identity matrix and=2 = (NB)?/M.

Under the general assumption of unequal covariance matiiee, >, # 3, the opti-
mal decision rule for our detection problem can be foundquiadratic discriminant anal-
ysis (QDA) [65]. Although QDA provides optimal detection penfoance for a general
multivariate Gaussian with unequal covariance matriecesjuadratic decision boundaries
do not yield a closed-form expression for detection peréomoe [12].

In our problem, the quadratic decision rule can actuallyifealrized usindinear dis-
criminant analysiJLDA) on the basis of the following two important observai i.e.,

the covariance matrix undéf,, X, can be:

1. assumed as an identity matrix with fixed sensor locatiand then,
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Figure 2.4: Error performances of QDA vs. LDA. The performance differens insignif-
icant even in a very low SNR environment. These are the esfila Monte
Carlo simulation with107 runs.

2. approximated a&; ~ X, = ¢21in a very low SNR environment.

Regarding the first observation, the covariance maiiixmay not appear to be an
identity matrix because of the existence of shadow corioglah primary signal strengths
[60]. However, as mentioned earlier, when sensor locatiwaedixed, their RSSs are also
(pseudo) time-invariant and the randomness in the tesststatcomes only from the noise
processes (i.e., measurement errors), which are indepeoideach other. Thus, the corre-
lation of RSSs between any pair of sensors does not existes@awassume thai; is also
an identity matrix a&, (see Section. 2.4.1).

Regarding the second observation, the received primanakgirength may be sig-
nificantly lower than that of the noise power for a very weaknary signal. For exam-
ple, the FCC requires the detection of a DTV signal as weak 2sdB, assuming the
typical noise levelNB = —95.2dBm [133]. Therefore, it is reasonable to assume that
P+ NB ~ NB Vi, and thus X, ~ 3, = 02 1. Fig. 2.4 justifies these assumptions by
showing that the error performances of QDA and LDA are alntlostsame in very low
SNR environments.

Based on the above observations, we compute the log-ldadilof the two hypotheses
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Ho andH; as:

Pr(3]x) 91(x) m
log [ XN log X
o8 (PT(J{O\X) %% 00 T,

T 1
= log W—(l] — 5(#1 +10) =7y — po) + X7y — po),  (2.6)

where g, (x) is the estimated Gaussian distribution of the sensing tepoy under,
andX is the common covariance matrix; is a priori probabilities of hypotheseX, as
defined in Eq. (2.3).

From Eq. (2.6), we have the following linear discriminamdtion,,(x), as:

1
Op(x) = x" 2" py, — 5#52_1% + log(). (2.7)

That is, the fusion center will assume hypotheéKiswhered, is maximized, i.e.H; =
arg maxy, g (X).
In our two-class problem, the fusion center will assuHieif the following condition

holds:
o . S 1 70 o 7r
xS (i — o) > TS i — g5 o +log (2.8)
1

N~
DO

Otherwise, the fusion center will assumhg.
Note that the fusion center may not have an accurate estimatia priori probability
of a primary signal. In such a case, the fusion center cam,setr; = 0.5. Then, we have

a simple distance-based decision rule for incumbent detect

H
% = ol =[x = pull. (2.9)
Ho

Eq. (2.9) indicates that, under both hypotheses, the dedisimade based solely on the
distance between the observed RSS vestoand the mean vectors of the RSS profile,
Although Eq. (2.9) is optimal in minimizing detection erqperformance (i.e., the sum of
false-alarm and mis-detection probabilities), the déeaequirements are often expressed

in terms of mis-detection probability for a fixed false-atgprobability. In what follows,
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we analyze the performance of the proposed RSS-profile lspeadrum sensing.

2.3.3 Theoretical Performance

Let T(x) = w’x denote the test statistic for incumbent detection, whiatalsulated
based on the observed RSS vectowherew = (p; — pg) € R™*1. Note that|wl|
is the Euclidean distance between the centroids of two Gauskstributions under both
hypotheses, where the centroids are the vectors of avel@ge & sensor locations. It can
be easily shown that the test statisTitx) follows a Gaussian distribution, i.€T(x) ~
N(wh p,, o2 ||w||?) under.

Then, the probability of false alarm under our LDA-basedislea rule with the deci-

sion threshold) € R is given as:

PERA 2 Pr(T(x) > 1| Ho) = @(LWT’“‘O), (2.10)

oWl

whereQ(-) is the Q-function. Using Eqg. (2.10), the decision threshptén be derived for
the desired?t74 as:

n=on-|lwl- Q" (PF) +w'po. (2.11)

Then, based on Egs. (2.10) and (2.11), the probability ofdetection,P52, is given

as:

Piip" £ Pr(T(x) <n|3) =1 Q(Q-l(Pﬁﬁ’A) - “;V”)- (2.12)

n

Eg. (2.12) indicates that, when the desired false-alarrhaiitity, PL54, is given, the

achievable mis-detectio?.2#, depends on the noise variane® = —(N]\f)Q

in energy
detection and the distandev||. That is,PL%* decreases as the sensing duration (thus the
numberM of sensing samples) increases, since a large number ofesmplld make the
decision more accurate due to the reduced noise varian@s(mement error).

Recall thatw is defined as the difference in RSSs under both hypotheseswi.2

(1 — o) = [Py, ..., Py.]*. Therefore||w|| under shadow fading is given as:

ns 1/2 ns 1/2
[wil = {ZPf} = Pg- [Z (&)2] , (2.13)
=1
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where Py, is the average RSS in the secondary cell due to path los$asda location-
dependent realization of a random variable- N(0, 0?) whereo = 0.11n(10) o43.

To understand the impact of shadow fading on detection peeoce (in terms of424
given a fixedPL{4), we study the distribution ofw|| in Eq. (2.13). Although there is no
closed-form expression available for the power sum of logyral random variables in
Eq. (2.13) [123], the power sum can be approximated acdyrbterendering the sum
itself as another log-normal random variable [52].

Let e?" ~ 1 4 e»2 4 ... 4 2. Then, by following the result in [52], the sum
can be approximated by matching its mean and varianceeafithThe first two moments
of eZ areE[e?] = ez +72/* andE[e2Z] = ¢*#+2°% . Our final goal is to approximate
the square root of the power sum, i.€?, = (¢#")'/2, which is still a log-normal random
variable. Thus, by equating the first two moments%fand the power sunj ", (e¥?)?,
and then taking? = (e#")"/?, we have||w|| ~ Py - ¢Z with the random variable? ~

Log-N(uz, 0%) where:

1 (e*” —1)
and
1 2 0%

Assuming that the sensors experience independent logaheimdow fading, we can

derive the average mis-detection probability as:

P = [ i-e(er e - )] e

o) n

_ 2
wheref, = ale/ﬁ exp [ — %], —00 < 7z < 00.

Fig 2.5 shows examples of RSS distributions under variousl@ss environments. The
figure shows that the centroids of the two Gaussian distabstwill have a larger separa-

tion,

w||, with a higher average primary signal strength, or a longer sensing timegs.
As indicated in Eq. (2.12), a larger separation betweenvilbeRSS distributions increases
the incumbent detection performance.

Fig. 2.6 plots mis-detection probabilitie®,,p, for a given false-alarm probability.
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Figure 2.5: Distribution of the measured RSS vector from three coopeyagensors un-
der various wireless environments. The yellow (blue) dotscate the vector
of measured test statistics undkp (H;). The simulation parameters are set
NB = —-95.2dBm ando;p = 5.5dB.

The figure shows that the mis-detection performance inegeas the average primary sig-
nal strength decreases. It shows that spectrum sensingavgiihgle sensor may not be
sufficient to protect primary communications. To furthepnove detection performance
while introducing minimal sensing overhead, in what fol&gwve jointly optimize sensor

selection, sensing time, and scheduling sensing.

2.3.4 The Necessity of Sensing Scheduling

We now characterize the network conditions under whichulseh center must sched-
ule spectrum sensing multiple times to meet a given detdéityalequirement. As we
observed in previous sections, the performance of onegpeetrum sensing depends on
various network parameters, such as average primary ssgpeaigth,Pr, the number of

sensors for sensing collaboration and detection requirementB8; 4 and Py, p. In prac-

26



[ —

______ — P, =001
0-97 - == P, =005]
osh RN - P=01 ||
RN
I N
0.7+ . 8
L \.
0.6F R
o |
o 0.57

0.41
0.3F
0.2

0.11

0 T T S Y S T S S S S R e T
-135 -130 -125 -120 -115 -110 -105 -100 -95
average received signal strength (PR) (dBm)

Figure 2.6: Detection performance of RSS-profile-based cooperatigetggm sensing. The
incumbent mis-detection performance for a given falsesalarobability in-
creases as the average primary received signal strengithslecreases. The
simulation parameters are setf = 1, NB = —95.2dBm, M = 6 x 103, and
0dB = 5.5dB.

tice, the fusion center may avoid scheduling sensing maltimes by employing a larger
number of sensors for cooperative sensing. We define themaminumber of sensors;,

to meet a given detection requirement as:
n. = argmin {ns : Ppa, Pup < 5} (2.16)

Fig. 2.7 plots the minimum number of sensors required toexehihe desired level of
detection probability¢. This figure shows that the required number of sensors isesea
exponentially as the average primary signal strengthdecreases. The number of sensors
also increases as the detection requiremgrigcomes stricter. For example, whep =
—116dBm, more tharr0 sensors are required to achieNe,, Py;p < 0.01. In practice, it
may be difficult to find such a large number of sensors withielg and more importantly,
having such a large number of sensors may incur significasth@ad. Therefore, in a
low SNR environment with strict detection requirementg, filssion center must schedule

sensing multiple times to make the best tradeoff betweedomeance and overhead.
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Figure 2.7: Minimum number of sensors required to achieve a desiredmbemt detec-
tion performance with one-time sensing. The fusion centestremploy more
sensors as the average primary signal strength decreaasdtw detection re-
quirement,&, becomes more strict. The simulation parameters aré&vget=
—95.2dBm, M = 6 x 10, andoyp = 5.5dB.

2.4 Optimal Cooperative Sensing Framework for Sensing

Overhead Minimization

In this section, we first propose an adaptive online algorithat finds an optimal stop-
ping time for scheduling sensing periods, subject to thea®n requirements, given a set
of collaborative sensors. We then present an algorithm tbheimoptimal set of sensors and

an optimal sensing duration that minimizes the averagdrsgitisne overhead.

2.4.1 Correlation Analysis

Before presenting an optimal sensing scheduling algorithenwould like to show that
there is no correlation in RSSs among stationary sensorgeAliscussed in Section 2.3.2,
the randomness in sensing results (i.e., the output of taeygrletector) comes only from
measurement noise, which is independent for each sensolludwate this, we measure

the Pearson’s correlation coefficient between a pair of@snsl'he Pearson’s correlation
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Figure 2.8: Distribution of test statistics measured as two sensors fesensing periods.
The correlation coefficient of the measurementg;is ~ 0.0053. The simula-
tion parameters are set AsB = —95.2dBm, M = 6 x 103, andoyz = 5.5dB.

coefficient of sensing reports from the sensicaadj can be estimated as:

S0, (T - EIE)(T - EIT)

Iéi,j = COTT(i7j> = (n _ 1)0’(3'
i0j

, (2.17)

wheres; ands; are the sample standard deviations of test stati$tiesd7j, i.e.,

1 " 2\ 7
i (n 3 (1) ) . (2.18)

Fig. 2.8 plots10? sets of test statistiod}, 75) measured at two sensors. Interestingly,
the corresponding Pearson coefficient is only aldowd53, indicating that the sensing re-
sults from the two sensors are not correlated. This is inpshantrast to most previous
work, in which avoiding shadow fading correlation is onela# thost important criteria for
the selection of sensors [81, 125].

This implies that when the fusion center can obtain the @espsimary signal strength
at each sensor (via estimation or learning), then the palyseparation between cooperat-
ing sensors may not critically affect detection perforneaniote that, in stationary DSA

network environments, such as the IEEE 802.22 WRANSs, whigtthe sensors (called
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CPESs) in the network do not move, the fusion center can eabilgin the RSS at each

sensor, e.g., by simply observing the reports from the senso

2.4.2 Optimal Stopping Rule for Sensing Scheduling

The fusion center can schedule sensing multiple times bef@king a final decision,
and thus, it receives a sequence of observations (i.e.,uregh&®SSs) from the sensors.
This makes sequential detection suitable for our problenpakticular, among the various
sequential detection schemes, we adopt Waddquential Probability Ratio Te$BPRT)
[147] since it is optimal in the sense of minimizing the aggraaumber of observations,
given bounded probabilities of false-alarm and mis-detact

Lett, = o' ||w|~'-T(x,) denote theormalizedest statistic based on the observed
RSS vectork,, in the n-th sensing period. The decision statistig is the log-likelihood

ratio based orV sequential observations (i.e., test statisti¢s). . , ¢ as:

fl(th . ,tN)

Av £ \ty,...,tn) =1n ,
N (h v) fo(ti, ..., tN)

(2.19)

where fi.(t1, ..., tx) is the joint p.d.f. of the sequence of observations undeothgses
Hy Vk. Recall that{t, })_, are Gaussian, and without loss of generality, we assume that

they are i.i.d. Then, Eq. (2.19) becomes:

_ _ fl(tn)
Ay = ; Ap = nz::l In ) (2.20)

wheref.(t,) is N(0y, 1) with 6, = E[t,, | Hi] = Wiyl Then, we have:

onlwl

_ fl(tn> _ _ 1 o
Ap = In ke (01 — 6o) t, + 2(93 037). (2.21)

Based on Egs. (2.20) and (2.21), the decision statistican be expressed as:

N
N
An = (61 — bo) Ztn + 5(9(2) —07). (2.22)

n=1
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Then, in SPRT, a decision is made based on the observed seqoktest statistics,

{t,}N_,, using the following rule:

n=11

Ay > B = acceptH; (primary signal exists)
Ay < A = acceptH, (no primary signal)

A < Ay < B = take another observation

whereA and B (0 < A < B < o) are the detection thresholds that depend on the desired
values ofPr4 and Py, p.

Let o* and5* denote the desired values of false-alarm and mis-deteptmvabilities,
respectively. Then, the decision boundaries are given 4y][1
and B —1n~ _f , (2.23)

— o «

and the actual achievable error probabilities, denoted asd 3, have the following rela-

tionships:

s P
1l -«

-, and a+ g <o + 4" (2.24)

Eq. (2.24) indicates that the actual achievable error foitibes, i.e.,o and3, can only be
slightly larger than the desired values and5*. For example, with the desired values of

o = p* = 0.1, the actual valuea and g will be no larger thard).111.

2.4.3 Sensing Delay Analysis

Recall that our goal is to minimize the number of times thectpen needs to be
sensed, with the decision thresholds derived from targettien probabilities as shown in
Eq. (2.23). We therefore consider the number of sensinggescheduled until a decision
is made (i.e., either the bounda#dyor B is reached) as our main performance metric. The

average number of sensing perio@i$)V|, required for decision-making can be computed
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as:
E[Ay] = E[N] x E[A| Hy]. (2.25)

First, using Eq. (2.21), the average value\afnderH, can be derived as:
1
E[N | Hy] = (61 — o) O + 5(9(2) —07). (2.26)

The average ah 5 can then be found as follows. Suppdsgholds, them\ ; will reach
B (i.e., false alarm) with the desired false alarm probapilit; otherwise, it will reachA.

Thus, using Eq. (2.23), we have:

E[Ay |] = a* n2=5 &+ (1 — o) In- s (2.27)

* —Oé*.

Based on Egs. (2.25), (2.26) and (2.27), we can derive thegeeequired number of

sensing periods for decision-making as:

BIN | %¢ a*lni?%—(l—a*)ln% 228
N3l = (61— 00) o + 565 — 07) (2:28)

Similarly, we can derive:

1—p%) =5+ 87 In 2
A-f)mo”+5 g (2.29)

EN|H,| =
NI =~ a6, + Lo — )

Based on Egs. (2.19)—(2.29), Algorithm 1 describes oumendilgorithm for scheduling
sensing periods that finds the optimal stopping time forisgns

In practice, the number of sensing periods that can be stdeafore the fusion center
makes a final decision can be upper-boundedVhy,, due to several factors, such as the
detection delay requirement, inter-sensing intervatidhsensing delay, and sensing time
[132]. For example, in the 802.22 WRAN standard draft, sdeoy users must be able
to detect the return of a primary user within 2 seconds [38r€&fore, we set a threshold
P,,—a design parameter—such that the fusion center must reamfcéusion withinV,,, .,
sensing periods with a probability greater than or equékto

Let N,,; denote the optimal stopping time of sensing under AlgorithmThen, we
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want to derive the probability of satisfyiny,,: < N..., which should be no less thadty,.
Although an approximate expression for the distributiofNgf; can be derived, we instead
derive a lower bound of the probability for computationdicééncy [147].

Supposé\y,,,, > B. Then, we haveN,,; < N,,.., So the following inequality holds:
Prob(NOpt < Npaz) > Prob(Ay,,,. > B). (2.30)

SinceN,, .. is sufficiently large in practice, we can use the centraltltireorem (CLT),

and the inequality\ , .. > B can then be written as:

ANias = Nonaz BA[FG] B = Nipa B[A | 3]
\% Nma:p 01 <)\) o vV Nma:p (o] ()\) ’

(2.31)

whereo; (\) is the standard deviation of underd;, which can be derived as,(\) =
(01 — 6y) Yk from Eq. (2.21). Then, the left-hand side of Eq. (2.31) ismalty distributed
with zero mean and unit variance whef is true.

Therefore, based on Egs. (2.30) and (2.31), we have thenioiplower bound of the

probability that the BS makes a decision withih,,, observations:

(2.32)

Prob(Noy < Nypaz) > Q (B ~ Nmaz B[A | 3] )

vV Nmaz 01 ()\)

This lower bound will be considered in our algorithm for etileg an optimal set of sensors

as described next.

2.4.4 Algorithm for Joint Optimization of Sensor Selectionand Sens-
ing Time

We now turn to the problem of finding an optimal set of sensndsam optimal sensing
time that together minimize average sensing overhead dlagnote thdotal setof sen-
sors in the network available for cooperative sensing wstineated RSS distributions via
training. The key idea is to utilize a subsetC ¢ of sensors with relatively high average

RSS values, and also to select the sensing fiinehus minimizing both the number of
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Algorithm 1 ONLINE SENSING SCHEDULING
The fusion center does the following

1: while each round: € [1, N,,,.] of sensing periodio

2 Receive results of energy detector (i.e., R8$from sensors

3 tp <o, ||w|7t-T(x,) // Calculate test statistic

40 Ay An+ (01— 0o)tn + 5 (03— 6%)
5.  if Ay > Bthen
6:
7
8
9

A primary exists and we schedule fine-sensing (or initiagectimnnel vacation procedure)
else ifAy < Athen

A primary does not exist
else ifn == N,,.. then

10: Schedule fine-sensing for in-depth measurement

11: else

12: Schedule another sensing period and wait for the observatio
13:  endif

14: end while

cooperating sensors and the number of sensing periodsuimiment detection, while guar-
anteeing the detectability requirements. Given a subssgrgors(2, and sensing timéy,
the total expected sensing overhead before the fusionrcantemulates enough sensing

samples can be expressed as:
O(Q, Ts) = min { max {E[N(Q)], 1}, Nmax} X Tp(Q, Ts), (2.33)

whereT (2, Ts) is the total time duration for a single sensing, which cassi§a sensing

period and a measurement reporting period:
TD(QuTS) = TS + |Q| X TR7 (234)

whereTy is the sensing duration ariti; is the duration of a time-slot for reporting the
sensing result to the fusion center.
Then, based on Egs. (2.32), (2.33), and (2.34), our probfdmding an optimal set of
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Algorithm 2 JOINT OPTIMIZATION OF SENSOR SELECTION AND SENSING TIME
1: Initialize the desired detection parametéss, Py p, P

2: Initialize the set of available sensobs= {x1,..., Xn.}
3: Initialize the optimal set of sensoft* < ()
4: Initialize the set of sensing tinfBs € [1, 2, 3,4, 5] ms
5: Initialize the sensing overheddl + o
6: while ® # () do
7. x* < argmaxy,co{ P} Il Py = Pp - eYi
8 P+ o\ {x}
9 Q<+« Q"U{x*}
10: for eachTs € Tg do
11: Tp(Q,Ts) « Ts+ | x Tr
12: N* min{maX{E[N(Q,PFA,PMD,TS)],1},Nmam}
13: O(Ts) « N* x Tp(Q,Ts)
14:. end for
15:  T¢ < argminygers{O(Ts)}
160 Opin < O(T%)
17: if Opin > O @and Pr(Nopr < Nypaz) > Py, then
18: return (Q*,7%)
19: else
20: QF < Q
21: O* « Omin
22:  endif
23: end while

sensors can be formally stated as:
Fin Q. Ts) = i O, T.
ind (@, T5) =arg  min O, Ts)

subjectto Pr(Nop < Npaz) > Pin,
PFA S «,

Pyp < B,

wherea andj are the desired false-alarm and mis-detection probadsliti

For this, we propose a simple algorithm as described in Algor2. The idea is that
we sort the sensors in descending order of average RSSHj)eand then add sensors
to 2 from the top of the list until the total sensing overhead éases by adding another
sensor, and the detection constraint (if&,) is satisfied (linel7). The algorithm provides

an optimal solution with a low computational overhead, (& |®| - |Ts|), where|®| and
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|Ts| are the total number of available sensors and sensing tiesgsectively. On the other
hand, the exhaustive search requicg2/*'sl — 1). The algorithm is shown to reduce
sensing overhead significantly (see Section 2.5.3), whitganteeing the desired level of

detection performance (in terms of false-alarm and migetietn probabilities).

2.5 Performance Evaluation

This section comparatively evaluates the proposed algostusing MATLAB-based

simulation under realistic wireless environments.

2.5.1 Simulation Setup

We consider a DSA network with a large-scale primary trattem{e.g., a TV trans-
mitter) and multiple secondary users (or sensors). To detrate the efficacy of the
proposed schemes in realistic wireless environments, weider the network parame-
ters, which are used widely in IEEE 802.22 WRANs. We assuraé ribise power is
NB; = —-95.2 + A, dBm, which is commonly used in IEEE 802.22 WRANSs [133], where
A; is the noise uncertainty (in dB) at sensand B is channel bandwidth. The channel
bandwidth is set td3 = 6 MHz as in the TV channels. We consider shadow fading with
dB-spreads,z = 5.5(dB), which is also typical in rural area networks such as.802
WRANSs [137]. Throughout the simulation, we assume that ittlne-slot duration for re-
porting a RSS measuremefity) is fixed at0.2 ms, and that,, = 10 cooperating sensors,
unless specified otherwise. For RSS profiling? samples were used for estimating the
RSS distributions. This consumes only a total sensing tifrflEDseconds, assuming the
sensing time offs = 1 ms. We fix the desired false-alarm probability/at, = 0.01 and
Py, = 0.95, throughout the evaluation.

To demonstrate the benefits of the proposed sensing algwjte evaluate the perfor-
mance of the following decision- and data-fusion rules:tl{g OR-rule, (ii) Equal Gain
Combining (EGC), (iii) Maximal Ratio Combining (MRC), and/\ RSS-profile-based

sensing. The OR-rule is a simple decision fusion rule, inciwhithe fusion center con-
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Figure 2.9: Performance of detection schemes for one-time sensingnyith 10 sensors.
RSS-profile-based cooperative sensing (denoted as LDAysshear-optimal
performance even in a very low SNR environment.

cludes that there exists a primary signal if at least one@emports the existence of a
primary signal. The other two data-fusion rules, EGC and M&E different in that EGC
does not require any channel state information at the sensbereas MRC requires chan-
nel state information. EGC and MRC are known to be near-aggdtimhigh and low SNR

regions, respectively [95].

2.5.2 Performance of RSS-Profile-Based Detection for Oneihie Sens-
ing
We first evaluate the performance of the proposed LDA-bastection scheme for

one-timesensing, assuming that the sensors are randomly selected.

2.5.2.1 Performance Comparison

Fig. 2.9 compares the performance of the testing schemedifferent average RSS
values. The figure shows that mis-detection probabiltty,, increases as average primary
signal strengthPr, decreases for all the tested schemes. It also indicatehth®R-rule

performs the worst because it does not fully utilize the sensesults; in the OR-rule,
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Figure 2.10: Effect of number of cooperating sensors for one-time sgnsRSS-profile-
based sensing outperforms the OR-rule since it better gyl diversity of
the sensors.

sensors make a binary decision on the presence or absencpriohay signal locally
and report it to the fusion center. Among the data-fusioesuMRC outperforms EGC
because MRC exploits the SNR information at the sensorse@se=GC does not require
channel estimation. It also shows that our RSS-profiledbastection (denoted as LDA)
significantly outperforms the OR-rule and EGC, thanks taltiity to set the near-optimal
detection threshold (i.e., ams; — 1)-dimensional hyperplane) based on the spatial RSS
profile. Moreover, the performance of the RSS-profile-basgteme is close to MRC,

thanks to its ability to exploit sensor heterogeneity.

2.5.2.2 Effects of Number of Sensors

Fig. 2.10 shows the impact of the number of cooperative ssrmso incumbent de-
tection performance. In our simulations, the average siginangth ) is set toPr =
—116dBm, which is the DTV signal detection threshold in IEEE &2WRANs. The
figure shows that RSS-profile-based detection performsevelh with a small number of
sensors compared to the OR-rule. This is because, in RSikedrased detection, all the
sensors contribute to the enhancement of detection pesfurewvia RSS-profile, thus fully

exploiting spatial RSS diversity. On the other hand, in tle@le, only a few sensors with
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Figure 2.11: Effect of noise uncertainty for AWGN and shadow fading eomiments. RSS-
profile-based spectrum sensing works well even when thaged®SS is below
SN R,,q1, thus overcoming the noise uncertainty.

high RSSs (e.g., above the detection threshold) contritouthe detection of a primary

signal.

2.5.2.3 Effects of Noise Uncertainty

Noise uncertainty is one of the main obstacles in using gnéetection in a very low
SNR environment such as 802.22 WRANSs [142]. Noise uncdytaieates a performance
barrier calledSN R,,.;;, below which signal detection is infeasible irrespecti¥sensing
time or the number of cooperative sensotsN R,,.;;, in fact, depends solely on noise
uncertainty as [142]:

2
—1
SNRyuy = = (2.35)

wherep = 102/ andA (in dB) is the noise uncertainty. We assume that noise uaiogyt
is bounded byl dB for all sensorg,with a corresponding N R,,.;; of —98.5dBm.
Fig. 2.11 shows that, when the OR-rule is employed, the twteompletely fails to

detect signals below N R,,; under the AWGN channel. However, under the practical

4This is a reasonable assumption since noise uncertaintpedounded by:-1 (dB), considering sev-
eral contributing factors such as calibration error, th@rnoise variation, changes in LNA amplifier gain,
etc. [130].
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Figure 2.12: Impact of sensing time on detection performance. The amafuithe a sensor
spends on sensing for one-time sensing affects the detgmidormance.

assumption that noise uncertainty is independent at treosgrnthe RSS-profile-based de-
tection works well for signals below N R,,.;;, even with a one-time sensing. Detection
performance further improves under shadow fading,d&;,= 5.5 dB, thanks to its ability

to exploit spatial RSS diversity.

2.5.2.4 Effects of Sensing Time

Fig. 2.12 plots the mis-detection performance for varicrsgg time durationgs €
[1,20] ms. As we observed in Eg. (2.12), the detection performaateniy depends on the
average primary signal strengthg, but also on the sensing time. The figure shows that,
as sensing time increases, the mis-detection rate desrfeais#l tested values aP;. This
is because the more samples the detector is provided wiéhmtire accurate the sensing
results, thus eliminating ambiguity on the existence ofienpry signal. As described in
Algorithm 2, the fusion center finds a combination of an optiirset of sensors and an

optimal sensing timé& that minimizes the average sensing overhead.
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Figure 2.13: Average number of sensing periods scheduled to meet thetaeiléy require-
ment of Py;p, Pra < 0.01.

2.5.3 Performance of Online Sensing Scheduling with Optim&ensor

Selection

We now evaluate the performance of the proposed onlinersgssheduling by jointly

optimizing the selection of sensors and sensing time.

2.5.3.1 Impact on Incumbent Detection Delay

Fig. 2.13 shows the average number of sensing periods th&ttbaischeduled to meet
the detection requirements. The figure shows that our SRR&ebonline sensing schedul-
ing algorithm significantly reduces the average number w$isg periods compared to the
OR-rule-based scheduling scheme, thanks to its abilitylly titilize the sensing results
via RSS-profiles. As a result, our algorithm expands theiliasegion of the energy de-
tector significantly. On the other hand, the OR-rule benseditstively less from scheduling
sensing periods because RSSs do not change over time (éxeepeasurement errors) at

fixed sensor locations.

For the OR-rule, the false-alarm probability at each sen3ex, to achieve the global
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Figure 2.14: Impact of sensing time on sensing overhead under optimabsaelection and
sensing scheduling algorithms. A longer sensing time besamore desirable
as the average primary signal strength decreases, anderisz. v

false-alarm probabilityPr 4, can be calculated as:
Ppa =1— (1 — Ppy)t/(exmiter) (2.36)

wheren, is the number of cooperative sensors angd. is the number of sensing periods
for sensing scheduling.
The detection threshold for a local decision to achieve #wrdd false-alarm probabil-

ity Pr 4 can be derived from Eq. (2.36) as:

n=NB (1 +— ‘1(ﬁm)), (2.37)

-

whereM is the number of sensing samples.
From Egs. (2.36) and (2.37), the mis-detection probalhtyndividual sensors can be

derived as:

. Vil
Pup = Q (m (PR Y NB - n)) (2.38)

wherePy, is the average primary received signal strength.

Ns XNiter

Finally, the global mis-detection probability of the ORets given as?y,p = (]BMD)
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Figure 2.15: Performance of the optimal sensor selection algorithm. @oposed sensor
selection algorithm reduces sensing overhead significantr the algorithm
without sensor selection.

2.5.3.2 Impact on Sensing Overhead

We now demonstrate the performance of our optimal sendectgn algorithm in
terms of the reduction in sensing overhead. Sensing overisedefined as the average
fraction of time (in%) spent on sensing within a 2 second interval, which isa@nnel
detection timgCDT) period (see Eg. (2.33)). Fig. 2.14 shows the sensing tiverhead
for various sensing timesgs € [1,3,5]ms. The figure shows that a larger sensing time,
i.e.,Ts = 5ms, is favored in low SNR environments, whereas a smallesisgriime, i.e.,
Ts = 1 ms is desirable in relatively high SNR environments, in ehgensing scheduling
may not be needed to achieve detection requirements.

Fig. 2.15 compares the average sensing-time overheadhiegfraction of time spent
on spectrum sensing and reporting the sensing resultsnmatisiensing interval, with the
optimal selection of sensors and sensing time against grage sensing overhead without
sensor selection. A sensing interval is assumed to be 2 ghwhiequivalent tachan-
nel detection tim€CDT) in IEEE 802.22 WRANSs. The figure shows that our algarth
minimizes the average sensing overhead by upit¥ because it selects only a subset of

sensors with high average RSSs, thus minimizing both thebeumwf sensing rounds and
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the sensing result reporting time.

2.6 Related Work

Various aspects of cooperative sensing have been studiel,as cooperation gain
[55, 57], sensor selection [125], and performance-ovetheadeoffs [71, 88, 102]. The
benefits of sensor collaboration have been reported to dimas the degree of shadowing
correlation among sensors increases [55, 56, 57, 106]. hamize the detrimental ef-
fects of shadowing correlation on cooperative sensingre¢gensor-selection algorithms
have been introduced. For example, Satéml. [125] proposed heuristic algorithms for
selecting an uncorrelated set of sensors, given diffeexatis of information about sensor
locations. In a similar vein, Kim and Shin [81] suggestee@sthg sensors based on their
geographical separation, so as to make the sensors umteddétom each other. While
these approaches seek to avoid shadow fading correlationgthem, we show that, when
sensors arstationary there is virtually no shadowing correlation among sensBased
on this observation, we show that shadowing correlatioiséparation between sensors) is
not a determining factor in stationary DSA networks.

Sensing scheduling has also been studied as an efficient fwanpoving incumbent
detection performance [31, 67, 85, 152, 166]. For examptangdet al. [67] developed
an adaptive sensing scheduling mechanism that takes ioboatboth time-varying chan-
nel and traffic conditions. In the IEEE 802.22 WRAN standanaftd a two-stage sensing
mechanism has been proposed to provide flexible scheduliqgiet periods [78]. Re-
cently, a sequential hypothesis testing framework has pemosed as an attractive way to
minimize the sensing delay for given detection requireméintterms of false-alarm and
mis-detection probabilities). Lait al. [85] presented sequential detection of primary sig-
nals using the cumulative sum (CUSUM) algorithm. Similaoto work, Zouet al. [166]
proposed a sensing scheduling scheme based on the frameWsekuential probabil-
ity ratio testing (SPRT) under the assumption of unknowmarly signal characteristics.
However, the interactions between cooperative sensingsanding scheduling have not

been considered. We on the other hand, jointly optimize éims@r selection to minimize
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overall sensing overhead.
In essence, our work seeks to fill this important gap by jgiopitimizing sensor selec-
tion and sensing scheduling, thus synergetically impm@gipectrum sensing performance.

An extensive survey of cooperative sensing in DSA netwogkshe found in [8].

2.7 Conclusion

In this chapter, we proposed to jointly optimize cooperasignsing and sensing schedul-
ing, in order to minimize average sensing overhead, whibranteeing the desired level
of detection requirements. Our spectrum sensing framewexploits the spatio-temporal
variations in received primary signal strength by congingca spatial RSS-profile for an
incumbent signal. We showed that the RSS distribution ofi@amy signal can be accu-
rately approximated as a Gaussian distribution in low SNRrenments and we analyzed
the detection performance of the RSS-profile-based detestheme. We also showed that
there is virtually no correlation among stationary sensBesed on these observations, we
formulated the problem of sensing scheduling as a seqliégpathesis test, which finds
an optimal time to stop scheduling sensing subject to giedeadion requirements. We also
proposed an optimal algorithm that makes the tradeoff betvaetection performance and
sensing overhead. Our evaluation results have shown thartiposed sensing algorithms

reduce sensing overhead by upt% in practical scenarios.
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CHAPTER 3

Secure Detection of Large-Scale Primary Users

3.1 Introduction

Accurate sensing of spectrum condition is key to the oppastic use of licensed spec-
trum bands in CRNs. However, reports from sensors can bepulated by attackers in
various ways, such as primary signal emulation [11, 26] aring results falsification
[28]. These sensing-targeted attacks can severely underimiumbent detection perfor-
mance because the fusion rule for a final detection decigitsrsolely on reported RSSs.
Sensing-targeted attacks pose a significant threat asamegisrupt opportunistic spectrum
access, the basic premise of DSA. We call these unique sptesigeted attacks in DSA
networkssensing-disorder attacks

A sensing-disorder attack aims to obscure the existensefi@e of a primary signal
by manipulating spectrum sensing information (e.g., megkRSSs) either by raising or
lowering the signal strength. When no primary signal exiatsackers or compromised
sensors can manipulate their reports (i.e., RSSs) to geerteraillusion of a primary signal.
For example, in the IEEE 802.22 WRANS [38], an attacker caontea fake sensing report
to force all users in the entire cell (of radius ud tw km) to immediately vacate the channel
[120]. Once users in the cell vacate the channel, the attace freely use the channel
without interruption. When there is a primary signal, on ttker hand, attackers can
lower the RSSs to veil the presence of a primary signal, heptdi an unacceptable level of

interference to the PUs. In both cases, attackers misleaftigion center, i.e., base station
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(BS), to make an incorrect decision on the presence/absdra@rimary signal, wasting
spectrum resources or causing unacceptable interferertbe primary communications.
Therefore, there is a clear incentive for attackers to |lawgsnsing-disorder attacks.

While sensing-disorder attacks can be easily launched théhaid of programmable
SDR devices, their detection is difficult. Unlike ordinargmal-of-Service (DoS) attacks
that exhaust all the network resources, they can be easiytad by using SDR devices,
such as USRP [3] and Sora [84]. These open-source SDR pietfan be attractive targets
for attackers because of their accessibility to low-layetqcol stacks like PHY and MAC
[155]. Detecting these attacks, however, is not an easy Yébie secure mechanisms such
as MAC-layer or crypto-based authentication work well iditional wireless networks,
lack of primary-secondary communications precludes tisaige. Moreover, the detection
of attacks is exacerbated by the volatile nature of the es®eMmedium itself, which makes
it hard to differentiate between legitimate and delibdyateanipulated sensing reports.
We thus need to devise a mechanism that can protect coagesatising from the above-
mentioned attacks.

In this chapter, we propose an attack-tolerant distribgttsing protocolADSP) for
the IEEE 802.22 WRAN s that filters out abnormal sensing tsgoaused by either adver-
saries or malfunctioning sensors) by exploiting shadagvAfg correlation in RSSs. This
RSS-based filtering is motivated by the fact that attackansiot control the physical-layer

signal propagation.

3.1.1 Contributions

This chapter makes several main contributions as follows.

e Proposal of a novelorrelation filterfor detection of abnormal sensing reports that (i)
exploitsshadow-fading correlatiom RSSs without any additional communication,
(i) safeguards spectrum sensing against attacks thatasereither the incumbent
false-alarm (type-1) or mis-detection (type-2) rates, @imdminimizes processing
and sensing overheads. Despite their importance, typ&ékathave not been con-

sidered before.
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¢ Introduction of cluster-based cooperative sensing toa@phadowing correlation.
Correlation between sensors, which is entailed by sensmtering, is known to
have a detrimental impact on incumbent detection perfoomds5, 56, 106]. Our
evaluation study, however, shows that the proposed clogtdoes not incur any per-
ceivable performance degradation even in a very low SNRrenrient. Therefore,

sensor clustering is an efficient and useful approach tarsguksorder attacks.

e Development of a new data fusion rule tailored to attackrtnice. Specifically, we
proposewneighted gain combiningVGC) that adaptively assigns different weights to
sensing reports according to their statistical signifieabased on the normal shad-
owing profile. As a result, it minimizes the influence of umditd attacks (due to

their small deviations) on a final decision, further imprayattack-tolerance.

e Design of a sensing scheduling scheme that guaranteefastiis of the detection
requirements of 802.22 even in the presence of attacksewhilimizing the number
of sensing rounds. AlthoughDSP significantly improves attack-tolerance, our sim-
ulation results indicate that the detection requiremeh®2.22 may not be satisfied
with one-time sensing. To solve this problem, we proposemimal stopping time
for sensing scheduling using sequential hypothesis tpstiras to meet detectability

requirements.

¢ In-depth evaluation oADSP in a realistic two-dimensional shadow fading environ-
ments in IEEE 802.22 WRANs. Most previous work uses a simpteraccurate
one-dimensional model. Our simulation results show thaet fitoposed filtering
scheme successfully withstands attacks by reducing the-&lrm rate up t89.2 %

and achieving up t67.4 % of maximum achievable detection rate.

3.1.2 Organization

The remainder of this chapter is organized as follows. 88@i2 describes the system
and attack models used in this chapter. Section 3.3 presentsroposed approach for

attack detection, and the generation of a realistic twoetisional shadowing field. Sec-

48



tion 3.4 details our approaches to filter design and datafiuand Section 3.5 proposes a
sensing scheduling algorithm. Section 3.6 evaluates ttferpgance ofADSP and Section

3.7 reviews related work. Section 3.8 concludes the chapter

3.2 System and Attack Model

We first describe the IEEE 802.22 WRANSs and the signal prajpamgand sensing
models to be used throughout the chapter. We then introdhgcddta-fusion model, and

finally, present the attack model.

3.2.1 IEEE 802.22 WRANSs

We consider an IEEE 802.22 WRAN, an infrastructure-basdldlae system where
each cell consists of a BS and the associated end-userd callsumer premise equip-
ments(CPEs). The CPEs represent households in a rural area, arttiues stationary.
The typical coverage of each 802.22 cel8km (up to100 km). The main goal of IEEE
802.22 WRAN:S is to provide broadband wireless access i aneas by allowing oppor-
tunistic access of TV white spaces recently opened up by@t&[B8]. The BS, which we
assume adversaries cannot compromise, schedules thegsefishannels and decides on
the presence/absence of a primary signal in each chanrseld lwan sensing reports from
a setC of collaborating sensors. Among different types of PUs inands, we focus on
detecting DTV signals witls MHz channel bandwidth in the US. We consider an 802.22
cell located at the edge of the keep-out-radius (1.€0),3 km) of a TV transmitter, and the

entire secondary network (or cell) lies within the detettiange of the DTV signal.

3.2.2 Signal Propagation and Sensing Models

The received primary (DTV) signal strength at sensor (CREn be expressed as the

propagation model [59]:

do\ @

P = PO<E> X (Watt) (3.1)
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whereP, is the signal strength at the primary transmittethe path-loss exponent, the
reference distance, amdthe distance from the primary transmitter to the semsShadow
fading is accounted for in*: whereX; ~N(0, 0?) Vi. Log-normal shadow fading is often
characterized by its dB-spreag;z, which has the relationship = 0.11og,(10)o45. We
assume that in the energy detector for PHY-layer sensinghwinieasures the power level
over the wide6 MHz-wide DTV channel, the effect of multi-path fading can igeored
[127, 131] as is commonly assumed in the literature [91, 100]

The energy detector is widely used for its simple design dficiency [40, 127]. Al-
though the feature detector is more reliable, it takes maopér (e.g.24 ms for the field-
sync detector for ATSC) [131] because it looks for a specifjnature of the primary signal
that appears infrequently. The test statistic of the endeggctor is an estimate of average
RSS (including the noise power), and can be approximatedzasiasian using the Central
Limit Theorem (CLT) as [38]:

N(N,, ¥2) H, (no primary signal)

M

T (32)

N(P;+ N, LY 3¢, (primary signal exists)

whereP, is the received power of a primary signal, the noise power, andl/ the number
of signal samples. We assume that sensors measure theGtite DTV channel at the

Nyquist rate for 1 ms, i.e)/ =6 x 10°.

3.2.3 Data-Fusion Model

We consider data fusion as the rule for incumbent detectidimile decision fusion
reduces the overhead in reporting sensing results, itfiswlifto thwart sensing-disorder
attacks, since it only provides a binary value based on d texasion.

In fading channels, equal gain combining (EGC) is known teehzear-optimal perfor-

mance without requiring estimation of the channel gainsCHf@as the following decision

For signal-specific sensing techniques, e.g., FFT-basetsginsing [128], the effect of multipath fading
may not be ignored.
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statistic:

Ns
Te2) wT, (3.3)
i=1

whereT; is the test statistic of the energy detector at sensd¥, is the number of col-
laborating sensors, and the sensors have an identical tvesgbhw; = 1Vi. The decision
thresholdn to achieve the desired level of false-alarm probability, can be derived
as [40]:

VNN,

n=0Q ' (Qya) " + NN, (3.4)

whereQ(-) is the well-known Q-function. The performance of EGC will bged as a
baseline in evaluating the efficacy of the proposed scheme.

In order to achieve better attack-tolerance, we propasghted gain combiningVGC)
in ADSP that adjusts the weight§w;};cc SO as to minimize the impact of attack mis-

detection on the final decision.

3.2.4 Attack Model
3.2.4.1 Attack Scenarios and Types
Sensing can be disrupted as follows.

e A sensor is compromised, and then manipulates its senspuytse i.e., raises or

lowers RSSs.

e A sensor is malfunctioning or faulty, yielding readingstthéfer from the actual
RSS.

A common consequence of the above two cases is that sengiods¢o the fusion
center are distorted, thus increasing the probabilitytthefusion center will make a wrong
decision. To solve this problem efficiently, we focus on tleedtion of any abnormal
sensing reports instead of pinpointing the actual causberodranality.

Note that another possible attack scenario is a primaryearsetation attack (PUEA),

as studied in [11, 26, 91]. However, PUEA is relatively easgétect mainly because the
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attacker has only a coarse-grained control of RSSs at seasme signals are broadcast.
In the above two scenarios, however, the attacker has a faieegl control of RSSs at
individual sensors, making their detection more difficlherefore, we will focus on the

above two attack scenarios.

3.2.4.2 Attack Types

We consider two types of attacks that can be mounted (or dabgeattackers (or faulty

nodes):

e Type-1 Attacks increase théalse-positivaate (classifying a non-primary signal or

no signal as a primary signal) by raising RSSs, and

e Type-2 Attacks increase théalse-negativeate (causing failure to detect a primary

signal) by lowering RSSs.

We assume that the attackers know the presence/absencembaysignal regardless
of the decision made by the fusion center, and launch typggge{2) attacks undek(,

(H,); otherwise, attacks only serve to improve incumbent deteerformance.

3.2.4.3 Sensing Reports in the Presence of Attacks

Under the above model, a final sensing report to the fusiotecean be expressed (in
Watt) as:
Ri = Pz : 1{9{1} + NO + Ez + Di \V/'l € G, (35)

energy detector outpuft)

wherel ., is an indicator function[; is the test statistic of the energy detector (in Eq. (3.2))
including the measurement errét, andD; € R is the deviation oattack strengthtam-
pered with by a compromised (or faulty) sensbx;= 0 for normal sensors. Note that no
loss of reporting packets is assumed, so we can focus on thetide of abnormal sensing

reports.
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3.3 The Proposed Approach

We now present the design rationale beMEP, its framework, and the methodology

to generate a spatially-correlated shadow fading field.

3.3.1 Design Rationale

To maximize attack-tolerance and preserve the detecticuracy of data fusiomrADSP
employs anomaly detection based on statistics. Specyfi@dliSP exploits physical-layer
signal propagation characteristics, or the spatial catigel in RSSs among neighboring
sensors. The key insight behi#dDSP is that, in shadow fading environments, RSSs at
nearby sensors are likely to be highly correlated, which lmamised to identify manipu-
lated sensing reports. The adversaries must be aggressiamsing or lowering the RSSs
reported to the fusion center in order to influence the outcofthe final decision. How-
ever, any sensing report that significantly deviates fronatwh expected is deemed sus-
picious of being compromised or erroneous, and will hencdisearded or penalized by
the fusion center in making a final decision. Adversariestptherefore, lower their attack
strength, reducing the chance for the fusion center to makenag decision; otherwise,
they must risk getting caught by the detector. This way, tisoh center can achieve a

high level of attack-tolerance, provided the majority sfneighbors behave well.

3.3.2 ADSP Framework

ADSP resides at the fusion center (i.e., BS) and consists of thenrfimg three building

blocks:

e sensing managethat manages sensor clusters and directs the sensors tothegio

readings at the end of each scheduled sensing period,

e attack detector that detects and discards (or penalizes) abnormal senspuyts

based on the pre-established shadowing correlation prafite

e decision makerthat determines the presence or absence of a primary sigeatib
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Figure 3.1: The ADSP framework: Compromised (or malfunctioning) sensors migrt-
taminate their sensing repor{?;}. The attack detector filters out these con-
taminated sensing reports based on the shadowing coorelattofile and then
feeds the remaining ones to the fusion center. This prosagpeated until the
decision statistic at the fusion-center reaches one of tbeéefined thresholds,
i.e., A and B, in order to guarantee satisfaction of the detection requénts of
802.22.
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on filtered sensing results using sequential hypothedistes

These three components closely interact with each othefiocamda robust distributed sens-
ing system. Fig. 3.1 depicts tAOSP framework, which can be implemented at the 802.22
BS without requiring any modification to sensors (i.e., CPEs

One important and unique feature of the attack detectoresahility to tolerateboth
type-1 and type2 attacks. This feature is attributed to the fact that thealeteross-checks
sensing reports and the assumption that the majority othems's behave well. As a result,
under type-1(2) attacks, their sensing reports with nedatihigh (low) values are likely
to be flagged by more of their neighboring sensors, thus ngaiim scheme applicable
regardless of the existence of a primary signal. This makesystem design simple and

efficient, while achieving high attack-tolerance.

3.3.3 Generation of Spatially-Correlated Shadow Fading

To incorporate spatially-correlated shadow fading in auailgsis and simulation, we
need a shadowing correlation model in which the statisticsiately reflect the real-world
wireless shadowing environment. Note that one must rely omodel-based approach
since measurement data for shadow fading is very scarcesamatiicting a field test is too
expensive. Gudmundson’s model [60] is one of the most widebd models in accounting

for shadowing correlation. However, it cannot capture igpahadowing correlation, and
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Figure 3.2: Spatially-correlated shadowing random figi¢t, -): (a) An example ofp(-, -)
with exponentially-decaying spatial correlation, whére dB-spread and decor-
relation distance are assumed todyg; = 4.5dB and D, = 150 m, respec-
tively, and (b) lllustration of the two-dimensional autorelation function of
shadow fading.

hence, analyses based on this model might yield resultatbaignificantly different from
those in real-world wireless environments, as evidenceabih the theoretical study in
[109] and empirical measurements in [117]. Recently, thia@ns of [119] proposed a
statistical modeling approach to characterization ofigapbapectrum behavior of primary
signals in the context of DSA networks.

Along the same line as in [119], we generate spatially-¢ated shadow fading in a
two-dimensional area by applying the convolution methaappsed in [53]. We refer to
the thus-generated data set ashadowing random fielgp wherep(z,y) represents the
shadowing gain at a unit grid area, i.A mx A m, centered at the coordingte, y) € R.

The shadowing random fieldl(-, -) is assumed to be an isotrogigyide-sense station-
ary, and log-normally distributed random field with zero mead exponentially-decaying
spatial correlation. Then, the covariance between the wint9; = (z;,y;) andl,; =

(x,y;) in p is given as:
E[p(68:), p(8))] = Ry(dyj) = o - e=/Peor, (3.6)

whered;; = ||p(0;) — p(0,)| is the Euclidean distance between the locat®nsndé,, o

is the standard deviation of shadow fading, dng,. is the decorrelation distance, which

°Note that we do not consider angular dependency in shadawiniglation for analytical tractability.
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Figure 3.3: Comparison of auto-correlation function: Theoretical middolid line) vs. syn-
thetic data from a random fiejol(-, -) (dotted line).

depends on local wireless environments (e.g., urban orbah)?
Fig. 3.2(a) shows an example ofsaadowing random fielth a 2km x 2 km region,

which clearly exhibits a strong spatial correlation in shadading. This is clearly shown

in Fig. 3.2(b), which depicts the two-dimensional autoretation of shadow fading. To
demonstrate the accuracy of this method, Fig. 3.3 compaesine-dimensional auto-
correlation function £) of a random field against the Gudmundson’s empirical modkél w
o4 =4.5dB and D, = 150 m. The figure indicates that the synthetic data in the shad-
owing random field accurately emulates real-world shadgwirrelations. Note that our
attack detection scheme ADSP only requires the one-dimensional auto-correlation func-
tion of the shadowing field, which can be estimated by theisemprovider at the time of

system deployment.

3The measurement study in [10] indicates that a typical detation distance is in the range 020 —
200 m in suburban areas.
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3.4 Detection of Abnormal Sensor Reports via Correla-
tion Analysis

In this section, we formulate the anomaly-detection pnobées a hypothesis testing,
and present the design of a correlation-based filter. Thdéuitnprove the attack-tolerance
of ADSP, we propose a new data-fusion rule, calledweeghted gain combininVGC).

For cooperative sensing, the designated sensors (groupkcsters) report their energy-
detector’s output along with their location informationttee fusion center, at the end of
each sensing peridd.The location information is required to exploit the shadugvcor-
relation in RSSs; it may be available at the fusion centesesthe sensors (i.e., CPES) in
802.22 are stationary and 802.22 standard draft mandad®3io have sensors’ location
information. Sensors can employ existing secure locatimgirotocols (e.g., [27, 116]) to

obtain accurate sensor location information.

3.4.1 Characterization of the Correlation in Sensing Repais

We first study the correlation structure of the sensing rspdy key observation is that
the correlation structure of shadowing componénts } is preserved in the sensing reports
{R;} when there is no attack (or misbehavior), i.B;,= 0. To simplify the analysis, we
further assume that the variance of the measurement emdrecapproximated as;, ~ %2
regardless of the presence/absence of a primary signal.

Under the above conditions, and treating all the other témr&s). (3.1) (except™: and

E;) as constants, we can express sem'saeport in Eq. (3.5) as:
Ry =CieY +Cy+ E;  (Watt), (3.7)

whereCy = P,(d,/d;)", C» = N,, and E; ~ N(0, %—;2) is the measurement error of the

energy detector. The correlation in shadowing componéntloes not change when we

4We consider two-dimensional sensor coordinates for saitpliwhile the actual terrain profile is three-
dimensional.

5This assumption is reasonable in a very low SNR environneegt,—20 dB, where the average primary
signal power is only abolit% of the noise power, i.€E[P;]=0.01 X E[N,].
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add/multiply the same number to all of the shadowing comptme

Moreover, the variance of measurement error is much snthberthat of a shadowing
component, i.eg% < 0%, since the number of samplég is sufficiently large even with
a short sensing time, e.gl/ = 6 x 103 for the duration of 1 ms. So, the correlation in the
received sensing repor{s?;} almost preserves the correlation of the shadow fadihg
i.e.,Corr(R;, R;)~Corr(eXi e*i).

3.4.2 Cluster-based Hypothesis Testing

While we exploit shadowing correlation for attack deteatithe degree of correlation
decreases exponentially with the distance between sen3twsrefore, we fornsensor
clustersamong the sensors in close proximity, such that sensorgwtite same cluster are
highly correlated. A measurement study in [124] indicated households in rural areas
tend to be clustered, and thus, it is reasonable to assurha 8 can identify several
sensor (i.e., CPE) clusters within its own cell of typicadites of 33 km. If such sensor
clusters exist, the BS can easily identify them based om kheation information. If such
sensor clusters do not exist, additional sensors can beydpto form such sensor clusters.

Therefore, for each collaborative sensarC, the correlation-filter checks if the sensor
exhibits proper correlation behavior based on the follgnirypothesis testing for each

neighbor within its cluster:

IHS : CO’/’T‘(RZ', RJ) = p(dw) VJ c N(l), (38)

where the neighbor séf(i) is defined as the sensors belonging to the same cluster afrsens
1. As a result of this cross-checking, the number of flags ddigeneighboring sensors will
be used as a filtering criterion (see Section 3.5.3 for dgtaiVe will henceforth focus on

the analysis of shadowing correlation in sensing reports.
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3.4.3 Correlation Analysis for Filter Design

Although the shadowing correlation coefficigpt is an obvious metric for the above
hypothesis testing (i.e., Eq. (3.8)), it is not suitabledoect use in our problem because
estimation of the correlation coefficient would require gusnce of samples; this can
incur significant time and energy overhead for sensing, amoatso deter the detection of
returning PUs. Therefore, we detect per-sample abnornhaMier by examiningimilarity
between the sensing reports using their conditional pridihalistributions. This is an
alternative, but efficient approach since higher corretaéintails greater similarity, which
can be measured via a conditional distribution of sensarrtepas we will describe next.

In order to capture the similarity between sensing repartdjrst derive the probability
distribution of R;, which is the sum of non-zero mean normal (if2), and log-normal (i.e.,
eXi) random variables, as indicated in Eq. (3.7). To the bestioknowledge, there is no
closed-form expression for such a distribution. Howevelpae examination of Eq. (3.7)
implies thatR; can be approximated asshifted log-normal random variablee., the sum
of a log-normal random variable and a constant.

Let us denote the sensing reports by a shifted log-normaloranvariable, i.e.R; =
e?i4+N,+C whereZ; ~N(uz, 0%). From Eqg. (3.7), we have the following approximation

after simple manipulation:
i+ Ny+ C =~ eXithCr L N 4 B, (3.9)

whereZ; ~ N(uz,0%) and X; ~ N(0,0%) with ox = 0. We set the constarit = 405

whereop = \]/VM so that the probability of the right-hand side of Eq. (3.9draes less than

C'is close to zero (i.es 3 x 107°). This is important to preserve the non-negativeness of

the log-normal random variabte’.
Then, we estimate the mean and variance“ofising a moment-matching method. By

matching the mean and variance of both sides of Eq. (3.9),ave:h

2 2
C? (e7x — 1) e*x1ox 4 g%

(Ch erXFIX2 4 i+ C)?

6% = log 1], (3.10)
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Figure 3.4: Estimation of the distribution of sensing reports as a etlifog-normal distribu-
tion: The empirical data for sensing reports (solid linejated from the shad-
owing field can be accurately approximated as a log-nornsatidiution (dashed
line).

and .
Cretxtox/2 4 g+ C
~ 9 .
602/2

[y = log (3.11)

The derivations of Egs. (3.10) and (3.11) are straightfodwand thus omitted due to space
limitation.

Fig. 3.4 shows an example of such approximation. While therdigndicates that the
sensing reports can be accurately estimated by such @distn, it becomes less accurate
as the sensing duratidry increases. Note, however, that we want to capture the etioBl
among sensors in a tractable form, not necessarily as ansge@pproximation only com-
plicates the analysis without yielding a noticeable imgment in detection performance.
The impact of the approximation error will be discussed iot®a 3.6.

Based on Egs. (3.9), (3.10), and (3.11), the p.d.f. of a seBport can be expressed as:

1 (In(r — C) — pz)®

fr(r) = oy P |~ 207

. 2>0. (3.12)

Recall that we are interested in studying the similarityerising reports measured at
nearby (thus spatially-correlated) sensors. To measargthilarity exists between sensing

reports, we derive the conditional p.d.f. of sensor i’'s rep given the neighboring sensor
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j's report R; =r; using Eq. (3.12) as:

fz..2,(z, 25)

fRi|Rj (Ti‘rj) = ij (Zj)

ri—C) = gz \ 72
_ 1 %p[_l(m(z C) um%) }7 (3.13)

(ri = C) oy |r, V2T 2 02,2
where
Oy.
Wziz; = Pz, + Pijf [In(r; = C) — piz,] (3.14)
and
UZi\Zj =0z, 1-— pzzj(dm) (315)

Eg. (3.15) indicates that standard deviatign 7, decreases as the correlatignpincreases,
and thus greater similarity between sensing reports.

Egs. (3.13), (3.14), and (3.15) indicate that the condétiatistribution of sensing re-
ports is also log-normally distributed. We thus set the loard upper thresholds on the
sensing reports based on the conditional p.d.f. in Eqg. §343d then mark any outlier
that resides outside of the thresholds. To set the threshwigl first derive the cumulative

distribution function (c.d.f.) of sensais reportr;, given sensoy’s reportr; as:

erf 111(.7} - C) — Hz;\z,

1
FRi\Rj<x>:PT(Ri§x‘Rj:Tj>: 5 o7, \/§ )
Z:1Z;

+ x>0, (3.16)

1
2

where erfz)=-2% [ ¥ dt.

Using Eq. (3.16), the threshold¥7;, i, with a100x (1 — €) % confidence interval can

be derived as:
THuy(e) = exp [\/5 -erf 1 (g(e) - 02,z + Mzi\zj] +C, (3.17)

where

<e<0.5, (3.18)

g(e) =

e—1 forTH,
1—e¢ forTHy

whereyiz, z, andoz, 2, are the conditional mean and standard deviation in Eqs4)3uid
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Figure 3.5: The correlation filter for anomaly detection: Sengsireportr; will be flagged
if it resides outside of the lower and upper thresholds, T.&l;, andT Hy;.

(3.15), respectively.

Therefore, the null hypothesiKy, i.e., Corr(R;, R;) = p(d;;), cannot be rejected if
r; € [I'Hp, T Hyl, as depicted in Fig. 3.5, whereas the attack false-alarraghibty can
be calculated a®}., = Pr(r; < THL) + Pr(r; > THy). Note that the thresholds are
set differently for neighboring sensors, depending orr tigdative distance and measured
RSSs.

Clearly, there is a tradeoff in determining the thresholdpeeter, i.e., the higher the
threshold, the higher (lower) the false-alarm (mis-dévegtrate for attack detection. The
impact of the thresholds on incumbent detection perforrmamitl be studied in Section

3.6.

3.4.4 The Proposed Data-Fusion Rule

While the correlation filter accurately detects RSS deorstiin sensing reports, we
observed that it often mis-detects small deviations (ec§.3 dB). These small deviations
can still influence the data-fusion results in a very low SNiRi®nment due to the high
sensitivity of the fusion decision to RSSs. Therefore, ag@sd line of defense, we
propose a new data-fusion rule, namalgighted gain combining/VGC), to provide a
better attack-tolerance to such small deviations. Theislémassign different weights to
the sensing reports according to their significance leveétian the conditional c.d.f. in
Eq. (3.16). This way, the mis-detected (unfiltered) attaeshighly likely to be assigned

relatively small weights compared to legitimate sensingpres because of their lack of
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significance. Thus, the weights in WGC are defined as:

A EjeNv(i) Wij

2 here w;; = 1 — 2 |Fr p (r: [ 7:) — 0.5, 3.19
w RO where w;; | Fyjr, (ri | ;) — 0.5 ( )

where N, (i) is the set of valid neighbors of sensowhose reports passed the filter. The
thus-obtained weights are used in calculating the decistiatistic.

The simulation results (in Section 3.6) show that the WG Qifda-fusion significantly
reduces the attack false-alarm and mis-detection prabebil However, the results also
indicate that the detectability requirement of 802.22, (B4, Qyp < 0.1, might not be
met under weak attack strengths (eg.0.3dB) as they cannot be easily differentiated
from the normal sensing reports. To remedy this and to mead¢kectability requirements
of 802.22 regardless of attack strengths, we next preseetj@estial hypothesis testing

framework for sensing scheduling.

3.5 The Proposed Data-Fusion Rule via Sequential Hy-
pothesis Testing

In this section, we first formulate the incumbent detecticobfem as a sequential hy-
pothesis testing, subject to the detection requiremen8)af22. We then provide a de-

scription of ADSP.

3.5.1 Attack-Tolerant Sensing Scheduling via SPRT

In ADSP, the BS schedules the sensing periods (stages) until iinsbgasufficient
amount of information for making a final decision. Thus, th® Eceives a sequence of
measured test statistics from the sensors. This makesrge]uketection suitable for our
problem. In particular, among various sequential detedezhniques, we adopt Wald’s
Sequential Probability Ratio Te68PRT) [147] since it is optimal in the sense of minimiz-
ing the average number of observations, given bounded-&dsen probabilityQ», and

mis-detection probability),,». Therefore, by adopting the SPRT along with WGC, the
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BS can meet the detection requirement of 802.22 under tls¢éeexie of malicious sensors

by carefully designing the decision statistic as we distiess.

3.5.1.1 Design of Decision Statistic

For SPRT, the distributions of the weighted test statigifdbe sensors that passed the
filter should be available to the BS under both hypothesegrdntice, however, it is not
feasible to derive a closed-form expression for such thstions. Therefore, instead of
relying on the exact distributions dfs,, we exploit the threshold property @k as our
main decision criterion.

Let ¢,, denote a Bernoulli random variable defined as:

0 if 7., < n,
9, 8 > (3.20)

1 if Tz’n > M,

whereTy, ,, is the sum of test statistics from the valid sensors, i.@se¢hwho passed the
filter, in sensing stage, andn, is the decision threshold, which depends on the num-
ber of valid sensing reports and the desired false-alarmgtitity 3., (see Eqg. (3.4) in
Section 3.2).

Our detection problem is thus a binary Gaussian classiicgtioblem where the ob-

served test statisti¢, Vn belongs to one of two classek, or H,, where:

Ho : ¥ ~ Bernoulli(¢py) (no primary signal)
Hy : ¥ ~ Bernoulli(¢y) (primary signal exists)

When there is no attack, the random variakigsnd¢, can be defined as:

¢o £ Pr(9, =1|Ho) = Q4 (3.21)

o1 = Pr(d, =11H,) = Qp =1-Qyp- (3.22)
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In this case, there should be a significant difference batwgando,, i.e., ¢, > ¢,.°
However, the actual achievabigr, and ()p under attack scenarios can be higher and
lower than the desired values, respectively, due to pediaoa deficiency of the filter. For
example, Fig. 3.9 in Section 3.6 indicates that— ¢, can be as low a8.08 under weak
attacks, thus rendering it difficult for the BS to make a ccirggecision.

Thereforegp, and¢g, are the key parameters in our design of SPRT, which must lee car
fully set so as to meet the detection requirements of 802h@2uvarious attack scenarios.

Thus, we set:
Go=Qpa+eo and ¢ =Qp —ei, (3.23)

wheresg, £; € R with the constraint, > ¢,.

We set the values ofy and ¢; empirically, based on the observations made in our
simulation study. Note that inaccurate values¢gfand ¢, might introduce additional
detection delay. However, as long @asused by the BS is closer to the true distribution
underd, thang;, or vice versa, the SPRT will terminate with the desiredllefeetection

probabilities.

3.5.1.2 Optimal Stopping Rule for Sensing Scheduling

In SPRT, a decision is made based on the observed sequemst stitistics{,, }

n=11

using the following rule:

Ay > B = acceptH; (primary signal exists)
Ay < A = acceptH, (no primary signal)

A < Ay < B = take another observation

whereA and B (0 < A < B < o0) are the detection thresholds that depend on the desired

values ofQr, and@,,p. The decision statistia y is the log-likelihood ratio based aN

For example, the detection requirement of 802.2&is- ¢ =Q% — Q% 4, =0.9 — 0.1=0.8.
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sequential observations (i.e., test statistits) . . , ¥y as:

PT(ﬁl,...,ﬁN‘j{l)

Ax é)\(ﬁl,...,ﬁN)zlnPTwl’...’ﬁN‘}Co). (3.24)
Assuming thaf 4, }_, are i.i.d., Eq. (3.24) becomes:
S Pr(9, %)
AN_Z)\ —Zl Pr(d. | 7) (3.25)
Eq. (3.25) can be rewritten as:
Ay = syn zz + (N —sy)In %ZZ; (3.26)

wheresy = Zflv:l 149,-1) denotes the number of sensing stageghered,, = 1.

3.5.2 Performance Analysis

We now quantify the performance of our SPRT-based sensimgdsiing in terms of
(i) detection performance, i.6r4 and@,,p, and (ii) average number of sensing rounds

needed to meet the detectability requirements.

3.5.2.1 Detection Performance

In SPRT, the desired detection performance can be guadhhbtesetting the decision
thresholds4 and B as follows. Leta* andb* denote the desired values@f-4 andQ y/p,
respectively. Then, the decision boundatieand B are given by [147]:

b and B —ln - _*b , (3.27)

1—a* a

and the actual achievable error probabilities, denotedaa®lb can only be slightly larger

than the desired valueg andb*.
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3.5.2.2 Sensing Scheduling Overhead

Recall that our objective is to meet the detection requirgmef 802.22 even in the
presence of malicious/mal-functioning sensors. Thus, iwet@a minimize the number of
times the spectrum needs to be sensed, with the decisi@htids derived from the target
detection probabilities as shown in Eg. (3.27). Therefore,are interested in analyzing
the number of sensing rounds until a decision is made (ithgrethe boundary A or B is
reached).

The average number of sensing rounds (also called quietdsein 802.22) required to

make a decision, denoted BYN], can be computed as:
E[N] = E[Ax]"" x E[X | F). (3.28)

First, using Eq. (3.26), the average value\afnder both hypotheses can be derived as:

1— ¢,
n 7
1— ¢,

] and E[MJ{l]:E[ln(b—/l] (3.29)

E[\ | ] :E[l ;

Next, the average of y can be found as follows. Suppdsg holds, them\ y will reach
B (i.e., false alarm) with the desired false-alarm probghili; otherwise, it will reachA.
Thus, using Eg. (3.27), we get:

1—b* b*

E[Ay |Ho) =a" In +(1—a") In T (3.30)

Based on Egs. (3.28), (3.29) and (3.30), we can derive thmgeeumber of required

sensing rounds for decision-making as:

a* In =X 4+ (1 — a*) In -2
R[N | Ho] = i e : (3.31)

!

o
E[ln 1—¢i]

Similarly, we can derivé&[N | 3 ].
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3.5.3 Protocol Description

We now present the attack-tolerant distributed sensingppob (ADSP) with the pro-
posed WGC for final fusion. Algorithm 4 describes the ovedalla-fusion procedure in
ADSP. At the end of each sensing period, the fusion center csllgensing report§R; }
from the collaborating sensors, which are co-located istels. Then, the fusion center
activates the correlation filter to selectively discard@iomal sensing reports and updates
the decision statistid,, based on the remaining sensing reports with their weightde N
that the weights are assigned after the filtering process (liL) so that the filtered abnor-
mal sensing reports have no influence on them. The fusioricespeats this process until
the decision statistic reaches one of the predefined thigdshae.,A and B.

Algorithm 4 details the filtering procedure. For each segsaport, the filter counts the
number of flags raised by neighbors in the cluster. Then, ltiee Will return Isnormal =0
if more thang € |0, 1] fraction of the neighboring sensors mark it as abnormal re/iés a
design parameter; otherwise, it will retufanormal = 1. The filter also returns the weight
vector (w;) for future use in the final data-fusion process (i.e., WGKe computational
complexity of the algorithm is bounded I6)(m?) wherem is the number of sensors in a
cluster.

Remark: Although the key assumptions we have made, i.e., negégiblltipath fad-
ing and presence of sensor clusters, are valid for the DTiasidetection in IEEE 802.22
WRANSs, they might not always hold, depending on a given DS¥renment, thus lim-
iting the practicality of ADSP. For example, multipath fagiin sensing reports may be
negligible when sensors are mobile, or a primary signal mssé with narrow channel
bandwidth. However, relaxation of such assumptions mayire@ major modification to
ADSP, and thus, extension &DSP to such challenging environments is left as our future

work.

3.6 Performance Evaluation

The performance oADSP is evaluated via MATLAB-based simulations. We first de-

scribe the simulation setup and then present the simulegsrits for both types of attacks
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Figure 3.6: Sensor cluster: An illustration of sensor cluster with 6ssga in an 802.22
WRAN cell.

under various attack scenarios.

3.6.1 Simulation Setup

To demonstrate the effectivenessAiISP, we consider an IEEE 802.22 WRAN envi-
ronment with a single DTV transmitter withMHz bandwidth and multiple sensors (i.e.,
CPESs) located at the edge of theep-out radiuof 150.3 km from the DTV transmitter
[127]. An 802.22 cell of radiu80 km is considered for our evaluation, and we generate a
two-dimensional shadowing field (using the method disaligs&ection 3.3.3) with a unit
grid of 20 x 20 m? to emulate a realistic shadow fading environment in a céifolighout
the simulation, we assuniesensor clusters located randomly within the cell, vitben-
sors in each cluster; the sensors are located in differeas,gand the distances between
sensors within a cluster range fraip,,, = 20 M to d, .. = 20+/5m, as shown in Fig. 3.6.
We consider the attack scenario where one-third of the sg@ase malicious in each clus-
ter. Table 3.1 lists the system parameters used in our siimlaEach simulation is run
on 5 x 10* randomly-generated shadowing fields, and their averagesalre taken as the

performance measures.
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Table 3.1: System parameters used in simulations

Parameter Value Comments

N, 30 Number of collaborating sensors
N, 5 Number of clusters

Ty 1ms Sensing duration

M 6 x 103 # of signal samples per sensing
4B 4.5dB Shadow fading dB-spread
D.orr 150m Decorrelation distance

A 20m Dimension of a grid

N, —95.2dBm Noise power

v —20dB Signal-to-noise ratio (SNR)
Q4 0.01 Target false-alarm probability

I6] 0.34 Attack detection threshold

3.6.2 Impact of Sensor Clustering

While ADSP exploits shadowing correlation via sensor clusteringyelated sensor
readings are, in general, known to degrade detection pe&ioce as they limit diversity
gain [55, 56, 106]. Therefore, we first study the effect ofssgrclustering on detection per-
formance to understand the efficiency vs. robustness tflideADSP. Fig. 3.7 compares
the achieved incumbent detection probabiliti€s,§ with and without sensor clustering
(i.e., sensors are randomly selected by the BS). As expectagperative sensing with-
out clustering yields higher detection probability tharthwsensor clustering with-20 dB
SNR. However, the performance gap decreases as more saresorgolved in cooperative
sensing, e.g., sensing withclusters achieve$4 % of that without clustering. Note that
this performance with clustering gets even closer to thaanflom selection as the SNR
increases. Therefore, we can conclude that sensor chugtisrnot critical to incumbent

detection, while it provides an efficient means of attacledg&bn.

3.6.3 Attack Detection Performance

As afirst line of defense, the attack detectoADSP must be able to correctly identify

any abnormal sensors within each cluster and discard thearts before making a final

70



1 — —
0.8 -
0.6}
)
o
0.4
0.2f _
[ Iclustering
[ random selection
0 L] T I T 1T T I L

6 12 18 24 30 36 42 48
number of sensors (NS)

Figure 3.7: Impact of sensor clustering: Sensor clustering WN\{h=>5 achieve94 % of the
detection performance without clustering.

decision. Fig. 3.8 shows the performance of our correlabiased filter under both types
of attacks. The lower and upper thresholds (il&;; ;;;) for the correlation filter are set
using Eqg. (3.17) with &9 % confidence interval, i.e = 0.01. The figures indicate that
the attack detection rate, i.e., probability that a marafed sensing report will be correctly
filtered, increases with attack strength under both attgokds. This is because the larger
the deviation from the normal profile, the easier it is to tifgrihem. However, the attack
false-alarm rate also increases with attack strength Isecaormal sensing reports will be
mistakenly flagged more frequently by the manipulated sgnseports, and as a result,
normal sensing reports will be classified as attacks morpi&etly. The figures show that

ADSP performs well against both types of attacks.

3.6.4 Attack-Tolerance for One-Time Sensing

We now demonstrate the robustnes&\bEP to both type-1 and type-2 attacks for one-
time sensing. Fig. 3.9 plots the incumbent false-alapn ) and detection® ) probabil-
ities under type-1 and type-2 attacks, respectively. Nwde@ 4, and@)p arenormalized
with respect to the maximum achievable values in the absefrettacks. The figure shows

that the correlation filter is efficient in mitigating the eft of attacks on incumbent detec-
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Figure 3.8: Attack detection performance of the correlation filter: Tegection and false-
alarm probabilities of our correlation filter increase witttack strength under
both types of attacks.

tion performance, e.g99.2 % for type-1 and7.4 % for type-2 attacks, thanks to its ability
to accurately filter out manipulated sensing reports. Bytrest, withoutADSP (denoted by
EGC in Fig. 3.9)Qr4 and@ p rapidly converge to 1 and 0, respectively, as attack strengt
increases, i.e., attacks have maximal influence on thefdatan results.

We make the following four main observations. First, the@anance ofADSP suffers
in cases of low attack strengths (e.g().4 dB for type-1 attack). This is because such low
attack strengths do not exhibit deviations significant gmoto be detected (thus causing
under-filtering, yet they affect data-fusion decisions. The proposed ktedygain com-
bining (WGC) mitigates this performance deficiency for biythes of attacks by adaptively
adjusting sensing reports’ weights based on their stedilssignificance. However, WGC
performs as well as, or even worse than, EGC when the attaehkgsh is either (i) ex-
tremely low so that most attacks will not be filtered out orl@rge enough so that most (or
all) attacks are filtered out, as can be seen in Fig. 3.9 #th.01. This is because, in the
first case, the unfiltered attacks will decrease the weidttsedlegitimate sensing reports,
while sharing large weights among themselves. On the otaed,hin the second case,
the legitimate sensing reports with extreme values ardylikebe assigned small weights
despite their critical role in accurate detection of incemis.

Second ADSP outperforms the statistics-based filtering method propas¢79] (de-

noted by Outlier in Fig. 3.9). The fusion center filters o #ensing reports outside the
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Figure 3.9: Attack-tolerance o ADSP: ADSP (a) minimizes the false-alarm probability by
up t099.2 % for type-1 attacks, and (b) achiev®s.4 % of maximum achiev-
able detection probability (i.e., witt0 normal sensing reports iclusters) for
type-2 attacks.

range[e; —J-e;qr, €3+0 - €,4, | Wheree, ande; represent the first and third quartile of the
samples, respectively, arg, =e3; —e; is the interquartile range (see Eq. (4) in [79]). This
method does not require sensor clustering, and thus, ona thigk that it performs well
when attack strength is strong enough to be easily detestad autlier. However, the per-
formance depends strongly on the filtering range, i.e., bwéce ofd, the result of which
varies with attack scenarios. For example, when0.7, performance suffers frorover-
filtering with a high attack mis-detection rate. On the other handwhel, performance
suffers fromunder-filtering and as a resul§) », and@ converge td and0, respectively,
even in the case of high attack strength. In contraBEP accurately detects manipulated
sensing reports by considering shadowing correlation.

Third, even in the case of high attack strendtBSP does not completely eliminate the
effects of attacks for the following reasons. First, thedixereshold parameterdoes not
work optimally for all attack strengths, thus causing eithver- or under-filtering, both of
which degrade detection performance. The over-filteringsed by a large threshold value
(e.g.,e=0.1) turned out to lower botk®) -, and@ p, as shown in Fig. 3.9. Second, as a re-
sult of filtering, the fusion center will have fewer sample®e used for data fusion. Since
data fusion is sensitive to the number of samples used, iedlgan very low SNR envi-
ronments (as shown in Fig. 3.7), incumbent detection perdoice degrades. For example,

with 20 sensing reports remaining after filtering out @llmanipulated sensing reports, the
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Figure 3.10: Impact of threshold parametes){ (a) Q » 4 and@ p exhibit different behaviors
under various values, and (b) the number of valid sensing reports for data
fusion depends on both filter threshold and attack strength.

average achievablg is 0.88, which corresponds to the normaliz€g, of 0.93 in Fig. 3.9.
Fourth, in the absence of attacks, the correlation filteuis@ small increase in both
Qra andQp. Thisis caused by the inaccuracy in the log-normal apprakion of sensing
reports, which causes over-filtering even in the case of taxckd. We observed that this
performance anomaly can be mitigated by reducing the sgulsiration7’s (e.g.,<1ms),
which makes the approximation more accurate because ttrbdison of sensing reports

more closely resembles a normal distribution.

3.6.5 Tradeoff in Setting the Detection Threshold

We now study the impact of the filtering threshold on attactedi#on performance.
Fig. 3.10(a) plots the impact of the filtering thresheldn incumbent detection perfor-
mance. In this simulation, we fixed the attack strength. atiB for both types of attacks.
The figure shows tha® 4, monotonically decreases asncreases for both fusion rules,
implying that filtering out more sensing reports always kédtplower the false-alarm rate
of incumbents. For the same reason, however, a ladggrades the detection probability
Q@ p. This can be explained by the heavy-tail of a log-normalritistion of shadow fading;
filtering out high RSSs at the tail lowers the decision stiagssignificantly, thus reducing

the chance of generating false-alarms (or detecting inemtsp. Another observation is
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Figure 3.11: Average number of sensing rounds under various attackgstrenthe num-
ber of sensing rounds needed to meet the detectability resgent, i.e.,
Qra,Qrp <0.01, both under the filter threshokd=0.1 and—20 dB SNR.

that WGC outperforms EGC for type-2 attacks, thanks to ittalbo adjust the weights
for sensing reports based on their significance. Howeverp#rformance gain decreases
ase increases. For type-1 attacks, WGC also outperforms EG@sa of under-filtering,
e.g.,€[0.01,0.06], as discussed in Section 3.6.4.

Fig. 3.10(b) shows the average number of valid sensing tefice., those that passed
the filter). It clearly indicates that the filter becomes maggressive in rejecting sensing
reports ag increases, thus reducing the number of sensing reportsuedzefor making a
final fusion decision. Therefore, the filter must be cargfdiksigned to make the tradeoff
between false-alarm and detection probabilities, whilesatering their dependency on

attack strength.

3.6.6 Meeting the IEEE 802.22 Detection Requirements via 8ging
Scheduling

Here we evaluate the performance of the sensing scheduljogitam in ADSP in
terms of the number of sensing rounds (i.e., detection Jlely. 3.11 shows the number
of sensing rounds needed to meet the detectability reqemeafQ r 4, Q/p <0.01, which
is below the requirements of IEEE 802.22, i@5.4, Qp <0.1. Figs. 3.11(a) and 3.11(b)

plot the mean and standard deviation of the number of semeinmyds. The figures indi-
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cate that the average number of sensing rounds is maximihked the attack strength is
relatively small, i.e.).12 dB, thus confirming the observation made in Fig. 3.9. In 82.2
sensing rounds can be scheduled as frequent as oncelévasy i.e., one MAC frame size
in 802.22. Therefore, Fig. 3.11 implies thDSP can meet the incumbent detection timing
requirement of 802.22, i.e., the returning primary signashbe detected withid seconds,

since the maximum required number of sensing rounds rerbaiosy5.

3.7 Related Work

The problem of ensuring robustness in distributed sensasgoeen studied in [28, 79,
108]. Cheret al. [28] proposed a robust data-fusion scheme that dynamiadilysts the
reputation of sensors based on the majority rule. Similanlyhe IEEE 802.22 standard
draft, a voting rule [108] has been proposed for secure aecigsion. However, the voting
rule may not work well in a very low SNR environment where a onigy of sensors fail
to detect the primary signal. Kaligineeetial. [79] presented a pre-filtering scheme based
on a simple outlier method that filters out extremely low @thsensor reports. However,
their method may not be suitable for a very low SNR environisenh as 802.22 WRANS,
where a final data-fusion decision is very sensitive to sd®llations in RSSs. The defense
against Primary User Emulation Attack (PUEA) has also beedied in [11, 26]. Chen
et al. [26] proposed an RSS-based location verification schemetecta fake primary
transmitter. This scheme, however, requires the deployofemdense sensor network for
estimating the location of a signal source, and thus, inlcigis system overhead. Anaed
al. [11] analyzed the feasibility of PUEA and presented a lob@und on the probability of
a successful PUEA. However, they did not address the imp&ttBA on the performance
of cooperative sensing.

The problem of enforcing/enticing secondary users to efesgpectrum etiquette has
also been studied. Woyaeth al. [150] studied how to entice secondary users to observe
spectrum etiquette by giving them incentives via a gamertttee approach. In a similar
context, Liuet al. [91] studied the problem of detecting unauthorized use afenked

spectrum. They exploited the path-loss effect as a maiarmit for detecting anomalous
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spectrum usage and presented a machine-learning approaoiofe general cases. In
contrast, we focus on intelligent filtering of suspiciouss® reports.

In a broader context, our work is related to work on secura dggregation [43, 157,
163] and insider attack detection [90] in wireless senstwokks. However, the problem
we consider differs in that it focuses on an important, stiglicase where attackers manip-
ulate sensor reports to mislead the fusion center in makfirgahdecision on detection of
a primary signal.

In summary, ADSP differs from previous work in several kegexds. First, we exploit
shadow-fading correlation for anomaly detection, whick hat been considered before.
Second, ADSP is unique in that it enables normal spectrursirsgoperation even in a
hostile environment byproactivelyfiltering out suspicious sensor reports, and scheduling
sensing multiple times, while most previous work focusesone-time sensing. Third,
ADSP can detect attacks that purposely lower the RSS to obsla existence of a pri-
mary signal (i.e., typ&-attacks), while most previous work focused on detecting b

primary signals (i.e., typé-attacks).

3.8 Conclusion

The design of reliable distributed sensing for opportunigbectrum use is a major re-
search challenge in DSA networks. To address this challemgdave developed a novel
attack-tolerant distributed sensing protocsDEP) that selectively filters out abnormal sen-
sor reports, and thus maintains the accuracy of incumbeatiien. The key idea behind
this mechanism is that the measured primary signal stresigtiearby sensors should be
correlated due to shadow fading, which has not been corsidegfore. To realize this
idea, we proposed a sensor clustering method and desigterd find data-fusion rules
based on the correlation analysis of sensor reports. Wepatgmsed a sensing schedul-
ing scheme based on sequential hypothesis testing thatdindptimal stopping time for
sensing, while meeting the detection requirements of 80ARSP can be readily imple-
mented in 802.22 WRANS, incurring very low processing anchicwnication overhead.

We evaluatedDSP in realistic shadowing environments of 802.22 WRANS, desti@ting
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its ability to tolerate both type-1 and type-2 attacks.
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Algorithm 3 ATTACK-TOLERANT DISTRIBUTED SENSING WITH WEIGHTED GAIN COM
BINING
ProcedurdADSPWGC({R;},QFa, )
1: while each sensing rounddo
2.  Tx, < 0/* Decision statistic */
3. Npormal < 0/ Number of normal sensing reports */

I/l Step 1. Check (ab)normality of sensing reports

4.  for each sensor clustéy, £k =1,..., N.do
5: for each sensar e §;, do

6: (Isnormal(i), w;) < CorrFilter (i, {R;};cn(), B)
7: end for

8. end for

I/l Step 2. Update decision statistic

9: for each sensor clustéy, k =1,...,N.do
10: for each sensar € §;, do
11: if Isnormal(i) == 1then
12: Updatew; using Eq. (3.19)
13: sz — Tgn + wiRZ-
14: Nnormal < Nnormal +1
15: end if
16: end for
17:  end for

18: T, < Tsn X Npormat/ Y wi I* Normalization */
19:  Calculate the decision threshaljg using Eg. (3.4)
20: if Ty, > n, then

/

21: Ay — A, g+ an—i
22: else )
23: A, — A, 1 +1n %
24: endif

/l Step 3. Make a final decision
25. if A,, > Bthen

26: return 1 /* Primary exists */

27: elseifA, < Athen

28: return 0 /* Primary does not exists */

29: else

30: Schedule another sensing round and wait for the observation
31: endif

32: end while

79



Algorithm 4 FILTERING ALGORITHM BASED ON CORRELATION ANALYSIS

ProcedureCorrFilter (i, {R; }jen i) )

. blacklist_counter(:) <— 0 /* Initialize the counter */
w; < [0,...,0]T /* Initialize the weight vector */
Isnormal < 1 /* Initialize the indicator */
for each neighboj € N(i) do
Updatew;; using Eq. (3.19)
if Corr(R;, Rj) # p(d;j) using Eq. (3.17}hen
+ + blacklist_counter(i)
end if
end for
10: if blacklist_counter(i) > - N(i) then
11:  Isnormal < 0/* Mark it as abnormal */
12: end if
13: return (Isnormal,w;)

eoNORrRONRE
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CHAPTER 4

Efficient Detection of Small-Scale Primary Users

4.1 Introduction

Unlike the detection ofarge-scaleprimary signals (e.g., TV signals), detection of
small-scale primary devices, such as wireless microph@ndgs), is very difficult and
still remains to be an open problem for the following reasdfisst, while a TV signal has
a large transmission range (up1ta0 km), the WM signal has a small spatial footprint due
to its weak transmission power (typicallp-50 mW) [118]. This indicates that the 802.22
needs a separate dense sensor network for WM detection [rQvipre preferably, an effi-
cient cooperative sensing mechanism tailored to WM detegctihich is the main focus of
this chapter. Second, the ON-OFF patterns of WMs have higtiad@nd temporal varia-
tions [14]. WMs can be turned on at any location and at any tintigout prior notification
to secondary users. They are usually mobile and used at eeation for a short period of
time. Therefore, it is practically infeasible to maintaidaabase for WMs [63] or to pro-
file all the possible locations and schedules of WM usageahtimme. More importantly,
this unpredictability makes it hard for the base station)(BSselect proper sensors for
cooperative sensing. Third, despite its small footprintylsl must be detected according
to the strict sensitivity requirement imposed by the FCG.és@mple, the 802.22 standard
draft specifies that sensors must be able to detect WM sigraleak as-114 dBm over a
200 KHz band within2 seconds, with both false-alarm and mis-detection probisiless

than0.1. However, a recent measurement study [115] indicates émestoss suffer from a
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high false-alarm rate when detecting WM signals due to theak signal strengths [33].

The detection of WMs is important for efficient spectruminétion, especially in the
space domain. For example, when a WM signal is detected byethsors without know-
ing/estimating the transmitter’s location, all the secnydusers located within the cell
of typical radius 33km (up to 100 km) may need to vacate thewsbl Considering the
small transmission range of a WM signal, i.e., 100-150 ng, ¢thin cause significant under-
utilization of spectrum in the space domain. Thereforepsdary users in 802.22 must be
able to accurately detect the presence of a WM signal, andcealimate the WM transmit-
ter's location.

Despite its practical importance, however, little work Ieen done on the detection
of small-scale primary signals. To the best of our knowledge disabling beacon pro-
tocol, recently proposed by the 802.22 Task Group 1 (TG 1) §88, is the only known
solution. The disabling beacon protocol aims to enhance Vékdion by transmitting
a specially-designed signal before starting WM deviceds #uitable for carrying addi-
tional information, such as the signature/authenticatiod geo-location of WMs, which
helps improve spectrum efficiency via better spatial [34,1%8] and frequency reuse [24].
However, the disabling beacon protocol still has the follaylimitations. First, we do not
expect that all WM users will be equipped with a separatedredevice in the near future
in view of the fact that most users have not even registereid WMs. Second, the trans-
mit power of the beacon message is limited to the same levilea®/M'’s (i.e.,250 mW
in a UHF band), and thus, beacons cannot compensate fontreeltsor density in 802.22
[36]. Finally, the disabling beacon protocol incurs a sfigaint sensing-time overhead (i.e.,
5-100 ms) [36] compared to simple energy detection, which may taitg 1 ms.

Motivated by these practical needs and problems, we praposéicient sensing frame-
work for detection of small-scale primaries using coopeeasensing. To cooperatively
detect small-scale primary signals, the BS must carefelgct a set of sensors by estimat-
ing the primary transmitter’s characteristics, such asitation and transmit-power. We
first assume this information is available to secondarysjserd derive the optimal fusion-
range within which the sensors cooperate to minimize detectelay, i.e., the number

of sensing rounds needed for detecting a primary signal.e®as our analytical find-
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ings, we then design—without assuming the availability dbrmation on the primary
transmitter’'s characteristics—a practical frameworklecbDe L OC, which performs joint
cooperative sensing and location/transmit-power estimain order to meet detectability

requirements, while minimizing detection delay.

4.1.1 Contributions

This chapter makes the following main contributions.

¢ Introduction of a novetpatio-temporatiata-fusion scheme with the following salient
features: it (i) exploits physical-layer signal propagatcharacteristics in thgpace
domain by finding an optimal fusion range for cooperativesgay and (i) makes
statistics-based decisions in ttime domain by identifying an optimal time to stop
scheduling sensing. This spatio-temporal fusion provigesful and practical in-

sights and can be used as a general framework for designisgngeschemes.

¢ Identification and characterization of the impact of datsidn range and sensor den-
sity on the performance of small-scale primary detectiol€RNs. We derive a
closed-form expression for traptimal fusion range that minimizes the average de-
tection delay. Moreover, we show that the optimal fusiorgeadoes not depend on
sensor density and that the minimum required sensor defiosityiven detectability

constraints decreases inversely proportional to the geettatection delay.

e Development of a framework fgoint small-scale primary detection and location/transmit-
power estimation, calle@eL OC. DeLOC iteratively performs cooperative sensing
and location/transmit-power estimation until the fusiemtr (i.e., the BS) collects
a sufficient amount of information to make a final decision.isTdpproach allows

sensing and estimation to refine each other over multipledidied periods.

e Design of a new data-fusion rule tailored to small-scalenpriy detection. Specif-
ically, we propose a&equential probability ratio test with ascending weigBPRT-
AW) for DeLQOC that intentionally delays decision-making at the BS by grusig

small weight to decision statistics in early detection esaghen location and transmit-
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power estimates are inaccurate. Our simulation results shat DeLOC combined
with SPRT-AW achieves high detection accuracy, while miring detection delay

in a realistic 802.22 WRAN environment.

4.1.2 Organization

The remainder of this chapter is organized as follows. 8ercti2 describes the net-
work, signal-propagation and spectrum sensing models,baiefly introduces our ap-
proach to WM signal detection. Section 4.3 studies the impathe data-fusion range
on the performance of WM detection and location/transroik4r estimation. Section 4.4
formulates the sequential hypothesis testing problem fivt #étection and derives an op-
timal fusion range that minimizes average detection d&aygtion 4.5 details our proposed
iterative sensing frameworleL OC, which incorporates location and power estimation,
and presents the SPRT-AW based data-fusion rule. Sectioevdluates the performance

of DeLQOC, and Section 4.7 reviews related work. Section 4.8 congltinke chapter.

4.2 Preliminaries

In this section, we introduce the network model, the wirgkdgnal-propagation model,

the WM sensing model, and the data-fusion model.

4.2.1 Network Model

We consider a CRN consisting of primary and secondary usé¢ihgisame geographical
area. In general, there are two types of PUs: large-scale {é/ transmitters) and small-
scale (e.g., WMs). Here we focus on detecting small-scake Mhile the techniques that
we propose can be applied to other small-scale primaryratess, we will focus on WM
detection in IEEE 802.22 WRANs. WMs use a weak transmit pafaround10-50 mW,
or below [34, 118], and its transmission range is oriy-200 m, which is much smaller
than the typical 802.22 cell radius 88km. We assume that WMs can use any UHF

band and are turned on at random locations and at any timelfdively short periods of
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time. In 802.22, the secondary spectrum users are caladumer premise equipments
(CPEs), which represent households in rural areas. Sucls @REstationary and their
locations are known to the BS. CPEs transmit/receive ddtaio the BS, and function
as spectrum sensors during the quiet periods reservedifoamyr detection. All the CPEs
within the cell must be silent during quiet periods, and esyghe spectrum sensors to
measure the received signal strengths (RSSs) and reparttthéhe BS for data-fusion.
We assume secondary users have been deployed in ad a@reg an IEEE 802.22 WRAN
cell, following a point Poisson process with densityi.e.,ns ~ Poi(n;p|A|). We also
assume that sensor densityas the typical density of CPEs (i.e., households) in rueds

is very low (around.25/km?) [139].

4.2.2 Signal-Propagation and WM Sensing Models

We assume that senseos received primary signal strength can be characterizetidy

following propagation model:
P, = PO(@)anneYn (Watt), (4.1)

whered, is the reference distance (e.@g.n), P, the received primary signal strength at
the reference distance, the path-loss exponent, anlj the distance from the primary
transmitter to sensot. Shadow fading and multi-path fading are accounted for'in
ande', respectively, whereX,, ~ N(0,0?) ¥n. The log-normal shadow fading is often
characterized by its dB-spreag;z, which has the relationship=0.11n(10)0,3.

We make the following assumptions regarding the WM signtéc@n: Sensors

Al) use energy detection for sensing, and

A2) sense an entireMHz-wide TV channel.

Regarding Al, feature detection cannot be applied for WM ctein because, unlike
TV signals, there is no standard modulation specified by @€ Report and Order (R&O)

for WM signals [49]. The test statistic at sensocan be approximated as Gaussian using

85



the Central Limit Theorem (CLT) as in [127]:

N(N,, NG Ho (no primary signal)
7, ~ § N ' (4.2)

N(PH—FNO,W) H, (primary signal exists)

where P, is the power of a received primary signal at sensolN, the noise power, i.e.,
—95.2dBm for a TV channel witlté MHz bandwidth [137], and//, the number of signal
samples, e.g6x 10?/ms for6 MHz TV band at the Nyquist rate.

Regarding A2, WMs use a relatively narrow frequency bared, 200 KHz, compared
to a6 MHz TV band. Therefore, sensing the entire TV channel sifigglithe sensing
design at the cost of decreased measured signal-to-nois€3aIR) due to the increased
noise level over & MHz-wide channel.

In each sensing round (i.e., quiet periods), the BS direstst af sensors to perform
sensing for a sensing durations§ (e.g., 1 ms), and the sensors report their readings to the

BS for data fusion at the end of each sensing round.

4.2.3 Data-Fusion Model

For the data fusion rule at the BS, we assume Equal Gain CangiieGC) for a single-
round sensing. EGC is known to have near-optimal performawithout requiring the
estimation of channel gains [141], and has the followingsien statisticTy, £ " | T,,,
whereT,, is the test statistic (i.e., measured RSS) of the energytetat sensor, and
n, is the number of cooperative sensors. EGC will be used tcactenize the impact of
the fusion range on detection performance (in Section 4i3PeL OC, the BS performs a
sequential hypothesis testing for primary detection, &edést statistic of EGC, i.e., sum
of the RSSs measured at cooperating sensors, is used inngptte decision statistic for

hypothesis testing (in Section 4.4).
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Figure 4.1: TheDeLOCframework: When a sensor reports a test statistic abovedafned
threshold §), DeLOCfor a small-scale primary signal, i.e., WM, is triggered by
the BS that initiates and repeats the iteration betweeneratipe sensing and
location/transmit-power estimation until the BS colleet®ugh information to
make a final decision.

4.2.4 The Proposed Approach

Fig. 4.1 illustrates our proposed spectrum-sensing fraonewbeLOC, which is tai-
lored to the detection of small-scale primary signals suichWds. When a large-scale
primary signal exists, all the sensors within the networky.(ean 802.22 cell) must va-
cate the channel regardless of the presence of small-sgalarg signals. Thus, when a
large-scale primary signal exist®eLOC will not be triggered. To minimize energy con-
sumption and communication overhe&¥L OC for WM sensing is triggered only when
a sensor reports a test statistic above a predefined thdeghaluring the normal sensing

mode for detection of large-scale primaries (i.e., TV sighdn our simulation study, we

set{ = N, + 3.50, where N, ando, = \/f\]fw_ are the mean and standard deviation of the
test statistics undek(,. Note that the BS can run multiple instance®el. OC in parallel,
corresponding to different triggering events at differgabgraphical locations.

Upon triggering the detection process, the BS iterativelygrms the location/transmit-

power estimation and cooperative sensing until it collecssifficient amount of informa-

INote that large-scale primary signals can be reliably detkasing either existing sensing schemes (e.g.,
[100]) or a geo-location database [63]. The detection @fdescale primary signals is not within the scope of
this chapter.
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tion, i.e., measured test statistics, to make a final datisiothe presence of a WM. In
each sensing stage, the BS first estimates the location amshtit power of a WM, and
based on this estimation, it computes an optimal fusionedfig) for cooperative sensing.
Then, based on the test statistics reported from the sertber8S updates the decision
statistic, and compares it with predefined lowd) @nd upper B) thresholds, to make a
final decision. The thresholds are designed to guarantegetbieed false-alarm and mis-
detection probabilities (see Eq. (4.7) in Section 4.4)h# test statistic is below the lower
threshold, then the BS assumes the absence of a primarynitters e.g., the event was
falsely triggered by measurement error. If the test statistceeds the upper threshold, the
BS assumes the presence of a primary transmitter at theagstifocation, and then takes
an appropriate action, e.g., vacating the channel or digphkarby secondary users. Oth-
erwise, the BS schedules another sensing event with thersamghin the optimal sensing

range, thus accumulating detection confidence in the temhgdomain.

4.3 Cooperative Sensing for Small-scale Primary Detec-
tion

In this section, we first study the impact of sensor coopemnain the detection of small-
scale PUs. In particular, we investigate the impact of the-fiasion range and localization

error on the performance of signal detection.

4.3.1 To Cooperate or Not?

Although cooperative sensing is shown to help improve sgngerformance of large-
scale PUs [100, 101], its relevance for small-scale printtgction is less obvious. On
one hand, a large number of sensors may be needed for caopekscause WM signals
usually have small footprints, and their spatial-temp@B-OFF patterns are highly un-
predictable. On the other hand, those sensors locateddiar thhe WM will report only
noise power. Thus, employing a large number of noisy repuogyg adversely affect de-

tection performance, since the energy detector cannaaxtie primary signal from the
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Figure 4.2: Impact of data-fusion range: The figures show the existehag optimal fusion
range Ry in terms of maximizing detection probabilit p. Sensor density,
sensing duration, shadow fading dB-spread, path-lossexppand the required
false-alarm probability are set fo=1.25 x 1075 /m?, Ts =1ms,o,5=>5.5dB,
a=4, andQr4=0.01, respectively.

noise. The set of sensors chosen for cooperative sensin@ls@affect the accuracy of
location and transmit-power estimations, which play anangmt role in detecting WMs.
In what follows, we thus investigate the impact of fusiongamnd location uncertainty on

detection performance.

4.3.2 Impact of the Data-Fusion Range

Fig. 4.2 shows the impact of data-fusion range on the detegtiobability), subject
to a given false-alarm probabilit9»4 = 0.01 using MATLAB-based simulation. Intu-
itively, when the range is small, enlarging the range ineesasensor diversity, thus im-
proving sensing performance. However, as the range inesefasther, the test statistics
measured from the sensors more closely resemble the noededeversely affecting de-
tection performance. This implies the existence of an ogitiosion range that maximizes
sensing performance. Fig. 4.2 also indicates that the aptamge depends on the transmit

power of the primary transmitter. (Also, see Fig. 4.5(a) @tt®n 4.6 for more detail.)
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Figure 4.3: Impact of localization error: Detection performance degsaas location es-
timation becomes less accurate. The simulation parameaterset top =
1.25 x 107%/m?, Ts=1ms,045 =5.5dB, a=4, Qpa =0.01, and Ry =2 km,
respectively.

4.3.3 Impact of Location-Estimation Error

Ideally, the BS performs data fusion with a set of sensoratimtwithin the data-fusion
range centered around the primary transmitter. In pradtio@ever, the unpredictability of
a primary’s location can significantly degrade the qualitynaumbent detection because
it makes it difficult to select a proper set of sensors for dagéon.

Fig. 4.3 plots WM detection probabilityX,) with one-time sensing for various loca-
tion estimation errors. The figure shows that detectiongoerdnce degrades drastically
as the localization error increases beyond a certain levgl,1 km. Even a small differ-
ence in one-time detection performance can greatly affecaverage number of sensing
rounds to achieve the desired false-alarm and mis-deteptababilities. Moreover, accu-
rate location estimation is necessary for efficient coexrist¢ between a WM and secondary
users onc®eL OC detects the presence of the WM signal. Therefore, reaspaablrate

localization is necessary in our design of small-scale arnjndetection.
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4.4 Detection of Small-scale Primary via Spatio-Temporal

Data-fusion

In this section, we first formulate the small-scale primaeyedtion problem as a se-
guential hypothesis testing problem. We then derive then@gbtdata-fusion range that
minimizes average detection delay. We finally show that #ressr density required to
meet a certain detectability constraint decreases inygpseportional to the average num-

ber of sensing rounds scheduled for detection.

4.4.1 Hypothesis Testing

Let®,=|[T1,...,T}s,|" denote the vector of test statistics (i.e., RSSs) measuiibe a
sensing stage by a setS; of cooperating sensors. A sensor is selected by the BS if it is
within the fusion rangét; from the WM transmitter. Note that the fusion range, and kenc
the set of cooperating sensors, can differ in each sensagg siccording to the WM’s
estimated location and transmit-power level. Bet [67,... 6%]T denote theM x 1
vector of test statistics measured at sensors dveensing stages, whefd = 37" [S,].

As shown in Eqg. (4.2), the test statistics can be estimatée tGaussian regardless of the
existence of a primary signal [127].
Our detection problem is thus a binary Gaussian classiicgtioblem where the ob-

served test statisti® belongs to one of two classeK, or H;, where:

Ho : @ ~ N(po, Xo) (no primary signal)

Hi: 0 ~N(ui,31) (primary signal exists)

where ;. and X, are the mean vector and covariance matrix of the test statighder
Hi, k € {0,1}. The average test statistics under each hypothesigare N, x 1 and
p1 = (Pgr + N,) x1, whereN, and Py are the average noise power and received primary

signal power at sensors, respectively.

2Since the BS does not have the exact distribution of thevedgirimary signal strengths, the BS can set
Pgr to —107dBm, which is the detectability requirement in 802.22 [36].
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The covariance matrix, can be expressed 3% =02 I, wherel is anM x M identity

N2 Note that the correlation among sensor reports is nedgigihder

matrix ando? = 37

the assumption that the locations of the sensors and WMrtigtes are fixed during the
detection process [100]. Moreover, in a very low SNR envinent, it is reasonable to
assumeP, + N, ~ N, Vn, and hence the covariance matkx can be approximated as

Soa S =021,

4.4.2 Sensing Scheduling via Sequential Probability Ratidest

In DeLOC, the BS schedules the sensing periods (stages) until itnsbéasufficient
amount of information for making a final decision. Via segssicheduling, the BS receives
a sequence of test statistif8, } , from the sensors. We adopt Wal@equential Proba-
bility Ratio Test(SPRT) [147] to process the statistics and determine whstofpsensing.
SPRT is optimal in the sense of minimizing the average numb@&bservations, given
bounded false-alarm probability 4 and mis-detection probabilit,,. It enables the
BS to reduce erroneous triggering of WM detection by optingits decision thresholds.

The decision statistid\ i is the log-likelihood ratio derived from a sequence of test

statistics,, . . ., Oy as follows:

ANé)\(Ol,...,ON):ln

(4.3)

wheref, (64, ..., 0y)isthejoint p.d.f. of the sequence of test statistics urfakehypothesis
Hy ke {0, 1}
With SPRT, a decision is made based on the observed sequaasestatistics{,} ,,

using the following rules:

Ay > B = acceptH; (primary signal exists)
Ay < A = acceptH, (no primary signal)

A < Ay < B = take another observation

whereA and B (0 < A < B < o0) are the detection thresholds that depend on the desired
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values ofQr4 andQ y/p.

Let )\, be the log-likelihood ratio at sensing stage.e., \; = In }Clggfg Recall that
{6,}Y | are Gaussian, and assume they are independent and idgrdisibuted (i.i.d.).

Then, Eqg. (4.3) becomes:

N |St|

=> >l f ! (4.4)

t=1 n=1

N N
AN = Z)\t —
t=1 t=1

where the test statistic can be approximated as Gaussia tii& Central Limit Theorem
(CLT) asT,, ~N(u, o2) under¥,, as shown in Eq. (4.2).

We now consider theormalizedtest statistics (i.e., RSSs) to simplify the derivation
of the average number of sensing rounds. f,eé T, - o, denote the normalized test

statistic, i.e.£,3¢, ~N(¢x, 1) Whereg, ==, VE. Then, we have:

[ St [ St \St

=D ’“ =603 Tt g Z% &), (4.5)

wherehy(-) is the p.d.f. ofT, s, .

Based on Egs. (4.4) and (4.5), the decision statisticcan be expressed as:

N |St] 1 N |St]
An = (1 ¢0)Z Tn+§zz
t;[l i:l M t=1 n=1
= (¢1 — ¢o) ZTn + 7(@2) —61), (4.6)
n=1

whereM = ZtN:1|St| is the total number of test statistics collected by the B&ugh NV
sensing stages.

SPRT can meet the desired detectability requirements lefudhrsetting the detection
thresholdsd andB. Leta* andb* denote the desired values@f- 4, andQ,;p, respectively.
Then, the decision boundaries are given by [147]:

" and B—n! _*b*, (4.7)

—a* a

A=1n
1
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and the actual achievable error probabilities can only lghty larger than the desired

valuesa* andb*.

4.4.3 Minimization of the Average Detection Delay

Recall that our goal is to minimize the number of sensing dsutihat the BS has to
schedule to meet the desired detection performance regeits, e.9.Q0 4, Qnp <0.01.
Thus, we first derive a closed-form expression for the aweragnber of sensing rounds
required until a decision is made (i.e., either boundéyr B is reached).

The average number of sensing rounds required for makingciside (denoted by

E[N]) can be computed as [147]:
E[N] = E[A| 3] x E[Ay]. (4.8)

First, using Eq. (4.5), the average value of the log-liketit ratio\ under hypothesis

H,. can be derived as:

[ St |:St]

E[A | 3] = [ZTMM} + E[Z(% ¢%>}- (4.9)

Next, the expectation of i in EqQ. (4.8) can be found as follows. Suppdse holds,
thenA y will reach the decision boundary with the desired mis-detection probability;
otherwise, it will reachB. Thus, using Eq. (4.7), we have:

b 1— b
E[Ay | =6 Ino—— + (1 =) In .

(4.10)

a*
Based on Egs. (4.8), (4.9) and (4.10), we can derive the geeramber of sensing
rounds needed for decision-making as:
b* +(1-b) InLE
(61 — $o)E [z‘ ] LT ] + 508 — GDE[IS]

E[N | H,] = (4.11)

Similarly, the average number of sensing rounds utifgri.e.,E[N | H,], can be derived.
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Egs. (4.9), (4.10), and (4.11) indicate that the averagebeumof sensing rounds|N]
depends on: (i) the average number of sensors within therfuainge, which can be easily
calculated a€[|S;|| = prR3, under the assumption of the point Poisson distribution of
sensors, i.e.|S;| ~ Poi(n; prR7), and (ii) the sum of their reported test statistics, i.e.,
B[ Tope,]

As will be shown below, the sum of test statistics is affecteinly by three parameters:
() sensor densityp), (ii) transmit-power level of the primary devigé’,), and (iii) data-
fusion rang€ R ), assuming other parameters remain constant. In genemabsaensity is
known at the BS at the time of system deployment, and thertréup®wer can be estimated
based on measurements (which will be detailed in Sectiol.5 herefore, we opt to
derive an optimal fusion rang&;} that minimizes the average number of sensing rounds,

thus minimizing detection delay.

4.4.4 Approximation of the Sum of Test Statistics

Unfortunately, it is infeasible to derive a closed-form eegsion for the exact distri-
bution of the sum of test statistics. This is because it dép@m various random factors
including the number of sensors within the fusion range tbeations relative to the pri-
mary transmitter, channel gains between the primary tréatesnand the sensors, and the
measurement error of the energy detector. Therefore, astat@p to derive an optimal
fusion range, we approximate the sum of test statistics if{&#fj1) as a shifted log-normal
random variable.

Let Tx(,,r,) denote the sum of the test statistics measured at the semibns the
fusion radiusk; from the WM transmitter, in a network with sensor dengityrhen, under

JH,, it can be approximated as:

E(Tgr] =E| D anﬁ]

nesSy

—E Y NP, + N, o—g)]

nesSt
~E| > R +E[ DN, (4.12)
nes neSy
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whereP, is the received primary signal strength at sensandS; = S(p, Ry) for brevity.
The approximation in Eq. (4.12) is made based on the obsemnvdiiat, assuming the sens-
ing duration ofl ms, the measurement error of the energy detector is rdiasinaller than
the average received primary signal strength, &2 (P, + N,).

Based on Eq. (4.12), we now focus on approximation of the stiraceived primary
signal strengths, which can be rewritterfs .o Po]=P,E[Y" g 9(d,)e* e where
P, is the primary’s transmit poweg(d,, ) is the senson’s channel gain due to path-loss, i.e.,
g(d,) = (d,/d,)~, andeX" ande¥" are the channel gains from shadowing and multi-path
fading, respectively. We approximate the sum of channelggdue to path-loss, denoted
by Gs:(p, Ry)=>_,cs, 9(dn), as alog-normal random variable. Previous numerical studi
have shown that the aggregate interference of Poissombdigtd transmitters to a single
receiver can be accurately approximated as a log-normaikdison [99]. Conversely,
assuming the reciprocity of the RF path, we can also appratarthe sum of received
primary signal strengths at sensors as a log-normal randoiable. It has been shown
that the impact of fading on received signal strengths isanotitical factor in such an
approximation [69]. The effects of log-normal shadowingl anulti-path fading in an
average sense will be incorporated later (see Eq. (4.17)).

DenoteSs.(p, Ry) ~ Log-N(ug, o). Then, the p.d.f. ofx(p, R;) is given as:

Ps(p.rp) () = ﬁ exp ( — %) (4.13)
where theus ando? have the following relationships [99]:
mi(p, Ry) = eha+27 and ma(p, Ry) = e2Hato8 (78 — 1), (4.14)
Herem,.(p, Ry) is thekth cumulant ofS, z,), given as:
ol ) = (8 =) [ o
_ (2]5 il’é;“) (eki_z - R;“Q)’ (4.15)
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whered, is the reference distance aads the minimum separation between the primary
transmitter and the sensors, which is set+gr5 m in our simulatior?

From Egs. (4.14) and (4.15), the log-normal random varigble, R;) ~ Log-N(uq, 02)
can be approximated as:

1 m% 2 Mo
HGe = § In (m) and Og = In (1 -+ E% . (416)

Therefore, from Egs. (4.12) and (4.16), and by incorpoggtine effects of shadowing and
multi-path fading assuming the fading is i.i.d. for eachss#nthe sum of received primary

power at the cooperating senséfscan be expressed as:
E| Y P] = P EleY] - Ele*] - El9s(p, Ry)) (4.17)
nesSt

2

whereE[eX] = e27°, ¢ = 0.1In(10)045, andE[Sx(p, Ry)] = e*c*27G, For multi-path

fading, we assume Rayleigh fading with zero mean, and tHje$) =1.
Then, from Eqgs. (4.12) and (4.17), the average of the sum whalized test statistics

can be expressed as:

St ]
E [ > Tnml} =E [Tw,Rf) T, 1]
n=1

_ (po 37 E[Sx (p, R;)] + NopﬂR§> o, (4.18)

Finally, based on Egs. (4.9) and (4.18), the first term in BB)(for calculating the

average number of sensing rouri{sV | ;] can be derived as:

EIA|9] = 2(63 — ) oI} + (61— o)

x (P,e27" E[Sx(p, Ry)] + NopnR3) 0,7, (4.19)

whereg, = 2= and ¢, = Y= are the average normalized test statistics under both hy-

3This is reasonable because the probability that thereseaideast one sensor within= 75 m from the
WM transmitter isl — Poi(0; pme?) 220.02 given sensor density gf=1.25 x 1075/m?.
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potheses.
The average number of sensing roufigly’ | ;] can be derived by substituting Egs. (4.10)
and (4.19) into Eq. (4.8).

4.4.5 Optimal Data-Fusion Range

Based on the analyses above, we now derive an optimal dsitaaftange that mini-
mizes the average detection delay, i.e., the number ofrsgingunds needed to meet the

detection performance requirements.

Proposition 4.1 LetJ(R;) £ E[\| H,] in Eg. (4.19) Then, the optimal fusion range that

minimizes the average number of sensing rougidg| is given as:

R} = argrr}%anH(Rf) = Ry 623?;):0 = (al(%’;%) a, (4.20)
where L
oy = 21 _O—%P—O ‘j; prds. (4.21)
and
2 = (6} - Do + 20Nl (4.22)

o

Proof. See Appendix A. [

Proposition 4.1 indicates that the optimal fusion rangé thiaimizes detection delay
depends on various system parameters, such as transnpssien(,), noise power{,),
shadow fadingd), and path-loss exponent)

Based on Proposition 4.1, we have the following countertiive observation:
Corollary 4.1 The optimal fusion range/{}) is independent of the sensor dengity

One might think that the optimal fusion range should de@ess sensor density in-
creases, since more sensors (near the WM transmitter) vgthRSSs become available
for data fusion. However, this is not the case because tHerpence of EGC depends
on how far a cooperating sensor’s report (i.e., the meadR&H) is from the noise power

level, which is independent of sensor density (see Fig.ar.@dtails).
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4.4.6 Impact of Sensing Scheduling

We now show that sensing scheduling can reduce the minimososdensity required
for given detection constraints. While the achievable guenfance gain via cooperative
sensing has been studied extensively [100, 101, 106], tpadhof sensing scheduling on

the sensor density requirement has not been studied.

Proposition 4.2 The minimum sensor density required to meet certain ddigityare-

guirements isnverselyproportional to the average number of times to sense.

Proof. Based on Egs. (4.8), (4.10), (4.15) and (4.19), the reqweador density for a

given average number of sensing roufidd’| can be expressed as:

2 b In 72 + (1= b) In 125
B e T e (429
IN] - PrlPoez” (% — ) — 57 R} Pr]

wherea* andb* are the desired false-alarm and mis-detection probabdityes. Eq. (4.23)
indicates that the sensor densitig inversely proportional to the average number of sensing

rounds. Therefore, the proposition follows.[]

Propositions 4.1 and 4.2 are derived based on the assuntpibthe WM's location
and transmit-power level are knowrpriori to secondary users. However, such information
may not be available in practice, and thus the benefits of wallycal findings cannot be
realized without an efficient way of estimating the WM’s ltoa and transmit power. This
motivates our approach of integrating sensing with locedind transmit-power estimation,

which we discuss next.

4.5 DeLQOC: The Iterative Approach

We now introducdde L OC, an iterative algorithm that expedites the detection oflsma
scale primary signals via joint data-fusion and locati@m$mit-power estimation. We first
describe the estimation techniques, and then the propesadubkion rule and the iteration
method employed bpeLCC.
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4.5.1 Estimation Techniques
4,5.1.1 Estimation of WM Location

As we observed in Fig. 4.3, a reasonable approximation,tiboourate, of the WM’s
location is sufficient for improving detection performanteDeL CC, the BS estimates and
updates the WM's location based on the RSSs reported by tiserse In particular, the BS
employs aveighted centroid methqaroposed in [151], which estimates the WM'’s location
via a weighted average of the sensors’ locations, where ¢ighivequals the corresponding
sensor’s report. The BS further refines the estimation viexgoonential moving average
over multiple sensing stages.

More specifically, letd, = (7y, 7:) € R? denote the estimated location of the primary at

sensing stage Then, the WM’s location is estimated as [92, 151]:

{9\t:( 19t1+ﬁ<zz >7
neSt mESt

where P, is the received primary signal power at sensp«),, = (x,, y,) the location of
sensom, andgj € (0, 1) the smoothing factor.

Note thatDeLOC uses a simple existing localization method to estimate this B-
cation in each round, but it is not restricted to any speaifaalization algorithm, so other
localization methods, such as the semi range-based metbpdged by Mat al. [96], can

also be used.

45.1.2 Estimation of Transmit Power

In DeLQOC, the BS estimates the WM’s transmit-power based on the Whtisnated
location and the reported RSSs using the method proposd&® és:

P,(dB) = 10log,, ( ) |St| Z (10g10 ) + alogyo(dn ))

neSt

wherek = p,d% P; 1. p, is the measured signal power at reference distapcé’, the

received primary signal strength at senspandd,, the distance between the WM trans-
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Algorithm 5 DeLOC. ALGORITHM FOR JOINT DETECTION AND ESTIMATION OF

SMALL -SCALE PRIMARY USERS
At the end of a sensing period, the BS does the following

1: for Each triggering everdo
2 t < 1 // Initialization
3 while ¢t < MaxNumlter do
4: t+—t+1
5: 0; < Receive sensing results from cooperating senSprs
6 A — AN q + )\{(t) /l Update the decision statistic
7 if Ay > Bthen
8 A primary exists and hence returns the estimated locatidrtramsmit-power level
9: else ifA; < Athen
10: A primary does not exist (i.e., the event is triggered by asglpwimary) and hence
terminates the iteration
11: else
12: (5t+1, ﬁo,tﬂ) + Estimate the location and transmit power of the primarysmaitter
13: R} ., < Calculate the optimal fusion range
14: Si+1 < Select a set of sensors located wittii, , , from the estimated primary trans-
mitter location
15: Schedule another sensing round and wait for the observation
16: end if

17:  end while
18: return No primary signal exists
19: end for

mitter and senson, i.e.,d, = \/(Z:—x,)? + (§:—y»)?. Note that the test statistics of the
energy detector include noise power, so the received pyisignal strengthP, needs to
be estimated from the test statistics by subtracting theageenoise powenN, from the
measurements.

While DeLOCemploys simple location and power estimation techniqinresgstimation
accuracy can be further improved by using more sophisticeehniques at the cost of

more computation.

4.5.2 The Proposed Data-Fusion Rule

While DeLOC improves small-scale primary detection performance \geative co-
operative sensing and estimation, we observed that it déieninates in the early stages
mis-detecting the WM. This is because, initially, the B®edtion and transmit-power es-

timates are inaccurate, resulting in many noisy sensorrteguring data fusion. This
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preventsDeL OC from fully exploiting its unique feature—an iterative refiment of esti-
mation and fusion.

To overcome this problem, we propose a hew data-fusion ouledL OC, asequential
probability ratio test with ascending weigfBPRT-AW), to prevent the BS from making
biased decisions in early stages. The idea is to assignanvedlights to the decision
statistics in early stages, and gradually increase thehigems the location and transmit-
power estimates become more accurate. Specifically, weheseltowing rule to update

the decision statistic:

_ 10 _ 1
AN=ANq+ N where f(t)_m teN, (4.24)

where we use the sigmoid functigfiit) such that the exponent of test statistics increases
from 0.5 to 1 ast increases. Consequently, the test statistics in lateestagunt more
in decision-making. The resulting decision statisticd Wwé used in updating thé&, in

Eq. (4.4), and compared with the uppét)(@nd lower () thresholds to make a decision.

4.5.3 Description ofDeL OC Protocol

As described in Fig. 4.1DeLOC is triggered only when a sensor’s report is above a
certain predefined threshafdwhich is suspected as a WM signal. The triggering threshold
must be chosen carefully by the BS to balance the false- asdriggering ofDeLOC.
Upon triggering, the BS assumes the triggering sensorailoe as the WM'’s location, and
employs additional sensors within the fusion range for Wiédton in the next scheduled
sensing round. If there are multiple triggering sensordaeeproximity, the BS considers
the sensor with highest RSS. In each sensing round, the B$asghe following two steps:

() location and transmit-power estimation and (ii) datatbn, until the decision statistic
for data fusionA reaches one of the thresholds. The BS also terminates th&oteafter

scheduling sensing rounds fistaxNumlter. Algorithm 5 detailsDe L OC.
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4.6 Performance Evaluation

In this section, we evaluateeLOC using MATLAB-based simulation. We first de-
scribe the simulation setup and then present the impacteofuion range on detection
performance and its dependency on transmit-power. We hatse the relationship between
detection delay and sensor density. Finally, we demomstingt performance ddeLOCin

comparison with other testing schemes.

4.6.1 Simulation Setup

In the simulation, we consider a realistic 802.22 environhwehere sensors are ran-
domly distributed over 80 kmx30 km area. The average sensor density is setXs/km?,
as typically used in 802.22 WRANS [107], unless specifiectntiise. We assume a WM
randomly located in the area with effective transmit-poleiow 25 mW, as indicated by
the measurement study in [36]. The maximum number of semsingds scheduled within
the 2-secondhannel detection periofCDT) is limited toMaxNumlter = 100.* The dura-
tion of a single sensing period is assumed to be 1 ms. Thelpssrexponent iss=4, and
the shadow fading dB-spreaddsg = 5.5 dB, which is typically assumed for rural areas.
We also assume that the signal-propagation parametera@anek priori to the secondary
system. The triggering threshold e LOC is configured ag = N, + 3.5 0, which gives
the false-triggering rate af.3 x 10~%. The simulation results are obtained franx 103
randomly-generated topologies.

To evaluate the efficacy d¥eL OC, we compare the performance of the following four
sensing schemes: (i) Oracle (the ideal case)Pgi). OC with SPRT-AW, (iii) DeLOC, (iv)
DeLOCwithout localization, and (Mipe LOCwithout transmit-power estimation. @racle,
the location and transmit-power information is availaldehte BS, so the BS always uses
the optimal fusion range for sensing without the need foimegtton. Thus, Oracle will
be used as a performance reference D&h.OC without localization the location of the

triggering sensor is regarded as the primary’s locatioelbhOC without power estimatign

4This is reasonable since the BS can schedule sensing agffithgas once everyo ms, i.e., one MAC
frame size in 802.22.
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Figure 4.4: Impact of the data-fusion range on detection performareethé average num-
ber of sensing rounds decreases as the fusion range ingredsereas (b) the
detection probability is maximized whe; =1 km, which is close to the ana-
lytical result. Here the WM'’s transmit power is setitmW.

the power level is assumed to be randomly chosé, 5] mW.

4.6.2 Impact of Fusion Range

Fig. 4.4 shows the impact of the data fusion range on detepi@goformance in terms
of detection delay and accuracy. The figures indicate ttwasitoall a fusion range suffers
from the lack of cooperating sensors, which makes it diffitard the BS to collect enough
information, i.e., measured RSSs, to make a decision withaskcNumlter, resulting in a low
detection probability. On the other hand, too large a fusimye, i.e., beyontkm, suffers
from having many noisy reports, misleading the BS to proynptinclude that there is no
primary signal, increasing the chance of mis-detectiog. #4(b) shows that the detection
probability @, is maximized when the fusion range likm, which closely matches the
analytical result, i.e.].03 km.

An additional observation from our simulation results iattfalse-alarms occur only6
times overs x 103 iterations, i.e.( 4 = 16/5000 = 0.0032, thus achieving the false-alarm

requirement of) x4 <0.01.
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Figure 4.5: Optimal Fusion Range: (a) shows the impact of transmit-paethe optimal
fusion range, indicating that the analytical results (thedraph) closely match
the simulation results (the line graph), thus validating dmalytical results. (b)
shows that the optimal fusion rangé} that maximizes detection performance
(Qp) does not depend on sensor density.

4.6.3 Optimal Fusion Range

Fig. 4.5(a) plots the optimal fusion range for various traitgpower levels, and indi-
cates that our analytical results (Proposition 4.1 in $ecti.4.5) closely match the simula-
tion results. The figure also shows that to detect a high tnérgower WM, it is better (in
the sense of reducing sensing delay) to extend the fusigeraéinus increasing the number
of cooperating sensors. On the other hand, to detect a WMweithweak transmit-power,
it is better to have a small number of sensors, thus redubi@gumber of noisy reports.
Fig. 4.5(b) indicates that the optimal fusion range (in thiese of maximizing the detection
probability () p) remains the same over different sensor densities, thugmwamng Corol-

lary 1 in Section 4.4.5.

4.6.4 Impact of Sensor Density

Although sensor density does not affect the optimal fuseénmge, a higher sensor den-
sity (hence more sensors within fusion range) can still oupisensing performance by ex-
ploiting diversity of measurement. Fig. 4.6(a) shows therage number of sensing rounds
(i.e., detection delay) required to meet the detectiongoerdnce?) 4, Q/p <0.01, which

obviously decreases with sensor density. The figure alsodtet that the average num-
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Figure 4.6: Impact of sensor density on detection performance: (a) ¢tection delay de-
creases rapidly as sensor density increases, and (b) thetidetaccuracy in-
creases as the sensor density increases. In the simulgi@transmit power is
set asP, =2 mW.

ber of sensing rounds is almost inversely proportional ttsee density, thus confirming
Proposition 4.2 in Section 4.4. Fig. 4.6(b) further shovat the detection probabilit§

increases with increasing sensor density.

4.6.5 Performance ofDeLOC

To demonstrate the efficacy DeELOC, we compare its performance with the other four
testing schemes under the detection constrénts, Q,p < 0.01. As shown in Fig. 4.7,
when the WM'’s transmit-power increases, detection perémee (with respect to delay
and detection probability) increases for all testing sck&mWe make three additional
observations.

First, Fig. 4.7(a) shows that the average number of sensungps for decision-making
is below10, which may take onlyl00 ms as the BS can schedule sensing periods as fre-
quently as everyi0ms, i.e., one MAC frame size in 802.22. In addition, the didec
probability of DeLOC with SPRT-AW meets the detection requirement of 802.22, i.e
Qup <0.1, even for a very weak transmit-power binW, as indicated in Fig. 4.7(b).

Second, Fig. 4.7(b) shows thBeLOC with SPRT-AW performs close to Oracle in
terms of detection rate, and outperforms all other schehssise regular SPRT. As men-

tioned earlier, the SPRT iDeLOC often makes a wrong decision (mis-detection of a WM)
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Figure 4.7: Performance oDeLOC. DeLOC (a) requires only a small number of sensing
rounds for WM detection, and (b) achieves a high detectiteeaen for a very
weak signal power, e.gh,=1mW.

in early detection stages because of the large number of rep®rts due to the inaccurate
location and power estimateBeL OC with SPRT-AW mitigates this problem by discount-
ing the decision statistics in early stages.

Third, Fig. 4.7(b) shows thde L OCwithout localization outperforms tHae L OC with-
out transmit-power estimation. This is because power esiim plays an important role
in finding the optimal fusion range, and thus, errors in poastimation results in signif-
icant performance degradation. On the other hand, theitmeastimation error is small
compared to the typical fusion range, and thus it does natecaignificant performance
degradation, as already shown in Fig. 4.3.

These simulation results clearly demonstrate that thd pesign of data-fusion and
location and transmit-power estimation maximizes the besnef spatial-temporal sensing

for detecting small-scale primaries, such as WMs in 802.22.

4.7 Related Work

Despite its practical importance, there has only been dichresearch in MAC-layer
solutions to WM detection. Most existing work focuses on PlEyer signal detection
techniques [26, 161], which have short sensing ranges &juireca separate dense sensor

network for WMs. Mishreet al. [107] studied the minimum sensor density required for
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detecting WM signals based on energy detection. They shoadvhen the path-loss
exponent ist or higher, the average sensor density in rural areas{i25,/km?) is not suf-
ficient for detecting WMs. Recently, the 802.22 Working Grastablished Task Group 1
to develop a standard for the disabling beacon protocol][1&though the disabling bea-
con can protect WM signals better, it has several practigatdtions as discussed in Sec-
tion 4.1. Moreover, the disabling beacon is restricted to $\idcause the sensing relies on
specialized signal features. In contrast, Dat. OC algorithm is agenericMAC-layer sens-
ing scheme for small-scale primary detection, which camiserporated into the beacon
protocol while overcoming its limitations. Chouinard [3gffoposed a coexistence model
between WMs and 802.22 WRANSs by exploiting the WM signal'safirfootprint and its
narrow bandwidth, i.e200 KHz. However, they do not account for location estimation,
which greatly affects the spatial reuse of spectrum.

Sequential detection of PUs has been studied by others R81@]. Chenret al.
[28] proposed a weighted sequential probability ratio (#8S5PRT) that assigns differ-
ent weights to sensor reports based on the sensors’ remgati order to minimize the
impact of manipulated (or erroneous) sensor reports in mggkifinal decision on the pres-
ence/absence of a primary signal. By contrast, SPRT-AVéahiced inrDeLOCis designed
to intentionally defer the final decision at the BS, so as thuce the effects of any wrong
decision made in early stages when localization and povienason are relatively inac-
curate.

Chenet al. [29] proposed a scheme for verifying a PU’s location, calledDef Its
main idea is that if the estimated location of the signal seuiffers significantly from
the known location of the primary transmitter, i.e., a TVhsmitter, then the BS assumes
that the signal is transmitted from a fake PU. By contragt|tication and transmit-power
estimation introduced iDeLOC aim to improve detection performance of small-scale pri-
mary signals, e.g., WMs, by helping the BS select an optiiabcooperating sensors. In
addition, when there is a WM signdde L OC returns the estimated location and transmit-
power of the detected WM, so that the BS may use this infoondtr admission control
and transmit-power control of the secondary users to aetietter spectrum reuse in the

space domain. Another key difference is tbat. OC makes use of a sparse sensor network,
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wheread.ocDefrequires a dense sensor network for location verification.

The work presented in this chapter is also related to theiegibody of research on the
coverage of sensor networks. Using a theoretical anal}{gng) et al. [153] showed that
data fusion via sensor cooperation can improve the coverhgensor networks over the
conventional detection schemes based on a disc model. \Mhilapproach also empha-
sizes the importance of data fusion, we adopt sensing stthgda improve the detection
performance of small-scale primaries. We characterizarntpact of various factors on
WM detection, and establish a practical framework that aotofor the unpredictability

of each WM’s transmit-power and location.

4.8 Conclusion

The detection of small-scale primary signals is a critibalt challenging problem in
realizing DSA in CRNs. To address this problem, we proposeoval spatio-temporal fu-
sion scheme that exploits (i) spatial diversity by coopeesgensing with an optimal fusion
range, and (ii) temporal diversity by scheduling a seriesernfsing stages with an optimal
stopping time. We modeled the detection problem as a hypisthest, approximated the
sum of sensor readings as a log-normal random variable,h@mddolved a convex opti-
mization problem, to obtain the optimal fusion range thatimizes the average detection
delay. We also proposed a new sensing algorithm c&igdOoCthat iterates between coop-
erative sensing and location/transmit-power estimatiofutther improve sensing perfor-
mance under realistic settings. Our evaluation resultesghat DeL OC reduces detection

delay significantly while achieving high detection perfamce.
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CHAPTERS

Robust Tracking of Mobile Small-Scale Primary Users

5.1 Introduction

Unlike the detection of large-scale primaries, e.g., DT¥raswhere localization is not
the primary concern in opportunistic spectrum reuse, ately tracking the physical lo-
cation ofmobilesmall-scale primaries, such as wireless microphones (Wislsjucial in
achieving the core objectives and functionalities of CR&&h as spatial spectrum reuse
[34], interference management [64, 146], routing decsi@7], and falsified primary sig-
nal detection [29, 91]. For example, knowing the locatiorthef primary transmitter en-
ables secondary users (SUs) to reuse licensed spectrumefificrently without causing
excessive interference to primary communications [34,1@46, 146]. Without knowing
the location of a WM, however, all the SUs (also called CPEgN 802.22 cell (of radius
up to 100 km) must immediately vacate the current operating chanpehwetection of
the WM, resulting in significant waste of spatial spectrurpanunities [34]. Furthermore,
location information is also very useful for cooperativasiag by enabling the base station
(or fusion center) to select an optimal set of sensors, espewhen detecting a very weak
primary signal, like a WM signal [105].

However, CRN faces unique challenges, such as the absepdenairy-secondary co-
ordination and low sensor density, that make it difficult tw@ately track mobile pri-
maries. According to the FCC, opportunistic spectrum acsbsuld require no modifica-

tion to the primary system [47]. Thus, SUs (sensors) mugts@kly on measured received
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signal strengths (RSSs) (obtained via spectrum sensingyifmary tracking. This makes
the primary tracking vulnerable to attacks, since the fragkrocess can be disrupted by
malicious or faulty sensors that report incorrect RSSs. #sisg) report falsification attack
can be easily launched by attackers due to the open natuogvdéier protocol stacks in
SDR devices, such as USRP [3] and Sora [84]. Moreover, loamsatensity in CRNs ham-
pers the accurate tracking of mobile PUs, e.g., the avemgmsdensity in 802.22 WRANS
is only aboutl.25/km? [107]. Inaccurate location estimation may ultimately @8Js to
generate excessive interference to the primary systematiig the basic premise of CRNs
and discouraging PUs from sharing their licensed spectrand® with SUs. Therefore,
there is a clear need for an efficient and secure trackingseler small-scale mobile PUs
in CRNSs.

In this chapter, we address the problem of reliably trackimgll-scale mobile PUs in
CRNSs. Specifically, we design an RSS-based tracking scheaitedSOLI D, which allows
accurate, attack/fault-tolerant tracking of mobile PUgdagtly estimating the location of a
primary and shadow-fading gains in the RSSs. The shadowimgation inSCLI Dgreatly
improves localization performance. Besides, by monitgptamporally-correlated shadow
fading,SOLI D accurately detects manipulated or erroneous sensor sefiuus achieving
high robustness. The key motivation behind exploiting terapshadowing correlation
in attack detection is based on the observation that makcgensors cannot control the
physical-layer signal-propagation characteristics. [Awe focus on the robust tracking of
WMs'’ location in 802.22 WRANS, our proposed techniquesgerericand can be used
for detecting other types of small-scale primaries or, incgater context, target tracking in

wireless sensor networks.

5.1.1 Contributions

This chapter makes the following main contributions.

e Development of a new tracking schen&)LI1 D, that jointly estimates the mobile
PU’s location and shadow-fading gains using an adaptiver.filBy exploiting the

temporal correlation in shadow fadin§OLI D (i) improves localization accuracy
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and (ii) accurately identifies abnormal sensing reportgh@dest of our knowledge,

this is the first attempt to incorporate shadow fading intoparative localization.

In-depth evaluation o8OLI D in a realistic shadow-fading environment under var-
ious attack scenarios. Our extensive simulation study shbat, under no attack,
SOLI Dlowers the average localization error by um&, compared to the conven-
tional Sequential Monte Carlo (SMC) based tracking schesimeg the two compo-
nents of SOLI D—SMC-based localization and shadow-fading estimatiorfires

each other throughout the tracking process.

High attack- and fault-tolerance 8CLI D. Our evaluation results show tha®L1 D

can detect compromised sensing reports with high accueagy,attack-false alarm
and mis-detection rates below 1% and 7 %, respectively. sti ahows that in a
realistic shadowing and multi-path environme®@L| D lowers the average error by

up to89 % even under “slow-poisoning” attacks.

Investigation of the tradeoff in the design of the attackeddr in SOLI D. When

the base station (BS) filters out sensors or sensing repartaggressively (or con-
servatively), the localization can suffer from lack of sdesp(compromised sensing
reports). Via in-depth simulation, we identify the impa€attack detection thresh-
olds, and the results provide practical guidelines for tbgigh of a robust and effi-

cient tracking scheme.

5.1.2 Organization

The rest of this chapter is organized as follows. SectiordBstribes the system mod-

els and assumptions, and introduces the attack modeldgo®s&cB presents our proposed

approach for attack detection, and the underlying locatimgorotocol. Section 5.4 details

our approach for the estimation of shadow fading, and thegdesf SOLI D's attack de-

tector. Section 5.5 evaluates the performanc8@fl D, and Section 5.6 reviews related

work. Section 5.7 concludes the chapter.
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5.2 System and Attack Models

In this section, we describe the network, spectrum sensing, signal-propagation
models that we use throughout this chapter. We then prowidavarview of our model

of tracking a small-scale mobile primary transmitter artdoduce the attack model.

5.2.1 CR Network Model

We consider a CRN that consists of primary and secondangidasices in the same
geographical area. The secondary network is an infrastrerttased network, such as an
IEEE 802.22 WRAN, in which each cell consists of a base stgf85) and multiple sen-
sors, calleccustomer premise equipmef@PEs). The main goal of IEEE 802.22 WRANs
is to provide Internet access to rural areas by reusing uhli¥espectrum bands, without
causing excessive interference to PUs. In an 802.22 WRANB® manages the DSA of
the SUs in the network by (i) scheduling sensors to perforecspm sensing, and (ii) per-
forming data fusion and primary location estimation to deiee the presence or absence
of a primary signal based on the sensing reports. For speaansing, the BS employs
the sensors located within a fusion range centered at tihmagstd primary location for
cooperative spectrum sensing [105].

We assume that sensors are stationary and that the BS hasdhieh information of the
sensors within its own cell. For example, the IEEE 802.22 WRAtandard draft requires
the BS to know the sensor locations. We assume that the samsog been deployed in an
aread, e.g., an IEEE 802.22 WRAN cell, following a point Poissonqass with average
densityp. Unlike in a typical wireless sensor network environmenheve sensors are
densely distributed, we assume a low sensor depdigcause the typical density of CPEs
in rural areas is onlyt.25/km* [139]. We assume that the BS and sensors communicate

over a common control channel.
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o: normal sensor e: compromised sensor 0O: mobile primary transmitter

Figure 5.1: An illustrative example of small-scale primary trackingheTBS tracks the lo-
cation of a mobile PU (e.g., a WM) based on the sensing reficets received
primary signal strengths) from the sensors located with@nftision range (the
dotted circle).

5.2.2 Spectrum-Sensing and Signal-Propagation Models

Due to the lack of primary-secondary cooperation, primeagking must be done based
only on the received primary signal strengths measured@ierative sensors\We con-
sider energy detection [127] for spectrum sensing in theRty¥r. Energy detection is the
most widely-used PHY-layer sensing technique due to itpkndesign and low sensing
overhead. The test statistics of the energy detector arstanate of the sum of received
primary signal and noise power [127]. We assume that the B@ay® only the sensors
located close to the primary transmitter, i.e., locatedinithe fusion range?, from the
estimated location of a primary transmitter, for locaticacking. The BS directs the coop-
erative sensors to perform spectrum sensing at a periodeititervalt € T, and reports
their sensing results to the BS for localization. Fig. 5.pidis an example scenario of
tracking a mobile primary transmitter in a CRN.

Assuming that the noise power is much smaller than the redgivimary signal strength,

sensom’s measurement in sensing time siatan be expressed (in dB) as [46]:

P,, = P,+ al10log(d,) — al0log(di ) + Xt + Yin (5.1)

1Cooperative sensors refer to a set of sensors in a 802.22 WRANh are employed by the BS for
spectrum sensing.
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whereq is the path-loss exponermt, the reference distancg, the received primary signal
strength at the reference distandg, the distance between the primary transmitter and
sensom in time slott. Log-normal shadow fading, denoted By ,,, can be characterized
by dB-spreadg,z, where X, ,, ~ N(0,03%5).2 We assume that non-fading components,
such as antenna and device losses, are approximated asl a@aussian random variable
with zero mean and varianeg,, denoted a3}, ~N(0, o) Vn.

Let S; denote a set of cooperating sensors in time sloEhen, the received primary

signal strength at cooperating sensors in Eq. (5.1) caniessed in a vector form as:
P, = H(d,) + X¢ + Yo, (5.2)

where H(dy) = [h(d.1),...,h(dys,)]" represents the channel gain due to path-loss,
whereh(d; ;)= P,+a10log(d,) — «10log(d; ;). The shadow fading gain and noise vectors

are denoted bX; and Yy, respectively.

5.2.3 Attack Model

The main objective of attackers (compromised sensors)dsstopt the primary trans-
mitter localization/tracking process by manipulatingitisensing reports. Specifically, we

consider the following two attack scenarios: a sensor is
e compromisegdreporting manipulated (i.e., higher or lower than realSR %o the BS,

e malfunctioning or faultygenerating sensor readings that significantly deviat@ fro
the true RSS.

The above two cases render the sensing reports to the fusigardi.e., the BS) in-
accurate, degrading the localization/tracking perforoeanSuch large localization error
will require SUs to be more conservative in reusing spectopportunities, resulting in a
waste ofspatialspectrum opportunities (see Section 5.5.7). Thereforgp/é design an

attack- or fault-toleranfprimary tracking mechanism that successfully tolerate$ sna-

2Measurement studies [10] indicate that a typigat values aret-8 dB depending on geographical envi-
ronments, e.g., urban or suburban.
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Figure 5.2: The SOLI D framework: SOLI D provides high accuracy and robustness in mo-
bile primary tracking by (i) estimating/monitoring shaddéading gains between
the primary transmitter and sensors using the Kalman Fdied (ii) detecting
and filtering out abnormal sensing reports based on the sliagieorrelation
profile.

nipulated (or erroneous) sensing reports. Although theist ether security threats, such
as jamming or denial-of-service attacks, in the primargkitag process, the sensing report
manipulation attack that we consider in this chapter iditieat due to the attacker’s ability

to control the sensing reports in a finer-grained manner.

5.3 The Proposed Approach

We first describe the overall architecture ELI D and present its design rationale.
We then introduce theequential Monte Carl¢SMC) localization process that underlies
SCOLI D.

5.3.1 SOLI DArchitecture

SQOLI D (Fig. 5.2) resides at the BS and consists of the followingetuilding blocks:

¢ |ocation estimatorthat tracks the location of a small-scale mobile primarggraitter

based on sensing reports,

e shadowing estimatorthat tracks the shadowing gain at cooperative sensors tisng
Kalman Filter (KF), and
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e attack detector that detects and discards abnormal sensing reports, aradagpithe

normal profile.

The above three components synergistically interact wattheother and collectively
enable accurate and robust PU tracking. Based on the estinpaimary location, the
sensor manager selects sensors to cooperate with eactbatiest on their (ab)normality
and proximity to the primary transmittér.

In particular, the shadowing estimator introduce®@LI| D offers two main benefits:

e It improves localization accuracy by mitigating the effeftshadow fading in RSSs
((a) in Fig. 5.2), and

e It enables accurate detection of abnormal sensing regonts(Fig. 5.2).

SOLI Dalso minimizes communication and processing overheaé giegploits physical-

layer signal-propagation characteristics, extractenhftioe cooperative sensing results.

5.3.2 Design Rationale for Attack Detection

To maximize attack-tolerance and preserve localizatimucy, SOLI D exploits the
temporalcorrelation in shadow fading in received primary signa¢sgiths. The key in-
sight behind the attack detector is that, in shadow-fadmgrenments, the sequence of
RSSs measured at each sensor is highly likely to be cordedatendicated in measurement
studies (e.g., [10, 60]). Thus, the attack detector takesnamaly-detectiompproach to
identifying and discarding abnormal sensing reports inldlealization process. So, if at-
tackers raise or lower the sensing results (i.e., RSSsjtexptw the BS in order to influence
the localization resultSOLI D can easily detect them by examining the consistency of the
sensing reports with the estimated primary location andptiegious history of sensing
reports. Hence, the attacker must lower its attack stretegvade detection b$OLI D,
exerting only a negligible impact on localization.

One important, but not so obvious feature of the attack detés SOLI Dis that it is

cooperativein the sense that the accuracy of shadowing-gain estimdgpends heavily

3Although there are many sophisticated sensor-selectighads for target tracking (e.g., [30]), optimal
sensor-selection is not our focus.
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on the location estimate, which is updated based on reportsdll the cooperating sensors.
In other words, the robustness of attack detection is dyrectrrelated with localization

accuracy.

5.3.3 SOLI D: Sequential Monte Carlo Combined with Shadow-Fadng

Estimation

SOLI D employssequential Monte Carl¢SMC) [70] as the baseline scheme for track-
ing small-scale mobile PUs. SMC has been widely used as bzattan method in mobile
wireless systems [13, 121]. The key idea of SMC is to repiteberrequired posterior den-
sity function by a set of random samples (or particles) whthirt associated weights, and
then compute the estimated location by taking their wedjlateerage . SCLI D augments
the conventional SMC with shadow-fading estimation toHartimprove the tracking ac-
curacy and achieve robustness against malicious/faultyoss.

Let {¢| P = (v4,y:) t € N} denote the sequence of a mobile primary’s locations in
two-dimensional coordinates wheres the index for (sensing) time slot. The BS estimates
the primary transmitter’s location based on the vector oéreed primary signal strengths,
denoted byP; in Eq. (5.2).

Let the particle set denote the set of tup{ééﬁ’), w, )) - where each sampl@éi)
is associated with its weight”, where>" N, w! () — 1, and N, is the number of particle
samples. Then, the PU tracking procesS@L| D consists of the following 6 steps.

Step 1: At the end of sensing periagd SOLI DdrawsN, new samplesusing transition

probabilitiesp(6{”|6(?, ), given by:

1 ifd(0?,0)) < vyas
(9(2)|0(’t) ) = 7(Vmac+8)2 t t—1 (5.3)

0 otherwise

where,,., IS the maximum speed of the mobile primary transmitter, dnd used to

generate better samples [121]. We 5et0.2 v,,,, empirically in our simulations.

4Initially, SOLI Drandomly selectsV, sample point®, = {Héi)}jvgl in the detection region to represent
candidate locations of the mobile PUs.
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Step 2: After generatingV, new samples using Eq. (5.30LI D updates the weights

associated with the samples as:
w = w”, L(P| 6, (5.4)

where the likelihoodl (P | Bt(i)) can be calculated based on multivariate Gaussian in
Eqg. (5.2), i.e.,.L(Py| Oﬁi)) ~ N(H(dy) + f(t,a; Inwv), andIy,y is an identity matrix
where N = | S| is the number of cooperating sensors in time slothe weights are nor-
malized such thaf "™, w{” =1.

Step 3: Based on Egs. (5.3) and (5.430L1 D approximates the posterior density
p(¢|P14) as:

P(Pe|P1y) = Zwt -6, (5.5)

whered(-) is theDirac delta measure
Step 4: Then,SOLI D estimates the location of the primary transmitter by takimg

weighted average of the samples:

QE é (Tt,9) = <Zwt xt 7Zwt2 2) (5.6)

Step 5:SOLI Dthen calculates the effective number of particles,ﬁeﬁ =N 1(wt(”) )7L
and compare it against the given thresholg,. If Neff < Ny, SOLI D re-samples the
particles using the posterior probability in Eq. (5.5) tpleee the current particle set with
this new one, and sets the weiglmg) =1/N, forie€S§,. Steps 1-4 repeat themselves until
the effective number of particle&eff, is equal to, or greater than a given threshdlg,.

Step 6: Given the estimated primary transmitter in Eq. (5.8%LI D estimates the
shadow-fading gainit between the primary transmitter and the sensors using timedta
filter. We will detail this in Section 5.4.

Algorithm 6 describes the primary tracking proces$6£L1 D.

119



Algorithm 6 SMC WITH SHADOW-FADING ESTIMATION
At the end of each sensing round 7, SOLI Ddoes

/1'1. Localization
1: Initialization
2: 08V ~ p(Bo),w)) = 1/N,fori=1,...,N,
3: ]Veff < 0// Effective number of particles
4: while (N.f; < Ny,,) do
for i = 1to N, do ,
Drawet(’) ~ p(¢ | Oﬁ’_)l) using Eq. (5.3)
Updatewti) using Eq. (5.4)
end for 4
9:  Calculate the total weight, = S ("
10: for¢:=1to N, do

©oN v

11: w§” — wf)/Wt /I Normalization

120 (@) e (20w, 322 wfy?)
130 Nepy < (X (wf))?) !

14: end for

15: end while

16: return (Zy, 9¢)
/I 2. Shadowing Estimation
17: Estimate the shadowing gaiXsg using Eq. (5.11)

5.4 Detection of Abnormal Sensor Reports via Monitor-

ing Shadowing Correlation

In this section, we describe the shadowing-estimation @rapt inSOLI D, and dis-

cuss the attack-detection algorithm.

5.4.1 Monitoring Shadow Fading for Attack Detection

For the analysis and simulation 80L1 D, we need a method to generate temporally-
correlated shadow fading that accurately representswedtt shadowing environments.
For this, we use the Gudmundson’s empirical shadow fadindgh{60] to generate temporally-

correlated shadowing gains between the primary transnaitie sensors.
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5.4.1.1 Construction of Shadowing Profile

SOLI Dconstructs and maintains theofile of normal shadow-fading behavior for each
cooperative sensor, based on the history of reports from the sensors during ringapy
transmitter tracking process. We define the basafile elemen{PE) of sensor as the

shadowing component in the received primary signal strengtEq. (5.1), i.e.,
Xyp = Pip — P, — a10log(d,) + a10log(dyn) — Yin, (5.7)

where P, ,, is the senson’s measurement report at sensing periodlAm the estimated
distance between the primary transmitter and sensevhich is obtained via SMC, and
Yi.n~N(0,c2) the noise power.

Suppose that, at timg SOLI Dhas processeld > 1) PEs for sensot. Note thatt may
vary with sensors based on the time they joined the coopersgéinsor set. This sequence
of PEs exhibit a strong temporal correlation, becas®el D keeps track of each sensor’s
shadowing gain at each sensing period (e.g., once everydgc To exploit the temporal

correlation in PEs, we define a profile vector consisting efahtire history of PE records:
Xin(k;1) = [Xn(t), ..., Xo(t—k+ 1)), 1<n<N. (5.8)

Thus the estimates of the shadowing ga&in, provide a compact description of the normal

shadowing profile. We henceforth omit the subsctifair brevity.

5.4.1.2 Shadowing Estimation Using Kalman Filter

We now describe hoBOLI D accurately estimates the PE (i.e., shadowing gain) from
the observed primary signal strengths. Specifically, thecktdetector irf5OL1 D wants to

find the shadow-fading estimator that minimizes the meaarsglerrors (MSE):

MSEn(k;;l):E{ 3 ‘Xn(T)—f(n(T)‘z}, (5.9)
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wherek is the index of the sensing stage since sengomed the set of cooperative sensors.
We thus need an efficient estimator that minimizes the MSEGIN(&E9).

To meet this requiremen§0OLI D employs the Kalman filter (KF) [66], a recursive
estimator that produces optimal estimates by minimizirgrttean squared errors. In the

KF, the system can be modeled as:
Su(k+1) = @, (k) S, (k) + W(k), (5.10)

whereS,, (k) represents the state (i.e., shadowing gain) of the systeltk) is the state-
transition matrix that relates the st&g(k) to the next stat8,,(k+1), W,, (k) ~N(0, Q) is
the system noise vector where the covariance méjrmepresents the degree of variability
in the state variables.

The measurement of the system is defined as:
X, (k) = H(K) S, (k) + Viu(k), (5.11)

where the matridt,, (k) represents an observation model that relates the truevstaddle

S, (k) to the measurementX, (k). In our model,H, (k) is the channel gain between
the primary transmitter and sensoiin Eq. (5.2), and it is updated in each sensing time
slot based on the estimated location of the primary trarilemifThe measurement noise
is denoted a¥,, ~ N (0, R), where the covariance matrRR represents the measurement
uncertainty. We consider the measurement noise in specemsing due to noise power

(i.e.,Y:, in Eq. (5.1)) by settin® =02, and settingd =0.1% empirically.

5.4.2 Attack Detection and Filtering

A compromised or malfunctioning sensor node may reportsifiadl sensing value to
the BS. Such manipulated sensing reports may render thkzlatoan less reliable, ham-
pering an efficient reuse of spectrum opportunities in treigpdomain. To mitigate this
problem,SCLI D verifies the trustworthiness of sensing reports and filtatoopenalizes

the bad ones before performing the localization.
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Algorithm 7 ATTACK-DETECTION ALGORITHM IN SOLI D
For every newly joint cooperating sensarthe BS performs

1: Initialization

2. k<0

3: blacklist_count(n) < 0

4: while n € S; do

5: k< k+ 1// Start thek!" iteration

6: The BS estimated,, (k) using Kalman filter
7:  ComputePED, (k) using Eq. (5.13)
8:
9

if PED, (k) > nthen
if + + blacklist_count(n) > Np then

10: blacklistn

11: end if

12: if Sensom is blacklistedthen

13: Exclude senson from localization
14: end if

15:  endif

16: end while

SOLI D activates an instance of attack-detection scheme whetleed8S employs a
sensor for cooperative sensing. The attack detect®An D quantifies the deviation of
a sensor’s shadowing gain from the value predicted fromig®ty by monitoring the

prediction error, which can be computed as:

whereX,, (k) is the observed shadow fading in Eq. (5.7).
We introduce a metric for attack detectionS@LI D, calledprediction error distance

(PED) that indicates the Euclidean distance in two consexptediction errors, i.e.,
PED, (k) = }en(k;) —en(k—1) } (5.13)

This is a very useful, yet simple, metric because the priedictrror is correlated under
no attack, and consequently, the difference in two consexetrors is kept small (see
Fig. 5.5(a)). We also observed from our simulation restigg P £ D, (k) is smaller than
the prediction error itself.

The attack detector i®OLI D raises a flag on sensafs report as compromised (or
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abnormal) if:
PED,(k) >, (5.14)

wheren € R is a pre-defined threshold for detecting anomal®@a3.1 D classifies a sensor
as malicious and excludes it from the localization procétkd cumulative number of
flags raised is greater thaxiz, which is a design parameter. Algorithm 7 describes the

pseudocode of the attack-detection algorithrS@h| D.

5.5 Performance Evaluation

SOLI Dis evaluated using MATLAB-based simulation. We first ddserihe simula-
tion setup and show the efficacy of shadow-fading estimatioBOLI D in the absence
of attacks. We then demonstré&@L| D's robustness against various attack scenarios in-
cluding slow-poisoningattacks, and show the tradeoff in determining the attac&etien

threshold. Finally, we shoBOLI D's efficacy in spatial spectrum reuse.

5.5.1 Simulation Setup

We consider a CRN where sensors are randomly distributext@iog to a point Pois-
son process in 8km x 6 km area with the average sensor densitg/&m?, unless other-
wise specified. We assume a WM with a transmit-pow@b60fimW, which is the maximum
transmit-power allowed by the FCC in the UHF band [36]. For &/Mobility, we assume
a Random Waypoint model without pause time [158], whichesg|frently used in simula-
tions in wireless networks. We assume that the WM moves atd Bpeed of m/s with a
destination randomly selected in the simulated networ&.dfer each testing scenario, we
ran simulations over at least randomly-generated secondary network topologies to study
average behavior.

For WM sensing, we fix the sensing interval2aseconds, and during each sensing
period, sensors measure the RSS using the energy detecton$) as is typically assumed
in 802.22 WRANSs [100]. The radius of the fusion range for caragpive sensing is fixed

at R, = 1km, which is shown to be near-optimal for WM sensing in an 802VRAN
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Figure 5.3: Comparison of the tracking performance under no att&BL| D outperforms
conventional SMC-based tracking thanks to its ability tcumately estimate
shadow-fading gains.

[105]. The shadow fading dB-spreagds is assumed to be 5dB, as it is typically assumed
in IEEE 802.22 WRANSs. The shadowing-decorrelation distaiscset to 150 m,and the
path-loss exponent is 4. We assume these parameters are estimated at the tiystarhs
deployment, and thus knovanpriori to the secondary system.

For WM tracking, we set the number of samples for SMC\o= 40 and set the re-
sampling thresholadv,,, empirically in the rangéV,,, € [3, 5], depending on the network
environment. In what follows, the figures of localizatiomagrplot the average as well as

4+ 0.25 o interval.

5.5.2 Performance ofSOLI Dunder No Attack

SOLI D's accurate localization of a primary transmitter will natly allow better spa-
tial spectrum reuse, but will also enable high robustneagagmalicious/malfunctioning
sensors. Here we demonstrate, in the absence of attacksffitteey of shadow-fading
estimation inSOLI D. Fig. 5.3 plots examples of mobile primary transmitter kiag dur-
ing a period ofl00s. The SMC-based tracking suffers from large tracking et to
the shadow-fading-induced unpredictability in RSSs (bi§(a)), whereaSOLI D closely

tracks the primary transmitter’s location for the entiracking process (Fig. 5.3(b)). In

5A measurement study [10] indicates that a typical decdicglalistance is in the range ®20-150m in
suburban areas.
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tracking for various sensor densities.

what follows, we demonstrate the efficacy of shadow-fadstgr&ation under various net-

work parameters.

5.5.2.1 Effects of Shadow Fading

Fig. 5.4(a) shows that SMC-based tracking suffers from thgredictability in RSSs
due to shadow fading, resulting in a fast increase of errar;gsncreases. By contrast,
SOLI D maintains a small average localization errar §5 m) for all simulated scenarios
thanks to its estimation of the primary location and shadadvng gains, which refine each

other throughout the tracking process.

5.5.2.2 Effects of Noise Power

The measurement noise (including the effects of multi-gating) in RSSs can ad-
versely affect the accuracy of shadow-fading estimatiaog.. 3-4(b) shows that the average
localization error increases with noise power, | since a larger,, makes the shadow-
fading estimation becomes less accurate. Therefore, fugat to combat or reduce the
effect of noise powes,, at each cooperative sensor in order to fully benefit from shad
fading estimation ir8OLI D.

Although the standard deviation of Rayleigh fadinag,, can be as large @s5dB in

practice, one can use many existing techniques to signifjceetduce the effect of multi-
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path fading, e.g., exploiting antenna diversity [9]. Fons&'s with a single transceiver,
this can be accomplished by extending the sensing time¢lahan the channel coherence
time) [135] at the expense of increased sensing overhegd {lene and energy). In what

follows, we assume the standard deviation of the noise pmiied ato,, =0.3 dB.

5.5.2.3 Effects of Sensor Density

Fig. 5.4(c) plots the localization error for various averagnsor densities. The figure
shows that the average localization error decreases asriserdensity increases for both
schemes. However, the error drops faster VB@LI D, significantly outperforming the
SMC-based tracking scheme thanks to its ability to acclyratack the shadow fading
gains. When the average sensor densigy=s3.5/km?, SOLI D reduces the error by up to

88 % compared to the SMC-based tracking.

5.5.3 Performance of Attack Detector

To illustrate the performance of tH&OLI D's attack detector, we consider a simple
exemplary scenario where a malicious sensor injects mktgulisensing reports at time
slot 50. The malicious sensor introduces a deviationdtiack strengthfrom its actual
measured RSSs Wy (no attack),1, 3, and5dB, where the deviation direction (i.et;)
is randomly chosen. Fig. 5.5 shows that the deviation iepetly an attacker at thg)-th
iteration increases th@ediction error distanc¢PED) proportionally to the attack strength,
yielding high detection accuracy. The figures show that evemall deviation (e.g., 1 dB)
causes an abrupt increase in PED, and can thus be easilyedebycSOLI D, thanks to
its ability to closely estimate/track temporally-coriteld shadow fading in the measured
RSSs.

5.5.4 Attack-Tolerance ofSOLI D

We now demonstrat8COLI D's attack-tolerance while varying two key attack parame-
ters;attack strengtlandattack population\We fix the attack frequency at3, i.e., compro-

mised sensors launch attacks independently with probabili in each sensing stage. We
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Figure 5.5: The attack-detection capability 80OLI D: SCLI D can accurately detect even a
small deviation in sensor reports (i.e., RSSs) since sudatvitibn boosts the
prediction error distance (PED), which makes it easySGLI| D to detect any
abnormal sensing reports.

set the detection and blocking thresholdg te5 dB and N =2, respectively.
To demonstrate the efficacy 8OL1 D, we compare the following three testing schemes:
(i) SMC-based tracking(ii) SOLI D without attack detectorand (iii) SOLI D with attack

detector

5.5.4.1 Impact of Attack Strength

Here we show the impact of attack strength on the localinatazuracy, while varying
the attack strengths in the range betweéamd10 dB. We assume that the attack population
is 30 %, i.e., each sensor is compromised with probability

Fig. 5.6 shows that the localization performance of SMCelasacking suffers from
large attack strengths due to the lack of ability to detedtfdter out manipulated sensing
reports. For a similar reason, the localization erro66ELI D without attack detectoalso
increases with increasing attack strengths. Howeverstheme significantly lowers the
average error compared to the SMC-based tracking, thantssability to accurately track

the shadowing gains.
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Figure 5.6: Attack-tolerance oSCLI D: SCLI D successfully tolerates attacks thanks to its
ability to exploit temporal shadowing correlation to aatety detect abnormal
sensing reports.

In contrast,SOLI D with attack detectomaintains a low localization error even in the
case of large attack strengths. This performance supgrian be explained as follows.
On one hand, the attack detectorS@LI D successfully withstands weak attacks, i<€.,

=5dB, because such attacks do not influence the localizatitmoome much even though
they can evade the attack detector. On the other hand, ek atétector can easily detect
strong attacks, i.ex n=>5dB, thanks to its ability to detect large deviations in sheaitg
estimation caused by manipulated sensing reports.

However, Fig. 5.6 shows that the localization erroSGLI D with attack detectostill
increases slowly with increasing attack strength for tHwang two reasons. First, the
detection delay (i.e V) allows an attacker to influence the localization outconezofd,
the localization error induced by the attackers incredseattack false-alarm rate, i.e., mis-
classifying legitimate sensors as malicious/faulty, tineseasing the fraction of attackers

in the set of cooperative sensors.
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Figure 5.7: Impact of attacker population: The localization accurat$OL| D depends on
the design of attack detection threshgldmaking tradeoff between under- and
over-filtering.

5.5.4.2 Impact of Attacker Population

Next, we examine the impact of the attacker population byiagrthe fraction of com-
promised sensors frofi®o to50 %. We fix the attack strength atlB. As expected, Fig. 5.7
shows that a larger attacker population degrades localizgerformance because it is
harder to identify compromised sensors. Moreover, a lageidn of compromised sen-
sors will remove a large number of sensors from the coopwyagroup, which, in turn,
negatively affects the localization performance. Newddhs, the localization error is sig-
nificantly lowered bySOLI D with attack detectocompared to the conventional SMC-
based tracking scheme even with a large fraction of commedsensors, demonstrating

its robustness against attacks.

5.5.5 Tolerance against “Slow-Poisoning” Attack

To further demonstrat80L1 D's high attack-tolerance, we evalu&€L| D's tracking

performance under a challengirsipw-poisoningttack, such that malicious sensors incre-
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Figure 5.8: Attack-tolerance oB5CLI D against slow-poisoning attackOL| D successfully
tolerates slow-poisoning attacks, successfully safetijnguithe tracking process.

mentally raise the attack strength by, (dB) in order to evade detection, while disrupting
the localization process. Specifically, we assume that &ioas sensor reports the falsi-
fied valuePy, (k) in the k™ sensing stage after joining the set of cooperative senisers,
Pe(k) = P+ k- Dau.

Fig. 5.8 shows thaBOLI D performs well under a slow-poisoning attack, even without
the attack detector, while the performance of the SMC-base#ting suffers greatly from
the attack. Thus, the figure demonstrates 8@t| D efficiently mitigates the effects of a

slow-poisoning attack.

5.5.6 Tradeoff in Determining the Attack Detection Threshdd

We now study the impact of detection threshald In our simulation, we fixed the
attack strength di dB, and measure the localization accuracy and attack datquerfor-
mance (in terms of false-alarm and mis-detection proligs)i, while varying the detection
threshold in the range< 2, 14] dB.

Fig. 5.9(a) indicates that the localization performanceéSOLI D suffers in the case
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Figure 5.9: Impact of attack detection threshold: The attack detedfiwasholdr affects (a) the
localization accuracy, as well as (b) false-alarm and retection probabilities. In sim-
ulations, the attack strength is fixedsadB.

of low detection thresholds, i.ep, < 6 dB, due mainly toover-filtering i.e., some of the
well-behaving sensors are flagged as malicious and thenrdmrts are discarded. On
the other hand, too high a detection threshold, he> 6 dB, also degrades localization
performance because ohder-filtering where some of the attackers evade detection, thus
adversely influencing the localization process.

Fig. 5.9(b) clearly shows the tradeoff in determining thta@k-detection thresholgin
terms of false-alarm (denoted 3 ,) and mis-detection (denoted 18%4,) probabilities.
SOLI Dis shown to achieve near-ze¥e,, and to maintain a low false-alarm rate, i.e.,
Pr4 < 6%, unless the detection threshold is significantly largenttie attack strength,
i.e.,n>10dB.

Therefore, the attack detection threshold must be cayetulbsen to make the tradeoff
between false-alarm and mis-detection probabilities|evwbdnsidering their dependency

on attack strengths ar®0L| D's tolerance to weak attacks, as observed in Fig. 5.6.

5.5.7 Improvement in Spatial Spectrum Reuse

The SUs located within a keep-out-radius/of from a small-scale PU (e.g., a WM)
must vacate the channel to avoid excessive interferencer@agy communications [34].

The keep-out-radius needs to be enlarged when the logahzatinaccurate, thus reducing

132



Il smC
[ |SOLID w Attack Detector

N w B

spatial spectrum loss (km2)
=

0O 1 2 3 4 5 6 7 8 9 10
attack strength (dB)

Figure 5.10: Spatial spectrum opportunity loss (SSOL) due to localmaterror: SOLI D
significantly reduces the spatial spectrum loss thanks @hitlity to accurately
track the location of the mobile primary transmitter.

spatial spectrum utilizatior5OL1 D achieves high spatial spectrum efficiency by providing
accurate location of mobile primary transmitters. We qifiatiie improvementin spectrum
efficiency made bysCLI D by introducing the metric apatial spectrum opportunity loss
(SSOL), which is defined as the extended area for PU protedtie to the inaccuracy of
PUs’ localization. Assuming a localization errorepthe spatial spectrum opportunity loss
due to the inaccuracy of the tracking process can be rougigyoaimated as5SOL ~
(R +€)* — TR?=7e? 4 27 Ree.

Fig. 5.10 compares the spatial spectrum opportunity loghe@fSMC-based tracking
and SOLI D, assuming the keep-out-radius Bf = 2km, which is reasonably sufficient
to give a typical WM transmission range o#0-150 m. The figure clearly indicates that
SOLI D maintains smalb'SO L, improving spatial spectrum efficiency substantially. &lot
that the improved spectrum efficiency can be translatedtergterformance metrics, such
as bandwidth of SUs.
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5.6 Related Work

Spatial Spectrum Reuse in CRNReusingspatial spectrum opportunities is impor-
tant for efficient utilization of spectrum resources, bus heceived little attention. The
IEEE 802.22 Working Group (WG) proposed a coexistence muodldl a wireless mi-
crophone (WM) to maximize spatial spectrum reuse [34], m&sg that the location of
WM s is available to secondary systems. This, however, map@&walid for mobile WMs
where the geo-location database is not available. Recaevelyproposed a small-scale PU
detection/localization scheme, call®@gLOC [104]. While DeLOC provides an efficient
mechanism for initial detection of PUs, this chapter fosuse attack-tolerant tracking of
mobile PUs.

Secure Spectrum Sensing in CRIT1enet al. [29] proposed an RSS-based location
verification scheme, calledocDef to detect a fake primary signal. Let al. [93] de-
veloped a primary signal verification scheme by jointly exphg the location-dependent
link signature, i.e., multi-path fading profile, and conitenal cryptographic authentica-
tion methods. The problem of ensuring the robustness inlliseéd sensing has also been
studied [28, 79, 103]. Min and Shin [103] proposed an attadérant secure cooperative
sensing scheme that exploits shadow-fading correlatidRS8 among close-by sensors.
Unlike these, we focus on a new type of attack, i.e., disamptf location tracking of a
mobile primary transmitter by falsifying sensor reports.

Secure Mobile Target Trackingthe problem of node localization and target tracking
has been studied extensively in the area of wireless seeswmorks [15, 42, 61, 136, 162].
The primary tracking in CRNs, however, faces unique chghsn In CRNSs, it is not de-
sirable to modify the primary system, and thus, the recepradary signal strengths in-
formation obtained via spectrum sensing is only availablthe secondary system. The
solution approach taken I8OLI Dto overcome this challenge differs from others in that it
only relies on the PHY-layer signal-propagation charasties (i.e., temporally-correlated
shadow fading) to accurately detect malicious sensors;iwias not been considered be-

fore.
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5.7 Conclusion

In this chapter, we have introduc&@OLI D, which enables accurate and robust loca-
tion tracking of small-scale mobile PUs in CRNs. By jointlgrforming localization and
shadow-fading estimatio®OLI| Dsignificantly improves the accuracy of mobile PU track-
ing and masks the effect of manipulated sensing reports @iyrately detecting and filter-
ing out manipulated sensing reports. Our in-depth evalnagsults, in realistic wireless
environments, show th&OL1 D reduces localization error significantly both in the ab-
sence/presence of attacks, including the “slow-poisdratigick. The enhanced primary
tracking capability offered bysOLI D enables the secondary system to make a great im-
provement in overall spectrum efficiency.

In the future, we would like to study scenarios in which npl#i attackers collude
to disrupt the tracking process. It would also be intergstondevise an optimal attack
strategy that can maximally influence the primary trackiegfgrmance. We also plan to

design secure primary tracking in ad-hoc CRNSs.
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CHAPTER 6

Opportunistic Spectrum Access for Mobile Cognitive

Radios

6.1 Introduction

In this chapter, we study the problem of enabling DSArfwbileCR devices by iden-
tifying and addressing three fundamental challengest, Fexssting spectrum-availability
models are derived based solely on PUs’ temporal traffigstitzd and might thus be
unsuitable for CRNs with mobile CRs/SUs. Unlike in statigh&RNs (e.g., [1]), in
which spectrum opportunity (or availability) is mostly edted by PUs’ temporal chan-
nel usage patterns, in mobile CRNs, availability can alssinge as SUs move towards or
away from PUs that are actively transmitting data. To overethis limitation, we model
channel availability—that reflects the fluctuation of spaact opportunities induced by SU
mobility—as a two-state continuous-time Markov chain (CQT)and verify its accuracy
via in-depth simulation.

Second, protecting PUs from SU mobility-induced intenfieeis a challenging prob-
lem that calls for an efficient spectrum-sensing stratetgred to mobile CRNs. Mobile
SUs may need to sense spectrum more frequently to avoidaritey with PU communi-
cations. However, frequent spectrum sensing may not oolyrisignificant time overhead
[88], but also quickly drain the battery of mobile CR devicks to the power-intensive

nature of spectrum sensing [7, 68]. To address this chadlemg propose the use gb@iard
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distanceto minimize the required spectrum sensing for mobile SUslengroviding suf-
ficient protection to primary communications. Guard dis&ars an additional separation
between PUs and SUs to prevent mobile SUs from causing exe@sterference. Further,
based on our proposed channel-availability model, we lppmtimize the guard distance
and spectrum-sensing interval to maximize the reuse otgpe®pportunities in the space
and time domains.

Third, mobile SUs experience heterogeneous spectrum typies across the space
and time domains based on the geographical distributiorlusf &d SUs’ mobility pat-
terns. To better utilize such heterogeneous spectrum tapptes, we derive an optimal,
distributed channel-access strategy in a closed form mwitie convex optimization frame-
work. Our channel-access strategy incorporates threedayrs that diversify spectrum
access opportunities across different channels: (i) SbHiheaware spectrum sensing
adaptation, (ii) heterogeneity in PUs’ spatial distribag and channel-usage patterns, and
(iif) spectrum sharing among SUs. Our proposed channedsscstrategy is shown to sig-
nificantly improve secondary network throughput, fairnesd energy-efficiency in spec-
trum sensing.

The three challenges mentioned above are interrelatecce;lémfully realize the ben-
efits of DSA for mobile SUs, they must be considered jointlg. the best of our knowl-
edge, our work is the first to extensively investigate SU titgtin regard to the channel-

availability model, spectrum sensing and access strategie

6.1.1 Contributions

In summary, this chapter makes the following main contrdns.

e Introduction of a novel spectrum-availability mod#&le show via analysis that the
channel availability experienced by a mobile SU can be atelyr modeled as a two-
state Markov model under reasonable assumptions. We furéndy the accuracy

of this model via in-depth simulations.

e Design of mechanisms for protection of primary communacetiWe identifyguard

distanceas a key enabler of efficient spectrum reuse while prote&lhigommunica-
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tions. We jointly consider guard distance and spectrumisgristerval to maximize

reusable spatio-temporal spectrum opportunities.

e Optimal distributed channel-selection strateggased on our channel availability
model, we derive an optimal, distributed channel-selecsivategy that maximizes
secondary network throughput. We also show how the optitretegy is influenced

by parameters, such as SU density and speed.

6.1.2 Organization

The remainder of this chapter is organized as follows. 8e@&i2 introduces the system
models that will be used throughout this chapter. Secti@npéesents our new channel-
availability model for mobile SUs. Sections 6.4 and 6.5 dleke design of spectrum
sensing and access schemes that maximize secondary neéhmoughput. Section 6.6

evaluates the performance of the proposed schemes, anoiiS&8tconcludes the chapter.

6.2 System Model

In this section, we present a mobile CRN model, along witkrithisted spectrum sens-

ing and channel-access models.

6.2.1 Mobhile CRN Model

We consider a CRN with infrastructure-badedd primary networks andnobilead-
hoc secondary networks in the same geographical area, as shd-ig. 6.1. We assume
that each cell of the primary system consists of a singleraknbde (e.g., access point)
and receivers. From now on, we refer to each primary cell dJ.a8 assume that there
is a non-empty sek of licensed channels, and that PUs operating on the samaehan
belong to the same type of system and have the damporalchannel-usage statistics,

e.g., channebusy/i dl e durationst Primary transmitters are assumed to be distributed,

We use the termisusy/i dI e to indicate PUs’ temporal traffic patterns, and use ON/OFRdizate the
availability of a channel seen from a mobile SU’s perspectiv
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Figure 6.1: lllustration of a mobile CRN: Mobile CR devices (solid dotdtlwarrow) can
opportunistically use the licensed channels only when ik&akce from any
active PUs (triangles and rectangles) is greater than aicdtireshold (i.e.,
protection region) so as to avoid excessive interferenédJs. The circles with
solid (dotted) lines indicate the protection region of atjinactive) PUs with
(without) data transmission.

following a point Poisson process, with a different averdgasity for each channel, i.e.,
ny.i ~ Poisson(k; p,;), wheren,; is the number of primary transmitters apgl; is the
average PU density on chanrelX. We assume that primary transmitters on the licensed
channeli € X are separated by at least twice their transmission rangedier ¢o avoid
interference [156]. Such a PU distribution can be obtaineélininating overlapping PUs

in the original Poisson process, resulting iMarten Hardcore Procesd 40]. We assume
that SUs know the average density of PUs on each channel, @sidémporal channel-
usage characteristics. We further assume that SUs do nettkiecavailability of a channel

at a specific time and location unless they perform spectemsisg.

6.2.2 Distributed Spectrum Sensing & Access Models

We assume that SUs ameobiledevices with CR-functionality that allows them to ac-
cess any licensed channels in thedseHowever, they do not have the capability of access-

ing a geo-location spectrum database to obtain local speeavailability informatiort.

°The FCC specifies two types (Mode | and 11) of portable devibes can access TV white space [49].
Mode | devices are required to access the geo-location @séalwhereas Mode Il devices are not required to
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Figure 6.2: Opportunistic channel access model: An SU periodicallysssrits current op-
erating (in-band) channel (the gray block) until it deteztsrimary signal, fol-
lowed by channel switching (the black block). The sensirgriral is dynami-
cally adapted based on the SU's speed and PUs’ spatio-taingwnnel usage
statistics.

Therefore, we assume that SUs rely on local spectrum se(sigg feature detection) to
detect channel availability—i.e., the presence/absehpémary signals—at a given time
and location. SUs are assumed to use feature detection[gelp).for PHY-layer sensing.
Feature detection is known to provide high accuracy witlomliaboration amongst SUs
even at a low SNR [142]. Thus, it is better suited for ad-h@oadary networks, in which
SU collaboration may not be feasible due to the needs fornmdition exchange and global
time synchronization [112].

Once an SU identifies available channels via spectrum sgriscontends with neigh-
boring SUs to access the channel via a random access scheimasstSMA. SU channel
access behavior is depicted in Fig. 6.2. We assume that Sldgsahave packets to transmit

and always use the maximum transmission power allowed bgwdatory body.

6.3 Modeling Channel Availability for Mobile Secondary

Users

In this section, we characterize the spectrum opportutig torresponds to PUS’
spatio-temporal channel usage patterns, propose a new llitgraware channel avail-

ability model, and demonstrate its accuracy via simulation

have such access capability.
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6.3.1 Characterizing Spatio-Temporal Spectrum Opportuniy

We first introduce the keep-out-radius and guard distancprfatecting PUs from in-
creased interference caused by SU mobility. We then quyeahtfspatio-temporal spectrum

opportunities available to mobile SUs.

Definition 6.1 (Keep-out radius) The keep-out radius is defined as the mmimistance
between a primary transmitter and SUs underititerference temperature linfit TL) set

by the regulatory body (e.g., the FCC), i.e.,

R., = inf {d eR

Lit(psid) < TTLY, (6.1)

wherel,(ps.i, d) is the average interference generated by SUs (separatezhisydistance
d from the primary transmitter) at a primary receiver locatatithe edge of the primary

coverage area ang ; is the density of SUs on chanriel

The aggregate SU interference at a primary receiver loGtdte edge of the primary
transmission range (i.e., at distanBg from the primary transmitter) can be bounded as
[145]:

19 (puss Re) = Z0boPip gy (6.2)

a—2
where P, is the transmission power of SUg, the short reference distance (egm), o
the path-loss exponent, ; the average SU density on chanieR, the PUs’ transmission
range, and?,. ; the primary keep-out radius.
From Eq. (6.2), the keep-out radius necessary for chanteimeet the interference

constraint,/’ <ITL, is given as:

. B (v —2) =17
Re,i(ps,Z) = [<27Tpod3,0$,i ITL) + R, (6.3)

where[e]* Zmax{e,0}.
One important observation from Eq. (6.3) is that the keejpradius of channel in-

creases with the density of channebUs, p, ;, as shown in Fig. 6.3(a). This is because
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as SU density increases (i.e., more SUs access chanrtee keep-out radius must be
expanded to meet the interference constraint.

The keep-out radius in Eg. (6.3), however, assustasonarySUs, and thus, it may
not be sufficient to protect PUs from interference caused blile SUs. To protect PUs
further from such SU mobility-induced interference, weadluce an additional protection

layer (@@uard distancl denoted by;.

Definition 6.2 (Primary protection region) Le®P; denote a set of primary transmitters on
channeli. A primary protection regioffPPR) of primary transmittey € P;, denoted as
€2, ;, is defined as a unit disk centered at the primary transmittiercated at(z; ;, v; ;).
ie.,

Qg = { (@.9) €R? | (@15, 0s) = (2,9)]| < Res+ i} (6.4)

whereR, ; is thekeep-out radiusande; is the guard distance.

Thus, if an SU is located within a PPR of active PUs on channelefrains from using
the same channel to avoid causing interference.
Then, the average fraction of the union of PPRs on chanimethe entire network is
[89]:
Xi(psi) = 1 — e primeslon e, (6.5)

wherep; ; is the average SU density on channel
The average fraction of areas where the channel is avaiédlday given time can be
approximated as:

,}/7; ~ (1 - XZ) + X’i widle,i - 1 - XZ wbusy;jy (66)

wherew, ., =1 — wusy,i IS the steady-state probability that a PU on chanmeini dl e

state, i.e., not transmitting data.

6.3.2 Assumptions for Modeling Channel Availability

To model channel availability from a mobile SU perspective, make the following

three main assumptions:

142



310

—P_=25mwW .
__300}|---P,=50mw e -
E ll--p =10mw| .~ DA
o PR -
9 290} R 4 =
= - - o
k=] . PRl a 076
© ks Pis
= 280 o e o
> -7 o
5 P c 0.74
o 270p ;5 o ~
o s S —P =25mwW e
(O] . ‘~,
x ‘. S 672 °_ S
260! = ---P, =50 mW <
1 == P_=100 mwW
250 : : : : 0.7
0 02 04 06 08 1 0 02 04 06 08 1
average SU density (per m2) average SU density (per mz)
(a) Keep-out radius (b) Fraction of available area

Figure 6.3: Impact of SU density on spatial spectrum opportunity: Thepkeut radius for
primary protection (a) increases with increasing SU dgnaitd thus (b) spatial
spectrum opportunity decreases. The simulation paramerer set toR, =
250 m, ITL=0.1 MW, p, = 1/km?, anda=4.

Al.) PUs’ traffic statistics, i.ehusy/i dl e periods follow exponential distributions.
A2. The time interval that an SU moves inside a PPR follows exptialedistributions.

A3.) The time during which an SU is located within a PPR followsagntial distribu-

tions.

RegardingAl, the exponential distribution is the most widely used fordelong PU
traffic patterns in CRNs. A recent measurement study [148itates that the PU channel-
usage pattern can indeed be accurately approximated agpanezxial distribution unless
the averag®dusy/i dl e periods are very long.

RegardingA2, let T),;; denote the first (hitting) time that a mobile Sumoves into an
active PU’s PPR (i.e., ibusy state). Then, the analysis ©f;; is analogous to the hitting
time of a stationary object in wireless sensor networksgtvioan be considered as a PU in

a mobile CRN. By borrowing the analysis in [89],;; can be approximated as [89]:

Thit,n ~ Exp(2(Re,z + ei)@npp,iwbusy,i)a (67)

whereu, is the average speed of SU

3For such channels with lonigusy/i dI e periods, a long-tail distribution, such as log-normal ritist-
tion, is more suitable.
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Figure 6.4: Mobility-aware channel availability model as a continutinse Markov chain
(CTMC): A channel is available for a (mobile) SU either whgrt{e SU located
outside the PPRs (denotedRBR) or (i) the primary transmitter of the PPR that
the SU belongs to is indl e state.

RegardingA3, the time duration in which an SU stays within a PPR can beveéri
from the link-lifetime distribution analysis in mobile dbc¢ networks [148]. According to
[148], the link lifetime, i.e., the time duration during vehi the transmitter-receiver pair are
located closer than a transmission range, can be accusgipipximated as an exponential

distribution with intensity,s, whereuv is the average relative speed of the transceiver and

ol
1R’
R is the transmission range.

6.3.3 Mobility-Aware Channel Availability Model

We now opt to design a mobility-aware channel availabilitydal for mobile CRNs.
For this, we first define three states—ileusy, i dl e, andPPR—based on the SU’s loca-
tion relative to the PPRs and PUs’ traffic patterns, as showkig. 6.4. We assume that
channel is available (i.e., OFF state) when a mobile SU is locatedidatthe PPR of any
activeprimary transmitters on channi{i.e.,i dl e or PPR); otherwise, the channel is not
available (i.e., ON state). We can thus reduce the Markoindh&o a two-state model by
merging the stateisdl e andPPR into an OFF state, as shown in Fig. 6.4.

The ON/OFF state transitions occur in the following cases.
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e ON—OFF: An SU moves out of the protection region of an active PU or essRips

transmitting data.

e OFF—ON: An SU moves into the protection region of an active PU or a Rluts

transmitting data.

We now derive the distributions of ON and OFF durations basethe Markov model

in Fig. 6.4.

6.3.3.1 Distribution of “ON" Period

The sojourn time of the ON state of chann&llows an exponential distribution [148]:

U,
Toni ~F <)\ USY, T 7n>7 6.8

where \,,,.; IS the rate at which a PU resumes data transmissipithe average speed
of an SU} and R.; ande¢; are the keep-out radius and the guard distance on channel

respectively.

6.3.3.2 Distribution of “OFF” Period

The OFF period duration can be thought of as the hitting tifieebusy state, having
eitheri dl e or PPR as an initial state. The OFFON state transition rate),;;, can be
derived using the detailed balance equation, t®,, ;\oni = @ofr.itofr.i» Dased on the
stationary distributions of ON/OFF states, which can beayxmated from Eg. (6.6), i.e.,
Won,i =1 — ; andw,ss; =;, and the ON+OFF transition rate.,,, ; in Eq. (6.8), i.e.,

. XiWbusy,i ( Up, )
)\o T — T A usy,i T ) 6.9
I 1- XiWbusy,i busv, Re,i + € ( )

and thus, the sojourn time of the OFF state is given as:

Toff,z' ~ E.Tp()\off’i). (610)

4Although the speed of an SU can vary depending on its movepagtarn, we consider average speed in
the analysis for mathematical tractability.
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Figure 6.5: Comparison of channel ON/OFF duration distributions: Ghalgses on channel
ON/OFF durations closely match the simulation resultss ttarroborating the
validity of the proposed model. In the simulation, we useRlamdom Waypoint
model with no pause time where an SU uniformly chooses itsgpg1, 10] m/s
and destination with a fixed interval éf) seconds. The average PU and SU
densities are set t» and 10 (per knt), respectively. We set;q.,; = 0.4 and
Aidle,i =0.01V: € X.

The above analysis for channel modeling will be used forgiesg efficient spectrum

sensing scheduling and distributed access strategy im8e@.4 and 6.5.

6.3.3.3 Model Verification

To show the accuracy of the proposed channel-availabilagieh we measure the chan-
nel ON/OFF periods observed from a mobile SU via simulatin & 10* seconds. Fig. 6.5
shows that the empirical results closely match the anatesults, indicating the accuracy
of the proposed model. To further quantify the accuracy, wasure the similarity between
the empirical c.d.f. and the analytical c.d.f. usiglback-Leibler DivergencéKLD) [83].

The KLD for two exponential distributions with intensitigs andy; can be calculated as:

Dicr, (tollpir) = log(pio) — log(pun) + = — 1. (6.11)

[

Table 6.1 summarizes the average and standard deviatiorLOf f&r the ON/OFF
durations while varying the maximum speed of SUs in the rasfge, 10] m/s. It shows

that the KLD remains low for all simulated scenarios. In féoé case where,,., =10 m/s
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Table 6.1: Kullback-Leibler divergence for channel model
Dkr,0FF Drr,on

Umaz (M/S) || mean std mean std

0.0441 | 0.0513| 0.0069 | 0.0028
0.0413 | 0.0456 | 0.0202 | 0.0269
0.0301 | 0.0410| 0.0848 | 0.0511
0.0875| 0.0485| 0.0982 | 0.0415

10 0.2335| 0.0942 | 0.3134 | 0.1605

o o A~ DN

corresponds to the case in Fig. 6.5.

6.4 Primary Protection via Joint Optimization of Spec-

trum Sensing Interval and Guard Distance

In this section, we jointly design the sensing interval andrg distance to protect PU
communications from mobile SUs. We first derive the minimypacrum sensing inter-
val for mobile SUs, and then the optimal guard distance treatimizes spatio-temporal

spectrum opportunities.

6.4.1 Mobility-Aware Spectrum Sensing

In order to avoid causing excessive interference to prirsargmunications, SUs must
perform spectrum sensing frequently enough to detect agpyisignal before they move
into the PPR of active PUs. We assume that SUs can perfedibgtdidre presence of a
primary signal via spectrum sensing when they are locat¢dimihe PPR of any active
PU. In practice, SUs may need to adjust sensing parametedemntfy their locations
relative to the PPRs, but this is not within the scope of thagpter.

There are two conditions under which an SU performs specsemsing: (i) when the
c.d.f. of the channel OFF state at a given time exceeds afpredahreshold$ (0 <& < 1),
to detect the returning PUs, or (ii) when an SU travels a sedstance since the previous

sensing time, to prevent an SU from moving into the keep-adius, whichever comes
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Figure 6.6: Minimum sensing interval: Sensing interval depends onl{@)SUs’ average
speed,v, and (b) the average PU densigy,. In our simulation, we set the
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first.

Then, the minimum sensing interval required on chanigegiven as:

t :max{Tsmmin{ — M,E}}, (6.12)

)\off v

where),; is the intensity of the channel OFF period distribution in §9),¢; the guard
distance, and the average speed of an SU. Note that a lower probaljiNtyll lead SUs
to sense the channel more frequently.

Eq. (6.12) indicates that the minimum sensing interval ddpenot only ortemporal
features such as primary traffic statistics, but alscspatial features such as the SUs’
average speed, and the PU density, ;.

Fig. 6.6(a) shows that when an SU moves slowly (Regjitor the case =40 m), the
sensing interval will be determined by PU traffic patterns,, \,,,, and 4., whereas,
when it moves quickly (Regiof ), the interval will be determined by the speed of SUs.

We have made a similar observation regarding PU densitygn@-6(b).
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6.4.2 Design of Optimal Guard Distance

The selection of guard distance entails an interesting tradeoff in exploring spectrum
opportunities in the time and space domains. That is, adguggrd distance (thus enlarging
the areas of PPRs) will reduce spatial spectrum opporasitiowever, this allows SUs to
perform sensing less frequently and spend more time on @atanission, thus increasing

the spectrum opportunities in the temporal domain.

Definition 6.3 (Average channel utilizatiomverage channel utilizatiors defined as the

average fraction of time a mobile SU can access the charn], i.e.,

N,
'—éﬁl’n Tsi - Tswi
Ui = E{ 1— 27 - : } (6.13)

where N, ; , is the number of times SkJ performs spectrum sensing within the channel
access epoclt;. T, ; and Ty, ; are the times spent for a one-time sensing and switching
for channeli, respectively. Without loss of generality, we assiine T ; Vi and T, =
Tsw,i Vi.

Definition 6.4 (Spatio-temporal spectrum opportunity) The availabibfychanneli € X
in the spatio-temporal domain, denoted/&s is defined as the long-term average fraction
of the time a mobile SU can access the channel,A.e=~;u; wherev; andu; are defined

in Egs.(6.6)and (6.13) respectively.

Fig. 6.7(a) plots the spatio-temporal channel availgbilif for various guard distances
¢;. As shown in the figure, whef is too small (i.e.¢; <3 m), A; is0 because of the need to
sense the channel continuously, it¢=T; ;. Whene; is relatively smallA; suffers from a
large (temporal) sensing overhead, whereas whentoo large A; suffers from decreased

spatial spectrum opportunities.

Proposition 6.1 (Optimal guard distance) The optimal guard distartdhat maximizes

spatio-temporal spectrum opportunity;, is given as:

Re ﬂ_) Ts it \/(Re ZJUTS i)2 + 26Ts’i(}?e’i — TSZ)
67’( _ ’ ’ ’ ’ TPp,iWhusy,i 7 (6.14)
7 2<Re,i - /l_]Ts’i>
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whereR, ; is the keep-out radiug; the average speed of SUS,; the sensing timegy,, ; the

primary density, andoy,, ; the steady-state probability oflausy state for channel.

Proof The average fraction of area which is not covered by the PBR&e approximated
asv;(e;) ~ e~/(<) from Eq. (6.6) whergf(¢;) = Pp.iTbusyiT(Rei + €)% Assuming switch-
ing overhead is negligible compared to the average OFF gheirm., T, < )\O‘flf, u; can

be approximated ag; ~ 1 — % Then, the channel availability in the spatio-temporal

domain can be expressed as:

Ai(e&) ~ yi(e)uq(€;) = e <1 — UTS’i>. (6.15)

€

It can be easily shown thﬁé‘;’# < 0. By taking the first-order derivative df(¢;) and

setting it to zero, we have:

8 €;

v Ts % v Ts,i
’)+ . ):0 (6.16)

)

_ e—f(ﬁi) ( — Qpp,iwbusy,iW(R&i + €i) (1 o

€;

For mathematical simplicity, we assume that the tey),wy,, ;me; can be approxi-

mated a$) in Eq. (6.16), which provides the following quadratic eqoat

vTy;

27Tpp,iwbusy,i

(Rei = 0Tsi)€f — ReiTs 60 — = 0. (6.17)

Then, by solving Eq. (6.17), the proposition follows.

Interestingly, Fig. 6.7(b) shows that the optimal guardatise increases as SUs’ aver-
age speed increases. This results from balancing the ffam#ween temporal and spatial
spectrum opportunities—i.e., itis better to increase terd distance at the cost of reduced
spatial spectrum opportunity, than to reduce the sensiegval. The figure shows that our

analytical results closely match the exhaustive-seaas®ed simulation results.
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6.5 Distributed Spectrum Access Strategy in Mobile CRNs

We now derive an optimal channel selection (access) sirded maximizes each sec-
ondary link’s throughput. In multi-user CRNs, it is impantdo consider the channel con-
tention overhead, as it can affect the achievable througsigaificantly. However, it may
be infeasible for mobile SUs to estimate the interferencee@ach channel in real time.
Thus, we assume that all the SUs in the network follow the saimaenel access strategy,
and derive the optimal strategy by taking into account SUsbility-dependent spectrum
opportunity as well as channel access contention among Stadlaws.

Let us denote the mixed channel selection vectorpby: [p1, ps, ..., px " where
Y icx Pi = 1. Then, the total number of SUs selecting channigl the network can be
approximated a®Vp;, whereN is the total number of SUs in the network, which can be
estimated asV =~ p, A. A is the entire network coverage area ands the average SU
density. The probability that an arbitrarily-chosen SU txarmeli hasm € N interfer-
ing neighbors, that have chosen the same channel, followis@rial distribution, i.e.,

s 2 PR . . .
M;~B(m; Np; — 1, f;). Here, f;= i’” is the ratio of the SU’s interference region to the

total network area, wherRB; ; is the interference range of an SU on channel
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The expected throughput of secondary linkan then be expressed as:

L A (Npi—1 |
BiR) =3 3 o (M ) - g

:%i/\i<1_<1]€fﬁ ) (6.18)

where K =|X]| is the total number of licensed channels.
Then, the problem of finding an optimal channel selectioatsyyp* can be cast into

the following optimization problemi1):

minimize F(p) = — Z&(l;

K
subjectto Y p;=1 and p =0,

=1
wheref; =1 — f; for brevity.
To find the optimal sensing strategy, we first show the convexity df (p) by exam-
ining the second-order derivative Bfp) w.r.t. p;, i.e.,
2
F(v: N _
T () > 0. (619)

7

The inequality in Eq. (6.19) is straightforward. HenE¢p) is convex inp € [0, 1]%.
Since the objective function is convex and constraints Hirgeawe now have a convex

optimization problem. The Lagrangian with multiplierg R andv €R is given as:

K

L(p, A\ v) = ZAi(ﬁNpi In(f;"))) — Z Aipi + V(Z pi—1)

i=1 = i=
K

- Z(()‘i —V)pi — Az‘(ﬁNpi In(fY)) — v,

i=1

where) =0 andr =0.

Then, the Lagrange dual function, i.e., the minimum valuthefLagrangian ovep, is
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Algorithm 8 OPTIMAL CHANNEL SELECTION ALGORITHM
1: / Initialization

2: p< [%,..., 2" Il pis channel selection probability

3 Pprev < P

4: A+ o0

5: ¢ « 0.01 // condition for the convergence

6: while (A > ¢) do

7:  Update the SU density on each chanmel < p,p;

8:  Update the keep-out radiug. ; using Eqg. (6.3)

9:  Update the optimal guard distangeusing Eq. (6.14)
10:  Update the spatio-temporal channel availabilfitye})
11: Update the channel selection vectousing Eq. (6.23)
12: A+ P — Pprev
13:  Pprev < P
14: end while
15: return p
given as:

g\, v) =inf L(p, A, v)
1Y

K
= >t = v)p+ A n(F)
i=1
It can be easily shown that there exigtssuch that the constraints hold with strict
inequality, i.e.,p; >0Vi € X andEfilpi = 1. Therefore, according to Slater’s condition,
strong duality holds with zero optimal duality gap.

The Karush-Kuhn-Tucker (KKT) conditions are given as:

K
p*=0, > pi=1 (6.20)

=1
pr(W AL () ) =0 (6.21)
N+ NP (N > 0. (6.22)

By solving the above system of equations, we can derive thiemapchannel selection

strategyp*, as described in the following proposition.
Proposition 6.2 (Optimal channel selection strategy) The optimal chanakddion vector
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p* that maximizes the expected secondary network througdput i

—ln(Ai)-Hn(fi)"‘ln(__Nln(fi))_ln(A*)] ’ if @idgie; >0

pr = Nt (6.23)

0 if @Wige; =0,

whereA; =yu; Vi € K and \* is a constant s.t5 % p;=1.

Eq. (6.23) indicates that the channel selection probghiliincreases as the channel
availability A; increases, thus confirming our intuition. Interestinghg tptimal channel
selection vectop* in Eq. (6.23) depends on SU density on each channel as theanumb
of SUs affects the selection of guard distance (in Eq. (6i6jJuencing the amount of
spatial spectrum opportunity. This coupling between cleagelection strategy and spatial
channel availability requires an iterative algorithm taifthe optimal strategy, as described
in Algorithm 8.

Proposition 6.2, however, provides the following counteuitive observation:

Corollary 6.1 The optimal channel selection probability becomes mordoumi as the

number of SUs in the network increases, ive.c K,

pr— as N — oo, (6.24)

K
where K is the number of licensed channels, aiNdis the total number of SUs in the

network.

Corollary 6.1 indicates that the optimal channel selectimbability becomes almost
independent of spatio-temporal spectrum opportuniti€Stasiensity approaches infinity.
The is because, when there exists a large number of SUs, tiedittieom heterogeneous
spatio-temporal spectrum opportunities becomes neggigibe to the high level of inter-

ference among SUs.
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6.6 Performance Evaluation

We evaluate the performance of the proposed spectrum geansibdistributed channel-
selection schemes. We first describe the simulation sehgnrel-selection schemes for
performance comparisons, and performance metrics. Themprasent key evaluation re-

sults.

6.6.1 Simulation Setup

We consider a CRN in which mobile SUs coexist with PUs ifkam x 5 km area.
Throughout the simulation, we assume that thereSalieensed channefsand that the
average channéldl e probability is in the range 0.3, 0.7], unless specified otherwise.
We also assume that,, is 0.1 for all the channels and that average density of $Us
ranges in[1,10]/km*. We assume that the path-loss exponeris 4, the SUs’ transmit
power P, is 100 mW, the reference distancg is 1 m, the PUS’ transmission range,
is 250 m, the interference temperature limitT{) is 0.1 mW, and the sensing triggering
thresholds is 0.3. We further assume that channel sensing and switching taress, =
0.5s and7,,,=1s, respectively.

To comparatively evaluate the efficacy of the proposed oblaselection scheme, we
compare the following: (i) random channel selecti®\D), (ii) optimal channel selec-
tion strategy based only on PUs’ temporal channel usagistatatOPT- T), and (iii) op-
timal channel selection strategy based on PUs’ spatio-deahghannel usage statistics
(OPT- ST). In RAND, SUs randomly select a channel with an equal probabilit@Rm- T,
SUs use the channel-selection probability in Eq. (6.23)leveettingy; = @;q.,; Vi € K
(thus eliminating the impact of heterogeneous PU densighamnels). On the other hand,
In OPT- ST, SUs fully exploit the spatio-temporal channel-usage attaristics of PUSs.

To quantify the efficacy of the proposed algorithms, we useftiowing three main

performance metrics:

e normalized secondary network throughput, 2 fin }L\,R",

SAlthough the number of available channels depends on vgsatavironments, we observed similar re-
sults for different numbers of channels.
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Figure 6.8: Optimal channel-selection probability: (a) The optimahchel-selection strat-
egy depends on the average channel availabitity;(), but (b) the effects of
PU traffic statistics decreases as SU density increasesparameters are set to
@i =[0.3, 0.4, 0.5, 0.6, 0.7], 7 is fixed at4 m/s, andp,,; = 1/km*Vi € X.

e throughput fairness (Jain’s index [75]), i.évz,i—R;g;, and

e normalized energy consumption in spectrum sensing, he.fraction of time a CR

device spent on sensing during channel access,

whereR,, is the throughput of secondary link and N is the total number of secondary

links in the network.

6.6.2 Optimal Channel Selection
6.6.2.1 Impact of Temporal Channel Availability

We first study the impact of PUs’ temporal channel-usagessitt on the optimal
channel-selection strategy. For this, we fix the PU densipy, a= 1/km* Vi € X and set
different channel dl e probabilities, i.e.zo;q. = [0.3,0.4,0.5,0.6,0.7] (ww;q. iNcreases
with increasing channel index).

Fig. 6.8(a) shows SUs’ preference to access channels witghehaverage channel
i dl e probability, i.e.,p; > p; whenw,qy. ; > wiq. ;. INterestingly, when SUs are densely
populated, i.e.p, = 10/km?, the impact of PUs’ temporal channel-usage statistics en th
channel-selection strategy decreases. This is clearlyrsihoFig. 6.8(b) where the largest

difference in the channel-selection probability (ijexax(p*) — min(p*)|) decreases with
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Figure 6.9: Impact of PU density op*: Spatial distribution of PUs affects the optimal
channel-selection probabilitys, = [0.1, 0.2, 0.5, 1, 2]/km? (p; increases with
increasing channel indexjy;q i =0.4 and ;g ; =0.1Vi € X.

increasing SU density. Intuitively, as the number of SUshia metwork increases, their
channel access time decreases due to the need for sharicitgitingel. Thus, as the density
tends to infinity, the achievable throughput of SUs becontesecto 0, regardless of the

PUs’ channel usage statistics.

6.6.2.2 Impact of Spatial Channel Availability

Fig. 6.9 shows the impact of PU density on the optimal chasakdction strategy. In
the simulation, we assume a different PU density on eachnghanhile assuming that tem-
poral channel usage statistics, i®;4,., are the same for all channels. The figure indicates
that, the lower the PU density (channel index), the highectiannel-selection probability.
However, PU density becomes less influential as the averdgieSsity increases, similar

to the case in Fig. 6.8(b).

6.6.2.3 Impact of SUs’ Speed

Fig. 6.10 shows the impact of SUs’ average speed on spatipeeal channel availabil-
ity A; (in Figs. 6.10(a)-(b)), and on the optimal channel-setecstrategyp* (Figs. 6.10

(c)-(d)). As shown in the figures, the SUs’ speed has diffecensequences on channel
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Figure 6.10: Impact of SUs’ speed oA andp*: The spatio-temporal channel availability
depends on the SUs’ speed, thus affecting the optimal clhaeleztion strat-
egyp*. The parameters are setgp=[0.1, 0.2, 0.5, 1, 2]/km?, p,=10/km?,
andwidle,i:0.4 Vi € XK.

availability (A), depending on the density of PUs on each chanhdkecreases faster when
PU density is high. As a result, the SUs’ preference to acdessnels with a low PU den-

sity increases as their speed increases. The simulatitomgseare described in Fig. 6.10.

6.6.3 Performance Comparison

Next, we compare the performance of the three channeliggiesthemes (i.eRAND,
OPT- T, andOPT- ST) in terms of throughput, fairness, and energy-efficienayhk simu-
lations, we set the average PU density on each chanpektd0.1,0.2, 0.5, 1, 2] /km?. The
channel idle probabilitiesz;;. are randomly selected if), 1] such that) . . @ige; =
1 for each network topology. The results are obtained fromukition runs overl0?
randomly-generated topologies. Figs. 6.11 and 6.12 patlerage and- 0.25 o inter-

vals of throughput and fairness, under various SUs’ speddlansity.
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Figure 6.11: Performance of the proposed distributed channel-sefeatgorithm:OPT- ST
outperforms other channel-selection schemes in terms oietavork through-
put and (b) fairness (Jain’s index), under all simulatedades. In the simu-
lation, the average SU density was fixeghat=1/km?.

6.6.3.1 Throughput and Fairness

Fig. 6.11(a) shows that the propos@dT- ST outperforms the other channel-selection
schemes (i.e.OPT- T and RAND) under all simulated scenarios, thanks to its ability to
optimally select channels by exploiting the heterogenespadial/temporal spectrum op-
portunities of each channel. On the other hand, the perfocmaf OPT- T decreases
as SU speed increases, because the spatial spectrum oyyosiecomes more diverse
with higher SU mobility (see Fig. 6.10), which is not congitin OPT- T. Fig. 6.11(b)
indicates thatOPT- ST achieves the highest fairness among the three channelisale
schemes, as it correctly incorporates the impact of hetgregus spectrum opportunities
and channel access contention among SUs in the optimal ehselection strategy.

Fig. 6.12 shows the impact of SU density on throughput peréorce. As shown in the
figure, the throughput degrades as SU density increases|yn@cause of the increased
level of SUs’ contention for channel access. In additior,lrformance o®PT- ST be-
comes close tRAND's as the density increases, since the optimal channedtg@iestrategy
tends to become similar to a uniform distribution, which t@nseen irRAND, in a dense

network, as observed in Fig. 6.9.
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6.6.3.2 Energy Saving in Spectrum Sensing

Finally, we study the energy-saving perspective in spettsensing. Frequent spec-
trum sensing can consume a considerable amount of enepggiaby in battery-powered
mobile CR devices. Fig. 6.13 plots the CR’s normalized eneansumption in different
settings, including use of a fixed guard distance (e 20,40 m) and use of the optimal
guard distancex{). The figure indicates that energy consumption due to sp@csensing

in mobile CR devices can be reduced by ug48% while ensuring primary protection.

6.7 Related Work

Spectrum sensing has been studied extensively as a keyotegkirior primary detec-
tion and protection [23, 67, 71, 88, 100, 134, 149]. Mosttaxiswork, however, focuses
on optimizing the sensing interval based on Pldsiporalchannel-usage statistics. To val-
idate such channel models, Wellegisal. [149] studied the impact of channel-occupancy
statistics obtained from extensive measurements on tHerpgence of MAC-layer sens-

ing schemes. They showed that the channels with lobhgsly/i dl e periods follow ex-
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Figure 6.13: Energy savings via the use of optimal guard distance: SUssaaa energy
significantly due to spectrum sensing via the optimal gudstidce, while
meeting the primary interference constraints.

ponential distributions and that spectrum sensing andsacsteategies designed under the
assumption of exponentially-distributed PU traffic arehhygefficient. However, such mod-
els hinge on the assumptiongtationaryCRNSs, in which both PUs and SUs are stationary.
Thus, they may not be suitable forobileCRNs, in which channel availability depends on
dynamically changing SUs’ locations. By contrast, we mattelnnel availability from a
mobile SU’s perspective by incorporating the impact of SUbitity (e.g., speed).

Despite its practical importance, the problem of allowingihe SUs in CRNs has re-
ceived little attention. The IEEE 802.22 standard drafvjates a two-stage sensing (TSS)
mechanism [22], but it is designed exclusively for the diebecof a stationary TV transmit-
ter, and does not specify any efficient mechanisms for sp@ctensing for portable/mobile
CRs. Recently, the FCC [49] imposed a minimum sensing iate#60 seconds for TV
band devices (TVBD). However, this may not be sufficient m@ct PUs from interference
induced by SU mobility. Moreover, while most previous wodctised on either schedul-
ing spectrum sensing [100] or spatial CR deployment [64] ie¥5primary protection, we
jointly exploit guard distance and the sensing interval to maxirsjpeagio-temporal spec-

trum opportunities for mobile SUs.
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6.8 Conclusion

Taking mobility into consideration is vitally importantrféull realization of the benefits
of DSA in CRNs. In this chapter, we considered the case of a @RN mobile SUs.
We identified and addressed the three fundamental challeingmaximizing spectrum
efficiency in mobile CRNSs. In particular, we presented a holiannel-availability model,
a mobility-aware spectrum-sensing strategy, and an optiis&ributed channel-selection
(or access) strategy tailored to mobile CRNs. Our evalnagsults verified the correctness
of our channel-availability model under various SU mopiliatterns. Our performance
comparison study has also shown that the channel-accatsggtimproves the throughput
and fairness of mobile SUs significantly over the converdiatrategy that relies solely on

PUs’ temporal channel-usage statistics.
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CHAPTER 7

Optimal Spectrum Pricing in Dynamic Spectrum Market

7.1 Introduction

In this chapter, we propose a new spectrum-pricing modebiynamic spectrum mar-
ket (DSM), where, in order to maximize their profits, wiredeservice providers (WSPSs)
compete withheterogeneouspectrum resources—channels with disparate center fneque
cies and propagation profiles. In our model, we assume thitabiidy of a wide range
of heterogeneous bands in the spectrum plane, and analyzpéatrum pricing-demand
relationship between WSPs (in the service plane) and SUbéiniser plane). In the user
plane, SUs sublease astiarethe spectrum that provides the maximum utility. These
features—spectrum heterogeneity and spectrum sharingesaential for us to understand
the WSPs’ pricing competition in a DSM, but have not beenegal well.

Based on a realistic price-demand model, we formulate WBfshg competition as
a non-cooperative game, taking into account the SUs’ desiteaximize their utility. Here
“utility” refers to spectrum consumers’ judgements abdat tradeoff between achievable
capacity and spectrum leasing cost. We examine the exestartuniqueness of the spec-
trum price Nash equilibrium (NE), which depends upon SU dgr{se., total spectrum
demand) and spectrum heterogeneity. Our investigation into ttieces of three essen-
tial features—(i) spectrum heterogeneity, (ii) spectrurarsng among SUs, and (iii) total

spectrum demand (i.e., SU density)—provides useful inisighd practical guidelines for

We refer to “spectrum demand” as the number of SUs in a DSMerdlttan the SUs’ bandwidth demand.
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designing spectrum pricing and purchase strategies in DSM.

7.1.1 Contributions

In summary, this chapter makes the following contributions

Introduction of a new DSM model where WSPs with heterogesespectrum re-
sources compete for a higher market share. We demonsteatepfact of spectrum
heterogeneity via in-depth measurements on a GNURadioRt8&bed. To the best
of our knowledge, this is the first attempt to analyze the ichpph spectrum hetero-

geneity in a DSM.

Investigation of a new spectrum price-demand model baseth®mesire of SUs
to maximize their own utility, by evaluating the impact ofegtrum heterogeneity,

spatial spectrum sharing, and total spectrum demand.

Derivation of SUs’ optimal WSP selection strategy based amean-field approach
to study how spectrum heterogeneity affects market equihtn. Our mean-field ap-
proach simplifies the market model using a set of differéeti@ations, and is shown

to effectively approximate an exact model using large-disn@ Markov chains.

Modeling of the pricing strategies among WSPs as a non-gatipe game and iden-
tification of the key factors that influence the NE points,irigkinto account the

price-demand relation caused by the utility maximizingdebr of SUs.

7.1.2 Organization

The remainder of this chapter is organized as follows. 8aati2 describes the duopoly

DSM model and formulates the pricing game among WSPs as aogperative game.

Section 7.3 shows the impact of spectrum heterogeneitynviepth measurements on a

software-defined radio testbed. Section 7.4 analyzes tpadhof SU density on their

achievable utility by analyzing mutual interference am@lgs. Section 7.5 studies the

SuUs’

optimal WSP selection strategies that maximize aelfukevutility. Section 7.6 de-

rives the WSPs’ optimal spectrum pricing strategy based realéstic price-demand func-
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tion. Section 7.7 reviews existing work for spectrum pricin DSM. Finally, Section 7.8

concludes this chapter.

7.2 System Model and Assumptions

In this section, we present a signal propagation model foraoalysis which will be
used throughout this chapter. We then define the DSM modkty ftinctions of SUs and

WSPs, and formulate the pricing competition of WSPs as acomperative game.

7.2.1 A Dynamic Spectrum Market (DSM) Model

We consider a duopoly DSM where two WSPs compete in the saowraghical area,
as illustrated in Fig. 7.1. Each WSP is assumed to have lemg-access rights for a li-
censed channel with a different center frequency, obtauoed primary spectrum owners,
for example, via auction [80, 165]. WSPs then grant accegggito their channels to
multiple SUs by advertising the spectrum price, either \@tatiase query or direct broad-
casting over a dedicated control channel. WSPs have aaeseplete information about
customer population (i.e., SU density) and their prefegsrice., SUs’ utility)} Each WSP
possesses a single channel for leasing, and we focus ongbevteere the WSPs’ leased
channels have considerably different center frequentties,exhibiting disparate wireless
signal propagation characteristics.

Interactions among DSM patrticipants can be modeled asex 3ttucture [25, 76] (see
Fig. 7.1) consisting of: (i) thepectrum plangwhere licensed spectrums are auctioned and
sold to wireless service providers (WSPs), (ii) Hegvice planewhere WSPs sublease the
spectrum by enticing SUs with competitive prices and goatspm quality, and (iii) the
user plane where SUs choose the WSP that maximizes their utility. &ltth spectrum
pricing competition in DSM has been studied extensively [#& 113, 114], most existing
work has not considered spectrum-heterogeneity as a prifaator in establishing the

pricing strategy (except [154]).

2Learning mechanisms can be used to infer such informatiamnittis not available [154].
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Figure 7.1: A duopoly dynamic spectrum market model: WSPs compete weitbrbgeneous
channels (leased from the primary spectrum owners) toeentiare SUs in the
same geographical area in order to maximize profit.

For the user plane, we consider an ad-hoc secondary netwosksting of a setN, of
transmitter-receiver pairs, referred to as SUs. Each pastitutes a basic unit for spectrum
leasing; in essence, SUs purchase short-term rights tesitoe channels from a WSP at a
fixed spectrum price set by the WSP. We assume that SUs are 8iéesl (e.g., USRP [3])
with CR-capability. By exploiting the ability to access ad@irange of spectrum bands, SUs
aim to maximize their utility (i.e., the difference betwdbe channel capacity and spectrum
leasing cost in EqQ. (7.2)) by choosing the “best” WSP. SUsamdomly deployed in areas
following a point Poisson process [17, 32] with average dgns i.e., the distribution of
the number of active links within the deployment ardaisn 4 ~ Poisson(n; p|A|). Note
that although we consider an ad hoc secondary network, @lysis can also be applied to
an infrastructure-based network model, where commuiicdtetween an access point (or

base station) and its associated clients is one-to-oneyagiaen time.
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7.2.2 Signal Propagation and Spectrum Reuse Model

Signal propagation is known to depend on the center frequeheach channel: the
lower the frequency band, the better the signal propagati@macteristics. For ease of
analysis without losing key insights to be gained from speutheterogeneity, we con-
sider the following simple signal propagation model thdkets the impact of spectrum

heterogeneity [59]:
Co\ ™ _
Pr=P,g.(r) = P, (7> PO (Watts) (7.1)

where Py, is the received signal poweF, the transmission power, the speed of light,
i.e.,c, =3 x 10°m/s, f. the center frequency of the chanmgl the distance between the
transmitter and receiver, and > 2) the path-loss exponeftWe assume that all the SUs in
the network use the same fixed transmission power [ByeliVhile we use a simple signal
propagation model, more realistic models (e.g., [74]) ddué used for specific wireless
environments (e.g., indoor or outdoor) at the cost of comipl®f analysis. Since shadow
or multi-path fading is shown to not affect average intefee significantly [69], we do
not consider it in our model.

Buddhikotet al.[19] suggested three different models for spectrum shavihich are
referred to agexclusive useshared useandcommonsnodels. These models overcome
the limitations of the traditionailommand-and-contreghodel. In order to focus on the im-
pacts of spectrum heterogeneity in a DSM, in this chapter ovisider theexclusive use
model, in which primary spectrum owners grant their exefeisipectrum access rights to
a third party (e.g., WSPs). This exclusive model is suitéutespectrum bands with rela-
tively long ON/OFF primary activity periods, e.g., DTV chagis. Besides, this model can
provide high quality-of-service (QoS) and reliability laese it does not require frequent
performance of spectrum sensing by SUs, or frequent seinieguptions due to primary

activities.

3We assume that the path-loss exponent is 2 so that the cumulative interference does not diverge as
the network size grows.
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7.2.3 Utility-Maximizing Spectrum Demand and User Preferece

One of our main contributions is to derive a realistic prignand function in the DSM,
driven by SUs’ desire to maximize their utility. Specifigatihe utility function of SU; € N,
which is associated with WSP (channel) is defined as the difference between the SUs’

achievable link capacity and spectrum price:

Po (X3

whereB is channel bandwidthy, ; the channel gain between the secondary transmitter and
receiver,N, the noise power level, anfl, the transmit power. (Per FCC regulation, there
is a cap on transmit-power levels for SUs.) The average ofutatime interference power
caused by the SUs on chanaelt the receiver of link is denoted by. ;, andp. denotes the
spectrum price (per unit time). To simplify the analysis, agsume that all the secondary
transmitter-receiver pairs are separated by the samendestand thus the channel gain
only depends on channel frequency, i®.; = g. Vi. For the similar reason, we assume
1., = 1. Vi. Henceforth, we omit the subscripfor brevity. We consider a fixed (unit)
bandwidth demand from SUs, i.d3,=1 for all channels.

LetC={c, a} denote the set of WSPs (channels) in a DSM. Based on the fititittion

in Eq. (7.2), SUi selects the channe] € C that maximizes expected utility, i.e.,

c; = argmax U;(c), (7.3)

cel

whereC is the set of channels available at WSPs, €g-{a, ¢} for a duopoly DSM.

7.2.4 Spectrum Pricing Game among WSPs

The main objective of WSPs is to maximize their profit by legghe licensed channel

to multiple SUs at the highest possible leasing price. Thoeee WSPs play a pricing game

4We equate a WSP with its channel(s).
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to compete for market share. The payoff (profit) function #/8Pc c C is defined as:

Vc<p07p—c> = Nc<p07p—c> *Pe — bm (74)

wherelN, is the number of SUs associated with WiSBpectrum demand),. the spectrum
leasing price, and. the fixed investment cost, i.e., the fee paid to the primagcspm
owner for the long-term spectrum lease (per unit time).

Note that analyzing the price-demand relationship, Ne(p., p_.), is not straightfor-
ward. Traditional economic models tends to assume a kndatiae between WSPSs’ price
and SUs’ demand. However, in our model, the spectrum demande., the number of
SUs on channet, depends not only on WSPs’ spectrum leasing prigesp_.}, but also
on the channel quality (capacity) determined by the frequetependent co-channel inter-
ference, as shown in Eg. (7.2). SUs can freely choose the W haximizes their payoff.
Thus, WSPs must consider spectrum heterogeneity in dg\asimptimal spectrum pricing
strategy that maximizes profit.

Based on the WSPs’ utility in Eq. (7.4), the spectrum priajagne among WSPs can

be defined as shown below.

Definition 1 (Spectrum pricing game between WPHRsspectrum pricing game between

the WSPs can be formalized as a strategic choice:

pe = argmax Ve(pe, p—c), (7.5)
pcER

wherep_. denotes the price chosen by competing WSPs.

In what follows, we first demonstrate the impact of spectrugtefogeneity in Sec-
tion 7.3, analyze SU utility in Section 7.4, and derive thérapl WSP selection and spec-

trum pricing strategies in Sections 7.5 and 7.6, respdygtive

5Let the subscript-c denote the competitor of WSP
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Figure 7.2: Software-defined radio testbed: GNURadio/USRP2 nodedacegbat different
locations on the fourth floor of the CSE Building at the Unsrgr of Michigan.

7.3 Characteristics of Spectrum Heterogeneity

In this section, we demonstrate the effects of spectrunrégeaeity on received signal
strength (RSS) via measurements on our software-definéal testbed. We first describe

our experimental setup and then present the measuremaltisres

7.3.1 Experimental Setup

To evaluate the impact of spectrum heterogeneity, we cactsid a GNUradio/USRP2
[6] testbed on the fourth floor of the Computer Science andrigeging (CSE) Building at
the University of Michigan. This floor has multiple officesdaconference rooms and rel-
atively straight corridors, which allow us to evaluate timpact of spectrum heterogeneity
under both line-of-sight (LOS) and non-line-of-sight (NEDsettings.

We deployed 5 USRP2 nodes in the topology shown in Fig. 7.2pM&ed the trans-
mitter at a fixed location in the corridor (denoted as circleid the figure), and purposely
placed 4 receiver nodes at different locations (e.g., dorsi and offices, denoted &sl in
the figure) to test various signal-propagation environsiefihe measurements were done
at night to minimize the effects of environmental changeshsas moving people/obstacles
and interference from other networks. This allows us to $oon evaluating the impact of
spectrum heterogeneity on network performance withouhéweal to deal with all the tran-

sient network dynamics, e.g., the fluctuations in RSS dueawaimg obstacles.
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We equipped the USRP2 nodes with two different sets of daulgb&rds and antennae
that operate on different spectrum bands. For high-frequepectrum, we mounted the
VERT2450 (dual Band 2400-2480 MHz and 4.9-5.9 GHz omnitloral antenna) on a
XCVR2450 board (2.4-2.5 GHz and 4.9-5.85 GHz dual-band litavgoard). For low-
frequency bands, we mounted the VERT900 (824-960 MHz omattional antenna) on a
WBX board (50 MHz to 2.2 GHz daughterboard). Both the XCVR2458d WBX have the
same transmit power level (20 dBm).

We use the benchmark dbpsk encoding/decoding module in GidIdRo test the sig-
nal quality on different spectrum bands. The bit rate is sdl.i Mbps and each BPSK
symbol goes through a raised-root-cosine filter with 8 tegmylting in a signal bandwidth
of 50 KHz. Through experiments, we found that the transmitgraf the testbed increases
linearly with transmit gain. Therefore, we set the transiois gain of both XCVR2450 and

WBX to the maximum, to ensure that they have the same outputipo

7.3.2 Experimental Results

To evaluate the effect of spectrum heterogeneity, we medghe signal-to-noise ratio
(SNR) of a transmitted signal on three different frequerenyds, i.e.907 MHZ, 2.478 GHz,
5.728 GHz, at four different receiver locations. Receiver logati is LOS setting, and the
rest are NLOS settings. The measurement lasted 5 minuteaébrexperiment. Note that
the USRP RF circuits have different gains for different tregcy bands. Hence we first
calibrate the output power for different frequency bandshat they may have comparable
SNRs at short distances. In this way, the hardware artitaetssolated and for each link,
the signal quality only depends on its frequency.

Fig. 7.3 plots the empirical cumulative distribution fuioct (c.d.f.) of the measured
SNR. The figure clearly indicates the impact of spectrum rogeneity: the lower the
frequency, the higher the SNR, regardless of the receiatilans. Fig. 7.3(d) shows
that, when the receiver is in the NLOS setting, high freqydrands, i.e.2.478 GHz and
5.728 GHz, suffer from significant deterioration in signal stréngecause of the obstacles

(i.e., the walls between the transmitter and receiver).@rother hand, the low frequency
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Figure 7.3: Impact of spectrum heterogeneity: The distribution of mieed SNR depends
significantly on the center frequency of the channel; theeltilve frequency, the
higher the SNR due to the better signal propagation chaisiits.

band, i.e.,907 MHz, achieves a relatively high SNR thanks to its good walhgtration
characteristics.

Next, we study the signal propagation characteristics tfémint spectrum bands by
measuring the RSS (in dB). We place the transmitter at a figedtion and vary the
transmitter-receiver separation frorim to 45 m in an indoor, LOS setting. Fig. 7.4 il-
lustrates that low frequency band shows consistent adyarita all the distance settings.
In addition, RSS linearly decreases when the logarithnstadice, i.e.10log;,(d), be-
tween the transmitter-receiver pair increases, rega diethe center frequency. This again

verifies the trend predicted by the empirical propagatiodeho Eq. (7.1).
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Figure 7.4: Signal propagation over heterogeneous spectrum: RSSadesralmost linearly
as the logarithmic distance between the transmitter arelvetincreases.

7.4 Analysis of Secondary Utility under Spectrum Hetero-
geneity

In this section, we characterize co-channel interfereneg (.; in Eq. (7.2)) among
SUs to capture the effects of spectrum heterogeneity ardrspe sharing on the achiev-
able capacity of SUs.

For spectrum sharing among co-channel SUs, we considerhyggal model [62]
where all the SUs can transmit at the same time. We consid@hysical model rather than
the protocol model [62]® Note that, although we consider the physical model, the main
insights would not be different for the protocol model. Weagximate the distribution
of co-channel interferencd,, on channet € C, by quantifying the interference from SUs
located inside and outside the interference rargje,which is defined a £ sup{r €
R| P, g.(r) > n} wheren is a predefined threshold that depends on the desired deta rat
modulation scheme, etc.

We first approximate the sum of co-channel interferenceezhbby SUs located inside
the interference range as a Gaussian random variable. dtiggasecondary systems main-
tain a certain distance between them to avoid interfereswe/e assume that the minimum
distance between secondary transmitters is sufficienthyelée.g.,> 10 m). The total in-

terference at a fixed point in a uniformly-distributed wée$ network can be accurately

5The physical and the protocol models [62] are most widelyduse modeling wireless interference.
In the former, SUs can transmit data concurrently but sieechannel via a non-orthogonal multiplexing
protocol (e.g., CDMA). In the latter, SUs multiplex the chais using an orthogonal scheme (e.g., OFDMA),
and the per-user capacity is inversely proportional to timalmer of interfering neighbors.
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approximated as a Gaussian random variable {82].
Let Gine = D g g.(r) denote thenormalizedinterference (i.e., sum of channel gains)
from a setS, of co-channel SUs located inside the interference rangen,Tthe probability

density function (p.d.f.) of Gaussian random variablg. ~ N (., o2) is given as:

T — fte)?
Gunelo) = —exp (= L), 76)

where the meam{,) and variancef,) of the interferencg;,, . is given as [99]:

mlp.0) = o8 =) [ E )

wheree is the minimum separation distance from the receiver.
We now quantify the total interference caused by SUs locateside the interference

range.

Lemma 7.1 The total interference caused by SUs on chamretated outside the inter-
ference region (i.e., unit disk of radiug; centered at the receiver) can be approximated

as:

Iout,c =27 Po <&>

< Pe (R§>2_a .
fe

p— (7.8)

Proof See Appendix B.

Finally, based on Eqs. (7.7) and (7.8), the interferenceediby SUs on channelcan
be approximated a& ~ N (., 0?) where

pe = Ellind + Toue = (7) i (7.9)
ol = /;J:Pf <%)20<€Zi_2 - (R§)12a_2>’ (7.10)

"Note that we can ignore the impact of multi-path fading onneted selection because the time scale of
channel switching is much larger than the average fadingtutur.
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wherep. is the density of SUs (links) on channelSimilarly, we can derive interference for
channel: (i.e., u, andeo?). Eq. (7.9) indicates that the total interference lineamtyreases
with SU density on channel p., which can be approximated as~ % whereA is the
entire network area.

The interference distribution in Egs. (7.9) and (7.10) isiaction of center frequency
fe, which serves as the basis for developing an optimal WSRtsatestrategy and for

analyzing the pricing game among WSPs with heterogene@gdrspn bands.

7.5 Optimal WSP Selection Strategy via Mean-Field Ap-

proach

In this section, we derive the optimal WSP selection stgateg SUs using a mean-
field approach, assuming that the WSPs possess differectrgpebands. We begin with
a mean-field approximation of the spectrum market. We themepits convergence, and

derive the optimal WSP selection strategy in the mean-fiegéhme.

7.5.1 A Mean-Field Model for Spectrum Market

The mean field method [16] is a simple and effective way ofyamag the state evolu-
tion of a large number of interacting objects. In particuitais suitable for analyzing how
the local behavior of individual nodes affects the globalgarties of a large-scale network.
In our problem, an SU’s behavior is described by its type, (ite preferred WSP), and the
global properties are the steady-state distribution of \§igs.

Our mean-field approach uses differential equations tocmiate the evolution of
the market, whose state converges to the fixed point of thategu(namely, thenean-
field limit) under certain conditions [16]. In what follows, we first wsenean-field model
to describe how the DSM evolves, and then justify the corergcg of the market to its

mean-field.
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7.5.2 Evolution and Convergence of the Market

We first provide the following key definitions:

e A link is defined as a connected transmitter-receiver pair agtivetraffic. There-
fore, a link can be considered “newly joined” if it has justited from an idle

period to a period of bursty transmission.

e Let N be the number of active links. Links can “join” and “departcarding to
a Poisson distribution. However, we assume that the linlkufaijon evolves to a
steady state, such that the departure rate equals thel aateaand the total number

of links remains roughly constant.

e Let )\ be the traffic rate of a link. We also assume that the ON-ORfdi@attern of

a link is bursty, following a Poisson distribution with rate

e Let N.(t) denote the total number of active links using chanregltimet. Links are
classified according to the channel that they use, i.e. kai i of typec, if it selects

channek € C.

We study the evolution of the spectrum market within a sheriqul of time,At. The
number of newly joined secondary links within this periodNs\ At. This is also the
number of departed links withiiz, since we focus on a steady state of the SU population
when the departure rate equals the arrival rate. Each ne@wlgd link leases a channel
from a WSP with a short-term contract. Note that active litiiet have already leased a
channel are in transmitting/receiving mode, and must raairtheir current channel (WSP)
selection.

Let P. be the probability that, for a randomly selected linlkchannelc provides the

maximum utility, i.e.,
P. = Pr{c=argmaxU;(c")}, VceC, (7.11)
c*eC

where the utilityll;(c) is defined in Eq. (7.2). Then, among the newly joined linkshimit
At, the number of links selecting channgs N \ At P...

176



The total number of channelSUs, i.e., links using channe] in the network at time
(t + At) is:
N(t + At) = N(t) + N XAt P. — N.(t) A At. (7.12)

Eq. (7.12) describes the evolution of a market. The markeilibgum can be defined as a
fixed point of the market evolution:
ON.(t)  N.(t+ At) — N.(t)

= = N =NAP.— N.()A=0

«— P, = Ne(t) (7.13)

Eq. (7.13) indicates that the probability that an SU selé¢&P ¢ is equivalent to the
fraction of SUs using channe| which is referred to as thehannel occupancy measure
i.e., I1.(t) = N.(t)/N. Intuitively, the occupancy measuié,(t), reflects the market share

of WSPc¢ at timet.

Proposition 7.1 (Convergence of channel occupancy) The channel-occupameasure

I1={I1,, 1.} converges to a deterministic process in the continuous-tiomain.

Proof See Appendix C.

From now on, we will focus on deriving the channel (WSP) sebdecprobability P.
in the mean-field model of Eq. (7.12), which depends pringaoii three key factors: (i)
amount of interferencé. on channet, (ii) spectrum leasing prices., and (iii) total spec-
trum demand. Note that the interference intensifydepends on the occupancy measure
of channele, which, in turn, affects the channel-selection probabit. This circular
dependency eventually converges to a fixed point, i.e., tbamfield limit of market dy-

namics.

7.5.3 SUs’ Optimal Selection of WSPs

We now analyze the SUs’ optimal channel (WSP) selectiortegiya assuming that
each SU is a rational market entity that selects a WSP to maihs utility. In making a

strategic choice, each SU takes into account the achiecaplgcity and leasing cost, but
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cannot directly affect the price set by the WSPs. This modgions a real-world market
economy where customers are obedient price-takers, byoititeeffect of their choices
causes the sellers to compete and reach an equilibrium price

We derive the optimal WSP selection strategy in a mean-fegjane for given spectrum
pricesp={p., p.}. For an arbitrarily-chosen SU in a DSM, the probability tbaannek:

provides better utility is:

P.= Pr(U.—U, > 0)

P,g. P,g,

<10g<l N) 1°g<1 +N>>pc )
r(1on (7 3) > pe e —atox (7))
(

Pr(I, + N, — e p“<;—>a(IC+NO) > o), (7.16)

a

I
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r
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wherep. (p,) andf. (f,) are the price and center frequency of chant(e), respectively.

Note that a more commonly used approach for analyzing thdilmgum state is to
equate the user’s utility, i.elj;(¢) = U;(a) (e.g., [114]). However, such an equilibrium
state may not be reached depending on the network envirdnmgmwill be shown in
Section 7.6.4.

For given prices, the channel-selection probabilitydepends solely on the interfer-
ence statistics on channel In Eq. (7.16), the interference power on each channel can be
approximated as a normal random variable as derived in@ec¢t#.

Let I, = I, + N, — Yeo(I. + N,) Wherery,, = P~ pa(f°) Note thatN, and~,, are

constants, and., is thus the difference between the two Gaussian randomblasiavhich
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is also Gaussian. Thef,, ~N(i., 02,) where

Hea = Ha + No - ’Yca(,uc + No) (717)

Ufa = 0’5 + vczaaf, (7.18)

where the mean and variance of the interference are showgsin(£9) and (7.10). Then,

the channel-selection probability is:

P. = Pr(l, > 0) = Pr(I“” — Hea _’”‘”) - Q(_“m), (7.19)

Uca Uca Uca
whereQ(z)=5- [ e~ T dt. Using Egs. (7.9), (7.10), (7.18) and (7.19), one can dé¢hige
channel-selection probabilities.

Proposition 7.2 (WSP selection strateyyor the case with two WSPs (channetsand
a, the mean-field limit of the channel-selection stratdgyyand P, follows Eqgs. (7.14)
and (7.15).

Proposition 7.2 indicates that the mean-field limit of the R\&lection strategy is in-
fluenced not only by the spectrum prices, but also by the addmeterogeneity reflected
by interference rangesi(,R}) and center frequencieg.(f.). This clearly indicates that
spectrum heterogeneity can affect the optimal spectruaingrthat maximizes the WSP’s
profit. Proposition 7.2, however, shows that SUs’ traffiemgity A does not affect the

system’s steady-state.

Proposition 7.3 (Asymptotic behavior of WSP-selection stra)égdye optimal WSP-selection

probability becomes more uniform as SU density increases, i
P.— 05 as p— oo, (7.20)

wherep is the average SU density, which can be approximateﬂta%.

Proof Asp — oo, the WSP-selection probabilit). in Eq. (7.14) reduces to:

lim P, = Q( + oo (PP P, — Pa)). (7.21)
p—00
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Then, we have:

1 P<- I
lim P.=< 05 P.= _1e (7.22)

p—00
0 P.>_1la

In Eq. (7.22), there exists a unique solution, ilav, ., P. = 0.5 whenp. = p,. On
the other hand, when. # p,, there is no solution becaugg = p,, is the unique NE point

under the conditiop — oo. We will detail the price NE in Section 7.6.

Proposition 7.3 indicates that the WSP-selection proligliiecomes independent of
spectrum heterogeneity when the number of SUs in the netwoslapproaches infinity.
This is because, when there exist a large number of intesfeirgerference power domi-
nates noise power, i.el, > N,, and as a result, the benefit from low frequency becomes

negligible.

7.5.4 Numerical Results

Here we present numerical results that show the behavidneothannel-occupancy
measure under different DSM settings.

Fig. 7.5(a) shows the impact of heterogeneous channeldreges on the channel oc-
cupancy,ll, andIl.. In the simulations, we fix the center frequency of channeit
fo = 500 MHz and increase the frequengy up to 2.5 GHz. We set spectrum prices to
pa = p. =1, to eliminate the effect of prices on channel occupancy. fichge shows that,
when f. < f,, II. > 0.5, due to the favorable signal-propagation characterigtichannel
¢; on the other hand, whef. > f,, II. < 0.5 for the same reason. Interestingly, channel
occupancy depends on average secondary network densitydtal spectrum demang)
This is because, in a dense network where interference pexeereds noise power, i.e.,
N, < I, the benefit of favorable signal-propagation charactesistiminishes. As a result,
the channel-occupancy curve becomes flatter. Note that vihenf,, II. = 11, = 0.5,
regardless of SU density.

Fig. 7.5(b) shows the channel-occupancy measure whilengayverage SU density in

the rangep € [0, 200]/km?. Here we fix the center frequenciesfat= 500 MHz and assume
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Figure 7.5: Characterization of channel-occupancy measure: (a) Thepancy of chan-

nel ¢, 11, increases as the frequency raﬁodecreases, and (b) channel occu-
pancy becomes less sensitive to spectrum heterogeneiye awtwork density

increases. The parameters are set+d 00 m, andP, =100 mW, and spectrum
prices are fixed at, =p.=1.

fe € {500 MHz, 750 MHz, 1 GHz}. The figure indicates that the channel occupaligys
always greater than or equal @@ due to its favorable signal-propagation characteristics.
When SU density is low, the channel occupantyis close tol as most SUs tend to
enjoy the favorable signal-propagation characteristichannel: without worrying about
mutual interference. Under these conditions, the DSM bethenonopolistically. However,
as SU density increases, the channel-occupancy meHsutecreases because, in such a
high interference regime, it becomes harder for SUs to éxfile benefits of favorable
signal-propagation characteristics. Thus, the DSM behbke a duopoly. The figure also

shows that the occupancy measure approathiem all the tested cases, confirming the
correctness of Proposition 7.3.

7.6 Equilibrium of the Spectrum-Pricing Game

In this section, we study the impact of spectrum price on tI&PW profit as defined in

Eq. (7.4), and characterize the Nash equilibrium (NE) moaftpricing strategies.
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pricesp = (pq, p.) and spectrum heterogeneity (i.e., channel frequency). ¥Ve fi
the center frequencies # = 500 MHz and f. = 1 GHz, and set SU density to
p="50/km?.

7.6.1 Impact of Spectrum Price on WSP’s profit

Here we evaluate the impact of the WSPs’ spectrum-priciragestyp = (p,, p.) On
their achievable profits. Without loss of generality, we th&t heterogeneous spectrum
bands aff, =500 MHz andf.=1 GHz. However, we observed similar patterns for different
frequency bands. We fixed SU densityat= 50/km?, and set the investment costs in
Eq. (7.4) atb, = b. = 0 to eliminate their impact on WSPs’ profit, which will be stadi
separately in Section 7.6.6.

Fig. 7.6 shows that WSR always achieves a higher profit than W§R.e.,V, > V,,
thanks to its favorable spectrum profile. Fig. 7.6(a) shawasthe profit of WSR; (i.e., V)
monotonically increases as competing WSRcreases its pricg.. This is because WSP
tends to entice more customers due to chanisddetter signal-propagation characteristics.
The advantage becomes more pronounced when the competBr:\8éts a higher price
and loses part of its market share. In contrast, as showryirvF6(b), when WSIe quotes
a higher price than that of WSR its achievable profit remairts i.e., WSPa monopolizes
the market. This indicates that channes not competitive unless the price of channel
rises above a certain threshold.

Fig. 7.7 shows the impact of relative pric%,, on WSPs’ profit with respect to SU

densityp (i.e., spectrum demand). We set prige= 1 and vary the price). from 0 to
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Figure 7.7: Impact of price ratio: There exists an optimal pricing rdkiat maximizes profit,
and the effect of pricing is coupled with the SUs’ density.

2.5. Here we have made three observations. First, thearsdtip between price ratio and
profit is a concave function as shown in Fig. 7.7. When theepratio is relatively low,
WSP ¢’s profit decreases as the price ratio further decreasegitedke fact that a lower
price attracts more SUs, the advantage is limited by inectasterference among them.
When the ratio is relatively high, the profit also decreasaba ratio further increases, due
to the significant decrease in customers. Second, wheniﬂ'aeratio,lf—;, is above a certain
threshold, the profit,. becomed) (i.e., the profit curve becomes flat) since the high price
makes channel unattractive to customers. However, such a threshold ase® with an
increasing SU density (i.e., spectrum demand) where WSPtaga advantage of a large
number of customers. Third, in a sparse network with low Shisdeg, profitV, is maxi-
mized wherp. < p, because the interference on channetmains negligible, even when
most users are associated with W&PIn contrast, in a dense network, is maximized
whenp,. ~ p, because all SUs will suffer from high interference regassllef the chan-
nel characteristics. Therefore, W3Hoses its competitive advantage of superior signal
propagation characteristics. Note that this correspomdsit findings in Proposition 7.3 in
Section 7.5.3.
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7.6.2 Nash Equilibrium for Pricing Game

In a DSM, WSPs must carefully set the spectrum price, sineéiigh a price results in
loss of market share, while too low a price will limit theirraevable profits. We capture

this tradeoff with the notion of Nash equilibrium (NE).

Definition 2 (Spectrum price Nash equilibrium) An NE in the duopoly gamdefined as

a strategy sefp’, p:} that satisfies:

py = argmax Ve(pe, py) (7.23)
Pc

p: = argmax V.(p:, pa)- (7.24)
Pa

Intuitively, an NE strategy set implies that no player cacr@ase its profit by unilater-
ally adjusting the price. With the above definition, we canivdethe NE of the duopoly
game. Unfortunately, it is difficult to find a closed-form egpsion for the NE. Hence, we
numerically solve Egs. (7.23) and (7.24) using a simplattee search algorithm to obtain

the NE price.

7.6.3 Existence and Uniqueness of Nash Equilibrium

Based on the above definition of NE, we examine the existendainiqueness of the
NE points when SU density changes, which is equivalent toging the spectrum demand
over the entire network. In the simulation, we consider agggntative scenario in which
the frequency of WSH is lower than that of WSEP, i.e., f, = 500 MHz and f. = 1 GHz,
and thus, we expect the NE points to be formed suchithatp;.®

Fig. 7.8 shows the best responses of WSPs under differentedisitebs. We have
made three key observations. First, the W&Pbest response (solid lines) increases as
the spectrum price, increases, and vice versa. This is because the WSPs conyegte o
the same pool of customers in a given network coverage anelahence, WSPs’ optimal

spectrum pricing is always relative to the competitors’cépen prices. That is, if WSR

8Although we presented the NEs for a specific set of frequenuaie observed from simulations a similar
behavior for other frequency bands.
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Figure 7.8: Best response functions for the WSPs: The existence andemegs of the NE
depends on spectrum heterogeneity as well as the secoretargrik density. In
the simulation, we sef, =500 MHz, f.=1 GHz, andb, =b.=0.

guotes a high spectrum price, then the SUs’ achievabléyfiibm WSPa will decrease,
changing their preference to the competitor, i.e., WSPhis will allow WSPc¢ to increase
its pricep, to reach an equilibrium point.

Note that this relative behavior of spectrum pricing pr@ga@n economic incentive to
WSPs for collusion. However, such a collusion can be precknt practice for the fol-
lowing reasons. There will be alternative technologiesdoeas the wireless spectrum,
e.g., IEEE 802.11, and hence, WSPs will lose their competigss as they advertise un-
reasonably high prices. Moreover, rational SUs would natipase the spectrum if their
achievable utility (i.e., difference between capacity ande) is too low, i.e., less thahn
Therefore, WSPs cannot set spectrum prices arbitrarilydeease their profit.

Second, when SU density is low, i.p+= 10/km?, the price NE does not exist because
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prices increase with SU density. We assume zero investneshtie.,b, =b. =
0, in the simulation.

total spectrum demand is not high enough for WSPs to makefi. gktthoughp.=p, =0
can also be considered as an NE point, the WSPs will avoidtiagegy since this NE point
will provide a negative revenue to both WSPs. That is, t@attcustomers, WSPs have to
lower their prices until they readh and thus, there is no economic incentive for WSPs to
participate in the market. In contrast, with high secondiewsity, i.e.,0 > 20/km?, the
NEs are formed at some positive values, thus providing ecanmcentives to WSPs.
Third, Fig. 7.8 indicates that the best responses expii@te transitiongthe transition
thresholds denoted as 1,2,3), resulting in a different remobNEs depending on market
settings. For example, the figures show that the growingofates best responses of WGP
(dashed lines) changes at certain thresholds (denotgd&Bis is because wher remains
below the threshold, it is optimal for WSFo increase the price, at a higher pace than,

ie., ﬁg‘z > 1, to take advantage of channg$ superior spectrum characteristics. However,

whenp, increases beyond the threshold, the high spectrum pridgeslthre growth of the

utility of SUs. As a result, channelbecomes more attractive than chanaghnd thus,

ﬁpa < 1. Similarly, the best response of W3Ras the threshold property denotedasd
Pec

3 in the figures.
One interesting observation is that, in dense networks g 50, 100/km?, the price

p. increases faster than until p, reaches the threshobd This is because, despite channel
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Figure 7.10: Monopoly vs. duopoly DSM: The market can be monopolized y(gieea)
by WSPa when the channel frequendy: of the competitor, WSP, is rela-
tively higher thanf, and the SU density is low. We assume tliais fixed at
500 MHz.

a’s higher quality, when the price, is too low compared to the NE price, WSRan quote
a higher price, i.e.p. > p, to maximize its own profit, benefiting from a large number of

customers.

7.6.4 Market Dynamics under Various SU Densities

As we observed in Section 7.5, SU density (or spectrum dejriaral critical factor
in WSPs’ pricing competition. Here we investigate the intpafcSU density on market
dynamics by examining the NE prices, WSPs’ profit, and SU#tyut

Fig. 7.9(a) shows the difference between the NE prices,pie- p’, as a function of
SU density. When the density is low, i.p.< 10/km?, NE does not exist as we observed in
Fig. 7.8(a), and WSPs cannot make a profit because the magestt{um demand) is too
small. As the density increases, however, the NE price afiedia (p;) grows drastically,
whereas the pricg remains0 due to its inferior spectrum profile. This means WSP
cannot make profit if they quote a price greater than 0. As a result, WSk monopolizes
the market, as more clearly shown in Fig. 7.9(b) (shadedmgiAs the density further
increases, however, WSPstarts to share the market, i.eyopolybecause the SUs on
channekl: begin to suffer from co-channel interference.

Fig. 7.9(b) shows WSPs’ profit defined in Eq. (7.4) for vari@$ densities. As we

discussed, when density is low, W&Rlominates (monopolizes) the market, i}&,,> 0
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andV,. = 0, thanks to its superior spectrum profile. As the SU densityeases beyond
a certain density threshold (i.e2,= 12/km?), the market becomesuopolyand the dif-
ference in achievable profit decreases as the size of theetngmdws. Such a threshold
density depends on spectrum heterogeneity. Fig. 7.10lglglaows that the range of SU
density below which WS monopolizes the market increases as the center frequency of
channelc increases. For example, whén=2f,, WSPa will dominate the market until
SU density becomes larger than= 13/km?. In addition, such a boundary of SU density
increases super-linearly, partly because of the reladtiprizetween received signal strength
and center frequency?; o« f. ¢, as indicated in Eq. (7.1).

Fig. 7.11 shows SUs’ achievable utilities on each chanrel,li, andU,. The figure
shows that, whep < 13/km?, the utility on channeh exceeds that of channe] i.e.,
U, > U,, thus forming the monopoly market. On the other hand, in thapdly market,

there is no difference in achievable utilities, and thusrtfagket is stabilized.
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the lower the center frequency, the faster the convergeneetal their large
interference range.

7.6.5 Price NE under Spectrum Homogeneity

To demonstrate the impact of secondary density, while séipgrit from spectrum
heterogeneity, we consider threemogeneouspectrum bands, i.ef,, f. € {500 MHz,
600 MHz, 700 MH2, and plot the corresponding NE points in Fig. 7.12. Due te@spe
homogeneity, the NE prices are equal, i;€.= p:, regardless of the secondary density.
We set the leasing cost = b. = 0 to eliminate its impacts on NE prices. From Fig. 7.12,
we have two main observations. First, the equilibrium pieeases with increasing sec-
ondary density (i.e., total spectrum demand) due to theasing number of customers. In
addition, the lower the frequency band, the higher the gacany given secondary density,
since low-frequency bands return higher utility (i.e., @eipy minus spectrum price) to the
SUs. Second, the equilibrium price converges faster withftequency bands due mainly
to the large interference power (range) of low frequencydsarThis is because the po-
tential benefit of using low frequency bands (i.e., a longemgmission range) diminishes

faster with secondary density due to their large interfeeaiange.
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7.6.6 Impact of Spectrum Investment Cost

Our analysis on WSPs’ pricing game can provide a practicalgjime on WSPs’ spec-
trum investment decisions, such as a purchasing strategyttie spectrum owners (e.g.,
via auction) in the spectrum plane, as shown in Fig. 7.1. ketansider a spectrum market
where WSPu operates with a channel at frequenty= 500 MHz, which is obtained at
costb, =1. Then, WSR: ponders whether to join the market by purchasing a chanrikl wi
f. from legacy spectrum owners at prige which we refer to aspectrum investment cost

Fig. 7.13 shows the maximum investment cgst”, beyond which the profit becomes
negative, i.e., WSE cannot make a profit in the market. The maximum investmertt cos
depends on spectrum heterogeneity as well as SU densityfigure indicates that the
maximum investment cos{*** is always lower tharb, = 1 due to channet’s inferior
spectrum profile, but it approachisas the SUs density increases in the market or channel

c has a better spectrum profile, i.e., a lower valug, of
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7.7 Related Work

The problem of optimal spectrum pricing in spectrum market been studied exten-
sively, and we discuss some of the work closely related tg.obliyatoet al. [113] an-
alyzed spectrum pricing competition in cognitive radiowatks with multiple primary
service providers. Inaltekiat al. [73] considered heterogeneous channel conditions due
to nodes’ physical distances from the base station in végelE networks. Jiat al. [76]
studied the duopoly wireless spectrum market where two W8Rgpete for bandwidth
and price to maximize their profit. Duaet al. [45] studied WSPs’ investment and pric-
ing mechanisms by considering SUs’ physical-layer wirelgdsaracteristics. In [44], they
also studied WSPs’ optimal spectrum investment and prideajsions in cognitive radio
networks where spectrum availability dynamically chandes to the unpredictability of
PUs’ channel usage patterns. Gagical. [54] studied pricing competition among WSPs
via a two-stage multi-leader-follower game. Mudtial.[111] studied measurement-based
on-line pricing for secondary spectrum access and develag®icing framework for an
unknown demand function and call-length durations. Howawene of the above studies
considered the heterogeneity of a wide range of availatdetsggm bands in the spectrum
market and spectrum sharing among co-located SUs in angetbs leased spectrum re-
sources.

The closest to our study is [80] which considered two CR-8jeieatures: (i) band-
width (supply) uncertainty due to PUS’ activities, and gpatial reuse of wireless spectrum.
They studied an interesting market scenario where muliff#s compete with each other
by jointly optimizing the spectrum price based on time anchtmn-dependent spectrum
availability. Such fine-grained coordination, howeverghtinot be suitable for a highly dy-
namic wireless environment due to its high computation amdraunication overhead. In
contrast, we assume a decentralized DSM where individgadtgpm consumers purchase
the payoff-maximizing spectrum, just as in a real-world keadeconomy. Spectrum price

stabilizes when multiple WSPs competing for market shaaehr@ Nash equilibrium.
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7.8 Conclusion

The dynamic spectrum market (DSM) is a promising paradigmpravide economic
incentives that facilitate DSA. In this chapter, we ideatifitwo key factors in a DSM—
spectrum heterogeneity and spectrum sharing among SUs-stadiekd their impact on
price competition among wireless service providers (W&Pa)three-step approach. We
first observed that SUs must share the wireless spectruneisghtial domain, and es-
tablished the effect of SU density (spectrum demand) oreaabie utility when they are
associated with the same WSP. We then derived the SUs’ dpiifs® selection strat-
egy that maximizes the utility, for given spectrum profileldeasing prices. Finally, we
formulated WSPs’ spectrum pricing as a non-cooperativeegand identified its Nash
equilibrium points. Our analysis demonstrates that spectneterogeneity significantly
influences WSPs’ spectrum pricing, especially in a sparseark. In a dense network, the
benefit of a lower-frequency band diminishes due to severeheonel interference, and
thus, spectrum heterogeneity has less impact on spectiamgpr

In the future, we would like to investigate the impact of dp@m heterogeneity on
WSPs’ auction strategy in the spectrum plane. It would aksanberesting to extend the
analytical framework to a DSM with multiple WSPs. Moreowsg plan to study the de-
pendency of an optimal spectrum price on other system paeasye.g., maximum trans-

mission power.
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CHAPTER 8

Conclusions and Future Directions

This thesis focused on improving efficiency and robustnespectrum management
for DSA. Despite the promises of improved spectrum efficyeth@t can mitigate the im-
minent spectrum-scarcity problem, several practicallehgkes must be addressed in order
to realize the benefits of DSA. This thesis has first identifiredtwo important and funda-
mental challenges that hinder the realization of DSA—PR&Is’ fear of interference from
SUs’ communications and lack of economic incentive for sitgitheir spectrum resources.
Then, the thesis has presented a comprehensive spectruagemaent system for CRNs,
which provides novel approaches and enabling techniqueariaus aspects of DSA, in-
cluding energy-efficiency, attack-tolerance, mobilitgdaspectrum pricing. In what fol-
lows, the main research contributions of the thesis are sanmaed, and future research

directions are discussed.

8.1 Primary Contributions

This thesis makes the following contributions toward eéfiti and robust spectrum

management for CRNs.

o Efficient Detection of Large-Scale Primary Users The detection of large-scale
PUs is challenging due to the stringent detection requirgsienposed by regulatory
entities like the FCC, which cannot be met by a single sen#gbrame-time sensing.

To improve detection performance while minimizing sendeguptions by spectrum
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sensing, we proposed a joint sensor selection and sensgirdu@ing framework that
exploits the spatio-temporal variations in received pryngignal strength by con-
structing a spatial RSS-profile for an incumbent signal.c8pally, we formulated
the problem of sensing scheduling as a sequential hypstltestiand presented an
optimal sensor-selection algorithm that minimizes theaye sensing overhead. The
evaluation results have shown that the proposed sensiogtalgs reduce sensing

overhead by up t94 % for practical scenarios.

Secure Detection of Large-Scale Primary Usersin CRNs, sensors (or SUs) can
be compromised by an attacker or malfunctioning due to harelisoftware defects,
and thus their reports cannot be fully trusted at the fusemtar. Such manipulated
Or erroneous sensing reports can cause either waste ofiapempportunities or ex-
cessive interference to PUs’ communications. To remedypitublem, we developed

a novel attack-tolerant distributed sensing protocoledaADSP, that selectively fil-
ters out abnormal sensor reports or penalizes them, anarthumains the accuracy
of incumbent detectionADSP exploits shadow fading correlation in the measured
primary signal strength at nearby sensors. To realize dleis,iwe proposed a sensor
clustering method, and designed filters and data-fusi@shsed on the correlation
analysis of sensing reports. The evaluation results insteakhadow-fading envi-
ronments have shown thADSP can meet the detection requirements, even in the

presence of attacks.

Efficient Detection of Small-Scale Primary Users The detection of small-scale
PUs is more challenging than that of large-scale PUs duedio timique features,
such as unpredictable channel usage patterns, small digotakint, and mobil-

ity. To meet this challenge, we proposed a sensing algorithitored to small-
scale PU detection, calleBelLOC that iterates between cooperative sensing and
location/transmit-power estimation to further improvesiag performance. In par-
ticular, we developed a novel spatio-temporal fusion s@hdrat exploits (i) spatial
diversity by cooperative sensing with an optimal fusionggnand (ii) temporal di-

versity by scheduling a series of sensing stages with amapstopping time. Our
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evaluation results have shown tit&tl OCreduces detection delay significantly while

achieving high detection performance.

Robust Tracking of Mobile Small-Scale Primary Users In CRNs, SUs must be
able to accurately and reliably track the location of snsalile mobile PUs to bet-
ter utilize spatialspectrum opportunities, while protecting primary comneations.
However, it is challenging to accurately track the locatafrmobile PUs because
the tracking process must rely solely on the reported sgnsisults, which can be
easily compromised by malicious sensors (or attackers)refieedy this problem,
we presented a framework, call&DLI D, for accurate, attack/fault-tolerant track-
ing of small-scale mobile PUs, such as wireless microphao@es evaluation results
have shown thaSCLI D lowers the localization error significantly regardlesstad t

presence or absence of attackers.

Opportunistic Spectrum Access for Mobile Cognitive Radios It is important for

CRNs to incorporate mobility of SUs to fully realize the bétseof DSA as various
future mobile devices are expected to incorporate CR fanatity. In this thesis, we
identified and addressed three fundamental challengesl pgs@obile SUs that do
not exist in the case of stationary CRNs. We showed via aisalliat the channel
availability experienced by a mobile SU can be modeled amestate Markov chain,
and introduced guard distance in the space domain for eftisgectrum reuse. To
further enable efficient spectrum sharing, we derived am@bdistributed channel-
selection (access) strategy that maximizes the seconéamprk throughput perfor-
mance. The evaluation results have shown that the propgsstirsm sensing and
distributed channel access schemes significantly impret&ark throughput and

fairness, while reducing the SUs’ energy consumption fectpim sensing.

Optimal Spectrum Pricing in Dynamic Spectrum Market: The dynamic spec-
trum market (DSM) is a key economic means for realizing thpoofunistic spec-
trum access that will mitigate the anticipated spectruardaty problem. In DSM,
determining the optimal spectrum leasing price is an ingodrtchallenging prob-

lem that requires a comprehensive understanding of madefitipants’ interests
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and interactions. In this thesis, we studied spectrummicompetition in a DSM
characterized by a duopoly, where two wireless serviceigens (WSPs) lease spec-
trum access rights and secondary users (SUs) purchasedbiusp use to maxi-
mize their utility. We identified two essential, but prevébygroverlooked, properties
of DSM: (i) heterogeneous spectrum resources at WSPs gnepéctrum sharing
among SUs. The proposed analytical framework has impoirtgpitcations for the
impact of spectrum heterogeneity in a real-world DSM, amjales practical guide-

lines for WSPs’ pricing strategies.

8.2 Future Research Directions

This section describes several additional research issatare related to the extension

and application of CR technologies in future wireless nekso

e Mobile Wireless Systems with Cognitive Radio Capabilities CR technologies
can be widely used in future wireless systems to further av@mireless spectrum
efficiency. One interesting direction is to apply the CR sam$echnologies in het-
erogeneous wireless networks. For example, due to the peevasage of mobile
portable devices, such as smartphones, mobile data usageeshlar networks has
increased dramatically over the past several years. Tdrerebff-loading such mo-
bile data traffic to Wi-Fi networks is a viable option for wiegss service providers to
provide high quality wireless Internet access without teechfor purchasing expen-
sive bandwidth resources. Advanced spectrum sensingitp@Es) such as sensing
scheduling algorithms, can be applied in the design of gnefficient mechanisms

for Wi-Fi opportunity discovery for mobile smartphone user

e Leveraging Spectrum Heterogeneity in Future Wireless Netwrks: With the cur-
rent trend of spectrum deregulation, we envision that a waage of spectrum re-
sources will be available in future wireless environmeiRegarding spectrum het-
erogeneity, in Chapter 7, we studied the problem of optirpatsum pricing in a

DSM, in which WSPs compete for a market share with heteragenepectrum re-
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sources. Such spectrum heterogeneity can be leveragedfooving network per-
formance in various aspects, such as resource allocatign ¢gannel and transmit-
power), protocol design, and network optimization. Fomegée, the IEEE 802.11af
Working Group aims at the operation of Wi-Fi networks on TVitglspaces. How-
ever, the current MAC-layer protocol design, e.g., CSMA/@Atailored to operate
optimally on high frequency bands, i.2.4 GHz and5.7 GHz ISM bands. There-
fore, it is of practical importance to study the impact of &pem heterogeneity on
the performance of MAC and upper layer protocol stacks aodrporate them into

the design of future wireless systems.
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APPENDIX A

Proof of Proposition 4.1

To minimize the average number of sensing rouiNds Eq. (4.8), we need to find the
data-fusion range that maximizes the expected test &tatist, E[\ | H,|. Note thafE[A ]
is a function of desired false-alarm and mis-detection @biliiy, and does not depend on
the fusion range, as indicated in Eq. (4.10). BeR;) = E[\| H,] in Eq. (4.19). Then, we

have:
J(Rp) £ E[N| 3]
1 — 1
= 26— Bom s + OB, A, 4 Ny RY)
= &1R?_a + CLQR?c + as, (Al)
where

2(¢1 — o) Py e2” prde

a; = Un(2 — a) ) (A2)
0 = 564~ $ypr + LTI, (A3)
4y — 201 = 0P e2” prdy. (A.4)

on(a —2)ex=2

To find an optimal value o, we need to show the concavity 8R) w.r.t. R;. The
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first order derivative of (Ry) is given as:

93 (Ry)
R,

= a1(2 — a)R;* + 243 Ry. (A.5)

Then, the second order derivative is given as:

0?J(R
a;%f) =a1(2—a)(1 —a)R;" + 2ay
_ (g1 — do)pm 152 ( do\@ (¢1 + do)on
A (1t () -
2
~ 2,07T(1 — 2a) (?) . (A.6)
In practice,« > 3, so it is easy to show tha?tzgl(%—’;zf) < 0 and henc¢gJ(Ry) is concave.
f
Therefore, the optimal fusion randg can be derived from Eq. (A.5) as:
. B  [(a(a—2) «
R} = arg H}I%XB(Rf) = Ry agafff)ﬂ = (72@ ) : (A.7)

Thus, the proposition holds. [J
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APPENDIX B

Proof of Lemma 7.1

Since the interfering nodes are distributed uniformly mlé&ghe interference rangs,

the nodes inside a differential element arel df generates the following amount of in-

terference:
dloui(p,c) = P, g(r) p.rdrdf = P, (%)a = p, dr dé. (B.1)

Then, based on Eq. (B.1), the total interference cause bgstmtated outside the

interference regiot, i.e., unit disk of radiug?$ centered at the receiver, can be calculated

as:

out P, / out Pa )
outside the dISk

/ / 1= p.dr df
0o Ja-s
27
(a) / / ) P17 dr A6
< 0
= PO CO / T 2 @ +OO
0 2—«

deo
R

_ pc (Rc)2 «

— 2P, (f) fe . (B.2)

Eq. (B.2) indicates thaf,,; can be upper-bounded by a constant value shown in the last
line. Note that the inequalitya) is based on the fact that the amount of interference in a

finite network is lower than or equal to that of the networkhwitfinite size.
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APPENDIX C

Proof of Proposition 7.1

We prove that theccupancy measuiié.(¢) converges to a deterministic process in the
continuous-time domain, i.e., the mean-field limit of therktas process. We first rescale
the original discrete-time Markov process, and define a rvituous-time proceds, (t),
such thafll/(+) = IL.(¢).

In [16], Benaimet al. established the sufficient conditions for the convergeres V-
dimensional Markov process towards the mean field limitaftarge/N. Specifically, five
conditions need to be satisfied for the convergence. Spécibar model, the conditions

can be interpreted as follows.

C1 The system resource does not scale wxth

C2 Intensity vanishes at raté V).

C3 Second moment of intensity must be bounded.

C4 Transition matrix of the resource is a smooth functiorﬁoﬂind the mean field limit.

C5 Intensity is a smooth function q% and the mean field limit.

Note that C1 and C4 can be easily satisfied since no expliaitrodl resource is defined
within our model. In fact, the links’ state transitions ingitly change the channel status.

So, we proceed to prove that C2, C3, and C5 are satisfied in odein

!In this paperf(z)=o(g(x)) if lim, o0 éég =0.
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Proof for C2 Let V,, be the number of nodes in the network. Each node can be a data
source, following a Poisson distribution with rate Consider a time sldt, ¢t + 4] where
§ = 4L, Define the number of arrivals withii, ¢ + 4] asN(t,t + 4), which is the number

of state transitions of each source node, withidccording to the Poisson property,
Pr(N(t,t+8) =1) = Xde ™. (C.1)
Therefore, the intensity—i.e., the total number of stadegitions in the system—is:

N, -Pr(N(t,t+6)=1)= N, -Ade™N

=N, A%e‘A%

@ [AN 51 s

S 7TR2 N

= o(N), (C.2)

where the inequality (a) is due 6 < N2 (“1%2) whereR is the transmission range of SUs.

Proof for C3 Let W (¢) denote the number of source nodes that make a transition at
time slott. The number of links that make a transition is bounded by theber of source
nodes, henc® ¥ (t)=N,,.

E[WN(t)*] = N} < N? N?R2 = N?¢(N)2. (C.3)

Proof for C5 Given the occupancy measlig(t) at time slot, the drift can be obtained

directly from Eg. (7.12). Specifically, given that.(t) =m, then the drift is given as:
E[N.(t+1) = N(t)| Ne(t) = m] = NAP. —m A,

which is obviously a smooth function g%f
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