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CHAPTER IV

Mass origin and transport in thermal plumes

4.1 Introduction

The evolution of Earth’s mantle and the distribution of masses within in it are

still poorly constrained. Since the formation of Earth from the solar nebula some 4.5

Gyr ago [2], the principal planetary chemical reservoirs, of which the mantle is the

largest, have been continually undergoing change. Some evolutionary aspects such

as continental erosion, subduction of oceanic plates, or the ongoing outgassing of the

mantle involve mass transfer between existing terrestrial reservoirs that together can

be envisioned as forming somewhat of a closed system. However, Earth’s history has

undoubtedly been punctuated by extra-terrestrial exchanges where mass has been

gained [25, 49] and continues to be lost [47]. The end result for mantle geodynamics

is a complex geochemical picture that is superposed and dependent upon the equally

intricate fluid dynamics of mantle convection.

Systematic comparisons of isotopic ratios for noble gasses and other elements

(primarily Nd, Pb, and Sr) suggest that at least five distinct geochemical reservoirs

are needed to explain the available observations from ocean-island basalts (OIB) and

mid-ocean ridge basalts (MORB) with some of these reservoirs remaining isolated

from substantial intermixing for 1-3 Gyr [80, 33, 35]. Preservation of these different

compositional domains has at times been used to argue for layered mantle convection.
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In this regime, the upper mantle above the 660 km phase change is allocated to

production and recycling of oceanic crust, while the lower mantle evolves separately,

is enriched in primitive isotopes (e.g., 3He), and serves as the primary source for

OIB. Geophysical considerations, however, suggest such a simplistic view may be

unrepresentative of actual mantle dynamics.

Seismic tomography models clearly demonstrate structures associated with down-

welling oceanic slabs penetrating the 660 km phase change [70, 26, 75], although

some possibly weaker slabs may be deflected [75, 23]. Similarly, low seismic velocity

anomalies beneath some ocean island hotspots have been detected indicating that

lower mantle plumes may indeed be the source for these hotspots [51, 50]. In both

cases, seismic tomography appears to be capturing evidence for mass transport be-

tween the upper and lower mantle.

Similarly, mantle convection numerical models incorporating phase changes and

representative estimates of mantle properties also support large scale mass transport

between the upper and lower mantle [79, 72, 9]. Some models do suggest that weaker

downwelling slabs will temporarily accumulate at the 660 km interface until sufficient

negative buoyancy has accumulated [65, 66], but mass exchange is not eliminated

in these models. Furthermore, such predictions seem to be in line with the seismic

tomography observations mentioned earlier of presumably weak slabs deflecting at

the 660 km phase change [75, 23].

If full mantle convection does indeed occur, then the notion of the entire lower

mantle being an isolated, pristine reservoir becomes untenable. Instead the geochemi-

cal observations must be accommodated by some other distribution of heterogeneities

that satisfies two constraints. First, the arrangement must permit certain reservoirs

to evolve in isolation long enough to produce the characteristic isotopic signatures of

some OIB. However, the heterogeneities must also be situated to permit sampling by

the mantle flows which ultimately produce OIB.
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Several alternative proposals for the location and morphology of mantle hetero-

geneities have recently been developed, and each is typically structured around: a

reservoir for the production of MORB, a preserved pristine component, and domains

derived from the recycling of oceanic and continental crust and possibly continental

lithosphere. Tackley [64] provides a review of some of the more popular schemes.

The unifying assumption is that some OIB are generated from plumes originating in

one or more of the reservoirs. As the plume traverses the mantle, it then proceeds

to interact with additional reservoirs to produce the surface isotopic signature of a

particular hotspot.

Provided deep origin mantle plumes are responsible for some hotspots, important

constraints on the size and location of potential mantle reservoirs can be obtained from

surface geochemical observations coupled with additional details regarding plume

mass transport. But if we are to fully leverage the fluid dynamics of mantle plumes

as a predictive means of constraining the nature of mantle heterogeneities, it is not

sufficient to simply know that a region of the mantle is part of the plume. We also

must have a detailed understanding of the precise means by which various mantle

domains interact with the plume and eventually become part of it. As previously

noted, heterogeneities must be located sufficiently close to the plume to be sampled

by it. Consequently, the efficiency by which a plume samples its surroundings limits

how far away isotopic reservoirs can be positioned relative to the plume. Given that

some regions within a plume will undergo stronger stretching than others, additional

constraints on heterogeneity may be inferred. Namely, the various pockets of mantle

material must be positioned such that the kinematics of the plume flow do not erase

their distinct signatures by stretching and subsequent chemical diffusion. The spatial

arrangement of surface observables, like the bilateral asymmetry found at Hawaii [1],

may also provide clues regarding the location of mantle heterogeneities. A growing

body of work from the Earth sciences community has been devoted to capitalizing on
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these very concepts, and we will introduce relevant studies in the ensuing discussion.

In the remainder of the text, we augment our current understanding of mass

transport in thermal plumes through an analysis of experimental observations of ax-

isymmetric, laminar starting plumes in a fluid with temperature-dependent viscosity.

Earth-like conditions are expected to produce plumes with complexities that far sur-

pass those of axisymmetric laminar plumes [12, 19, 41, 42, 44, 56]. Nevertheless, these

comparatively simple flows capture many of essential mechanisms by which a laminar

buoyant plume operates, and there are still few published experimental datasets avail-

able for axisymmetric plumes generated with a localized heat source in fluids having

temperature-dependent viscosity [11, 13, 73]. A brief overview of our experimental

technique and outline of the remaining discussion are presented in Section 4.2.

4.2 Data sources and outline of discussion

In the following analysis of thermal plume mass transport, we will utilize data

from both experiments and numerical models. The availability of a high-fidelity

numerical model has permitted a more thorough understanding of the structures that

govern plume mass transport than would have been possible via our experimental

data alone. Noise is an unavoidable aspect of experimental datasets, and it is not

always immediately clear when behavior inferred from experimental data represents a

real characteristic of the flow or is simply a spurious manifestation of noise. Of course

numerical models are certainly not immune to data quality issues, but provided the

underlying computational technique is stable and the physical scenario simulated

is devoid of discontinuities in flow variables [68], a numerical model can produce

incredibly smooth data. By simultaneously conducting an analysis using numerically

and experimentally generated data, great insight regarding which flow regions or

phenomena are sensitive to experimental noise can be ascertained.

A full description of our experimental setup can be found in Chapter II. Briefly,
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laminar plumes are generated in an acrylic, cubic tank having an inner dimension of

26.5 cm per side (ref. Figure 4.1). The tank containing the working fluid is sealed

and surrounded by a water bath to provide a well-controlled initial temperature of

25.2 ± 0.1 ◦C. The heat source is a 2 cm diameter heater located in the center of the

tank bottom and flush with the surface. Plumes are created under two operating

regimes with the heater operating at either constant power or constant temperature.

In the constant power cases, the heater power is fixed, and its temperature is found

to increase slowly over time as dictated by the flow dynamics. Actual power delivered

to the fluid in the constant power cases, monitored with a thin-film heat flux gauge

(Omega HFS-3) cemented to the heater, is always less than the total heater power

because of parasitic losses to the tank structure. For the constant temperature cases,

the heater power is digitally controlled and allowed to fluctuate such that the heater

temperature ramps up to the desired steady state surface temperature in 90 s or less.1

Once the constant temperature set point is reached, the heater surface temperature

is maintained to ±0.1 ◦C.

In all experiments, Liquidose 436 corn syrup is utilized. The syrup is seeded

with two types of neutrally buoyant passive tracers – a white powdered pigment

and thermochromic liquid crystals that preferentially scatter light of a particular

wavelength based on the temperature of the liquid crystals. The encapsulated liquid

crystals utilized, Hallcrest NSL33R25C15W100, are active in the visible spectrum for

temperatures spanning 25 ! T ! 27 ◦C. Properties of the syrup are provided in Table

4.1, and a summary of experimental operating conditions can be found in Table 4.2.

Following heater activation, the 3D flow is imaged at discrete time intervals using

the stereoscopic PIV (SPIV) system described in Chapter II. The raw SPIV images

captured during each experiment are then processed to extract the time-dependent

velocity field and fluid temperature on a uniform (∆x, ∆y, ∆z) = (2.8, 2.8, 5) mm
1The heat flux gauge was also utilized in these experiments, however the high heat flux during

the initial temperature ramp up caused the flux sensor to fail.
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Figure 4.1:
Experimental setup. The cubic inner tank (inner dimension of 26.5 mm
per side) contains the corn syrup, and the outer tank provides the water
bath. The heater is located in the center of the inner tank bottom. The
volume of fluid analyzed via SPIV is shown in gray.

Property Value or formulation Units
Density at 25 ◦C (ρ) 1441 kg m−3

Thermal expansion coefficient (α) 3.1× 10−4 K−1

Dynamic viscosity (µ) µ = 1080e−0.156T+6.25×10−4T 2
Pa s

Specific heat capacity (cp) 2280 J kg−1 ◦C−1

Thermal conductivity (k) 0.34 W m−1 ◦C−1

Table 4.1:
Corn syrup fluid properties. The thermal expansion coefficient and tem-
perature dependence of viscosity were measured in the laboratory. Specific
heat capacity and thermal conductivity values were provided by the man-
ufacturer (LSI Specialty Products).
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Heater
Case Power [W] Flux power [W] Temperature [◦C]
N1 0.62 0.44 -
N2 0.96 0.72 -
N3 - - 50
N4 - - 60
N5 - - 70
N6 - - 80

Table 4.2:
Heater operating conditions. Flux power values represent the steady state
power delivered directly to the syrup as measured with a heat flux gauge
affixed to the heater. These values are lower than the total heater power
due to parasitic heat losses to the acrylic tank.

grid for a 167× 217× 260 mm section of the flow domain as illustrated in Figure 4.1.

At least 48 hours are allowed between runs for the syrup to re-equilibrate with the

bath temperature.

In terms of numerical models, we have utilized two: one simulating case N6 in

Table 4.2 and the other simulating an injection experiment similar to that of Griffiths

and Campbell [30]. Both models are constructed in the finite element code Fluid-

ity [5]2 using adaptive mesh refinement, no slip boundaries, and simplified thermal

boundary conditions to approximate the complicated tank geometry of the labora-

tory. In particular, the lower tank surface is modeled with an adiabatic boundary

condition, and all other sides of the fluid domain are modeled as isothermal, 25.2 ◦C

surfaces. The fluid dimensions for both simulations are the same as for the laboratory,

a cube of 26.5 cm per side.

The heat source in the numerical model of case N6 is driven using a temperature

versus time trace obtained from the N6 experiment and fluid properties provided in

Table 4.1. As will be shown below, the model matches the experimentally observed

characteristics of case N6 quite well, however it is not a perfect replication of the

laboratory data. The discrepancies not associated with experimental uncertainty in
2The numerical computations were courtesy of Rhodri Davies, Department of Earth Science and

Engineering, Imperial College London.
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the velocity or temperature data are primarily a consequence of two factors. First,

the slightly different thermal boundary conditions used in the model have an impact

on heat transfer to and from the syrup around the heater. Furthermore, the viscosity

of our syrup was found to vary by ∼ 10% between batches and during experiments.

This particular model will be used extensively in the ensuing discussion, and results

obtained from it will often be included along side those extracted from the laboratory

experiments. However, in no case do we use the numerical model data point when

constructing scalings (e.g., Eq. 4.28) as a function of the parameter space explored

by the experiments of Table 4.2.

The second numerical model simulates the injection of 80 ◦C syrup through a 2

cm diameter inlet centered in the tank bottom. The hot syrup is injected at 0.3 cm3/s

into ambient syrup initially at a temperature of 25.2 ◦C. The syrup properties utilized

are those provided in Table 4.1. Boundary conditions are the same as those discussed

previously with two modifications concerning the tank top. First, the outer 1 cm of

the tank top permits outflow to compensate for the volume of injected syrup. Note

that except for the outflow zone, the tank top is modeled as a no-slip boundary. The

second boundary condition modification allows the temperature of the tank top to

vary during the course of the plume’s evolution.

The remainder of the text is structured to investigate two aspects of plume mass

transport. First, in Section 4.3, we employ Lagrangian coherent structures (LCS) and

elements of dynamical systems theory to robustly locate and characterize the critical

features that organize mass transport within the starting plume. Unfortunately, com-

puting finite-time Lyapunov exponents to extract LCS is a computationally expensive

procedure. Hence it is quite advantageous to leverage the output of the underlying

methods as much as possible. To this end, we develop a simple metric in Section 4.4

based on principal stretch factors to describe the geometric dimensionality individual

fluid elements will assume as a consequence of the flow. Finally, some concluding
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Symbol Description Units
α Thermal expansion coefficient ◦C−1

κ Thermal diffusivity m2 s−1

µ Dynamic viscosity Pa s
ν Kinematic viscosity m2s−1

ρ Density kg m−3

cp Specific heat capacity J kg−1 K−1

d Depth of fluid layer m
F Flow map m
g Gravitational acceleration m s−2

k Thermal conductivity W m−1 K−1

M Right Cauchy-Green deformation tensor -
Q Heater power W
t Elapsed time from heater activation s
τ Integration time s
T Temperature ◦C
∆T = Th − Tc Maximum temperature contrast ◦C
Pr = ν/κ Prandtl number -
Ra = αgQd2/κ2µccp Rayleigh number -

Subscripts
c Ambient
h Heater

Table 4.3: Common notation.

remarks are provided in Section 4.5. Table 4.3 summarizes common notation used

throughout the text.

4.3 Lagrangian coherent structures of mantle plumes

Our discussion of LCS is subdivided into several discrete units. In Section 4.3.1,

we develop the mathematics that will be utilized to compute the finite-time Lyapunov

exponents and provide a conceptual overview of why Lagrangian coherent structures,

or the underlying material surfaces, are such powerful tools for the analysis of mass

transport. We then proceed in Section 4.3.2 to extract and characterize the relevant

LCS for thermal plumes of the type we have studied experimentally. Thermal plumes

have been investigated by numerous authors using a variety of techniques, so we
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provide an analysis of how the important plume LCS are related to several of these

different flow visualization methods in Section 4.3.3. After investigating in Section

4.3.4 how LCS can be utilized to categorize flows operating in differing regimes and

constrain the possible paths for mass entrainment, we finalize our LCS discussion

with a detailed analysis of plume rise height and head shape (Section 4.3.5).

4.3.1 Development

Demarcating a plume from the ambient is a definitional exercise rooted in the

interests of the user. The petrologist or geochemist is ultimately concerned with

the ability of a plume to undergo partial melting. Consequently, these investigators

may identify a plume as that portion of a mantle upwelling with sufficient potential

temperature to generate a desired volume of magma. All other mantle material in

this scenario might then be designated as ambient.

The problem with such schemes from a purely fluid dynamics perspective is the

ambiguity associated with the definition. That is, the inferred location of the exact

same plume can be made to vary from one investigator to the next simply by changing

the temperature threshold used. Clearly a completely unambiguous definition of a

plume would be welcome, but such notions are quite difficult to realize. Different

needs simply demand different classification schemes. Nevertheless, our work with

Lagrangian coherent structures (LCS) has indicated these material surfaces do provide

a relatively robust means of identifying important parts of a plume. In particular,

these structures form the skeleton around which the rest of the flow is built, and they

provide a great deal of insight into the pathways by which the geochemical signature

of various mantle reservoirs can become imprinted on the upwelling. In this section,

we develop the mathematics behind the LCS and discuss methods for computing these

structures plus the underlying material surfaces they represent.

For every fluid flow, individual fluid elements are advected along trajectories under
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the influence of the velocity field. Given a velocity field, we can construct a system

of differential equations that governs the location x = x(t) of each fluid element

ẋ = f(x, t), (4.1)

where ẋ = dx/dt, and f(x, t) represents the time varying velocity field. The path

each fluid element takes under the influence of the velocity field is then a solution

to Eq. 4.1, and as mandated by the uniqueness of solution theorem, trajectories in

x, t-space cannot intersect [34].

It turns out that many velocity fields admit special solutions and sets of solutions

that convey a great deal of information about the way in which all fluid elements can

move. An instructive example is the stagnation point created by two impinging jets

as illustrated in Figure 4.2 and described by the linear system

ẋ = ax

ẏ = −ay, (4.2)

where the constant a is the strain rate. The general solution to the system is provided

by

x(t) = x0v1e
at + y0v2e

−at, (4.3)

with the eigenvectors v1 = (1, 0) and v2 = (0, 1) aligning with two special material

lines – the unstable and stable manifolds of the stagnation point, respectively [76].

Neglecting chemical diffusion, the unstable manifold separates fluid originating from

two jets, and an instantaneously dyed volume of fluid surrounding the stagnation

point would stretch out along the manifold as the flow evolves in forward time. The

stable manifold, by comparison, partitions each individual jet into fluid which flows to

the right or to the left. If the flow is run in backward time, then an instantaneously
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Figure 4.2: Stagnation point flow.

dyed fluid parcel will stretch out along the stable manifold. The important point

in this simple example is that knowing the location of the two manifolds permits

the entire flow field to be qualitatively partitioned into four quadrants with distinct

behavior. Furthermore, these special material lines (i.e., the manifolds) are observed

to have a profound impact on the time evolution of fluid elements in their vicinity.

Indeed, for the linear system of Eq. 4.2, the equation of motion (ref. Eq. 4.3) for

all fluid elements anywhere in the flow field can be constructed from superposing the

motion of just those elements comprising the manifolds.

For more complex velocity fields where the governing equations are non-linear,

the special material lines also become more complicated. In such circumstances the

manifolds become curves (or perhaps surfaces in 3D), and generally speaking the

path taken by an arbitrary fluid element can no longer be represented as a linear

combination of solutions along the manifolds. But our inability to construct a general

closed form solution for the arbitrary fluid element’s motion in no way negates the

continued influence certain material lines have on the flow, which can be particularly

strong for those elements in close proximity to such a structure.3 The principal
3A more detailed look at the influence special material lines and surfaces can have on mass

transport is provided in Appendix A.
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question we now wish to consider is how the location of these material lines can be

estimated. The key to the ensuing development is the recognition that fluid elements

initially straddling the stable or unstable manifold in Figure 4.2 separate strongly as

the flow evolves in forward or backward time, respectively.

Consider an arbitrary velocity field given by Eq. 4.1, and let F (x0, t) represent

a function that generates valid trajectories based on initial conditions, x0. That is,

x(t) = F (x0, t) and x0 = F (x0, 0). The function F (x0, t) is known as the flow

map or time-t map [3] and is simply the general solution of Eq. 4.1 evaluated at the

arbitrary initial conditions x0. Using the flow map F , a trajectory xb that is initially

close to another trajectory xa can then be written as

xb(t) = F (xb(0), t) = F (xa(0), t) + ∇0F |xa(0)δx0 (4.4)

where we have linearized F about xa(0). Note that δx0 = xb(0) − xa(0). Fur-

thermore, the subscript 0 on the gradient operator is merely used to emphasize that

the linearization is with respect to the dependence of F on initial conditions. Ne-

glecting the higher order terms, setting δx(t) = xb(t) − xa(t), and recognizing that

xa(t) = F (xa(0), t), we then have

δx(t) = ∇0F |xa(0)δx0. (4.5)

Let us now focus on how nearby trajectories move apart and not how their relative

orientation varies with time. Using Eq. 4.5, we can compute the change in length of

δx as

ζ(t) =
‖δx(t)‖
‖δx0‖

=

√
δxT

0 (∇0F )T ∇0F δx0

‖δx0‖
=

√
δxT

0 Mδx0

‖δx0‖
(4.6)
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where the superscript T denotes the standard transpose and

M = M(t) ≡ (∇0F )T ∇0F . (4.7)

Let {λi = λi(t)}i∈(1,n) be the n eigenvalues of M arranged in order of decreasing

magnitude, and {vi = vi(t)}i∈(1,n) the corresponding normalized eigenvectors. Since

M is a symmetric matrix, its eigenvectors are orthogonal. As a result, ζ(t) will be a

maximum when δx0 is aligned with v1 and similarly a minimum when aligned with

vn. Let δx̄0 be an initial separation vector chosen parallel to an eigenvector vi of M ,

then for each eigendirection we have

ζi(t) =

√
δx̄T

0 Mδx̄0

‖δx̄0‖
=

√
δx̄T

0 λiδx̄0

‖δx̄0‖
=

√
λi, i = 1, . . . , n. (4.8)

Provided the dynamical system is Lipschitz continuous [34]4, ζ(t) can vary at most

exponentially. For each eigendirection of M , we therefore write

ζi(t) =
√

λi = eKit, (4.9)

where the constant Ki is chosen to produce the correct observed separation at time t

as though the distance between trajectories did indeed evolve exponentially. Solving

for Ki then provides

Ki =
1

2t
ln λi, (4.10)

4On some open subset U of Rn, the function f is Lipschitz continuous provided a constant K
exists such that

|f(xa)− f(xb)| ≤ K |xa − xb|

is valid for all xa and xb in U . The constant K is known as the Lipschitz constant and can be
thought of in the 1D case as a sort of limiting slope that constrains how rapidly f can vary as a
function of x.
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which in the long-time limit yields

σi = lim
t→∞

Ki = lim
t→∞

1

2t
ln λi, i = 1, . . . , n (4.11)

Since the linearization of Eq. 4.5 was about xa(0), the σi are known as the Lyapunov

exponents of the trajectory xa, and they provide a measure of the rate at which

other nearby trajectories are attracted to or repelled from xa along the n orthogonal

eigenvectors, vi, of M .

Non-zero Lyapunov exponents as defined in Eq. 4.11 signify the exponential sep-

aration of nearby trajectories as t → ±∞ [76]. Datasets of experimentally observed

fluid flows are unfortunately not defined for an infinite amount of time. Therefore

we drop the inifinite time limit in Eq. 4.11 and further restrict our attention to

the largest eigenvalue of M . The finite-time Lyapunov exponent (FTLE) σf is then

defined to be

σf =
1

2 |τ | ln λmax, (4.12)

where τ is the finite time interval over which the rate of separation is computed [59].

Recall that our goal in this development has been to estimate the location of special

material lines, such as the stable and unstable manifolds of the stagnation point flow

from Eq. 4.2, which structurally organize the flow. All fluid elements governed by

the linear system of Eq. 4.2 have the exact same set of Lyapunov exponents. As

noted earlier, it is as though the behavior of elements constituting the manifolds has

been imprinted on every fluid element in the flow. Because all fluid elements have the

same set of Lyapunov exponents, no insight regarding the location of the manifolds

can be obtained from the Lyapunov exponents in this case. Nevertheless, the image

of Figure 4.2 still provides a convenient way of visualizing how Lyapunov exponents

can be used to locate the material lines we seek in non-linear flows.

For the more general non-linear system, the strength of the material line’s influence
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typically falls off with increasing distance from the structure. That is, fluid elements

sufficiently far away from the material line may not be appreciably impacted by it.

Reflect on Figure 4.2 for a moment and assume that the illustration is of a non-linear

system with similar characteristics. In any quadrant, we can conceptually imagine

that nearby trajectories would move similarly and may not separate much if at all.

Notice, however, that trajectories on either side of the y-axis will always separate

strongly (i.e., stretch) in forward time and therefore likely produce a ridge in the

FTLE field. Provided the mass flux across an FTLE ridge is sufficiently small [59],

the ridge is a proxy for a material line which clearly has an appreciable effect on the

behavior of fluid elements in its vicinity. Ridges of elevated values in the forward-

time FTLE field (τ > 0) having negligible mass flux across them are then identified

as forward-time Lagrangian coherent structures (LCS) [31, 59]. Similarly, material

ridges in the backward-time FTLE field (τ < 0) are backward-time LCS. These LCS

approximately locate the special material lines we seek.

To compute the FTLE field we employ the technique of Shadden et al. [59] with

fourth order Runge-Kutta time-stepping [22] and linear interpolation in both space

and time.5 Briefly, a grid of passive tracers is initialized at some particular time

and then allowed to advect with the velocity field for a chosen time interval τ . By

advecting the tracers, we have computed the flow map F in Eq. 4.6, and the FTLE

can be determined from the above development. Note that as the integration time τ

is increased, the length of the ridge visible in the FTLE field also typically increases

[29].

When the LCS must be precisely determined and represented as a curve instead

of simply a region of elevated values in the scalar FTLE field, then some means of

extracting the ridge must be employed. One such technique is to release passive

tracers near the ridge and allow them to climb by gradient ascent to the locally
5This procedure is used to compute all FTLE fields in the present text.
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highest FTLE value [48]. In our experience, this particular approach can sometimes

run into issues for a couple of reasons. The FTLE field often has many ridges, some

of which may not correspond to material lines. But, even when a ridge does represent

a material line, the ridge is not always continuous along that line [8].

An alternative approach we have found quite robust is to approximately locate

various structures with LCS first, and then where possible grow an estimate of the

underlying material line from the LCS [8]. In practice, the desired material surface

is grown by seeding the LCS with passive tracers and then numerically advecting

the tracers in forward or backward time using the velocity field. The technique

leverages the attraction fluid elements have to the underlying material line an LCS

approximately locates [7, 60]. In forward time, fluid is generally attracted to the

material line of a backward-time LCS, and vice versa.

Before proceeding to analyze our experimental data, it should be noted that use of

the FTLE field does not need to be limited solely to the extraction of LCS. By defini-

tion, the Lyapunov exponents provide a measure of the average rate at which nearby

trajectories move apart. Consequently, areas of elevated FTLE values correspond to

regions of high fluid stretching.

The utility of the FTLE field has been recognized in the geodynamics community

for some time, both as a means of quantifying stretching and also constraining the

mechanisms by which mass is transported [18, 20, 21, 40, 58]. The application of

these concepts to the thermal plumes considered in the present text has been heavily

influenced by the previous works of Farnetani et al. [17] and that of Lin and van Keken

[45]. In what follows, we will utilize these tools to investigate the mass transport

behavior of simple axisymmetric plumes and to characterize the evolution of the

plume head. We will return to the broader topic of stretching in Section 4.4.
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4.3.2 Thermal plume LCS

Figure 4.3 presents a comparison of velocity, temperature, and FTLE fields at

t = 1050 s following heater activation for case N6 of Table 4.2 and the numerical

model described above. Although the specific details for each plume vary as a function

of the parameters given in Table 4.2, the characteristics depicted in Figure 4.3 are

typical of all six experimental cases. We have included the numerical model of case

N6 in the discussion to help the reader visualize the impact experimental noise and

other errors have on the FTLE field and extracted LCS. In our experience, LCS are

surprisingly robust to what can be large errors provided the errors are temporally or

spatially limited [31].

Two discrepancies between the numerical model and our experimental case N6

are clearly apparent in Figure 4.3. First, note that the temperature contour shown

for the experimental data in Figures 4.3 (a-c) does not extend all the way to the

tank bottom (y = 0). This spurious artifact is caused by light which reflects off the

tank bottom and washes out the colors generated by the temperature sensitive liquid

crystals. The issue has no impact on the LCS, but clearly limits the capacity to

determine temperatures within the thermal boundary layer.

Also apparent from a comparison of Figures 4.3 (a) and (d) is the absence of a high

velocity zone immediately above the heater in the experimental data of Figure 4.3

(a). Manual inspection of our raw PIV images indicates that the maximum velocities

shown in Figure 4.3 (d) are representative of actual particle displacements from the

experiment. The lack of a high velocity zone in our N6 case is a consequence of our PIV

scheme’s difficulty handling the high velocity gradients and small spatial scale that

characterize the region (ref. Chapters II and III). The spatial extent of the affected

zone represents < 1% of the total fluid volume analyzed by our SPIV system, and the

magnitude of the velocity discrepancy decreases as the width of the high velocity core

increases (i.e., as the velocity gradient decreases). Cases N1 to N3 have no discernible
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Figure 4.3:
Cross-section of velocity, temperature, and FTLE fields t = 1050 s follow-
ing heater activation for case N6 (a-c) and the corresponding numerical
model (d-f). The 25.3 ◦C temperature contour is shown in all images as a
black line for reference. The heater is centered at the origin. (a,d) Pseudo-
color background is the velocity magnitude. Velocity vectors are shown as
arrows. (b,e) Backward-time FTLE field with integration time τ = −1050
s. (c,f) Forward-time FTLE field with integration time τ = 910 s.

difference between manually measured maximum velocities and those extracted using

our PIV processing scheme. The PIV-extracted maximum velocities for cases N4, N5,

and N6 are 6%, 20%, and 40% lower than the corresponding velocities determined

manually. The under prediction of peak conduit velocities does have a limited impact

on the LCS which will be addressed later.

In discussing Lagrangian coherent structures, let us first focus on the forward-

time FTLE field since its utility is rather limited for the experimental plumes under

consideration. At the base of the diffuse, wing-like zone, the forward-time FTLE field

of Figures 4.3(c, f) exhibits a reasonably well-defined ridge tangent to the tank bot-

tom, however the ridge is not a material surface. Once the starting plume head has
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traversed a region of the flow, the temperature and velocity distributions within the

trailing conduit quickly stabilize [13]. The same is true for the fluid which wets the

tank bottom. After the velocity distribution within the bottom-wetting layer stabi-

lizes, the location of the afore mentioned FTLE ridge is a function of the integration

time τ alone and moves away from the plume centerline as the integration time τ

increases. As mass within this layer is radially advected toward the heater, it crosses

the FTLE ridge. Therefore, the ridge is not a material surface. When a fluid element

in bottom-wetting layer approaches the heater, it begins to radially elongate toward

the heater. Eventually the portion of the element closest to the centerline upwells

as part of the plume’s conduit, but some of the element is temporarily left behind.

The ridge simply marks the boundary between the portion of the element entrained

into the conduit and the fraction remaining in the bottom-wetting layer. For a given

element, this splitting effect cannot occur unless the element is sufficiently close to

the centerline. Consequently, when the FTLE integration time τ is increased, fluid

elements initially located farther away from the centerline will have ample time to

advect toward it and stretch accordingly.

The diffuse region of elevated values at the apex of the temperature contour in

Figures 4.3(c, f) denotes the only important material line elucidated by the forward-

time FTLE field. Although this zone is not characterized by a well-defined ridge,

it nonetheless marks the upper portion of the plume centerline which intersects a

backward-time LCS atop the plume leading edge (discussed below). Two factors are

responsible for the lack of a well-defined FTLE ridge corresponding to this material

surface. First, as discussed below and in Section 4.4, fluid elements interacting with

the plume head get compressed parallel to the direction of the plume’s ascent and

stretched into thin sheets along the head leading edge LCS. Given the 3D geometry,

the volume of an incompressible fluid element compressed by a factor of 1/s in one

dimension can be preserved by growth of
√

s along both of the two perpendicular
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dimensions. In other words, stretching perpendicular to the plume centerline can be

substantially weaker than that parallel to the centerline. Second, the plume head has

a finite diameter so the ultimate separation distance between fluid elements initially

straddling the plume centerline is limited. Both of these factors serve to reduce the

magnitude of the forward-time FTLE field ridge overlying the plume centerline.

In turning to the backward-time FTLE, we observe that two distinct ridges are

clearly visible in Figures 4.3(b, e). The vertical structure is connected to the center

of the heater where flow separation occurs and approximates the lower portion of

the plume centerline. It is a continuation of the forward-time LCS discussed above,

and is illuminated in the backward time FTLE field simply because tracers separate

strongly as they approach the tank bottom when the flow is run in reverse. The

structure is a material line and an important LCS. The FTLE values for the plume

centerline are significantly higher in backward time than was observed in the forward-

time FTLE field, because the width of the tank bottom is considerably larger than the

plume head. That is, fluid elements initially straddling the centerline can continue to

separate strongly for a much longer period of time when the flow is run in reverse. The

structure’s significant width and ill-defined ridge in Figures 4.3(b, e) are primarily due

to insufficient spatial resolution in the velocity field near the heater, although SPIV

measurement uncertainty is also a contributor (ref. Chapter II for error estimates).

As a consequence of the limited spatial resolution, some passive tracers near the plume

centerline advect beyond the computational domain, which corrupts the FTLE values

for the affected tracers.

The second ridge visible in Figures 4.3(b, e) is the structure shaped like a mush-

room cap and located in the middle of the image. The underlying material surface is

actually a 3D structure as illustrated in Figure 4.4. Physically, this LCS serves as the

kinematic boundary between upwelling and ambient material. In order for overlying

mass to be entrained by the plume head, it must stretch around this material surface.
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Figure 4.4:
Three-dimensional backward-time LCS at the plume leading edge 1360
s following heater activation for case N6. Corresponding cross-section of
the backward-time FTLE field (integration time τ = −1360 s) is presented
for reference.

Consequently, it represents the leading edge of the starting plume and is the most

important LCS for identifying the vertical position of the plume within the flow field.

This particular structure, which we will refer to as the leading edge LCS, will be the

focus of much of the remaining discussion.

The leading edge LCS strongly attracts nearby fluid elements which renders it

responsible for the shape elements assume as they are stretched out along the LCS

during the plume’s ascent. A qualitative demonstration of the manner in which

fluid elements interact with the structure is provided in Figure 4.5. Note that the

leading edge LCS completely dominates the evolution of the tracers shown with all

but the outermost green circles getting plastered onto the LCS as the flow progresses.

The overlying blue and green circles have an initial diameter of 3.3 mm, but 1170 s
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Figure 4.5:
Influence of plume leading edge LCS on nearby fluid elements. Passive
tracers initially configured as shown in (a) at t = 740 s are advected
using the velocity field for case N6. The subsequent state of the tracers is
presented for integration times of (b) τ = 310 s, (c) τ = 620 s, (d) τ = 930
s, (e) τ = 1170 s. Note that the initial configuration of the tracers is
repeated in the inset for clarity. The leading edge LCS is depicted in gray
for each snapshot.

following their release (ref. Figure 4.5(e)) the centermost green circles are compressed

by a factor of ∼ 40 normal to the LCS while the blue circles are compacted by a factor

of ∼ 10. Because the LCS is not uniformly attracting along its full length, the outer

green tracers wrap around the bottom of the LCS instead of spreading out along its

surface.

Whether nearby fluid elements are attracted, repelled, or predominantly sheared

along the structure can be investigated by way of the instantaneous strain rate tensor

[28, 67]. Let H(x, t) represent the Hessian tensor of the FTLE field σf (x, t) for some

location x and time t

H(x, t) = ∇2σf (x, t). (4.13)
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For a particular position xp on a ridge of the FTLE field, we take the unit normal

n̂(xp, t) to the ridge as the eigenvector of H(xp, t) having the most negative eigenvalue

[28]. The strain rate normal to the ridge ε̇n is then defined as the inner product

ε̇n(xp, t) = 〈n̂ (xp, t) , S (xp, t) n̂ (xp, t)〉 , (4.14)

where S(xp, t) is the instantaneous strain rate tensor evaluated at xp. The elements

of S are given by

si,j =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (4.15)

The component of the strain rate tangential to the ridge ε̇t then becomes

ε̇t(xp, t) =
[〈

n̂ (xp, t) , ST (xp, t) S (xp, t) n̂ (xp, t)
〉
− ε̇2

n

]1/2
. (4.16)

If ε̇n < 0 for a given location xp on an LCS, then nearby trajectories are instanta-

neously attracted to the ridge at xp. Similarly, trajectories close to a ridge will be

instantaneously repelled if ε̇n > 0. Fluid elements will be sheared across the ridge at

xp if ε̇n = 0 and ε̇t ,= 0, however in practice ε̇n will rarely equal zero due to numerical

errors. Therefore we categorize the instantaneous behavior of trajectories near a ridge

as being dominated by shear provided ε̇t > |ε̇n|.

Applying these criteria to the leading edge LCS of case N6 yields the characteriza-

tion shown in Figure 4.6. In producing Figure 4.6, the positions xp along the FTLE

ridge were obtained using material lines grown from the LCS, however the ridge can

also be extracted using a gradient climb technique [48, 54].

As indicated in Figure 4.6, the plume leading edge LCS is attracting over most

of its length except for the trailing portion of the structure where it curls upward.

This section of the LCS surrounds a nascent recirculation zone somewhat akin to a

developing version of the classic scrolls observed by Griffiths and Campbell [30]. The
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Figure 4.6:
Strain rate characterization of instantaneous fluid behavior in the vicinity
of the plume leading edge LCS from case N6. Fluid elements normal to
the LCS are instantaneously attracted (ε̇n < 0) at locations shown in
blue and repelled (ε̇n > 0) where red. Zones where fluid elements are
predominantly sheared (ε̇t > |ε̇n|) are depicted in green. The leading
edge LCS is shown at the same times as for Figure 4.5.
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loss of attraction near the curls is the reason why the outermost green tracers in Figure

4.5 rotate around the bottom of the LCS instead of getting stretched out along the

structure. These green tracers were launched above a section of the leading edge LCS

where the attractiveness is weak and further transitioning to cycling shear-dominated,

repulsive, and attractive behavior near the recirculation zone.

4.3.3 Relationship between the plume LCS and features observed with

other analysis techniques

Laminar thermal plumes have been studied by numerous authors in a wide variety

of fluids covering a broad range of operating regimes. Consequently, it is advantageous

to have some understanding of how the LCS relate to the different analysis techniques

that are frequently encountered in the literature. The following presentation will

hopefully enable readers to more readily compare plume attributes extracted using

LCS to those obtained by other means.

Given the thermal expansion coefficient for our syrup (ref. Table 4.1), variations in

fluid temperature affect the refractive index of the fluid [10]. Optical techniques can

then be constructed that are sensitive to such variation [13, 24]. One such method,

the schlieren, produces an image with intensity proportional to the gradient of density

(equivalently temperature) [24]. Apparent in Figure 4.7(a) is the collocation of the

leading edge LCS with the maximum temperature gradient in the plume head. Note

that along most of its length, the leading edge LCS is coincident with the ridge of

|∇T |. Consequently, the starting plume location determined using the leading edge

LCS corresponds to a bright or dark line (depending on the knife edge orientation)

of a schlieren image [24]. Furthermore, the schlieren and leading edge LCS yield

equivalent measures of the plume head diameter. The plume centerline lies between

the two vertical lines in a schlieren which correspond to the outer boundary of the

plume conduit.
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Figure 4.7:
Comparison of different means of locating the leading edge of a plume.
All images are generated using the numerical model (Fluidity) of case
N6. The material surface grown from the leading edge LCS is shown
in purple. Images (a) though (c) are presented at t = 2000 s following
heater activation, and contours of the depicted scalar field are shown in
white or black for reference. Note that the value of the scalar field for
images (b) and (c) has been clipped to the ranges shown for clarity. (a)
Magnitude of the temperature gradient. (b) Laplacian of temperature.
(c) Magnitude ∂ur/∂r. (d) Simulated release of two dyed fluid parcels
which are colored orange and red at t = 0 s. The orange dye is released
just above but does not wet the heater surface. The final configuration of
the dyed fluid at t = 2000 s is also shown, but using a different color. The
original orange maps to black at t = 2000 s, while the red line similarly
maps to the blue. Note that the purple material surface in the figure
overlies essentially identical sections of the fluid colored black and blue
at t = 2000 s. The two individual scenarios are repeated in the insets for
clarity.
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Shadowgraphs represent another common flow visualization technique sensitive to

density variation [24, 53]. Bright lines in a shadowgraph map to regions in the flow

where ∇2ρ < 0 (or ∇2T > 0 in Figure 4.7(b) given our positive α), and dark lines

map to zones where ∇2ρ > 0 (∇2T < 0). Inspection of Figure 4.7(b) indicates that

the apex of the leading edge LCS resides at what would be the transition between

bright and dark lines of a shadowgraph. Note that the plume head diameter can be

determined using either the bright or dark shadowgraph line on opposite sides of the

leading edge LCS. Consequently, unlike the schlieren technique, the plume head diam-

eter determined from a shadowgraph will in general differ from that measured using

the leading edge LCS. Nevertheless, an LCS-derived measurement of the head diam-

eter will be most similar to one determined using the dark shadowgraph ridge. The

plume centerlines extracted using LCS or shadowgraphs (dark line) are comparable.

Davaille et al. [13] recently introduced another method of analytically locating

the apex of the plume leading edge using the maximum of ∂ur/∂r (ref. Figure 4.7(c)),

where ur is the radial component of velocity in a cylindrical coordinate system. The

coordinate system is oriented such that its longitudinal axis is parallel to the plume

centerline, and the radial axis actually ends up being tangent to the leading edge

LCS. The maximum of ∂ur/∂r provides no information regarding the shape of the

plume head, its diameter, or the location of the plume centerline.

And finally, the use of dyes or other passive tracers to locate the plume during

an experiment is in essence a laboratory manifestation of the very methods employed

above to grow the leading edge material surface from the corresponding LCS. Provided

the dye is released sufficiently close to the starting plume, it will be attracted to and

drawn out along the leading edge material surface in identical fashion as occurs for

the numerical passive tracers used for growing. The simulated behavior of dye is

illustrated in Figure 4.7(d) which was computed using the same numerical advection

technique described previously. Although the figure demonstrates using dye to expose
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the plume leading edge material surface, the plume centerline can also be extracted.

In some cases, using LCS to locate a starting plume can provide certain advan-

tages not available from the above techniques. Both the schlieren and shadowgraph

methods, for example, produce optical images of the integrated density (or temper-

ature) distribution throughout the test cell. Employing either optical technique to

visualize a complex flow composed of several plumes can be quite difficult [53, 78].

Computing LCS, by comparison, permits investigators to isolate any particular region

of the flow field for further analysis. The metric ∂ur/∂r is capitalizing on the behavior

of fluid elements in the vicinity of the leading edge LCS. Consequently, the method is

somewhat limited to axisymmetric applications wherein the underlying leading edge

LCS is aligned with the coordinate system. For non-axisymmetric plumes, the char-

acter of ∂ur/∂r being a maximum where the plume centerline intersects the leading

edge LCS can only be preserved by constructing a local coordinate system based on a

priori known LCS geometry.6 The experimental use of dye and other types of passive

tracers also has limitations. Namely, the working fluid must typically be replaced

after each run, and only those plumes that originate from or interact with dyed fluid

can be visualized.

The method of locating starting plumes using LCS or material surfaces grown

from LCS is immune to many of the issues noted above, but the method does have its

own important limitations. First and foremost, computing LCS requires access to the

velocity field for numerical advection of passive tracers. While the velocity field is a

natural product of computational fluid dynamics simulations, some technique must be

employed to measure it in a laboratory setting. Furthermore, unlike shadowgraphs,
6To preserve the meaning of ∂ur/∂r, the axes of the local coordinate system must actually be

tangent to the invariant material surfaces which the LCS are approximately locating. For plumes
of the type under consideration, these material surfaces are known as stable and unstable manifolds
in the dynamical systems literature, and they originate from the distinguished trajectory which lies
at their intersection [36, 76]. The distinguished trajectory can be envisioned as a sort of moving
stagnation point where the instantaneous velocity is not zero, but fluid elements comprising the
manifolds asymptotically decay to the trajectory as t → ±∞.
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schlierens, or the ∂ur/∂r metric, all of which can provide valid information from a

single instantaneous snapshot, computing LCS or growing surfaces requires a time

history of the flow. Noise in this time-dependent velocity field can cumulatively per-

turb the paths of the numerical tracers and therefore contaminate the plume position

inferred from an LCS [31, 59] or a grown surface.

The need to numerically advect passive tracers through time has other implications

as well. To construct the backward-time LCS, for example, the flow history must

extend far enough in time to permit nearby passive tracers to separate sufficiently and

thereby produce elevated FTLE values [28, 29]. Our initially quiescent fluid system

undergoes a major transition when the heater is activated at t = 0, and no benefit

is realized by advecting passive tracers backward in time beyond the point of heater

activation. As a result, computing backward-time LCS for a plume as it organizes

and begins to upwell immediately following heater activation is generally impossible

since insufficient time has elapsed for adequate tracer separation. Of course, the very

young plume would be visible in a shadowgraph or schlieren even though it cannot

be reliably located using the FTLE field.

4.3.4 LCS Applications for Analysis of Plume Mass Transport

As we have seen so far, certain material surfaces located using LCS have a pro-

found effect on how fluid parcels in their vicinity behave. They can strongly attract

or repel nearby fluid elements stretching them in the process, and can also organize

the flow field into separate regions having very different behavior. In a sense, then,

these structures serve as a sort of framework around which the dynamics of a par-

ticular flow is built. The computation of the FTLE field and extraction of LCS as

ridges provide an investigative tool to identify which material lines and surfaces may

be organizing the flow and acting as barriers to transport. Two flows possessing a

considerably different arrangement of LCS would rightfully be expected to exhibit
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disparate behavior. In this manner, knowledge of the LCS permits a qualitative clas-

sification of a flow and illuminates certain key ways in which the flow may differ from

other members of the extended family.

To provide a concrete demonstration of these concepts, we consider the LCS from

our two numerical models of thermal plumes (ref. Section 4.2). The first model is of

our experimental case N6, and the second simulates a Griffiths and Campbell type

injection experiment [30]. In the following discussion, we will identify the numerical

model of the injection-type experiment as case G6 and use R6 to refer to the numerical

model of our experimental case N6. Both models simulate thermal plumes generated

in corn syrup having the properties provided in Table 4.1. The maximum syrup

temperature (80 ◦C) as well as the ambient syrup temperature (25.2 ◦C) are also

identical for the two models. The primary differences between these two cases are the

way in which buoyancy is created and the characteristic Rayleigh number achieved

(ref. Table 4.3).

In the model of our experimental case N6, fluid is warmed using a heater at

the base of the tank. The developing thermal boundary layer surrounding the heater

grows diffusively following heater activation and eventually becomes unstable thereby

producing the plume. Due to the time required for the thermal boundary layer to

develop (ref. Chapter V), gradients in temperature, density, and viscosity are all

continuous and somewhat broad at the time of liftoff and remain so during the plume’s

subsequent evolution. The steady state power delivered to the syrup in this case is

1.8 W which yields Ra = 5.3× 105.

In contrast, buoyancy in the second numerical model is injected directly into

the fluid. As the hot, uniform temperature fluid enters the tank, gradients in flow

properties surrounding the nozzle are strong. By the time these sharp gradients

diffuse, the injected material has had ample time to travel a significant distance.

Indeed, the rise velocity of the plume head from the injection model is roughly 10×
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larger than that associated with case R6. From the rate of injection, V̇ = 0.3 cm3/s,

the effective power can be computed as

Q = ρV̇ cp∆T = 54 W, (4.17)

giving Ra = 1.6 × 107. Hence, from a convective vigor standpoint, the G6 case is

∼ 30× more energetic than the plume created via the localized heat source.

Figure 4.8 presents a comparison of several flow field variables for the two numeri-

cal models. Notice that for all three variables shown, maximal values are constrained

to lie in relative close proximity of the heater for the plume of case R6. In comparison,

elevated values in the flow quantities presented for the injection case G6 persist for

a considerable distance up the plume centerline. The end result is that the plume

head in the injection model is substantially hotter, and the vorticity within the head

is ∼ 20× stronger than that of case R6.

The significantly elevated values of vorticity in the plume head associated with the

injection experiment leads to more efficient stirring whereby entrained mass continues

to stretch as it rolls up and forms a toroidal scroll [30, 71]. The scroll within the head

is clearly visible in the backward-time FTLE field presented in 4.9(c). In thermal

starting plumes resembling those of case R6, however, the bulk of mass entrained into

the head is transported with little or no additional stirring [17]. This characteristic is

manifest in the backward-time FTLE field of Figure 4.9(a) by the presence of a small

curl at the base of the LCS in lieu of a pronounced scroll.

Although the Lagrangian coherent structures of these two flows do not readily

provide insight into the mechanisms by which the injection plume is able to maintain

high velocities, temperatures, and vorticity in the plume head, the structures do

suggest the avenues by which the different plumes interact with the ambient and

entrain mass. The FTLE fields computed for both numerical models are presented in
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Figure 4.9. The pertinent LCS for the two cases are illustrated in Figure 4.10.

A cursory examination of Figures 4.9 and 4.10 reveals several differences in the

LCS of the two cases. The backward-time FTLE field of case G6 is more complicated

than that observed for the plume generated with a localized heat source. Nevertheless,

the backward-time FTLE field for the injection case should look somewhat familiar

in that a pronounced ridge is observed at the leading edge of the starting plume

in both cases. However, the backward-time FTLE field of case G6 also shows two

vertical ridges emanating from the corners of the nozzle at the base of the tank.

Together these three LCS, the leading edge LCS and two segments attached to the

nozzle, are pieces of a continuous material surface that surround the injected mass in

an analogous fashion to the marker chain of van Keken [71].7 Observe that no such

structure enveloping source material is present in the model for a plume generated

with a localized heat source (ref. Figure 4.10(a)).

The forward-time FTLE field for the two cases is also quite different. As discussed

in section 4.3.2, the only LCS present in the forward-time FTLE for case R6 is

the vertical segment of the plume centerline that intersects the leading edge LCS.

All the other elevated FTLE values observed in Figure 4.9(b) are not LCS, as they

do not correspond to material surfaces. Figure 4.9(d), however, demonstrates that

the injection plume has a significant additional forward-time FTLE ridge which is

not present for the R6 case. This particular ridge, shown as a dotted red line in

Figure 4.10(b), also originates from the corner of the injection nozzle and sits radially

just beyond the backward-time LCS which envelops the source material. What is

especially interesting about this additional forward-time ridge is the manner in which

it cradles the lower side of the plume head. Our testing indicates that mass flux

across the ridge is small for most of its existence, and hence it approximately locates

a section of an underlying material surface that is surprisingly effective at shielding
7The plume flows are three-dimensional. Consequently, the material surface under consideration

forms a curve in the plane of cross-section.
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Figure 4.9:
FTLE fields for the numerical models of starting plumes generated with a
localized heat source (a, b) and via injection of hot syrup (c, d). (a,b) Case
R6 backward and forward-time FTLE fields, respectively, at t = 1050
s following heater activation. (c,d). Case G6 backward and forward-
time FTLE fields, respectively, at t = 130 s following start of injection.
Integration times used to compute the FTLE fields (ref. Eq. 4.12) are
(a) τ = −1050 s, (b) τ = 910 s, (c) τ = −130 s, and (d) τ = 130 s. The
25.3 ◦C contour is shown in all figures as a solid black line.
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Figure 4.10:
Schematic of the Lagrangian coherent structures from numerical models
(a) R6 and (b) G6. The tank bottom is illustrated as a hatched volume in
both figures. The heater is shown cross-hatched in (a), and the injection
nozzle is depicted as a gap in the tank bottom in (b). LCS (or segments
of LCS) extracted from the forward-time FTLE field are shown in red,
while those extracted from the backward-time FTLE field are shown in
blue. Note that the outermost forward-time LCS in (b) has been dotted
for clarity. The dashed blue line in (b) connects three backward-time
LCS extracted from Figure 4.9(c) to form a material line surrounding
injected mass.
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the plume head in case G6 from entraining mass that lies beyond its perimeter.8 We

will refer to the ridge as the outermost LCS in what follows.

The shielding effect of the outermost LCS, is illustrated in the images of Figure

4.11(a-c), which have been constructed by numerically advecting passive tracers using

the velocity field. Observe that blue tracers and those non-blue tracers which lie

radially beyond the outermost LCS in Figure 4.11(a) are prevented from crossing the

outermost LCS (shown as a dotted black line in the figures) until the plume begins

to impact the upper surface of the tank (ref. Figures 4.11(b, c)). That is, not all of

the material which interacts with the plume head is entrained by the flow structure.

A fraction of the fluid (and a portion of the buoyancy created by the plume head) is

shed in the wake of the rising plume. Some of this mass flows between the leading

edge LCS and the outermost LCS and forms a temporary reservoir that is situated

below the head. The reservoir is shown seeded with green tracers surrounding the

head in Figure 4.11(a). This reservoir is eventually depleted as the plume head

entrains its contents. In the process of draining the reservoir, the two bounding LCS,

the outermost LCS and the LCS surrounding injected mass, asymptotically become

coincident along the length of the conduit. As illustrated in Figure 4.12, the fluid

within the reservoir originates from overlying mass that was shed by the plume head

during initial formation and shortly following liftoff.

Not all of the mass shed by the plume head ends up in the reservoir described

above. The shed mass that lies radially beyond the outer LCS is prevented from

entering the plume head for the duration of time in which the outer LCS acts as a

barrier. Although this shed mass remains colder and less stretched than that more

rapidly incorporated into the head scroll, it is nonetheless kept in close proximity to

the ascending head by the plume conduit.
8Due to the shear-dominated nature of the LCS, precisely growing this LCS is difficult. Results

from our crude techniques, not presented here, have confirmed that a material surface underlies the
LCS.
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Figure 4.11:
Shielding effect of the outermost LCS for the injection plume of case G6.
The upper series of plots show the evolution of passive tracers launched
at t = 100 s (a). The subsequent state of the tracers is presented at
(b) t = 250 and (c) t = 300 s. The lower series of images depict the
forward-time FTLE field at the same time as the figure immediately
above. The solid black lines in all plots represent the 25.7, 31, and 45
◦C temperature contours. The outermost LCS is illustrated in the plots
as a dotted black line. Note that the FTLE fields were computed using
an integration time of τ = 100 s.
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Figure 4.12:
Origin of mass within the reservoir bounded between the outermost LCS
and the LCS surrounding injected fluid. (a) Configuration of passive
tracers from Figure 4.11(a) at t = 100 s, repeated for reference. (b)
Tracer distribution at t = 0 s computed by advecting tracers in (a)
backward in time. The white pockets in (b) represent mass that has
already been entrained by the head at t = 100 s, whereas the green
tracers will be temporarily shed to fill the reservoir as shown in (a).
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Investigations regarding the motion of fluid elements normal to all ridges in the

forward and backward-time FTLE fields for the G6 case show an alternating attrac-

tion, repulsion, shear character similar to that discussed in relation to Figure 4.6.

Therefore, the structures are not uniformly hyperbolic but instead represent shear

surfaces [31, 48]. As such, the structures can be expected to be somewhat fragile to

perturbations [76]. After the plume traverses ∼ 85% of the tank depth (ref. Figure

4.11(e)), the region of the outermost LCS which shields the lower side of the plume

head from entrainment begins to weaken and disappears completely by the time the

plume has risen ∼ 95% of the total distance (ref. Figure 4.11(f)). Of course the

material surface that once corresponded to the outermost LCS does not disappear,

but the character of that surface changes with time. That is, the material surface

that initially presents a strong barrier to transport weakens and does so to such a

degree that a portion of the surface eventually gets entrained by the head as the

plume matures.

The weakening of the outermost LCS segment beneath the head corresponds to

a progressive reduction of vorticity within the portion of the head which forms the

core of the scroll. The scenario is demonstrated in Figure 4.13 where the ±0.1 s−1

vorticity contour which surrounds part of the head scroll in Figure 4.13(a) ceases to

do so by the time of Figure 4.13(b). Over the time interval illustrated in Figure 4.13,

the peak vorticity feeding the scroll has decreased by a factor of ∼ 2 to 0.09 s−1.

Although we have not investigated the matter, the disappearance of the outermost

LCS in the injection model may be sensitive to whether the upper boundary condition

is a free-slip or no-slip surface.

Let us now synthesize the above concepts in an attempt to broadly characterize the

overall mass transport behavior observed for cases G6 and R6. Figure 4.14 provides a

series of vertical and radial contours that track the origin of mass within both plumes

as they approach the upper tank surface. We define the starting plume as being
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Figure 4.13:
Head vorticity for the numerical model of case G6 shown at (a) t = 250
s and (b) t = 300 s following the start of injection. The outer black line
is the 25.3 ◦C contour. Vorticity contours are provided at ±0.4, ±0.2,
and ±0.1 s−1.

all material located within the 1% ∆T contour. The plume head will be taken as

that section of the plume above y = 200 mm as this location represents an inflection

point in the temperature contour. At the time shown in Figure 4.14(a), the R6

plume head has a volume of 560 mL. By comparison, the total volume of the G6

head at the time of Figure 4.14(b) is 210 mL, 57 mL of which is injected mass.

Histograms of mass within the head for both cases are provided in Figure 4.15, and

cumulative distribution functions are shown in Figure 4.16. Note that in computing

the histograms and cumulative distribution functions for the injection plume, only

the non-injected head mass is considered.

The R6 plume generated with a localized heat source has no backward-time LCS

which surrounds the source material (ref. Figure 4.10(a)). Instead, the plume requires

free access to mass near the tank bottom in order to warm the fluid and generate the

buoyancy necessary to feed the plume. The R6 plume also lacks an LCS to shield

the base of the plume head. Because of the lack of these additional LCS in the R6

case, the plume (both head and conduit) is markedly more efficient than the injection

plume at radially sampling ambient material. These considerations are manifest in
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Figure 4.14:
Vertical and radial origin of mass contained within (a) the plume gener-
ated via a localized heat source in case R6, and (b) the injection plume
of case G6. The image of (a) is provided at t = 3250 s following heater
activation, while the image of (b) corresponds to t = 300 s after the
start of injection. Mass contours are shown at 15 mm intervals. Radial
contours are represented as solid blue lines while the vertical contours
are red. The solid black line and shaded region enclose all material that
has a temperature of at least 25.7 ◦C.
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Figure 4.15:
Histogram of vertical and radial origin for mass within the plume heads
of cases R6 (a, b) and G6 (c, d) at the times shown in Figure 4.14. Note
that only non-injected mass for the G6 case is considered.

Figure 4.16:
Cumulative distribution function for vertical and radial origin of mass
within the plume heads of cases R6 (a, b) and G6 (c, d) at the times
shown in Figure 4.14. Note that only non-injected mass for the G6 case
is considered.
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the mass contours of Figure 4.14(a). The siphoning of mass to feed the plume has

left the radial origin contours (blue) substantially biased toward the heater along the

base of the tank. As this mass enters the conduit, it begins to rapidly upwell thereby

imparting the negative concavity observed for the radial origin contours within the

conduit heat affected zone (gray). The velocity within the conduit is higher than the

head rise velocity [13], therefore the material drawn into the conduit is eventually

deposited into the head. The end result is that at the time shown in Figure 4.14(a),

the R6 plume head contains mass that was originally positioned up to 48 mm from

the plume centerline (ref. Figure 4.15(b)), with nearly 60% of the total head mass

originiating from |x| ≥ 20 mm (ref. Figure 4.16(b)).

However, the R6 plume does have one weakness in that the lower head vorticity

results in significantly reduced vertical sampling efficiency. As the plume rises and the

overlying fluid encounters the impenetrable leading edge LCS, the fluid gets squeezed

radially outward. This effect displaces the radial origin contours in Figure 4.14(a)

away from the plume centerline. But due to the lack of head vorticity, most of the

overlying mass ends up in the wake of the rising head which imparts the positive

concavity observed in the radial origin contours just outside the heat affected zone.

At the time shown in Figure 4.14(a), the plume head contains mass originally located

such that 0 ≤ y ≤ 250 mm (ref. Figure 4.15(a)), but only 20% of the total head mass

originates from y ≥ 100 mm (ref. Figure 4.16(a)).

Inspection of Figure 4.14(b) shows that the injection plume also exhibits lateral

deflection of the radial origin contours, but the effect is much less pronounced than

that for case R6. The outermost LCS proves very effective at shielding the head from

radial entrainment. At the time shown in Figure 4.14(b), the G6 head is composed

entirely of mass originally located within 20 mm of the centerline (ref. Figure 4.15(d)),

with 60% of the mass coming from |x| ≤ 11 mm (ref. Figure 4.16(d)).

The injection plume also compresses overlying mass just as was observed for the
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R6 case, but the head vorticity sweeps much of this compressed material into the

head. The vertical origin contours are seen to wrap around the head scroll in Figure

4.14(b) as a consequence. As with the R6 case, the injection plume head is composed

of mass originally positioned such that 0 ≤ y ≤ 250 mm (ref. Figure 4.15(c)), but

70% of the G6 head mass originates from y ≥ 100 mm (ref. Figure 4.16(c)).

4.3.5 Experimental characterization of plume head leading edge LCS

4.3.5.1 Starting plume leading edge vertical position

Let us now characterize the leading edge LCS for all six of the experimental cases

in Table 4.2. In each case, the underlying material surface is grown from the LCS,

and the apex of the grown structure is subsequently used to denote the location of the

plume at a particular point in time. The resulting plume height data as a function of

time are shown in Figure 4.17 for each of our six experimental cases. Note that the

location data presented in Figure 4.17 do not capture the complete time history of

each plume for two reasons.

First, as discussed previously (ref. Section 4.3.3), the flow must evolve sufficiently

for a ridge in the backward-time FTLE to be visible. Consequently, the transient

phase immediately following heater activation is not resolvable using our technique

of locating the plume head, and the interested reader is referred to [11, 13] for exam-

ples of plume behavior during the initial transient period. The earliest plume head

positions shown in Figure 4.17 are those for which the LCS could be readily identified.

Second, the PIV system is configured to analyze the lower 21.7 cm of corn syrup

(ref. Figure 4.1), therefore the location of the plume head as it nears the top of

the tank is also absent from Figure 4.17 for our experimental cases. In contrast, the

numerical model of case N6 is computed using the full-sized fluid domain (i.e., 26.5

cm per side), and consequently captures the plume behavior near the tank top.

Away from the initial and final transient periods, the plume head leading edge is
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Figure 4.17:
Plume head leading edge height above the tank bottom versus time for
the six experimental cases. Best fit lines are shown in black for each
case. (") N1. (◦) N2. (#) N3. (•) N4. ($) N5. (%) N6. (+) Numerical
model of case N6.

seen to rise with a roughly constant velocity vl in Figure 4.17, a qualitative observation

which concurs with results obtained by other authors [38, 53, 11, 13, 14, 41]). A

numerical estimate of the constant rise velocity for each of the cases in Table 4.2

is obtained from a least squares fit of head position versus time, and the computed

values of vl are provided in Table 4.4. The rise velocity for the numerical model of

case N6, again identified as case R6, is also presented in the table for reference. Note

that the best fit lines for position versus time are shown in Figure 4.17 spanning the

individual data values used for the fit.

The error bars in Figure 4.17 and the velocity uncertainties of Table 4.4 were

computed from a sensitivity analysis conducted for each individual case. As noted

in Section 4.3, LCS are proxies for the underlying material surfaces, and hence some

uncertainty is associated with the LCS and true location or shape of the corresponding

material surface.

The sensitivity analysis for plume vertical position and rise velocity proceeds for

each case by selecting the ridge of the LCS as the best guess for the location of the
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Case Q [W] ∆T [◦C] Ra ml [s−1] vl [mm/s] δvl [mm/s] ā [mm] v(s)
l /v(∞)

l

N1 0.44 10 1.3× 105 5.7× 10−4 0.030 2.3× 10−4 65 0.54
N2 0.72 15 2.1× 105 9.7× 10−4 0.042 3.4× 10−4 65 0.54
N3 0.70 25 2.0× 105 1.5× 10−3 0.055 1.9× 10−4 51 0.63
N4 1.0 35 3.0× 105 3.1× 10−3 0.075 3.3× 10−4 44 0.69
N5 1.4 45 4.1× 105 5.6× 10−3 0.097 2.4× 10−4 38 0.73
N6 1.8 55 5.3× 105 7.9× 10−3 0.12 1.6× 10−4 38 0.73
R6 1.8 55 5.3× 105 2.1× 10−2 0.11 8.9× 10−5 38 0.73

Table 4.4:
Experimental results for the six cases of Table 4.2. The numerical model
of case N6 is identified as R6. Note that Q is the steady state power
delivered to the syrup, and ∆T is the maximum temperature contrast
achieved. The Rayleigh number provided is taken as Ra = αgQd2/κ2µcp,
where all quantities are evaluated at ambient temperature.

underlying material surface. This guess is then offset as illustrated in Figure 4.18.

The actual offsets for each case are selected loosely based on the FTLE ridge width,

which can be quite large for the coldest cases (N1 to N3), but are generally on the

order of ±10% of the plume’s vertical position. The three initial estimates for the

location of the material surface are then seeded with passive tracers and the tracers

advected using the velocity field. Let y(1)(t), y(0)(t), and y(−1)(t) represent the instan-

taneous vertical position of the +10%, baseline, and −10% scenarios, respectively for

a particular case in Table 4.4. We define the uncertainty in vertical position of the

baseline as

δy(τ) =
y(1)(τ)− y(−1)(τ)

2
, (4.18)

where τ is again the integration time.

Figure 4.19 presents two plots of the positional uncertainty for each of the cases in

Table 4.4. The first provides a time history of δy(τ) relative to the initial uncertainty

δy(0), and the second provides the positional uncertainty relative to the leading edge

location of the baseline case. Three items regarding the positional uncertainty decay

are of note.

First, notice that for all cases the initial uncertainty as depicted in Figure 4.19(a)
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Figure 4.18:
Position sensitivity analysis setup for case N6. The best estimate for the
location of the leading edge material surface at t = 420 s following heater
activation is shown as the purple line. The dashed black lines represent
the best estimate shifted ±10% vertically. The pseudocolor background
is the backward-time FTLE field.

decays by one order of magnitude in a roughly exponential fashion according to

δy(τ)

δy(0)
= e−mlτ , (4.19)

where ml is the decay rate. The individual values of ml obtained from a least-squares

fit are tabulated in Table 4.4 for reference, however these values should be treated

with caution, as they strongly depend on the initial time chosen for growing the

material surface. Consider cases N6 and R6, for a moment. Although, case R6 is a

numerical approximation of the experimental case N6, the ml values recorded in Table

4.4 are significantly different. It turns out that a well-defined ridge in the backward-

time FTLE field of the numerical model can be identified, and hence seeded to grow

the leading edge material surface, 120 s earlier than for case N6.9 During this 120 s

interval, the strain rate normal to the leading edge LCS for case R6 is much larger in

magnitude as shown in Figure 4.20. Consequently, the initial exponential decay rate

of positional uncertainty exceeds that of case N6.
9The velocity field from the numerical model does not contain the experimental noise associated

with case N6, and hence detecting ridges in the FTLE field is much easier.
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Figure 4.19:
Evolution of positional uncertainty for cases of Table 4.4. (a) Time
history of δy(τ)/δy(0). The best fit lines (solid) for exponential decay of
uncertainty are also provided. (b) Uncertainty relative to plume leading
edge vertical position y plotted as a function of plume position. (") N1.
(◦) N2. (#) N3. (•) N4. ($) N5. (%) N6. (+) R6.

Figure 4.20:
Strain rate normal to the leading edge LCS for cases N6 (%) and R6
(+). The earliest time at which a ridge in the FTLE field can be reliably
identified is depicted by a vertical dotted line for each case. These times
correspond to τ = 0 in Figure 4.19(a).
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The second item of note regarding uncertainty in leading edge position is the ob-

servation from Figure 4.19 that once δy(τ)/δy(0) ≈ 0.1, the rate at which positional

uncertainty decays begins to slow for the higher energy plumes. This behavior is

directly linked to the time-dependence of the strain rate normal to the plume head.

For illustration purposes, again consider the time profile of strain rate for case R6

presented in Figure 4.20. As demonstrated in the figure, the magnitude of the verti-

cal velocity gradient across the plume head lessens as the plume evolves, and hence

the rate at which fluid elements are attracted to the leading edge LCS decreases as

well. Although more analysis is necessary, it does seem plausible that the temporally

decreasing velocity gradient across the plume leading edge is a consequence of tem-

perature dependent viscosity effects [52], particularly given that the coldest plume,

case N1, exhibits exponential decay in position uncertainty for the duration of the

experiment.

And finally, the decreasing decay rate for positional uncertainty suggests that

higher Rayleigh number plumes are, from a stretching standpoint, more destructive

immediately following heater activation than at later times. That is, a heterogeneity

straddling the leading edge LCS of a high Rayleigh number plume will accumulate

strain more rapidly following liftoff than it will farther away from the heat source.

With positional uncertainty available, an estimate of the uncertainty in leading

edge rise velocity can also be determined using standard propagation of errors for a

parameter determined from a least squares fit [69]. Let n represent the number of

data points used in the fit, and the subscript i identify an individual data point. The

rise velocity uncertainty δvl then becomes

δvl =

[
n2

n∑
i=1

t2i δy
2
i − 2n

n∑
i=1

tiδy2
i

n∑
i=1

ti +
n∑

i=1
δy2

i

(
n∑

i=1
ti

)2
]1/2

n
n∑

i=1
t2i −

(
n∑

i=1
ti

)2 . (4.20)
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The computed values of uncertainty in rise velocity are presented in Table 4.4. In all

cases, the assumed uncertainty in plume head leading edge position has a negligible

impact on the inferred plume rise velocity. Readers should note that δvl provided

by Eq. 4.20 only captures that component of velocity uncertainty which is due to

uncertainty in the location of the leading edge material surface. Errors that may be

present in the underlying PIV velocity field (ref. Chapter II) are accounted for in the

above analysis only insofar as they affect the decay rate of positional uncertainty.

We now quantitatively compare our rise velocities with previous work on laminar

plumes. Using dimensional arguments, Batchelor [6] posited that for a steady laminar

plume generated by a point source of heat, the velocity vcl at a given location along

the centerline should scale as

vcl ∼
(

αgQ

µccp

)1/2

. (4.21)

Moses et al. [53] later conducted a series of experiments on laminar, thermal plumes

generated with localized heat sources in essentially isoviscous fluids, and found that

Batchelor’s scaling also applies to the plume head rise velocity. Their data were well

described by a relation of the form

vl = γm

(
αgQ

µccp

)1/2

, (4.22)

where γm is a proportionality constant. Although remaining within an isoviscous

regime, Kaminski and Jaupart [38] extended the work of Moses et al. using fluids

spanning a larger range of Prandtl numbers and found that γm was a function of

Prandtl number. Employing the infinite Prandtl number asymptotic expansion of

Worster [77], Kaminski and Jaupart proposed that

γm = (0.57 ± 0.02)

(
ln ε−2

2π

)1/2

, (4.23)
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where ε is a root of ε4 ln ε−2 = Pr−1, and Pr > 7. Davaille et al. [13] further

incorporated the effects of temperature dependent viscosity yielding

γm = (0.71 ± 0.03)

(
η + 1

η + 3/2

) (
ln ε−2

2π

)1/2

, (4.24)

where η = µc/µh is the viscosity contrast between the ambient fluid and hottest fluid

near the heater.

Our plume rise velocities are plotted against

[(η + 1)/(η + 3/2)]
(
ln ε−2/2π

)1/2
(αgQ/µccp)

1/2

in Figure 4.21 below. As expected, the rise velocity of the plume head is quite well

described by a scaling of the form given by Eq.’s 4.22 and 4.24. A least squares fit of

the data provides the linear relationship

vl = 0.57

(
η + 1

η + 3/2

) (
ln ε−2

2π

)1/2 (
αgQ

µccp

)1/2

− 4.8× 10−5, (4.25)

where vl has units of m/s. Note that Eq. 4.25 can be readily non-dimensionalized as

v∗l = 0.57

(
η + 1

η + 3/2

) (
ln ε−2

2π

)1/2

Ra1/2 (4.26)

with v∗l = (vl + 4.8 × 10−5)d/κ, and Ra = αgQd2/κ2µccp representing a Rayleigh

number based on the heater power and depth of the fluid layer d.

As with Kaminski and Jaupart [38], our best fit line in Figure 4.21 does not pass

through the origin. In their analysis, Kaminski and Jaupart attribute the offset to an

overestimate of the heat delivered to the fluid. The authors observe that some heat

must be transferred to their experimental apparatus, and reckon that the non-zero

vl intercept is a consequence of this lost heat. Kaminski and Jaupart eliminate the
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Figure 4.21:
Plume head rise velocity as a function of heater power for cases of Table
4.4 (•). The black line is the best fit determined via least squares. The
numerical model (case R6) is shown for reference ($), but is not used in
the least squares fit.

offset by refitting their data to a version of Eq. 4.22 having the form

vl = c3ξ(Q−Q0)
1/2, (4.27)

where ξ = (ln ε−2/2π)1/2 (αg/µccp)
1/2, c3 is an empirically determined constant, and

Q0 is taken as the heat lost to the apparatus. The authors find that the parameter

Q0 is essentially independent of heater power but a function of Prandtl number for

their experiments.

For our plumes, the basal thermal boundary layer is wider than the heater (ref.

Figure 4.3), therefore heat is certainly lost to the tank bottom. As shown in Figure

4.28, we find that our data can also be fit to Eq. 4.27 yielding the relation

vl = 0.44

(
η + 1

η + 3/2

) (
ln ε−2

2π

)1/2 (
αg(Q− 0.36)

µccp

)1/2

. (4.28)

While the rise velocity data seem to be well described by Eq. 4.28, further analysis
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does not support the notion that 0.36 W of heat is lost to the tank structure regardless

of the heater operating power Q.

Although the results have not been detailed here, a finite volume model [37] was

run for each of our experimental plumes to reconstruct the temperature field on the

uniform (∆x, ∆y, ∆z) = (2.8, 2.8, 5) mm grid of the PIV data (ref. Figure 4.1). The

model used the PIV velocity field as an input along with the known thermal boundary

conditions. Unlike the Fluidity model employed in case R6, the finite volume thermal

model simulated heat flow to the acrylic tank bottom (i.e., the finite volume model

did not use a simplifying adiabatic boundary condition for the tank bottom). The

tank bottom was also discretized using a (∆x, ∆y, ∆z) = (2.8, 2.8, 5) mm grid. For

cases N1 and N2, temperature contours extracted from the finite volume model match

those available from liquid crystal thermometry (ref. Section 4.2) to within 0.05 ◦C

for temperatures spanning T = 25.2 ◦C to T = 26.5 ◦C. A comparison of the finite

volume thermal model and liquid crystal derived temperatures for case N1 is presented

in Figure 4.23 for reference.

Although by no means an exhaustive assessment, the agreement observed over the

temperature range in which liquid crystal data are available suggests the finite volume

thermal model has acceptable fidelity to the measured temperature field in these two

cases. When we use the full temperature field computed from the finite volume

model to infer power delivered to the syrup for cases N1 and N2, we find that 0.18 W

and 0.27 W, respectively, are lost to the tank bottom once the starting plumes have

entered the constant rise velocity regime. Note that we have not considered the finite

volume model for cases N3-N6 in our analysis due to the low velocities observed in the

conduit (ref. Section 4.3.2).10 Nevertheless, our observations regarding cases N1 and

N2 suggest that the offset value Q0 = 0.36 in Eq. 4.28 is capturing more than just

heat lost to experimental apparatus. That is, Q0 may be partially compensating for
10The conduit velocities just above the heater have an appreciable affect on heat transfer and

ultimately the plume temperature.
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Figure 4.22:
Plume head rise velocity as a function of adjusted heater power (Q−Q0)
for cases of Table 4.4 (•). The black line is the best fit determined via
least squares. The numerical model (case R6) is shown for reference ($),
but is not used in the least squares fit. Note that due to the adiabatic
lower boundary condition, Q0 = 0 for the numerical model.

the varied influence of sidewalls on rise velocities due to head diameter (see below)

as well as unmodeled effects of temperature dependent viscosity in Eq. 4.25. In

particular with regard to the latter, Eq. 4.25 may need to be modified to more

accurately capture the effective viscosity against which the rising plume must work

instead of simply assuming µc [52, 4].

Regardless of how Q0 relates to heat loss, both Eq.’s 4.25 and 4.28 make it clear

that the observed rise velocity of our plumes is significantly less than that predicted

by the works of Kaminski and Jaupart [38] and Davaille et al. [13]. A fairly significant

source for the discrepancy is undoubtedly due to excessive viscous drag arising from

the tank sidewalls. Happel and Bart [32] find that the rise velocity of a sphere of

diameter a in fluid contained by a tall, square tube of width w is provided by

v(s)
l ≈ v(∞)

l

(
1− 1.903

a

w

)
, (4.29)

where v(∞)
l is the Stokes’ law rise velocity for the sphere in fluid having infinite lateral
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Figure 4.23:
Comparison of temperature contours for case N1 obtained from the finite
volume thermal model (solid lines) and determined experimentally via
liquid crystal thermometry (dashed lines). For each liquid crystal de-
rived contour, corresponding finite volume contours are shown at ±0.05
◦C. Note that the isolated, lowermost dashed red line visible in figures
(b) and (c) should be ignored as it is an artifact caused by the fluid tem-
perature exceeding the color play of the liquid crystals (ref. Chapter II).
Contours are shown at (a) t = 1900 s, (b) t = 5200 s, and (c) t = 8500
s.

extent. A crude estimate of the sidewall effects on our plume rise velocities can be

computed using Eq. 4.29 and the time-averaged head diameter ā. We note that

the time-averaged diameter ā of the leading edge LCS (ref. Table 4.4) during the

constant rise velocity regime for our coldest plume, case N1, is 65 mm (25% of the

tank width) while that of case N6 is 38 mm (14% of the tank width). The resulting

ratios of v(s)
l /v(∞)

l , presented in Table 4.4, suggest that even our smallest diameter

plume from case N6 exhibits a rise velocity deficit of nearly 30%. Therefore, the

influence of sidewalls is likely significant for all of our plumes.
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4.3.5.2 Starting plume leading edge diameter

Until the plume approaches the top of the tank, the shape of the leading edge

LCS is well described by the upper portion of an ellipsoid having the form

x2

(a/2)2
+

(y − y0)2

(b/2)2
+

z2

(a/2)2
= 1 (4.30)

as demonstrated in Figure 4.24 for case R6.11 Note that the y-axis has been chosen

to align with the plume centerline, and y0 = y0(t) in Eq. 4.30 represents the center

of the ellipsoid. In the following discussion we provide an analysis of the ellipsoidal

shape for each of the experimental cases in Table 4.2 as well as the numerical model

of case N6.

The time history of the ellipsoid axes for each of our experimental cases is shown

in Figure 4.25. As apparent from Figure 4.25(c), the ellipsoid axes are equal in length

to within ±20% until the plume aproaches the tank top. Hence, the ellipsoid is nearly

spherical for most of the starting plume’s ascent. The data of Figures 4.25(a) and (b)

suggest that during part of the plume’s evolution both the diameter a and the axis b

of the bounding ellipse grow linearly with time. The corresponding constant growth

rates ȧ and ḃ determined from a least squares fit are provided in Table 4.5.

However, the time period during which the ellipsoid axes grow in an approximately

linear fashion does not necessarily correspond to the same interval where the plume

rise velocity is constant. We have identified the difference in Figures 4.25(a, b) as

follows. The start of the constant rise velocity regime for each case is illustrated by

a red symbol in the figure, and the period during which the axes are taken to grow

linearly is shown spanned by a solid line. The line was determined from a least squares

fit of the underlying data for each case, and that portion of the line which overlaps

the constant rise velocity regime is shown in red. We observe that for all cases except
11For an alternative description using the Rankine fairing, see [53].

134



Figure 4.24:
Ellipsoidal fit of plume leading edge material surface for numerical model
case R6 shown at 250 s intervals starting from t = 300 s. The grown
material surface is shown in purple, and the best fit ellipsoid determined
via least squares is depicted in blue.
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Figure 4.25:
Time evolution of the ellipsoidal axes. See text for explanation of colors.
(a) Ellipsoid diameter a. (b) Ellipsoid b-axis. Note that the error bars
have been removed for clarity (ref. Figure 4.26). (c) Ratio of ellipsoid
diameter to b. (") N1. (◦) N2. (#) N3. (•) N4. ($) N5. (%) N6. (+)
R6.

N1 and N2 the ellipsoid axes start growing in a linear fashion at roughly the same

time the plume begins to rise with a constant velocity. Given the large uncertainty

in initial head shape, it is quite possible the observed delay in onset of linear axis

growth for cases N1 and N2 is not real. Nevertheless, the diameter of the leading

edge LCS continues growing linearly in each case after the plume has stopped rising

at the constant speed vl. Overall, the period of constant growth rate for the ellipsoid

b-axis more closely mirrors the interval of constant rise velocity than does a.

The same sensitivity analysis described in Section 4.3.5.1 has also been used to

compute uncertainty in the ellipsoid axes. We define the uncertainty in diameter and
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Case Q [W] ∆T [◦C] Ra ma [s−1] ȧ [mm/s] δȧ [mm/s] mb [s−1] ḃ [mm/s] δḃ [mm/s]
N1 0.44 10 1.3× 105 2.3× 10−4 0.012 7.8× 10−4 9.2× 10−5 0.0085 1.1× 10−3

N2 0.72 15 2.1× 105 3.7× 10−4 0.014 9.3× 10−4 1.9× 10−4 0.011 1.3× 10−3

N3 0.70 25 2.0× 105 6.2× 10−4 0.019 5.7× 10−4 4.7× 10−4 0.016 7.5× 10−4

N4 1.0 35 3.0× 105 1.3× 10−3 0.022 4.7× 10−4 8.6× 10−4 0.015 7.3× 10−4

N5 1.4 45 4.1× 105 2.1× 10−3 0.028 5.2× 10−4 1.1× 10−3 0.021 6.1× 10−4

N6 1.8 55 5.3× 105 3.3× 10−3 0.031 3.2× 10−4 1.8× 10−3 0.025 3.8× 10−4

R6 1.8 55 5.3× 105 9.4× 10−3 0.027 6.7× 10−5 5.8× 10−3 0.024 1.1× 10−4

Table 4.5:
Ellipsoid axis parameters. Heater power Q, temperature contrast ∆T ,
and characteristic Rayleigh number Ra are repeated from Table 4.4 for
reference.

b-axis of the baseline ellipsoid as

δa(τ) =
a(1)(τ)− a(−1)(τ)

2
, δb(τ) =

b(1)(τ)− b(−1)(τ)

2
(4.31)

where τ is again the integration time. Figure 4.26 presents plots of the ellipsoid axis

uncertainty for each of the experimental cases as well as the numerical model. As

was found for the plume leading edge position, uncertainty in the diameter a and

axis b of the ellipsoid decay exponentially at least over the initial period of the plume

evolution according to

δa(τ)

δa(0)
= e−maτ ,

δb(τ)

δb(0)
= e−mbτ . (4.32)

The individual decay rates ma and mb obtained from a least squares fit are listed in

Table 4.5. In each case, ma ≈ ml/2 and mb ≈ ma/2. The slower decay in uncertainty

of a and b as compared to that observed for leading edge position is due to the change

in character of the leading edge LCS illustrated in Figure 4.6. Namely, as the LCS

begins to curl upward around the nascent scroll, the LCS ceases to attract nearby

fluid elements. Instead, as discussed in relation to Figure 4.6, fluid parcels in close

proximity to the LCS curls are alternately attracted, sheared, or even repelled. The

end result in terms of the ellipsoid axes is that uncertainty in these parameters decays

slower than that observed for the vertical position of the plume.
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Figure 4.26:
Evolution of ellipsoid axis uncertainty for cases of Table 4.5. (a, c) Time
history of δa(τ)/δa(0) and δb(τ)/δb(0), respectively. The best fit lines
(solid) for exponential decay of uncertainty are also provided. (b, d)
Ellipsoid axis uncertainty relative to axis dimension plotted as a function
of plume leading edge position. (") N1. (◦) N2. (#) N3. (•) N4. ($)
N5. (%) N6. (+) R6.
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Before moving on, one other item regarding Figure 4.26 deserves attention. Notice

that δa and δb for case R6 seem to reach a lower limit at around τ = 1000 s. This

behavior is a consequence of trying to fit an ellipsoid to data that span only the

upper portion of the ellipsoid (ref. Figure 4.24) and results in the location of the

ellipse center, diameter, and b-axis all being somewhat poorly constrained. Thus, once

the uncertainty in axis dimensions has decayed to a given level, further refinement

becomes difficult.

The constant growth rates for the leading edge diameter and ellipsoid b-axis along

with the associated uncertainties are presented in Table 4.5. The growth rates are

plotted versus leading edge rise velocity in Figure 4.27. Note that the growth rate

uncertainties, δȧ and δḃ, recorded in Table 4.5 have been determined using Eq. 4.20

with yi replaced by ai or bi, respectively.

As illustrated in Figure 4.27, the constant growth rates ȧ and ḃ are found to be

linear functions of the plume rise velocity

ȧ = 0.22vl + 5.8× 10−6

ḃ = 0.17vl + 3.9× 10−6, (4.33)

where units are in m/s. The non-zero intercepts in Eq. 4.33 are most likely a conse-

quence of sidewall effects. A retarded rise velocity would result in enhanced growth

rates as the head swells to accommodate the extra mass flux from the conduit.

In terms of prior work, data regarding the head dimensions of starting plumes

generated using localized heat sources are scarce. Moses et al. [53] measure the

diameter of plumes generated in water, methanol, and oils via shadowgraphs and find

that the head diameter scales as a ∼ t1/2, which clearly differs from our finding that

a ∼ t. Moses et al. do not report dimensions equivalent to our ellipsoid b-axis.

Shlien [61] investigates the head morphology of laminar plumes generated by
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Figure 4.27:
Ellipsoid axes growth rates versus leading edge rise velocity. Values of ȧ
from Table 4.5 are plotted as (◦) and values of ḃ are shown as (•). The
best fit line determined via least squares for ȧ = ȧ(vl) is shown dashed
while that for ḃ = ḃ(vl) is shown solid. The numerical model, case R6, is
represented as an open or solid diamond for reference, but was not used
in the fits.

Ohmic heating in a water solution also using shadowgraphs and finds that the plume

head diameter scales as a ∼ t. Shlien does not fit an ellipsoid to the extracted head

shapes, but measurements taken along the plume centerline from the plume leading

edge to the center of the scrolls are provided. This particular measurement, defi-

nitionally similar to our ellipsoid b-axis (ref. Figure 4.24), is also reported to scale

linearly with t, which again matches our findings.

Other studies (e.g., [39, 13]) have used temperature contours to investigate the

plume head diameter and hence are not directly comparable to the leading edge LCS.

The reason why our observed ellipsoid axis growth rates differ from those of Moses et

al. warrants further investigation.

4.4 A metric for the morphology of flow-induced deformation

In the preceding sections, we have explored the use of Lagrangian coherent struc-

tures and underlying material surfaces to characterize the position, head shape, and
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mechanisms of entrainment for thermal plumes. We would like to now turn our at-

tention to how mass deforms under the influence of the flow.

Clearly, any observed spatial structure in geochemical observations at a given vol-

canic feature, such as the bilateral asymmetry observed at Hawaii (e.g., [1]), is not

merely a reflection of the most immediate convective process that deposited the mass

at the surface. Instead, the surface condition of volcanic products is a summation of

the full stretching (and chemical mixing) history the mass has incurred. Neverthe-

less, we can still obtain important insight into the nature of mantle convection and

the distribution of heterogeneities within based on how a given flow phenomenon is

expected to alter the stretching history. Consider the scenario, for example, where

filamentary structures are found in a specific arrangement at some volcanic feature,

but the postulated flow mechanism responsible for providing the magma source is be-

lieved to be incapable of generating such an arrangement. In this scenario, either the

noted surface observation is an inherent characteristic of a particular mantle reser-

voir, or the presumed flow phenomena responsible for producing the volcanic feature

inadequately explains circumstances known to occur.

The work presented here is heavily influenced by the correlation dimension of

Grassberger and Procaccia [27], the application of the correlation dimension to man-

tle convection by Schmalzl and Hansen [57], as well as investigations regarding de-

formation of fluid within the conduit of thermal plumes conducted by Farnetani and

Hofmann [15, 16]. In a manner analogous to the correlation dimension [27], our goal is

to develop a metric which yields a rough estimate of the characteristic dimensionality

assumed by an infinitesimal sphere as it deforms under an incompressible flow. That

is, we are interested in developing a tool that conveys whether the flow transforms

the infinitesimal sphere into a cigar (a 1D feature) or a sheet (a 2D feature), and

we would like to use that tool to predict the generic dimensionality of macroscopic

inclusions (i.e., whether a large spherical heterogeneity is transformed into a filament
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or a sheet-like structure).

Of course, we have already discussed certain aspects of stretching within the flow.

As discussed in Sections 4.3.1 and 4.3.2, fluid elements situated sufficiently close to

a backward-time LCS are often attracted to and stretched out along the structure.

Hence for those elements which interact strongly with an attracting LCS, the dimen-

sionality of the LCS provides some insight into the shape assumed by affected fluid.

If the LCS is a 2D surface similar to the leading edge LCS of our thermal plumes

(ref. Figure 4.4), then some of the fluid encountering the structure will certainly be

stretched into sheets.

However, not all fluid elements interact directly with backward-time LCS, and of

those parcels which do, not all are transformed the same. So the LCS picture does

not in itself provide the information we seek. But, by constructing a map of how the

aggregate flow transforms all elements, we can obtain an instantaneous snapshot of

the geometric state of spherical fluid elements within the flow. As will be shown for

our thermal plumes, the shape fluid parcels assume is intimately linked to where such

elements are situated at the instant of heater activation.

Consider the sketch of Figure 4.28 where a flow is shown to transform the unit

cube into a rectangular slab. Note that the discussion equally applies to the unit

sphere, but the concepts are somewhat easier to visualize using hexahedra. The

lengths of the deformed rectangle’s sides are taken as s1, s2, and s3, arranged in order

of decreasing magnitude. Conceptually, it is quite clear that if s1 1 {s2, s3}, the

deformed cube will look more like a 1D line than a 2D sheet or a 3D cube. Similarly

if {s1, s2}1 s3 and s1 ≈ s2, the deformed shape will be very sheet-like. These simple

lines of reasoning are sufficient to construct a logic test to flag whether 1D, 2D, or

3D structures are produced by a flow. A significant challenge, however, is forming a

basis for evaluating the necessary thresholds (e.g., how close must s1 be to s2 for the

condition s1 ≈ s2 to hold). There are countless ways the side lengths can be used
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Figure 4.28: Deformation of the unit cube by an arbitrary flow.

Shape Ψ
Sphere (3D) 2
Sheet (2D) 1
Pencil (1D) 0

Table 4.6: Characteristic dimensionality assessment provided by the metric Ψ.

to compute ratios of perimeter, area, and other geometrical measures from which the

thresholds can be formed, but we have had the most success by comparing the major

axis length to the resultant r, where

r =
√

s2
2 + s2

3. (4.34)

That is we define the shape metric Ψ as

Ψ =
r2

s2
1

, (4.35)

where s1 ≥ s2 ≥ s3. As the unit cube (or sphere) is stretched into a pencil, s1 →∞

and Ψ → 0. If the deformed structure is essentially 2D, then Ψ = 1, while Ψ = 2

indicates that the original 3D shape has more or less been preserved. The limiting

values of Ψ and the corresponding shapes are provided for reference in Table 4.6.

Of course, to apply Eq. 4.35, some method of computing three characteristic

lengths of the deformed sphere is required. If these characteristic lengths are nor-

malized by the starting length, then they are simply stretch factors, and obtaining a

measure of the rate at which stretching occurs was the underlying motivation behind
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the development of Lyapunov exponents in Section 4.3.1. Reflecting back on Eq. 4.8,

the square roots of the eigenvalues of the matrix M = (∇0F )T ∇0F , where M is

also known as the right Cauchy-Green deformation tensor [43], were shown for the

linearized flow to provide the stretching incurred for vectors initially aligned with the

eigenvectors of M . Therefore if the axes of the unit sphere are chosen to parallel with

the eigenvectors of M , then the axes of the ellipsoid produced by the flow will have

lengths provided by the square roots of the eigenvalues of M . That is, the square

roots of the eigenvalues of the matrix M provide the principal stretch factors we seek.

In practice, we actually compute the singular value decomposition (SVD) of the

matrix ∇0F since the singular values are the principal stretch factors (i.e., no square

roots needed) [62]. As an added bonus, the SVD returns eigenvectors of the matrix

∇0F (∇0F )T which align with the axes of the resulting ellipsoid (i.e., the eigen-

vectors of ∇0F (∇0F )T provide the orientation of the stretched ellipsoid, while the

eigenvectors of M provide the initial orientation of the sphere). So by computing

the finite-time Lyapunov exponent field using the SVD and keeping some additional

data, all the information needed to determine Ψ is readily available.

Before proceeding to discuss application of the shape metric, we would like to

point out that Subramanian et al. [63] have developed an alternative means of com-

puting the principal stretches and orientations of the infinitesimal ellipse. Instead of

advecting passive tracers and computing the gradient of the time-t map as described

in the present text, the authors integrate a system of six, coupled ordinary differen-

tial equations at arbitrary points of interest. In certain circumstances, the method of

Subramanian et al. can provide superior accuracy over the technique we have used. In

particular, recall that Lyapunov exponents are obtained from a linearization about a

fluid element trajectory as the element is advected by the velocity field (ref. Eq. 4.4).

In regions of very high stretching, as would be experienced at the apex of the leading

edge LCS, passive tracers can separate so strongly that the linearization breaks down.
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Physically, the stretching is of sufficient strength that the computational equivalent

of the infinitesimal sphere no longer deforms into an ellipse under the flow, but in-

stead takes a more complicated shape. The issue can be readily visualized via the

evolution of the red circle in Figure 4.5, which in no way resembles an ellipsoid in the

deformed state. The end result is that the product of the stretch factors computed

in regions with high stretching is no longer guaranteed to equal one as required for

incompressible flows. While the breakdown in the linearization can be avoided by

increasing the seeding density of passive tracers or by reducing the integration time

τ , both approaches have significant drawbacks. For the flows we consider, however,

obtaining the stretch factors from the FTLE field computations provides sufficient

accuracy.

Figure 4.29 provides the shape metric Ψ evaluated for case N6 as well as the

numerical model case R6. The metric is computed for the plumes at the time instant

each has risen to a height of y = 200 mm above the tank bottom, where height is

measured using the apex of the leading edge LCS as discussed in Section 4.3.5. In

constructing Figure 4.29, however, we have elected to show the metric values for the

location of the mass at time t = 0. In other words, Figure 4.29 is a predictive map

depicting, at t = 0, the shape spheres of fluid will have assumed by the time the

plume has risen 200 mm.

A couple of observations regarding Figure 4.29 are of note. Most obvious is the

noise present for the experimental case N6. The fluctuations observed above y = 125

mm are a consequence of noise in the PIV velocity vectors which, given the relatively

long period between successive scans of the tank (ref. Chapter II), cause random

errors affecting a PIV vector to persist in the velocity field for an artificially long time.

These velocity vector errors then cumulatively perturb the path taken by individual

passive tracers, and for regions with relatively weak stretching overall, can moderate

the rate at which the unit sphere deforms. Below y = 125 mm and close to the plume
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Figure 4.29:
Shape metric for cases (a) N6 and (b) R6. Metric is computed using an
integration time τ = 2000 s, at which point the plume has risen 200 mm
as measured using the leading edge LCS. The images presented, however,
show the configuration of mass at t = 0. Two contours for Ψ = 0.5, 1.5
are shown as solid black lines.

centerline, the fluctuations in Figure 4.29(a) arise from PIV velocity errors caused by

strong velocity gradients near the plume centerline (ref. Chapter III).

Second, the shape metric is directly computing the shape of the transformed

infinitesimal sphere. However as we noted earlier, the tool can be used to infer the

dimensionality of larger inclusions. Take for instance the large purple region just

beyond |x| = 20 mm in Figure 4.29(b). A macroscopic sphere launched in the region

will be drawn into a shape with one dominating dimension just as the metric predicts

for the infinitesimal sphere. It is important to recognize, however, that the metric

provides insight into the shape that initially spherical (or cubic) volumes of fluid will

assume as the flow evolves. Given the cylindrical symmetry of the plume, the large

purple region under consideration comprises a toroid in 3D when the cross-sectional

view of Figure 4.29(b) is revolved about the plume centerline (x = 0). The metric is

not suggesting that this entire toroidal structure is turned into a single linear filament.

Instead, the metric indicates that a spherical inclusion located somewhere within the

toroid will become a 1D structure as the flow progresses. The deformation of four
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Figure 4.30:
Deformation induced by the flow of case R6 for four macroscopic, initially
spherical inclusions. (a) Location of the spherical fluid parcels at t = 0.
The shape metric pseudocolor plot is provided for reference. (b) The
deformed state of the identically colored parcels at t = 2000 s.

macroscopic, but nonetheless spherical inclusions, is illustrated in Figure 4.30. In

each case, the large sphere is seen to transform just as the metric predicts.

The salient features visible for the numerical model in Figure 4.29(b) are also

clearly captured for case N6. In particular are the regions where 1D structures are

produced by the flow. Notice that the purple zones in Figure 4.29 form several,

somewhat distinct pockets of material with the clearest separation between pockets

being a vertical line situated at |x| ≈ 20 mm. Tracking the evolution of material in

the pockets from t = 0 to t = 2000 s proves to be quite interesting, particularly when

also considering the orientation of the dominant dimension of the deformed mass.

Figure 4.31 provides three images showing the transformation of various pockets of

material extracted from Figure 4.29(b).

Notice that except for the orange tracers on the plume centerline in Figure 4.31(b),

the material initially located such that |x| < 20 mm has come into plume head
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Figure 4.31:
Orientation of maximum stretch and evolution of material pockets for
case R6. (a) Stretch metric with eventual orientation of maximum prin-
cipal stretch shown in the position the fluid elements have at the time
of heater activation (t = 0 s). The maximum principal stretch axis ori-
entation is illustrated using black line segments. Fluid enclosed by the
the dotted black line has a maximum stretch orientation perpendicular
to the cross-section shown (hence the line segments are invisible). Two
contours for Ψ =0 .5, 1.5 are shown as solid black lines. (b) Blocks of
passive tracers at t = 0 colored to illustrate various pockets of fluid in (a)
where fluid in each pocket deforms similarly. (c) Position of the tracers
in (b) at t = 2000 s.
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shown in Figure 4.31(c) from above. That this is so can be seen from the evolution

of the previously noted vertical dividing material line positioned at |x| ≈ 20 mm

(colored brown in Figures 4.31(b, c)). Material initially positioned inside this brown

vertical line (i.e., closer to the plume centerline) is brought into the plume head very

early during the plume’s evolution and is seen in Figure 4.31(c) to have collected

in the developing scrolls situated at the bottom of the plume’s leading edge LCS

(orange). Because this fluid spends a limited amount of time interacting with the

leading edge LCS before being deposited in the head scrolls, it is not drawn into sheet-

like structures by the LCS, but is instead stretched into a toroid which constitutes the

mass of the nascent scroll. The direction of maximum stretch for this fluid is shown to

point normal to the plane of Figure 4.31(a), which is precisely the behavior expected

for a toroid with an expanding major diameter. An example of the deformation a

spherical inclusion located in this region would undergo is illustrated by the green

ball in Figure 4.30.

Fluid initially located such that |x| > 20 mm is seen at t = 2000 s in Figure

4.31(c) to primarily comprise the conduit connecting the plume head to the heat

source. Given that the vertical dimension of the conduit exceeds the diameter, one

would reasonably expect the direction of maximal stretch to lie in the plane of cross-

section as depicted in Figure 4.31(a).

Overall, the shape metric indicates that spherical fluid elements comprising the

vast majority of mass below the plume leading edge LCS, whether part of the plume

head or the trailing conduit, is transformed by the flow into essentially 1D ellipsoids.

This observation is in agreement with the work of Farnetani and Hofmann [15]. In

contrast, the transformation of spherical inclusions to sheet-like structures is limited

to those fluid elements located above an ascending starting plume. Once the starting

plume has reached the surface and enters a conduit-dominated mass transport regime,

the production of 2D geometries from initially spherical heterogeneities is limited.
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4.5 Conclusions

Laminar plumes show a surprising degree of complexity in the manner by which

mass is transported and stirred, yet these flow features remain simple enough that

fundamental processes can be readily investigated. Our tools of choice in the present

study have been Lagrangian coherent structures (LCS) and stretching. As discussed

in Section 4.3, LCS and underlying material surfaces furnish a practical means of

characterizing the location and extent of a starting plume. These structures also

organize mass transport within a given flow and hence provide valuable insight into

how plumes interact with the ambient.

In particular, the leading edge LCS extracted from the backward-time FTLE field

separated upwelling from ambient fluid. The structure was shown to attract nearby

fluid elements over most of its length. And as the attracted elements interacted

with the LCS during a plume’s ascent, they were observed to stretch out along the

structure. Similar observations have been made for plumes using numerical mod-

els accommodating much more Earth-like conditions [17, 45]. We found the leading

edge LCS to be intimately related to shadowgraphs and other flow visualization tech-

niques. In terms of determining the rise height of starting plumes, this particular

LCS provided the most utility.

But it was the LCS extracted from the forward-time FTLE field that were found

to furnish the most insight into permissible avenues for entrainment of ambient mass.

In particular, we observed that for a plume generated via injection of hot syrup, a

certain forward-time LCS formed an effective barrier that curtailed the plume’s ability

to entrain mass radially located beyond a certain distance from the plume centerline.

The protective character of this outermost LCS eventually ceased as the injection

plume reached the upper surface. Nevertheless, its absence in plumes generated via

a localized heat source enabled such plumes to more efficiently incorporate radially

distant mass.
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Other differences were found between the studied injection plume and one pro-

duced using a local heater. The injection plume’s outermost LCS and an LCS sur-

rounding injected material were observed to form a temporary reservoir of mass shed

by the plume head shortly following the start of injection. As the reservoir was

depleted by entraining the mass into the plume head, the outermost LCS became

coincident with the LCS surrounding injected mass.

Furthermore, by comparing the vertical origin of mass within the plume head, a

strong link was observed between head vorticity and the efficiency by which overly-

ing mass was entrained. The injection plume’s higher vorticity head was composed

primarily of mass originally located more than 100 mm off the tank bottom, while

the exact opposite was observed for the localized heat source plume which had much

lower head vorticity. The injection plume’s elevated head vorticity also permitted

substantially increased stretching of mass as the entrained material wrapped around

toroidal scrolls.

As has been observed by other investigators, thermal plumes generated using a

localized heat source were found to rise at an approximately constant speed following

an initial transient period. In addition, the shape of the leading edge LCS for these

plumes was well-described by an ellipsoid for most of the plume’s ascent. The growth

rate in the axes of the ellipsoid was observed to be constant and proportional to the

rise velocity for a period of time following the initial transient interval.

A metric describing the generic dimensionality of deformed spherical inclusions

was also developed. When applied to thermal plumes generated via a localized heat

source, we found that the production of sheet-like structures was predominantly lim-

ited to spherical volumes of fluid initially located above the starting plume. However,

some fluid above the heat source interacted with the plume shortly after liftoff and

was quickly drawn into the head without being stretched into a sheet by the leading

edge LCS. This initial material was shown to constitute the developing scrolls within
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the head, and was composed of 1D structures oriented such that the direction of

maximum stretching was tangent to the azimuthal axis of the cylindrical coordinate

system. The conduit and bulk of the starting plume head were also observed to pro-

duce mainly 1D structures, however the maximum stretch axis of this material was

perpendicular to that which formed the scroll core. One additional region producing

sheet-like structures was observed to differentiate the mass which would eventually

constitute the conduit from that which would be entrained into the head from above.

Given the simplistic nature of our laminar plumes when compared to those of

more Earth-like conditions [12, 19, 41, 42, 44, 56], one clearly has to be careful

when drawing direct geophysical comparisons. Nevertheless, several of the above

observations have ramifications for mantle geodynamics. The Lagrangian coherent

structures we have observed in our laboratory plumes are generic in the sense that

similar structures exist in more complex flows, although the quantity and shape of

the LCS may be quite different from one flow to the next. As mentioned above,

ridges in the FTLE field have been used to investigate zones of high stretching in

more Earth-like plumes [17, 45]. As with our work, these other studies find that the

leading edge LCS and plume centerline have potentially high destructive capability

in terms of homogenizing mantle heterogeneities. However, the cited works also show

that as the leading edge LCS begins to deform under more complex flow scenarios

(e.g., viscosity variations at the 670 km discontinuity), the structure can become a

source for producing long tendril-like heterogeneities that are shed by the plume as

it upwells.

Although similar structures are observed in bio-inspired flows [46], the precise

conditions necessary to produce a forward-time LCS akin to the outermost LCS of

the injection plume (ref. Section 4.3.4) are not fully understood. Nevertheless, should

an operating regime exist which generates analogous structures for mantle plumes,

these forward-time LCS would likely be very effective at shielding the starting plume

152



from lateral entrainment of mass. As noted in Section 4.3.4 for the injection plume

considered, the shielding effect of the outermost LCS degrades as the starting plume

head approaches the upper surface. Therefore, even if a strong forward-time LCS

barrier is produced for a starting mantle plume, the structure likely has no impact

on the mass transport characteristics of a mature conduit. Forward-time LCS may,

however, be critical to the transport behavior of isolated thermals throughout their

lifetimes.

Should flood basalt provinces be produced by plume heads [55, 74] having simi-

lar characteristics to the thermal plumes studied here, the analysis of Section 4.3.4

suggests the composition would be dominated by material originating from the lower-

most 600 km of the mantle. As the vigor of the plume increases, the plume head will

become more efficient at incorporating overlying mass, but the head should still be

composed primarily of mass originating near the core-mantle boundary. On the other

hand, if mantle plumes operate in a regime similar to the injection plume which had a

high vorticity head, then flood basalts would be expected to have a very pronounced

component derived from the upper mantle. For the injection plume considered,∼ 40%

of the total plume head mass would originate from a depth of less than 1300 km.

The shape metric developed in Section 4.4 is completely generic and certainly

applicable to mantle plumes. The specific arrangement of shape producing regions

observed for our laboratory plumes will likely differ from those simulated using more

Earth-like conditions. Nevertheless, the complexity captured in Figure 4.31(a) was

unexpected and suggests that even simple flows transform the dimensionality of fluid

elements in an intricate manner. In comparison to the plume head, the conduit of an

axisymmetric plume, like the ones studied here, is unremarkable in that spheres are

transformed to 1D structures with little variation across the conduit [15]. However,

such simplicity may not be representative of mantle plumes. Even a mature mantle

plume which lost the plume head long ago must still operate in an environment
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characterized by time-dependent flow, and that time dependence will undoubtedly

alter how fluid elements are deformed in the conduit.

The shape metric itself provides the ability to investigate the dimensional trans-

formations of an entire flow without relying on a small number of discrete spheres.

As discussed in relation to Figure 4.31(b), the vertical line at |x| ≈ 20 mm which

separates two 1D-producing areas of the flow (shown seeded with brown tracers) is

actually differentiating mass that will be brought into the plume head from above ver-

sus below. The presence of that particular transition in deformation behavior would

have been very difficult to detect by launching a small number of spheres. Indeed,

many of the boundaries or minor variations visible in Figure 4.31(a) may be over-

looked by such techniques. The metric, on the other hand, provides a predictive map

of the entire flow that permits a deeper analysis of how shapes are transformed. Even

the Lagrangian coherent structures we have discussed do not completely foretell how

the flow deforms an arbitrary element.
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CHAPTER V

Time scale analysis for onset of convection in

laminar plumes

5.1 Introduction

Linear stability analyses and numerous experiments on Rayleigh-Bénard convec-

tion have shown that as a fluid layer is uniformly heated from below or cooled from

above, the fluid will remain quiescent provided the Rayleigh number (ref. Table V).

Ra =
ρgα∆Td3

κµ
(5.1)

remains below some critical Rayleigh number value, Rac [3, 8, 9, 10, 14, 18]. Once Rac

is exceeded, the system will transition from a purely conductive heat transfer regime

to one in which convective motion of the fluid becomes progressively more important

with increasing Rayleigh number. The exact Rayleigh number value corresponding

to the onset of convection depends on boundary conditions (e.g., whether the upper

and lower surfaces bounding the convecting layer are free-slip or no-slip) and fluid

properties (e.g., temperature dependent viscosity). Experiments with localized heat

sources constructed from fine wires [17, 21, 1] and larger diameter cylinders [18] have

suggested that Rayleigh-Bénard results are also directly applicable to the onset of

convection in such cases. Here the fluid surrounding the heat source initially warms
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Symbol Description Units
α Expansion coefficient ◦C−1

δ Thermal boundary layer thickness m
κ = k/ρcp Thermal diffusivity m2 s−1

µ Dynamic viscosity Pa s
µ = µ(Tc + ∆T/2) Dynamic viscosity at Tc + ∆T/2 Pa s
ρ Density kg m−3

ā Time-averaged plume head diameter m
cp Specific heat capacity J kg−1 K−1

d Depth of fluid layer m
g Gravitational acceleration m s−2

R Heater radius m
t Time s
t0 Convection onset time scale from Moses

et al. [16]
s

t0f Plume liftoff time scale s
T Temperature ◦C
Tc Ambient temperature ◦C
Tf Temperature 5 mm radially away from

heater
◦C

Th Heater temperature ◦C
∆T = Th − Tc Maximum temperature contrast ◦C
u0 Plume head velocity m s−1

y0 Plume head virtual origin m
c = ln (µ(Tc)/µ(Th)) Viscous contrast -
Ra Rayleigh number -
Raδ Raleigh number based on thermal

boundary layer thickness
-

Rac Rayleigh critical -

Table 5.1: Notation.

by thermal conduction until the incipient thermal boundary layer becomes unstable

and erupts.

Unlike simply detecting the presence of convection, defining criteria for the pre-

cise time at which a system transitions from the conductive heat transfer regime to

one dominated by convection is quite difficult. While the transition and onset of

convection may be rapid, particularly for isoviscous fluids [5], it is nonetheless a con-

tinuous process. Consequently, one generally must define a threshold against which

some characteristic flow parameter can be compared and define onset as the crossing

162



of this threshold. Examples of such criteria are a departure in the rate of change of

fluid temperature from that of a purely conductive profile [5] or destruction of the

concentric symmetry of isotherms within the thermal boundary layer surrounding a

heated wire [17, 21].

In contrast to these techniques, Moses et al. [16] construct an alternative definition

for the onset of convection that requires no arbitrary threshold and can be computed

to an accuracy that is limited only by experimental uncertainty. The authors conduct

a series of experiments on laminar, thermal plumes generated with small resistive

heaters in essentially isoviscous fluids. The plumes are characterized by a bulbous

head connected to the heat source via a thin trailing conduit. As have many others

(ref. Chapter IV and [13, 16, 4, 6, 7, 15]), Moses et al. observe that after an initial

transient period, the plume head reaches a constant velocity u0. This velocity along

with a virtual origin y0 extracted from curves of plume leading edge position versus

time is then used to construct the characteristic time t0 = y0/u0 which is then taken

to mark the onset of convection. The definition of onset using the time scale t0 lends

itself to experimental simplicity since one only needs to track the height of a plume

head versus time which can easily be accomplished by a variety of techniques (ref.

Chapter IV and [6, 16, 4]). While the time scale t0 has some important virtues, it is

not clear why t0 should be a reliable marker for termination of the purely conductive

regime.

The objective of the following development is to explore the relationship between

the time scale t0 and the onset of convection for laminar plumes generated in a fluid

with temperature dependent viscosity. Our experimental results indicate that t0 is

indeed a proxy for the end of the purely conductive regime, but the time scale can

be corrupted by factors affecting the advection-dominated phase. The remainder

of the presentation is structured as follows. In Section 5.2, a brief overview of the

experimental setup is presented followed by an analysis of the results in Section 5.3.
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Figure 5.1: Schematic of the time scale t0 for onset of convection. Thermal boundary
layer (solid line) grows by conduction in Phase I then becomes unstable
in Phase II. The resulting plume head reaches a steady rise velocity in
Phase III.

And finally, some concluding remarks are presented in Section 5.4.

5.2 Experimental setup

A full description of our experimental setup can be found in Chapter 2. Briefly,

laminar plumes are generated in an acrylic, cubic tank of dimension 26.5 cm per

side. The tank containing the working fluid is sealed and surrounded by a water

bath to provide a well-controlled initial temperature of 25.2±0.1 ◦C. The heat source

is a 2 cm diameter heater located in the center of the tank bottom. Plumes are

created under two operating regimes with the heater operating at constant power

or constant temperature. In the constant power cases, the heater power is fixed

and its temperature is found to increase slowly over time as dictated by the flow

dynamics. Actual power delivered to the fluid in the constant power cases, monitored

with a thin-film heat flux gauge (Omega HFS-3) cemented to the heater, is always

less than the total heater power because of parasitic losses to the tank structure. For

the constant temperature cases, the heater power is digitally controlled and allowed

to fluctuate such that the heater temperature ramps up to the desired steady state
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Property Value or formulation Units
Density at 25 ◦C (ρ) 1441 kg m−3

Thermal expansion coefficient (α) 3.1× 10−4 K−1

Dynamic viscosity (µ) µ = 1080e−0.156T+6.25×10−4T 2
Pa s

Specific heat capacity (cp) 2280 J kg−1 ◦C−1

Thermal conductivity (k) 0.34 W m−1 ◦C−1

Table 5.2:
Corn syrup fluid properties. The thermal expansion coefficient and tem-
perature dependence of viscosity were measured in the laboratory. Specific
heat capacity and thermal conductivity values were provided by the man-
ufacturer (LSI Specialty Products).

surface temperature in 90 s or less.1 Once the constant temperature set point is

reached, the temperature is maintained to ±0.1 ◦C.

In all experiments, Liquidose 436 corn syrup is utilized. The syrup is seeded with

two types of neutrally buoyant passive tracers – a white powdered plastic and ther-

mochromic liquid crystals that preferentially scatter light of a particular wavelength

based on the temperature of the liquid crystals. The encapsulated liquid crystals

utilized, Hallcrest NSL33R25C15W100, are active in the visible spectrum for temper-

atures spanning 25 ! T ! 27 ◦C. Properties of the syrup are provided in Table 5.2

and a summary of experimental operating conditions can be found in Table 5.3.

Following heater activation, the full 3D flow is imaged at discrete time intervals

using the stereoscopic PIV (SPIV) system described in Chapter 2. The raw SPIV

images captured during each experiment are then processed to extract the time-

dependent velocity field and fluid temperature. At least 48 hours is allowed between

runs for the syrup to re-equilibrate with the bath temperature.

5.3 Experimental results and analysis

Prior to discussing our experimental results, two important modifications to the

Rayleigh number formulation provided in the Introduction must be made. First as
1The heat flux gauge was also utilized in these experiments, however the high heat flux during

the initial temperature ramp up caused the flux sensor to fail.
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Heater
Case Power [W] Flux power [W] Temperature [◦C]
N1 0.62 0.44 -
N2 0.96 0.72 -
N3 - - 50
N4 - - 60
N5 - - 70
N6 - - 80

Table 5.3:
Experimental parameters. Flux power values represent the steady state
power delivered directly to the syrup as measured with a heat flux gauge.
These values are lower than the total heater power due to parasitic heat
losses to the acrylic tank.

noted in the Introduction, a thermal boundary layer develops over the heat source

following activation of the heater and grows by conduction until the buoyancy gen-

erated is sufficient for the layer to become unstable. During this purely conductive

heat transfer phase, the depth of the fluid d has little impact, and the thickness of the

boundary layer is the pertinent length scale in Eq. 5.1 [1, 17, 18, 21]. The modified

Rayleigh number is then

Raδ =
ρgα∆T δ3

κµ
, (5.2)

and we will take the value of Raδ at the onset of convection as the critical Rayleigh

number Rac.

Second our corn syrup has a temperature dependent viscosity, and hence we must

also choose a characteristic value of µ for Eq. 5.2. Here we follow Stengel et al. [20]

and White [22] and set µ = µ, the viscosity corresponding to the mean temperature

anomaly ∆T/2. The referenced authors found that for Rayleigh-Bénard convection in

fluids with exponential or super-exponential dependence of viscosity on temperature,

Rac based on µ initially increases with the viscosity contrast c = ln(µ(Tc)/µ(Th))

before plateauing at c ≈ 8 and then decreasing for c & 8.

Once the plume has developed, hot buoyant material constituting the plume head

eventually comes in contact with the cold overlying ambient. Separating upwelling
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and ambient material of the starting plume is a material surface at the plume leading

edge which strongly attracts nearby fluid elements. As discussed in Chapter IV,

the material surface is a robust characteristic of laminar plumes and is intimately

related to other means of identifying plume position (e.g., shadowgraphs, schlierens,

and the use of fluid dye). To determine the location of this material surface for

our datasets, we compute the backward, finite-time Lyapunov exponent (FTLE) field

from the velocity data using the technique of [19] (ref. Chapter IV). The FTLE

field provides a measure of the average rate at which nearby fluid elements separate

[2]. The strong attraction of fluid parcels to the leading edge material surface will be

manifest as strong separation in backward time. Hence, the surface will produce a

ridge of elevated values in the backward-time FTLE field. The FTLE ridge is known as

a Lagrangian coherent structure (LCS) [19], and we take the apex of the leading-edge

LCS as identifying the vertical position of the starting plume. The backward-time

FTLE field and leading edge LCS are illustrated for one of our plumes in Figure 5.2).

A partial history of the plume height as a function of time for each of our six

experimental cases is shown in Figure 5.3. At the earliest times following heater

activation, the flow has not developed enough for fluid elements on either side of the

unstable leading edge LCS to separate sufficiently. Therefore a well-defined peak in

the backward time FTLE field cannot be extracted [11, 12], and the precise location

of the plume’s leading edge is unclear. Consequently the earliest head positions shown

in Figure 5.3 are those for which the LCS could be unambiguously identified. Also

not depicted in the figure is the location of the head once the head velocity starts

decreasing as the plume approaches the top of the tank [13].

A least squares fit of the plume head position versus time during the constant head

velocity regime provides the velocities and virtual origins summarized in Table 5.4.

With u0 and y0 available, the characteristic time t0 = y0/u0 [16] can be computed

and used to construct an estimate of the thermal boundary layer thickness δ just
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Figure 5.2:
Head structure for a laminar plume generated with a constant heater
power of 1.8 W. The view is a vertical cross section through the plume
with the heater centered at the origin. Steady state heater temperature
is 80 ◦C. The pseudocolor background is the backward-time FTLE field
with larger values representing higher rates of separation between initially
nearby fluid elements. The outer black contour (dashed) represents a
temperature of 0.3 ◦C above ambient. The umbrella-shaped solid black
line is the leading edge LCS.

Case u0 [mm/s] y0 [mm] t0 [s] δ [mm] ∆T [◦C] µ [Pa-s] c Rac

N1 0.030 -48 1600 25 10 18 1.1 350
N2 0.042 -56 1350 23 15 14 1.5 500
N3 0.055 -31 560 15 25 7.5 2.7 490
N4 0.075 -27 360 12 35 4.5 3.6 600
N5 0.097 -26 270 10 45 2.7 4.3 800
N6 0.12 -24 200 9.0 55 1.7 4.9 1020

Table 5.4: Experimental results for the six cases of Table 5.3.
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Figure 5.3:
Plume head leading edge height above the tank bottom versus time for
the six experimental cases. Best fit lines are shown in black for each case.
(") N1. (◦) N2. (#) N3. (•) N4. ($) N5. (%) N6.

prior to the onset of convection. We will assume the thermal boundary layer atop the

heater has a thickness of δ = 2
√

κt0. Substituting δ, µ, and the remaining parameters

into Eq. 5.2 yields the Rayleigh critical values shown in Table 5.4 and plotted as a

function of viscosity contrast c in Figure 5.4.

Figure 5.4 captures quite well the qualitative nature of Rac dependence on c as

reported by Stengel et al. [20] and White [22] for the onset of Rayleigh-Bénard

convection. Also of note is the ratio of maximum to minimum Rac values in Table

5.4 which is O(3). For roughly the same range of viscosity contrast, the ratio varies

from 1.3 to 2.6 in the referenced works of Stengel et al. and White depending on

the boundary conditions considered and the assumed temperature dependence of

viscosity. Provided that onset of Rayleigh-Bénard convection is directly applicable to

our localized heater in much the same way as it is for wires and cylinders [1, 17, 18, 21],

then the observations from our data certainly do not exclude use of t0 as a marker

for onset.

We can obtain further insight into the relationship between t0 and the onset of

169



Figure 5.4: Rac versus viscosity contrast for the data of Table 5.4.

convection by inspecting time traces for a thermocouple located in close proximity

to the heater. In all our experiments, the heat flux gauge was equipped with a

thermocouple located roughly 5 mm radially beyond the periphery of the heater.

Consequently, the thermocouple could detect changes in the thermal boundary layer

temperature as the layer became unstable and colder fluid was subsequently drawn

in. This effect was quite pronounced for the constant temperature cases N3-N6 as

shown in Figure 5.5, but no discernable signal was visible in cases N1 or N2. The time

t0f corresponding to the peak temperature reached prior to the illustrated decrease

provides another time scale related to the onset of convection. Although not presented

here, it should be noted that in all four cases, maximum fluid velocity in the vicinity

of the heater had reached 60-110% of the constant head velocities recorded in Table

5.4 by the time t0f has elapsed. Consequently this new measure, t0f , is more of a

proxy for liftoff time than for the onset of convection. Nevertheless, a comparison of

this time scale to that of Moses et al. is presented in Table 5.5 along with the time

averaged radius of the plume head a during the constant head velocity regime.

There is, however, one particular issue with the interpretation of t0 that is ap-

parent. The constant power cases N1 and N2 from Table 5.4 present a low viscosity
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Figure 5.5:
Fluid temperature 5 mm away from heater perimeter as a function of
time. Curve labels correspond to case numbers. The time t0f of peak
temperature prior to plume liftoff is marked with an X.

contrast and are hence nearly isoviscous. Unfortunately, the Rayleigh critical values

computed using t0 for these two cases are significantly lower than the limiting critical

values obtained from the stability analysis of Stengel et al. [20]. If the onset of con-

vection in our isolated plumes is adequately modeled by Rayleigh-Bénard convection,

then in the isoviscous limit Rac should land in between the two theoretical values of

Rac ≈ 1100 and Rac ≈ 1700, with Rac being biased toward 1700 as the fluid directly

over the thermal boundary layer better approximates a rigid lid. Note that if the

boundary layer thickness is computed using t0f instead of t0, then as the viscosity

contrast decreases Rayleigh critical values appear to approach those predicted by

Rayleigh-Bénard theory (ref. Table 5.5).

Several sources could be responsible for the reduced Rayleigh critical magnitudes

obtained with t0, particularly in the low viscosity limit. It is conceivable that the time

scale t0 is systematically smaller than the actual time required for onset of convection,

which would serve to uniformly lower the estimated Rac. Of course, as noted in the

Introduction, measuring the onset of convection is to a large degree predicated on
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Case t0 [s] a [mm] t0f [s] t0f/t0 Rac(t0f )
N3 560 51 1070 1.9 1300
N4 360 44 630 1.8 1400
N5 270 38 420 1.6 1600
N6 200 38 320 1.6 2050

Table 5.5:
Comparison of liftoff time scale t0f to t0 for cases N3-N6. Time-averaged
plume head diameters, a, and Rayleigh critical values computed using t0f

are also included.

the definition one chooses to mark onset. Therefore a systematic under prediction of

onset time is not a large concern and could easily be corrected with a simple scale

factor. Our data cannot rule out the presence of a systematic bias.

An additional factor that may skew Rac results computed using t0 derives directly

from the construction of the time scale. Given that t0 is determined from the plume

head velocity, experimental conditions pertinent to the advection dominated phase

could contaminate the extracted t0 even though these factors have little or no influence

on the growth and initial instability of the thermal boundary layer. Such effects could

be significant for the slow N1 and N2 cases which produced plumes with large heads

that likely rose at lower than expected velocities due to the presence of tank side

walls. If we take the plume diameter as the maximum width of the leading edge

LCS and time average over the constant velocity phase of plume ascent, we obtain an

average diameter of ∼ 65 mm in both these two cases. An estimate of the wall effects

(ref. Chapter IV) suggests the constant velocity of the N1 and N2 plume heads may

be 50% lower than would be observed in a wider tank.

One might envisage that an increasing u0 will decrease t0, however this is not

necessarily the case. Consider the plot of thermal boundary layer thickness versus

time shown in Figure 5.6. An order of magnitude estimate of the time required for a

thermal perturbation at the center of the tank to reach the sidewalls is given by

τ ∼ d2/4κ, (5.3)
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Figure 5.6:
Effect of u0 on the time scale t0. Thermal boundary layer (solid line)
grows by conduction in Phase I then becomes unstable in Phase II. The
resulting plume head reaches a steady velocity in Phase III. Provided
development of two plumes, a and b, are identical in Phases I and II, an
increase in the head velocity for case b equates to an increase in t0. The
pivot is identified with an open circle.

where d is the tank width and κ is the thermal diffusivity. Based on our tank dimen-

sions and syrup properties, τ ∼ 48 hours. Therefore, tank sidewalls have a negligible

effect on the thermal boundary layer growth immediately following heater activation.

The solid curve in Phase I of Figure 5.6 then depends on heater operating conditions

and fluid properties alone. Once the flow has transitioned to the advection-dominated

regime, an increase in plume head velocity will serve to steepen the curve in Phase III

as though it were pivoting at some point in positive ty-space. The end result is that

the time scale t0 will increase with head velocity as illustrated in Figure 5.6. A careful

examination of the data in Table 5.5 suggests such contamination of t0 is indeed an

issue. As the time-averaged plume head radius decreases, so too does the ratio t0f/t0.

In other words, as the plume head diameter increases and the rise velocity slows due

to wall effects, t0 is seen to decrease.
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5.4 Conclusions

Moses et al. [16] construct a time scale t0 based on the constant velocity of a

plume head and a virtual origin y0 determined from a least squares fit of the plume

head elevation versus time. The time scale was found to provide Rayleigh critical

estimates for the onset of convection that captured the qualitative dependence of Rac

on the viscosity contrast observed by Stengel et al. [20] and White [22] for Rayleigh-

Bénard convection in fluids with temperature-dependent viscosity. However in the

limit of small viscosity contrast, the Rayleigh critical values constructed from t0 were

significantly lower than those predicted from linear stability theory. Furthermore t0

was found to be susceptible to contamination from conditions, namely the influence

of tank side walls, that have little relevance to the initial conductive growth of the

thermal boundary layer prior to liftoff. Overall, the time scale t0 is not without merit,

however caution is warranted when using the measure to confine the duration of the

purely conductive heat transfer regime.
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