
[21] C. M. Vest and M. L. Lawson. Onset of convection near a suddenly heated
horizontal wire. International Journal of Heat and Mass Transfer, 15(6):1281–
1283, 1972.

[22] D. B. White. The planforms and onset of convection with a temperature de-
pendent viscosity. Journal of Fluid Mechanics, 191:247–286, 1988.

176

CHAPTER VI

Reflections and future work

Although laboratory methods like those described in this thesis obviously lack the

ability to capture the full complement of behaviors that are characteristic of a complex

system like the Earth’s mantle, experiments will continue to play a fundamental role

in identifying new fluid phenomena. A flow studied in the laboratory suffers no

effects from numerical precision, numerical dissipation, or simplifying modifications

made to governing equations. The laboratory flow is real and will precisely capture

all the relevant physics that governs its behavior. And, when some experimental

limitation becomes imprinted on the data, we often learn something new that might

have otherwise been overlooked.

During the course of our experiments, a number of avenues for improvement in

experimental technique have been established, and several open questions regarding

the dynamics of plumes that warrant additional exploration have arisen. In the

remaining discussion, these items are presented in the hope that they will prove

beneficial to subsequent efforts.

Improvements to experimental technique

Our results can be greatly expanded upon by more-effectively measuring the tem-

perature field of the flow. Thermochromic liquid crystals provide an interesting tool

177

for non-invasive temperature measurement, but leveraging their limited color play is a

significant problem. As discussed in Chapter II, TLC’s are only visible over a fraction

of their advertised color play in most PIV applications. In our setup, this means we

can reliably resolve the temperature field within < 1 ◦C of ambient. However, 1 ◦C

represents a mere 2% of the total temperature variation in the hottest flows.

Some researchers accommodate the limited color play of TLC’s by using multiple

TLC formulations each having a separate active temperature band. When these

multiple formulations are illuminated using monochromatic light (e.g., from a laser),

a series of isotherms are produced [1]. Theoretically, one could also use multiple

formulations with white light thereby generating a progression of rainbow spectra

instead of discrete isotherms. This multi-formulation plus white light setup may

work quite well for a slow, simple flow like our laminar plumes. However for complex

flows, associating a particular color with a specific temperature via image processing

will be difficult. Since there are many formulations that could be simultaneously

scattering the same color of light, the image processing algorithm will need to use

heuristics to match each formulation with a specific location in the flow field.

The optimal approach may be to use two TLC formulations and a numerical model

to reconstruct the temperature field. The two TLC formulations would be chosen such

that one is visible near ambient and the other active at say half the total temperature

differential. The numerical model could then be run using the PIV velocity field as

input and the visible TLC contours as quality control checks.

Another major opportunity for improvement in experimental procedures is much

simpler and revolves around heater design and operation. In order to quantitatively

characterize observed flow dynamics and produce scalings as a function of suitable

non-dimensional numbers (e.g., the Rayleigh number), the operating parameters for

each experiment must be well-controlled and measurable. In our experiments, we took

great care to instrument the heater so that operating temperature and heat flux deliv-

178

ered to the syrup were known. Unfortunately, our heater design and instrumentation

had limitations as described below that should be remedied.

Knowing the heat flux for all experiments is a very helpful diagnostic, and it

would provide another check for temperature field reconstruction with a numerical

model. To this end, each of our heaters was instrumented with a thin film heat flux

gauge (Omega HFS-3), and in addition the constant temperature cases also employed

a thermocouple on the syrup-wetted surface of the heater. Regrettably, the massive

heat flux generated as the heater was quickly brought up to temperature in the

constant temperature cases caused the heat flux gauge to fail. An alternative means

of measuring heat flux instead of using the thin film sensor would be advantageous.

More importantly than measuring the heat flux, however, is ensuring that heat is

only delivered to the syrup along intended and known pathways. In our setup, the

tank geometry near the heater did not sufficiently limit heat loss to the tank bottom.

Roughly 25% of our total heater power went into the tank bottom instead of the

syrup. The issue here is that the tank bottom is also in contact with the syrup, and

hence an unmeasured quantity of heat can be transferred to the syrup via the tank

structure instead of directly from the heater. If experimental results are to be used

as inputs or validation cases for numerical models, then the heater state becomes a

critical boundary condition.

In terms of the PIV technique itself, there are two opportunities that can be

readily exploited to enhance the quality of data obtained with the system described

in Chapters II and III. First of all, our camera calibration technique, while sufficient,

is cumbersome in that it relies on photographing a target submersed in syrup that

is manually and precisely moved in known fashion. Methods have been developed

for the self-calibration of cameras [5, 6] that would potentially eliminate this tedious

dependence on a target and permit calibration to be performed on the fly. Since

measuring and controlling the location of a target is not required, self-calibration also

179

has the potential to further reduce PIV errors that arise due to uncertainty between

the true and measured target position.

As for the remaining avenue of improvement, a major criterion in the design of

our PIV system and data processing software has been robustness to experimental

deficiencies. While there is no substitute to a well-executed experiment, unforeseen

circumstances can always occur that degrade data. In some cases, we can replace

a degraded dataset by simply running an experiment again. In many other cases,

recollecting data is not practical, and even when it is, there is no guarantee that

new problems will not be encountered. Consequently, a degree of tolerance built into

the experimental systems helps ensure that all data are leveraged to the fullest ex-

tent possible. These considerations were the primary motivation behind development

of the hybrid PIV/PTV scheme discussed in Chapter III. A number of proposals

for augmenting the hybrid scheme were presented in the chapter, and any of those

modifications would greatly extend the capabilities of the technique.

Additional experiments

During our investigations, several aspects of plume dynamics were identified as

warranting additional study. Overall, the full implications of the nonlinearities intro-

duced by temperature dependent viscosity on the dynamics of thermal plumes remains

poorly understood. As mentioned in Chapter IV, the decrease in strain rate normal to

the plume leading edge manifold as a function of time for the warmest plumes studied

seems conceptually linked to the temperature dependent viscosity of the syrup. From

the standpoint of stretching efficiency, the falloff in strain rate suggests that a hot

starting plume is more destructive earlier in its life than later, and that a cold starting

plume’s destructive capacity remains unchanged throughout its evolution. However,

this is but one example of phenomena that may be tied to temperature dependent

rheology. As a very vigorous plume evolves from inception, to liftoff, to impacting

180

the upper surface, it passes through a number of different flow regimes. In some of

these regimes, dynamics that are at work in a real flow may have pronounced effects

that are necessarily neglected in our theoretical or numerical investigations of plume

behavior. Additional experimental datasets that explore different viscosity contrasts

would greatly enhance our understanding of the importance temperature dependent

rheology plays on mass transport, plume formation time scales, and stirring.

It is also possible that not all plumes generated in Earth’s interior have sufficient

initial buoyancy to survive [3]. One of our most intriguing datasets was of a failed

plume (ref. Chapter II), but the precise mechanisms that lead to the plume collapse

in our particular case are not well-understood. What is clear, however, is that such

events, if they occur, have the potential to significantly redistribute heterogeneity in

the mantle. A large, relatively cold upwelling that traverses only part of the mantle

has the potential to deplete a fairly significant source reservoir and transport that

material to a zone within the surrounding mantle that may not serve as source for a

plume or otherwise be sampled and expressed at the planetary surface for potentially

long times. Further exploration of the conditions necessary to produce failed plumes

as well as the mass transport properties of such events would be very beneficial.

That Earth’s liquid outer core provides a free slip boundary condition is also of

great interest. Our experimental apparatus realized a no-slip condition on all surfaces,

and such boundary conditions might rightfully be expected to have some impact on

mass transport within the viscous boundary layer near the heater. Although not

discussed in the current document, our analyses did indeed suggest a very distinct

and different relative orientation of mass within our plumes compared to that seen

by Farnetani et al. [2] using a numerical model of thermal plumes generated with

a free-slip lower boundary. In our experiments, the fluid which wetted the tank

bottom was the least likely to become incorporated into the mature plume. On the

other hand, fluid adjacent to the warm, free-slip lower boundary of Farnetani et al.

181

[2] is preferentially drawn into the upwelling since it has the lowest viscosity (i.e.,

it is the hottest mantle fluid) and does not need to work against a no-slip surface.

The presence of a free-slip lower boundary condition may also have implications for

the shape of the Lagrangian coherent structures (ref. Chapter IV) observed in our

experiments. Although experiments exploring a free-slip lower boundary would be

expensive, the possibility of such work has been explored by the present author and

certainly seems feasible.

The presence of a well-defined forward-time LCS surrounding the plume generated

via injection of hot syrup (ref. Chapter IV) and the lack of such a structure in our

plumes generated via localized heating is extremely interesting. As discussed in Chap-

ter IV, the injection plume’s outermost LCS has profound implications for the manner

in which the starting plume head entrains mass. It is not, however, abundantly clear

from our work that thermal plumes generated via localized heat sources are prohibited

from possessing such structures. There may be operating regimes whereby plumes are

generated with high Rayleigh numbers through impulsive heating using a localized

heat source that result in the presence of a forward-time LCS which surrounds the

bottom of the plume head. Discovering the precise conditions necessary to produce

such a forward-time LCS would be an immensely powerful tool for the classification

of thermal plumes and greatly assist the design of future experiments for studying

the dynamics of such flows.

Concluding remarks

Even simple flows like the laminar plumes studied in this thesis show a surprising

degree of complexity, and such observations serve as a constant reminder of the dif-

ficulty scientists face in trying to untangle the mysteries of planetary evolution. The

challenge is made all the more arduous by the remoteness of planetary interiors, but

persistence will undoubtedly lead to new and exciting discoveries.

182

The work we have conducted analyzing the mass transport properties of thermal

plumes is a small step toward a better understanding of how the material from which

Earth accreted has been transformed by time. At least over the parameter space

explored, the heads of axisymmetric starting plumes generated by a localized heat

source are ineffective at entraining overlying mass. Furthermore, the plume heads do

not exhibit any pronounced ability to mechanically stir mass within the head. The

leading edge of the starting plume, however, has the potential to be quite destructive

from a molecular mixing perspective due to the strong stretching which occurs.

As discussed in Chapters IV and V, sidewall effects have impacted our results on

many levels which makes developing or extending quantitative theories a challenge.

It is, for example, quite difficult to determine whether the velocity scaling of Eq. 4.26

adequately captures the effects of temperature-dependent viscosity when sidewalls

reduce the expected rise velocity of the plume by up to 50% (ref. Chapter IV). The

presence of sidewalls has no appreciable impact on the above qualitative observations

regarding how the plumes entrain mass, but the statistics of precisely how much mass

comes from a certain location would change. The seemingly large sidewall effects are

an unfortunate aspect of studying high Prandtl number fluids in the laboratory, but

is important to keep in mind that uncertainty in many mantle parameters is an order

of magnitude or more [4]. Given our present state of knowledge, no laboratory exper-

iment (or highly sophisticated numerical model) can provide an exact representation

of mantle flows. But even if we cannot precisely compute where the mass of flood

basalts can originate in the mantle based on the assumption that such surface features

are produced by plume heads, we still gain much insight by knowing the plume head

composition is not dominated by mass located above the rising plume (ref. Chapter

IV).

Regarding experimental technique, much effort has been expended to develop our

hardware and software such that the message provided by the data are impacted as

183

little as possible by our preconceived notions of how we expect the data to look.

These considerations are the primary motivation for developing the hybrid PIV/PTV

scheme (ref. Chapter III) and using the displacement field to iteratively deform the

image of flow regions having high velocity gradients (ref. ChapterII). Instead of

simply removing spurious vectors with a filter, we have opted to employ these more

computationally expensive techniques to leverage the information contained in the

data.

References

[1] A. Davaille, A. Limare, F. Touitou, I. Kumagai, and J. Vatteville. Anatomy
of a laminar starting thermal plume at high Prandtl number. Experiments in
Fluids, pages 1–16, 2010.

[2] C. G. Farnetani, B. Legras, and P. J. Tackley. Mixing and deformations in
mantle plumes. Earth and Planetary Science Letters, 196:1–15, 2002.

[3] I. Kumagai, A. Davaille, K. Kurita, and E. Stutzmann. Mantle plumes: Thin,
fat, successful, or failing? constraints to explain hot spot volcanism through
time and space. Geophysical Research Letters, 35(16):L16301, 2008.

[4] G. Schubert, D. L. Turcotte, and P. Olson. Mantle Convection in the Earth and
Planets. Cambridge University Press, 2001.

[5] B. Wieneke. Volume self-calibration for 3D particle image velocimetry. Exper-
iments in Fluids, 45(4):549–556, 2008.

[6] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

184

APPENDICES

185

APPENDIX A

Dynamical systems

A.1 Introduction

The dynamical systems literature is very large, being spanned by works that

are devoted entirely to the development of the underlying mathematical foundations

to numerous papers and a few books that are truly focused on applications of the

theoretical concepts to real-world problems. This appendix should not be viewed in

any way as providing complete, rigorous instruction on dynamical systems theory.

The rather simple goal of the present document is to provide a short, somewhat

self-contained introduction to those elements of dynamical systems theory that the

author found most useful when navigating the applied literature. For a more general

and thorough perspective of dynamical systems, there are several very useful books

available (e.g., [1, 35, 17, 39, 13, 27]).

The current interest in dynamical systems theory traces its roots back to the very

work of the field’s principal founding father, Poincaré. In the late 1800’s, Poincaré

was investigating a problem that had been troubling some of the greatest scientific

minds for centuries: the stability of the solar system. The difficulty of the problem

derived directly from the nature of the governing differential equations — gravity

was found to behave as an inverse square law, and hence the differential equations

of motion were nonlinear. Then as now, finding analytical solutions to nonlinear

186

differential equations is a challenging task.

Up until the time of Poincaré, most theoretical work on celestial mechanics had

centered around attempts to find explicit expressions for positions of the orbiting

bodies as a function of time. Investigators’ optimism was no doubt buoyed by the

successes encountered with the analysis of the much simpler two body problem. In-

deed, the equations of motion for two bodies interacting via gravity had been solved

by Newton himself [3]. Later work on the topic would actually permit Bertrand to

show that perturbed orbits remain closed (i.e., the motion is periodic1) in a two-body

power law central force problem if and only if the central force has one of two forms

[12]: Hooke’s law where force varies in linear proportion to the distance between the

bodies, or an inverse square law where force is inversely proportional to the square

of the distance between the bodies. Unfortunately augmenting the two body plane-

tary model with a single additional gravitationally interacting body, let alone a full

solar system packed with planets and planetary moons, makes solving the three body

system so difficult that it has to date eluded a general, closed-form solution.2

Recognizing the problems countless others had faced before him, Poincaré decided

to investigate the three-body system from a different perspective. Instead of attempt-

ing to find explicit solutions for the positions of the three bodies as a function of time

given some initial conditions, Poincaré queried the qualitative nature of all solutions

using geometric arguments and the asymptotic behavior of trajectories in the infinite

time limit. By trading off the ability to say definitively where planet a would be at

time t, Poincaré’s tools and those developed later by others provided the capacity

to make qualitative, but nonetheless significant, characterizations about the nature
1An unclosed orbit does not imply that the orbit is unbounded and flies off to infinity, but merely

that the motion of the orbiting body is not periodic (i.e., the orbit never retraces its path).
2An infinite series solution to the three-body problem was determined by Sundman [36], however

such infinite series expansions are typically not considered closed-form solutions. Moreover, Sund-
man’s expansion is so slowly converging that it provides essentially no insight into the behavior of
the orbits. Approximately 108,000,000 terms of Sundman’s series would be required to compute a
three-body orbit with the accuracy typical of present day ephemeris measurements [38].

187

of an orbit given the system’s initial conditions. Are there certain configurations of

the three bodies that always result in at least one flying off to infinity? What initial

configuration is necessary for a third body to be captured by one of the other two?

Are there regions in space that the bodies are forever prohibited from occupying?

Dynamical systems theory provides the framework for resolution of these questions.

Although the study of fluid mechanics is in many ways vastly more complex than

orbital mechanics, the two fields share one very important trait: the governing equa-

tions are nonlinear. Furthermore, fluid dynamicists face many of the same or similar

questions encountered in orbital dynamics. Are there regions in a given flow that

have distinct behavior? If so, how can one identify them, and how much if any mass

is exchanged between these distinctive zones? Are there regions of the flow field that

are completely isolated from stirring with the ambient? How does a fluid parcel tran-

siting a certain area behave? Does the parcel eventually loop back onto its starting

point, or does the parcel perhaps wind around through time eventually coming close

to every spatial location in the flow domain under analysis while never quite retracing

its previous path?

To provide a concrete example of how some of these questions can arise in a

fluid mechanics context, consider the velocity field of the periodically forced Duffing

equations

ux = y

uy = x− x3 + ε cos ωt, (A.1)

where ε is a parameter that controls the magnitude of the forcing, and ω is the angular

velocity of the forcing function. The velocity field given by Eq. A.1 satisfies ∇ ·u = 0

and can be thought of as an incompressible 2D flow arising from some appropriate

driving conditions. Following [30], we set ε = 0.5 and ω = 3 yielding a forcing period

188

of T = 2π/3 time units. The corresponding velocity field is shown in Figure A.1.

Assume that the flow has existed and will exist for all time, and further suppose that

at t = 0 two blocks of fluid are instantaneously dyed different colors and released into

the flow. Figure A.2 presents three different scenarios. In each case, dyeing of the

fluid has been simulated by filling the different regions with a large number of blue or

red passive tracers. These individual passive tracers are then advected with the flow

using a fourth order Runge-Kutta algorithm for 16 periods of the forcing function.

What happens to the blocks and how they interact is not immediately obvious from

examining the velocity field alone.

The blocks of Figure A.2(a) intermingle and become well-stirred.3 But why?

Perhaps the observed behavior is simply a result of the initial proximity of the colored

blocks. The blocks, after all, remain isolated if the initial separation is greater, as

in A.2(c). Unfortunately if the block separation along the x-axis is increased once

more, efficient stirring again ensues as captured in Figures A.2(e,f). So clearly initial

proximity of the tracer blocks cannot be a dominating factor affecting stirring within

this particular flow after all. With further reflection, we may conclude that the

scenario of Figure A.2(c) keeps the blocks isolated because they are released into

part of the velocity field that seems to recirculate (ref. Figures A.1(b,d)). The other

two scenarios perhaps stir well solely because the initial location of the blocks lie

outside these recirculation zones. Indeed through close examination we can see that

the pattern of stirred fluid shown in Figure A.2(b) is almost identical to that of Figure

A.2(f). We therefore might posit that this flow will efficiently stir all fluid as long as

the material to be stirred is located sufficiently far away from the recirculation zones.

However as demonstrated by Figure A.3, our hypothesis is terribly wrong. Although

the evolved tracer field of Figures A.3(b-d) is only shown at three time values following
3Here and throughout, the notion of stirring will be used to represent the diffusionless process

of stretching and folding fluid parcels. Mixing, on the other hand, will be reserved for describing
processes where molecular diffusion is important.

189

Figure A.1:
Velocity field of the periodically forced Duffing equations at four time
values: (a) t = 0, (b) t = π/6, (c) t = π/3, (d) t = π/2. For clarity, the
velocity vectors are of equal length and colored by magnitude.

190

Figure A.2:
Three scenarios, one for each row of the figure, demonstrating the evolu-
tion of two groups of passive tracers (red and blue) under the periodically
forced Duffing equations. (a, c, e) Initial distribution of tracers at t = 0
for each scenario with black line segments drawn tangent to the instan-
taneous velocity field for reference. (b, d, f) Corresponding tracer fields
after an elapsed time equivalent to sixteen forcing periods (t = 32π/3).

191

Figure A.3:
Evolution of two groups of passive tracers (red and blue) under the pe-
riodically forced Duffing equations. (a) Initial distribution of tracers at
t = 0 with black line segments drawn tangent to the instantaneous veloc-
ity field for reference. (b, c, d) Tracer fields after fourteen (t = 28π/3),
fifteen (t = 10π), and sixteen (t = 32π/3) forcing periods, respectively.

192

initial tracer release, the behavior illustrated persists for all time: the red and blue

blocks rotate clockwise around the flow domain without ever interacting with each

other. Apparently the example flow field supports mysterious regions far away from

the areas of recirculation where stirring is also nonexistent.

As an additional motivating example, consider the flow of a periodically perturbed

Hill’s spherical vortex, where the perturbation can be imagined as perhaps arising

from a wavy walled pipe through which the spherical vortex is propagating. Let the

vortex initially propagate along the z-axis and then change to a coordinate system

that moves with the mean velocity of the vortex. The equations for the resulting

perturbed model velocity field are [6]:

ux = (ur sin θ + uθ cos θ) cos φ− ε

2
sin(ωt)

uy = (ur sin θ + uθ cos θ) sin φ− ε

2
sin(ωt)

uz = ur cos θ − uθ sin θ + ε sin(ωt), (A.2)

with

ur =






−3
2u0

(
1− r2

a2

)
cos θ, r < a

u0

(
1− a3

r3

)
cos θ, r ≥ a

(A.3)

uθ =






3
2u0

(
1− 2 r2

a2

)
sin θ, r < a

−u0

(
1 + a3

2r3

)
sin θ, r ≥ a.

(A.4)

Note that a is the vortex radius, u0 the free stream velocity, r =
√

x2 + y2 + z2,

θ = arccos(z/r), φ = arccos(x/ρ), and ρ =
√

x2 + y2. The parameter ε controls the

magnitude of the perturbation and ω its frequency. As with the Duffing oscillator,

the perturbed Hill’s spherical vortex satisfies ∇ · u = 0. A 2D cross section of the

velocity field at the y = 0 plane for a = 1, u0 = −1.5, ε = 0.3, and ω = 2π is provided

in Figure A.4.

193

Figure A.4:
Velocity field for the periodically forced Hill’s spherical vortex at four
time values: (a) t = 0, (b) t = 1/4, (c) t = 1/2, (d) t = 3/4. Velocity
magnitude is represented by the length of the vectors as well as the
pseudocolor background.

194

Releasing the multi-colored blocks of fluid depicted in Figure A.5(a) into this

velocity field at t = 0 and allowing the flow to evolve for eight forcing periods produces

what at first glance may appear to be very strange behavior as illustrated in Figures

A.5(b,c). While the orange and cyan sections pass over the vortex quickly, the red and

blue regions get entrained into the vortex where they are repeatedly stretched and

folded while wrapping around but never penetrating the remaining vortex core. Also

of interest is the distinct lobe shape the red and blue fluid takes, which somewhat

resembles the tendrils of a jellyfish, as it exits the vortex. Perhaps the most peculiar

observation is that the orange and red fluid, which initially touch, do not subsequently

intermingle to any significant degree. On the contrary, the red and blue fluids are

initially separated by a comparatively large distance but stir quite effectively. Can

we explain the stirring behavior of Hill’s spherical vortex and provide a robust means

of predicting what material participates?

In the following sections we will develop a few critical dynamical systems concepts

and return to the example flows of the Duffing oscillator and Hill’s spherical vortex. As

we shall see, dynamical systems theory provides the keys to discerning why particular

regions of a flow field stir well and why some zones remain isolated for all time. We

will even discover why the stirred fluid in the above examples takes the shape observed

in the provided figures. But first, we must solidify some terminology.

A.2 The language of dynamical systems theory

Dynamical systems theory, as with most fields of study, has its own vocabulary.

While most of the needed language will be developed in turn, there are a few core

items that need to be established before proceeding further.

Obviously dynamical systems theory is concerned with systems, but what exactly

do we mean by the term dynamical system? A dynamical system is generally taken

to be the combination of a state space and a rule that governs how the state of the

195

Figure A.5:
Evolution of colored passive tracer blocks subjected to the periodically
forced Hill’s spherical vortex velocity field. (a) Initial tracer distribution
at t = 0 with line segments (black) proportional in length and tangent
to the instantaneous velocity field provided for reference. (b, c) Tracer
distribution after three (t = 3) and eight periods (t = 8) of the forcing,
respectively.

196

system evolves given some initial conditions [1]. State space itself consists of all states

a system can occupy and is spanned by the minimum set of variables necessary to

define the state of the system sufficiently such that its future state can be predicted

provided the current state is known.4 For a fluid flow of interest, we might choose

as our dynamical system the combination of the Navier-Stokes equations and a state

space spanned by temperature, velocity, density, and possibly time if the flow is time-

dependent. Or, if we are particularly interested in mass transport, we could instead

consider tracking the spatial position of passive tracers evolving in a specified velocity

field, as was done in Section A.1. In this case, the state space is spanned by spatial

coordinates of the tracers (and potentially time if the velocity field is unsteady). The

rule governing the change in tracer position becomes

ẋ =
dx

dt
= f(x, t), (A.5)

where x is the particle position, and f(x, t) is the fluid velocity at that position and

some time, t.

In regard to the rule governing system evolution, two dominant types are encoun-

tered in the literature: iterated maps and differential equations. Generally speaking,

iterated maps function in discrete time while differential equations operate in con-

tinuous time. While that may be a subtle distinction, the consequences can be very

important. Discrete time systems with a given state space dimension are able to sup-

port more complex behavior than their continuous time cousins of equal dimension

[17]. The reason for the difference in behavior is a consequence of the map trajectory’s

ability to jump around in state space without violating the no-intersection theorem,

whereas a solution from a continuous-time differential equation is prohibited from

ever crossing itself.5 This appendix focuses exclusively on systems described by dif-
4Some authors refer to state space as phase space, while others reserve the term phase space

solely for Hamiltonian systems. The two are equivalent for our purposes.
5To do so would create a single state of the system at the point of intersection that simultaneously

197

ferential equations, nevertheless, iterated maps are important dynamical systems in

their own right and can also be quite useful in the study of periodic, continuous time

systems by way of Poincaré sections.

Finally, dynamical systems theory provides several prominent names for a solution

to the set of differential equations governing system evolution. We will refer to the

solution of a system of equations as a trajectory through state space, although orbit

is also very common in the literature.

A.3 Fixed points

With the basic terminology available we can now start the dynamical systems

development. Let us begin with the system

ẋ = f(x, t). (A.6)

Eq. A.6 constitutes a system of first order ordinary differential equations with the

right hand side (RHS) being a function of the dependent variable, x, and the indepen-

dent variable, t. When the independent variable, in this case time, shows up explicitly

in the RHS, the system is classified as non-autonomous. If the RHS is independent

of time, the system is deemed autonomous and can be written as

ẋ = f(x). (A.7)

Note that non-autonomous systems can be made autonomous by simply introducing

a new state space variable for t. Equations A.1 and A.2 from the Introduction,

for example, are both non-autonomous systems. They can be made autonomous

by introducing a new state space variable, θ = ωt, and augmenting the system of

produces two different outcomes – a violation of the uniqueness of solution theorem [1, Thrm. 7.14].

198

differential equations with θ̇ = ω. In a sense, then, autonomous systems are the more

general form.

The number of equations used to describe the system is equal to the dimension of

the state space, with each differential equation specifying how the underlying state

space variable changes with time. Any group of differential equations, be they higher

order ordinary differential equations or partial differential equations, can in principle

be broken down into a set of first order ordinary differential equations. In the case of

partial differential equations, the resulting set of first order ODE’s may be infinitely

large, but nevertheless the transformation is conceptually possible. The rationale for

why a partial differential equation results in an infinite dimensional state space should

be intuitively clear from the definition of a state space given in Section A.2. Initial and

boundary conditions for partial differential equations are specified using continuous

functions as opposed to discrete values, and given that a continuous function can

be evaluated at infinitely many points, we therefore require infinitely many pieces

of information to fully specify the state of a system governed by partial differential

equations.

We will only make one requirement of our generic system given by Eq. A.7 —

that f be Lipschitz continuous. On some open subset U of Rn, the function f is

Lipschitz continuous provided a constant K exists such that

|f(x1)− f(x2)| ≤ K |x1 − x2| (A.8)

is valid for all x1 and x2 in U . The constant K is known as the Lipschitz constant and

as demonstrated in Figure A.6 can be thought of in the 1D case as a sort of limiting

slope that constrains how rapidly f can vary as a function of x. If f is Lipschitz on

U , then by the existence and uniqueness theorem of ordinary differential equations,

a solution exists, and it is unique [18, Ch. 17.2]. Furthermore, if f is Lipschitz on U

199

Figure A.6:
Lipschitz continuity in 1D for f(θ) = sin θ. Note that for all θ in R,
|f(θ)| ≤| θ|. Hence sin θ is Lipschitz continuous with K = 1.

with x1 and x2 representing two separate solutions of Eq. A.7 that are valid on the

time interval [t0, t1], then

|x1(t)− x2(t)| ≤| x1(t0)− x2(t0)| eK(t−t0) (A.9)

for all t in [t0, t1]. Eq. A.9 is a statement of the theorem regarding continuous

dependence of the solution on initial conditions [18, Ch. 17.3].

The existence and uniqueness theorem places a very significant constraint on tra-

jectories through state space: solutions must be unique, and hence trajectories can

never intersect. The importance of Eq. A.9, on the other hand, is the limit it places

on the rate of separation growth or decay for nearby trajectories. Namely, while two

solutions may certainly move toward or away from each other as time evolves, they

may do so at most exponentially fast. This notion of the distance between nearby

trajectories varying at most exponentially will be seen again later in the discussion

of Lyapunov exponents.

There may be certain critical values of x for which f(x) = 0. From Eq. A.7,

we then see that ẋ = 0 at these critical points. Consequently, the critical values are

200

Figure A.7:
The blue ball can be placed almost anywhere on the hill and it will
subsequently roll down it. The very apex of the mound, however, is an
equilibrium point, and a ball placed there will remain there for all time
provided the ball is never perturbed.

equilibrium points, and a system initialized on a critical point will remain there for

all time. Given the stationary character of a system initialized at one these critical

values, they are widely referred to as fixed points of the system.

As pointed out in Section A.1, a goal of dynamical systems theory is the ability

to describe the behavior of all trajectories in some region without actually solving

the system given by Eq. A.7. Determining how trajectories behave in the vicinity of

a fixed point is one example, albeit an extremely important one, of how dynamical

systems concepts can provide significant insight into general system behavior. It

should come as no surprise that equilibrium points, if they exist, have significant

influence on the overall behavior of a system. Think of a ball perched on top of a

perfectly smooth, isolated mountain and acting under the influence of gravity (Figure

A.7). Any perturbation will clearly cause the ball to roll down the hill, but the mere

presence of the equilibrium, and hence the corresponding hill, also determines in a

generic sense how a ball placed somewhere else on the hill, potentially far from the

equilibrium, behaves. Namely, the ball will move away from the equilibrium by rolling

down the hill.

In order to determine whether trajectories move toward, away from, or orbit a

201

particular fixed point in an arbitrary system, we need to characterize the stability of

the fixed point. We do this by investigating the behavior of trajectories in the near

vicinity of the fixed point in question. Consider Eq. A.7 for an n-dimensional system

and let x∗ represent a fixed point of the system. We want to analyze the motion of

another trajectory, xb near the fixed point. Provided that xb is sufficiently close to

x∗, we can construct a set of linearized differential equations that in many cases will

permit successful classification of the fixed point’s stability. Clearly xb is a solution

to the autonomous system, so

ẋb = f(xb). (A.10)

Linearizing about x∗, we find

ẋb = f(xb) = f(x∗) + ∇f |x∗ δx + O(|δx|2) (A.11)

where δx = xb − x∗. Rearranging Eq. A.11 and dropping the higher order terms

yields

δẋ = J(x∗)δx (A.12)

with J(x∗) = ∇f |x∗ . Given that x∗ is a fixed point (i.e., it is a constant), J(x∗)

is a matrix of constant coefficients. Consequently a general solution to the linearized

system of Eq. A.12 is readily found and of the form

δx(t) = c1η1 + c2η2 + . . . + cnηn (A.13)

where the ηi are n, linearly independent solutions that depend exponentially on the

eigenvalues of J but may also be combined with polynomials in t. That is

ηi(t) = gi(t)e
λit, i = 1, . . . , n (A.14)

202

where λi is an eigenvalue of J , and gi(t) may be a polynomial of time.6 For large t,

the exponential term of Eq. A.14 dominates any polynomial, and we can immediately

see that the eigenvalues of J control the dynamics of the linearized system.

Therefore if all eigenvalues of J at x∗ are real and negative, then the general

solution (Eq. A.13) of the linearized system will go to zero as t → ∞. The fixed

point about which the system was linearized is subsequently classified as a stable

node. Conceptually, we can perturb the autonomous system away from a stable

node, and its state will asymptotically evolve back to that of the node. In contrast,

if all eigenvalues of the linearized system are positive and real, small displacements

δx from the fixed point will grow with time. Here the fixed point of the autonomous

system is classified as an unstable node. If all eigenvalues are real, nonzero, and of

differing signs, then nearby trajectories will approach the saddle fixed point in some

directions and recede from it along others. Complex eigenvalues identify fixed points

that form spirals or centers. If the complex eigenvalues have nonzero real parts, then

nearby trajectories will recede from or decay to a spiral node depending on whether

the real parts are positive or negative, respectively. Finally, a fixed point with purely

imaginary eigenvalues is referred to as a center, and trajectories in a neighborhood

of the point will form closed orbits around it.7 Figure A.8 presents several examples

of different fixed point types in 2D state space.

One final note regarding fixed point classification is in order before moving on to

an example. Collectively, those fixed points where all eigenvalues of J have non-zero

real parts are referred to as hyperbolic points. In contrast, the eigenvalues of elliptic

points are purely imaginary.8

6See a text on ordinary differential equations (e.g., [5]) for more.
7If the real part of any eigenvalue is zero, then additional techniques are generally required to

robustly classify the fixed point. In the case of a nonlinear system, the nonlinear terms that have been
neglected during the linearization can alter the true character of fixed points having eigenvalues with
Re(λ) = 0. These nonlinear terms can easily transform what appears to be a center, for example,
of the linearized system into a spiral node where trajectories spiral toward or away from the fixed
point of the true nonlinear system.

8Although we have yet to discuss Lyapunov exponents, they can be used to extend the notion of

203

Figure A.8:
Phase portraits of several example fixed points in a 2D state space. For
each case, the fixed point is identified by the open circle, and several tra-
jectories are illustrated with arrows depicting the direction of trajectory
evolution. (a) Stable node. (b) Unstable node. (c) Saddle point. (d)
Center. (e) Spiral node.

Now for an example. Consider the unforced Duffing system of Eq. A.1 with ε = 0.

We then have the system

ẋ = f(x) =




y

x− x3



 , (A.15)

with three fixed points at x∗ = (0, 0), (±1, 0). The gradient of f becomes

J = ∇f =




0 1

1− 3x2 0



 (A.16)

with eigenvalues, λ, of J satisfying λ2 + 3x2 − 1 = 0. Consequently, the fixed point

at the origin is a hyperbolic saddle point with eigenvalues λ1,2 = ±1 and the real

hyperbolicity to linearizations where J is a function of time. Such scenarios arise when determining
if arbitrary trajectories or other state space structures attract or repel nearby trajectories. See
Section A.4 and [40] for more details.

204

Figure A.9:
Phase portrait for the unforced Duffing oscillator. The elliptic points at
x∗ = (±1, 0) are indicated by small open circles, while the hyperbolic
point at the origin is shown as a solid circle.

eigenvectors

v1 =




1

1



 , v2 =




−1

1



 . (A.17)

In contrast, the fixed points at x∗ = (±1, 0) have purely imaginary eigenvalues of

λ1,2 = ±
√

2 i and are hence centers (i.e., elliptic points). A phase portrait for the

unforced Duffing system is shown in Figure A.9. Note that the trajectories shown are

actually streamlines for the vector field f(x). This equivalence between trajectories

and streamlines holds for all autonomous systems.

There is much more to the classification of fixed points than we can cover here,

and the interested reader is referred to standard texts on dynamical systems [17, 1,

13, 39, 35]. Nevertheless, the basic principles covered above regarding fixed points

and their classification through linearization are critical concepts encountered over

and over in the dynamical systems literature. In fact, we will revisit linearization

205

Figure A.10:
Section of Figure A.5(a) with one of the orange/red blocks magnified in
the inset. The group of tracers bounded by the ellipse in the inset are
initially very close together, but evolve differently as shown in Figure
A.5.

in the next section to extract essential information regarding long term behavior of

arbitrary trajectories.

A.4 Lyapunov exponents

As we saw in the previous section, the way trajectories behave in the vicinity of

a fixed point and the rate at which they move toward or away from the point can

provide a great deal of insight into the underlying dynamics of a system. However

the linearization of Section A.3 is generally only valid within some small region of

the fixed point. After a sufficiently long period of time, it is not unreasonable to

expect that δx will grow so large that the linearized system of Eq. A.12 is no longer

valid. Hence we would like to extend the notion of monitoring how nearby trajectories

separate to arbitrary trajectories that can be followed for long times.

Reflect for a moment on the perturbed Hill’s spherical vortex in Section A.1 and

the passive tracer field of Figure A.5. In particular, focus on the evolution of a group

of tracers near the orange/red boundary as depicted in Figure A.10. This group of

206

tracers initially moves as a unit until they reach the rear of the vortex (at roughly

z = −1 in Figure A.5(b)). Afterwards the orange tracers continue to move together,

but the entire lot separates from the red. Two important notions are illustrated by

this particular example.

First, the orange and red tracers belong to regions of the flow field that have

qualitatively different dynamical behavior. Although the different color tracers start

out close to one another, they eventually pull apart by color and evolve in disparate

ways. That we do not immediately see the orange and red tracers behaving differently

brings us to the second concept demonstrated by the Hill’s spherical vortex example.

In general, we have to follow the evolution of a system for a sufficiently long time, ide-

ally as t→∞, to truly ascertain the dynamics. Just because two nearby trajectories

remain close for some time does not mean they always will. Similarly two trajectories

that initially separate may only do so momentarily.

We can mathematically express the rate at which arbitrary but nearby trajectories

separate in the infinite time limit via Lyapunov exponents. To begin the development,

let F (x0, t) represent a function that generates valid trajectories of Eq. A.7 based

on initial conditions, x0. That is, x(t) = F (x0, t) and x0 = F (x0, 0). The function

F (x0, t) is known as the flow or time-t map and is simply the general solution of Eq.

A.7 evaluated at the arbitrary initial conditions x0. Hence by constructing F (x0, t),

we can form any single trajectory by fixing x0 and allowing t to vary. On the other

hand, we can evaluate F (x0, t) at some particular fixed time, tp, while varying x0 to

map all possible initial conditions to their evolved locations at tp.

Using the flow F , a trajectory xb that is initially close to another trajectory xa

can then be written as

xb(t) = F (xb(0), t) = F (xa(0), t) + ∇0F |xa(0)δx0 + O(δx2
0) (A.18)

207

where we have linearized F about xa(0). Note that δx0 = xb(0) − xa(0). Fur-

thermore, the subscript 0 on the gradient operator is merely used to emphasize that

the linearization is with respect to the dependence of F on initial conditions. Ne-

glecting the higher order terms, setting δx(t) = xb(t) − xa(t), and recognizing that

xa(t) = F (xa(0), t), we then have

δx(t) = ∇0F |xa(0)δx0. (A.19)

Since the Taylor series expansion of F is about the initial conditions xa(0), Eq. A.19

is valid for all time provided that we can justify dropping the higher order terms from

Eq. A.18. These terms can in general be safely ignored as long ∇0F |xa(0) '= 0 and

the initial separation of the trajectories, δx0, is sufficiently small. While the second

condition is clear, the first deserves a comment. When ∇0F |xa(0) = 0, the higher order

terms of the expansion must be considered in turn as one of them may be nonzero and

hence dominate the variation of F on initial conditions. For our purposes, we will

simply assume ∇0F |xa(0) '= 0. In what follows, we will drop evaluation of ∇0F at

xa(0) from the notation, but we should keep in mind that the linearization of F was

about the initial condition xa(0). Consequently, the following results can be expected

to vary with the choice of xa(0).

Let us now focus on how nearby trajectories move apart and not how their relative

orientation varies with time. Using Eq. A.19, we can compute the change in length

of δx as

ζ(t) =
‖δx(t)‖
‖δx0‖

=

√
δxT

0 (∇0F)T ∇0F δx0

‖δx0‖
=

√
δxT

0 Mδx0

‖δx0‖
(A.20)

where the superscript T denotes the standard transpose and

M = M(t) ≡ (∇0F)T ∇0F . (A.21)

208

Let {λi = λi(t)}i∈(1,n) be the n eigenvalues of M arranged in order of decreasing

magnitude, and {vi = vi(t)}i∈(1,n) the corresponding normalized eigenvectors. Since

M is a symmetric matrix, its eigenvectors are orthogonal. As a result, ζ(t) will be a

maximum when δx0 is aligned with v1 and similarly a minimum when aligned with

vn. Let δx̄0 be an initial separation vector chosen parallel to an eigenvector vi of M ,

then for each eigendirection we have

ζi(t) =

√
δx̄T

0 Mδx̄0

‖δx̄0‖
=

√
δx̄T

0 λiδx̄0

‖δx̄0‖
=

√
λi, i = 1, . . . , n. (A.22)

From our requirement that the dynamical system be Lipschitz continuous, we know

via Eq. A.9 that ζ(t) can vary at most exponentially. For each eigendirection of M ,

we can therefore write

ζi(t) =
√

λi ≤ eKit. (A.23)

Given that the separation between nearby trajectories varies at most exponentially

with time, simply assume that the rate of separation change is always exponential.

A corresponding value of Ki along each eigendirection can then be computed that

produces the correct observed separation at time t as though the distance between

trajectories did indeed evolve exponentially. Consequently we have via Eq. A.23

Ki =
1

2t
ln λi. (A.24)

Which in the long-time limit yields

σi = lim
t→∞

Ki = lim
t→∞

1

2t
ln λi, i = 1, . . . , n (A.25)

Since the linearization of Eq. A.19 was about xa(0), the σi are known as the Lyapunov

exponents of the trajectory xa, and they provide a measure of the rate at which

other nearby trajectories are attracted to or repelled from xa along the n orthogonal

209

Figure A.11:
In 2D, the matrix ∇0F transforms the unit circle (dashed line) into an
ellipse whose axes align with the unit vectors u1 and u2. These vectors
are the normalized eigenvectors of the matrix N (see text).

eigenvectors, vi, of M .

While the eigenvectors of M permit us to determine what orientations of δx0

produce maximal or minimal stretching, they do not necessarily tell us the direction

in which the duly stretched or shrunken δx points. If we were to release a ball of

initial conditions around xa(0) and watch its evolution, we would find that the ball is

possibly translated along the trajectory xa, but also stretched into an ellipsoid. This

mapping of an n-dimensional sphere onto a corresponding ellipsoid is characteristic

behavior of any n×n invertible matrix [34], and ∇0F is no exception. The orthogonal

axes of the ellipsoid generated by the action of ∇0F on the ball of initial conditions

align with the normalized eigenvectors {ui = ui(t)}i∈(1,n) of the matrix N = N (t) ≡

∇0F (∇0F)T , as is demonstrated in Figure A.11.9

It is not uncommon to find Lyapunov exponents developed from the gradient of

the vector field f(x) [13, 7, 11, 39], however the approach is equivalent to that given

above. To see this, we begin with Eq. A.19 and determine the differential equation

δx(t) satisfies. Note that in general the linearized δx(t) will not be a solution to the

autonomous system of Eq. A.7. Differentiation of Eq. A.19 with respect to time
9For more on how general matrices deform the unit sphere, refer to a discussion of the singular

value decomposition (SVD) found in any standard text on linear algebra [34, 33].

210

provides

δẋ =
d

dt

(
∇0F |xa(0)

)
δx0. (A.26)

Since F (x0, t) is a valid solution to the autonomous system, Eq. A.7 can be rewritten

as
d

dt
F = f(F), (A.27)

and taking the gradient with respect to initial conditions of both sides yields

d

dt
∇0F = ∇xf |F ∇0F (A.28)

via the chain rule. Substituting Eq. A.28 into A.26 and recognizing that by construc-

tion δx = ∇0F δx0 we find

δẋ = ∇xf |xa ∇0F |xa(0) δx0 = ∇f |xa δx. (A.29)

Eq. A.29 is the differential equation satisfied by Eq. A.19, and it is also clearly a

linearization of the autonomous system about the trajectory xa(t). Given that Eq.

A.19 satisfies Eq. A.29, the matrix ∇0F |xa(0) is the fundamental solution matrix of

the linearized system.10 Note that ∇f |xa is generally a function of time, since the

velocity gradient tensor is being evaluated along the trajectory xa(t). And therein

lies the essential difference between the present linearization and that used during the

classification of fixed points in Section A.3 — here we have permitted the trajectory

about which the linearization was performed to vary with time. Maintaining time

dependence in the Jacobian of the velocity field for Eq. A.29 can be understood

by reflecting on the long-time validity of its solution, Eq. A.19, as discussed earlier.

While we certainly could evaluate ∇f in Eq. A.29 at some fixed location along a given
10A fundamental solution matrix transforms initial conditions into a solution at time t. That is

a solution φ(t) to some system of differential equations can be written as φ(t) = Φ(φ0, t)φ0, where
Φ(φ0, t) is the fundamental solution matrix.

211

trajectory, for a general dynamical system both trajectories defining δx would likely

move far enough away from the chosen stationary position to make the linearization

invalid. Only by following one of the trajectories through time, in this case xa, can

we construct a linearized system of differential equations having the same long-time

legitimacy as Eq. A.19. On the other hand, if xa happens to be a fixed point of the

autonomous system, then the linearization of A.29 is identical to that of Section A.3.

For an example regarding the computation of Lyapunov exponents, consider the

nonlinear system (ref. [39], Example 29.2.3)

ẋ =




x− x3

−y



 , (A.30)

subject to the initial conditions x(0) = (x0, y0). The flow F is given by

F (x0, t) =




x0et/

√
β

y0e−t



 , x0 '= ±1, (A.31)

where β = 1 + x2
0(e

2t − 1). The matrix M becomes

M = (∇0F)T ∇0F =




β−3e2t 0

0 e−2t



 , (A.32)

and the eigenvalues of M can be obtained from the characteristic equation

λ2 − λ
(
β−3e2t + e−2t

)
+ β−3 = 0. (A.33)

Note that the dependence of M on initial conditions x0 is limited to the factor β

which in turn only depends on x0. To determine the Lyapunov exponents for the

fixed point at the origin, we see that β = 1 when x0 = 0. Solving Eq. A.33 for λ then

212

provides

λ1,2 =
γ ±

√
γ2 − 4

2
, x0 = 0 (A.34)

where γ = e2t + e−2t. In the limit that t → ∞,
√

γ2 − 4 varies roughly as e2t and

hence Eq. A.34 behaves as

λ1,2(t) ∼ γ ± e2t = e2t + e−2t ± e2t = e2t, e−2t as t→∞. (A.35)

By Eq. A.25, the Lyapunov exponents for the fixed point at the origin are then

σ1,2 = ±1. (A.36)

The brief treatment of Lyapunov exponents above captures just some of the es-

sentials. For more on the topic, see [26, 1] and the references therein. What we

have seen here, however, is that the long term behavior of two nearby trajectories

can be characterized using Lyapunov exponents. These exponents provide a mea-

sure of the rate at which nearby trajectories separate in the limit t → ∞. We have

chosen to mathematically develop the Lyapunov exponents using the flow, F (x0, t),

since F is specialized to a particular trajectory only through the initial conditions

x0. Consequently it is much easier to envision how the ensuing linearization of F

constructed to derive the Lyapunov exponents can be valid for long times — the

linearization is with respect to initial conditions alone. Nevertheless, we also have

shown how the Lyapunov exponents can be equivalently derived from the gradient of

the autonomous system’s vector field, f(x). At this point it should be conceptually

clear how a positive Lyapunov exponent indicates sensitive dependence on initial con-

ditions. Namely, if the orientation of the initial separation between the trajectories

is chosen appropriately, a positive Lyapunov exponent indicates the trajectories will

pull apart exponentially with time.

213

A.5 Stable and unstable manifolds

We now come to the principal dynamical systems concept of this document: stable

and unstable manifolds of state space structures. First a note on terminology. A

manifold is a space that locally resembles Euclidean space such that we can in some

neighborhood use all the familiar tools of Euclidean geometry. Ignoring topography,

the spherical surface of Earth on a small enough scale looks like a Euclidean plane,11

and we can construct buildings, roads, and airports using right angles and traditional

Cartesian coordinates. The letter O, by comparison, resembles a line when viewed

on a sufficiently small scale. Hence a manifold is simply an abstraction of spatial

structures that topologically resemble Euclidean equivalents.

Suppose we have a system with a stable node, then as we discussed above, trajec-

tories within some neighborhood of the point will decay to the fixed point as t→∞.

Approaching trajectories can only reach the node in the infinite time limit, other-

wise we would have the crossing of two trajectories, the fixed point and a decaying

trajectory, which violates the uniqueness of solution theorem. Nevertheless the set

of all trajectories that can reach any type of fixed point in the forward infinite time

limit constitutes the stable manifold of the fixed point. Furthermore, the concept of

a stable manifold is not limited to fixed points, for the set of trajectories that decay

to any state space structure can be classified as the stable manifold of the structure.

However to be part of the stable manifold, it is not sufficient for a trajectory to simply

approach a particular structure, since at some later time the same trajectory could

begin moving away. Instead, the stable manifold is composed of those very special

trajectories for which the system state asymptotically converges to that of a specific

structure (i.e., stable manifold trajectories reach the structure, but only in the infinite

time limit).

We have to be more careful when defining the unstable manifold, or we could end
11Obviously to such a degree that many ancient cultures believed Earth was flat.

214

up erroneously counting any trajectory which moves away from a state space structure

of interest as part of the manifold. The trick for the unstable manifold is recognition

that of all the trajectories that may be fleeing a structure, only a special subset

may asymptotically converge to it as t → −∞. If there are trajectories that reach

a structure in the negative infinite time limit, then those trajectories constitute the

unstable manifold of the structure. So in summary, the stable and unstable manifolds

of a fixed point or other structure are the set of trajectories that converge to the

feature in the forward or backward infinite time limit, respectively.

Manifolds are collections of trajectories, and the trajectories that make up a man-

ifold form an invariant set. That is members of the set can never escape from it,

and the set never admits new members. Since manifolds are invariant sets, they form

impenetrable barriers to other trajectories that are not part of the manifold. Con-

sequently stable and unstable manifolds serve to organize state space by trapping

groups of trajectories within the confines of the manifolds. Figure A.12 shows phase

portraits for the steady Duffing and Hill’s spherical vortex systems (Eq.’s A.1 and

A.2, respectively, with ε = 0). The manifolds of the hyperbolic points are highlighted.

Notice that the stable and unstable manifolds of the Duffing system’s saddle point

are joined to form a homoclinic connection that surrounds each of the elliptic points.

In this manner, the manifolds act as separatrices delimiting zones of the flow field

with very different behavior.

As for Hill’s spherical vortex, we see that stable and unstable manifolds of two

separate hyperbolic points form two heteroclinic connections — one along the z-axis

spanning −1 < z < 1, and the other curved to enclose the recirculation zone. Keep in

mind that Hill’s spherical vortex is a 3D flow, and that we are viewing trajectories in a

symmetry plane for convenience. The outer, curved heteroclinic connection is actually

the surface of a sphere and encloses a doughnut-shaped recirculation zone in 3D. These

outer, spherical manifolds of the vortex form separatrices in a manner analogous to

215

Figure A.12:
Phase portraits of the steady (a) Duffing oscillator and (b) Hill’s spher-
ical vortex. Hyperbolic fixed points are denoted by solid, black circles.
Stable manifolds of the hyperbolic points are shown as dashed, red lines,
and unstable manifolds are presented as solid blue lines. Several other
trajectories are shown for reference as black lines.

that of the Duffing oscillator by marking a transition between the recirculating flow

of the vortex and the free-stream ambient fluid passing over the flow structure.

To determine how manifolds are oriented in the near vicinity of a fixed point,

for example, we once again turn to linearization. As we saw previously, the general

solution, Eq. A.13, of the linearized system (Eq. A.12) is composed of n, linearly

independent functions, each of which is also a solution. The component solutions have

a characteristic speed given by the eigenvalues of J and a characteristic direction. For

systems where J has a full set of n, linearly independent eigenvalues, the characteristic

direction of each component solution is provided by the corresponding eigenvector.

If J does not have a full complement of eigenvectors, then some of the component

solutions will align with the available eigenvectors, and the others will align with

characteristic directions provided by what are known as generalized eigenvectors [5].

For simplicity, temporarily consider the case where J does indeed have a full set of

216

eigenvectors thereby producing a general solution of the form

δx(t) = c1v1eλ1t + c2v2eλ2t + . . . + cnvneλnt, i = 1, . . . , n (A.37)

with the eigenvalues of J represented by λi. If a perturbed trajectory of the linearized

system is a) parallel to a particular eigenvector, vp, with Re(λp) '= 0, and b) intersects

the fixed point (in an infinite time limit), then all of the other coefficients of integration

in Eq. A.37 (i.e., the ci) will be zero except for the component solution that aligns

with vp. In this case δx has the form

δx(t) = cpvpe
λpt (A.38)

and the perturbed trajectory will asymptotically approach the fixed point along the

eigenvector in the forward or backward infinite time limit depending on the sign of

λp. But any trajectory that intersects a fixed point in an infinite time limit is a

member of the stable or unstable manifold of that point. Therefore the eigenvectors

or generalized eigenvectors from the linearized system of equations, Eq. A.12, are

tangent to the stable and unstable manifolds of the autonomous system, Eq. A.7.

This observation is simply an informal statement of the stable manifold theorem (ref.,

[13, Thrms. 1.3.2 and 5.2.8]), and the concept is readily extended to other state space

structures.

Given that manifolds are collections of trajectories and not trajectories them-

selves, they can intersect transversely under special circumstances.12 The first prin-

cipal requirement being that state space must have at least three dimensions, either

naturally for an autonomous system or by converting a non-autonomous system to

an autonomous equivalent as discussed in Section A.3. Additionally, manifolds of
12If the angle between lines tangent to the intersecting manifolds is nonzero, then the intersection

is transverse. The letter x, for example, could be viewed as the transverse intersection of two line
segments.

217

the same stability type (e.g., the stable manifolds of a saddle point) cannot intersect

transversely [13], leaving the only possible transverse intersections as being of the

stable-unstable type. Intersecting stable and unstable manifolds may seem to violate

the prohibition against intersecting trajectories, but we must not forget that these

manifolds are sets of trajectories, not trajectories themselves. The seam formed by

such an intersection, however, is a trajectory that forever belongs to both the stable

and unstable manifolds that have intersected. The trajectory of the intersection must

twist around state space eternally receding from one parent structure (e.g., a fixed

point) while at the same time moving ever closer to the same or other structure. If

the intersecting manifolds originate from a single state space feature, the trajectory

of the intersection is known as a homoclinic trajectory. On the other hand, trans-

versely intersecting manifolds that belong to different structures form a heteroclinic

trajectory at the seam. These concepts are presented in Figure A.13 via two Poincaré

sections.13

If a dynamical system is bounded14 and time invariant or exhibits periodic behav-

ior, then a transverse intersection of the stable and unstable manifolds has profound

consequences. In bounded systems, the homoclinic or heteroclinic trajectories must

unendingly trace an infinite tangle of manifold intersections as the trajectory navi-

gates a state space of finite extent. For a periodic system, the tangle can be spread

out over an infinitely large state space, but the periodicity ties the far flung sections of

the tangle together by mapping one region to another. Regardless of the system type,

tangles are one of the harbingers of chaotic behavior — any non-manifold trajectory

that happens to be trapped by the intertwined, impenetrable manifolds will usually

have to twist around state space eternally caught in the confines of the ravel. The two
13A Poincaré section is merely the name given to a special cross-section constructed to aid analysis

of higher dimension dynamical systems. The section is formed by recording the intersection of one
or more trajectories crossing a plane in a chosen direction. For more on Poincaré sections, see [27],
or for a very visual example of Poincaré sections derived from a real fluid flow, see [9, 8].

14Recall that a bounded system’s trajectories are confined to a finite region of state space but not
necessarily closed. That is, a bounded trajectory does not fly off to infinity.

218

Figure A.13:
Homoclinic (a) and heteroclinic (b) manifold tangles illustrated on a
plane that cuts through the actual 3D manifolds. The hyperbolic points,
shown as solid black circles, mark the intersection of a closed trajectory
(e.g., a saddle cycle) in 3D state space with the plane. Similarly, the
intersections of the (a) homoclinic and (b) heteroclinic trajectories with
the plane of section are depicted by open circles. The subscript denotes
the order in which the intersections occur relative to p0.

example systems from Section A.1 provide excellent case studies of the complexity of

manifold tangles and the resulting impact such features have on system dynamics.

Let us begin with the forced Duffing system having ε = 0.5 and ω = 3. This

non-autonomous system is now an explicit function of time and must be converted

to autonomous form so that the tools of dynamical systems theory are more readily

applied. As discussed in Section A.3, the equivalent autonomous system can be

written

ẋ = y

ẏ = x− x3 + ε cos θ

θ̇ = ω. (A.39)

Notice that the system and extended state space are now three-dimensional which

should intuitively make sense given that we need three pieces of information to fully

specify the state of the system, x, y, and t. But we also are dealing with a periodic

219

system where the forcing term takes unique values only for 0 ≤ θ < 2π. Consequently,

the extended state space can be envisioned as a doughnut created by revolving the

xy-plane about some line parallel to the y-axis. The θ-axis, corresponding to time, is

then a circle.

Note that the system of A.39 has no fixed points for the constant ω '= 0. By forcing

the system with a time dependent function, we lose all fixed points, but we typically

have other distinguished hyperbolic trajectories that remain [19, 21]. Thus when we

perturb the Duffing system, the saddle fixed point of the steady system with ε = 0

is transformed into a saddle cycle — a closed trajectory to which other trajectories

are attracted and repelled along certain directions. We can envision the saddle cycle

as being a ring of saddle points in the extended state space of the forced system.

Perturbing the Duffing oscillator has another very import effect, however. Namely,

the homoclinic connection that originally existed between the stable and unstable

manifolds of the saddle point shown in Figure A.12(a) breaks, and a homoclinic

tangle is formed. It is the stable and unstable manifolds of the saddle cycle that

intersect transversely when the system is perturbed. The geometry of the intersecting

manifolds in the extended, 3D state space is illustrated in Figure A.14, but only a

very small segment of the manifolds can be presented since they are infinitely long.

The resulting tangle is, however, extraordinarily complex, and Figure A.15 provides a

cross-section of slightly longer manifold segments to further emphasize the intricacy.

The effect of the manifold tangle on a packet of fluid released within the zone

of intersections is to repeatedly stretch and fold the material as time evolves. The

origin of such behavior can be conceptually understood by reflecting on Figures A.14

and A.15. In particular, note how the manifold intersections form small impenetrable

compartments in Figure A.14, each of which rotates around the toroidal tangle getting

mapped to a new compartment every period of the forcing. Each period some of these

tiny chambers map to new ones along one direction in the xy-plane while others

220

Fi
gu

re
A

.1
4:

Se
gm

en
ts

of
st

ab
le

an
d

un
st

ab
le

m
an

ifo
ld

s
fo

r
th

e
fo

rc
ed

D
uffi

ng
sy

st
em

’s
sa

dd
le

cy
cl

e.
A

po
rt

io
n

of
st

at
e

sp
ac

e
sp

an
ni

ng
3π

/2
≤

θ
<

2π
ha

s
be

en
re

m
ov

ed
to

sh
ow

th
e

co
m

pl
ic

at
ed

ta
ng

le
th

at
ha

s
fo

rm
ed

.
T

he
in

te
rs

ec
tio

n
of

th
e

m
an

ifo
ld

s
w

ith
th

e
θ

=
0

pl
an

e
is

hi
gh

lig
ht

ed
,a

nd
th

e
co

rr
es

po
nd

in
g

sa
dd

le
cy

cl
e

in
te

rs
ec

tio
n

is
de

no
te

d
by

th
e

gr
ee

n
ba

ll.
T

he
st

ab
le

m
an

ifo
ld

(r
ed

)
is

sh
ow

n
al

on
e

in
th

e
in

se
t

(a
).

Si
m

ila
rly

,t
he

un
st

ab
le

m
an

ifo
ld

(b
lu

e)
is

sh
ow

n
in

se
t

in
(b

).
T

he
co

m
bi

ne
d

st
ru

ct
ur

es
ar

e
pr

es
en

te
d

in
(c

).

221

Figure A.15:
Longer segments of the stable (red) and unstable (blue) manifolds shown
intersecting the θ = 0 plane. The saddle cycle intersection is represented
by the solid black circle near the origin.

222

map along different directions. The end result is that the fluid we view in the xy-

plane stretches and folds again and again. The dynamics associated with a tangling

of stable and unstable manifolds is responsible for the efficient stirring observed in

Figures A.2(b,f). In both cases, we can now see that the blocks of tracers were

initially released into a region of the flow field occupied by the homoclinic tangle of

the saddle cycle’s manifolds. Indeed, the figures of the stirred fluid closely resemble

slightly longer sections of the unstable manifold shown in Figure A.15.

Further inspection of Figures A.14 and A.15 also indicates that while the geometry

of the intersecting manifolds is extremely intricate and fills a large part of state

space, there are two enclosed areas approximately centered at (x, y) = (±1, 0) which

the saddle cycle manifolds apparently cannot penetrate. These regions roughly align

with the original rotational flow zones of Figure A.12(a), and are in fact the remnants

of those unperturbed features. Some of the original closed trajectories do in a sense

remain. In the perturbed system, however, these persisting trajectories may no longer

be closed, and they certainly no longer circle around the xy-plane alone. Remember

that in the extended state space of the perturbed system, the θ-axis forms a circle,

so trajectories spiral around the θ-axis as they evolve. Consequently those original

closed trajectories of the unperturbed system that remain, now travel around the

surface of a torus in the extended state space of the forced system. Just like stable

and unstable manifolds, some of these tori form invariant, impenetrable surfaces that

trap trajectories within their bounds. Poincaré sections can be constructed that reveal

the locations of tori and surrounding structures in the same fashion as has been done

for the stable and unstable manifolds shown elsewhere. Figure A.16 shows such a

Poincaré section again constructed at the θ = 0 plane. Instead of following a large

number of particles for a relatively short time, as was done elsewhere to grow the

stable and unstable manifolds, this section has tracked a small number of particles

for a very long time. The stable and unstable manifolds are no longer readily visible

223

Figure A.16: Poincaré section for the forced Duffing oscillator at the θ = 0 plane.

224

in Figure A.16 but instead are part of the chaotic background fuzz that resembles

noise. Note the presence of a series of concentric rings located in the vicinity of

(x, y) = (±1, 0). These are cross-sections of some of the tori mentioned earlier. As

illustrated by Figure A.17, the tori that produce the rings at (x, y) = (−1, 0) are not

associated with the set that produces the rings at (x, y) = (1, 0). Consequently any

fluid released within either of these regions will remain isolated and confined to that

region of the xy-plane, which explains the behavior observed in Figures A.2(c,d).

The Poincaré section of Figure A.16 shows three other sets of concentric rings along

the perimeter of the guitar-shaped region of the section. These rings are not related

to the original, unperturbed recirculation zones, but are nonetheless cross-sections of

additional tori present in the perturbed system. Notice how the existence of these

rings, roughly centered around (x, y) = (−1,±1.5), (1.5, 0), is in no way obvious

from examining the velocity field of Figure A.1. We might have predicted that some

remnant of the original recirculation zone would survive, but a complicated toroidal

structure that pierces the plane of section exactly three times is quite unexpected.

Nevertheless, any fluid released in one of these regions does remain isolated, but the

material also traverses the xy-plane in a clockwise fashion as Figure A.17 illustrates.

Each period of the forcing, the material in one of these zones gets mapped to its

nearest clockwise neighbor. So the Poincaré section has also provided an explanation

for the scenario of Figure A.3.15

Through the tools of dynamical systems theory, we can now conclusively predict

where fluid must be located such that it stirs thoroughly under the action of the

perturbed Duffing oscillator. If we release dyed fluid in any of the regions bounded

by an invariant torus, the material will remain isolated. On the contrary, we can

release two different colored blocks of fluid anywhere in the fuzzy region of Figure

A.16, and regardless of where the blocks are located relative to one another, they will
15There is much more to the dynamics of invariant tori than we can possibly cover here. The

interested reader is therefore referred to [13, 2, 27, 4, 29] and ensuing discussions.

225

Fi
gu

re
A

.1
7:

Po
in

ca
ré

se
ct

io
n

of
th

e
fo

rc
ed

D
uffi

ng
os

ci
lla

to
r

sh
ow

n
in

3D
st

at
e

sp
ac

e
al

on
g

w
ith

se
ve

ra
le

xa
m

pl
e

tr
aj

ec
to

rie
s,

ea
ch

as
sig

ne
d

a
un

iq
ue

co
lo

r.
T

he
in

te
rs

ec
tio

n
of

th
e

tr
aj

ec
to

rie
s

w
ith

th
e

pl
an

e
of

se
ct

io
n

(θ
=

0)
ha

s
be

en
hi

gh
lig

ht
ed

fo
r

cl
ar

ity
.

226

stir thoroughly.

Analysis of the perturbed Hill’s spherical vortex example of Section A.1 proceeds

in a similar fashion. The equivalent autonomous system in extended state space

becomes

ẋ = (ur sin θ + uθ cos θ) cos φ− ε

2
sin(ψ)

ẏ = (ur sin θ + uθ cos θ) sin φ− ε

2
sin(ψ)

ż = ur cos θ − uθ sin θ + ε sin(ψ)

ψ̇ = ω (A.40)

with ur and uθ provided by Eq.’s A.3 and A.4. As a reminder, we have chosen a = 1,

u0 = −1.5, ε = 0.3, and ω = 2π for the example system.

It will come as no surprise given the Duffing oscillator discussion that stable and

unstable manifolds play a critical role in deciphering the transport properties of Hill’s

vortex. Indeed the hyperbolic saddle points of Figure A.12(b) transform into saddle

cycles for the periodic flow, and the spherical heteroclinic connection of the hyperbolic

points disintegrates under perturbation forming a heteroclinic tangle. Segments of

the intersecting stable and unstable manifolds of the saddle cycles are shown in Figure

A.18. Note that manifolds along the line x = 0 of Figure A.12(b) remain intact, but

have been omitted from Figure A.18 for clarity.

Remnants of the original vortex core remain in the perturbed case, and the man-

ifolds can be seen as wrapping around this structure. Geometrically, the vortex core

is once again isolated by invariant tori, although in the case of Hill’s spherical vortex,

these tori are now 3-surfaces in a 4D extended state space. A specially constructed

Poincaré section, Figure A.19, confirms the presence of invariant tori. A couple of

notes regarding Figure A.19 are in order. Each trajectory is assigned a color so that

its behavior in the plane of section can be easily tracked. For example, the two inner-

227

Figure A.18:
Segments of the stable (red) and unstable (blue) manifolds for the per-
turbed Hill’s spherical vortex.

Figure A.19:
Poincaré section for the perturbed Hill’s spherical vortex. The unstable
manifold (solid black line) of the leading edge saddle cycle has been
included for reference. Trajectories have been colored for easy identifi-
cation.

228

most gray circles in the x < 0 region are produced by the same trajectory. But the

trajectory that produces the circles in the lower half of the figure does not produce

those in the upper half — as the governing system of equations clearly indicates, there

is no azimuthal component about the z-axis to the perturbed velocity field.

The stirring behavior demonstrated in Figure A.5 should now start to become

clear. The red and blue sections of the blocks were initially released such that they

were fully contained between the stable and unstable manifolds (ref. A.20). On the

other hand, the cyan and orange tracers were situated just outside the perimeter of

the stable manifold and consequently could never be brought into the stirring zone

surrounding the vortex. For the cyan and orange tracers to enter the stirring zone,

the impenetrable barrier formed by the manifolds would need to be breached. Since

the perturbed Hill’s vortex is periodic and assumed to exist for all time, the stable

manifolds extend infinitely far along the positive z-axis encircling not just the red

and blue tracers, but all mass that will ever be entrained into the stirring zone.

It might seem somewhat disturbing that we have classified invariant manifolds as

impenetrable surfaces that somehow permit the red and blue fluid to move within

the stirring zone but simultaneously prevent the same behavior for the cyan and

orange. The means by which these structures transport material can be viewed in

one of two ways. First, we can revert to thinking of the Hill’s vortex as a non-

autonomous system in which the now time-varying manifolds can stretch and deform

as the flow evolves. The manifolds from this viewpoint are simply special material

surfaces that move under a unsteady velocity field and have the property that any

point along the manifold decays to some distinguished, parent hyperbolic trajectory

in an infinite time limit. From the other perspective, we can continue to treat the

system from an autonomous viewpoint in which case the compartments formed by the

manifold intersections are like tubes transporting fluid through extended state space.

Regardless, if material is to be brought into the stirring region, it must already be

229

Figure A.20:
Passive tracer blocks from Figure A.5 superimposed on the stable and
unstable manifolds (black) of the saddle cycles for the perturbed Hill’s
spherical vortex at times (a) t = 0 and (b) t = 8.

encapsulated by the manifolds. These mechanisms by which fluid is entrained into

a stirring zone can actually be put on a firm analytical footing for periodic flows by

way of lobe dynamics, and the interested reader is referred to [29, 30, 22, 10, 40].

Although mentioned in a previous discussion of the Duffing oscillator, from Fig-

ure A.20(b) it should be quite clear that the evolved tracer blocks approximate the

shape of the unstable manifold. This behavior is a standard characteristic of many

flows. That is dye, smoke, or other flow visualizations generally take the shape of a

hyperbolic trajectory’s unstable manifold. A conceptual understanding for how the

unstable manifold dominates visualization can be seen by way of Figure A.8(c). The

straight, diagonal lines in the figure are actually the stable and unstable manifolds

of the saddle point for this illustrated linear system. Notice how the non-manifold

trajectories move away from the stable manifold with increasing time as though they

are being repelled, but approach and decay to the unstable manifold. A block of

230

initial conditions released anywhere in Figure A.8(c) would be stretched out along

the unstable manifold, and the degree to which the deformed block approximates

the manifold would improve with time. As it turns out, this trajectory attracting

property is used extensively in the literature (and within this document) to grow

manifolds of hyperbolic trajectories. The general idea is that the manifold can be

generated from either small segments of the manifold itself or from a ball of tracers

centered about the hyperbolic point. When the tracers are evolved with the flow,

they will be stretched out along the unstable manifold in forward time or the stable

manifold in reverse time (see [16, 19, 25, 24, 28, 31]).16

A.6 Aperiodic systems and finite time dynamics

We have seen how non-autonomous systems can be converted to autonomous

analogues by extending state space and discussed how such extended systems have

no fixed points. During the non-autonomous to autonomous conversion process an

additional differential equation of the form q̇ = c is created, where q is the new state

space variable accommodating the explicit time dependence of the corresponding non-

autonomous system, and c is a constant. Consequently, for the resulting extended

autonomous system given by ẋ = f(x), there is no value of x such that f(x) = 0

unless c = 0. In the case where c = 0, the original system is already autonomous,

and there is no need for a transformation.

Although the general autonomous system may have no fixed points, such systems

can still have hyperbolic structures with stable and unstable manifolds that play

crucial roles in the observed dynamics of the system, as was seen via the forced

Duffing oscillator and Hill’s spherical vortex of the previous section. Locating the

saddle cycles and associated manifolds for both of these example systems is greatly
16Do not forget that in reverse time, the stable manifold of hyperbolic trajectories behaves anal-

ogously to the unstable manifold in forward time. Consequently, the stable manifold can be grown
by advecting the tracers backward in time.

231

facilitated by the periodic nature of the forcing as well as the assumption of infinite

time existence. When we lose periodicity or infinite time existence, then finding

distinguished hyperbolic trajectories and related manifolds, let alone characterizing

the long term behavior of such structures, becomes extremely difficult. Unfortunately,

aperiodicity and data availability on finite time intervals are very common in practice.

Any numerical dataset generated from a computer model or extracted via physical

measurements is by necessity only known for a finite time. Aperiodicity can arise

from the analysis of transient phenomena or simply be a consequence of measuring a

flow field for an insufficient time to detect underlying periodic behavior.

So how do we find these distinguished hyperbolic trajectories, like saddle cycles,

in aperiodic finite time datasets? Several schemes have been developed that exploit

known features of any given system. One such approach was actually used to approx-

imately locate the saddle cycle in Figure A.14. The location of the saddle fixed point

for the unperturbed Duffing system was known to lie at the origin, and an assumption

was made that the perturbed saddle cycle would probably be nearby. Capitalizing

on the attractive nature of the unstable manifold by releasing a small ball of passive

tracers at the origin and advecting the tracers using the perturbed velocity field for

several forcing periods, a segment of the unstable manifold was grown (ref. [37]).

Repeating the process in backward time grows a section of the stable manifold. The

resulting intersection of the two segments should be very close to the true location

of the saddle cycle provided the growth time used was sufficiently long. Another

technique searches for distinguished hyperbolic trajectories using instantaneous stag-

nation points of the non-autonomous vector field as starting points [19, 20, 23]. These

instantaneous stagnation points are values of x for which f(x, t) = 0 in Eq. A.6, but

instantaneous stagnation points of non-autonomous systems are not fixed points nor

are they valid trajectories. Nevertheless, distinguished hyperbolic trajectories some-

times live in close proximity to instantaneous stagnation points, so starting a search

232

at these stagnation points can be productive [20, 6].

The method of locating distinguished hyperbolic trajectories which the author of

this appendix has had the most success with, however, is a hybrid technique discussed

in [6]. First approximate locations of the manifolds are computed using a finite time

formulation of Lyapunov exponents (FTLE) [14, 15, 32]. Then better approximations

to the manifolds are grown from the FTLE proxy, and the hyperbolic trajectory is

taken as the primary intersection of the grown manifolds. Let us briefly examine how

the technique works.

Imagine for a moment that we know the location of the stable and unstable man-

ifold roots, where the roots are taken as the section of the manifolds that directly

abut the distinguished hyperbolic trajectory. In this root section of the manifolds,

the manifold trajectories are exponentially decaying to the parent hyperbolic trajec-

tory as t → ±∞. If we know an approximate location of the manifold roots, the

intersection will roughly mark the location of the distinguished hyperbolic trajectory.

It turns out that we can often estimate the manifold roots using a finite time version

of Lyapunov exponents. The formulation for the finite time Lyapunov exponents

(FTLE)17 is identical to that of Eq. A.25, except we drop the infinite time limit to

produce

si =
1

2T
ln λi, i = 1, . . . , n (A.41)

where the λi are still the eigenvalues of M (Eq. A.21), but T is now the time interval

over which the FTLE have been computed.18

To see why computation of the FTLE field from several trajectories often provides

an approximate location of the manifolds, reflect back on Figure A.8(c) and picture

releasing two tracers very close together in some proximity of the stable manifold.

Further assume that the trajectories are advected by the non-autonomous vector
17The FTLE is sometimes referred to as the direct Lyapunov exponent (DLE).
18In most of the literature the FTLE is taken to be the value of s computed from the largest,

positive eigenvalue of M .

233

field f(x, t) for some time Tp.19 If the two tracers are released on the same side of

the stable manifold, it is conceivable that the tracers will move similarly and possibly

stay close to each other. Now envision that the tracers are released again such that

they straddle and are on opposite sides of the stable manifold. As this scenario

evolves in forward time, the tracers will inevitably be carried toward the unstable

manifold and then start to pull apart quickly. While the separation between the

trajectories may remain small after a time Tp in the first case, we are guaranteed to

see an increase in separation for the latter provided Tp is sufficiently large. Of course,

measuring the rate of trajectory separation is exactly what the Lyapunov exponent

captures. Therefore by releasing a large number of tracer pairs into a vector field

and numerically computing FTLE values for each trajectory in forward time, we

rightfully might expect to see a ridge of large FTLE values approximating the shape

of the stable manifold. The process is equally applicable to the unstable manifold,

provided the system is evolved in backward time.

While using the FTLE field to approximately locate the manifolds and the parent

distinguished hyperbolic trajectory can be a very useful technique, the method does

have limitations.20 Perhaps the most important limitation is that ridges in the FTLE

field do not always correspond to manifolds of a hyperbolic trajectory. Remember

that the Lyapunov exponents of Section A.4 were constructed as an infinite time

limit. The motivation for the infinite time limit was to ensure that we were seeing the

true dynamics of the system by excluding short term behavioral excursions. When

we disregard the infinite time limit, the FTLE field can identify spurious structures

that an infinite time limit would filter out. A shear flow, for example, can produce

a ridge in the FTLE field since trajectories on either side of the shear layer are

clearly separating, but the shear layer itself is typically not a manifold of a hyperbolic

trajectory. Other techniques must therefore be utilized in some cases to determine
19Or equivalently by the autonomous vector field f(x).
20For an excellent overview of FTLE limitations, see [6].

234

whether an FTLE ridge is approximating the manifold of a distinguished hyperbolic

trajectory or merely identifying a region of high shear [15].21

Additionally, the FTLE field (or even a field of infinite time Lyapunov exponents)

will not always identify manifolds even if they are present. The linear flow of A.8(c)

which was used above to explain how the FTLE works turns out to be a case where

Lyapunov exponents will not locate the manifolds. The reason is that all trajectories

in the linear flow of A.8(c) have the exact same set of Lyapunov exponents. Conse-

quently there will be no ridge of elevated finite (or infinite) time exponent values to

mark the location of the manifolds for this flow, and other techniques must be used

[19, 20, 23].

A.7 Summary

In the preceding discussion we have seen how fixed points or more general distin-

guished hyperbolic trajectories can have a significant impact on mass transport within

fluid flows. While the fixed point or distinguished hyperbolic trajectory determines

behavior in the near vicinity of the structure, the corresponding stable and unsta-

ble manifolds organize the flow field into dynamically distinct zones, govern mass

exchange between the different regions, and have a profound effect on fluid stirring

as well as the shape stirred fluid assumes during the process. The manner in which

two nearby trajectories behave can be used to classify fixed points and other arbi-

trary trajectories or state space structures by way of linearization, with a specially

constructed linearization providing Lyapunov exponents as a measure of the rate in

which trajectories move together or apart. And although application of dynamical

systems concepts to aperiodic and finite time systems presents additional challenges

which are still being addressed by active research, existing notions such as Lyapunov
21Ridges of the FTLE field corresponding to hyperbolic material lines, as opposed to those arising

from high shear, are often referred to as Lagrangian coherent structures (LCS) [32].

235

exponents can nevertheless yield important insight into system behavior in many

cases.

A.8 References

[1] K. T. Alligood, T. D. Sauer, and J. A. Yorke. Chaos: An Introduction to
Dynamical Systems. Springer, 1996.

[2] V. I. Arnol’d. Small denominators and problems of stability of motion in classi-
cal and celestial mechanics. Russian Mathematical Surveys, 18(6):85–191, 1963.

[3] J. Barrow-Green. Poincare and the Three Body Problem. American Mathemat-
ical Society, 1996.

[4] M. V. Berry. Regular and irregular motion. In S. Jorna, editor, AIP Conference
Proceedings, volume 46, pages 16–120, 1978.

[5] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations. John
Wiley and Sons, 5th edition, 1992.

[6] M. Branicki and S. Wiggins. Finite-time Lagrangian transport analysis: sta-
ble and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov
exponents. Nonlinear Processes in Geophysics, 17(1):1–36, 2010.

[7] L. Dieci, R. D. Russell, and E. S. VanVleck. On the computation of Lya-
punov exponents for continuous dynamical systems. SIAM Journal on Numer-
ical Analysis, 34(1):402–423, Feb 1997.

[8] G. O. Fountain, D. V. Khakhar, I. Mezic, and J. M. Ottino. Chaotic mixing in
a bounded three-dimensional flow. Journal of Fluid Mechanics, 417:265–301,
Aug 2000.

[9] G. O. Fountain, D. V. Khakhar, and J. M. Ottino. Visualization of three-
dimensional chaos. Science, 281(5377):683–686, Jul 1998.

[10] E. Franco, D. N. Pekarek, J. F. Peng, and J. O. Dabiri. Geometry of unsteady
fluid transport during fluid-structure interactions. Journal of Fluid Mechanics,
589:125–145, Oct 2007.

[11] I. Goldhirsch, P. L. Sulem, and S. A. Orszag. Stability and Lyapunov stability
of dynamic-systems - a differential approach and a numerical-method. Physica
D, 27(3):311–337, Aug 1987.

[12] H. Goldstein. Classical Mechanics. Addison Wesley, 2nd edition, 1980.

[13] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields. Springer, 1983.

236

[14] G. Haller. Distinguished material surfaces and coherent structures in three-
dimensional fluid flows. Physica D, 149(4):248–277, Mar 2001.

[15] G. Haller. Lagrangian coherent structures from approximate velocity data.
Physics of Fluids, 14(6):1851–1861, Jun 2002.

[16] G. Haller and A. C. Poje. Finite time transport in aperiodic flows. Physica D,
119(3-4):352–380, Aug 1998.

[17] R. C. Hilborn. Chaos and Nonlinear Dynamics. Oxford University Press, 2nd
edition, 2000.

[18] M. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Sys-
tems, and an Introduction to Chaos. Academic Press, 2nd edition, 2003.

[19] K. Ide, D. Small, and S. Wiggins. Distinguished hyperbolic trajectories in
time-dependent fluid flows: analytical and computational approach for velocity
fields defined as data sets. Nonlinear Processes in Geophysics, 9(3-4):237–263,
May-Jul 2002.

[20] N. Ju, D. Small, and S. Wiggins. Existence and computation of hyperbolic tra-
jectories of aperiodically time dependent vector fields and their approximations.
International Journal of Bifurcation and Chaos, 13(6):1449–1457, Jun 2003.

[21] J. A. J. Madrid and A. M. Mancho. Distinguished trajectories in time dependent
vector fields. Chaos, 19(1):013111, Mar 2009.

[22] N. Malhotra and S. Wiggins. Geometric structures, lobe dynamics, and La-
grangian transport in flows with aperiodic time-dependence, with applications
to Rossby wave flow. Journal of Nonlinear Science, 8(4):401–456, Jul-Aug 1998.

[23] A. M. Mancho, D. Small, and S. Wiggins. Computation of hyperbolic trajecto-
ries and their stable and unstable manifolds for oceanographic flows represented
as data sets. Nonlinear Processes in Geophysics, 11(1):17–33, 2004.

[24] A. M. Mancho, D. Small, S. Wiggins, and K. Ide. Computation of stable and
unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically
time-dependent vector fields. Physica D, 182(3-4):188–222, Aug 2003.

[25] P. D. Miller, C. K. R. T. Jones, A. M. Rogerson, and L. J. Pratt. Quantifying
transport in numerically generated velocity fields. Physica D, 110(1-2):105–122,
Dec 1997.

[26] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-
bers for dynamical systems. Transactions of the Moscow Mathematical Society,
19:197–231, 1968.

[27] J. M. Ottino. The Kinematics of Mixing: Stretching, Chaos, and Transport.
Cambridge University Press, 1989.

237

[28] A. C. Poje and G. Haller. Geometry of cross-stream mixing in a double-gyre
ocean model. Journal of Physical Oceanography, 29(8):1649–1665, Aug 1999.

[29] V. Rom-Kedar, A. Leonard, and S. Wiggins. An analytical study of transport,
mixing and chaos in an unsteady vortical flow. Journal of Fluid Mechanics,
214:347–394, May 1990.

[30] V. Rom-Kedar and S. Wiggins. Transport in two-dimensional maps. Archive
for Rational Mechanics and Analysis, 109(3):239–298, 1990.

[31] I. I. Rypina, M. G. Brown, and H. Kocak. Transport in an idealized three-gyre
system with application to the adriatic sea. Journal of Physical Oceanography,
39(3):675–690, Mar 2009.

[32] S. C. Shadden, F. Lekien, and J. E. Marsden. Definition and properties of
Lagrangian coherent structures from finite-time Lyapunov exponents in two-
dimensional aperiodic flows. Physica D, 212(3-4):271–304, Dec 2005.

[33] G. Strang. Linear Algebra and its Applications. Saunders College Publishing,
3rd edition, 1988.

[34] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 1993.

[35] S. H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 1994.

[36] K. Sundman. Mémoire sur le problème des trois corps. Acta Mathematica,
36:105–179, 1912.

[37] P. D. Swanson and J. M. Ottino. A comparative computational and experi-
mental study of chaotic mixing of viscous fluids. Journal of Fluid Mechanics,
213:227–249, Apr 1990.

[38] M. J. Valtonen and H. Karttunen. The Three-Body Problem. Cambridge Uni-
versity Press, 2006.

[39] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.
Springer, 2nd edition, 2000.

[40] S. Wiggins. The dynamical systems approach to Lagrangian transport in
oceanic flows. Annual Review of Fluid Mechanics, 37:295–328, 2005.

238

APPENDIX B

SPIVET

B.1 Overview

SPIVET (Stereoscopic Particle Image VElocimetry and Thermometry) is a Python

package providing a series of tools for analyzing stereoscopic PIV image sequences of

experimental fluid or particle flows. The functionality provided by the package serves

four primary purposes:

1. Extraction of a displacement (or velocity) field from raw PIV images.

2. Extraction of temperature values from images taken of thermochromic liquid

crystals (TLC’s).

3. Passive tracer advection framework for Lagrangian transport studies and com-

putation of finite-time Lyapunov exponent fields.

4. Aggregation and storage of processed results in a portable file format that is

compatible with a variety of visualization software suites (e.g., ParaView [1],

and VisIt [3]).

SPIVET services are provided by a collection of Python modules as described in the

Architecture section (Section B.3). At present, SPIVET does not have a graphical

239

user interface, but is instead used via the command line and Python scripts. Example

scripts are provided to get the user moving in the correct direction.

The present document is meant to provide the user with a introductory perspec-

tive of SPIVET, its structure, and its capabilities. Detailed module and function

documentation is provided in the code and can be retrieved using Python’s help

function or by reading the code itself. A bibliography is also provided at the root of

the source tree.

B.2 Licensing

SPIVET is released under the terms of Version 2 of the GNU Public License

(GPL). A copy of the license is provided in the LICENSE.SPIVET file at the root of

the source tree.

B.3 Architecture

SPIVET is an aggregate Python package composed of four principal lower-level

components: PivLIB, TlcLIB, FloLIB, and SPIVET steps. A graphical depiction of

SPIVET’s architecture is shown in Figure B.1.

The choice of Python as the primary language for SPIVET was motivated in large

part by Python’s:

• clear, compact, and easy to learn syntax,

• superb ability to glue disparate applications and libraries together into one

cohesive whole,

• and ease of quickly visualizing data via directly callable packages such matplotlib[4]

(also referred to as pylab) and VTK [2].

240

Python

SciPy

netCDF

ExodusII

matplotlib

VTK

PivLIB

FloLIB

TlcLIB

steps

SPIVET

NetWorkSpaces

NumPy

PIL

Figure B.1:
Architectural overview of SPIVET. Primary dependencies on third party
software are also shown (see Section B.7).

However, Python does have some drawbacks, the largest of which is shared with

most other interpreted languages: namely, poor execution speed as compared to a

compiled language such as C. Python’s performance penalty is particularly acute

when executing loops over large data arrays. In such loops, Python code can easily

run an order of magnitude or more slower than comparable compiled code. There

are two dominant methods for avoiding such overhead: vectorized statements and

external C modules.

Often the cleanest, most compact way of negating performance penalties asso-

ciated with Python loops is to use ’vectorized’ statements which have an implicit

loop that is often implemented in lower-level compiled code. To leverage this ap-

proach, much of SPIVET’s internal workings are built around NumPy [6] ndarrays

(n-dimensional array class). Using NumPy ndarray objects, two similarly shaped ar-

rays can be added and results stored in a third array with the single Python statement:

arrayc = arraya + arrayb. Not only is the preceding Python code substantially

faster than an explicit Python for loop, but it is cleaner and easier to read. Nev-

ertheless, there are cases where vectorized statements are difficult to formulate or

241

explicit loops are unavoidable. In these instances, SPIVET implements the necessary

functionality in an external C module and subsequently wraps the module in Python.

SPIVET has been constructed to utilize parallel processing for extracting data

from very large sequences of images1. Here again, Python has strengths and weak-

nesses. Threading of pure Python code is very problematic. A Python construct

known as the Global Interpreter Lock (GIL) effectively serializes Python code exe-

cuting within a single process2. To work around these limitations and still provide

parallel processing for large image sets, SPIVET relies on the NetWorkSpaces [8] li-

brary to provide process-level parallelism and inter-process communication. Overall,

SPIVET in cooperation with NetWorkSpaces functions very similar to a parallel pro-

gram utilizing MPI [5]. NetWorkSpaces manages the spawning of individual worker

processes on each processor of a networked grid of computers, and coordinates the

exchange of data between worker processes. By using process-level concurrency, the

serializing effect of the GIL is avoided since each process has its own, private GIL.

A good deal of effort has been spent to minimize, where possible, the virtual

memory footprint of SPIVET. SPIVET’s internal data structures (Section B.3.1)

attempt to intelligently manage their utilization of virtual memory by temporarily

storing dormant data to disk on a least recently used basis. This functionality frees

virtual memory address space to be utilized for other purposes, and is of primary

benefit to installations that still rely on a Python built for a 32-bit address space.

The issue of virtual memory address space exhaustion will all but disappear once

64-bit operating systems and user-level applications (like Python) become standard.

The function of each of the four principal SPIVET sub-packages as shown in Figure

B.1 is discussed in the following sub-sections. SPIVET’s third-party dependencies are
1At present, SPIVET’s use of parallel processing is limited to the reduction of raw images to

flow field variables, as this is the most time consuming operation. Nonetheless, there are plenty of
opportunities to utilize parallel programming in other parts of SPIVET (see Section B.8).

2Python places few constraints on external libraries written in a compiled language, and these
libraries are free to employ threads, MPI [5], or any other concurrent execution techniques as long
as the code does not call back into the Python API to interact with a Python object.

242

exodusII Path containing the ExodusII library
__init__.py PivLIB initialization module
exodusII.py Python wrapper module for ExodusII

library
pivcolor.py Colormaps for use with pylab
pivdata.py SPIVET data structures
pivir.py Image registration functions
pivlibc.c Numerically intensive C functions
pivlinalg.py Streamlined LAPACK wrappers
pivof.py Optical flow driver functions
pivpg.py Photogrammetry functions
pivpgcal.py Photogrammetric calibration functions
pivpickle.py Pickling functions that compress data
pivpost.py Filtering and spurious vector removal
pivsim.py Ray tracing optical simulator
pivsimc.c C functions for ray tracing
pivtpsc.c C functions for thin-plate splines and

shape contexts
pivutil.py Miscellaneous utilities, including the

reading and writing of images, used by
many modules

Table B.1: PivLIB package contents.

covered more fully in Section B.7.

B.3.1 PivLIB

The PivLIB package provides the core algorithms for Particle Image Velocimetry

and other essential SPIVET functionality. These services include camera calibration,

extraction of displacement vectors from images, reconstruction of 3D displacements

from 2D displacements (the stereoscopic aspect of PIV), post processing of displace-

ment fields via filtering, reading and writing of images, a ray tracing simulator, and

SPIVET data structures. The functionality of the PivLIB package is spread across

the files as shown in Table B.1. A few notes follow.

243

SPIVET data structures

Internally, SPIVET stores non-image PIV data (e.g., velocity) in a hierarchy of

three, specialized, intelligent data structures that have been constructed to minimize

the virtual memory footprint of SPIVET. The lowest level data structure is the PIVVar

(a class derived from a NumPy ndarray [6]) which holds a single flow field variable

(e.g., temperature, velocity, viscous stress tensor, etc) along with the variable’s name

and units. Because the PIVVar class is derived from a NumPy ndarray, the full

compliment of NumPy and SciPy functionality or any other framework that utilizes

ndarrays can operate directly on a PIVVar. And just like ndarray objects, PIVVars

can be operands of standard arithmetic operators as shown in the following Python

code snippet3

vara = varb + varc

The data stored in a PIVVar is ordered according to the underlying uniform grid

of PIV cells (see Section B.4). PIVVar objects know how to temporarily store their

contents to disk thereby freeing up virtual memory address space. The management of

these ’active’ and ’deactivated’ PIVVar objects is provided by the SPIVET PIVEpoch

container class.

In many experimental cases, multiple flow field variables are of interest. Indeed,

SPIVET has been specifically crafted to extract velocity and temperature fields from

PIV image sets, and the user may wish to compute further derived quantities. To

this end, the PIVEpoch is a container class that stores the full set of flow variables

which are valid at a given instant in time. The PIVEpoch class is derived from the

standard Python dictionary and stores PIVVar objects by the variable’s associated

name. The PIVEpoch class autonomously maintains a cache of recently used PIVVars,
3The user should note, however, that although the newly created variable vara is a valid PIVVar,

it has no name or units. The units and name of a PIVVar created by an arithmetic operation is
by default set to the string ’NOTSET’. In such cases, the PIVVar method setattr() can be used to
assign a meaningful name and units.

244

while transparently storing unused variables to disk.

The set of PIVEpochs that describe the time evolution of a flow field are stored

in the highest level container, the PIVData object. The PIVData class derives from

the Python list and is a simple ordered container that can write its full contents to

disk as an ExodusII [7] file. The PIVData object is also responsible for tracking cell

size and mesh origin within SPIVET’s internal world coordinate system (see Section

B.4).

Permanent storage and data exchange

For permanent, external storage of flow field data, SPIVET uses the ExodusII

library [7] which writes all data stored in a PIVData object to a single, portable

ex2 file that can be directly loaded into visualization packages such as VisIt [3] or

ParaView [1]. The ExodusII file format has been developed by Sandia National

Laboratories for storage of large, time-varying datasets expressed on unstructured

grids. SPIVET represents its data on a uniform, cell-centered, structured mesh,

so the unstructured mesh handling facilities of the ExodusII file format are not of

particular benefit. Nevertheless, the portability, clean API, and ExodusII reliance

on the NetCDF framework [11] for the underlying file structure are all significant

advantages. An ExodusII file written by a SPIVET PIVData object is, for all intents

and purposes, a disk-based incarnation of the PIVData object itself. Hence, SPIVET

can easily ’reanimate’ any PIVData object stored in and ExodusII file for additional

processing at a later time.

There is one particular peculiarity of the ExodusII file format that the user should

be aware of: variable names (with units appended) are currently limited to 32 char-

acters. When SPIVET writes an ExodusII file, each ExodusII variable is assigned a

name (limited to a maximum length of 32 characters) that is the concatenation of

the corresponding PIVVar variable name, a space, and the PIVVar units enclosed in

245

__init__.py TlcLIB initialization module
tlclibc.c Numerically intensive C functions for

TlcLIB
tlctc.py Thermochromic functions that utilize an

existing calibration
tlctccal.py Thermochromic calibration
tlctf.py Temperature extraction driver functions
tlcutil.py Miscellaneous utility functions

Table B.2: TlcLIB package contents.

brackets (i.e., []).

Optical simulations

The pivsim module provides an optically correct ray tracer for experimental sim-

ulation. The functionality of the module is limited, but it has been used to do a full

simulation of the entire PIV process, from photogrammetric calibration to a synthetic

‘experiment.’ In this manner, the module provides a simple means of investigating

the relative importance of different factors on the aggregate PIV setup. Ray tracing

simulations also permit accuracy analysis of PivLIB’s PIV vector extraction algo-

rithms in a well-controlled environment. However, the user should understand that

such accuracy analyses often represent a floor since pivsim does not include errors

from lens optics (e.g., spherical aberration, finite depth of field), camera noise, etc.

These un-modeled errors are typically non-negligible and can actually be the domi-

nant source.

B.3.2 TlcLIB

The TlcLIB package provides thermochromic liquid crystal (TLC) calibration and

temperature field extraction facilities and is organized as shown in Table B.2.

246

B.3.3 SPIVET steps

The spivet.steps module and its helpers provide an object-oriented wrapper

around the procedural functions contained in the PivLIB and TlcLIB packages that

automate the process of converting raw images into desired flow field data. The

steps module also separates user configuration data (contained in a ‘recipe’) from

the function implementation details. Hence data processing scripts using steps are

more compact since the script is only charged with configuring, initializing, and setting

up the order in which the collection of steps are executed. Once a particular recipe

is constructed, it can then be applied with limited or no modifications to a number

of experimental datasets.

A recipe constructed from a collection of steps is the principal means for reducing

raw image data into useable flow field variables such as velocity and temperature.

Individual steps are provided to parse the full set of image files, partition the set of

images for parallel processing, extract field variables, and post-process those field vari-

ables to remove spurious vectors or compute derived quantities (e.g., vorticity). Users

can also create their own derived steps which are stored in the .spivet/usersteps

path under the user’s home directory.

B.3.4 FloLIB

The set of FloLIB modules provide post-processing facilities for flow field data,

with the primary functionality being: 1) computation of derivatives for field data

stored in PIVVars, 2) spatial interpolation of field variables, and 3) Lagrangian trans-

port analyses by way of passive tracer advection. FloLIB consists of the files shown

in Table B.3.

247

__init__.py FloLIB initialization module
floftle.py Finite time Lyapunov exponent (FTLE)

functions
floftlec.c C library of numerically intensive FTLE

functions
flotrace.py Passive tracer functions
flotracec.py C library of numerically intensive tracing

functions
floutil.py Generic utilities for derivatives and

Runge-Kutta time-stepping
flovars.py Functions for computing derived flow

quantities
svcismat.h Header file for tricubic interpolation

Table B.3: FloLIB package contents.

B.4 Coordinate system and array indexing

SPIVET generally orders data with the x-axis (i-index) varying fastest, followed

by the y-axis (j-index), and finally the z-axis (k-index). Hence the Python statement

val = velocity[2,0,10,20]

where velocity is a PIVVar, assigns the x-component4 of velocity in cell (i, j, k) =

(20, 10, 0) to the variable val. The only time this rule is broken is if SPIVET needs

to pass information to an external library (e.g., ExodusII) that requires a different

ordering. In these special cases, the change is transparent to the user. Note that as

with C, array indexing begins with zero in Python.

SPIVET employs several coordinate systems to convert raw images into useable

flow field variables, however the three most important are undoubtedly local array

coordinates, SPIVET’s internal world coordinates, and PIVData coordinates. Local
4Note that the velocity components (first dimension of the PIVVar) are also ordered as z, y, x. This

is another SPIVET convention that is always followed for all ordered data (PIVVars or otherwise).
A nine-component tensor stored in the PIVVar atensor, for example, will have its components
ordered as zz, zy, zx, yz, yy, yx, xz, xy, xx. Hence atensor[0,:,:,:] will return an array of the zz-
tensor component and atensor[8,:,:,:] will return the xx-component. Likewise a three-element
vector, tcrd, containing the x, y, z-coordinates for a tracer would be stored in SPIVET as tcrd =
array([zcoord,ycoord,xcoord]). When interacting with SPIVET, this convention must always
be observed.

248

array coordinates are cell-centered and dimensionless with the coordinate system

origin located at cell (i, j) = (0, 0) for a 2D array (e.g., an image) or (i, j, k) = (0, 0, 0)

for a 3D array (e.g., a PIVVar). Local array coordinate axes point in the direction of

increasing index.

Once photogrammetric calibration has been performed, SPIVET will project cam-

era images back onto the plane of illumination (created by laser or light-sheet). This

projection results in a dewarped representation of the camera image where all of the

new ‘world pixels’ can be scaled by one single constant to represent distances in mm.

SPIVET adopts a convention regarding the orientation of world coordinates that is

common, but certainly not universal, in computer graphics and image processing ap-

plications. SPIVET takes the internal world coordinate system to be right-handed

and to have its origin located at the upper left corner of the plane (or collection of

planes in 3D) being imaged or viewed5. The internal world z-axis is perpendicular

to this viewed plane, oriented such that z-coordinates increase away from the viewer

(or camera). The internal world x- and y-axes are parallel to the local i- and j-axes,

with x increasing to the viewer’s right andy increasing down. SPIVET is designed to

process images taken of many planes within the flow field, where each plane is imaged

by moving the light sheet and cameras as needed. SPIVET assumes this motion is

parallel to the world z-axis. The origin of the world coordinate system is therefore

located in the center of world pixel (i, j) = (0, 0) (the upper left pixel) of the first

plane imaged. SPIVET world coordinates have units of mm.

For flexibility, the PIVData coordinate origin does not have to be coincident with

the SPIVET world coordinate origin. Since SPIVET is principally built around cor-

relation particle image velocimetry (CPIV) techniques, extracted PIV displacement

vectors represent an average displacement for a group of world pixels (also known as

an interrogation window in the literature). Hence the cell-centered local array origin
5So when looking at a computer monitor, for example, the origin is the upper left corner of the

screen using this convention.

249

of a PIVVar corresponds to a location in the center of the interrogation window. For

obvious reasons, choosing the origin of the PIVData coordinate system to be coinci-

dent with the underlying local array origin is very beneficial. To this end, the PIVData

origin member stores the offset between the origins of the SPIVET world system

(centered in world pixel (i, j) = (0, 0)) and PIVData coordinate system (centered in

PIVData cell (i, j, k) = (0, 0, 0)).

Although the origins of PIVData and SPIVET world coordinates can be offset,

SPIVET does expect the particular coordinate axes to be parallel and point in the

same direction. For the University of Michigan setup, the laboratory equipment

sweeps the light sheet (and cameras) in a direction moving opposite the cameras’

gaze. According to the definition of SPIVET world coordinates above, the light-sheet

and camera are both moving in the negative z-direction. Given that SPIVET stores

the extracted data from each plane in the order in which it was acquired, the PIVData

local array k-axis points in the opposite direction of the world z-axis. The apparent

mismatch is accounted for by another PIVData member, cellsz, which stores the cell

size of the underlying PIVData mesh in units of mm. Values stored in cellsz can

be negative, as is the case for the University of Michigan setup. PIVData cell centers

can then be represented in valid SPIVET world coordinates by the pseudocode

cell_coords = cell_indices*pd.cellsz + pd.origin

where pd is taken to be a valid PIVData object.

B.5 Installation

SPIVET has been installed and tested on Linux and Mac OS X platforms. Some

operations used within SPIVET are likely not portable to Windows machines. The

installation procedure is detailed in the README file located in the root of the source

tree.

250

B.6 Filesystem layout

The SPIVET source code is organized as shown in Figure B.2.

B.7 Dependencies

SPIVET requires the following software to be installed. Unless otherwise noted,

the latest version available should work.

• Python SPIVET has not been tested against Python version 3.0 or above.

SPIVET was written for and works with Python 2.5 and 2.6. Python 3.0 and

above is not backward compatible with the Python 2.x series. As a result,

running SPIVET in Python 3.x will undoubtedly require some changes to the

SPIVET code. See http://docs.python.org/dev/3.0/whatsnew/3.0.html

for more info on the differences between Python 2.x and Python 3.x.

• NumPy Provides scientific computation facilities and efficient handling of ar-

rays [6].

• SciPy SciPy provides higher level scientific computation facilities that are built

on top of NumPy [9].

• PIL Python Imaging Library. PIL provides facilities for reading and writing

images of various formats [10].

• netCDF Low-level file format [11] upon which the ExodusII specification [7] is

built. Users only need to install netCDF as the ExodusII library is provided as

part of SPIVET.

• VTK Visualization toolkit that provides storage, visualization, and geometric

data manipulation capabilities [2].

• matplotlib Python package providing 2D plotting capabilities [4].

251

./
examples ... Example scripts for running SPIVET. The

user should be able to quickly and easily
modify these scripts for a given use.

calibration ... Scripts used for photogrammetric (i.e.,
camera) and thermochromic (i.e., TLC hue
versus temperature) calibration.

piv ... Scripts used for primary conversion of raw
images into displacement and temperature
fields.

post ... Scripts demonstrating the use of SPIVET
facilities for post-processing of
flow-field data.

lib ... Source code for SPIVET itself.

spivet ... Contains PivLIB, TlcLIB, and FloLIB
sub-packages as well as the steps module
and other SPIVET-wide facilities.

flolib ... FloLIB modules.

pivlib ... PivLIB modules.

exodusII ... ExodusII data file library.

skel ... Default files that are copied into the
user’s .spivet directory during install.

tlclib ... TlcLIB modules.

tests ... Various unit test scripts for SPIVET
modules.

data ... Input files and known outputs for unit
testing.

Figure B.2: SPIVET source code directory structure.

252

• NetWorkSpaces Provides the infrastructure for parallel processing [8]. NWS

isn’t required, but when processing large batches of images it’s highly recom-

mended. An NWS installation must consist of the client (installed on all worker

nodes) and the server (on one machine only). Note that the server does not

have to be a worker node.

B.8 Avenues for improvement

While SPIVET generally does a reasonable job at tasks for which it was designed,

there are a number of opportunities for improvement. The more important deficiencies

are discussed in this section.

As discussed in the overview, SPIVET is currently without a graphical user inter-

face (GUI). SPIVET was not designed with real-time processing or user interaction in

mind. Instead, SPIVET is a library predominantly geared toward batch processing of

large quantities of images, extracting flow field variables from those images, and then

post processing the results as needed. For most of SPIVET’s intended uses, a GUI

would seem to provide little or no benefit. However a GUI that manages the creation,

organization, and configuration of SPIVET steps recipes (see Section B.3.3) would

be quite valuable.

Significant improvement in execution speed and memory footprint could be re-

alized by migrating some parts of the PivLIB image processing C code to single-

precision arithmetic (or even integer arithmetic) and potentially vectorizing the cor-

responding code with SIMD instructions. External modules written in C or Fortran

can use single- or double-precision arithmetic, and the NumPy ndarray class pro-

vides a mechanism for specifying whether a Python ndarray object holds single- or

double-precision data. So facilities are available for working with single-precision

data. Unfortunately, Python proper (with the exception of NumPy’s ndarray class)

is hardwired to use double-precision (i.e., 64-bit) floating point arithmetic by de-

253

fault, so care must be taken to ensure that a Python coerced conversion from or to

double-precision doesn’t negate any single-precision performance benefits.

Having an optically accurate ray tracing facility like that of pivsim, can be ex-

tremely valuable in analyzing experimental errors, developing extensions to existing

PIV algorithms, and upstream planning for new laboratory experiments. The func-

tionality provided by the pivsim module, however, is currently very limited. Commer-

cial optical design packages provide a much larger feature set and have substantially

more robust computational geometry kernels. However, these commercial packages

tend to be expensive and require a substantial learning curve due to the very large

feature set provided. It is this author’s opinion that investing in a commercial package

could be a wise investment since the software would provide the PIV practitioner with

the opportunity to design and analyze experiments that optimally leverage equipment

capabilities. Nevertheless, the simulation facilities provided by pivsim can still be

useful particularly if run-time performance is improved. In the current configuration,

pivsim is implemented utilizing Python objects constructed from a mixture of Python

and C code. Code that is called repeatedly during ray tracing is fully implemented

in C, but still uses the Python object model and corresponding API. Unfortunately,

interacting with Python objects has substantial overhead regardless of whether the

object is implemented in Python or C. The expense is a consequence of Python’s in-

terpreted nature and the resulting way in which class data and function members are

accessed (using a string search of a dictionary). The performance of pivsim can be

improved substantially by eliminating all vestiges of Python and migrating the entire

existing implementation to C++. Python could then be used to call into this self-

sufficient library to setup the simulation and trigger the actual ray tracing, however

all other functionality should be implemented independently of the Python API.

The passive tracer framework of FloLIB is under enormous strain from the per-

spectives of computational time and memory use. Advecting large numbers of passive

254

tracers is by its very nature a computationally expensive and memory intensive un-

dertaking. The algorithms as currently implemented in FloLIB provide a high degree

of flexibility for advecting tracers that can later be used for a variety of purposes,

but execution time and memory constraints effectively limit FloLIB’s passive tracing

facilities to 2D applications. High-resolution 3D tracing operations will require the

underlying algorithms to be more tailored to the specific end-use. As a case in point,

consider the advection of tracers for the purpose of computing the finite-time Lya-

punov exponent (FTLE) field. FloLIB’s generic passive tracer functions are currently

used to compute and store the full set of tracers at each time-step. The tracer field is

then later re-processed by separate FTLE-specific algorithms. As far as FTLE com-

putation is concerned, this decoupling of tracer advection from FTLE computation

consumes a tremendous amount of both computation time (much of which is wasted

writing and then re-reading the tracer field) and storage space. If the user’s principal

interest is the FTLE field, however, a small cluster of tracers could be followed in time,

the desired FTLE field computed, and the tracer coordinates themselves discarded.

This application-specific tailoring of passive tracing algorithms could significantly

improve performance6.

At present, SPIVET enforces the use of mm units for internal world coordinates.

This can lead to convoluted combinations of units when computing derived quantities

such as density. SPIVET should permit the user to specify arbitrary spatial units.

Although the majority of the most important functions have unit tests to help

verify that SPIVET is operating correctly, not all parts of SPIVET have sufficient

test cases. Implementing additional unit tests for under-tested or untested parts of the
6Tailoring of the code to end-use applications can be accomplished without necessitating the

construction of a whole host of nearly identical, but slightly different tracing functions. The key
is to re-architect the existing code into a more modular, object-oriented framework, with perhaps
the producer-consumer design model used as guidance. Actually the current non-object-oriented
configuration isn’t far from this concept; the existing consumers simply don’t intercept the produced
data until it has been written to disk. Re-architecting the passive tracer code would also permit the
code to be run in parallel (it is currently a serial implementation).

255

SPIVET framework would greatly improve the robustness of the code to downstream

changes.

B.9 References

[1] Kitware, Inc. ParaView - Open Source Scientific Visualization. http://www.
paraview.org.

[2] Kitware, Inc. VTK - The Visualization Toolkit. http://www.vtk.org.

[3] Lawrence Livermore National Laboratory. VisIt Visualization Tool. https:
//wci.llnl.gov/codes/visit.

[4] matplotlib. matplotlib: Python Plotting. http://matplotlib.sourceforge.
net.

[5] MPI Forum. Message Passing Interface Forum. http://www.mpi-forum.org.

[6] NumPy. Scientific Computing Tools for Python - NumPy. http://numpy.
scipy.org.

[7] Sandia National Laboratories. ExodusII. http://sourceforge.net/
projects/exodusii.

[8] Scientific Computing Associates, Inc. NetWorkSpaces. http://www.
lindaspaces.com/products/NWS_overview.html.

[9] SciPy. SciPy. http://numpy.scipy.org.

[10] Secret Labs AB. Python Imaging Library. http://www.pythonware.com/
products/pil.

[11] Unidata. NetCDF (network Common Data Form). http://www.unidata.
ucar.edu/software/netcdf.

256

