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CHAPTER I

Introduction

1.1 Motivation

HIV persists despite being weakly transmitted [28], well characterized, highly pre-

ventable [35], and having well-funded research and prevention programs. This per-

sistence may stem from current prevention practices that are fundamentally sound

but too small in magnitude, or because our theoretical understanding is lacking,

leading to inefficient prevention recommendations. HIV prevention programs have

been effective in reducing, but not eliminating, HIV transmission. For example, the

sharp decline of HIV in Uganda in the 1990s was attributed to the implementation

of effective, cooperatively designed prevention programs [29]. Since 2005 the preva-

lence of HIV remained stable at about 6.5% [44], indicating that even though these

programs are clearly effective in reducing risk behavior, high-levels of transmission

are still occurring. The question remains, what is generating the remaining force of

infection?

The answer to this question is not obvious. HIV, unlike many other infectious

diseases, has a very long infectious period leading to highly complex transmission

dynamics. These dynamics are shaped not only by individual sexual behaviors, but

also by large-scale forces that have no individual-level correspondence, such as the

1
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shape of sexual networks [41] [73]. The building of a sound theoretical understanding

of HIV transmission has been a decades-long project that is still underway. In this

thesis I present work done in collaboration with many other scientists on a simple yet

poorly understood aspect of HIV transmission: how short-term variation in sexual

behavior affects HIV transmission dynamics.

My personal motivation for studying this topic came from a simple realization.

While learning about mathematical models of infectious disease, I came to think of

models less as systems of equations and computer simulations and more as collections

of assumptions about how humans behave. I realized that the validity of a mathe-

matical model is a two-fold question. First, do the model assumptions obtain in the

real world? And, two, whether or not violation of those assumptions matters to the

inference we can make from our models. One assumption that I kept coming back

to was the stability of sexual behavior in general. The idea the someone who had

risky sex once – maybe without a condom or under the influence of drugs – would

continue that behavior pattern indefinitely seemed unlikely. In addition to seeming

unlikely, the assumption of stable sexual behavior given the observed levels of sexual

activity imply the unpleasant conclusion that a small subset of highly promiscuous

individuals are responsible for the epidemic [52]. Good science is good science regard-

less of its conclusions; however, the question remains, is such a conclusion the result

of unexamined assumptions? My own experience suggested that sexual behavior is

more contextual in nature. Maybe a split from a long term partner would precipitate

a brief period of sexual risk in an otherwise cautious person. Or, maybe, the new

found freedom associated with coming out of the closet would be celebrated by a

period of uncharacteristic promiscuity. In the much more elegant words of Ortega y

Gassett, ‘yo soy yo y mi circunstancia’ [23].
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In this thesis I formalize a representation of contextual sexual behavior that I call

contact rate volatility. I will attempt to answer two questions: does the assump-

tion of stable risk behavior obtain? And, does the stability or volatility of sexual

behavior matter to our theoretical understanding of HIV transmission dynamics?

In the second chapter I calculate the likelihood of a prospective survey of sexual

behavior under a range of stable and volatile sexual behavior models. In the third

chapter I use the theory of branching process to calculate a theoretical statistic that

delineates the conditions under which an epidemic can occur assuming either stable

or volatile sexual behavior. In the fourth chapter I use simulation to explore the

mechanism and effects of volatile sexual behavior on the transmission dynamics of

HIV.

1.2 Theoretical context

The intent of this thesis is to contribute to the broader theoretical understanding

of HIV transmission by exploring the effects of an understudied aspect of human

sexual behavior. In this section I will briefly review some of the relevant literature

on the dynamics of HIV transmission to contextualize this work as the next logical

step in a lineage of theory development. The HIV modeling literature is massive and

its domain is well beyond the scope of this section. I have selected papers that I

believe analyze key heterogeneities that must be considered as fundamental elements

of a complete theory of HIV transmission.

Causal factors that affect the spread of HIV can be loosely categorized into ‘bio-

logical’ and ‘social’ categories. Biological factors are generally those that result from

the interaction of the infectious agent and the host. Examples of biological factors

include the viral titer in the bodily fluids, the duration of the infectious period, host
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susceptibility, and time to death. Social factors emerge as a result of the interactions

between hosts, or between a host and its social environment. Such factors include

sexual practices, number of partners, drug use, and partner choice. The reason for

making this distinction is two-fold. First, bio-social distinction provides a nice de-

lineation between the early modeling work that largely focused on biological factors

and the later work which has been more focused on social factors. The reason for

this shift in focus is that empirical work has been highly successful in defining and

limiting the range of biological parameters that are less variable between popula-

tions. Secondly, although there are exceptions, such as the geographic distribution

of the ∆32 CCR5 mutation that confers a degree of HIV resistance [63], more of

the variance HIV risk between populations is attributable to variance between so-

cial factors. Goodreau and Golden have argued that versatility among gay men–the

ability to perform both insertive and receptive sexual roles–and role separation in

heterosexuals, is one of the primary determinants of the differential burden of HIV

in gay and heterosexual populations [25].

The first modeling papers published after HIV was identified as the etiological

agent of AIDS [22] [9] were primarily concerned with short-term prediction of the

number of AIDS cases [57] [62]. Much of that early work was focused on fitting sim-

ple functions to the incidence data to extrapolate the number of case that should be

expected in the coming years. These simple predictive models were refined to include

variable delays in the time from reporting to the time of diagnosis, which, before the

time of highly accurate tests, was based on the presentation of symptoms that might

not occur for years after infection [16]. These types of analysis are aimed at making

more refined predictions about the burden of AIDS, but not about the causal factors

that generate those cases. The prediction of HIV cases is approached as a case of
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phenomenological curve fitting and refinement; this type of ‘black box’ conceptual-

ization of HIV dynamics does little to add to the broader theoretical understanding

of HIV transmission.

The first study of the dynamics of HIV was published about 3 years after the co-

discovery of HIV [5]. Anderson et al. published a preliminary study of a causal model

of HIV transmission in the context of not knowing many of the key epidemiological

parameters that we considered well-established today. The authors note that they

do not know the latent period (time from exposure to infectiousness), the mortality

rate of the infected, the duration of the infectious period, the persistence of virus in

the infected, and the transmissibility of the virus. Anderson et al. assume that the

time from seroconversion to AIDS is a linearly increasing function of time and that

infectiousness is lifelong. Drawing on a very limited data set of sexual behavior in

gay men in the UK and USA, they find a distribution of partnership rate (number of

partners, not the number of contacts) to have both a high average and high variance.

These data were fit to a Gamma distribution that they argue is still poor, but is an

improvement over previous fits.

Much of the initial work in Anderson et al. (1986) involved modeling variability

in parameters whose distributions in various populations we can now characterize.

However, they highlight both the role of heterogeneity in partnership rates and how

that heterogeneity affects the epidemic. They find that increasing heterogeneity in

the distribution of contact rates reduces the magnitude of the epidemic and the time

to peak incidence. When the variance of the contact rate distribution is much greater

than the mean (which is the case for the contact rates studied in chapter 2), an

increasingly small number of individuals account for an increasingly large proportion

of contacts. Likewise, even at very high average contact rates, a large proportion of
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the population are making very few contacts (i.e. nearly abstinent). Similar work

from around the same time shows that for a given value of R0, increasing variance

in the distribution of contact rates leads to lower fraction of infected individuals

[55]. The conclusion is clear: differences in mean partnership rates are insufficient to

explain differences in infection rates in different populations; heterogeneity in contact

rates also matters to HIV transmission.

Before a ‘final’ synthesis of the theory of HIV transmission can occur, we first

need to determine all of the relevant factors that are causing the patterns of HIV

transmission. In the literature, a lineage of work exists from the late 1980’s that

focuses on relaxing the assumptions of previous models to identify where and how

data needs to be collected to better understand the spread of HIV. Anderson et al.

(1986) conclude that ‘as the intensity of epidemiological research increases, simple

models will be of less value once the various unknowns and complications that have

been hinted at in this paper are defined and quantified.’ Certainly this is true;

however, many of the ‘various unknowns’ mentioned by Anderson et al. are now

known, yet our picture of HIV transmission dynamics are not yet complete. As I

use very simple models in this thesis and find a unique heterogeneity that has large

population-level effects, I have to disagree about the value of simple models.

Anderson et al. (1986) identified that heterogeneity in risk behavior is a key

determinant of the spread of HIV, Hyman and Stanley further defined the pattern

of mixing between those groups as another important factor. Hyman and Stanley

(1988) proposed a model that relaxed several of the simplifying assumptions of pre-

vious models, including variable infectivity and structured partner choice [36]. They

found that variation in the natural history of infectivity, when controlling for total

infectivity, could have major influence on the early trajectory of the epidemic. When
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relatively more of the infectivity density occurs nearer to the time of infection, time

to peak incidence occurs sooner. Increased density towards the end of the epidemic,

on the other hand, had little influence on the time to peak incidence. Hyman and

Stanley also found that when individuals preferentially mix with individuals of sim-

ilar risk status rather than drawing partners at random slows significantly, but the

total number of infected cases actually increases. Later work on the natural history

of infection has lead to a consensus about the typical infectivity profile; however, the

nature of sexual mixing is still largely unknown.

Using theoretical analysis, Jacquez et al. argue that the patterns of sexual mixing

are a key determinant of the spread of HIV [39]. They identified three kinds of basic

mixing patterns: restricted, proportional, and preferred. Restricted mixing is when

individuals draw their sex partners from only within their own risk groups. The as-

sumption is that each risk group has their own mixing site exclusive to them. Within

each site individuals are homogeneous and independent of other groups. Proportional

mixing occurs when individuals with different contact rates mix at one common site.

The rate at which individuals from different groups contact one another is propor-

tional to the product of their contact rates [34]. In a proportional mixing setting,

most of the contacts are assortative for high-risk individuals as high-risk individuals

are more likely to contact other high-risk individuals. However, contacts made by

low-risk individuals are likely to be disassorative as contacts made by low-risk in-

dividuals are also likely to be with a high-risk individual. Proportional mixing is a

very common assumption in models of HIV transmission not necessarily because it

is accurate, but rather because this assumption provides an amount of mathemati-

cal convenience. The third mixing pattern, preferred mixing, reduces restricted and

proportional mixing to a single common framework by allowing individuals to re-
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serve some proportion of all contacts for a restricted mixing site with the remainder

going to a common site. The preference parameter is ‘universal’ in that all classes

of individuals have the same preference for mixing at the restricted site. This as-

sumption was relaxed in later work [38]. Jacquez et al. found that transitioning

from restricted to proportionate mixing could produce risk ratios of 9-fold in some

cases. These effects occur because, as more contacts are made at the common site,

more of the high infection potential in the high risk group is ‘bleeding’ over into the

lower risk group [48]. Even if the low risk group is below the epidemic threshold, the

continued exposure to high risk infectives at the common site produces significant

infection levels in low risk individuals.

In general, the work up to this point has assumed that sexual contacts and sexual

partnerships are indistinguishable in that all contacts are instantaneous and oth-

erwise identical. Per-act probabilities of transmission are easier to estimate than

per-partnership probabilities of transmission simply because a sex act is much easier

to define than a sexual partnership. However, in reality, many sexual acts will oc-

cur in the context of a partnership rather than as ‘one-offs’ between strangers. The

simple thought experiment of imagining how HIV would be incapable of spreading

in a population with life-long, strict monogamy reveals how partnership dynamics

matter to the spread of HIV. Using straightforward simulation methods, Morris and

Kretzschmar found that the degree of concurrency (overlapping relationships) is a

major determinant of the incidence rate. Holding the total number of contacts con-

stant, they found that concurrency could increase the incidence rate by up to 10-fold

and greatly increases the early rise of the epidemic also [60]. However, concurrency

is both difficult to define and estimate [33], and it is not immediately clear how to

interpret estimated levels of partnership concurrency in men (10-26%) [2] [27] with
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respect to HIV dynamics.

There are many of other axises along which models can be made increasingly

realistic, but I have introduced what I believe to be the most important classes of

assumptions made by the homogeneous SI model that need to be addressed to make

a useful and parsimonious model of HIV transmission: heterogeneity in behavior,

heterogeneity in mixing patterns, and heterogeneity in partnership dynamics. In this

thesis I explore an previously unappreciated dynamic, heterogeneity in individual-

level contact rates over time, which I refer to as contact rate volatility. This work

can be thought of as the initial work exploring one aspect of the temporal dimension

of behavioral heterogeneity.

1.3 Contact rate volatility is a kind of non-differential behavior change

Change in sexual behavior is generally understood to be a differential change in

one’s state with respect to sexual risk behaviors. For example as movement between

insertive and receptive sexual roles [11], movement between core and non-core groups

[49], or movement between age groups [50]. This type of behavior change implies

a specified change in one’s risk, moving from insertive-only to receptive-only states

increases fundamentally increases one’s risk as receptive sex is generally regarded to

be much riskier than insertive sex. I am going to formalize contact rate volatility as

a more general kind of behavior change that does not imply changes in state nor a

specified differential change in risk behavior.

The first element of a more formal representation of contact rate volatility that

needs to be specified is the probability of having a specific contact rate (i.e. the

shape of the container in the above metaphor). I will refer to this as the contact

rate heterogeneity (CRH) model. Most probability density or mass functions will
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probably suffice as a CRH model, although it makes conceptual sense to restrict

oneself to functions defined only for positive values – negative contact rates may, in

principle, not be a problem but they do make the analyses a bit harder to explain.

The second element of contact rate volatility is the model of volatility itself. In the

above metaphor, we imagined the temperature of the gas as the single ‘volatility’

parameter. The simplest formalization is a single rate parameter, the rate at which

individuals re-draw their contact rates with probabilities specified by the CRH model.

As the volatility parameter increases (i.e. the gas becomes hotter), individuals more

rapidly re-draw their contact rates as specified by the CRH model; likewise, the

length of time over which an individual’s behavior is constant becomes shorter and

shorter.

This kind of contact rate volatility is non-differential in that the CRH model

is constant over time and that there are no changes to an individual’s state that

precipitate changes to the contact rate. For example, Blower et al. model changes to

an individual’s risk in terms of changes of state between receptive-only and insertive-

only sexual preference states [11]. In this case, risk is volatile in that it is variable

over time, but it is also differential in that the risk of infection is fundamentally

different in each state. If, in our stateless volatility model, we make the assumption

that the hazard of infection is proportional to the contact rate then see a similar

variability in the risk of HIV infection with out having to specify the distribution

of individuals over a state space. This kind of stateless, non-differential behavior

change allows us to study the general effects of behavior change in a highly abstract

way that may help to understand the general mechanisms of how behavior change

affects HIV transmission dynamics.
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1.4 Basic epidemiology of HIV

HIV is a retrovirus transmitted primarily though sexual contact, sharing of in-

jection works among intravenous drug users, perinatally, and iatrogenically though

sub-optimal medical practices. Sexual contact is the dominant route of transmission.

In the United states of the estimated 56,300 new cases that occurred in 2006, only

6600 (12%) were attributable to non-sexual routes of transmission [31]. The degree

of heterosexual versus homosexual transmission varies quite a bit by country. In the

United States, heterosexual transmission only accounted for 33% of incident cases

in 2006 [31] despite heterosexual identified persons representing the vast majority of

the population.

The physiology of HIV infection is very complex but can be divided into four

epidemiologically distinct phases: latent, acute, chronic, and final. Immediately

following infection, the virus remains latent for a few days [77], where it shows little

signs of amplification. The virus then begins to amplify rapidly, reaching peak levels

in the blood about 17 days after infection and in semen about 30 days after infection.

Patients in this second, acute, stage of infection can present with a clinical viremia

and found to be more likely to report non-specific symptoms of viremia such as fever

and malaise than chronically infected patients [17]. Levels then decline 170-fold to

a nadir occurring about 10 weeks after infection [65]. After viral titers drop, the

patient enters an asymptomatic, chronic stage of infection that is highly variable in

duration, as short as 8 years in untreated individuals. During this time viral titers

are low, and may even be undetectable in patients with good clinical management

[40]. The final stage is characterized by an increasing viral titer and a weakening of

the immune system leading eventually to AIDS and then death. Life expectancy in
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the final stage is about one year.

The changes in viral titer corresponds to changes in the per act probability of

transmission. The highest quality estimates of the per act probability of transmission

come from a study of 235 monogamous, HIV-discordant heterosexual couples in

Uganda. Serodiscordant couples were identified from a large prospective cohort of

15,127 individuals. The number of sex acts and the infection status of the negative

partner over time were ascertained. Because of the study design, where individuals

were enrolled as they became infected, the authors were able to classify each contact

that the uninfected partner was making as being either with an acute, chronic, or

late stage HIV infected partner [74]. Further analysis of the data from this study

showed the per-act probability of transmission to be 35 to 61 times higher for contact

made with an acutely infected person compared to a chronically infected person [66]

and about 7 times higher for final compared to chronic stage.

1.5 Stage contribution is a central question in the dynamics of HIV

The high degree of variance in transmission probability over the course of infection

leads to the natural question of what proportion of new infections can be attributed

to each infection stage. The timing of transmissions can be a key determinant of

the types of interventions will be effective in reducing transmission of HIV. For

example, the drop in HIV incidence in the late 1990s [31] was in part due to the

the development of highly effective anti-retroviral therapy, a treatment that greatly

reduces viral titers, effectively eliminating late-stage HIV. Likewise, interventions

that reduce the time from infection to diagnosis by increasing HIV testing rates work

on the assumption that diagnosed chronically infected individuals will transmit less

that infected individuals unaware of their sero-status. Such an intervention will be
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largely ineffective if most new infections come from acutely infected persons. In spite

of the centrality of this issue, stage contribution is difficult to determine empirically.

The contribution of each stage is a product of both the per act probability of

transmission for each stage but as well as the probability that a contact will be

made with an infected person at a given stage. Though the former quantity can be

measured in a somewhat direct way (e.g. the Uganda study [74]), however, the latter

is virtually impossible to measure directly. Estimates of the relative contribution of

each infection stage are based on models of sexual behavior and transmission and

can be quite contentious [68]. At the beginning of an epidemic, the incidence rate is

much larger than the progression rate from acute to chronic, creating a large pool of

individuals in the acute stage. This disproportionately large pool of acutely infected

individuals at the beginning of an epidemic drives the initial exponential increase in

the number of infected individuals [37]. Beyond that point, opinions on the relative

contributions of each infection stage are highly divergent. Koopman et al. showed

how the effectiveness of interventions focused on the acute stage are highly influenced

by age structured contact rates and movement between high and low-risk behavior

groups. Using simulation they found conditions under which acute stage intervention

got the system below threshold yet only accounted for 20% of the total contagiousness

[49]. Another study by Rapatski et al. of HIV in San Fransisco found conflicting

results: they concluded that greater than 90% of transmission came from contact

with late stage infected individuals.

This discrepancy may be explained by a key difference between those two studies:

in Koopman et al. individuals move between high and low risk groups, creating a kind

of state-based temporal volatility in contact rates, while the Repatski et al. study did

not. If contact rate volatility can explain the highly divergent conclusions of these
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two papers, it may help the design of future prevention programs by highlighting the

importance of sexual behavior volatility.



CHAPTER II

Short-term volatile sexual behavior in a prospective dataset

2.1 Introduction

The stability/volatility of sexual behavior is an important determent of key HIV

transmission dynamics and is under-studied. Most models of HIV transmission as-

sume that an individual’s risk behavior is stable over time. The validity of this

assumption is the topic of this chapter. There are many ways that an individual’s

risk behavior can be unstable: long-term changes in secular trends, contextual be-

havior modification [58], or self-motivated risk reduction. Also, there are many types

of risk behavior. Blower et al. modeled the probabilities of transitioning between

insertive-only, receptive-only, versatile, and abstinent sexual roles in a cohort of gay

men [11]. Alam et al. further modeled the effects of these transitions on HIV trans-

mission dynamics, finding volatility in sexual role to increase both the prevalence of

HIV and the proportion of infections coming from individuals with primary stage

HIV infection [4]. The proportion of infection coming from the acute stage has been

argued as a possible determinant of the efficacy of pre-exposure prophylaxis [64].

In this paper we look for evidence of volatility in contact rates over a two-year

period in a cohort of at-risk gay men. We calculate the likelihood of the following

contact types: unprotected oral receptive, unprotected anal receptive, and unpro-

15
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tected anal insertive given two stability models that assume constant risk behavior,

and two volatility models that assume variable risk behavior. Strong evidence for

volatility in a subset of the population is found for each contact type.

2.2 Materials and methods

2.3 Formal expression of the problem

The top panel of figure 2.1 illustrates the concept of contact rate volatility in

terms of a prospective-cohort-type study of sexual behavior. A set of individuals,

i, are enrolled in a prospective cohort. At times m the individuals are measured

defining a sequence of observational periods n of length δ. Measurement consists of

a survey asking about the frequency of sexual contacts, φ, that occurred over the

previous interval. The data are the set of counts of sexual contacts φi,n for each

individual. The value of φi,n is a Poisson random variable with a rate determined by

the integral of the contact rate over that interval, f(χn) =
∫ tn+δ
tn

χi,t. The number

of contacts in a given interval converges in distribution to the integral of the contact

rate over the interval, φi,n
d
= Poiss(f(χn)). The fundamental problem is that the

contact rate is unobservable and must be inferred from the observed data.

2.3.1 Behavioral models

The difference between volatility and stability models is the assumptions concern-

ing the form of f(χn); stability models assume f(χ) is stable over time, volatility

model assume f(χ) is a function of time. We consider two possible stability models,

homogeneous and gamma heterogeneous, and two volatility models, interval inde-

pendence and ontological volatility (o-volatility). In the homogeneous model, we

assume that all individuals make sexual contact at one common rate f(χ) = χδ. In

this model, contact rates are stable and homogeneous. The gamma heterogeneous
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model relaxes the assumption of homogeneous contact rates by assigning individuals

unique contact rates, χi, such that Pr(X = χi) ∼ Γ(k, θ); in this model f(χ) = χiδ.

The interval independence model assumes that contact rates are re-drawn at the

beginning of each observational period with probability Pr(X = χi,n) ∼ Γ(k, θ), but

are assumed to be constant over the duration of each observational period. This is

equivalent to assuming that observational periods are statistically independent of one

another. In this model f(χ) = χi,nδ. The bottom panel of figure 2.1 illustrates the

o-volatility model. In this model, individuals re-draw their contact rates randomly

at a constant rate, ρ. This re-drawing generates a sequence of behavioral phases over

which their sexual contact rate is constant. Given the large number of individuals

reporting no volatility over the course of the study (discussed below), we also include

an additional heterogeneity parameter α giving the probability that individual be-

havior is constant over the course of the study, regardless of the volatility parameter.

We refer to this model as ontological because it specifies that actual mechanism of

volatility independently of the structure of the data. This is unlike the interval in-

dependence model which assumes that contact rates are volatile, but are dependent

on non-causal factors (the duration of observational periods in the study). Unlike

the interval independence model, the o-volatility model can account for correlation

between the number contacts in each observational period as behavioral phases can

extend into multiple observational periods. In this model f(χ) is given by the aver-

age contact rate over the interval which is the contact rate of each behavioral phase

multiplied by its duration.

2.3.2 Behavioral data

The data we use in this chapter comes from the Centers for Disease Control

and Prevention Collaborative Seroincidence Study. In 1992 this multi-site study
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enrolled three large cohorts of HIV-susceptible men in Chicago, Denver, and San

Fransisco. Eligibility criteria included report of any anal sex, report of any non-HIV

sexually transmitted infection, and, in San Fransisco, report of receptive oral sex with

ejaculation. The study enrolled and followed susceptible individuals for a period of

up to 24 months. Observation stopped due to follow-up loss, a positive HIV test, or

completion of the study. At enrollment, individuals were asked the number of times

they had sex in the previous six months. At six month intervals, individuals where

asked again about their sexual behavior in the previous six months for up to four

total interviews.

The dataset the we received (via Dr. Eric Vittinghoff) excluded any individuals

who had reported any injection drug use. We further restricted the data to individu-

als who completed all 24 months of observation. For those individuals, we extracted

three variables: φxi,n, the number of unprotected receptive oral contacts with individ-

uals of unknown HIV status of the ith individual in the nth observational period, φyi,n,

the number of unprotected receptive anal contacts with individuals of unknown HIV

status of the ith individual in the nth observational period, and φzi,n, the number of

unprotected insertive anal contacts with individuals of unknown HIV status of the

ith individual in the nth observational period.

2.3.3 Parameter estimation and likelihood of the data

Homogeneous, gamma heterogeneous, and interval independence models

The homogeneous model has one common contact rate, χ, for all individuals, for

which the MLE is simply the sample mean χ = φ̄ = 1
n+i

∑i,n φi,n. The likelihood of

the data given this model is L(D) =
∏i,n Pois(φi,n|χ).

The gamma heterogeneous model assumes each individual has a unique contact

rate given by the average contact rate over the four observational periods, χi = φ̄i =
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1
n

∑n φi,n. In the data, χ̄i frequently equals zero, which is undefined by Γ(k, θ). An

additional parameter, τ , accounts for this by giving the probability that an individual

has no contacts over the course of the study. The likelihood of the data given the

gamma heterogeneous model is

(II.1) L(D) =
i∏





τ if φ̄i = 0

(1− τ)Γ(φ̄i|k, θ)
∏n Pois(φi,n|χi) if φ̄i > 0

The interval independence model assumes that each observational period is sta-

tistically independent of one another. A simple Poisson process with a gamma dis-

tributed prior gives a negative binomial posterior [76]. The likelihood of the data

given the interval independence model is
∏i,nNegBin(φi,n|k, 1

θ+1
). The maximum

likelihood parameter estimates for this and the gamma heterogeneity model were

obtained numerically using the downhill simplex method.

o-volatility model

Calculating the likelihood of the data under the assumptions of the o-volatility

model is more complex. In the 3 previous models we made the simplifying assumption

that behavioral was stable over the course of the whole study (homogeneous and

gamma heterogeneous models) or behavior change occurred a pre-specified times

(interval independence model). The additional complexity of the o-volatility model

means that there is no closed-form expression for the likelihood of the data. We use

Monte Carlo simulation to estimate the maximum likelihood parameters under the

volatility model.

To simulate the likelihood of the data given the behavioral parameters, L(D|k̂, θ̂, ρ̂, ρ̂),

we numerically simulate the maximum likelihood of the data L(D|Θ,Λ) where Λ is
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the population of simulations on which the estimate is based, and Θ represents the

behavioral parameters. The following steps define the simulation process:

1. given Θ∗

2. for i in D:

(a) simulate a sequence of behavioral intervals, r∗i , with probability Pr(r|Θ∗) ∼

Exp(ρ∗)

(b) simulate a sequence of contact rates,χ∗
i,n,r over r

∗
i , with probability Pr(χ|Θ∗) ∼

Gamma(k∗, θ∗)

(c) calculate the average contact rate in each observational period, χ∗
i,n, given

r∗i,n and χ∗
i,n,r

(d) for each datum, calculate the probability of φi,n as L
∗(di,n|Θ∗, λ) = Pois(φi,n|χ∗

i,n)

(e) take the product over n to get the likelihood L∗(di|Θ∗, λ) =
∏n L∗(di,n|Θ∗, λ)

(f) repeat until a population of q simulations are generated

(g) calculate the likelihood of the individual data as the average over the set of

simulations, L∗(di) =
1
q

∑q L∗(di|Θ∗, λq)

3. the likelihood of the data is L(D) =
∏i L∗(di)

To do this we randomly selected 34,000 random parameter vectors from the pa-

rameter space (reasonable limits were set by previous experience with the model),

simulating the likelihood of each vector with q = 100. Local non-parametric regres-

sion curves were fit to the joint likelihood distribution using the loess function with

standard arguments in R. The likelihood surface was estimated by the value of the

regression surface evaluated over a gird defined by 50 evenly spaced points over the

range of each parameter (a total of 504 evaluations). The MLE of each parameter
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was defined as the parameter vector with the maximum likelihood value. Confidence

intervals for the parameters were calculated using the profile method [71].

2.4 Results

2.4.1 Qualitative

The full dataset included 1883 participants. 111 (6%) individuals were observed

for 1 period, 329 (18%) individuals were observed for 2 periods, 561 (30%) were

observed for 3 periods, and 882 (47%) individuals were observed for all 4 periods.

Loss to seroconversion accounted for 52/1001 (5%) of those observed for less than

4 periods. 52 individuals seroconverted during 35880 total months of observation

for an incidence rate of 0.0174 per person-year. Hall et al. estimated about 19,000

MSM cases of HIV in 1992 [31], which, given the incidence rate of 0.0174 per person-

year, corresponds to an estimated at-risk population of about 1.09 million. That

is, a population of 1.09 million at-risk men would generated 19,000 infections in

year given the incidence rate estimated from the data. Comparison of incidences

and incidence rates requires estimation of the size of the at-risk population. Such

estimations are very difficult to make for abstract, dynamic, and highly personal

categories such as sexual identity. However, the estimated at risk population size of

1.09 million represents about 0.4% of the United States population in 1992. That

proportion seems low, but is not an unreasonable estimate of the number of sexually

active, at-risk gay men in the US in 1992.

The estimated incidence rate is also consistent with incidence rates reported in

the state of Florida in 2010. Lieb et al. reported an incidence rate of 0.01312 per

person-year for Hispanics and reported incidence rate of 0.03608 per person-year for

blacks in Florida [51]. The estimated rate of 0.0174 is between the estimates rates for

Hispanics and blacks in Florida. The consistency of the incidence rate estimate with
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other reported incidence rates and the reasonable estimate of the at-risk population

size given the calculated incidence in 1992 suggest that the behavioral data do not

have an inordinate number of higher or lower risk individuals that would be expected.

The individuals who were lost to follow-up reported more abstinence and, in

general, fewer and less variable contacts than those who were observed for all four

periods. Individuals who were observed for 1, 2, 3, or 4 intervals reported an average

of 5.7, 7.1, 8.7, 9.2 contacts per 6 months with average standard deviations of 0, 3.7,

6.1, and 7.4 respectively. Individuals observed for fewer periods were more likely to be

abstinent over the course of their time observed. This is expected as an individual

observed for 4 waves has to maintain abstinence for longer to have zero average

contacts. However, the proportion of individuals observed for four periods that

have no contacts (13%) is much higher than is expected assuming the proportion of

zeros in individuals observed for 1 wave is an estimate of the probability of making

no contacts during an observational period (
(

37
111

)4 ≈ 0.01). A similar pattern is

observed in each of the individual contact types.

One possible explanation for the difference in those who are lost to follow-up

and those who are not is differential investment. Individuals who are followed for

all four periods may identify more strongly with the gay community (i.e. be more

‘out’) making them more sexually open and more motivated to continue with the

study for the broader well-being of the community. Another possible explanation is

that individuals who were observed for all four periods are in long-term relationships

and are therefore the most stable and motivated to participate. This, however,

does not hold water if we consider the pattern of excess variance in those observed

for 2, 3, or 4 periods. Excess variance is the multiplicative-scale variance beyond

what is expected from a homogeneous Poisson process; excess variance greater than
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1 suggests higher than expected volatility. The excess variance is 1.92, 4.27, 5.95

for individuals observed for 2, 3, or 4 periods. Ostensibly, sexual behavior is more

consistent and less volatile in the context of a long-term monogamous partnership.

If individuals who are observed for all 4 periods are in longer-term, monogamous

relationships, the excess variances should be lowest in that category, which is the

opposite of what is observed.

The data suggest evidence for both stable and volatile contact rates. Table 2.1

shows the average and standard deviation of the number of contacts stratified by

the number of periods in which no contacts were reported (abstinent intervals) for

individuals observed for all four periods. The behavioral patterns with the higher

degrees of abstinence were the most common: total abstinence is the most common

pattern, abstinence in all but 1 interval is the second most common, and so on. If

we dichotomize behavior into abstinent and active states, then the most common

behavioral pattern (total abstinence) supports the idea of stable short-term sexual

behavior; however, the second most common pattern (abstinence in all but one in-

terval) suggests a highly volatile short-term sexual behavior. The latter pattern is,

by definition, the pattern with the highest possible variance given a mean contact

rate.

The data imply that URO contacts are more ‘episodic’ than URA contacts. In

each activity level, URO has the highest excess variance, the variance above the

exception for a homogeneous Poisson process. A high excess variance suggests a high

degree of variability in the contact rate, producing episodes of higher and lower risk.

Of all contact types, the highest average contact rate is URO for individuals active

in all four periods; the lowest average contact rate is URO for individuals abstinent

in all but one period. For URO, the average contact rate in a given interval is
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4.49 times higher for individuals who maintain activity in all four periods compared

to those who report activity in only one period. This high discrepancy is consistent

with the observation that oral sex is commonly practiced with both casual and steady

partners while both insertive and receptive anal sex without a condom is reserved for

steady partners [61]. The high and highly variable rates of URO in individuals with

activity in all periods could be accounted for by a combination of stable contacts with

a steady partner and volatile contacts with shorter-term concurrent partners while

activity separated by periods of abstinence could be accounted for by limited ‘one-off’

encounters. The latter scenario is also supported by the fact that, in individuals that

only reported abstinence in all but one period, made, on average, 3.25 URO contacts

in that six month active period. The high frequency of the abstinent-in-all-but-one-

period pattern and the relatively low number of contacts made in that period is more

consistent with brief episodes of higher risk behavior where partners are randomly

selected for ‘one offs’. Also, the increasing excess variance with increasing average

contact rates also implies some combination of stability and volatility generating the

observed contact rate patterns.

Figure 2.2 shows the distribution of the number of contacts reported in any ob-

servational period. As expected, we observe highly right-skewed contact rates. Zeros

are not shown in the histogram, but no contacts were reported in a large majority

of observational periods (84%, 88%, and 81% for oral receptive, anal receptive, and

anal insertive respectively). The unprotected insertive anal sex contact rate has the

lowest heterogeneity between individuals. High contact rate individuals (above 95%)

accounted for for 70% of all unprotected insertive anal contacts. For both oral and

anal unprotected receptive sex, high contact rate individuals accounted for 90% of

all contacts.
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Figure 2.3 shows the trajectory of each individual’s contact rate over the course of

the study. The number of contacts made appears to be highly volatile with variations

occurring, for some individuals, over multiple orders of magnitude. However, most

individuals report no contacts over the course of the entire study (67%, 72%, and

58% for unprotected oral receptive, unprotected anal receptive, and unprotected anal

insertive, respectively), suggesting some amount of movement between abstinent and

sexually active states over short intervals. Figure 2.4 show the joint trajectories of

multiple contact types. Unprotected oral receptive contacts seem to be the most

independent contact type. In other words, variance in the number of oral contacts

does not necessarily correspond to an increase in other contact types. Anal contacts

seem to be more correlated with an increase in a reported number or receptive anal

contacts corresponding to a similar increase in the reported number of insertive anal

contacts.

Simple stochasticity accounts for at least some of the between- and within-individual

variance observed in the data. Figure 2.5 shows the variance in the reported number

of contacts as a function of the average number of contacts for each contact type.

The black line in each plot represents the expected relationship if everyone in the

population had stable contact rates. All three contact types clearly show a kind of

similar structural deviation from the expectation for a simple Poisson process with

individuals with the highest contact rates having much higher variation in the re-

ported number of contacts. The upper limit on the relationship between mean and

variance in each plot is the theoretical maximum variance for a given mean. This

occurs when an individual has zero contacts in all but one interval.

Figure 2.6 shows mean-variance relationship for a sample of individuals simulated

under the homogeneous, gamma heterogeneous, and interval independent models.
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Increasing heterogeneity of the contact rate distribution increases the spread of the

points but does not capture the deviation from the Poisson expectation in the ob-

served data (figure 2.5). Adding volatility increases the slope of the variance relative

to the mean making the pattern more similar in appearance to the pattern in the ob-

served data. As the probability that contact rates are re-drawn between each interval

increases, fewer and fewer points lie on the line defining the theoretical maximum

variance. This is due to the fact the probability of observing multiple very small

contact rates is much smaller than the probability of drawing one very small contact

rate.

2.4.2 Quantitative

The initial qualitative analysis suggests that contacts rates to be both hetero-

geneous and volatile. However, while qualitative analysis can provide insight, it is

fundamentally subjective. For a more objective analysis we calculate the likelihood

of the data under a sequence of formal models. The intent is two-fold: examine

the change in likelihood of the data under a sequence of models that step-wise in-

troduce contact rate heterogeneity between individuals and among individuals over

time, and estimate the marginal likelihoods of each model to get an image of the

relative contribution of each parameter to the likelihood of the data.

Conceptually, there are three classes of models that we will consider: the homoge-

neous model that assumes homogeneity of contact rates both between and among in-

dividuals, the Gamma heterogeneity model that assumes Gamma distributed hetero-

geneity in contact rates between individuals but homogeneity in contact rates among

individuals, and, finally, the volatility models that assumes Gamma distributed het-

erogeneity in contact rates between individuals and heterogeneity in contact rates

among individuals. Each model relaxes an assumption of the previous model there-
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fore giving us an idea of the relative contribution of each modeling assumption to

the likelihood of the data.

While the homogeneous model is sui generis, there are innumerable ways of ex-

pressing heterogeneity in contact rates both between and among individuals. Contact

rate heterogeneity between individuals is specified first by a distribution of individ-

uals into subpopulations and then by distributions of contact rates within each of

those subpopulations. We found that a single Gamma distribution gave a reasonable

fit to the data; adding additional subpopulations would almost certainly increase the

fit to the observed data, but the subsequent analysis makes clear that the class of

heterogeneity models is almost certainly inferior to the class of volatility models.

The class of volatility models extends the class of heterogeneity models by requir-

ing an explicit specification of how contact rates change over time. To keep things

simple, we choose the two most simple volatility models to represent the general

class of volatility models. The interval dependence model assumes that contact rates

are independently drawn at the beginning of each behavioral period from a single

Gamma distribution. This requires an additional set of parameters for the times at

which individuals are observed. These parameters are fixed a priori by the study

design and are not estimated from the data. This model can be though of as a

‘null’ volatility model in that any volatility model that gives likelihoods lower than

the interval independence model give no extra information about the process that

generated the data than is inherent in the study design. The o-volatility model is

the simplest model that specifies an actual mechanism by which volatility is pro-

duced. Comparisons between the homogeneous, Gamma heterogeneous model, and

the interval dependence model give a general sense of which behavioral assumptions

best explain the structure of the data. Further, comparison of the interval indepen-
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dence model to the o-volatility model gives an idea of how much better, if at all, the

o-volatility model is than the null, interval independence model.

Volatility is a superior explanation of the data. The ML parameters and likeli-

hoods of the data for the homogeneous, Gamma heterogeneous, and interval inde-

pendence, in tables 2.2, 2.3, and 2.4 respectively. The trend in likelihoods is clear,

the Gamma heterogeneity model is a better explanation of the data than the homo-

geneity model and the interval independence model is better than either of the other

two models. This conclusion is consistent with the analysis in the previous section.

The comparison of the interval independence models and the o-volatility model

is clear for URO and URA contacts. The simple o-volatility model is a significantly

better explanation of the data than the interval independence model. The picture

for UIA is not quite as clear. The Akaike information criterion (AIC) is a commonly

used measure of the relative goodness of fit of multiple models of the data. AIC

is not a formal statistical test in the sense of the likelihood ratio test, but rather a

guide for balancing model complexity and accuracy [3]. The difference in AIC for

the two models is 34 (favoring the o-volatility model). AIC differences greater than

10 from the minimum are assumed to imply no support for the baseline model [13].

The general pattern in all three contact types is that a large proportion of the

population is invariant over the two year period, with the remainder experiencing

short behavioral phases (high volatility). The data cannot speak to the causes of

the very high volatility in this population, but these results are consistent with the

qualitative assessment of volatility that shows a small sub-population of individuals

with highly variable contact rates.
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2.5 Discussion

In this chapter I have shown that rates of unprotected sexual contact are hetero-

geneous. At the level of observational periods, 81-88% of all 6 month observational

periods show no sexual contact; the maximum contact rates are 140, 159, 224 for

oral receptive, anal receptive, and anal insertive, respectively. At the individual

level, abstinence was less frequent. The proportion reporting abstinence was more

divergent between contact types: individuals were the least likely to abstain from

insertive anal sex (58%) and most likely to abstain from receptive anal sex (72%).

The abstinence rates in our study are much higher than those reported in one of

the first large studies of homosexual behavior that reported only 3% of the study

population had no partners in the previous year [75]. However, that study was from

the pre-AIDS era, and it asked about the number of total sexual partners rather

than the number of unprotected sexual contacts, although condom use in urban gay

populations was almost non-existent pre-AIDS [54]. The rate of abstinence from

unprotected receptive anal sex (72%) is consistent with other estimates (63%) from

the same time period [21].

Unprotected sexual contacts are also volatile. Visual inspection of the data show

a pattern of reported contacts for unprotected oral receptive and unprotected anal

insertive that appeared to be highly variable. The fluctuations for unprotected anal

receptive contacts seems to be of a smaller magnitude than the other contact types.

It is possible that receptive anal sex was occurring at a steady rate with longer-term

partners and that oral receptive and anal insertive sex, which are perceived to be

less risky, were occurring more sporadically with casual partners. However, a larger

proportion of individuals reported the pattern of having no sexual contacts in all
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but one period (156/882, 151/882 and 198/882 for oral receptive, anal receptive, and

oral insertive) than expected. The explanation for this pattern is very important.

The data have no measurements of the partnership status of each contact, but one

explanation for the high frequency of such an extreme pattern would be the new

formation of a relatively short-term sexual partnership. Contacts made within long-

term partnerships can have very different implications for HIV transmission dynamics

than those made without [10] [45].

The volatility of unprotected sexual contact rates is further supported by the like-

lihood analysis. The log likelihoods of both of the stability models (homogeneous

and gamma heterogeneous) are so much larger (farther from 0) than the two volatil-

ity models that no special consideration is needed to rule them out as reasonable

explanations of the data. Likewise, the o-volatility model is clearly the best explana-

tion (of the considered models) for unprotected oral receptive and unprotected anal

receptive contacts. For unprotected insertive anal sex the picture is less clear; the

data are more likely under the o-volatility model, but that model requires two more

parameters to specify than does the interval independence model. The difference

in the Akaike information criterion (AIC) for the two models is 34 (favoring the o-

volatility model). AIC differences greater than 10 from the minimum are assumed to

imply no support for the model [13]. Technically, the o-volatility is the best model

for all three contact types.

The o-volatility model is a better fit to the data than the interval independence

model for two reasons: 1) the o-volatility model explicitly models the probability

that an individual’s behavior will be invariant over the course of the study, making

the likelihood of the abstainers much higher. In the interval independence model

each interval with no reported contacts is treated as an independent datum, which
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given the highly heterogeneous contact rates could lead to very low likelihoods for

abstinent intervals under this model; 2) The o-volatility model accounts for some

of the correlation between observational periods in a single individual. The interval

independence model accounts for the odd pattern where an individual has no contacts

in all but one interval; however, for the vast majority of individuals contact rates in

one interval predicted contact rates in the subsequent intervals to some degree.

The MLE parameters of the o-volatility model suggest that in each case the ma-

jority of individuals are invariant over the course of the study (two years). In the

remaining population, contact rates are highly volatile. The average duration of a

behavioral interval is less than the duration of an observational period for all three

contact types, and, for unprotected anal receptive sex the average behavioral inter-

val is only 1.4 months. It may seem absurd that, on average, every 1.4 months,

individual’s re-draw their contact rate from a highly heterogeneous distribution (the

standard deviation is 4-fold greater than the mean). This interpretation is, however,

overreaching. Contact rates are latent variables than can not be directly observed,

and a high contact rate in no way implies that an individual is making a large num-

ber of contacts during that period. In fact, the opposite is true. As behavioral

phases become very short with respect to the duration of an observational period,

the number of contacts reported in a observational period is actually less variable.

This phenomena is explainable by the properties of the sampling distribution of the

mean. The expected number of contacts made by an individual over a observational

period is equal to the average contact rate during that period. According to the

MLE of the volatility of unprotected insertive anal contact, the average number of

behavioral phases that will occur during an observational period is 6/1.4 ≈ 4.3; the

mean contact rate over that period is given by the sampling distribution of the mean
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x̄
d
=N(µ, σ

2

n
) where n is the number of samples (i.e. behavioral intervals experienced

in each observational period); the variance of the observed number of contacts is

inversely proportional to the volatility rate.

A review of the literature did not find any studies that used comparable methods

to estimate contact rate volatility parameters. Blower et al. estimated a sequence

of transition matrices giving the probability of men in the Amsterdam cohort (1984-

1988) switching between insertive-only, receptive-only, versatile, and abstinent sexual

roles with respect to anal sex [11]. They found the highest rates of transition from

all other states into the abstinent state, however, the system exhibits a large degree

of role switching overall. An abstinent individual (no risk) has a 7% chance over a

six month period of moving into the receptive-only state (highest risk). They also

found that the transmission matrix was stable over time concluding ‘...the process of

risk behavior change appeared to be time independent’ which supports the similar

assumption we made in this chapter that the distribution of contact rates is stable

over time. We cannot directly compare the degree of volatility observed in this

chapter and that measured by Blower et al. as they are measuring two fundamentally

different aspects of sexual risk (contact rates, and contact types). An analysis that

incorporated both changes in contact rates and in sexual role should be possible with

the data at hand.

What we presented here is only a very small aspect of the larger issue of the

dynamics of sexual behavior. We are limited by the scope of the data in that we can

only address dynamic changes that occur at the scale of the study. The dynamics of

sexual behavior are probably affected by a wide range of forces acting at multiple time

scales. An ideal data set to study the dynamics of sexual behavior would include

more detailed questions about the partnership aspects of each contact and would
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sample individuals at different rates (i.e. have variable observational periods) to get

at fluctuations that were occurring at shorter or longer time scales.

2.5.1 Data to further clarify the extent and nature of contact rate volatility

The data from the CDC Collaborative HIV Seroincidence Study is limited in

multiple ways. The data from the study does not include any information about the

relationship status of each contact. Without this key information we only have a

limited amount of logic and speculation available to dissect how volatility occurs in

the broader context of casual and longer-term partnerships. Ideally, a dataset would

include not only the additional stratification of contacts into those made with casual

or longer-term partners but also the identity of whom the contacts were made. With

that kind of data a very clear image of how sexual behavior changes over time could

be constructed. However, confidentially issues and recall biases probably make such

a dataset impossible. The second key issue is that a single prospective study with

periodic sampling is only able to address volatility that occurs on a scale that is

comparable to the frequency of measuring in the study design. For example, for a

study with a fixed number of observational periods that measures its participants on

a monthly period captures volatility that occurs on the scale of months but would

miss variation that occurs on the scale of years. Determining the ‘natural’ scales of

contact rate volatility can only be determined by analysis of multiple studies that

sample individuals at variable frequencies. Any prospective study of sexual behavior

in gay men could, in theory, contribute to the assessment of contact rate volatility.

This could include any study such as the CDC Collaborative HIV Seroincidence

Study that were incidence rate surveys that also measured behavioral patterns.
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Figure 2.2: Empirical oral and anal contacts rates

This figure shows the number of oral and anal contacts reported over 6 month intervals for 882 gay
men observed for a period of two years. The data are weighted by the value of the contact rates
such that the denominator is the total number of contacts made by individuals in each category.
Even though individuals with the highest contact rates are a small fraction of the population, they
represent a large proportion of the total number of contacts.
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type zeros count mean contacts mean std.

URA 0 20 5.64 3.12
1 28 2.72 2.44
2 46 2.94 4.02
3 151 1.45 2.51
4 637 0 0

UIA 0 39 10.90 6.07
1 51 5.07 5.93
2 86 3.55 4.86
3 198 1.21 2.10
4 508 0 0

URO 0 40 14.71 8.98
1 44 5.02 4.83
2 54 2.84 3.43
3 156 0.82 1.41
4 588 0 0

Table 2.1: Average and standard deviations of the number of contacts stratified by

number of abstinent intervals

Contact types are unprotected receptive anal (URA), unprotected insertive anal (UIA), unprotected
receptive oral (URO). Only individual observed for all 4 observational periods (882) are included.
Individuals were stratified based on the number of intervals with no reported contacts. The reported
values are average number of contacts made by an individual in a six month period and the average
individual standard deviation.
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data χ log likelihood

URO 1.23 -13240
URA 0.62 -7575
UIA 1.39 -15029

Table 2.2: Homogeneous model parameter estimates and likelihood

The MLE average contact rate per six-month period, χ, in contacts per month and likelihood of
the data in the homogeneous model. Contact types are assumed to be independent of one another.

data mean std. dev. τ log likelihood

URO 3.71 5.23 0.67 -7777
URA 2.21 2.84 0.72 -6268
UIA 3.29 4.50 0.58 -10016

Table 2.3: Gamma heterogeneous parameter estimates and likelihood

The MLE average contact rate per six-month period and the standard deviation of the contact
rate, the probability that an individual has a zero contact rate, and the likelihood of the data in
the gamma heterogeneous model. Contact types are assumed to be independent of one another.

data mean std. dev. log likelihood

URO 1.24 5.37 -2997
URA 0.62 2.91 -2150
UIA 1.39 5.37 -3387

Table 2.4: interval independence parameter estimates and likelihood

The MLE average contact rate per six-month period and the standard deviation of the contact rate,
and likelihood of the data in the interval independence model. Contacts types are assumed to be
independent of one another.

data mean std. dev. 1/ρ α log likelihood

URO 1.81 (1.11, 1.20) 4.6 (4.3, 4.9) 4.47 (3.7, 5.2) 0.69 (0.67, 0.71) -2730
URA 1.17 (1.11, 1.20) 5.2 (4.9, 5.6) 2.16 (1.77, 2.92) 0.61 (0.61, 0.63) -1943
UIA 1.72 (1.68, 1.78) 6.9 (6.7, 6.9) 1.38 (1.38, 1.38) 0.53 (0.51, 0.53) -3378

Table 2.5: o-volatility parameter estimates and likelihood

The MLE estimates of the average contact rate per six-month period, the standard deviation of
the contact rate, the volatility parameter, the proportion of non-volatile individuals, and likelihood
of the data in the interval independence model. Values in parentheses are the bounds of the 0.95
confidence intervals.



CHAPTER III

Contact rate volatility and the epidemic threshold

3.1 Summary

The basic reproduction number, R0, is a basic statistic that allow us to describe the

conditions under which an epidemic can occur given a theoretical model of transmis-

sion. In this chapter we use the theory of stochastic branching processes to derive R0

in three basic transmission models of HIV with contact rate volatility: a one-stage

SIR model, a two-stage SIR model, and a two-stage SIR model with two contact

types.

3.2 Introduction

The basic reproductive number, R0, is the expected number of infected persons

that an average infected person will generate in a fully susceptible population. In a

homogeneous SI model, where the hazard of infection is proportional to the absolute

or relative frequency of infected individuals, the knowledge of R0 can also give other

quantities, such as the endemic prevalence. Though those relationships do not always

exist in more complex models, R0 will always correspond to the initial exponential

growth rate of an epidemic via the serial interval and given strict eradication criteria–

if control measures lower R0 below one, then the infection cannot persist in the

population. In this way, R0 can be thought of as a theoretical measure of the level

42
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of difficulty of infection control as a function of its transmission parameters [7].

Many HIV transmission parameters such as the relative acute and chronic stage

transmission rates are thought of as fixed. However, other parameters are variable,

including those describing social contexts of sexuality, heterogeneity in the contact

rate distribution or the patterns of sexual mixing. HIV transmission is complex; no

one simple model is likely to capture all of the relevant aspects of HIV transmission,

so having access to R0 for a wide rage of theoretical models provides an essential link

between theory and intervention design. In this paper we use branching processes to

calculate R0 in a sequence of transmission models that relax the common assumption

that an individual’s contact rates are constant over time.

Contact rate heterogeneity has been long recognized as a key deviation from the

type of homogeneous SI models that are generally used to model sexually transmit-

ted infections [6]. Empirical measurements of sexual contact rates show much more

extreme values than are predicted by assumptions of homogeneous behavior; many

people abstain from sex while others are more active [30]. These more active people

comprise a much larger proportion of the total sexual contacts, leading to a highly

skewed distribution of sexual contact rates. We will refer to this phenomena of higher

than expected variance in the contact rate distribution as contact rate heterogene-

ity (CRH). Anderson and May worked out a closed form expression for the basic

reproductive number in an SIR model with simple contact rate heterogeneity [7],

showing that R0 increases with increasing variance in the contact rate distribution.

This implies that, all other things being equal, contact rate heterogeneity lowers the

epidemic threshold and makes elimination of the disease more challenging.

We extend the assumption of heterogeneous contact rates between individuals

to include heterogeneity within a single individual over time, which we call contact
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rate volatility (CRV). In a stochastic system, individuals will show some degree of

apparent contact rate volatility due to simple stochastic variance, which will be

Poisson distributed and relatively small. However, an individual’s contact rate may

also be changing over time, adding a structural component to the variance in the

number of contacts individuals make over time. This type of contact rate volatility

can take many forms: slow-changing secular trends, faster periodic fluctuations that

may correspond to relationship dynamics, or brief aperiodic episodes of high-risk

behavior. We focus on a single type of unstructured contact rate volatility where

the probability of drawing a given contact rate is constant over time and individuals

re-draw their contact rates at a constant rate. In this paper we use the theory of

branching processes to derive R0 in a series of models including a model with multiple

contact types, multiple stages of infection, and heterogeneous, volatile contact rates.

3.3 Materials and methods

The work in this chapter is based on the theory of stochastic branching processes

[8]. A branching process is a Markov process that models the probability of observing

a population of size Pr(s), at time n+1, given the number of individual, s, at time n

and some known probability distribution of offspring generation for each individual

{1, 2, 3, · · · }. Galton and Watson applied these methods to study the probability of

extinction of aristocratic surnames [42]. Branching processes can likewise be used to

describe the number of infected individuals in the next generation given the current

number of infected individuals. Branching processes are analytically treated through

the use of generating functions.
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3.3.1 Generating functions

The derivations in this section are based on the use of probability generating func-

tions, PGFs, which can be used to describe the properties of functions of independent

random variables. For a discreet random variable, X, with probability mass function

Pr(x) the PGF of X is defined as

(III.1) GX(z) = E(zX) =
∞∑

x

Pr(x)zx

and as
∫
Pr(x)zxdx for a continuous random variable. In this paper we use distribu-

tions with relatively simple PGFs.

PGFs have some nice properties that make the calculation of arithmetic opera-

tions on sequences of independent random variables straightforward. Some of those

properties are listed below.

• GX(1) = Pr(x1)1
x1 + Pr(x2)1

x2 + · · ·+ Pr(xf )1
xf = 1

• If a random variable has a known moment generating function, MX(z), then its

PGF is given by GX(z) =MX(log(z)) .

• G′
X(1) = 0Pr(0)10 + 1Pr(1)11 + · · ·+ nPr(n)1n = E(X)

• The higher central moments can be calculated by further differentiation and

algebraic manipulation. For example Var(X) = G′′
X(1) +G′

X(1)− [G′
X(1)]

2

• The sum of a sequence of independent random variables, S = X1 +X2 + · · · +

Xn can be represented as the product of n generating functions: GS(z) =

E(z
∑n

i Xi) =
∏n

i GXi
(z)

• If n is a random variable, then the sum of random variables, S = X1 + X2 +

· · ·+Xn, is generated by GSn
(z) = Gn(Gs(z))
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For example, if the number of sexual partners that I have over a period of time

is a Poison random variable, X, generated by GX(z) = e−λ+λz and the probability

that any one of my partners is infected is a Bernoulli random variable, Y , generated

by GY (z) = ((1− p) + pz), then the average number of infected contacts that I have

over an interval is generated by:

(III.2) GX(GY (z)) = GN(z) = e−λ+λ((1−p)+pz)

(III.3) G′
N((z)) = λpe−λ+λ(1−p+pz)

(III.4) G′
N((1)) = E(N) = λp.

This result illustrates how PGFs can be used to describe functions of random vari-

ables and how central moments of functions of random variables can be calculated

using PGFs. For many HIV models, generating functions can be used to derive the

central moments of the number of transmissions that are generated by a newly in-

fected person. In models were this is possible, R0 can be found using the properties

of generating functions by either analytical or numeric methods.

3.3.2 Contact rate heterogeneity model

We model CRH as χi
d
= Γ(k, θ) that the probability that a new individual has

contact rate χi is Pr(χ = χi) = χk−1 exp(−χ/θ)
Γ(k)θk

. We chose to model CRH as a Γ random

variable for two primary reasons. First, the Gamma distribution has a convergent

closed form for its probability generating function, making it easier to find closed form

expressions for R0, where possible. We also considered using a log-normal model,

but this was rejected as there is no simple form for the log-normal PGF that is valid

over the domain of its parameters, and this would have required extensive numerical
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simulation to obtain results. Second, the Gamma distribution phenomenologically

captures several of the features of observed contact rate distributions such as long

tails and a high degree of positive skew. Also, at certain parameterizations (at non-

zero integer values of the shape parameter) this type of CRH can be simulated using

the traditional compartmental models that are common in epidemiology.

3.3.3 Contact rate volatility model

We model contact rate volatility in the simplest way possible. Individuals ex-

perience periods of stable behavior, i.e. their contact rates are constant over the

duration of a behavioral interval. At the beginning of a new interval, an individual

re-draws new contact rates from the distribution defined by the CRH model. Termi-

nation of a behavioral interval occurs at the same rate for all individuals such that

the length of behavioral intervals are Poisson distributed. The entire contact rate

volatility model is specified by a single rate parameter. We conceptualize contact

rate volatility as being unstructured making it fundamentally different from other

types of temporal variance in contact rates such as age-structured contact rates. A

volatility model could be made more complex by considering multiple types of be-

havioral intervals with different lengths, potentially correlated contact rates, or more

complex. However, more complex models not only get away from the fundamental

effects of volatility on R0, but they also make closed form solutions less probable.

3.3.4 The transmission model

To illustrate how contact rate volatility produces its effects we calculate R0 for

three successively more realistic models of HIV transmission. For clarity, we will

refer to these models by their number. Each model is based on a basic homogeneous

SI model.
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1. An SI model with contact rate heterogeneity and volatility, one infectious stage,

and one contact type

2. An SI model with contact rate heterogeneity and volatility, two infectious stages,

and one contact type

3. An SI model with contact rate heterogeneity and volatility, two infectious stages,

and two contact types

Model 1

Individuals exist in three possible states: susceptible, indicated by S; infected,

indicated by I; and removed indicated by R. N includes individuals in S, I, or R.

Contacts are instantaneous and symmetric. The model parameters are listed in table

3.1. The time evolution of the system is represented by the following independent

rate equations where S∗ =
∑i∈S χi,t and I

∗ =
∑i∈I χi,t

ǫ−→ Sχ(III.5)

Sχ
ζ−→ Iχ(III.6)

S
ωS−→ R(III.7)

I
ωI−→ R(III.8)

I
δI−→ R(III.9)

where ζ = S∗β I∗

N∗
.

Model 2

In model 2, N individuals exist in four possible states: susceptible, indicated

by S; acutely infected, indicated by A; chronically infected, indicated by C; and

removed indicated, by R. The model parameters are listed in table 3.2. The time
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evolution of the system is represented by the following independent rate equations

where S∗ =
∑i∈S χi,t, A

∗ =
∑i∈A χi,t, and C

∗ =
∑i∈C χi,t.

ǫ−→ Sχ(III.10)

Sχ
ζ−→ Aχ(III.11)

S
ωS−→ R(III.12)

A
δaS−−→ C(III.13)

A
ωA−→ R(III.14)

C
δcC−−→ R(III.15)

C
ωC−−→ R(III.16)

where ζ = S∗(βa
A∗

N∗
+ βc

C∗

N∗
).

Model 3

Model 3 builds on model 2 by adding oral and anal contacts. As before, all

contacts are instant and symmetric. However, individuals have separate oral and

anal contact rates that are associated with different transmission probabilities. N

individuals exist in four possible states: susceptible, indicated by S; acutely infected,

indicated by A; chronically infected, indicated by C; and removed indicated by R.

The model parameters are listed in table 3.3. The time evolution of the system is

represented by the following independent rate equations where the superscripts o

indicates oral, a indicates anal and S{o,a} =
∑i∈S χ

{o,a}
i,t , A{o,a} =

∑i∈A χ
{o,a}
i,t , and
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C{o,a} =
∑i∈C χ

{o,a}
i,t

ǫ−→ Sχ(III.17)

Sχo

ζo−→ Aχo
(III.18)

Sχa

ζa−→ Aχa
(III.19)

S
ωS−→ R(III.20)

A
δaS−−→ C(III.21)

A
ωA−→ R(III.22)

C
δcC−−→ R(III.23)

C
ωC−−→ R(III.24)

where ζo = So(βa
Ao

No + βc
Co

No ) and ζ
a = Sa(βa

Aa

Na + βc
Ca

Na ).

3.3.5 Verification of the methods

We verify our results using two methods. First, we recover an established R0

for a transmission model without contact rate volatility. Second, we use individual-

based simulations to directly measure the number of secondary cases generated by

an infected index case.

Anderson and May [7] calculated R0 for an SI model with heterogeneous contact

rates as

(III.25) R0 =
〈χ2〉
〈χ〉

β

λ

where β is the probability of transmission, λ is the removal rate, and 〈χ2〉 and 〈χ〉

are the second and first raw moments of the contact rate distribution, respectively.

Assuming χ ∼ Gamma(k, θ) and noting that 〈χ2〉 and 〈χ〉 can be written asm+σ2/m

in terms of the first, m, and second, σ2, central moments, then R0 can be defined as

(III.26) R0 = θ(k + 1)
β

λ
.
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The hazard of infection is proportional to the contact rate such that the PGF

for the contact rate of newly infected persons is Gχ̃(z) =
zG′

χ(z)

G′

χ(1)
where Gχ(z) =

(1−θ log(z))−k is the PGF of the gamma distribution. The average infectious period

is the reciprocal of the removal rate, 1/λ, over which contact rates are generated by

G′
χ̃(z), β of which are sufficient to transmit. Then

R0 =
G′
χ̃(1)β

ω + δ
(III.27)

=
θ + kθ

ω + δ
β.(III.28)

Both methods produce the same R0 for an SI model with gamma-distributed contact

rates.

Results were also confirmed by simulation. For each model an individual based

simulation was written in Java (details for each simulation are found in the appendix)

and simulated using Gillespie’s exact algorithm. R0 was measured by seeding the

population and selecting the first incident infected as the index case. All further

transmissions were disabled and the number of sufficient contacts made by the index

case were counted. For each parameter set the results were averaged over 300 runs.

3.4 Results

3.4.1 The basic reproduction number in model 1

From the time of infection, t0, to the time of removal, tf , an infected individ-

ual re-draws their contact rate at times, t1, · · · , tf . We consider separately the first

behavioral interval and the remaining f − 1 intervals. After the first interval the

number of subsequent intervals is a geometric random variable that is generated by

(III.29) GI(z) =
φ

1− (1− φ)z
.

The length of an interval, T = ti − tt−1 ∼ Exponential(λ). A uniformly selected

random individual’s contact rate, χi, over interval tj is a Γ random variable generated
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by

(III.30) Gχ(z) = (1− θ log(z))−k.

However, the hazard of infection is proportional to the contact rate [28] such that

the contact rate of newly infected persons, χ̃ is generated by

(III.31) Gχ̃(z) =
zG′

χ(z)

G′
χ(1)

.

In the first behavioral interval, (t0, t1), the number of contacts made by a newly

infected person is Poisson random variable generated by

(III.32) GC̃(z;T, χ̃) = e−T χ̃(1−z).

Integrating over T and χ̃ yields GC̃(z) for which there is no closed form expression.

However, GC̃(z) can be written as

GC̃(z) =

∫
λe−λT

∫
Pr(χ̃)e(z−1)χ̃T

dT dχ̃(III.33)

=

∫
Pr(T )Gχ̃(e

T (z−1)) dT.(III.34)

Likewise, the number of contacts for every over interval after the first is generated

by

(III.35) GC(z) =

∫
Pr(T )Gχ(e

T (z−1)) dT.

Using the properties of generating functions we can now define a generating function

of a random variable H for the number of contacts made over the course of an

infection.

(III.36) GH(z) = GC̃(z)GI(GC(z)).

For clarity, we will differentiate between H, the number of contacts made over the

course of an infection, and Ĥ, the number of transmissions generated over the course
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of an infection. The product of the expectation of H and the probability of trans-

mission β is the basic reproduction number

R0 = E(H)β = G′
H(1)β(III.37)

=
[
G′
C̃
(z)GC̃(z)GI(GC(z)) +GC̃(z) +G′

I(GC(z))G
′
C(z)

]
z=1

β(III.38)

=
(
G′
C̃
(1) +G′

I(1)G
′
C(1)

)
β(III.39)

=

(
θ(k + 1)

λ
+

1− φ

φ

θk

λ

)
β(III.40)

=

(
θ(k + 1)

λ
+

ρ

δ + ω

kθ

λ

)
β.(III.41)

A step-by-step derivation of G′
C̃(1) and G

′
C(1) is given in the appendix VI.

The variance of R0 can also be calculated, which involves taking the second deriva-

tive of GH(1). We need take a bit more care with the probability of transmission in

the second derivative. First, we will formally define a generating function for Ĥ as

the number of actual transmissions generated by a newly infected person in a fully

susceptible population. The probability of transmission given contact is a Bernoulli

random variable generated by Gp(z) = (1− β) + βz. Then GĤ(z) = GH(Gp(z)) and

G′
Ĥ
(z) = G′

H(Gp(z))G
′
p(z).

Var(R0) can be calculated by further differentiation of G′
Ĥ
(z) as G′′

Ĥ
(1)+G′

Ĥ
(1)−

[G′
H(1)]

2. Beginning with the second derivative of GĤ(1)

G′′
Ĥ
(1) = [G′′

H(Gp(z))G
′
p(z)G

′
p(z) +G′

H(Gp(z))G
′′
p(z)]z=1(III.42)

= G′′
H(1)G

′
p(1)G

′
p(1)(III.43)

= G′′
H(1)β

2(III.44)

=
(
G′′
C̃
(1) +G′′

I (1)G
′
C(1) +G′

I(1)G
′′
C(1)

)
β2(III.45)

=

(
(k + 2)(k + 1)θ2

λ
+

2(φ− 1)2

φ2

kθ

λ
+

1− φ

φ

(k + 1)kθ2

λ

)
β2(III.46)
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A step-by-step derivation of G′′
C̃
(1) and G′′

C(1) is given in appendix VI. We can then

write down a complete expression for the variance of R0 as

Var(R0) = G′′
Ĥ
(1) +G′

Ĥ
(1)−

[
G′
Ĥ
(1)

]2
(III.47)

3.4.2 The basic reproduction number in model 2

Model 2 expands on model 1 by including acute and chronic stages of transmis-

sion to account for the large spike in viral titer that occurs during acute infection.

Inclusion of an additional infection stage is straightforward. We just need to consider

additional interval duration rates for acute and chronic stage infectives and the pos-

sibility that an infected individual enters the chronic stage before the first behavioral

interval terminates. The model parameters are listed in table 3.2.

From the time of infection, t0, to transition to chronic infection, ta, an acutely

infected individual re-draws their contact rate at times t1, · · · , ta−1. The total number

of behavioral intervals experienced in the acute stage, a− 1, is a geometric random

variable that is generated by

(III.48) GIa(z) =
φa

1− (1− φa)z
.

The remaining time infected ta, to removal, tf , a chronically infected individual

re-draws their contact rate at times ta+1, · · · , tf . The total number of behavioral

intervals experienced in the chronic stage, f −1, is a geometric random variable that

is generated by

(III.49) GIc(z) =
φc

1− (1− φc)z
.

The length of behavioral intervals for acute infectives, Tt<a, is distributed as Exponential(λa)

while for chronic infectives, Tt>a, is distributed as Exponential(λc).
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The addition of acute and chronic stages requires that we consider two possible

ways that an infected individual can progress from acute to chronic infection. If the

first behavioral interval extends into the chronic stage, t1 > ta, then the contact

rate in the first interval in the chronic stage is generated by Gc̃(z). However, if an

individual re-draws their contact rate before progressing to the chronic stage, their

contact rate will be generated by Gc(z). In the latter case an individual will generate

E(Ĥ1) =
(
G′
c̃(1) +G′

Ia(1)G
′
c(1)

)
βa +G′

Ic(1)G
′
c(1)βc(III.50)

=

(
θ(k + 1)

λa
+

ρ

δa + ω

kθ

λa

)
βa +

ρ

δc + ω

kθ

λc
βc(III.51)

new infections. Otherwise they will generate

E(Ĥ2) = G′
c̃(1)βa +

(
G′
c̃(1) +G′

Ic(1)G
′
c(1)

)
βc(III.52)

=
θ(k + 1)

λa
βa +

(
θ(k + 1)

λc
+

ρ

δc + ω

kθ

λc

)
βc(III.53)

new infections.

An acute interval can terminate in one of three ways: re-drawing contact rates,

progression to chronic stage, or removal. The probability that an individual re-

draws their contact rate at least once before stage progression or removal is the

proportion that the contact rate volatility parameter comprises of the total acute

interval termination rate, ρ
ρ+δa+ω

= ρ
λa
. The basic reproduction number can then be

written as as weighted sum of the expectations of Ĥ1 and Ĥ2:

R0 =
ρ

λa
E(Ĥ1) +

(
1− ρ

λa

)
E(Ĥ2)(III.54)

The variance of R0 can also be written as a weighted sum of partial reproduction

functions defined as

Var(R0) =
ρ

λa
Var(Ĥ1) +

(
1− ρ

λa

)
Var(Ĥ2)
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where

Var(Ĥ1) = G′′
Ĥ1
(1) +G′

Ĥ1
(1)−

[
G′
Ĥ1
(1)

]2
,

Var(Ĥ2) = G′′
Ĥ2
(1) +G′

Ĥ2
(1)−

[
G′
Ĥ2
(1)

]2
.

To finish this calculation we need G′′
Ĥ1
(1) and G′′

Ĥ2
(1)

G′′
Ĥ1
(1) =

(
G′′
C̃
(1) +G′′

Ia(1)G
′
C(1) +G′

Ia(1)G
′′
C(1)

)
β2
a(III.55)

+
(
G′′
Ic(1)G

′
C(1) +G′

Ic(1)G
′′
C(1)

)
β2
c

=

(
(k + 2)(k + 1)θ2

λa
+

2(φa − 1)2

φ2
a

kθ

λa
+

1− φa
φa

(k + 1)kθ2

λa

)
β2
a(III.56)

+

(
2(φc − 1)2

φ2
c

kθ

λc
+

1− φc
φc

(k + 1)kθ2

λc

)
β2
c

G′′
Ĥ2
(1) =

(
G′′
C̃
(1)

)
β2
a(III.57)

+
(
G′′
C̃
(1) +G′′

Ic(1)G
′
C(1) +G′

Ic(1)G
′′
C(1)

)
β2
c

=

(
(k + 2)(k + 1)θ2

λa

)
β2
a(III.58)

+

(
(k + 2)(k + 1)θ2

λc
+

2(φc − 1)2

φ2
c

kθ

λc
+

1− φc
φc

(k + 1)kθ2

λc

)
β2
c

A step-by-step derivation of G′′
C̃
(1) and G′′

C(1) is given in appendix VI.

3.4.3 The basic reproduction number in model 3

Model 3 expands on model 2 by adding oral and anal contacts that are made

independently of one another. Multiple routes of transmission add the complication

of having to consider the possibility that an average infected individual became in-

fected by either oral or anal sex. R0 can be calculated though algebraic manipulation

of the partial reproduction functions for individuals infected by either oral and anal

sex. The approach that I take to derive R0 is to write down expressions for the

partial reproduction functions as a two-by-two matrix and then solve for the domi-

nant eigenvalue, which is the average number of infections an average newly infected

person will generate [19].
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There are four total partial reproduction functions indicating the number of infec-

tions of each type generated by a person who was infected by either oral or anal sex. I

will use the notation Rxy to indicate how the individual became infected (x ∈ {a, o})

and the type of transmissions that they generate (y ∈ {a, o}), where a indicates anal

and o indicates oral. Continuing the logic used in the derivation of R0 in model 2

where R1 represents the number of infections generated by a new infected who does

re-draw their contact rate before progressing to the chronic stage and R2 represents

the number of new infections generated by a new infected who does re-draw their

contact rate before progressing to the chronic stage. Then, modifying III.51 gives

R1
oo =

(
θo(ko + 1)

λa
+

ρ

δa + ω

koθo

λa

)
βoa +

ρ

δc + ω

koθo

λc
βoc(III.59)

and modifying III.53 gives

R2
oo =

θo(ko + 1)

λa
βoa +

(
θo(ko + 1)

λc
+

ρ

δc + ω

koθo

λc

)
βoc(III.60)

which after weighting as in III.54

Roo =
ρ

λa
R1
oo +

(
1− ρ

λa

)
R2
oo.(III.61)

Because contact rates are assumed to be independent, the timing of the first re-

sampling does not effect the total number of anal contacts, greatly simplifying the

generating function to

Roa = G′
I(1 +GCa

(1))(III.62)

=

(
1 +

ρ

δa + ω

)
kaθa

λa
βaa +

(
1 +

ρ

δc + ω

)
kaθa

λc
βac .
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The partial reproduction equation for the number of anal transmissions by an

individual infected by anal sex is given by

R1
aa =

(
θa(ka + 1)

λa
+

ρ

δa + ω

kaθa

λa

)
βaa +

ρ

δc + ω

kaθa

λc
βac(III.63)

R2
aa =

θa(ka + 1)

λa
βaa +

(
θa(ka + 1)

λc
+

ρ

δc + ω

kaθa

λc

)
βac(III.64)

Raa =
ρ

λa
R1
aa +

(
1− ρ

λa

)
R2
aa.(III.65)

The partial reproduction equation for the number of oral transmissions by an

individual infected by anal sex is given by

Rao = G′
I(1 +GCo

(1))(III.66)

=

(
1 +

ρ

δa + ω

)
koθo

λa
βoa +

(
1 +

ρ

δc + ω

)
koθo

λc
βoc .

R0 is the dominant eigenvalue of the two-by-two matrix of the partial reproduction

functions. The eigenvalues are defined as

Raa +Roo

2
±

√
4RaoRoa + (Raa −Roo)2

2
(III.67)

3.5 Results

3.5.1 The effect of volatility on R0

In model 1, increasing volatility reduces R0 (figures 3.1, 3.2 and 3.3). The first

behavioral interval lasts, on average 1
ρ+δ+λ

, which shortens as ρ increases. When

ρ = 0 the index case experiences ρ
δ+ω

= 1 behavioral interval over which they have

an average contact rate of (k + 1)θ. The average contact rate in the first behavioral

interval is θ-times larger than the average contact rate in the general population.
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When the average contact rate in the general population is low and the variance is

high (k << θ), the average contact rate in the newly infected is much higher than in

the general population greatly increasing R0. If ρ > 0, the probability that the first

behavioral interval (mean contact rate is (k + 1)θ) terminates in re-drawing a new

contact rate from the general population distribution (mean rate is kθ) is greater

than zero. The length of behavioral phases is an exponential random variable with

mean 1
ρ
. As volatility increases, the duration of the first interval decreases, reducing

the number of contacts made over the course of the infectious period.

Increasing volatility also reduces R0 in model 2, however, this reduction is miti-

gated when compared to a model 1 (figure ??). We have parameterized model 2 to

correspond to the natural history of HIV with a short, highly infectious acute stage

and a much longer, less infectious chronic stage with about 40% of the infection

potential coming from the acute stage. In this model increases in volatility differ-

entially reduce the contact rate in the chronic stage compared to the acute stage.

The odds that the first re-drawing from the population distribution of contact rates

occurs in the acute versus chronic stage is equal to ρ
λa
. For HIV, λa = 2, therefore

the the probability of maintaining the average contact rate (k + 1)θ over the entire

acute stage is greater than 50% for ρ > 2; unless average behavioral interval are very

short, the average contact rate of an index case will be elevated above the population

average over the course of the acute stage.

In the kind of simple models that we used in this chapter volatility, in its extreme

values, provides a link between contact rate heterogeneity with no volatility (ρ =

0) and contact rate homogeneity (ρ = ∞). When ρ = 0, R0 reduces to (k+1)θ
λ

β

which is equivalent to the general formulation for R0 in a transmission system with

heterogeneous contact rates presented by Anderson and May [7]. As limρ→∞R0 =
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kθ
λ
β, which is equivalent to R0 in a homogeneous system where the average contact

rate is kθ; that is, if ρ is very large, a model where k = 1 and θ = 10 and another

where k = 0.1 and θ = 100 are equivalent with respect to R0 to a homogeneous

model where X = 10 even though the variance of the contact rate distribution is

10-fold greater in the latter model.

The link between homogeneous and heterogeneous contact rates at the extreme

ends of volatility helps to explain the relationship between of R0 to contact rate

heterogeneity and contact rate volatility (figure 3.4. The variance of R0 decreases

with increasing contact rate volatility and increases with increasing contact rate het-

erogeneity for a given mean contact rate. The reduction in variance with increasing

volatility can be understood as a type of regression to the mean. The variance of

the mean contact rate is inversely proportional to the number of behavioral intervals

experienced over the course of an infection. Contact rate volatility makes individ-

uals, on average, more similar over time as multiple behavioral phases smooth out

differences between behavioral extremes. Without volatility, in a population with

highly heterogeneous contact rates (low mean, high variance) such as that observed

in the previous chapter, the variance of R0 is inflated by the highly unlikely but very

large contact rates in the long tail of the contact rate distribution. Put in other

words, in a system with high contact rate heterogeneity but no volatility, almost all

individuals have contact rates that are insufficient to start an epidemic. However, in

the subpopulation that does have sufficiently high contact rates, the average contact

rate is very high–much higher than would be required to start an epidemic. In a sys-

tem with volatility, the variance is reduced because the probability of maintaining a

very high contact rate for a given period of time decreases with increasing volatility.

The theoretical interpretation of the variance of R0 is not as well-established at the
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interpretation ofR0 itself. The variance ofR0 is related to the probability of die-out in

the very early stages of the epidemic. As the variance in the number of transmissions

generated by an index case in a fully susceptible population increases, the probability

that, in a specific instance, that case will generate less than the average number of

new cases increases. At the beginning of an epidemic, a single infected individual

failing to generate more than one new infection can cause stochastic die-out of the

epidemic even when R0 > 1. The reduction in R0 with increasing volatility is faster

than the corresponding reduction in the variance of R0 leading to a net reduction in

the signal-to-noise ratio with increasing volatility (figure 3.5).

3.6 Discussion

To my knowledge, this is the first study of contact rate volatility and R0 that

explicitly focuses on isolating the effects of volatility on R0. Diekmann et al. formal-

ized a method for the calculation of R0 in a generalized heterogeneous transmission

system as the dominant eigenvalue of the next generation operator [20]. The ap-

proach can be though of as formalizing an expression for the infectivity, A, as a

function of time from infection, τ , and then integrating over τ to get an expression

for R0,
∫
A(τ)dτ = R0 . The next generation operator simply gives the value of

the
∫
Ah(τ)dτ for each possible heterogeneity state; if we assume that transmission

is dependent only on the heterogeneity state of the infector, then deriving the next

generation matrix can be (in some simple cases) straightforward. This method re-

quires either the assumption of a deterministic system or invocation of the law of

large numbers (LLN) [32].

The use of branching processes to describe the early infectious dynamics is ad-

vantageous for several reasons. Explicit inclusion of the stochasticity inherent in real
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transmission systems allows us to treat the quantity of interest as a random variable

rather than simply a scalar, such as an expectation under the assumption of LLN.

First, generating functions for the random number of infections generated by a typ-

ical infected can be used to not only get the expectation (R0), but also the higher

order moments. When the population of infectives is very small, such as during the

early epidemic period, the system is dominated by stochastic effects, and R0 may

not give a very complete picture of what to expect in terms of the rate of epidemic

spread and the probability of the disease actually taking hold in the population [59].

R0 alone does not necessarily get at the actual information that we are interested

in, such as the answer to the question of how hard an infection will be to eliminate

from a population. Consider the result from Anderson and May that R0 ∝ µc+σ
2
c/µc

in a simple SI model with heterogeneous contact rates, where µc is the average contact

rate and σ2
c is the variance of the contact rate distribution [7]. This relation implies

that while holding the average contact rate constant, increasing the variance of the

contact rate distribution, increases R0 and, by the standard interpretation of R0,

makes controlling the epidemic more difficult. However, as demonstrated in this

chapter, increasing the variance of the contact rate distribution in the absence of

volatility also greatly increases the Var(R0). The basic reproduction number is

actually highest when the mean is very low and the variance is very high, such as

was observed in chapter 2. The implication is that the infection is most difficult

to control when a very small proportion of individuals account for almost all of the

contacts.

A simple thought experiment shows that R0 itself only give part of the picture.

For Gamma distributed contact rates the variance can be made arbitrarily high for

a given average contact rate. As the variance increases the median value decreases.
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There is no closed form for the median of a Gamma distribution, but this can be

shown numerically. As the variance increases, more of the population has lower

contact rates with an increasingly small minority with very large rates. In a finite

population, as the variance of the contact rate distribution increases, R0 becomes

large, but the population of individuals responsible for the large R0 becomes smaller

and smaller. The small population is much more susceptible to stochastic die out

simply due to its small size. The variance of R0 tells part of this story. For a

given value of R0, increasing variance of R0 means that more of the density of the

number of infections generated by a typical infected is sub-threshold. That is, most

of infected individuals will generate less than one new infection. Volatility reduces

R0 and also the variance of R0. The immediate conclusion that volatility either

reduces the probability of an epidemic or makes an epidemic easier to control is not

necessarily supported by this analysis. Further work along these likes should use

simulation to correlate R0 and its variance to both the probability that an epidemic

takes hold in a population given a singular introduction and the amenability of an

epidemic to be controlled by simulated interventions.

The functional form that the contact rate distribution takes is also important.

Liljeros et al. found that a cross-sectional distribution of the number of sexual

partners from a large Swedish cohort followed a power law distribution with scaling

exponent of 2.3 for males with more than 5 reported lifetime partners [53]. Sexual

networks with power-law distributed node distributions are referred to as scale-free

networks.

May and Loyd show that for infinite population sizes, scale-free networks do not

show threshold behavior; for any non-zero transmission probability an epidemic can

occur [56]. The lack of threshold behavior emerges as a result of the underlining
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distribution of node degrees having divergent variance (i.e. the variance goes to

infinity as the number of nodes becomes large). However, May and Loyd show that

in finite populations, R0 is naturally bound by the maximum number of contacts

made by any one individual. Given our assumption of proportional mixing and

continuously distributed contact rates, this parameter corresponds to the population

size, which we did not specify but must take some finite value. The population size

is an upper bound on R0 regardless of the form of the contact rate distribution. If

we assumed power law distributed contact rates, R0 = N where N is the population

size; however, the variance of R0 would also be very large and subject to the issues

brought up in the previous paragraphs.

The concept of volatility does not fit in very well with the work on scale-free

networks. Networks are often though of as static, or at least static over some period

of time. The power law distribution found by Liljeros et al. was for the total number

of lifetime partners. Any volatility in either the number of partnerships or the number

of contacts is lost in such an aggregate measure. Even in a dynamic network, it is

hard to imagine how volatility as we have implemented it here could be integrated

into a network model. The problem is that an individual’s actual contact rate is

limited by the number of available contacts in the network at any point in time.

Contact rates could be conceptualized as a preferred number of partners that would

govern whether or not an individual would accept a new partner or terminate an

existing partnership. A potentially more fruitful direction for this line of research

would be on to conceptualize volatility in the broader context of stable and casual

partners.
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Parameter Description

θ gamma shape parameter for contact rate distribution
k gamma scale parameter for contact rate distribution
ρ contact rate volatility parameter
χi,t is the contact rate of the ith individual at time t
δ death rate of infected individuals
ω natural removal rates
ǫ entry rate
β transmissibility per contact
λ = ω + ρ+ δ rate that an interval terminates
φ = 1− ρ/λ probability that an interval terminates in removal

Table 3.1: Transmission parameters for model 1
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Parameter Description

θ gamma shape parameter for contact rate distribution
k gamma scale parameter for contact rate distribution
ρ contact rate volatility parameter
χi,t is the contact rate of the ith individual at time t
δa rate of progression from acute to chronic stage
δc rate of progression from chronic stage to death
ω natural removal rates
ǫ entry rate
βa transmissibility per acute contact
βc transmissibility per chronic contact
λa = ω + ρ+ δa rate that an acute interval terminates
λc = ω + ρ+ δc rate that an chronic interval terminates
φa = 1− ρ/λa probability that an acute interval ends in removal or progression
φc = 1− ρ/λc probability that a chronic interval ends in removal

Table 3.2: Transmission parameters for model 2
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Parameter Description

θo gamma shape parameter for the oral contact rate distribution
ko gamma scale parameter for the oral contact rate distribution
θa gamma shape parameter for the anal contact rate distribution
ka gamma scale parameter for the anal contact rate distribution
ρ contact rate volatility parameter
χo
i,t is the oral contact rate of the ith individual at time t

χa
i,t is the anal contact rate of the ith individual at time t

δa rate of progression from acute to chronic stage
δc rate of progression from chronic stage to death
ω natural removal rates
ǫ entry rate
βo
a transmissibility per acute oral contact

βa
a transmissibility per acute anal contact

βo
c transmissibility per chronic oral contact

βa
c transmissibility per chronic anal contact

λa = ω + ρ+ δa rate that an acute interval terminates
λc = ω + ρ+ δc rate that an chronic interval terminates
φa = 1− ρ/λa probability that an acute interval ends in removal or progression
φc = 1− ρ/λc probability that a chronic interval ends in removal

Table 3.3: Transmission parameters for model 3
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Figure 3.1: R0 in models one and two without volatility

This plot shows the effect of changing the mean and standard deviation of the Gamma distributed
contact rates under the assumption of no volatility (ρ = 0). Model 1 is on the left and model 2 is
on the right. The acute stage of infection was, on average, 2 months long with 0.05 probability of
transmission per contact; the chronic stage of infection was, on average, 142 months long with 0.001
probability of transmission per contact. The single infection stage in model 1 lasts, on average, 144
months with 0.0016 probability of transmission per contact. R0 is highest when the mean is low
and the variance is high due to a very small population of highly active individuals.
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Figure 3.2: R0 in models one and two with low volatility

This plot shows the effect of changing the mean and standard deviation of the Gamma distributed
contact rates under the assumption of low volatility (ρ = 1

120
). Model 1 is on the left and model 2

is on the right. The acute stage of infection was, on average, 2 months long with 0.05 probability of
transmission per contact; the chronic stage of infection was, on average, 142 months long with 0.001
probability of transmission per contact. The single infection stage in model 1 lasts, on average, 144
months with 0.0016 probability of transmission per contact. The reduction in R0 observed in model
1 is mitigated in model 2 due to the high infectivity of the acute stage and the low probability of
re-drawing contact rates before progression from the acute to chronic stage.
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Figure 3.3: R0 in models one and two with very high volatility

This plot shows the effect of changing the mean and standard deviation of the Gamma distributed
contact rates under the assumption of low volatility (ρ = 1

1
). Model 1 is on the left and model 2 is

on the right. The acute stage of infection was, on average, 2 months long with 0.05 probability of
transmission per contact; the chronic stage of infection was, on average, 142 months long with 0.001
probability of transmission per contact. The single infection stage in model 1 lasts, on average, 144
months with 0.0016 probability of transmission per contact. At this level of volatility, the average
behavioral period is only 1 month long which is shorter than the average duration of the acute
stage (2 months) making R0 similar in both models. The plot for model 1 shows how, at very high
levels, volatility completely eliminates the effects of contact rate heterogeneity.
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Figure 3.4: Effect of contact rate heterogeneity and volatility on the standard deviation

of R0

This plot shows the effect of the standard deviation of the contact rate distribution (y-axis) and
the average duration of a behavioral phase ( 1

ρ
) (x-axis) for a fixed average contact rate (4) on

variance of R0 in model 1. The single infection stage in model 1 lasts, on average, 144 months
with 0.0016 probability of transmission per contact. Contact rate volatility reduces the variance of
R0 while contact rate heterogeneity increases the variance of R0. At very high levels of volatility
increasing variance in the distribution of contact rates does not increase the variance in the number
transmissions an average case makes.
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Figure 3.5: Effect of contact rate heterogeneity and volatility on the signal-to-noise

ratio of R0

This plot shows the effect of the standard deviation of the contact rate distribution (y-axis) and
the average duration of a behavioral phase ( 1

ρ
) (x-axis) for a fixed average contact rate (4) on

signal-to-noise ratio, µ
σ
, of R0 in model 1. The single infection stage in model 1 lasts, on average,

144 months with 0.0016 probability of transmission per contact. Volatility reduces both R0 and
the variance of R0; this plot shows that as volatility increases the reduction R0 is greater than the
reduction in the variance of R0



CHAPTER IV

Short-term volatility in sexual behavior promotes acute

stage transmission of HIV

4.1 Summary

The stability of individual level contact rates over time is a common assumption

in models of HIV transmission. Using individual-level simulation we relax that as-

sumption by introducing time-variable (volatile) contact rates. Volatile contact rates

reduce the probability that an epidemic occurs yet greatly increase the population

risk of HIV if an epidemic occurs, all other things being equal. The increased risk is

mediated almost entirely through increased acute stage transmission.

4.2 Introduction

The emergence of new HIV prevention methods such as pre-exposure prophylaxis

places new emphasis on the role of theory development and modeling in the design of

public health interventions [70]. Contrasted to other proposed methods such as the

test-and-treat approach [15], pre-exposure prophylaxis acts by directly protecting

susceptibles rather than limiting the contagiousness of the chronically infected. The

relative efficacy of such programs is determined largely by the role that the short-lived

but highly contagious acute stage of infection plays in sustaining the HIV epidemic.

If acute stage transmission is key to the maintenance of infection levels, then pre-

73
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exposure prophylaxis can be highly effective. However, the current state of the theory

of HIV transmission does not yet understand the range of causal mechanisms that

can promote acute stage transmission in real populations, and thus is insufficient to

predict the expected efficacy of programs such as pre-exposure prophylaxis.

Previous work on the topic of acute stage transmission dynamics includes theoret-

ical investigations of contact structure [48], heterogeneity in contact rates [6], part-

nership behavior [45], and sexual role dynamics [4], among other factors, and their

ability to promote or retard population-level acute stage HIV transmission. Some

of these effects can be quite strong, increasing acute-state incidence by over 40-fold

(unpublished data). Studies that found a significant role for acute stage transmission

often included some kind of sexual behavior change over time, whereas studies that

suggested parity between infection stages [1] or epidemics driven by late-stage infec-

tion [67] did not. Failure to include dynamic sexual behavior in transmission models

may lead to an underestimation of the role of primary stage HIV transmission.

In this paper we use individual-based simulation to investigate the effects and

mechanisms of behavior change on the transmission of HIV. We formalize a highly

abstract model of sexual behavior change as a stateless, non-differential change in

sexual contact rates. We refer to this as contact rate volatility. Approaching this

problem in a highly abstract way allows us to address the issue of behavior change

in general without having to specify the nature and risk differences associated with

changing sexual behavior.

4.3 Materials and methods

We implement an individual-based model of CRV as a Markov chain where the

state and history of each individual is tracked and measured over the course of
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a simulation run. This allows us to consider both the effects and mechanisms of

CRV as functions of the simulation model parameters. Our general approach to the

exploration of this model is to restrict the model parameters to reasonable values and

simulate the state of the system and its individual-level history over a grid defined

on the parameter space. As the effects and mechanism became clearer, additional

simulations were performed for increased resolution and clarity. The results of this

study are a synthesis of the primary points discovered by this process.

4.3.1 Behavioral model

The behavioral model specifies the sexual behavior of individuals in the model. It

has two components: the contact rate heterogeneity (CRH) model and the contact

rate volatility (CRV) model.

Contact rate heterogeneity model

The contact rate heterogeneity (CRH) model is a probability density or mass

function that assigns probabilities to possible contact rates. The simplest model of

CRH would assign one of two possible contact rates to individuals with probability

p and 1− p respectively. The value of those rates and probability of being assigned

one rate or the other constitute the CRH model. We would like a more flexible

CRH model so we assume that contact rates, X, are log-normally distributed in the

population such that

Pr(X = χ) =
1

χ
√
2πσ2

e
(logχ−µ)2

2σ2 .

The log-normal distribution was chosen because it is defined for positive real numbers

and displays the highly skewed nature that is commonly observed in sexual frequency

data. However, more importantly, the log-normal distribution is parameterized in

such a way that the mean can be held constant while the variance is free to vary
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over a wide range from nearly homogeneous (low variance) to highly heterogeneous

(high variance). In this way we can isolate the effects of the interaction of volatility

and heterogeneity independently of the mean contact rate, which will also affect the

transmission dynamics.

Contact rate volatility model

This work focuses on a specific type of sexual behavior change we refer to as

contact rate volatility (CRV). CRV is stateless in that there is no corresponding

change of state that produces the behavior change. CRV is also non-differential in

that the probability of having a high or low contact rate is constant over time such

that all individuals are equally likely to have any given contact rate. Taken together,

CRV produces variable individual-level sexual behavior histories yet homogeneous

population-level behavior. An individual’s behavioral history can be thought of as

a sequence of f intervals of length D, {d1, d2, · · · , df}, within which an individual’s

contact rate is constant. By definition, the final interval, df , terminates in either

infection-mediated death or natural removal. All proceeding intervals terminate in

re-drawing the contact rate from X, thus defining a new behavioral interval. With

increasing volatility an individual experiences more frequent and shorter behavioral

intervals preceding the final interval. This simple, time homogeneous CRV model

requires only one parameter to specify, ρ, the rate at which individuals re-draw

their contact rate from X. Assuming the rate of natural removal and the infection

mediated death rate are small with respect to ρ, then D is approximately distributed

as Exponential(ρ). As ρ approaches 0 the average length of a behavior interval

approaches infinity, at which point there is no volatility.

There are more complex conceptualizations of CRV; for example, we might assume

Pr(X = χ) is some complex function of time such that individuals draw their contact
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rates from different distributions at different points in their existence or the evolution

of the whole system. However, for clarity, we restrict our analysis to a simple time

homogeneous model of CRV.

4.3.2 Transmission model

The transmission model is based on a simple SIR model [7] [43] with the additions

of 2 infectious stages, heterogeneous contact rates, and contact rate volatility. Con-

tacts are assumed to be symmetric and instantaneous. The model parameters are

given in table 4.2. Individuals exist in one 1 of 3 states: susceptible (S), acutely in-

fected (A), or chronically infected (C); N = S+A+C. The model was implemented

in the Java programing language as a continuous-time individual-based model. The

trajectory of the system was determined by Gillespie’s exact algorithm [24]. The

model events and their rates are listed in table 4.3.

4.3.3 Second generation analysis

Some of our conclusions are based on the analysis of a single second generation

infected in an otherwise fully susceptible population. This type of analysis allows

us to measure the basic reproduction number and the relative contribution of single

infected to the force of infection as a function of the volatility and heterogeneity

parameters. In this analysis a population is seeded with 20/10000 acutely infected

individuals. The first susceptible infected by one of the seeds is marked as the

index case, after which all further transmissions are disabled ensuring a nearly fully

susceptible population. The total number of transmissions the index would have

made and their contact rates at the time of infection and removal are recorded. For

each parameter set this process is repeated 2000 times to get stable averages.
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4.4 Results

CRV has 3 primary effects: reduction in R0, increase in population risk, and

increase in acute-stage transmissions.

Individual level

We simulated the number of infections generated by a infected index case under

conditions of no, low, and high volatility with low, medium, high standard deviations

of the contact rate distribution. Figure 4.1) shows that increasing volatility reduces

R0 and that the reduction in R0 is larger for the most heterogeneous contact rate

distributions. As illustrated in figure 4.2, the reduction in R0 is caused by a reduc-

tion in the contract rates of infected index cases over the course of their infection

with increasing volatility. Anderson and May proved that increasing variance in the

contact rate distribution for a given mean increases R0 [7]. That is, an epidemic

is more probable for a given average contact rate if the variance of the distribution

of those contacts is greater. This is due to the fact that in a population with het-

erogeneous contact rates, some sub-population may have a sufficiently high contact

rate to maintain an epidemic even if the average contact rate is too low to maintain

such an epidemic in a comparable homogeneous population. Their proof assumed

that contact rates are stable over time. Our model of CRV violates the assumption

of stable contact rates, demonstrating that this well-known result is not robust to

realistic violation of its assumptions.

Individuals become infected with probability proportional to their contact rate

such that infected individuals will, on average, have higher contact rates than the

general population (illustrated in figure 4.3). Without volatility, infected persons

maintain their above average contact rates over the course of their infection. How-
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ever, as contact rates become more volatile (increasing ρ) the probability that an

infected individual re-draws their contact rate before they are removed increases.

Because the mean contact rate is lower in the general population than in the popu-

lation of the newly infected, increasing volatility reduces the force of infection.

Population level

The dynamics become more complex when we allow secondary infections. Whereas

the last section shows that with increasing CRV causes a reduction in R0 and force of

infection at the individual-level, here, at the population-level we see increasing trans-

mission with increasing CRV. Figure 4.4 shows the endemic prevalence as a function

of volatility and the standard deviation of the population distribution of contact rates

(holding the mean contact rate constant). If there is little variability in the popula-

tion distribution of contact rates, volatility seems to have little effect on the endemic

prevalence. However, if contact rates are highly heterogeneous, volatility greatly

increases the average population risk. The large increase in the population risk of

HIV is mediated through increased acute stage transmission. Figure 4.5 and table

4.1 show the times between acute and chronic transmissions in the whole population

as a function of the contact rate heterogeneity and CRV parameters.

Volatility reduces the average contact rate of a single infected in an otherwise fully

susceptible population. However, when we allow secondary infections, the average

contact rates of the infector and infected is much higher with increasing volatility

(illustrated in figure 4.6). This apparent contradiction, that volatility can reduce

the force of infection from a single infected individual yet increase the average con-

tact rate of a newly infected individual, is due to contact rate volatility increasing

the availability of high-risk susceptibles. In the absence of volatility, as an epidemic

progresses, susceptibles with the highest contact rates become infected and the av-
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erage contact rate of susceptibles plummets. High contact rate individuals become

available through both entry of new susceptibles and through extant susceptibles

re-drawing their contact rates. Taken together, individuals with high contact rates

become available at a rate proportional to ǫ+ρS. In the absence of volatility (ρ = 0),

the incidence rate is limited by the rate at which new high risk susceptibles enter

the population. At the beginning of an epidemic, the rate at which individuals with

high contact rates enter is much slower than the rate at which they become infected

causing a reduction in average contact rate of susceptibles. Volatility mitigates this

effect by increasing ρS as illustrated in figure ??. As the length of behavioral in-

tervals becomes very short with respect to the incidence rate, the long-run average

contact rate of susceptibles approaches E(X) as all susceptibles will have re-drawn

their rates from X between infection events.

Volatility produces two apparently countervailing effects: increase in the avail-

ability of high risk susceptibles and decrease in the force of by an individual infected

all other things being equal. These effects do not balance out. We parameterized

the natural history of HIV such that 40% of the infection potential comes from the

acute stage that lasts about 2 months immediately following infection. The force of

infection in the acute stage will be unaffected by volatility unless the average length

of behavioral phase is comparable to the duration of the acute stage (i.e. contact

rates are highly volatile). However, the even modest rates of volatility help to sus-

tain high contact rates in the susceptibles. High risk susceptibles rapidly become

high risk acute infecteds, and, unless the volatility is very high, those elevated con-

tact rates will be sustained throughout the highly infectious acute stage. Therefore

volatility increases both the availability of high risk susceptibles and high risk acute

stage infecteds. This effect interacts with the elevated infectivity of the acute stage
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to generate a greatly elevated acute-stage transmission rate.

4.5 Discussion

In this chapter we have demonstrated that volatility has three major effects: 1)

reducing R0, 2) increasing the prevalence of HIV infection, and 3) increasing the

proportion of transmissions coming from acute stage infecteds.

In the previous chapter we showed that R0 decreases with increasing volatility.

The contact rate distribution in that chapter was assumed to be a Γ random variable,

whereas in these simulations we assumed log normally distributed contact rates. We

simulated R0 from relatively few number of parameter vectors, however those results

are consistent with the results from the previous chapter. The log-normal is similar

enough to the Γ distribution that is reasonable to assume the general results from

the previous chapter hold in this model also.

The increase in the overall prevalence and the acute-stage incidence associated

with increasing CRV is caused by the dual mechanisms of maintenance of high av-

erage contact rates in the susceptibles and reduction of contact rates of chronically

infected individuals. Contact rate volatility both reduces R0 and increases the preva-

lence of infection; to our knowledge, volatility is the only transmission parameter that

can produce both of these effects.

In this chapter we conceptualized contact rate volatility as a kind of time homo-

geneous process where all individuals re-draw their contact rates from an unchanging

probability distribution at a constant rate. We are unaware of any other studies that

have explored this exact type of model. The closest model found was by Koopman

et al. who modeled the effects of age structure and movement between high and

low-contact rate risk groups on the role of acute stage HIV [49].
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In that paper they present a highly structured model with age specific contact

rates, age preferred mixing (individuals in each age group have a preference for

contacting individuals only within their own age group), and volatility in contact

rates, conceptualized as movement between more and less active states. Contact

rates were as much as 8.5-fold higher in the more active state compared to the less

active state, although this ratio varied for each age group. They concluded that the

increased role for primary stage transmission observed in their model was due to the

fact that ‘transmissions during early infection get linked to individuals who are more

likely to transmit during early infection, and the effect of increased transmission

probabilities during infection is exponentiated across generations of transmission.’

They also noted that increasing the rate of fluctuation increases the role of primary

stage infection even further.

The model that I present in this chapter can be thought of as a simplification of

the model of Koopman et al. I have essentially removed the age and mixing structure,

expanded the concept of high and low contact rate groups to a full distribution of

contact rates, and simplified volatility to a single process (re-drawing contact rates

as opposed to movement to and from high and low contact rate groups). Simplifying

the model allows us to show that contact rate volatility, in the absence of age and

mixing structure, can increase the population risk and the relative contribution of

acute stage infecteds.

Contact rate volatility may also explain the discrepancy between Koopman et al.

and another paper that studied the relative contributions of each infection stage.

Rapatski et al. also modeled the relative contributions of each infection stage using

a deterministic compartmental model with six risk groups each with its own contact

rate [67]. The risk-group specific contact rates were specified by both data and
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model analysis. Mixing among risk groups was assumed to be proportional (as

opposed to age structured), which they referred to as their ‘bathhouse’ assumption.

They also assumed that behaviors are constant over time, which they justified by

noting that a 1969 study of gay male sexual behavior found that nearly 30% of

gay men reported having over 1000 lifetime sexual partners. Their argument was

that such high numbers of sexual partners could only be reached by decades of high

sexual activity. This point, although true, is irrelevant. Contact rate volatility as

it is conceptualized here in our work could allow for both the accumulation of a

large number of lifetime partners while still promoting primary stage transmission.

Rapatski et al. made the error of assuming that volatility only affects infected

individuals and failed to consider that volatility also increases the availability of

high risk susceptibles regardless of the mean contact rate. As high risk susceptibles

become infected they become high risk acutely infected individuals, which by their

‘bathhouse’ assumption, would account for a disproportional proportion of contacts.

Contact rate volatility as we have conceptualized it here could also be thought

of as the limiting case of a dynamic network model with a static degree distribu-

tion, where the duration of partnerships tends to zero. In the real world, contact

rate volatility is embedded in the system of enduring and short-term partnerships.

We are not aware of any sexual network studies of HIV transmission that includes

both enduring partnerships and contact rate volatility. Volatility in the context of

enduring partnerships could be realized in terms of a fluctuating preference of the

number of concurrent partners. The degree of concurrency of partnerships in dy-

namic network models without volatility has been shown to either amplify or retard

the proportion of transmissions coming from the acute stage under different model-

ing assumptions [45]. Embedding volatility in the context of enduring partnerships
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is a key step in incorporating volatility into the broader modeling literature.

Contact rate volatility could also be further simplified by separately considering

contagiousness and susceptibility effects. In this simple model, contact rate het-

erogeneity can be though of as a combination of contagiousness and susceptibility

effects, as increased contact rates both put susceptibles at higher risk of infection

(increased susceptibility) and infected individuals at higher risk of transmission (in-

creased contagiousness). Most of the work on contagiousness and susceptibility ef-

fects comes from the theoretical vaccine literature, where it has been argued that

even vaccines that that do not protect individuals may actually reduce contagious-

ness enough to block transmissibility at the population level [46]. In the context

of HIV dynamics, variability in contagiousness and susceptibility could result from

temporary co-morbid STI infection. STI infections are known to increase both the

probability of becoming infected with HIV [14] and the amount of virus shed by

co-infected infected individuals, especially men with symptomatic urethritis [69].

Volatility in susceptibility would generate the ‘supply-side’ effects observed in

this chapter by providing a constant supply of high-risk susceptibles in spite of high

infection rates. Both increases in contact rates by the mechanism of volatility and

increases in susceptibility due to co-infection increase the risk that a given susceptible

will become infected over the period of increased susceptibility. However, assuming

homogeneous, stable contact rates, volatile susceptibility will not affect the inference

of which infectious stage is generating most of the new infections. The increase

in acute-stage transmission caused by contact rate volatility is the result of the

assumption of proportionate mixing; contacts made by susceptibles are more likely to

be with an acute-stage infectives who are very likely to have very high contact rates.

Volatility in susceptibility in an otherwise homogeneous system will not produce a
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similar effect. The most susceptible individuals rapidly become infected, but they do

not contribute to an increased force of infection. In total, volatility in susceptibility

causes an increase in the overall incidence, but leaves the relative stage contribution

unchanged.

In the absence of other heterogeneities, volatility as it is implemented in this chap-

ter would have no significant effect on either the incidence rate or the relative stage

contributions. Absence in the fluctuation of susceptibility either as a direct effect or

as volatility in contact rates precludes the increased incidence rates that are cause

by the increased availability of susceptibles. Unlike contact rate volatility, conta-

giousness volatility (isolated from susceptibility effects) is not correlated to infection

risk in susceptibles. If individuals were more likely to be in a highly contagiousness

state at the moment of infection, the high contagiousness and high viral titer during

the short acute stage would interact to increase the acute stage incidence. However,

in the absence of such a correlation, the system behavior will be dominated by the

average contagiousness, which is unchanged by volatility. A practical conclusion of

this work is to question the notion that cross-sectional data are sufficiently informa-

tive to understand the relative contribution of each infection stage and the role that

they are playing in sustaining the HIV epidemic. In chapter 2.5.1 we showed that

the most risky kinds of contacts are highly volatile in a subset of the population.

Future work on contact rate volatility should incorporate estimates of volatility from

multiple prospective cohorts into increasingly realistic models of volatility to assess

the degree of increased acute-stage transmission.

A practical conclusion of this work is to question the notion that cross-sectional

data are sufficiently informative to understand the relative contribution of each in-

fection stage and the role that they are playing in sustaining the HIV epidemic. In
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chapter 2.5.1 we showed that the most risky kinds of contacts are highly volatile in a

subset of the population. Future work on contact rate volatility should incorporate

estimates of volatility from multiple prospective cohorts into increasingly realistic

models of volatility to assess the degree of increased acute-stage transmission.
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Figure 4.1: Volatility decreases R0

This plot shows the effect of the average duration of a behavioral period (x-axis) on the average
number of infections generated by an average infected in a fully susceptible population (y-axis) all
other parameters being equal. The standard deviation (sd) is varied for each case while holding the
mean contact rate equal to 6 for all simulations. For each point, the simulation was seeded with
a small number of infected individuals. The first infected individual was marked as the index case
and all further secondary transmissions where disabled (i.e. to keep the population fully susceptible
no new transmission where allowed). The number of transmission that would have occurred was
measured along with the contact rate of the index case at the moments of infection and removal
either by death or natural removal. Each point is the average of 2000 simulations.
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Figure 4.2: Volatility decreases the force of infection

The left-hand plot shows the difference in the contact rate of an infected individual at the moments
of infection and removal (y-axis) as a function of the standard deviation (sd) of the contact rate
distribution and the average duration of a behavioral interval (x-axis). The mean contact rate is
fixed for all simulations at 6. The right-hand plot shows the distribution of the contact rate at the
moments of infection and removal where the standard deviation of the contact rate distribution is
6 and the the average duration of a behavioral period is 2 years (values beyond the interquartile
range are omitted for clarity). The red dot indicates the mean. Each point is the mean of 2000
observations.
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Figure 4.3: Contact rates in the general and infected populations

This figure illustrates the distribution of contact rates of newly infected individuals assuming a
constant population size and constant transmission rate. The blue line is the population distribution
of contact rates, X ∼ logN(1, 1), while the green line is a histogram of 2000 random variates selected
from X with probability proportional to χ. The blue and green dots indicate the means of the
population distribution of contact rates in the general and newly infected populations respectively.
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Figure 4.5: Histograms of time between transmissions in whole population

This plot shows effects of volatility (the inverse of ρ is the average duration of a behavioral interval)
on the log-scale time between acute and chronic transmissions, all other parameters being equal.
The x-axis is the log-scale time between transmissions in the whole population and the y-axis is the
frequency over 600 months. The inverse of the average time between transmissions is the incidence
rate. In the plot on the left the standard deviation of the contact rate distribution (logN(1.74, 0.32))
is low (2) while in the right-hand plot the standard deviation (logN(0.99, 1.27)) is high (12). The
simulations are parameterized such that the force of infection from the acute and chronic stages are
comparably equal given homogeneous contact rates (acute stage is 50 times more infectious but 60
times as short). The mean contact rate is held constant at 6 in all simulations. The dots at the
bottom of the plot indicate the average time between transmissions.
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Figure 4.6: Increasing volatility increases the average contact rate of infector and in-

fected at the moment of transmission

This figure illustrates the effect of volatility ( 1
ρ
is the average duration of a behavioral phase) on the

average contact rates of infectors and infected at the moment of transmission over 11000 months of
simulation time at pseudo-equilibrium. For each transmission in the simulation the average contact
rate of the infector (the one transmitting) and the infected (the one transmitted to) is recorded.
The mean and standard deviation of X are fixed at 6 and 12 respectively. Despite the fact that
volatility reduces the average contact rate of infected individuals, the measured contact rates of the
infector are actually higher at higher levels of volatility.
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Standard deviation ρ ∆ acute ∆ chronic Ratio acute

2 0 0.16(0.0007) 0.15(0.0006) 0.97
2 1/24 0.14(0.0006) 0.15(0.0006) 1.04
2 1/2 0.16(0.0007) 0.16(0.0006) 1.02
12 0 0.15(0.0008) 0.15(0.0006) 0.95
12 1/24 0.07(0.0002) 0.15(0.0006) 1.89
12 1/2 0.07(0.0002) 0.16(0.0006) 2.36

Table 4.1: Average time between acute and chronic transmissions

The average time between acute, ∆ acute, and chronic transmissions, ∆ chronic, and the ratio of
the number of acute stage to chronic stage transmissions. In each simulation the average contact
rate is held constant at 6. Each parameter set was simulated for 1000 months; the first 200 months
of each simulation were discarded as burn-in.
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Parameter Description Value

µ log-normal location parameter contact rate variable
σ2 log-normal scale parameter contact rate variable
X ∼ logN(µ, σ2) probability of contact rates variable
δa acute to chronic progression rate 0.5 month−1

δc chronic to death progression rate 1/12 years−1

ω natural removal rate 1/30 years−1

ǫ entry rate 27.8 per month
βc probability of transmission chronic stage 0.001
βa probability of transmission acute stage 0.05
ρ volatility parameter variable

Table 4.2: Transmission Model parameters
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Event Rate Action

New susceptible enters ǫ S → S + φi()
Susceptible exits population Sω S → S − φi(S)
Acute infected exits population Aω A → A− φi(A)
Chronic infected exits population Cω C → C − φi(C)
Primary to chronic transition Aδa A → A− φi(A), C → C + φi(A)
Chronic to death transition Cδc C → C − φi(C)
Behavioral phase terminates Nρ

Transmission by acute stage Ŝt

Ât

N̂t

βa S → S − φi(S), A → A+ φi(S)

Transmission by chronic stage Ŝt

Ĉt

N̂t

βc S → S − φi(S), A → A+ φi(S)

Table 4.3: Events rates

The events comprising the individual-based transmission model. The notation Ẑt indicates the sum
of individual contact rates of individuals in state Z at time t, Ẑt =

∑i∈Z
χi,t. φi(Z) indicates a

randomly selected individual in state Z and φi(Z) indicates an individual in state Z selected with
probability proportional to either their contact rate.



CHAPTER V

Conclusion

5.1 Summary

In this thesis I have demonstrated that 1) contact rate volatility is a better ex-

planation of a prospective dataset of risky sexual behavior in gay men compared to

a model of contact rate heterogeneity without volatility. 2) Contact rate volatility

reduces both the mean and the variance in the number of infections generated by

a newly infected individual in a fully susceptible population. And, 3) Contact rate

volatility increases both the endemic prevalence and the acute stage transmission

rate. I know of no other dynamic that has the properties of both reducing R0 and

increasing the endemic prevalence of HIV.

Volatility proved to be a superior explanation of a prospective dataset of sexual

contact count data compared to a heterogeneous model without volatility (stability).

An additional heterogeneity parameter, giving the probability that an individual’s

behavior is stable over the two-year course of the study, was required to get superior

likelihoods compared to the stability model. A large proportion ( greater than 50%)

of individuals for each contact type were estimated to have stable contact rates while

the remaining population experienced rather short behavioral intervals. Individuals

with the highest average contact rates also had the highest variability in the number

99
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of contacts reported in each observational period of the study suggesting that a

volatility model where the degree of volatility is proportional to the average contact

rate might be more appropriate. Nevertheless, the data support the idea that sexual

behavior is not necessarily stable even over short periods.

All of the work in chapters 3.6 and 4.5 are predicated on the assumption that

the hazard of infection is proportional to an individuals per-act contact rate. I

defined contacts as instantaneous, symmetric, ‘one-off’ type events. In this context,

the assumption of proportional infection hazard seems reasonable as each contact

represents a unique, randomly determined partner. This idea is also supported by

the data. Vittinghoff et al. used the same dataset that I used in chapter 2.5.1 to

estimate the per-act probability of transmission for certain contact types [72]. Each

type of contact was associated with a non-zero probability of transmission. However,

the data do not specify whether or not contacts were made with a long-term partner

or not. In a situation where nearly every contact was made with long-term (almost)

monogamous partners, the risk of infection would not be proportional to the per-act

contact rate but rather closer to the partnership formation rate [44].

If we accept the assumption of proportional hazards, then volatility increases the

epidemic threshold, all other things being equal. This effect is simple to under-

stand in a fully susceptible population as the average contact rates of newly infected

individuals are higher than in the general population (by assumption their risk of

infection is higher); when infected individuals re-draw their contact rates, they are

drawing them from the lower population distribution of contact rates. On the other

hand, volatility also reduces the variance in the basic reproduction number, R0. This

suggests that a singular introduction of HIV into a volatile system where R0 > 1 is

more probable to generate an epidemic than an introduction in a non-volatile system
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with a comparable R0. The reduction in the variance of of R0 caused by increasing

volatility is explainable by regression to the mean [18]: as total number of behavioral

intervals increases the average contact rate approaches the mean. Over the long run,

volatility actually reduces the effect of contact rate heterogeneity by bringing the av-

erage contact rates closer to the mean (technically the variance of the sample mean

is given by the sampling distribution and is inversely proportional to the volatility

parameter).

While volatility reduces the force of infection in a model with one infection stage,

this effect is largely mediated with the additional of another infection stage. Unless

volatility is very high, individuals maintain their elevated contact rates throughout

the acute stage, re-drawing their contact rates some time during the chronic stage.

Volatility, unless very high, reduces the force of infection in the chronic but not acute

stage of infection.

The effect of volatility is exactly opposite in susceptibles. Going back to the

metaphor from the introduction, imagine a column filled with ping-pong balls; the

height of the column represents the probability of being removed from the column

(infection). As we remove ping-pong balls, the average level of the balls slowly drops

as the balls at the top are picked off (average contact rate of susceptibles drops over

time). However, if we were to blow a stream of air into the bottom of the column such

that the ping-pong balls were bounding about (volatility) and repeat the process,

the average level would not drop nearly as much as before. As we picked off the

balls that happened to be at the top of the column, the average level would drop a

small amount; however, the spots at the top of the column would quickly be occupied

by other balls as they were blown about by the stream of air. Volatility mitigates

the reduction in the contact rates of susceptibles caused by infection by providing a
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constant stream of new high-risk susceptibles.

These effects taken together show that volatility can significantly promote acute

stage infection independent of explicit contact or population structure.

5.2 Simplifying assumptions

I chose to use a highly simplified model of contact rate volatility to focus in on

its basic effects. I have shown that failure to consider contact rate volatility can, in

theory, produce misleading inferences, especially with respect to questions of stage

dominance. The downside of using very simple models is that isolating one particular

dynamic requires making potentially very strong assumptions about the ignorability

of other potential dynamics. The models that I have used throughout this thesis are

all very similar and make many strong assumptions. I saw three key assumptions

that were not strictly required but allowed me to focus in on the effects of volatil-

ity: independence of behavioral phases, uniformity of partner selection (proportional

mixing), and population homogeneity.

5.2.1 Independence of behavioral phases

Assuming the independence of behavior phases simplified the calculation of R0 in

chapter 3.6 and made the individual-based simulations in chapter 4.5 more computa-

tionally tractable. However behavior change is almost certainly not independent of

the current behavioral state: a high-risk individual is probably more likely to main-

tain a high-risk state than a low-risk individual entering a high-risk state. Behavioral

dependence could take multiple forms. A simple first step would be to include a corre-

lation between the current contact rate and future contact rates. Positive correlation

implies increased stability in sexual behaviors as individuals are more likely to draw

their contact rates similar to their current rate. This would mitigate both the reduc-
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tion in the force of infection caused by volatility and the increase in the availability

of high risk susceptibles. It is difficult to predict how those effects would play out

without formal analysis. Strong negative correlation implies sequential periods of

high and then low risk. These type of dynamics would almost certainly amplify the

effects observed in chapter 4.5. Adding correlation is a simple first step in relaxing

the assumption of independent behavioral phases.

5.2.2 Population homogeneity

In chapters 3.6 and 4.5, I assumed a homogeneous population. Again, this was

largely for mathematical and simulation convenience. However, the volatility model

from chapter 2.5.1 actually suggests a heterogeneous population with the majority

having stable contact rates and the minority having highly volatile contact rates.

Certainly, this kind of heterogeneity would need to be included in models that seek

to make formal inference; however, for the type of exploratory analysis that I pre-

sented in this thesis, population-level heterogeneity in contact rate distributions is

not a significant factor. Any analysis that attempted to estimate the fraction of

infections from each infection stage would have to include other potentially het-

erogeneous factors such as co-infection with other STIs that are known to increase

both susceptibility and transmissibility which could potentially increase chronic stage

transmission.

5.2.3 Proportional mixing

I intentionally assumed proportional mixing to isolate the effects of volatility from

the effects of contact structure that were present in Koopman et al [49]. This as-

sumption allowed me to show that volatility, independent of contact structure, can

increase the proportion of transmissions coming from acutely infected individuals.
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Proportional and unstructured mixing also implies that individuals who were infected

by an acutely or chronically infected individuals are indistinguishable with respect to

their risk behaviors, and, therefore, the number subsequent transmissions they will

generate. This means that, in the simple volatility models that I used in this the-

sis, stage-specific intervention effects are fully determined by stage-specific incidence

rates. However, the interaction of contact structure obliviates the intuitive relation-

ship between stage-specific intervention effects and stage-specific incidence rates by

generating correlation between the transmission stage and contact rate. To see this,

imagine a model where high-risk individuals only mix with other high risk individ-

uals and individuals move between high and low-risk states at some constant rate.

The flow of susceptibles from the low-risk group into the high-risk group increases

the contact rate of acutely infected individuals in the same manner as described in

chapter 4.5 meaning individuals in the high-risk state are more likely to be infected

by an acutely infected individual. In this system, being infected by a acutely infected

individual is correlated with having a higher contact rate at the time of infection.

The positive correlation between stage of transmission and contact rate of the in-

fector means that the total number of infections attributable to a single acute stage

transmission is not captured by the simple proportion of transmissions coming from

acutely infected individuals. Put in other words, the effect of intervening on acute

stage infection is more efficient because acutely infected individuals are infecting

people with high contact rates that amplify the total number of infections that are

prevented by blocking a single acute stage transmission.

Relaxing the assumption of proportional mixing is the highest priority action for

expanding the volatility model. There are a large number of ways of relaxing this

assumption. Keeping with the KISS (keep it simple, stupid) principle, the best way
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to proceed is to assume that some proportion of contacts as a function of the contact

rate itself are made at a high-risk site. Individuals with the highest contact rates

make most of their contacts at the high-risk site. This model would capture the

basic features of volatility in the context of contact structure at the cost of only one

additional parameter.

5.3 Implications

5.3.1 Prevention

The discovery of a high degree of volatility has significant implications for the

control of the HIV epidemic among gay men. Prevention modalities can grouped

into two basic categories: those that protect susceptibility and those that reduce in-

fectivity. The former targets susceptible populations while the latter targets infected

individuals. Condoms are a common type of prevention that actually fall into both

categories; they both protect susceptibility and reduce the infectivity depending on

who is using them.

Recently, two prevention modalities moved to the fore as potential novel ap-

proaches to the increasing problem of HIV in gay men. Pre-exposure prophylaxis

(PrEP) uses low doses of anti-retrovirals to prevent infection in at-risk men. Cur-

rently there are multiple trials of PrEP underway, and the initial results are positive

[12]. Alternatively, test-and-treat (TaT) strategies target reducing the interval be-

tween infection and diagnosis by increasing testing rates with a range of strategies

[15]. Diagnosis implies treatment that means lower viral loads and less transmission.

The key difference between PrEP and TaT–and between modalities focused on

susceptibility or infectivity in general–is the stage from which transmissions are pre-

vented. PrEP keeps a person who would have otherwise become infected, susceptible.

That individual will not transmit in either the acute or chronic stage because they
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never become infected. On the other hand, if we assume that diagnosed individuals

will no longer transmit after their diagnosis, TaT works by reducing the time from

infection to diagnosis and therefore blocks any transmissions that would have oth-

erwise occurred in that interval. The very short duration of the acute stage makes

it almost impossible for TaT to prevent acute stage transmissions. The difference

between PrEP and TaT is that PrEP can prevent acute stage transmissions while

TaT can not. PrEP will work best in populations with high levels of acute stage

transmissions.

This work has at least one practical implication for the future work on the dy-

namics and prevention of HIV: cross sectional data on sexual risk behavior are not

necessarily sufficient to model the dynamics of HIV, specifically concerning the issue

of acute versus chronic stage dominance. The models that I used in this thesis are

very simple and make a large number of very strong simplify assumptions. I can not

make any claims about the strength of these effects in the real world as transmission

dynamics are much more complex, involving contact structure [47], relationship dy-

namics [26], and various other factors. However, I can say that, on a fundamental

level, contact rate volatility can have strong effects with respect to the evaluation of

population risk and stage dominance and that failure to first answer the question ‘are

contact rates stable over time in my population of interest?’ can produce misleading

results.

Going back to the discrepancies between Koopman et al. that argued for a cen-

tral role for acute stage transmission [49] and Rapatski et al. [67] that concluded

that almost all transmission were attributable to final stage transmission. Although

Rapatski et al. were modeling a specific population and Koopman et al. made no

such claim, the conclusions of these two papers are incompatible. The work that I
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have presented here suggests that the difference between the theoretical conclusions

of Koopman et al. and the empirical conclusions of Rapatski et al. can be attributed

to the formers inclusion of a kind of contact rate volatility. Rapatski et al. assumed

that because some men had high numbers of lifetime sex partners that partnership

rates must be stable over time. However, this is not an answer to the question of

whether or not contact rates are volatile; individuals can accrue a large small number

of lifetime sexual partners with or without volatility in the partnership rate as the

long-term averages are driven by the mean partnership rate that masks short-term

variability, which has been shown to be important here.

5.4 Future directions

In the introduction I spoke of contact rate volatility in terms of an abstraction

of the notion that that ‘context matters’: our tolerance to risk is informed by what

kind of people we are but also by the places, both physical and mental, where we

act. Who we are is constant, but where we act is variable. My approach to this

question was to remove as much complexity as possible in an attempt to isolate the

fundamental issue of volatile sexual behavior. This allowed me to keep the focus on

the core concept of volatile sexual behavior. That focus on simplicity allowed me to

show that even simple short-term, volatile sexual behavior can have major impacts

on the dynamics of HIV.

A natural extension to this work would be to specify the nature of volatility in the

context of partnership dynamics. Contact rate volatility as I have conceptualized it

in this thesis can be thought of as the limiting case of a broader partnership process

where the duration of partnerships approaches zero. I imagine that some of high

degree of volatility observed in chapter 2.5.1 may be explained by the formation of
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new partnerships. The epidemiological implication of a sudden change in contact

rates would most likely be dampened by a highly monogamous partnerships.

In estimating the volatility parameters in chapter 2.5.1 I ignored a significant

amount of structural information in the dataset. Specifically of interest is the cor-

relation structure between contact types. The data have twelve types of measured

contacts. Modeling the joint distribution of contact types could be quite informative

and would be a unique contribution to the literature on sexual behavior. In the way

that I have estimated the parameters currently, they can only be operationalized into

a model as fully independent processes.

The analytical work in chapter 3.6 can also be extended. Recently, methods have

been developed to define low-dimensional systems of differential equations that can be

used to describe epidemic dynamics on configuration model networks with arbitrary

degree distributions [73]. Integrating the concepts of volatility and behavior change

into such models would allow a much more computationally efficient way to explore

how network structure, behavior change, and partnership dynamics all play a role in

generating new HIV infections.



CHAPTER VI

Derivations of G′
C(1) and G′

C̃
(1)

GC(z) has no closed form, yet we never work with that function directly. In

general, we only ever work with the derivative of GC(z) evaluated at z = 1, which

does have a closed form for the gamma distribution. The following is a step-by-step

derivation of that form. First we integrate over the probability of the interval length,

T , and the contact rate, X, to get an expression for GC(z):

(VI.1) GC(z) =

∫
Pr(T )

∫
Pr(χ)e(z−1)(χT )

dT dχ

which by the law of logarithms can be re-written as

(VI.2) GC(z) =

∫
Pr(T )

∫
Pr(χ)eT (z−1)χ dT dχ.

By the definition of PGFs, the expression
∫
Pr(χ)eT (z−1)χdχ is formally equivalent

to Gχ(e
T (z−1)) which upon substitution gives

(VI.3) GC(z) =

∫
Pr(T )(1− θT (z − 1))−k dT.

Expanding Pr(T )

(VI.4) GC(z) =

∫
λe−λT (1− θT (z − 1))−k dT.

The value of that integral would have to be approximated if we wanted to work

with that function directly. However we are only interested in the derivative of the

109
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function w.r.t z evaluated at z = 1

(VI.5) G′
C(1) =

[
d

dz

∫
λe−λT (1− θT (z − 1))−k dT

]

z=1

.

The order of integration and differential can be reversed by Leibniz’s rule

(VI.6) G′
C(1) =

∫ [
d

dz
λe−λT (1− θT (z − 1))−k

]

z=1

dT.

Rearranging gives

(VI.7) G′
C(1) =

∫
λe−λT

[
d

dz
(1− θT (z − 1))−k

]

z=1

dT.

Evaluating the inner derivative

d

dz

[
(1− θT (z − 1))−k

]
z=1

=

[
−k(1− θT (z − 1))−(k+1) d

dz
(1− θT (z − 1))

]

z=1

(VI.8)

=
[
−k(1− θT (z − 1))−(k+1)(−θT )

]
z=1

(VI.9)

= kθT.(VI.10)

Substituting kθT in gives

(VI.11) G′
C(1) =

∫
λe−λTkθTdT

which, after rearranging is

(VI.12) G′
C(1) =

∫
Tλe−λTkθdT.

The quantity
∫
Tλe−λTdT is the average interval duration which can be written in

terms of the model parameters as 1
λ
. The final result is then

(VI.13) G′
C(1) =

θk

λ

which in plain English is the mean contact rate, kθ, multiplied by the mean interval

duration, 1
λ
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The derivation of G′
C̃
(1) follows the same steps as before. However, the substitu-

tion in VI.3 is with Gχ̃(e
T (z−1)) which changes inner derivative in VI.9 to

(VI.14)
d

dz

(1 + Tθ(1− z))−k

1 + Tθ(1− z)

Differentiation by the quotient rule gives θ(k+1). Continuing the logic in the previous

derivation gives a final result of

(VI.15) G′
C̃
(1) =

θ(k + 1)

λ

The second derivative of GC(1) can be calculated by replacing VI.8 with the

second deravative. Begining from step VI.8 we have

G′′
C(1) =

∫
λe−λT

[
d2

dz2
(1− θT (z − 1))−k

]

z=1

dT(VI.16)

=

∫
λe−λT

[
(k + 1)kT 2θ2(T (θ − zθ) + 1)−(k+2)

]
z=1

dT(VI.17)

=

∫
λe−λT (k + 1)kT 2θ2dT(VI.18)

which after rearranging becomes

G′′
C(1) = (k + 1)kθ2

∫
λT 2e−λTdT.(VI.19)

The quantity
∫
λT 2e−λTdT is integrable by substituting ψ = λT :

∫
λT 2e−λTdT =

∫
λ

(
ψ

λ

)2

e−ψdT(VI.20)

=

∫
λ

(
ψ

λ

)2

e−ψ
dψ

λ
(VI.21)

=
1

λ2

∫
ψ2e−ψdψ(VI.22)

∫
ψ2e−ψdψ is the Gamma function Γ(z + 1) =

∫
ψze−ψdψ = Γ(3) = 2, therefore

∫
λT 2e−λTdT = 2

λ2
. Substituting in we get a final expression

G′′
C(1) =

2(k + 1)kθ2

λ2
.(VI.23)
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The second derivative of GC̃(1) proceeds in the same fashion as above.

G′′
C̃
(1) =

∫
λe−λT

[
d2

dz2
(1 + Tθ(1− z))−k

1 + Tθ(1− z)

]

z=1

(VI.24)

=

∫
λe−λT

[
(k + 2)(k + 1)T 2θ2(T (θ − zθ) + 1)−(k+3)

]
z=1

(VI.25)

=

∫
λe−λT (k + 2)(k + 1)T 2θ2(VI.26)

=

∫
2(k + 2)(k + 1)T 2θ2

λ2
(VI.27)
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