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CHAPTER 1

Introduction

In viewing underlying pathology with medical imaging, often specific material com-

ponents contain most of the diagnostic information. Therefore, material component sep-

aration is desirable in many medical applications. Recent generations of MRI and X-ray

CT systems can collect multiple measured data sets by changing data acquisition parame-

ters, e.g., pulse sequence timing parameters in MRI and X-ray tube voltages in CT. These

systems allow one to separate images of material components.

In this thesis, we present novel image decomposition methods for MRI and X-ray CT

applications. These methods use regularization and multiple data sets. We also propose it-

erative algorithms to minimize appropriate regularized least-squares cost functions that are

defined by a weighted least squares data fit term and a regularization penalty. Experiments

on synthetic data and phantom data suggest that our methods can improve the quality and

accuracy of the estimated images compared to conventional methods for material separa-

tion.

1.1 Water-Fat Decomposition in MRI

Separating water and fat components is desired in many MRI applications. The major

motivation of this work is that the fat signal can obscure underlying pathology in the water
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image, which often contains the majority of the diagnostic information [49].

In designing pulses and algorithms for magnetic resonance imaging, several simplifica-

tions to the Bloch equation are often used, such as ignoring magnetic field inhomogeneity,

quantified spatially by a field map, and the chemical shift effect. As a case in point, the

nuclear spin of 1H in an object resonates at about 42.58 (MHz) when the object is placed in

a 1T main field by the Larmor equation which is the precession of the magnetic moments

about an external magnetic field. However, in practice, a specific spin system may have

a range of resonance frequencies because of the chemical shift effect and magnetic field

non-unformity map.

When the main field is not homogeneous, spins with the same gyromagnetic ratio in

the Larmor equation will have different resonance frequencies at different spatial locations.

The chemical shift effect is caused by the orbital motion of the surrounding electrons. A

well-known example is that 1H protons in “fat” tissue in biological objects have about a

220Hz shift in resonance frequency from “water” protons at 1.5T. By using this chemical

shift effect, we can separate water and fat images in MR imaging.

In Chapter 4 and 5, we develop regularized methods for water-fat decomposition. We

present a penalized-likelihood (PL) approach that includes a regularization term based on

the smoothness of the field map. The water-fat component estimates are shown to be a

function of the field map and hence the optimization problem reduces to a function of

just the field map. Therefore, we can jointly estimate water components, fat components

and the field map. We present an iterative algorithm that monotonically converges to a

local solution. We also investigate a discretized ML implementation, which is a numerical

search approach, and a penalized weighted least squares (PWLS) method. We used these

simpler methods to initialize the PL algorithm. By providing a field map estimate that is

inherently smooth even in regions of low signal intensity, the method may yield improved
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water and fat images compared to conventional approaches.

1.2 Image Reconstruction for Dual-Energy Computed
Tomography(CT)

In the field of X-ray CT, there is increasing interest in enhancing the information pro-

vided in the images through dual-energy imaging. Dual energy (DE) CT imaging was first

proposed over 30 years ago [2], but only recently became available for routine use in clini-

cal CT systems. Very recently, commercial systems with fast kVp switching have become

available, extending an idea that previously existed only in prototype systems [31].

The conventional approach to DE CT imaging is the “dual rotate” mode where the

source is rotated around the patient at one source voltage setting to collect a full set of

data called a sinogram, and then the source voltage is changed (as quickly as the hard-

ware permits) and the source is rotated around again with the new kVp to collect a second

full sinogram. Using these two full sinograms, one can reconstruct separate images of

two material components (such as soft tissue and bone) using sinogram material decom-

position followed by conventional filter back projection (FBP) image reconstruction [2].

Model-based image reconstruction methods for fully sampled sinograms have also been

proposed under monoenergetic [6, 61] and polyenergetic models [14, 48]. A drawback of

this conventional “dual rotate” mode of DE CT is that the object may move between the

two acquisitions, leading to inconsistencies between the two sinograms that can manifest

as severe artifacts in the reconstructed images.

To reduce motion effects, the “fast kVp switching” mode alternates between high and

low X-ray source tube voltages for the projection views. This allows DE data to be col-

lected in a single rotation, so the motion artifacts should be comparable to those of con-

ventional CT imaging. In this switching mode, two sinograms are collected with only half
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as many projection views as could be collected otherwise.

The typical solution to this problem in fast switching DE imaging is to interpolate both

sinograms in the angular direction to fill in the “missing” views. Then one can apply con-

ventional sinogram domain DE decomposition followed by FBP reconstruction. However,

such interpolation might compromise spatial resolution. Furthermore, DE decomposition

is a noise-amplifying process, so statistical image reconstruction methods have the poten-

tial to improve image quality significantly relative to FBP in all types of DE imaging [14].

In Chapter 7, 8, and 10, we have investigated model-based image reconstruction meth-

ods for DE CT that reconstruct two material component images. In this work we focus

on PWLS methods that estimates two material components from fast kVp-switching. We

then combine those material component images estimates at 511 keV and reproject at

the positron emission tomography (PET) resolution to form attenuation correction factors

(ACFs). Accurate ACFs are essential in PET image reconstruction to make high quality,

quantitively accurate emission images. By using suitable regularization methods applied

to the basis material density images, the proposed method has the potential to improve

ACF accuracy compared to previous sinogram-domain approaches [37, 46].

1.3 Thesis outline and Contributions

In this thesis, the overall goal is separating material images from medical images such

as MRI and CT images. We proposed two statistical methods to separate water and fat

material components in MR image and two model-based iterative algorithms to reconstruct

material images in CT image:

• Iterative water-fat decomposition algorithm with regularized field map estimation.

The method in Chapter 4 can estimate water components, fat components, and a field

map with only one cost function. By using roughness penalty in the cost function,
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we can estimate a smooth field map. We also proposed discretized ML method to

select good initial images.

• Water-Fat decomposition from MR k-space data using regularized field map estima-

tion

The purpose of Chapter 5 is to reconstruct water and fat and field map from MR k-

space data. In the method, the cost function includes readout information for consid-

ering the data acquisition time. The method can lead to better chemical components

estimates than conventional approaches that ignore readout information.

• Model-based image reconstruction for Dual-Energy X-ray CT with Fast kVp switch-

ing.

In Chapter 7, and 8, we present regularized PWLS methods for DE CT reconstruc-

tion. The methods reconstruct material density maps directly based from fast kVp

switched sinograms without any interpolation. Improved estimated material images

lead to more accurate attenuation correction factors for PET.

• Iterative image reconstruction for dual-energy X-ray CT using regularized material

sinogram estimates.

Chapter 10 proposed a dual-energy log-free approach that estimates material sino-

grams from raw DE CT data directly without any logarithm. (Using a logarithm

is sensitive to noise especially when the raw CT data have small values.) We also

developed a joint edge-preserving roughness penalty that considers two materials’

edge positions jointly.



CHAPTER 2

Estimation Background

Many conventional image reconstruction methods are based on heuristic schemes or

ignore the measurement noise. To solve this problem, this thesis uses statistical estimators

and we review statistical estimation methods in this chapter.

2.1 Maximum-Likelihood Estimator

Maximum Likelihood (ML) estimation is a popular statistical method used for fitting

a statistical model to data. It finds parameter vector x that best matches the data based on

the likelihood function p(y;x). The ML estimator using the log-likelihood is defined by

x̂ML = argmax
x∈X

log p(y;x), (2.1)

where X is the set of acceptable values of x.

2.2 Penalized-Likelihood Estimators

Although ML estimation has many desirable properties, the performance of the esti-

mator can be poor for realistic medical image data because medical imaging problems are

often ill-conditioned, leading to sensitivity to noise. To improve on the results of ML es-

timation, other penalty functions are included in Penalized-Likelihood (PL) estimators. A

6
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PL estimator is defined by

Ψ(x) =− log p(y;x)+βR(x) (2.2)

x̂ = argmin
x∈X

Ψ(x), (2.3)

where Ψ is a cost function that contains a penalty function R and β > 0 is a penalty

parameter controlling the weight of the penalty.

One common penalty function is a roughness penalty such as a quadratic roughness

penalty on the difference between neighboring pixels:

R(x) =
1
2 ∑

i
∑

j∈Ni

(xi − x j)
2, (2.4)

where Ni is a set of neighbor pixels of the ith pixel. This quadratic penalty is simple

and easy to minimize but it usually blurs image edges. Another penalty function is edge-

preserving roughness penalty that can preserve edges while suppressing noise:

R(x) =
1
2 ∑

i
∑

j∈Ni

ψ(xi − x j), (2.5)

where N j denotes the neighborhood of pixel j, δ 2 ∝ Var(ρ) and ψ is a potential function

such as the hyperbola:

ψ(∆x) =

√
1+(

∆x
δ
)2 −1. (2.6)

We can preserve sharp edges while suppressing noise by using this edge-preserving rough-

ness penalty.

2.3 Spatial Resolution Analysis

The need to select the regularization parameter β in the PL estimator is one practical

challenge of the PL method. In (2.2), a large value for β would cause a bias because it

discourages disparities between neighboring pixel values, whereas when β is small, the
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estimated image will be based more on the original data and the image may be rough and

noisy. These are conflicting goals, and the regularization parameter controls the trade-off

between the two. Fortunately, we can select the parameter β efficiently by analyzing the

spatial resolution properties of this problem. Additionally, by spatial resolution analysis,

we can achieve more uniform resolution by modifying the penalty function. We focus on

PL estimators with cost functions of the form:

x̂(y), argmin
x

ψ(y,x), ψ(y,x) =−L(x,y)+βR(x), (2.7)

where L(x,y)= log p(y;x) denotes the log-likelihood, R(x) is a roughness penalty function,

β is a regularization parameter. The estimator x̂(y) is well defined by the implicit function

theorem [63]. After many simplifications, one can show that the gradient of this estimator

is [12]:

∇x̂(y) = [−∇[2,0]L(x,y)+β∇2R(x)]−1[∇[1,1]L(x,y)]|x=x̂(y), (2.8)

where ∇[2,0]L(x,y) denotes the Hessian matrix with elements

[∇[2,0]L(x,y)] jk =
∂ 2

∂x j∂xk
L(x,y), (2.9)

and ∇[1,1]L(x,y) denotes the matrix with elements

[∇[1,1]L(x,y)] jk =
∂ 2

∂x j∂yk
L(x,y). (2.10)

The local impulse response of an estimator x̂(y) is defined as follows

l j(x) = lim
ε→0

x̂(y+ ε∇ȳ(x)e j)− x̂(y)
ε

= ∇x̂(y)∇ȳ(x)e j, (2.11)

where e j denotes the jth unit vector and ȳ = E [y]. As shown in [15], for PL estimators of

the form (2.7), the local impulse response is given by the gradient of the estimator times

the gradient of the average data:

l j(x) = [−∇[2,0]L(x̌, ȳ(x))+β∇2R(x̌)]−1[∇[1,1]L(x̌, ȳ(x))]
∂

∂x j
ȳ(x), (2.12)
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where x̌ = x̂(ȳ(x)) is the PL reconstruction from noiseless data. This local impulse re-

sponse is very useful for investigating the spatial resolution properties estimators in a va-

riety of imaging problems. We use it analysis further in Chapter 9.



CHAPTER 3

MRI Background

Magnetic Resonance Imaging (MRI) is an important tomographic imaging technique

that produces images of an object’s internal physical and chemical structure. Hydrogen’s

spin angular momentum is used in conventional MRI. Three external magnetic fields, the

main field, a radio-frequency field, and gradient fields, create the signal measured in MRI.

Conventionally, this signal is transformed via a Fourier transform to make the final image.

For an introduction to MRI, see [44].

3.1 Signal expressions

A time varying voltage in an RF receive coil that is induced by changes in magnetic

flux is measured as the signal in MRI. Using Faraday’s law of induction, after many sim-

plifications, the received signal, Sr(t), is governed by:

sr(t) =−
∫

vol
C1(r) ·

∂
∂ t

MXY (r, t)dr, (3.1)

where C1(r) denotes the coil’s receive sensitivity at spatial position r and MXY denotes the

transverse magnetization. Further simplifications lead to the following signal equation:

s(t) =
∫

vol
m0(r)e−iϕ(r,t)dr

=
∫

x

∫
y
m0(x,y)e−i2πkx(t)x−i2πky(t)ydxdy, (3.2)

10
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where m0(x,y) is the integral of the magnetization over the slice and the “k-space trajec-

tory” is defined in terms of the user-defined gradient waveforms as follows:

kx(t) = γ/2π
∫ t

0
Gx(τ)dτ

ky(t) = γ/2π
∫ t

0
Gy(τ)dτ,

where Gx denotes the gradient in the x direction, Gy denotes the gradient in the y direction,

and γ denotes the gyromagnetic ration that is nuclei dependent. In (3.2), it is seen that there

is a Fourier relationship between the MRI signal and the magnetization so each MRI signal

value corresponds to a sample of the 2D Fourier transform of the object.

Noise added to the MR signal in (3.1) is modeled as Gaussian, additive noise [39].

Though some noise is produced from the coil, the major noise source is the imaging object.

The noise of a typical reconstructed MR image is also Gaussian because the DFT is linear.

The Gaussian noise in reconstructed images is white when the kspace samples are uniform

on a Cartesian grid, because the DFT is unitary, otherwise it is colored noise.

3.2 Off-Resonance Sources

The resonance frequency is related to the external magnetic field and gyromagnetic

ratio. In practice, the resonant frequency will not be uniform because of these two ma-

jor reasons: (a) the existence of inhomogeneities in the main field, and (b) the chemical

shift effect. In this section, we briefly introduce these reasons and in the next chapter, we

can correct this inhomogeneity problem by joint estimating the object and field inhomo-

geneities and we can separate the object into water and fat images by using the chemical

shift effect.
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3.2.1 Field inhomogeneity

Inhomogeneous magnetic field and differences in the bulk magnetic susceptibility of

the object can cause field inhomogeneity in MR imaging. Instead of ignoring the main field

inhomogeneity in (3.2), a space variant static field is a more realistic model as follows:

B0(r) = (B0 +∆B(r))⃗k, (3.3)

where B0 is the ideal strength of the main magnetic field, and ∆B(r) denotes perturbations

of this field. Generalizing (3.2) to consider (3.3) leads to [44] the following more realistic

expression for the MR signal:

s(t) =
∫

vol
m0(r)e−iϕ(r,t)e−i∆ω (r)tdr, (3.4)

where ∆ω(r) = γ∆B(r). Therefore, we can correct this undesirable effect by estimating the

field map, ∆ω(r).

3.2.2 Chemical shift effect

Each nucleus of a molecule is surrounded by orbiting electrons. These orbiting elec-

trons induce their own local magnetic fields such that the nucleus is partially shielded from

the external magnetic field. The fact that nuclei in a spin system are attached to different

chemical environments causes the chemical shift [44]. These orbiting electrons perturb

the local magnetic field:

Beff(r) = B0(r)(1−σ(r)), (3.5)

where σ(r) is the shielding constant. Clearly, the corresponding frequency shift ∆ω de-

pends on both the strength of the main field B0 and the shielding constant σ . The shield-

ing constant, σ , depends on the chemical environment around the nucleus. For example,

σ f w ≈ 3.5ppm, where σ f w denotes the chemical shift of 1H in fat relative to 1H in water,
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i.e.,:
σw −σ f

σw
= 3.5 ·10−6. (3.6)

Thus the frequency shift of fat relative to water is:

∆ω = ω f at −ωwater =−σ f wωwater =−σ f wγwaterB0, (3.7)

where γwater = 42.57MHz/T. Therefore, fat spins precess about 220 Hz slower than water

spins at B0 = 1.5T. By using this chemical shift effect, we can separate water and fat

signal in MR imaging.



CHAPTER 4

Water-Fat Decomposition with Regularized Field Map
Estimation

This work is based on [29].

4.1 Introduction
We present a novel water-fat decomposition method that uses regularized field map

estimation from multiple MR scans with different echo times. We also propose an iterative

algorithm to minimize the regularized least-square cost function. Experiments on synthetic

data and human knee data suggest that our method improves the water-fat image quality

and accuracy of the estimated field map.

4.2 Multi Scan Field Map Estimation

4.2.1 Reconstructed Image Model

The input data is L reconstructed images with different echo times, denoted by y =

(y1,y2, . . . ,yL), where typically L = 3 and each image has N voxels. Let ω j denote the

unknown resonant frequency offset of spins within the jth voxel, and −RW
j and −RF

j denote

the R∗
2, the relaxation rates, of water and fat respectively within that voxel. At 1.5T, the

frequency shift of fat relative to water, ∆f, is about -220 (Hz) caused by chemical shift. We

14
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model the L images by

yl
j = (W je

−RW
j tl +F je

−RF
j tl ei2π(∆f)tl)eiω jtl + ε l

j, (4.1)

for l = 1, 2, ..., L and j = 1, 2, ..., N, where tl denotes the echo time difference of the

lth scan relative to the the first scan, W j and F j denote the unknown water and fat com-

ponents in the jth voxel, respectively, and ε l
j denotes the complex noise. The goal here

is to jointly estimate the field map ω= (ω1,ω2, . . . ,ωN), the water components W =

(W1,W2, . . . ,WN), and fat components F = (F1,F2, . . . ,FN) from the images y. Because

−RW
j and −RF

j are small relative to the echo time reciprocals, we assume e−RW
j tl ≃ 1 and

e−RF
j t1 ≃ 1 for all j and l, although the method could be generalized.

4.2.2 ML Field Map Estimation

We assume that ε l
j in (4.1), the additive complex noise, are independent and identi-

cally distributed Gaussian random variables with mean 0 and variance σ2. Under this

assumption, the joint log likelihood for ω , W, and F given y is

L

∑
l=1

logp(yl;ω,W,F)

≡ −1
2σ2

L

∑
l=1

N

∑
j=1

|yl
j − (W j +F je−i2π(−∆f)tl)eiω jtl |2, (4.2)

where “ ≡′′ denotes equivalence to within irrelevant constants. Rewriting in matrix-vector

form, we can determine the maximum likelihood (ML) estimate of ω , W, and F by solving

the following minimization problem:

argmin
ω∈RN W,F∈CN

N

∑
j=1

∥∥∥y
j
−D(ωj)AX j

∥∥∥2
, (4.3)
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where D(ωj) = diag(eiω jt), eiω jt =



eiω jt1

eiω jt2

...

eiω jtL


, A =



1 e−i2π(−∆f)t1

1 e−i2π(−∆f)t2

...
...

1 e−i2π(−∆f)tL


, and X j =

 W j

F j

 . Because (4.3) is quadratic in X j, we can find the ML estimate of X j, the

water and fat components in terms of ω analytically as follows:

X̂ j(ωj) = [AHA]−1AHDH(ωj)y j
. (4.4)

Substituting X̂ j(ωj) into (4.3) leads to the following cost function for ML estimation of

the field map ω :

ω̂ = argmin
ω∈RN

ΨML(ω)

ΨML(ω) =
N

∑
j=1

∥∥∥y
j
−D(ωj)AX̂ j(ω j)

∥∥∥2
. (4.5)

After solving this nonlinear minimization problem, we substitute ω̂ into (4.4) to determine

the ML estimates of the water W j and fat F j components. We simplify (4.5) as follows:
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ΨML(ω) =
N

∑
j=1

−yH
j

D(ωj)A[AHA]−1AHDH(ωj)y j

=
N

∑
j=1

−
∥∥∥BHD(ωj)y j

∥∥∥2

=
N

∑
j=1

−
∥∥Vje−iω jt

∥∥2

=
N

∑
j=1

L

∑
l=1

L

∑
m=1

−C j,l,meiω j(tl−tm)

=
N

∑
j=1

L

∑
l=1

L

∑
m=1

−real(C j,l,meiω j(tl−tm))

=
N

∑
j=1

L

∑
l=1

L

∑
m=1

−|C j,l,m| · cos(∠C j,l,m +ωj(tl − tm), (4.6)

where we define B such that BBH = A(AHA)−1AH ,V j , BHD(y
j
) ,C j,l,m , V j,1,mV∗

j,1,l +

V j,2,mV∗
j,2,l . Since C∗

j,m,l = C j,l,m, the ML cost function in (4.6) is equivalent to

ΨML(ω)≡
N

∑
j=1

L

∑
l=1

L

∑
m=1

|C j,l,m|·

[1− cos(∠C j,l,m +ωj(tl − tm))]. (4.7)

Note that this ML cost function is similar to the cost function used in phase unwrapping

problems, e.g., [38] and [17], when L = 0 and R∗
2 = 0. We will show that the ML estimate

ω̂ is very noisy, but we include it for completeness.

4.2.3 Discretized ML Method

We can estimate the field map, ω̃ = [ω̃1, ω̃2, ..., ω̃N ], by minimizing (4.6) separately

for each voxel. We implement the ML method numerically using a discretized search as

follows:

ω̃ j = argmin
ω j∈S

−
∥∥∥BHD(ω j)y j

∥∥∥2
, (4.8)
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where S = {|∆f/2| × k
n : n = 55,k = −n,−(n− 1), . . . ,n}. Note that |ω j| is usually less

than |∆f/2| [57] and |∆f/2| is about 110 (Hz) at 1.5T. We search ω̃ j using discrete steps

from −|∆f/2| to |∆f/2| in 2 (Hz) increments. Therefore, this Discretized ML estimate is

reasonable because when we consider the effect of the complex noise, a 2 (Hz) step size

is small enough. This method has low computation complexity because it does not use an

iterative algorithm.

4.2.4 PL Field Map Estimation

Finding the ML estimates of ω , W, and F as in [52] and [65], and (4.8) ignores the

important prior knowledge that field maps are usually spatially smooth. The field maps

of these methods are estimated independently on a voxel-by-voxel basis, using an overly

simplified ML method. Specifically, these methods separate field map estimation from

smoothing and final water-fat separation. Instead of low pass filtering or 2-D extrapo-

lation, we propose a Regularized method that jointly estimates W, F, and ω , by using a

PL approach, where we include a spatial roughness penalty R(ω) in the cost function as

follows:

(ω̂ ,Ŵ, F̂) = argmin
ω∈RN W,F∈CN

L

∑
l=1

− log p(yl;W,F,ω)+βR(ω). (4.9)

We regularize the field map, ω , only and not W or F because water and fat components are

expected to be much more rough and complicated due to anatomical details. Minimizing

over W and F again yields the solution (4.4). Substituting into (4.9) yields the PL cost

function:

ΨPL(ω), ΨML(ω)+βR(ω) =
N

∑
j=1

L

∑
l=1

L

∑
m=1

|C j,l,m|·

[1− cos(∠C j,l,m +ωj(tl − tm))]+βR(ω). (4.10)
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Note that
L

∑
l=1

L

∑
m=1

|C j,l,m| ∝ ∥y
j
∥2. (4.11)

Therefore, the cost function in (4.10) gives less weight to any voxels where ∥y
j
∥2 is small.

These voxels have less valuable information because small ∥y
j
∥2 means that such voxels

have low SNRs. Thus, the regularization term, βR(ω), will extrapolate the field map

estimation within them based on high SNR neighboring values.

When ω is an N1 ×N2 field map, the regularizing roughness penalty uses 2nd-order

differences between horizontal, vertical, and diagonal neighboring voxel values as follows:

R(ω) = ∑
n

∑
m
(ψ(R10[n,m])+ψ(R−1−1[n,m])+

ψ(R01[n,m])+ψ(R−11[n,m])), (4.12)

where Rkl[n,m] = 2 ·ω[n,m]−ω [n− k,m− l]−ω [n+ k,m+ l], and ψ is a convex and

differentiable function. Usually, ψ̇(t)/t is bounded by unity such as ψ(t) = t2/2 which

we assume hereafter. To perform minimization in (4.9), we use optimization transfer.

The second derivative of 1− cos(t) is bounded by unity. Thus, one can show that the

following iteration monotonically decreases and converges to a local minimizer of Ψ(ω)

based on [30]:

ω(n+1) = ω(n)−diag
{

1
d j +β · c

}
∇Ψ(ω(n)),

where

c ,
{ 4, regularization with 1st-order differences

16, regularization with 2nd-order differences,
(4.13)

and where

d j ,
L

∑
l=1

L

∑
m=1

|C j,l,m|(tl − tm)2. (4.14)

The initializer ω(0) will be described in §4.2.6. We repeat this iterative algorithm until the

root mean square change between each iteration is less than 0.5(Hz).
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4.2.5 PWLS field map estimation method

Since usually time delays, tl for l = 1,2, ...,L, are chosen to avoid phase wrapping as

much as possible [51], the 1− cos terms can be simplified with its second-order Taylor

series: 1− cos ≈ t2/2. In such cases, especially when |ω j| is less than |∆f/2|, we can

consider the cost function is a locally convex and smooth function of ω j. An alternative to

(4.12) is to estimate the field map ω̂PWLS as follows:

ω̂PWLS = argmin
ω∈RN

N

∑
j=1

g j(ωj − ω̃ j)
2 +αR(ω), (4.15)

where α ∈ R and g j is a weighting function. Empirically, we found that choosing α such

that log2 α = median(g j) generated the best results over various SNR values. We define a

weighting function, g j, as follows:

g j , ∥y
j
∥2. (4.16)

As discussed above, voxels with low signal magnitude cause “outlier” problems. We

shall call voxels with small ∥y
j
∥2 as ‘bad’ voxels. We define the set of ‘bad’ voxels as

follows:

J = { j : min(∥y
j
∥2,m j)< γ ·M}, (4.17)

where M = max∥y
j
∥2, m j =

1
8 ∑k∈N j ∥y

j
∥2, N j denotes the set of the 8 nearest neighbors

of voxel j and we set the threshold γ to include only voxels with only sufficiently small

magnitude, e.g., γ = 0.5.

To reduce ‘bad’ voxels’ effect and to simplify processing, we put different weights on

each voxel:

g j ,
{ 0, j ∈ J

∥y
j
∥2, otherwise.

(4.18)
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The PWLS method has an important limitation caused by ignoring any phase wrap that

may occur when evaluating a field map. However, as we discussed before, time delays are

chosen to avoid phase wrap and we provide this method with a reasonable initial guess,

the estimated field map of the discretized ML method ω̃ . Thus, for our initial field map of

the PL method, this regularized version of ω̂PWLS is better than other initial guesses.

4.2.6 Initialization

Selecting a good initial field map is very important for the PL method. This is because

the result of the above iterative algorithm (4.13) converges to a local minimizer of Ψ(ω)

that lies within the “basin” containing the initial estimate [30]. Some conventional field

map initialization methods are zero [52], using the output of the Pixel Independent method

[65], and using the phase angle of the source images [17].

Using the zero initial guess or the output of Pixel Independent method easily leads to

the phase “outlier” problem. The Region Growing method is not preferable because it is

computationally very intensive. Initial field map based on the angle of y or matrix C in

(4.6), however, results in larger than ∆f/2(Hz) field map in some voxels. This is contrary

to the fact that the magnitude of the field map in each voxel is usually less than |∆f/2| [57].

Thus, we propose and investigate the Discretized ML method and the PWLS method to

choose the initial field map, ω(0).

First, the source images (512 × 512) are down sampled to a low resolution image

(64× 64). Next, the Discretized ML method is performed on the low resolution source

image. As shown in §4.2.3, the generated low resolution field map, ω̃ , will not be smooth

enough. This is because, as discussed in §4.2.3, each voxel in the field map is estimated

independently. Thus, we need to spatially low-pass filter the estimated field map. How-

ever, the field map can be corrupted by some outlier values when we use a conventional
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low-pass filter (e.g., a gaussian low-pass filter). Therefore, to obtain a refined field map,

we use the PWLS method for smoothing. Next, PL method is implemented using this

refined estimated field map, ωPWLS, as its initial guess. Finally, the estimated field map of

PL method is up sampled (512×512). This final estimated field map is used as our initial

field map, ω(0), of PL method.

The down sampling factor, 8, was selected empirically. The optimal down sampling

factor depends on the complexity of the true field map. For example, the more complex

field map the smaller the down sampling factor. However, the down sampling factor 8

worked well generally.

4.2.7 Spatial Resolution Analysis for selecting β

The need to select the regularization parameter β in the penalized-likelihood estimator

(4.13) is one limitation of the PL method. Fortunately, we can select the parameter β

efficiently by analyzing the spatial resolution properties of this problem. By using the

methods in [15], the local frequency response of the Regularized field map estimator at

the jth voxel is

H(ωx,ωy)≈
1

1+ β
d j
(ωx2 +ωy2)p

, (4.19)

where ωx and ωy are frequency variables in the Discrete Space fourier transform and

p =
{ 1, regularization with 1st-order differences

2, regularization with 2nd-order differences.
(4.20)

The local frequency response (4.19) depends on the value of d j and β .

From (4.11) and (4.14),

d j =
L

∑
l=1

L

∑
m=1

|C j,l,m|(tl − tm)2 ∝ ∥y
j
∥2. (4.21)
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Therefore, in a voxel with small ∥y
j
∥2 there will be more smoothing and in the voxel with

large ∥y
j
∥2 there will be less smoothing as we would expect. Normalizing the data values

y
j

by the square root of the median of the ∥y
j
∥2 results in typical values of ∥y

j
∥2 equal

to unity. This factor has the effect of producing the same β to FWHM relationship based

on [17]. After normalizing the source images, the FWHM depends only on β and increases

monotonically with β as we desire. Thus, when we normalize the image magnitudes in

regularized methods, the best value of β depends on the SNR. We need a high value of β

for low SNR data to make the estimated field map smoother. However, with high SNR,

a large value for β would cause a large bias because it would make the field map too

smooth. If β is too small, the field map is not smooth enough. Empirically, we found that

the following value of log2 β worked well:

log2 β =
{ (18−SNR)

5
, for original images

(−1.5−SNR)
7

, for low resolution images.
(4.22)

4.3 Results

We applied the proposed method to a real MRI scan of a human knee and to a simulated

data set. The real data was acquired at 1.5T with the IDEAL method (phase shifts =

−π/6,π/2,7π/6; time shifts = -0.4 ms, 1.2 ms, and 2.8 ms) and the simulated data were

constructed with the same echo times [51].

Fig. 4.1 shows the simulated field map, the simulated water image the simulated fat

image, and the three IDEAL source images, yl
j for l = 1,2,3. (Each image is 512×512).

We choose our simulated field map as a 2-d Gaussian image because a real field map

usually is smooth. We designed the simulated water and fat images to be somewhat similar

to a human knee. These images contain all levels of water-fat ratios to simulate all possible

situations of the real data. The source images were made by following the formula in (4.1)
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Fig. 4.1: Top row: the simulated field map, water image, fat image. Bottom row: the
simulated source data at 1.5 T. (phase shifts = −π/6,π/2,7π/6)

with these simulated field map, water image, and fat image. We added complex white

Gaussian noise at many levels of SNR to these source images. In this paper, we used the

following definition of SNR:

SNR = 20log
∥E[y]∥

∥y−E[y]∥
, (4.23)

where E[y] is the original image and y−E[y] is the noise.

Fig. 4.2 illustrates field map, water image, and fat image of the Pixel independent

method and the corresponding images of the Region Growing method and PL method

(SNR = 15dB). As shown in the first row in Fig. 4.2, the result of Pixel Independent

method has several voxels which have outlier values. However, the PL method and the Re-

gion Growing method succeeded to reduce these outliers. It is very hard to distinguish the

differences between the Region Growing method and the PL method. However, compared

to the Region Growing method, the PL method yielded a more smooth field map image.
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We shall quantify the error of estimated images by computing the root mean square error

(RMSE) of the estimated field map and the normalized root mean square error (NRMSE)

of the estimated water and fat images. We defined the RMS error (in Hz) and the NRMS

error as follow:

RMSE(ω̂) =

√
1
N
∥ω − ω̂∥2

NRMSE(Ŵ) =
∥Ŵ−W∥
∥W∥

100%,

where ω denotes the simulated field map, ω̂ denotes a estimated field map, and where W

is the water component and Ŵ is a estimated water component. The NRMSE of fat is

defined similarly.

Fig. 4.3(a) displays the RMSE of the field map estimates produced the Pixel Inde-

pendent method, Region Growing method, and the PL method. The RMSE of the Pixel

independent method is much higher than other methods for all levels of SNR. Because of

outlier voxels, the RMSE was not sufficiently low for high SNR. On the other hand, due to

reasonable initial values, the Region Growing method reduced the RMSE for high SNR.

However, many outlier voxels still existed especially at the boundary between water and

fat region. The RMSE of the PL method was lower than the Region Growing method for

all levels of SNR. Especially for low SNR levels, the PL method dramatically reduced the

RMSE. For example, when SNR is 3dB, the RMSE of the PL method is 3.01 while the

RMSE of Region Growing is 17.44.

The improvement in NRMSE of the PL method over other methods is shown in Fig.

4.3(b) and (c). Similarly, we observed reduced RMSE values for all SNR levels. It is

difficult to distinguish the differences between the NRMSE of the PL method and the

Region Growing method. However, the NRMSE of the PL method was still smaller than

the NRMSE of the Region Growing method.
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In Fig. 4.4, the processes of initialization are illustrated on simulated data and real data.

The outputs of the Discretized ML method on the low resolution source images, shown

in Fig. 4.4(a) and (e). Because these images were estimated pixel-by-pixel without any

roughness penalty function or low-pass filter, they are rough images. These estimated field

maps are filtered by using the PWLS method. Fig. 4.4(b) and (f) show refined field maps,

the outputs of the PWLS method. We can regularize it without corrupting even though it

contain several outlier voxels. The PL method is performed using these regularized field

maps as our initial guess, shown in Fig. 4.4(c) and (g). Figs. 4(d) and (h) show the final

initial field maps, the up sampled estimated field maps of PL method, for simulated data

and real data respectively.

Fig. 4.5(a)-(c) compare the estimated field maps produced by the three methods. The

estimated field map of the PL method, shown in Fig. 4.5(c), is the smoothest, especially

in the background areas. Water and fat images of three methods are shown in Fig. 4.5(d)-

(i). Though the differences between estimated field maps are substantial, the differences

between the resulting fat and water images are subtle. However, the plot of the NRMSE

of water and fat images shown in Fig. 4.3, suggests that the images from the PL Method

are slightly improved. After this work was completed, we learned of the work of [21] that

was developed independently.

4.4 Conclusion

We proposed a method for water-fat decomposition in MRI with regularized field map

estimation. The experiments show that the proposed PL method can lead to smoother

field map estimates than the Region Growing method [65] as seen Fig. 4.5(b) and (c).

Simulation results showed that the PL method yields images with lower RMS errors than

the Region Growing method. Another potential advantage of our technique is that it can
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avoid the well known problem of water-fat swapping in voxels that contain just fat or water.

To avoid such behavior, field map smoothness is used in the previous heuristic Region

Growing approach [65]. In the presented approach, incorporating roughness penalty into

reconstruction may solve this problem automatically.
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Fig. 4.2: First column: estimated field maps of three methods. Second column: estimated
water images of three methods. Third column: estimated fat images of three
methods. SNR = 15dB.
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Fig. 4.3: Improvement of the PL method in the RMSE and NRMSE.
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Discretized ML method
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Fig. 4.4: Top row: Initialization on simulated data. Bottom row: Initialization on real data.
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Fig. 4.5: First column: estimated field maps of three methods. Second column: estimated
water images of three methods. Third column: estimated fat images of three
methods.



CHAPTER 5

Water-Fat Decomposition from MR k-space Data using
Regularized Field Map

This work is based on [26].

5.1 Introduction
The ability of MRI to separate chemical components, using methods such as IDEAL,

Region Growing, and linear prediction (LP) [21,51,65], is important in clinical use. How-

ever, conventional approaches can be sensitive to field inhomogeneity. In Chapter 4, we

proposed a PL method that yields smoother estimated field maps with lower RMS errors

than the Region Growing method by using a regularizing roughness penalty. However, like

other conventional approaches, our PL method also ignores any temporal changes during

the readout in its model which may limit the accuracy of the PL method. This chapter

describes a new regularized iterative algorithm, termed k-space method, that reconstructs

water and fat and field map from MR k-space data. The k-space method considers phase

evolution due to field inhomogeneity and chemical shift during MR data acquisition. In

the method, the cost function includes a regularized term that exploits our prior knowl-

edge that field maps are usually smooth. We use an iterative approach to jointly estimate

the field map, water, and fat components. By modeling readout information in the cost

function, the method yields improved estimates of the chemical components.
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5.2 K-space method
The input data consists of L MR k-space data sets with different echo times τl , denoted

by y = (y1,y2, ...,yL), where typically L = 3. Let ∆m denote the chemical shift of the mth

chemical component relative to water (Hz) and let ωn denote the off-resonance of the nth

voxel. We model the MR k-space data by including the data readout time, ts, as follows:

yl
s = ϕ (⃗k(ts))∑

n
∑
m
(Xnme− j2∆m(ts+τl)e− jωn(ts+τl)e− j2π (⃗k(ts)·⃗rn))+ ε l

s,

for l = 1,2, ..L, and s = 1,2, ..S, where ϕ (⃗k(ts)) denotes the Fourier transform of the voxel

basis function, τl denotes the echo time difference of the lth scan relative to the original

scan, Xnm denotes the unknown amount of the mth chemical component in the nth voxel,

and ε l
s denotes the additive complex noise. We assume that the noise values, ε l

s , are zero-

mean independent white complex Gaussian. The goal here is to estimate the chemical

components X = (X11,X12, ...,XNM) and the field map ω = (ω1,ω2, ...,ωN) from the MR

data y.

We propose an iterative method where we minimize the following function:

(X̂ , ω̂) = arg min
X∈CN·M ,ω̂∈RN

ΨPL(X ,ω)

= arg min
X∈CN·M ,ω̂∈RN

L

∑
l=1

∥∥∥yl −Al(ω)BlX
∥∥∥2

+β1R(X)+β2R(ω), (5.1)

where [Al(ω)]s,n = ϕ (⃗k(ts))e− jωn(ts+τl)e− j2π (⃗k(ts)·⃗rn), [Bl] = diag(Dl
1,D

l
2, ...,D

l
N), Dl

k =

e− j∆τl for all k, and ∆= [∆1,∆2, ...,∆M]. Although the correct model would use e− j2∆m(ts+τl),

we used e− j2∆mτl in this study. To estimate the M chemical component maps, we repeat-

edly alternate between two major steps: updating the chemical component estimates

and updating the field map estimates. First, we estimate chemical components based on

the estimated field map in the previous iteration by minimizing the following penalized
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least-squares (PL) cost function with respect to X :

X̂ (i)
= arg min

X∈CN·M
Ψ1

PL(X ; ω̂(i−1))

= arg min
X∈CN·M

L

∑
l=1

∥∥∥yl −Al(ω̂(i−1))BlX
∥∥∥2

+β1R(X), (5.2)

Second we estimate the field map based on the estimated chemical components in the

previous iteration as follows:

ω̂(i) = arg min
ω∈RN

Ψ2
PL(ω; X̂ (i−1)

)

= arg min
ω∈RN

L

∑
l=1

∥∥∥yl −Al(ω)BlX̂ (i−1)
∥∥∥2

+β2R(ω). (5.3)

We solve this step using a similar approach to [47]. We denote i as the iteration index, X̂ (i)

and ω̂(i) as the estimated chemical component and the field map in the ith iteration. The

regularizing roughness penalty uses differences between horizontal and vertical neighbor-

ing voxel values. Our algorithm repeatedly minimizes (5.2) and (5.3) until the changes in

the estimated value of chemical components and field map are less than a stopping crite-

ria. To minimize (5.2) and (5.3), we use an optimization transfer iteration that decreases

the cost function monotonically. Thus the estimated chemical components and field map

converge to a local minimizer of the PL cost function (5.1). To encourage the iteration to

converge to a desirable local minimum, we choose the estimated field map in [22] as our

initial field map, ω̂(0), for the iteration.

5.3 Results

We applied the k-space method to a simulated data set. The simulated data were gen-

erated with the IDEAL method (B0 = 1.5T; phase shifts = −π/6,π/2,7π/6; time shifts =

-0.4ms, 1.2ms, and 2.8ms).
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Fig. 5.1: Improvement of the k-space method in the NRMSE of water estimates

Fig. 5.1 and Fig. 5.2 show the improvement in NRMSE using the k-space method over

Region Growing method and LP method [22]. The NRMSE of the k-space method was

lower than the other methods for all levels of SNR.

Fig. 5.3 shows the simulated images and the estimated water and fat images of the

k-space method and other methods when SNR = 20.

Fig. 5.4 shows the error of estimated water and fat images of three methods. Especially,

where the absolute value of field map is high, the k-space method estimated water and fat

components more precisely than other methods.
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Fig. 5.2: Improvement of the k-space method in the NRMSE of fat estimates

Fig. 5.3: First row: simulated water image and estimated water images of three methods.
Second row: simulated fat image and estimated fat images of three methods.
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Fig. 5.4: First column: Region Growing method, Second column: LP method, Third col-
umn: K-space method.

Fig. 5.5: First column : Simulated field map, Second column: Region Growing method,
Third column: LP method, Fourth column: the k-space method.
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Fig. 5.5(b), (c), and (d) show reconstructed field maps and Fig. 5.5(e), (f), and (g)

show error images of the three methods. By looking at the error of field map for the three

methods, it is evident that the LP method and the k-space method provide improved quali-

ties over the region growing method, which contains the material structure. However, there

were no apparent significant differences between estimated field maps of two methods. It

remains somewhat mysterious why the MR¡SE in Fig. 5.1 and 5.2 were reduced so much

by the K-space method.

5.4 Conclusions
We proposed a method for water-fat decomposition using MR K-space data. The ex-

perimental results show that the k-space method can lead to improved chemical compo-

nents estimates compared Region Growing method and LP method as seen Fig. 5.1 and

5.2. The experimental results show that consideration of the data acquisition time can lead

to enhanced chemical components estimates. Another potential advantage of the tech-

nique is that the RMSE of field map can be improved based on well estimated chemical

components.



CHAPTER 6

CT Background

X-ray CT produces tomographic images of the spatial distribution of attenuation coef-

ficient of the human body. These CT images are useful in medical diagnosis and in indus-

try for nondestructive evaluation. We briefly describe the X-ray CT system with general

measurement model and discuss the Dual-Energy CT measurement model and imaging

methods in the following sections.

6.1 X-ray CT Measurement Physics

Object

X−ray source

Detector

Gantry

X

Fig. 6.1: Schematic diagram of a X-ray scanner.

The first major component of a CT system is the gantry which is a moveable frame that

38
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contains the X-ray tube, the X-ray generator, detectors, and all associated electronics. Fig.

6.1 shows a typical X-ray scanner diagram. The source and the detector array are fixed on

a gantry and rotate around the object. As the X-ray source produces radiation, detectors

record thin beams of radiation that are attenuated by the patient at different angles. The

final image is generated from these measurements utilizing basic principles, e.g., filtered

back projection (FBP).

6.1.1 General Measurement Model

Let Yi denote the measurement for the ith ray of the incident spectrum. For a ray Li of

infinitesimal width, the mean of the projection measurements could be expressed as:

ȳi ,
∫

Ii(E )exp
(
−
∫
Li

µ (⃗x,E )dℓ
)

dE + ri, (6.1)

where i = 1, ...,Nd and Nd is the number of rays. µ (⃗x,E ) denotes the linear attenuation

coefficient of the object which depends on the X-ray energy E j,
∫
Li

·dℓ denotes the line

integral along the ith ray, Ii(E ) denotes the product of the source spectrum for Ith ray, and

the detector sensitivity at energy E , and ri denotes additive background contributions such

as Compton scatter, dark current. The goal of X-ray CT image reconstructions (e.g., FBP

method) are to estimate µ (⃗x,E ) from the measured data, yi. However, as we can notice

in (6.1), it is not simple because µ (⃗x,E ) does not correspond to the CT measurements

directly.

6.1.2 Dual-Energy CT Measurement Model

As we discussed in the previous section, linear attenuation coefficient depends on the

X-ray energy because each photon energy is attenuated differently by the object. This

dependence allows one to use CT scans to separate materials from CT measurements by

using dual-energy X-ray imaging. Dual energy CT has many potential applications such
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as material separation and attenuation correction for PET imaging. The dual energy CT

measurement model has a very similar form to (6.1):

ȳmi ,
∫

Imi(E )exp
(
−
∫
Li

µ (⃗x,E )dℓ
)

dE + rmi, (6.2)

where ymi denotes the CT measurement for the ith ray for the mth incident spectrum,

m = 1, ...,M0. Typically M0 = 2 for DE CT.

We assume the linear attenuation coefficient can be represented using basis functions

that are separable in the spatial and energy dimension as follows [2]:

µ (⃗x,E ) =
L0

∑
l=1

Np

∑
j=1

βl(E )b j (⃗x)ρl j, (6.3)

where βl(E ) denotes the energy-dependent mass-attenuation coefficient of the lth mate-

rial type, {b j (⃗x)} are (unitless) spatial basis functions such as square pixels, and ρl =

(ρl1, ...,ρlNp) denotes the vector of unknown density values of lth material type for each

of the Np voxels.

6.1.3 Dual-Energy Imaging Methods

The conventional approach to DE CT imaging is the dual-rotate mode (see Fig. 6.2).

The gantry rotates around the object at one X-ray source voltage to collect sinogram data,

a set of projections, and then the source voltage is changed and the source is rotated around

again with the new kVp to collect a second sinogram. However, this conventional dual-

rotate mode of DE CT is limited by motion artifacts: the patient may move between the

two acquisitions, leading to inconsistencies between the two sinograms. Additionally due

to the increased number of scans (one at a low energy and a second at a high energy), a

dual energy CT system may necessitate higher radiation dose. To reduce the patient motion

problems, several methods have been proposed. The three most common methods are the
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L Object

X−ray source

Detector

Object

X−ray source

Detector

H

Fig. 6.2: Schematic diagram of a Dual rotate CT mode X-ray scanner.

dual-source CT mode [50], dual-layer detectors mode [18, 32], and fast kVp-switching

mode [25, 28].

Dual source CT mode

Object

Detector

X−ray source

H

L

Fig. 6.3: Schematic diagram of a Dual source CT mode X-ray scanner.

The dual source CT system in Fig. 6.3 has two X-ray tubes and two corresponding

detectors. Filtering, kVp, and intensity of the X-ray can be optimized for each of two

X-ray tubes. The drawback of this mode is cross-scatter radiation; a natural consequence

of simultaneous scanning with two X-ray sources. System cost is higher too.
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Dual layer detectors mode

Object

X−ray source

Detector

X

Fig. 6.4: Schematic diagram of a Dual-layer detectors mode X-ray scanner.

An alternative to using two X-ray sources using energy selective detectors. Fig. 6.4

illustrates a dual-layer detector that has only one source and two detectors; separation into

low and high energy images occurs at the detector level. The upper detector layer primarily

absorbs the low-energy x-ray spectrum, while the other layer detects the high-energy x-

ray spectrum. In this dual-layer detectors mode, cross-scatter radiation problem is solved

because it needs only one X-ray source tube. However, materials of detectors are difficult

to optimize and the only filtering is due to the first layer so the recorded spectra are not

very different between two layers.

Fast kVp-switching mode

For the fast kVp switching mode in Fig. 6.5, the X-ray source alternates between

high and low tube voltages for alternating projection views. Modern CT systems rotate

in less than 0.5 seconds, and collect about 1000 projection views, so the X-ray tube high

voltage must be switched at kHz rates repeatably, which is a challenge that has been met

only recently. In this switching mode, two sinograms are collected in a single rotation;

the motion effect can be reduced dramatically. However, the fast kVp switching mode
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Object

X−ray source

L H

H L

L H

Fig. 6.5: Schematic diagram of a Fast kVp-switching mode X-ray scanner.

collects only half as many projection views as could be collected for each sinogram. We

used the GE Discovery CT750HD CT scanner and the number of projections is 1968

projections/rotation (984 at 80 kVp and 984 at 140 kVp). Conventional sinogram domain

DE decomposition methods require each ray to be measured twice by two different spectra

(e.g., two different tube voltages), but in the fast switching mode, the even projection views

are at one voltage and the odd views are at the other voltage. This problem can be solved

by using interpolation method or by iterative algorithms that will be described in chapters 7

and 8.

6.2 Filtered Back Projection

The goal of x-ray CT image reconstruction is to reconstruct the underlying object, (the

patient), being imaged from the projection measurements. Image reconstruction methods

or algorithms can be divided into two main categories: analytical methods, such as filtered

back projection (FBP), and iterative methods, such as statistical methods. In this chapter,

we briefly discuss the FBP method. We will present statistical methods in chapters 7 and

8.
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FBP method is the most common analytical reconstruction technique. It is based on the

Radon transform. The basic idea of the back projection is to duplicate measured sinogram

Fig. 6.6: Illustration of the back projection process.

values back into the object space along the corresponding rays. However, if we simply

back project all measured projections, then this unfiltered back projection yields a blurry

reconstructed image. Therefore, we need to apply filters to each projection such as a ramp

filter before back projection.

Fig. 6.6 illustrates a parallel beam geometry. Let g(r,φ) denotes the line integral

through the object for projection angle φ , and Gφ(ν) denote 1D FT of the projection. By

the projection-slice theorem, Gφ(ν) = F(ν cosφ,ν sinφ), where F denotes 2D Fourier

transform of the object, f (x,y). Therefore, the object f (x,y) can be expressed as:

f (x,y) =
∫ ∫

F(u,v)e−i2π(xu+yv)dudv

=
∫ π

0

∫ ∞

−∞
F(ν cosφ,ν sinφ)e−2πν(xcosφ+ysinφ)|ν |dνdφ

=
∫ π

0
ğφ(xcosφ + ysinφ)dφ,

where ğφ denotes the filtered projection by using ramp filters as follows:

ğφ(r) =
∫ ∞

−∞
Gφ(ν)|ν |ei2πνrdν . (6.4)
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Thus, the reconstructed object f̂ (x,y) is defined as follows:

f̂ (x,y) =
∫ π

0
ğφ(xcosφ + ysinφ)dφ. (6.5)

This derivation ignores measurement noise and finite sampling, and leads to unnecessarily

noisy reconstructed images. Model-based or statistical reconstruction methods, described

next, can overcome these limitations of FBP.



CHAPTER 7

Model-based Image Reconstruction For Dual-Energy
X-ray CT with Fast kVp Switching

This work is based on [25].

7.1 Introduction

The most recent generation of X-ray CT systems can collect dual energy (DE) sino-

grams by rapidly switching the X-ray tube voltage between two levels for alternate projec-

tion views. This reduces motion artifacts in DE imaging, but yields sinograms that may be

angularly under-sampled. This chapter describes an iterative algorithm for statistical im-

age reconstruction of material component images (e.g., soft tissue and bone) directly from

such under-sampled DE data, without resorting to the interpolation operations required by

conventional DE reconstruction methods.

7.2 Dual-Energy Reconstruction

7.2.1 Models

Measurement model

Let ymi denote the CT measurement for the ith ray for the mth incident spectrum,

m = 1, ...,M0, i = 1, ...,Nd. For DE CT, M0 = 2. The measurement means are related to
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the line-integral projections of the object’s attenuation via Beer’s law. We assume that the

measurements, ymi, are random variables with the following ensemble means, ȳmi:

ymi ∼ Poisson{ȳmi} (7.1)

ȳmi ,
∫

Imi(E )exp
(
−
∫
Li

µ (⃗x,E )dℓ
)

dE + rmi, (7.2)

where
∫
Li

·dℓ denotes the line integral along the ith ray, and µ (⃗x,E ) denotes the linear

attenuation coefficient of the object being scanned at the spatial location x⃗, Imi(E ) denotes

the product of the mth incident source spectrum and the detector gain for the ith ray, and

rmi denotes additive background contributions such as room background, dark current, and

scatter. We treat Imi(E ) and rmi as known nonnegative quantities [7, 53, 58].

Object model

The measurements are finite whereas µ is a continuous function of spatial location x⃗

and energy, E . Thus for reconstruction we parameterize the linear attenuation coefficient

using basis functions that are separable in the spatial and energy dimension as follows [2]:

µ (⃗x,E ) =
L0

∑
l=1

Np

∑
j=1

βl(E )b j (⃗x)ρl j, (7.3)

where βl(E ) denotes the energy-dependent mass-attenuation coefficient of the lth material

type (units cm2/g), {b j (⃗x)} are (unitless) spatial basis functions such as square pixels, and

ρl = (ρl1, ...,ρlNp) denotes the vector of unknown density values of lth material type (units

g/cm3) for each of the Np voxels. In DE CT, we usually choose L0 = 2, e.g., soft tissue

(water) and bone. We use tabulated mass-attenuation coefficient values for water and

bone [24].

Most conventional approaches to DE CT imaging have estimated the object material

densities, {ρl}Lo
l=1, from fully sampled measurements, {ymi}Nd

i=1. Here our goal is to recon-

struct the object from fast kVp-switched sinograms that are collected by alternating X-ray
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source voltage over a single rotation. Therefore, the proposed method estimates {ρl}L0
l=1

from {ymi}i∈Im where the sets of indexes {Im}M0
m=1 are a partition of whole index set

I = {1, ...,Nd}. In particular, for DE CT with fast kVp-switching between two source volt-

ages, I1 and I2 correspond to the rays in the odd and even projection views respectively.

Using (7.2), (7.3), we rewrite the ensemble means of the measurements as follows:

ȳmi(ρ) = Imie− fmi(si(ρ))+ rmi (7.4)

fmi(ρ),− logvmi(si(ρ)) (7.5)

vmi(ρ),
∫

pmi(E )e−β (E )·si(ρ) dE , (7.6)

for m = 1, ...,M0, l = 1, ...,L0, and i ∈ Im, where Imi =
∫

Imi(E )dE denotes the total

intensity for the mth incident spectrum and the ith ray, pmi(E ) , Imi(E )/Imi denotes

the normalized intensity for the mth incident spectrum and the ith ray, and β (E ) ,

(β1(E ), ...,βL0(E )) denotes the energy-dependent mass-attenuation coefficient, and we

define the sinogram vector si as follows:

si(ρ), (si1(ρ), ...,siL0(ρ)),

sil(ρ), [Aρl]i,

where A denotes the Nd ×Np system matrix having elements

ai j ,
∫
Li

b j (⃗x)dℓ. (7.7)

We refer to the nonlinear function fmi(si) as the ”beam hardening” function. If we had a

monoenergetic source, then this function would be linear. But for polyenergetic spectra,

this function depends nonlinearly on its arguments, the material density line integrals, and

this nonlinearity is one of the challenges of DE CT reconstruction.
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7.2.2 Conventional Interpolation/FBP approach

Due to the nonlinear model (7.2), it is challenging to estimate the object ρ directly.

Therefore, conventional methods first estimate the nonlinear function values fmi by invert-

ing (7.4):

f̂mi ,− log
(

smooth
{

Ymi − rmi

Imi

})
, (7.8)

where radial smoothing is often included to reduce noise [23]. Note that, we used |Ymi −

rmi| instead of Ymi − rmi to avoid negative value in this work. Using angular interpolation,

one can reconstruct f̂mi for all i = 1,2, ...,Nd. For the results shown below, we simply

averaged the two nearest projection views for interpolation. Then one applies conventional

DE decomposition [2], followed by FBP reconstruction. In this work, we used the ramp

filter apodized by a Hanning window having cutoff frequency 0.5 cycles / sample for FBP

reconstruction. This approach is fast but suboptimal especially for low-dose X-ray CT.

7.2.3 Penalized Weighted Least Square (PWLS) approach

Instead of estimating ρ by using interpolation, we propose to estimate ρ directly by in-

cluding a spatial roughness penalty R(ρ) in the following penalized weighted least square

cost function:

ρ̂ = argmin
ρ≥0

Ψ(ρ) (7.9)

Ψ(ρ),
M0

∑
m=1

∑
i∈Im

wmi

2
( f̂mi − fmi(ρ))2 +R(ρ), (7.10)

where ρ denotes a 2N2
p ×1 object vector in this study, wmi denotes weights that we define

as follows:

wmi = Ymi, for i ∈ Im. (7.11)

This cost function is non convex cost function so a good initial estimator is important to

converge to a desirable local minimum. These weights are a reasonable choice because
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CT measurements are approximately Poisson distributed and in the absence of smoothing

the approximate variance of f̂mi is [10, 11]:

Var( f̂mi)≈
Var(Ymi)

(ȳmi − rmi)2 . (7.12)

Note that (7.10) uses only the measured rays (i ∈ Im); no interpolation is used. The

regularizing penalty term in (7.10) is given by the following:

R(ρ) =
L0

∑
l=1

Np

∑
j=1

∑
k∈N j

ψ(ρl j −ρlk), (7.13)

where ψ is a potential function and N j is a neighborhood of pixel j. For ψ we used

a hyperbola [4] and the modified regularizer in [15] to provide approximately uniform

spatial resolution. Here we minimized the cost function in (7.10) using 100 iterations of

a conjugate graduate method [8, 16, 55] with a monotone line search technique [13]. This

could be accelerated greatly by using ordered subsets [1]. We initialized the iterations

using the object estimated by the interpolation/FBP method in Section 7.2.2.

7.3 Results

To evaluate the feasibility of the proposed methods for image reconstruction, we per-

formed a computer simulation of dual-energy CT scans and a real phantom DECT scans.

In both cases, the reconstructed images were 512× 512 with 0.1 × 0.1 cm2 pixel size

and the projection space was 888 radial samples × 984 angular views. We used source

voltages 80kVp and 140kVp and we used X-ray spectra model provided by GE CATSIM

software [9], including the effects of a standard large bow-tie filter. The rotation center is

54.1 cm from the source, and the detector is 94.9 cm form the source.
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7.3.1 Simulation

We applied both the conventional dual-energy interpolation/FBP reconstruction method,

and the proposed regularized PWLS method. We investigated 10 different numbers of in-

cident photons per ray (Imi = I0) from 1×105 to 1×106.

Fig. 7.1 shows the density maps of the components: soft tissues and bone mineral

and the estimated object of the two methods with I0 = Imi = 105, i ∈ Im. The PWLS

images have reduced streak artifacts and lower noise than the conventional FBP images.

As seen in Fig. 7.1, the PWLS images reconstructed from interpolated sinograms are very

similar to the PWLS image reconstructed from the fast kVp-switching sinograms. This

result is unsurprising because interpolation does not provide any new information, but

rather simply uses combinations of existing data values. The main advantage of statistical

image reconstruction methods is the ability to model the noise in sinogram measurements.

Interpolation produces sinogram values that are correlated with each other and thus less

amenable to statistical modeling. As noted previously, our statistical DE CT approach can

use the original fast kVp-switching sinograms rather than needing interpolated sinograms,

but this is a secondary benefit compared to the statistical modeling. However, it also

appears that the estimated bone material component is nonzero in the soft tissue of the

phantom. This bias could be caused by the regularizer; we discuss it further in Chapter 9.

Fig. 7.2 shows that the proposed PWLS method reduces significantly the NRMSE of

the soft tissue and bone images compared to the conventional interpolation/FBP method.

Fig. 7.3 illustrates that the proposed PWLS method has lower noise than FBP without

compromising the spatial resolution near object edges.

For completeness, we also applied the PWLS method to the interpolated sinogram

data. Fig. 7.1(g) and (h) show their resulting component images. The global NRMSE

of the soft tissue and bone components were 14.8% and 11.9% respectively, compared to
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14.6% and 11.9% for PWLS applied to the sinograms without interpolation. Therefore,

the results show that the qualities of the estimated material components with and without

interpolation are essentially the same. When implemented efficiently, applying PWLS to

interpolated data requires approximately twice the compute time per iteration as applying

PWLS to the original fast kVp-switched data.

7.3.2 Phantom

We applied the conventional FBP reconstruction method, dual-energy interpola-

tion/FBP reconstruction method, and the proposed regularized PWLS method to real

phantom. The phantom image contains four cylinders: one large cylinder and three

smaller cylinders. As described in [34], this 20 cm diameter phantom contains three

5 cm diameter cylindrical inserts containing (top) air, and (bottom) a solution of CaCl2

equivalent to bone, having a 278 HU difference between 80 and 140 kVp scans and a

dilute iodine-based contrast agent, with a 700 HU difference. The sinogram data was

fully sampled so we downsampled the high- and low-energy sinograms to emulate a fast

kVp-switching scan. (This emulation is imperfect because it disregards the finite rise and

fall times of the tube kVp [64, 67] that can degrade spectral separation in an actual fast

kVp scan.) This phantom scan was a low dose, 5mAs (10 mA × 0.5 sec), study and the

slice thickness is 0.625 mm.

Fig. 7.4 shows the component material images reconstructed by the three methods.

Fig. 7.4(a)-(b) shows the conventional (fully sampled) FBP images, whereas Fig. 7.4(c)-

(d) shows interpolation/FBP method from emulated fast kVp-switching views. Both meth-

ods’ results are noisy and have many streaks due to the low dose of this CT data. How-

ever, the PWLS images, in Fig. 7.4(e)-(f), have successfully reduced streak artifacts and

yield lower noise than other two methods even though it also the used kVp-switched CT
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data. For completeness, we also applied the proposed method to the interpolated DE data.

Fig. 7.4(g)-(h) shows the resulting images. As shown in Fig. 7.4, the proposed method has

almost the same performance and yields images that are very similar to Fig. 7.4(e) and (f).

However, we observed undesirable variations in spatial resolution and cross talk between

the soft tissue and bone material images. In Fig. 7.5 (a) the red box highlight the regions

where this cross talk problem can be found for soft tissues in Fig. 7.1 (g). We zoom-in on

this region in Fig. 7.5 (b).

7.4 Conclusion

We presented an iterative regularized PWLS algorithm for DE CT reconstruction from

the type of under-sampled DE data that is collected by fast kVp-switching CT systems.

Unlike other DE CT algorithms, the proposed method estimates material component im-

ages directly from only half as many projection views without any interpolation operation.

The experiments show that the proposed method yields images with lower NRMS error

than the conventional interpolation/FBP approach in Fig. 7.2. However, we observed the

cross talk problem between the soft tissue and bone material images especially in edge

areas. We believe that the cross-talk problem in the proposed approach to DE CT image

reconstruction is caused by the fact that each measured sinogram (e.g., low energy and

high energy sinogram) depends on all material components. Even if the X-ray source

were monoenergetic, and even if we had energy discriminating photon-counting detectors,

each measured sinogram would still be influenced by all material components. This type

of relationship appears to cause “coupling” between the material density estimates when

using “conventional” regularized image reconstruction methods. We analyze this problem

further in Chapter 9 and investigate an alternative reconstruction approach in Chapter 10.
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Fig. 7.1: First row: Two component simulated densities. Second row: Interpolation/FBP
method with I0 = 105. Third row: Regularized PWLS method with I0 = 105.
Fourth row: Regularized PWLS method with interpolated DE data.
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(a) Estimated soft tissues (b) Enlarged image

Fig. 7.5: Cross talk problem. (a) Estimated soft tissues where the red boxes indicate the
regions where the effect of the cross talk problem is found. (b) Enlarged images
of the boxed region.



CHAPTER 8

Fast kVp-Switching Dual-Energy CT for PET Attenuation
Correction

This work is based on [28].

8.1 Introduction

CT-based attenuation correction (CTAC) for PET has advantages over conventional

attenuation correction by PET transmission scans, including better spatial resolution and

lower noise [3,33,35]. However, PET attenuation correction factors (ACFs) must be com-

puted for 511 keV photon energy, whereas X-ray CT spectra cover a wide range of lower

photon energies. These spectral differences can lead to imperfect PET attenuation cor-

rection, particularly when iodinated contrast agents are present [34, 56]. Conventional

CTAC approaches use a single X-ray source voltage (kVp) and its corresponding spec-

trum. DECT imaging methods have the potential to improve attenuation correction in

PET by exploiting the spectral information provided by using two different X-ray spectra.

Noh et al. previously investigated a statistically motivated, sinogram-domain approach for

estimating the line integrals of two material components from DECT scans followed by

computing the 511 keV ACFs [45, 46]. That approach is iterative, but is relatively fast

because the iterations are solely in the sinogram domain.

58
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A disadvantage of sinogram-domain approaches to DECT decomposition is that the

types of regularization that are suitable are limited. In contrast, by iteratively reconstruct-

ing images from the measured sinograms, one can apply a wide variety of sophisticated

regularizers because there can be clear distinctions between different tissue types in the

images. In the sinogram domain, region boundaries are barely visible, and other forms of

prior information about the object’s attenuation properties are not readily apparent. There-

fore, the goal of this chapter is to study statistical methods for reconstructing material

component images from DE sinogram data [14] for the purpose of PET attenuation cor-

rection. This section used the same parameters and equations as in section 7.2.

8.2 Attenuation Correction Factors

We assume PET measurements have independent Poisson distribution:

Yi ∼ Poisson{Ȳi(λ )}, i = 1, ...,Nr,

where Nr denotes the number of detector pairs, and Ȳi denotes the mean of the ith mea-

surement:

Ȳi(λ ) = ∑
j

piai jλ j + si, (8.1)

where the survival probability is

pi = exp
(
−
∫

Li

µ (⃗x;511)dℓ
)
.

The system matrix is ai j and scatter and si denotes the mean contribution of scatter and

randoms to the ith ray. λ j denotes the distribution of the radio-isotope.

For reconstructing the PET emission images, one must compensate for the attenuation

of annihilated photons at the PET energy (511 keV). In CTAC, the ACF for the ith ray is

defined as follows:

ACFi , exp
( L0

∑
l=1

βl(E )[Aρ̂l]i

)∣∣∣
E=511keV

, (8.2)
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where ρ̂l is an estimated density map corresponding to the lth material.

In this work, we focused on the error in the PET images due to imperfections in the

ACFs, so we generated noiseless PET data Ȳi using (8.1) with no scatter or randoms (si =

0). We then divided the PET sinograms by the estimated ACFs (8.2) and applied the FBP

method to reconstruct PET emission images.

We investigated four choices for the material density images ρ: i) The true density

maps ρ; ii) density map estimates ρ̂ formed by the “interpolate/FBP” approach, from

fast kVp-switching DE sinograms; iii) density map estimates ρ̂ formed from fully sam-

pled DE sinograms with sinogram-domain decomposition followed by FBP reconstruc-

tion, called the “FBP method”; iv) density map estimates ρ̂ reconstructed by the iterative

PWLS method.

8.3 Results

We performed a preliminary examination of the proposed methods using a simulation

of DE-based CTAC for PET. We applied the proposed method to dual-energy CT scans of a

phantom with source voltages 80kVp and 140kVp. The reconstructed images were 512×

512 with 0.1 × 0.1 cm2 pixel size. The fan-beam projection space was 888 radial samples

× 984 angular views over 360◦ degrees and we used X-ray spectra model provided by GE

CATSIM software [9], including the effects of a standard large bow-tie filter. To evaluate

the performance of the proposed method for CTAC, we compared it to two traditional

methods: the (fully sampled) FBP method and the interpolation/FBP method. We applied

three methods to simulated data with the same parameters used for the real phantom data

in section 7.3.

Fig. 8.1 shows the NRMSE plot of estimated density maps with different incident

intensities, I0. We observed that the proposed method significantly reduces the NRMSE
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Fig. 8.1: NRMSE of estimated density maps: Interpolation/FBP method, and the proposed
method.

of soft tissue and bone minerals compared to the interpolation/FBP method.

Fig. 8.2 shows the (FBP) reconstructed PET emission images based on the various

methods for estimating the ACFs. The PET images in Fig. 8.2(d) are based on ACFs

from the PWLS DE reconstruction method. This CTAC approach provides reduced noise

and streak artifacts compared to the other methods in Fig. 8.2(b)-(c). We used the same

estimated density maps of bone minerals and soft tissue in Chapter 7.

Fig. 8.3 compares the NRMSE of the reconstructed PET images. The NRMSE of

the PET image based on the PWLS ACFs is significantly lower than the other competing

methods investigated here.

8.4 Conclusion

We presented an iterative PWLS algorithm for DE CT reconstruction, motivated by

improving attenuation correction in PET. The regularized method estimates the two mate-

rial component images directly from DE sinograms including the type of under-sampled

DE data that is collected by fast kVp-switching CT systems. Unlike other DE CT al-

gorithms, the proposed method estimates material component images directly from only
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Fig. 8.2: Reconstructed PET emission images using competing attenuation correction
methods.

half as many projection views without any interpolation operation. Using these estimated

DE CT images yields more accurate ACFs than conventional approaches. However, we

observed the cross talk problem again and the next chapter explores this problem further.
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CHAPTER 9

Spatial Resolution Analysis

9.1 Introduction

In Chapter 7, we proposed an iterative algorithm for DE CT reconstruction. The regu-

larized method estimates two material images from under-sampled DE sinograms without

any interpolation. However, in both 7 and 8, we also observed undesirable variations in

spatial resolution and cross talk between the reconstructed soft tissue and bone material

images. This cross talk problem is challenging because of the nonlinearities of the beam

hardening function f (·) in DECT with polyenergetic spectra.

In this chapter, we analyze the spatial resolution and noise properties of statistical

methods in hopes of reducing the crosstalk between material component estimates. The

goal of this chapter is to try to extend the regularization design of [15] so that one achieves

object-independent spatial resolution for DE CT with PL reconstruction.

9.2 Local Impulse Response

First we define xl j as the jth pixel of the lth object material, j = 1, . . . ,N, sli as the ith

pixel of the lth material sinogram, i = 1, . . . ,M and G as a M×N system matrix to project

image domain to sinogram domain. Our measurement model is:

E [ymi] = Imie− fmi(x)+ rmi, i = 1, . . . ,M, (9.1)

64
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where fmi(x)=− logvmi(x),vmi(x)=
∫

Pmi(E )e−∑l βl(E )[G·xl ]i dE ,Pmi(E )= Imi(E )/Imi, Imi =∫
Imi(E )dE , and βl(E ) denotes the mass attenuation coefficients. For other parameters,

this section used the same parameters in section 7.2. We proposed the penalized weighted

least-squares cost function in section 7.2.3 as:

x̂(y) = argmin
x≥0

Ψ(x,y) (9.2)

Ψ(x,y), L(x,y)+R(x) (9.3)

L(x,y) = ∑
m

∑
i

wmi

2
( f̂mi(y)− fmi(x))2, (9.4)

where, wmi =Ymi for i ∈ Im, R(x) is a spatial roughness penalty function, x ,

x1

x2

, and xl

denotes the lth material. Note that in (9.3) we used the estimated log data of conventional

methods, f̂mi, in our data fitting term:

f̂mi(y),− log{smooth(
ymi − rmi

Imi
)}. (9.5)

For this cost function, the lth material’s local impulse response (2.12) is

l( j)
l (x) = [−∇[2,0]L(x̌, ȳ(x))+βR(x̌)]−1[∇[1,1]L(x̌, ȳ(x))]

∂
∂xl j

ȳ(x) (9.6)

= [−∇[2,0]L(x̌, ȳ(x))+βR(x̌)]−1[∇[1,1]L(x̌, ȳ(x))]∇ȳ(x)e( j)
l , (9.7)

where R(x) denotes the 2N × 2N Hessian of the regularizer, ȳ = E [y], ∇ȳ(x) = ∂
∂x ȳ(x),

x̌ = x̂(ȳ(x)), and e( j)
1 denotes the extended Kronecker impulse, e j:

e( j)
1 =

e j

0

 for l = 1 and, e( j)
2 =

 0

e j

 for l = 2 .

Note that, the negative log-likelihood L in (9.4) is minimized at the true x when given

noiseless data ȳ(x). Therefore, x = argminz L(z, ȳ(x)), so

0 = ∇[1,0]L(x, ȳ(x)). (9.8)
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Therefore, when we differentiate both sides with respect to x:

∇[2,0]L(x, ȳ(x))+∇[1,1]L(x, ȳ(x))∇ȳ(x) = 0

⇐⇒∇[2,0]L(x, ȳ(x)) =−∇[1,1]L(x, ȳ(x))∇ȳ(x)

⇐⇒∇[2,0]L(x̌, ȳ(x))≈−∇[1,1]L(x̌, ȳ(x))∇ȳ(x). (9.9)

Substituting this (9.9) into (9.7) yields the final local impulse response of the penalized-

likelihood:

l( j)
l (x) = [F(x̌)+βR(x̌)]−1F(x̌)e( j)

l , (9.10)

where F(x) = ∇[2,0]L(x̌, ȳ(x)). For (9.4), L is additively separable and has the following

gradients:

[Fl1l2(x)] jk =
∂ 2

∂xl1 j∂xl2k
L(x)

= ∑
m

∑
i

wmi

{
(

∂
∂xl1 j

fmi(x))(
∂

∂xl2k
fmi(x))− ( f̂mi(y)− fmi(x))(

∂ 2

∂xl1 j∂xl2k
fmi(x))

}
≈ ∑

m
∑

i
wmi(

∂
∂xl1 j

fmi(x))(
∂

∂xl2k
fmi(x))

= ∑
m

∑
i

wmigi jgik
Umil1(x)Umil2(x)

v2
mi(x)

,

where

Umil1 =
∫

βl1(E )Pmi(E )e−∑l βl(E )[G·xl ]i dE . (∵ ∂
∂xl1 j

fmi = gi j(Umil1/vmi)) (9.11)

Therefore, the Fisher information matrix F =

F11(x) F12(x)

F12(x) F22(x)

 , can be factored as fol-

lows:

F(x) = G′
2 ·D(x) ·G2, (9.12)
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where

G2 =

G 0

0 G

 , D(x) =

D11(x) D12(x)

D21(x) D22(x)

 ,

Dl1l2(x) = diag{∑
m

wmi
1

v2
mi(x)

Umil1(x)Umil2(x)}
M
i=1.

Note that from (9.11), Dl1l2(x)≥ 0 for all l1, and l2, and D12 = D21.

9.3 Conventional Local Impulse Response

In this section, we briefly review conventional spatial resolution analysis before we an-

alyze DE CT case. We consider a conventional penalized weighted least-squares (PWLS)

cost function of the following form:

x̂ = argmin
x

∥y−Ax∥2
W 1/2 +βR(x), (9.13)

where A denotes a M ×N system matrix, W = diag{wi} denotes the inverse of M ×M

covariance matrix of y and R(x) = 1
2x′Rx denotes quadratic regularization, and R = C′C

denotes the Hessian matrix of the regularizer. According to [15], the local response of the

conventional PWLS cost function is expressed:

l( j) = [F +βR]−1Fe( j), (9.14)

where F = A′WA is the Fisher information matrix and C denotes a 4N ×N differencing

matrix. Now following [15], consider the Fisher information approximation:

F = A′WA = A′diag{w j}A ≈ diag{κ j}A′Adiag{κ j}, (9.15)

where we define the following kappa factors

κ j =
√

∑
i

g2
i jwi/∑

i
g2

i j. (9.16)
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Substituting (9.15) into (9.14) and simplifying yields following conventional local impulse

response approximation:

l( j) ≈ [diag{κ j}A′Adiag{κ j}+βR]−1(diag{κ j}A′Adiag{κ j})e( j)

= diag{ 1
κ j

}[A′A+diag{ 1
κ j

}Rdiag{ 1
κ j

}]−1A′Aκ je( j)

≈ [A′A+diag{ 1
κ2

j
}R]−1A′Ae( j).

The final approximation suggests that the local impulse response depends on a local regu-

larization parameter that is scaled by κ2
j . This causes nonuniform spatial resolution [15].

To pursue uniform spatial resolution, several modified regularization methods have been

proposed. One of the simplest approach is the following modified quadratic roughness

penalty function:

R∗(x) = β
N

∑
j=1

∑
i∈N j

ψ(κ jx j −κixi), (9.17)

where ψ(t) = t2

2 , and N denotes the neighborhood of the jth pixel. This modified penalty

yields approximately uniform spatial resolution at each pixel:

l( j) ≈ [A′A+diag{ 1
κ j

}R∗diag{ 1
κ j

}]−1A′Ae( j)

= [A′A+R]−1A′Ae( j), (9.18)

where R∗ = diag{κ j}Rdiag{κ j} denotes the Hessian matrix of the modified regularizer

R∗(x). We believe that a roughness penalty function should be zero if the input image is

perfectly uniform. However, the roughness penalty function in (9.17) is not zero when x

is uniform. Therefore, [15] suggested following modified regularizer:

R∗(x) = β
N

∑
j=1

∑
i∈N j

ψ(κ jx j −κixi)≈ β
N

∑
j=1

∑
i∈N j

ψ(
√

κ jκi(x j − xi)) (9.19)

= β
N

∑
j=1

∑
i∈N j

κ jκiψ(x j − xi), (9.20)
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where ψ(t) = t2

2 . It is reasonable approach because if the ith pixel and jth pixel are close

to each other then κi ≈ κ j. The next sections extend this analysis of the local impulse

response and design of modified roughness penalty functions to Dual-Energy CT.

9.4 Fisher Information Approximation for DE CT

This section focuses on pursuing uniform spatial resolution e.g., [11,59,60] by consid-

ering an approximation of the Fisher information matrix in DE CT. The 2N × 2N Fisher

information simplifies as follows:

F(x) =

F11(x) F12(x)

F12(x) F22(x)

= G′
2 ·D(x) ·G2 ≈ K′(x) ·G′

2 ·G2 ·K(x), (9.21)

where K is a 2N ×2N block diagonal matrix of the kappa factors:

K(x) =

K11(x) K12(x)

K21(x) K22(x)

 , (9.22)

Kl1l2 = diag{κl1l2 j}N
j=1.

Note that

K′G′
2G2K =

K11 K21

K12 K22


G′G 0

0 G′G


K11 K12

K21 K22

 (9.23)

=

K11G′GK11 +K21G′GK21 K11G′GK12 +K21G′GK22

K12G′GK11 +K22G′GK21 K12G′GK12 +K22G′GK22

 . (9.24)

Usually, the largest elements of Fl1l2 are located along its diagonal due to the 1/r response

of 2D tomographic imaging. Therefore, we would like the approximation in (9.21) to be

exact along its block diagonal elements. One way we can achieve this is by satisfying only
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these three conditions:

[F11(x̆)] j j = ∑
m

∑
i

g2
i jwmi

U2
mi1(x̌)

v2
mi(x̌)

≈ (κ2
11 j +κ2

21 j)∑
i

g2
i j, (9.25)

[F22(x̆)] j j = ∑
m

∑
i

g2
i jwmi

U2
mi2(x̌)

v2
mi(x̌)

≈ (κ2
12 j +κ2

22 j)∑
i

g2
i j, (9.26)

[F12(x̆)] j j = [F21(x̆)] j j = ∑
m

∑
i

g2
i jwmi

Umi1(x̌) ·Umi2(x̌)
v2

mi(x̌)
(9.27)

≈ (κ11 jκ12 j +κ21 jκ22 j)∑
i

g2
i j.

Of course there are many different possible methods but we consider two simple methods

for designing the K values: K12 = 0, and K21 = 0. If we choose the constraint K12 = 0,

conditions in (9.25), (9.26), and (9.27) simplify as follows:

[F11(x̆)] j j = ∑
m

∑
i

g2
i jwmi

U2
mi1(x̌)

v2
mi(x̌)

≈ (κ2
11 j +κ2

21 j)∑
i

g2
i j,

[F22(x̆)] j j = ∑
m

∑
i

g2
i jwmi

U2
mi2(x̌)

v2
mi(x̌)

≈ κ2
22 j ∑

i
g2

i j,

[F12(x̆)] j j = [F21(x̆)] j j = ∑
m

∑
i

g2
i jwmi

Umi1(x̌) ·Umi2(x̌)
v2

mi(x̌)
≈ κ21 jκ22 j ∑

i
g2

i j.

Therefore, we can solve for the kappa factors:

K(x) =

K11(x) 0

K21(x) K22(x)

 , κ4 j ≈
√
[F22(x̆)] j j/∑

i
g2

i j,

κ3 j ≈
√
[F12(x̆)] j j/(∑

i
g2

i j ·κ22 j), κ1 j ≈
√
[F11(x̆)] j j/∑

i
g2

i j −κ2
21 j.

Similarly, if we choose the constraint K21 = 0, we can solve for the kappa factors:

K(x) =

K11(x) K12(x)

0 K22(x)

 , κ1 j ≈
√
[F11(x̆)] j j/∑

i
g2

i j,

κ2 j ≈
√
[F12(x̆)] j j/(∑

i
g2

i j ·κ11 j), κ4 j ≈
√
[F22(x̆)] j j/∑

i
g2

i j −κ2
12 j.

Fig. 9.1 shows an example of kappa factors for the constraints K12 = 0.
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Fig. 9.1: An example of kappa factors that could be used for regularization in 2D DE CT.

9.5 Roughness penalty design

Based on (9.21), we propose the following modified roughness penalty:

R(x) =
2

∑
m=1

∑
j

∑
i∈N j

wi jψ j

( 2

∑
l=1

([Kml] jxl j − [Kml]ixli)
)
= d′ψ(CKx), (9.28)

where wi j (= 1 or
√

2) denotes the distance between jth voxel and ith voxel: d =

[dC1dC2dC3dC4 ]
′ ⊗ 12N , dCn denotes nth neighbor offset’s distance. Usually, we use 4

different neighbor offsets so dC1 = dC3 =
√

2 for diagonal neighbors and dC2 = dC4 = 1 for

horizontal and vertical neighbors. Here, the 8N ×2N matrix C and 2N ×2N matrix K are
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defined as:

C =



C̃1

C̃2

C̃3

C̃4


,C̃t =

Ct 0

0 Ct

 ,K =

K11 K12

K21 K22

 , (9.29)

where Ct denotes a N ×N differencing matrix for tth offset. As discussed in section 9.3,

we prefer to modify the roughness penalty function so that it is zero for a uniform input

images. To acheive this goal, we define the 8N ×8N matrix K̃ such that

CK ≈ K̃C. (9.30)

In particular:

CK =



C1 0

0 C1

C2 0

0 C2

C3 0

0 C3

C4 0

0 C4



K11 K12

K21 K22

=



C1K11 C1K12

C1K21 C1K22

C2K11 C2K12

C2K21 C2K22

C3K11 C3K12

C3K21 C3K22

C4K11 C4K12

C4K21 C4K22



≈



K̃(1)
11 C1 + K̃(1)

12 C1

K̃(1)
21 C1 + K̃(1)

22 C1

K̃(2)
11 C2 + K̃(2)

12 C2

K̃(2)
21 C2 + K̃(2)

22 C2

K̃(3)
11 C3 + K̃(3)

12 C3

K̃(3)
21 C3 + K̃(3)

22 C3

K̃(4)
11 C4 + K̃(4)

12 C4

K̃(4)
21 C4 + K̃(4)

22 C4



= K̃C,

(9.31)

where K̃ = diag{K̃(t)}4
n=1 denotes a 8N×8N block diagonal matrix, K̃(t) =

K̃(t)
11 K̃(t)

12

K̃(t)
21 K̃(t)

22

,

and K̃(t)
lm denotes a N ×N diagonal matrix with elements [K̃(t)

lm ]i j =
√

[Klm]i j[S(Klm, t)]i j,

j = 1, . . . ,N. Here, S(A,n) denotes the A matrix shifted by tth offset, for t = 1, . . . ,4.

Therefore, we modified the roughness penalty function (9.28) as follows:

R(x) = d′ψ(CKx)≈ d′ψ(K̃Cx) = d′ψ(T1T2Cx), (9.32)
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where

T1 = diag{T (t)
1 }4

t=1,T
(t)

1 =

K̃(t)
11 0

0 K̃(t)
22

 (9.33)

T2 = diag{T (t)
2 }4

t=1,T
(t)

2 =

 1
K̃(t)

12

K̃(t)
11

K̃(t)
21

K̃(t)
22

1

 , (9.34)

where T1 and T2 each denote 8N×8N matrixes, and K̃l1l2 denotes a N×N diagonal matrix

for all l1 and l2. Note that T1 is diagonal matrix, and our potential function ψ is similar to

quadratic function near zero. If ψ is quadratic regularizer,

R(x) = x′C′T ′
2T ′

1diag{d}T1T2Cx (9.35)

= X ′C′T ′
2diag{d̃}T2Cx, (9.36)

where d̃ = T 2
1 d because T1 is diagonal matrix. Therefore, we further modify the roughness

penalty function R̃(x) in (9.34) as follows:

R̃(x), d′T 2
1 ψ(T2Cx) = ∑

k
d̃kψk(c̃′kx), (9.37)

where, c̃′k is defined kth row of the matrix C̃ = T2C, and d̃k = dk · [T 2
1 ]kk. Therefore,

∇R̃(x) = ∑
k

d̃k∇ψk(c̃′kx) = ∑
k

c̃kd̃kψ̇k([C̃x]k) = ∑
k

d̃kc̃kwk([C̃x]k)[C̃x]k = C̃′D̃1C̃x,

(9.38)

∇(2)R̃(x) = ∑
k

d̃k∇(2)ψk(c̃′kx) = ∑
k

d̃kc̃kψ̈k([C̃x]k)c̃′k = C̃′D̃2C̃. (9.39)

where D̃1 = diag{d̃kwk([C̃x]k)}, D̃2 = diag{d̃kψ̈k([C̃x]k)}, and the potential weighting

function wk(t) , ψ̇k(t)
t . If we choose ψ to be a hyperbola, then w(t) = (1 + ( t

δ )
2)−

1
2 ,

and ψ̈(t) = (1+( t
δ )

2)−
3
2 . Note that the matrix T1 and T2 depend on the object x so we

need to update these matrix after iterating a while or to carefully choose the initial value

in the iterative algorithm.
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9.6 Cross Talk Problem

In previous sections, we analyzed kappa factors and roughness penalty design for DE

CT. This section focuses on analyzing the cross talk problem with a simple quadratic

regularizer R(x):

R(x) = ψ(CKx) =
1
2

x′K′C′CKx. (9.40)

Substituting kappa factors (9.21) and R∗ = ∇(2)R(x) = K′C′CK into (9.10), we can derive

the local impulse response:

l( j)
l ≈ [F +R∗]−1F(x)e( j)

l

= [K′G′
2G2K +K′C′CK]−1K′G′

2G2Ke( j)
l

= K−1[G′
2G2 +C′C]−1G′

2G2Ke( j)
l

= K−1B2Ke( j)
l . (9.41)

where B2 =

B 0

0 B

 = [G′
2G2 +C′C]−1G′

2G2, B = [G′G+∑4
t=1C′

tCt ]
−1G′G. When we

use kappa factors for which K12 = 0 as in section 9.4 then,

K−1 =

 K−1
11 0

−K21 · (K11K22)
−1 K−1

22

 . (9.42)
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Combining (9.41) with (9.42) yields the following expression for the local impulse re-

sponse:

l( j)
l ≈ K−1B2Ke( j)

l = K−1

B 0

0 B

Ke( j)
l

= K−1

B 0

0 B


K1le( j)

K2le( j)

= K−1

K1lBe( j)

K2lBe( j)


=

 κ1l j ·K−1
11 ·B · e( j)

[κ2l j ·K−1
22 −κ1l j · ·K21 · (K11K22)

−1] ·B · e( j)

 .

Note that, κ12 j = 0 for all j. So the local impulse response for l = 1 can be expressed as

l( j)
1 ≈

 κ11 j ·K−1
11 ·B · e( j)

[κ21 j ·K−1
22 −κ11 j ·K21 · (K11K22)

−1] ·B · e( j)

 , (9.43)

and when l = 2 can be expressed as

l( j)
2 ≈

κ12 j ·K−1
11 (x) ·B · e( j)

κ22 j ·K−1
22 (x) ·B · e( j)

 ,

Therefore, if we want to solve the cross talk problem, we have to find appropriate kappa

factors that satisfy these conditions for all j:

[κ21 j ·K−1
22 −κ11 j ·K21 · (K11K22)

−1] ·B · e( j) = 0 (9.44)

κ12 j ·K−1
11 ·B · e( j) = 0. (9.45)

Equation (9.45) is satisfied because κ12 j = 0 for all j. However, unfortunately we could

not find appropriate kappa factors that satisfy equation (9.44). Fig. 9.2 shows examples

of local impulse responses with bone mineral impulse, l = 2. Even though there only a

bone mineral impulse, the local impulse response appeared in both soft tissue and bone

minerals material estimates. We tested the local impulse response with or without Fisher
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information approximation and roughness penalty design and there were no big difference

among these cases.

9.7 Conclusion

In this chapter, we analyzed the spatial resolution properties of PWLS reconstruction

for DECT. We tried to reduce the cross talk problem by designing extended roughness

penalty function. However, section 9.6 showed that the cross talk problem comes from the

statistical model and we were unable to solve it by changing kappa factors in the roughness

penalty. Therefore, we considered a new approach that changed the cost function that will

be introduced in the next chapter.
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Fig. 9.2: Examples of local impulse responses with bone mineral impulse: (a) Soft tissue
local impulse response in (9.43). (b) Bone minerals local impulse response in
(9.43). (c) Soft tissue local impulse response with Fisher information approxima-
tion in (9.21). (d) Bone minerals local impulse response with Fisher information
approximation in (9.21). (e) Soft tissue local impulse response with roughness
penalty design in (9.37). (f) Bone minerals local impulse response with rough-
ness penalty design in (9.37).



CHAPTER 10

Iterative image reconstruction for dual-energy X-ray CT
using regularized material sinogram estimates

This work is based on [27].

10.1 Introduction

In Chapter 7 and 8, we discussed iterative Dual-Energy CT reconstruction algorithms.

These methods estimate the object image or material sinogram based on log sinogram data.

However, noise in the estimated log data is a limitation of these methods. Additionally, it

is very hard to prevent the cross talk problem; some of the signal of one material appeared

in the estimated image of the other material image, when we estimated the object image

directly with those approaches. This chapter describes a DE reconstruction method based

on statistical models that avoids using a logarithm. We first estimate material sinograms

directly from the raw DE data (without any logarithm), with mild regularization to con-

trol noise and avoid outliers. We then apply a penalized weighted least squares (PWLS)

method to reconstruct images of the two material components from the material sinogram

estimates. We also propose a joint edge-preserving regularizer that uses the prior knowl-

edge that the two material images have many region edges located in the same positions.

Preliminary simulation results suggest that this iterative method improves image quality

78
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compared to conventional approaches based on log data for low-dose DE CT scans. This

section uses the same parameters and models as in section 7.2.

10.2 Dual-Energy Reconstruction

Recently, several iterative methods were presented, such as single energy CT [36], and

statistical sinogram restoration for DECT [46], and PWLS DE CT reconstruction from f̂

[28]. At each iteration, the DE methods estimate the material images or material sinograms

based on f̂ . However, accuracy of f̂ limits these methods; f̂ in (7.8) uses the logarithm

that is sensitive to noise especially when ymi − rmi is small. In this chapter, we propose

a Dual-Energy log-free (DELF) approach that estimates material sinograms from raw CT

data directly without using any logarithm. Fig. 10.1 summarizes several possible methods

for DE CT reconstruction.

Fig. 10.1: Four different DE CT reconstruct algorithms. <A> conventional method [2],
<B> statistical sinogram restoration [46], <C> PWLS DE CT reconstruction
from f̂ [28], <D> DELF method.

10.2.1 Dual-Energy log-free (DELF) approach

The DELF algorithm consists of two steps: (i) estimating material sinograms ŝ directly

from the raw sinograms, y, and (ii) reconstructing the material density ρ from the estimated

material sinogram. We use suitable regularization for both steps.
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Instead of estimating f by using log function, we propose to estimate the material sino-

grams, s, from X-ray CT measurement data, y, directly. By including a sinogram-domain

roughness penalty R in the cost function, we can also control noise and handle cases where

ymi − rmi is negative. Our sinogram domain non convex cost function is defined as:

ŝ = argmin
s

Ψ1(s), (10.1)

Ψ1(s), L(s)+β1R(s)

= ∑
m

∑
i

wmi

2
|ymi − ȳmi(s)|2 +β1R(s), (10.2)

where s , (s1, . . . ,sNd), si , (si1, . . . ,siL0), ȳmi was defined in in (7.2) and in (7.4), and the

sinogram weighting is

wmi ,
1

Var(ymi)
≈ 1

ymi
. (10.3)

For sinogram regularization we used roughness penalty:

R(s) =
Nd

∑
i=1

∑
k∈Ni

ψ(sli − s1k,s2i − s2k), (10.4)

where ψ is a potential function and Ni is a neighborhood of pixel i and the modified

regularizer in [15] is used to provide uniform spatial resolution. For Ni we used the 8

nearest neighbors of the ith pixel. For ψ we used a modified hyperbola discussed in the

next section.

We minimize (10.2) using a conjugate gradient (CG) algorithm with a monotone line

search [13].

After estimating the material sinogram ŝ, we use it as the data fitting term to estimate
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the object ρ by minimizing the following convex cost function:

ρ̂ = argmin
ρ

Ψ2(ρ), (10.5)

Ψ2(ρ), L(ρ)+β2R(ρ)

= ∑
l

∑
i

w̃il

2
|ŝil − sil(ρ)|2 +β2R(ρ), (10.6)

where by error propagation (assuming β1 small):

[diag{w̃i1, . . . , w̃iL0}]
−1 (10.7)

≈ Cov{ŝi} ≈ (∇yi)
−1Cov{ŷi}[(∇yi)

−1]′ (10.8)

≈ (∇yi)
−1diag{Ymi}[(∇yi)

−1]′. (10.9)

The regularizer in (10.6) is described in section 10.2.2 below. We minimized the cost

function (10.6) using an ordered subsets method [1]. We initialized the iterations using the

image estimated by the conventional algorithm in [28] and by using a suitable stopping

criteria; the number of iterations did not exceed 200.

10.2.2 Joint edge preserving regularizer

In the previous chapters we used a hyperbolic potential function ψ to preserve edges.

However, that penalty function ignores the fact that water and bone material images share

many common edges. To improve the accuracy of the algorithm, we should consider

both materials’ edge positions jointly when we estimate the object. Adapting [19], we

investigated the following potential function for the case L0 = 2:

ψ(∆ρ1,∆ρ2) =

√
1+(

∆ρ1

δ
)2 +(

∆ρ2

η
)2 −1 (10.10)
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and the following roughness penalty function:

R(ρ1,ρ2) = ∑
j

∑
i∈N j

ψ(ρ1 j −ρ1i,ρ2 j −ρ2i)

= ∑
j

∑
i∈N j

√
1+

(
ρ1 j −ρ1i

δ

)2

+

(
ρ2 j −ρ2i

η

)2

,

where N j denotes the neighborhood of pixel j. We need set the values of δ and η differ-

ently due to the differences of the two material images; roughly we want δ 2 ∝ Var(ρ̂1 j)

and η2 ∝ Var(ρ̂2 j) to preserve edges while suppressing noise.

10.3 Results

We applied the DELF method to simulated DE CT scans and to real phantom DE

CT scans. In both cases, the phantom consists of six different materials: fat, bolus, or-

gans, muscle, inner-bone, and white-bone. This phantom was scanned with low dose,

150mAs (150mA*1sec), with source voltages 80kVp and 140kVp and the slice thickness

was 1.25mm. For this data, the standard GE proprietary scatter correction was already

applied to sinograms, so we used rmi = 0 in (7.2). The fan-beam projection space was 888

radial samples × 984 angular views over 360◦ degrees and we used X-ray spectra model

provided by GE CATSIM software [9], including the effects of a standard large bow-tie

filter. For simulated data in the next section, we used the same X-ray spectra model, filter,

and other parameters of the phantom data. However, there were only two materials, soft

tissues and bone minerals, for simulated data.

10.3.1 Simulated result

We simulated DE CT scans to evaluate the feasibility of the DELF method for image

reconstruction. The reconstructed images were 128×128 for the simulated DE CT scans

with 0.4 × 0.4 cm2 pixel size and field of view was 50cm × 50cm. We applied the
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conventional dual-energy FBP reconstruction method, DE CT reconstruction algorithm

in [28], and DELF method. We investigated 10 different X-ray source intensities (Imi = I0),

from 1×104 to 1×105 photons per ray. We assumed rmi = 0 in (7.2), i.e., no scatter was

simulated.

Fig. 10.2 illustrates estimated material sinograms based on the conventional logarithm

approach <A> and the DELF method <D> in Fig. 10.1. The DELF method has reduced

noise and outliers, particularly in the photon starved regions of the sinogram, because of

the regularizer in (10.2).

Fig. 10.3 shows that the DELF method reduces significantly the NRMSE of the ma-

terial sinogram estimates compared to the conventional sinogram estimation <A> based

on log function. For the DELF method, we chose log2 β1 = −4, log2 β2 = −10.2 and

δ = 0.1(g/cm3) and η = 0.2(g/cm3) empirically. It is difficult to assess error in the sino-

gram domain, so we now turn to the image domain.

Fig. 10.4 shows the density maps of the material components: soft tissues and bone

mineral and the estimated object of the three methods with I0 = Imi = 2 ·104. Fig. 10.4(a)-

(b) shows the simulated two component images. Fig. 10.4(c)-(d) shows FBP method im-

ages <A>, whereas Fig. 10.4(e)-(f) shows the previous iterative method <B> images.

The previous iterative method succeeded in reducing streak artifacts compared to the FBP

images. However, the previous method image contains many outlier voxels whose magni-

tudes are larger than 5 g/cm3 even though the bone density is at most 2 here. In contrast,

the DELF method, in Fig. 10.4(g)-(h), has reduced streaks and yields lower noise than

other two methods. Plus, its voxels have more reasonable density values for all spatial

locations than the conventional approaches.

Fig. 10.5 shows the RMSE plot of the reconstructed object images with different inci-

dent intensities, I0. We observed that the DELF method significantly reduces the RMSE
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of soft tissue and bone minerals estimates compared to the other methods.

10.3.2 Phantom Result

In this section, we applied DELF method to DE CT scans of a phantom. The recon-

structed images were 512× 512 for the phantom DE CT scans with 0.1 × 0.1 cm2 pixel

size and field of view was 50cm × 50cm. We separated the phantom scans into soft tissues

(organ) and bone minerals (white-bone) sinograms. Fig. 10.6 illustrates estimated mate-

rial sinograms based on the conventional method, the previous approach and the DELF

approach. The DELF method has reduced noise and outliers in the soft tissue sinogram.

However, the estimated bone minerlas sinograms of two approaches are similarly noisy

and it is hard to find difference between them. Fig. 10.7 shows the estimated density maps

of soft tissue and bone minerals. In the previous section, DELF method successfully re-

duced noise and streaks with the simulated data. However, with the phantom data, there

is no significant difference among FBP method <A>, previous method <B>, and DELF

method <D>. The DELF method succeeded in reducing streak artifacts in the estimated

soft tissue image compared to the FBP reconstructed images but it was too blurred. Plus,

some of soft tissues appears in the estimated bone minerals.

There are three major reasons why DE CT phantom scans were not decomposed suc-

cessfully by the DELF method. First, there may be a mismatch in the spectrum model that

is provided by the GE CATSIM software. Second, for these results, we assumed additive

background contributions rmi = 0, which assumes scatter was perfectly corrected. How-

ever, scatter correction might be imperfect. Note that this study used narrow collimation

(1.25 mm at isocenter) so one would expect the scatter contribution to be small. Third,

the object contains six distinct materials, but we tried to model six components mixture

with only two mass-attenuation coefficient basis functions. We choose mass-attenuation
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coefficient of organ and white-bone as our basis materials but they cannot represent all six

materials perfectly. We discuss this aspect further in the next section.

10.3.3 Simulations using multiple object materials

As we discussed above there are at least three possible reasons for the unsuccessful

decomposition of the DE CT phantom scans. In this section, we show through simulations

that the object model mismatch most likely does not play a major role in the unsuccessful

decomposition. We generated simulated DE CT data based on the phantom data in sec-

tion 10.3.2. Simulated data used the same parameters of the phantom data and simulated

density maps of soft tissues and bone minerals were also similar to the reconstructed im-

ages in Fig. 10.7. The data has no spectrum mismatch and no scatter is simulated. For

reconstruction, we need to separate the object, which consists of six different materials,

into two mass-attenuation coefficient basis functions. Naturally, we would like to choose

the two basis functions that are able to best represent the six materials. Table 10.1 shows

fat muscle organs bolus inner bone white bone
Density (g/cc) 0.955 1.065 1.015 1.005 1.115 1.41

H 8.38 8.51 8.05 8.16 7.23 5.82
C 67.66 67.12 65.23 66.03 59.68 51.86
N 2.11 2.01 2.05 2.08 1.85 1.82
O 21.78 20.34 22.83 22.47 25.42 27.89
Cl 0.07 0.07 0.07 0.07 0.06 0.06
Ca 0 1.95 1.77 1.19 5.76 12.55

Table 10.1: Elemental composition of materials (%)

the elemental compositions and mass densities of the six materials. Note that Bolus refers

to the material between organs. Fig. 10.8 shows the six basis materials’ energy depen-

dent mass-attenuation coefficient. As we can see, the plots corresponding to Fat, Organ,

Muscle, and Bolus are clustered together whereas the White-bone is well-separated from

the others. Therefore, out of the
(6

2

)
candidate pairs, in the following simulation, we only
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consider Fat and White-bone, Organ and White-bone, and Muscle and White-bone pairs.

We did not consider bolus as one of the candidates because it is less informative than other

materials in medical imaging. For each of these pairs we computed the weighted least

square fitted density coefficients, where the cost function is given as follows:

(ρ̂1, ρ̂2) = argmin
ρ1,ρ2

∫
I(E )(µ(E )−β1(E )ρ1 −β2(E )ρ2)

2 dE , (10.11)

where ρ̂l denotes lth weighted least square fitted density coefficient, βl denotes lth basis

materials’ energy-dependent mass-attenuation coefficient, and we used the same notations

in the 7.6 and 6.3. We expect that if we choose good basis materials, then the weighted

least square fitted density coefficients are close to 1 or 0. Table 10.2 - 10.4 show the

weighted least square fitted density coefficients for several possible pairs of basis materi-

als. Unfortunately, it was impossible to separate inner-bone perfectly because inner-bone

has both fat and bone minerals. If we were to choose fat and white-bone as our basis

materials, then more than 15% of the organs and muscle density can appear in the bone

minerals density maps. However, when we choose organ and white-bone as our basis,

according to Table 10.3, we can expect reasonable results.

Basis Fat Organ Muscle Bolus Inner-bone White-bone
β1(E ) Fat 1.0000 0.8567 0.8586 0.9049 0.5394 0.0000
β2(E ) White-bone -0.0000 0.1478 0.1417 0.0952 0.4608 1.0000

Table 10.2: Weighted least square fitted density coefficients with Fat and White-bone ba-
sis.

Basis Fat Organ Muscle Bolus Inner-bone White-bone
β1(E ) Organ 1.1672 1.0000 1.0022 1.0563 0.6296 0.0000
β2(E ) White-bone -0.1725 0.0000 -0.0065 -0.0609 0.3678 1.0000

Table 10.3: Weighted least square fitted density coefficients with Organ and White-bone
basis.

In these tables, negative values indicate that negative coefficients gave the best linear

combination of basis materials to fit a given linear attenuation coefficient function.
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Basis Fat Organ Muscle Bolus Inner-bone White-bone
β1(E ) Muscle 1.1647 0.9978 1.0000 1.0540 0.6282 0.0000
β2(E ) White-bone -0.1650 0.0065 0.0000 -0.0541 0.3718 1.0000

Table 10.4: Weighted least square fitted density coefficients with Muscle and White-bone
basis.

Simulated material sinograms are shown in Fig. 10.9(a) and (d). We applied sinogram

restoration approach <B> and DELF method <D> to the simulated data. Fig. 10.9(b)

and (e) display method <B>’s resulting component images and Fig. 10.9(c) and (f) show

the estimated density maps of DELF method. The DELF approaches have reduced outliers

and lower noise than the PWLS method.

Fig. 10.10 (a) and (b) show the density maps of the materials: soft tissues (sum of fat,

organ, muscle, and bolus images), and bone minerals (sum of inner-bone and white-bone).

Fig. 10.10 (c)-(h) compare the estimated organ and white-bone materials produced by the

three methods. As shown in Fig. 10.10 (c)-(f), the results of method <A> and method

<B> are very noisy. However, the estimated density maps of the DELF method, shown

in Fig. 10.10 (g) and (h), are improved as shown in Table 10.5. The DELF method recon-

FBP method PWLS method DELF method
Soft tissue 0.0210 0.0198 0.0167

Bone minerals 0.0156 0.0149 0.0114

Table 10.5: RMSE of estimated material density maps of three method.

structed the simulated data by using organ and white-bone materials as our basis materials

and it yielded much less biased estimated density maps. Therefore, the only remaining

reason for the cross talk problem is having used too simplified background model and we

believe that we need to estimate background contributions, especially scatters, when the

size of phantom is big enough.
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10.4 Conclusion

We presented a new iterative approach for DE CT reconstruction. Unlike other DE CT

algorithms, the DELF method first estimates material component sinograms directly from

X-ray DE CT sinograms without using a logarithm. Preliminary simulation results show

that the DELF method estimates material sinograms more precisely than the conventional

logarithm method. The improved sinograms yield images with lower RMS error than the

PWLS approach in Fig. 10.5. However, the DELF method does not work well with the

phantom data because of mismatches in the models such as imperfect scatter and spectral

model mismatch. To reconstruct real data, we need to investigate improved models that

consider the effect of scatter and other possible errors.
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Fig. 10.2: First row: simulated material sinograms. Second row: previous method <A>
sinogram estimates with I0 = 2 ·104. Third row: DELF method <D> sinogram
estimates with I0 = 2 ·104.
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Simulated density map
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Fig. 10.4: First row: Two component simulated densities. Second row: FBP method <A>
with I0 = 2 · 104. Third row: previous method <B> with I0 = 2 · 104. Fourth
row: DELF method <D> with I0 = 2 ·104.
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Fig. 10.6: Sinogram estimates for real phantom scan. First row: conventional method
<A>. Second row: previous method <B>. Third row: DELF method <D>.
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Fig. 10.7: Estimated soft tissues and Bone minerals density maps. First column: FBP
method <A>. Second column: previous method <B>. Third column: DELF
method <D>.
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Fig. 10.9: First column: simulated sinogram of two components. Second column: previ-
ous method <B>. Third column: DELF method <D>.
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Fig. 10.10: First row: Two component simulated densities based on the phantom data.
Second row: FBP method <A>. Third row: previous method <B>. Fourth
row: DELF method <D>.



CHAPTER 11

Conclusion

11.1 Summarize

We have conducted research addressing two major medical imaging areas: MRI and X-

ray CT applications. In this dissertation, we investigated iterative regularized algorithms

to separate maps of important material components, analyzed the spatial resolution and

noise properties, and explored a new roughness penalty to estimate two materials jointly.

Chapter 4 and 5 proposed regularized methods for water-fat decomposition in MRI.

Chapter 4 proposed a PL method that includes a regularization term based on the prior

knowledge that field maps are usually smooth. After water and fat component estimates

were represented in terms of the field map, the PL cost function reduces to a function of the

field map only. Hence, we can jointly estimate water and fat components with field map.

The proposed method led to improved chemical components estimates compared to the

traditional Pixel Independent method and Region Growing method. We also investigated

a simple discretized ML estimator for providing good initial images for the proposed iter-

ative algorithm. Chapter 5 presented a k-space method that also considers phase evolution

due to field inhomogeneity during MR data acquisition. To reconstruct chemical compo-

nent maps, the k-space method repeatedly alternates between updating the field map and

updating the chemical component estimates. This method allowed us to estimate water and
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fat component images based on the MR data directly and the experimental results verified

that the k-space method improved estimated chemical component images and estimated

field map.

In Chapter 7, 8, and 10, we presented iterative algorithms for DE CT reconstruction.

Chapter 7 and 8 proposed a PWLS method that estimates soft tissues and bone minerals’

density maps from fast kVp-switching DE data without any interpolation. It allows DE

data to be collected in a single rotation and it yields less motion effects which can lead to

inconsistency between two sinograms. The proposed method improves images in terms of

RMSE and reduced streak artifacts. However, conventional methods (including the PWLS

method) estimate the material images or sinograms based on log sinogram data which is

sensitive to noise. Therefore, we proposed the DELF method in Chapter 10 to estimate

the components’ density maps directly from DE CT sinogram data without using any log-

arithm. The DELF method first estimates the material sinograms and then reconstructs the

material density maps. Preliminary simulation results show that the proposed method re-

duced RMS error compared to other conventional approaches. However, the DELF method

did not show a dramatic improvement compared to FBP for real phantom data, presum-

ably due to some form of model mismatch such as scatter or imprecise spectra. Further

investigation is required to determine whether or not these are the major reasons for the

lack of improvement.

11.2 Future work

• We have proposed model-based DE CT image reconstructions for PET attenuation

correction. However, the DELF method was not effective to phantom data. We

believe ignoring the effect of background contributions (scatter) in its cost function

is the most likely reason for this problem. Future work should consider scatter more
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thoroughly.

• We used organ and white-bone as basis materials in Chapter 10. Further research is

needed to find better basis materials for representing the six materials in the phantom

data.

• The DELF method estimates material density maps with two major steps: first it es-

timates material sinogram images, second it reconstructs component images based

on the estimated material sinograms. In this case, we need two iterative algorithms

and we have to find good parameters twice, e.g., roughness penalty parameters, and

δ values of the roughness penalty function in equation (10.11). Choosing good pa-

rameters is difficult because it could be sensitive to radiation dose. If parameters are

too small, the method could not reduce noise well whereas large values for param-

eters would cause bias. Therefore, we should investigate a DE CT reconstruction

method that estimates material density maps from DE CT data directly with only

one iterative algorithm [14].

• Furthermore, as a challenge we can try to separate more than three materials by

using some constraints such as: density of each material is nonnegative, sum of

materials’ densities are known (or fixed), or sum of volume or mass fractions of the

materials is unity [66].

• In this research, we have focused on estimating the density maps of two materials

(such as soft tissue and bone minerals) from DE CT sinograms. These density maps

are useful for PET attenuation correction, but they may not be the most suitable

images for displaying to a radiologist. Other possible methods for display include

synthetic or “virtual” monoenergetic images [40, 42, 66] or images of effective den-

sity and effective atomic number Zeff [5,20,41,43,54,62]. These alternatives should
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be explored in future work.
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