
Pneumatic Networks as Geographs

Sandra L. Arlinghaus1, William C. Arlinghaus2

1School of Natural Resources and Environment, The University of Michigan, Ann Arbor, MI, 2Department
of Mathematics and Computer Science, Lawrence Technological University, Southfield, MI

The Jordan–Sylvester graph center theorem provides an established and well-known
method for calculating the center of a graph. We visualize this theorem in the context
of a historical network, the Berlin Rohrpost of 1901, and interpret that visualization
using contemporary visualization tools (Google Earth). Technology serves to bridge a
visualization gap over time and, through this example, suggests direction for updating
other historical studies. It also serves to guide further the direction of methodological
research in regard to space filling as Fractalyse software offers planners ideas of how
densely packed, with network nodes, an urban environment might become over time.

Introduction

During the 1990s, it was our pleasure to work with Frank Harary in developing
applications of graph theory in geography. Some of the ideas drew from earlier
geographical materials, whereas other ideas related to mathematical ideas involv-
ing the symmetry in graphs. We joined our approaches with Harary’s enduring
interest in applications of graph theory in a wide range of disciplines: from anthro-
pology to zoology, his applications and interest ran through the alphabet (Harary
1969; Harary and Robinson 1975; Hage and Harary 1983, 1991, 1996). In 2002,
our Graph Theory and Geography was published; it was John Wiley and Sons’ first
e-book (Arlinghaus, Arlinghaus, and Harary 2002). This work represents more than
a decade of collaboration among the three of us.

Harary passed away in 2004. We have to imagine that his excitement over
applications of current technology to graph theory, network science, and other
related topics would have been unbounded in subsequent years. His collaboration
with John Hayes throughout the last part of his life, coupled with his computer
science interests at New Mexico State University, testifies to a deep interest in the
changes taking place (Harary, Hayes, and Wu 1988; Harary and Hayes 1989, 1993,
1996).
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In this work, we begin by reviewing how visualization of animated graphs was
used in 2002 to capture the principles of the Jordan–Sylvester graph center theorem
(Arlinghaus, Arlinghaus, and Harary 2002). We disassemble the animation and
illustrate how it is used to convey meaning. From there, we move forward in time
to 2009 to a view of graphs in the “real” three-dimensional (3-D) world of Google
Earth (Google Inc., Amphitheatre Parkway Mountain View, CA) (Arlinghaus 2009).
Using 3-D views permits the simultaneous visualization of both the graph and the
surrounding space in which it is embedded. These “geographs” come alive to
pinpoint where the abstract graphical structure fits into the real world in relation to
established benchmarks. Finally, we move back to the abstract world and offer one
way to bring historical maps into the contemporary scene by using the ranking of
spatial materials portrayed in those maps to suggest the extent of space filling, in the
real world, by those elements. We hope that this presentation offers convincing
evidence regarding the integration of historical networks with contemporary virtual
representations of real landscapes and that the associated illustrations are helpful in
adding context to the representation of the network in geographic space.

Pneumatic networks: a century of progress

In the world of 2011, we experience pneumatic networks in various ways, such as
making bank transactions at a drive-up window. A few may see them in other
contexts, for conveying money or small packets (e.g., small parcels) in department
stores, libraries, and so forth. What we see in today’s world is, however, a mere
remnant of times past. In the late 19th and early- to mid-20th centuries, pneumatic
technology was in its heyday. There were, in addition to the sorts of things we still
see, pneumatic clocks, pneumatic subways, and pneumatic postal networks, to
name a few.

Pneumatic technology must have been as avant-garde during that time as the
Internet is today. There was the mystery of inserting something into the network and
then imagining the harnessing of the wind inside unseen tubing as a means to
transmit materials from here to there: truly a stunning capability! Our virtual
networks of today have many of the same hallmarks: the user sees the endpoints but
does not see much of the necessarily associated network. Graph-theoretic structure
fits both technologies. A graph, formed from a set of nodes and edges, relinquishing
all else, focuses only on the network. It is ideally suited to capture this sort of
abstract structure, as a geograph; therefore, theorems from graph theory are impor-
tant in the analysis of geographs.

The Jordan–Sylvester graph center theorem

Finding the center of a geographic distribution is an enduring problem. The “center”
of a graph can be interpreted in a variety of ways. One standard to find the center
of a given graph is to employ the Jordan–Sylvester center theorem. The work of
Camille Jordan traditionally finds application in breaking curves on maps and
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nodes where the curve crosses itself so that the inside of the curve as the
software sees it fits the intuitive notion of the inside of the curve as geometry sees
it (Jordan curve theorem [Jordan 1869]). Again, with graphs, Jordan’s work is
critical.

Theorem. Jordan–Sylvester Center Theorem. Every graph-theoretical tree has a
center composed of either one node or two adjacent nodes.

Often, the proof is expressed formally in a manner such as the following.

Proof. The result is obvious for the graph-theoretical trees K1 and K2 (complete
graphs on one and two nodes). Any other tree T has the same central nodes as the
tree T’ obtained by removing all end nodes (at the tips of branches) of T. The
maximum of the distances from a given node u of T to any other node v of T will
occur only when v is an end node. Thus, the eccentricity of each node in T’ is
exactly one less than the eccentricity of the same node in T. Hence, the nodes of
T that possess minimum eccentricity in T are the same nodes having minimum
eccentricity in T’; that is, T and T’ have the same center. If the process of removing
end nodes is repeated, successive trees having the same center as T are obtained.
Because T is finite, a tree that is either K1 or K2 is eventually reached. In either case,
all nodes of this ultimate tree constitute the center of T that thus consists of just a
single node or two adjacent nodes: QED.

One problem with proof expressed in this manner is that even though the
underlying concepts are easy for nonexperts to follow, their expression is encum-
bered with structure that makes those concepts appear difficult to follow. We
believe, when possible, revealing mathematical structure is important for the non-
experts who may have a great deal to offer if only they could get a grasp of the
underlying conceptual framework. In our e-book (Arlinghaus, Arlinghaus, and
Harary 2002), we construct an animated map, as a “proof without words” (Nelsen
1993, among others), to illustrate the process of deconstruction stated more for-
mally in the preceding proof. We apply the process to one particular real-world
historical graph, which is that of the pneumatic mail network, the Berlin Rohrpost
of 1901, to visualize the proof (Fig. 1). The map in that figure is adapted from an
original earlier source (“Rohrpostnetz von Berlin” 1901). Fig. 2a–d show several of
the seven stages of peeling off edges to reduce this graph to its center. Fig. 2e offers
readers with smartphones that can read quick response (QR) code an opportunity
to see the animation directly from the printed text. In either visualization, the center
of the graph, as a structural form independent of function, is not the same as the
functional (highest order) center of the pneumatic network (represented as the
geometrically largest node).

Fig. 2 furnishes the selected stages in the reduction of the Rohrpost graph to its
center: in Fig. 2a, remove end nodes, a, and adjacent edges to produce Fig. 2b;
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Fig. 2b results from removing end nodes a and adjacent edges; in Fig. 2c, the
process continues in succession, removing end nodes b, c, d, e, and f, resulting in
Fig. 2d; in Fig. 2d the final two end nodes and edges are peeled off to isolate the
center. Note that the center is, in this case, not the node offering the largest function
to the network (the geometrically largest node offers the largest amount of service
to the network). Fig. 2e portrays the sequence of graphs in animation when viewed
on a smartphone capable of reading QR codes, a merging of conventional and
contemporary publication methods.

Really all one needs to know, then, to visualize how to find the center of a
graph, using the reduction scheme offered in the Jordan–Sylvester theorem, is the
meaning of the term end node. This concept clarifies why one or two nodes might
be in the center and why more than two can never exist (peel off an end node!).
Simplicity is often the hallmark of elegance and elegance the hallmark of clarity.
Current visualization capability can offer added clarity of the logic behind useful
mathematical tools.

Figure 1. Berlin pneumatic postal network: schematic representation based on “Rohrpost-
netz von Berlin” (1901).
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Pneumatic networks in Google Earth

Creating a graph to analyze a real-world structure is generally a straightforward
process. Graph nodes represent small, tightly bounded geographical entities; a bus
stop, a subway station, a sewer lid, and so forth are natural choices as graph nodes.
Less obvious choices might involve a human mouth or an idea. Graph edges might
be anything in the world that can be channeled: the movement of a train (from one

(a) (b)

(c)

(e)

(d)

Figure 2. Selected networks. Use a smartphone to view the graphs in animation.
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node to another) or the movement of communication (from mouth to ear). This
process of creating a geograph is clear-cut at least partially because the less
well-defined (a real-world phenomenon) is being mapped to the clearly defined (a
graph). That mapping, however, is not symmetric because the ends of the mapping
are different.

Visualizing a graph in the real world often is not straightforward and even more
so when the elapsing of a number of years causes change in the real world but not
in the associated graph. Thus, the Rohrpost of 1901 was embedded in a Berlin that
is very different from post-World War II Berlin, which is very different from today’s
Berlin. The path of the Rohrpost, though, has been unchanged. To get an idea of the
surroundings through time, 3-D software such as Google Earth offers good visual-
ization. Fig. 3 shows a map of Berlin from around 1901 overlaid on the Google
globe. Placemarks in Google Earth represent nodes on the graph. Researchers
interested in physical remnants of this early communications system might supple-

Figure 3. Early 20th-century Berlin map overlaid on Google Earth. A few placemarks and
connections along the Rohrpost are aligned with the map.
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ment textual evidence from the time with contemporary visual evidence (which
presumably will improve steadily into the future).

The Brandenburg Gate is a good benchmark for fixing the pneumatic network
through time. Its location in 1901 and today is the same. With the layer for 3-D
buildings turned on in Google Earth, selecting it is easy, although one must know
what to select. A persistent problem with visualization of the real world through a
computerized replication of it is whether the virtual reality shown portrays an
accurate reality. Conventional photographic evidence and field testing offer ways to
verify reality. Fig. 4a shows a virtual reality view of the Brandenburg Gate. Fig. 4b
shows a Google Earth “street view,” captured in the upper right bubble of Fig. 4a as
conventional photographic evidence of the same scene. The fit appears to be good,
although the photographic evidence is not independent of the virtual model; it is
embedded in the model by the same creator. Frequently, extra photographs are
available for various sites around the world. Nevertheless, to test the fit accurately,
one might go to Berlin with a camera and global positioning system and check both
position and appearance of the model. For our purposes, however, the fit seems
sufficient. Benchmarking in the virtual world offers new challenges!

Fig. 5 shows the model in relation to elements of the Rohrpost. The view of the
network link running along Unter den Linden (still there) is surrounded mostly by
structures that obviously were not present in 1901 (Fig. 6). Virtual reality models, as
well as conventional maps, may guide exploration, discovery, and consequent
explanation. Newer approaches to graph theory, which combine current technol-
ogy with historical knowledge and documentation, offer ways to mesh time with
space and to overcome the digital divide that often has made historical documents
the stepchildren of the Internet.

Space filling and historical maps

As urban space changes over time, typically so does the amount of space that is
filled. Downtown New York City appears packed with buildings; downtown Detroit
is sparse now but becoming more fully packed. Effective planning should make
efficient use of the land and also provide the goods and services people need and
want in an appropriate manner. What seems “efficient” or “appropriate” is likely to
vary with time and place. New analytic tools become available and offer a different
set of vantage points from which to view data.

Returning again to the Rohrpost example, the ranking of locations in the
historical map of Fig. 1 reflects the importance of the service provided by individual
stations to that network. One also might think that the ranking reflects the level of
provision of desired and needed service to the population of Berlin. To measure the
extent of service provision, one might measure the amount of space filled by
fanning the network out, in stages, to capture successively less and less important
pneumatic stations.

Fractalyse (Gilles Vuidel, CNRS-Université de Franche-Comté et de Bourgogne,
France) (available at http://www.fractalyse.org/) is a free stand-alone software that
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measures the amount of space filled by geometric objects. It offers various ways to
calculate the amount of black existing within a bounded white area. Thus, it differs
from the conventional generation of fractals where the outcome is not influenced
by the physical representation of a dot or a line. We use Fractalyse to capture this
space filling by Rohrpost service nodes. We chose to calculate the process as a
“radius mass” process, selecting the “circular” option and using barycentric coor-

(a)

(b)

Figure 4. The Brandenbrug Gate. (a) Virtual reality model in Google Earth. Note the “street
view” bubbles, suggesting available conventional photographic images. (b) Conventional
photographic evidence as seen from and within the right bubble closest to the gate in (a).
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dinates (marked as a small crosshair) to calculate the center of the dot distribution.
The result is a measure, expressed as a “dimension,” of the amount of white space
filled by the black dot scatter. Fig. 7 illustrates the outcome of one application of
this process. The influence of dot size on the generated values is an advantage in
this case. Deciding at the outset whether to let the physical size of the dots
influence the space-filling measure is critical when using this software; Fractalyse
is a good choice if one wishes to do so. It focuses on the relative, rather than the
absolute, filling of space. Naturally, the more dots that are included (such as in a
wider hierarchical range), the more space they fill.

Because space filling is influenced by physical representation of the entities,
the historical ranking assigned in 1901 is captured in the measure generated in
2010. Fig. 8a–c show the succession of Fractalyse values: the scatter in Fig. 8a fills
the least space, D = 0.00009766; the scatter in 8(b) the next most, D = 0.7357;
and the scatter in Fig. 8c the most, D = 0.8063. The highest value is still less than

Figure 5. With the three-dimensional layer switched on, the Brandenburg Gate is easy to
find in relation to edges and nodes in the Rohrpost graph. The thick black lines denote the
approximate path of the Rohrpost (subterranean).
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Figure 6. Looking from the top of the virtual Brandenburg Gate along Unter den Linden.
Note the mix of old and new virtual reality buildings. The thick black line denotes the
approximate path of Rohrpost (subterranean).

Figure 7. A screen capture of the output of Fractalyse for service nodes of the Berlin
Rohrpost.

Sandra L. Arlinghaus and William C. Arlinghaus Pneumatic Networks as Geographs

367



D = 1, the maximum value of space filled by dot scatter that eventually becomes a
line (where the measure is not influenced by the physical representation of dot
sizes). That value is clearly less than D = 2, the corresponding highest value of space
filled by a dot scatter when physical representation of dot size is factored in.

Conclusion

Integration of the new with the old is critical. Often, simply to forge ahead in the
excitement of the new is tempting. However, without bringing existing materials
into the current realm, one is destined to waste precious time and resources in
reinventing the past. We suggest here one way to incorporate an array of works in
a current context to take advantage, in a variety of ways, of the exciting revolu-
tionary times in which we live. Regardless, whether we call it graph theory or
network science, the important feature in geographic applications is to integrate
spatial elements from diverse times and contexts with the broad, abstract, math-
ematical framework behind all of it. That is a principle that has endured in
application, and it is one that we expect to endure in the future.
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